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FUNDAMENTAL MATRICES AND GREEN MATRICES
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Abstract: In this paper, we establish existence, uniqueness, and scale-invariant
estimates for fundamental solutions of non-homogeneous second order elliptic systems

with bounded measurable coefficients in Rn and for the corresponding Green functions

in arbitrary open sets. We impose certain non-homogeneous versions of de Giorgi–
Nash–Moser bounds on the weak solutions and investigate in detail the assumptions

on the lower order terms sufficient to guarantee such conditions. Our results, in

particular, establish the existence and fundamental estimates for the Green functions
associated to the Schrödinger (−∆ +V ) and generalized Schrödinger (− divA∇+V )

operators with real and complex coefficients, on arbitrary domains.
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1. Introduction

In this paper, we consider non-homogeneous second order uniformly
elliptic systems, formally given by Lu=−Dα(AαβDβu+bαu)+dβDβu+
Vu. The principal term, L := −DαAαβDβ , satisfies the following ellip-
ticity1 and boundedness conditions

ˆ
Aαβij (x)∂βφ

j(x)∂αφ
i(x) dx ≥ λ

N∑
i=1

n∑
α=1

ˆ
|∂αφi(x)|2 dx,

N∑
i,j=1

n∑
α,β=1

|Aαβij (x)|2 ≤ Λ2,

for some 0 < λ,Λ < ∞, where the first inequality holds for all φ =
(φ1, . . . , φN ) belonging to an appropriate Hilbert space, and the second
inequality holds for all x in the domain. Note that, in particular, equa-
tions with complex bounded measurable coefficients fit into this scheme.
We establish existence, uniqueness, as well as global scale-invariant es-
timates for the fundamental solution in Rn and for the Dirichlet Green
function in any connected, open set Ω ⊂ Rn, where n ≥ 3. The key
difficulty in our work is the lack of homogeneity of the system since this
typically results in a lack of scale-invariant bounds. Here, the existence
of solutions relies on a coercivity assumption, which controls the lower-
order terms, and the validity of the Caccioppoli inequality. Furthermore,
following many predecessors (see, e.g., [HK], [KK]), we require certain
quantitative versions of the local boundedness of solutions. This turns
out to be a delicate game, however, to impose local conditions which are
sufficient for the construction of fundamental solutions and necessary for
most prominent examples. Indeed, they have not been completely well-
understood even in the case of real equations, due to the same type of
difficulties: Solutions to non-homogeneous equations can grow exponen-
tially with the growth of the domain in the absence of a suitable control
on the potential V, even if b = d = 0. This affects the construction of
the fundamental solution. Let us discuss the details.

1The authors would like to thank Pascal Auscher for pointing out the G̊arding in-

equality could be used in place of a pointwise uniform ellipticity assumption.
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The fundamental solutions and Green functions for homogeneous sec-
ond order elliptic systems are fairly well-understood by now. We do not
aim to review the vast literature addressing various situations with addi-
tional smoothness assumptions on the coefficients of the operator and/or
the domain, and will rather comment on those works that are most
closely related to ours. The analysis of Green functions for operators with
bounded measurable coefficients goes back to the early 80’s, [GW] (see
also [LSW] for symmetric operators), in the case of homogeneous equa-
tions with real coefficients (N = 1). The case of homogeneous systems,
and, respectively, equations with complex coefficients, has been treated
much more recently in [HK] and [KK] under the assumptions of local
boundedness and Hölder continuity of solutions, the so-called de Giorgi–
Nash–Moser estimates. Later on, in [Ros1], the fundamental solution
in Rn was constructed using only the assumption of local boundedness,
that is, without the requirement of Hölder continuity. In [Bar], Barton
constructed fundamental solutions, also in Rn only, in the full generality
of homogeneous elliptic systems without assuming any de Giorgi–Nash–
Moser estimates. The techniques in [Bar] are based on descent from the
higher order case.

The present paper can be split into two big portions. In the first part,
we prove that one can define the fundamental solution and the Green
function, and establish global estimates on par with the aforementioned
works for homogeneous equations, roughly speaking, if:

(1) The bilinear form associated to L is coercive and bounded in a
suitable Hilbert space.

(2) The Caccioppoli inequality holds:
If u is a weak solution to Lu = 0 in U ⊂ Ω and ζ is a smooth
cutoff function, thenˆ

|Du|2ζ2 ≤ C
ˆ
|u|2|Dζ|2,

where C is independent of the subdomain U .
(3) The interior scale-invariant Moser bounds hold:

If u is a weak solution to Lu = f in BR ⊂ Ω, for some R > 0,
where f ∈ L`(BR)N for some ` ∈

(
n
2 ,∞

]
, then for any q > 0,

sup
BR/2

|u| ≤ C

[( 
BR

|u|q
)1/q

+R2−n` ‖f‖L`(BR)

]
,

where C is independent of R.
(4) The solutions are Hölder continuous:
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If u is a weak solution to Lu = 0 in BR0
⊂ Ω, for some R0 > 0,

then there exists η ∈ (0, 1), depending on R0, and CR0
> 0 so that

whenever 0 < R ≤ R0,

sup
x,y∈BR/2, x 6=y

|u(x)− u(y)|
|x− y|η

≤ CR0R
−η
( 

BR

|u|2
∗
)1/2∗

.

If, in addition, the boundary scale-invariant Moser bounds hold (that
is, the Moser estimate holds for solutions with trace zero on balls possibly
intersecting the boundary), then the Green functions exhibit respectively
stronger boundary estimates. This part of the paper is modeled upon the
work in [HK] and [KK]. However, the scaling issues and identifying the
exact form of necessary conditions that are compatible with the princi-
pal non-homogeneous examples make our arguments considerably more
delicate. Note, in particular, the local nature of Hölder estimates versus
the global nature of Moser-type bounds. The Moser-type bounds are
independent of the domain, whereas the Hölder estimates may depend
on the size of the ball.

In the second portion of the paper, we motivate the assumptions from
above by showing that conditions (1)–(4) above are valid in the following
three situations. To be precise, we show that in each case listed below,
(1)–(2) from above hold for the general systems, while (3)–(4) holds for
equations and, hence, the resulting estimates on fundamental solutions
and Green functions are valid for the equations with real coefficients in
each of the three cases below.

Case 1. Homogeneous operators: b,d,V ≡ 0 and the function space for
solutions is F(Ω) = Y 1,2(Ω)N . Here, Y 1,2(Ω) is the family of all
weakly differentiable functions u ∈ L2∗(Ω), with 2∗ = 2n

n−2 , whose

weak derivatives are functions in L2(Ω).
Case 2. Lower order coefficients in Lp: There exist p ∈

(
n
2 ,∞

]
, s, t ∈

(n,∞] so that V∈Lp(Ω)N×N , b∈Ls(Ω)n×N×N , d∈Lt(Ω)n×N×N

and we take the function space for solutions to be F(Ω)=W 1,2(Ω)N .
As usual, W 1,2(Ω) is the family of all weakly differentiable func-
tions u ∈ L2(Ω) whose weak derivatives are functions in L2(Ω).
The lower-order terms are chosen so that the bilinear form asso-
ciated to L is coercive. For conditions (3)–(4), we assume further
that V−div b ≥ 0 and V−div d ≥ 0 in the sense of distributions.

Case 3. Reverse Hölder potentials: V ∈ Bp, the reverse Hölder class,

for some p ∈
(
n
2 ,∞

)
, b,d ≡ 0, and F(Ω) = W 1,2

V (Ω)N , a weighted
Sobolev space (with the weight given by a certain maximal function
associated to V – see (1.1) and definitions in the body of the paper).
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We would like to point out that in Theorem 18 from [AT], P. Auscher
and Ph. Tchamitchian prove the global Gaussian bounds on the heat
semigroup under the assumption of W 1,2(Rn) coercivity of the corre-
sponding form, for b, d, V ∈ L∞(Rn), without assuming that V −∇·b ≥ 0
and V − ∇ · d ≥ 0 in the sense of distributions. This is a version of
our Case 2. Such estimates should, in principle, imply a global point-
wise estimate on the fundamental solution in Rn of the form |Γ(x, y)| ≤
C|x− y|2−n, for all x, y ∈ Rn, x 6= y. A similar result could be obtained
in Case 3 by the maximum principle. It is not immediately clear, how-
ever, if in either case one can obtain a complete package of results that
we have targeted (see Theorems 3.6 and 3.10), particularly for the Green
functions on domains. For those reasons, we did not pursue this route in
the present work. More generally, one can sometimes establish bounds
on the fundamental solutions and Green functions for elliptic boundary
problems by an integration of the estimates of the corresponding heat
kernels. However, the latter requires a suitable form of uniform expo-
nential decay of the heat kernel in t > 0, while the non-homogeneous
equations typically give rise to bounds for a finite time, 0 < t < T ,
with a constant depending on T (cf., e.g., [Dav], [Aro], [AQ], [Ouh]).
There are notable exceptions to this rule, including [AT], but they do
not provide a basis for a unified theory, particularly on general domains.

The verification of local bounds and Hölder continuity in our argu-
ments follows a traditional route (see [GT], [HL], [Sta]). However, we
have to carefully adjust the arguments so that the dependence on con-
stants coincides with our constructions of fundamental solutions.

Going further, let us say a few words about Case 3, −divA∇ + V ,
V ∈ Bp, p > n/2. This is the version of the Schrödinger equation
that initially interested us. With pointwise bounds on the fundamental
solution and the Green function (Theorems 3.6 and 3.10, respectively), as
well as basic Moser, Hölder, Harnack estimates established in our present
work, one can now move on to derive the sharp exponential decay of the
fundamental solutions in terms of the Agmon distance associated to the
maximal function

(1.1) m(x, V )=

(
sup
r>0

{
r : ψ(x, r;V ) :=

1

rn−2

ˆ
B(x,r)

V (y) dy ≤ 1

})−1

.

For instance, it is natural to expect that in Case 3

Γ(x, y) ≤ C e−ε d(x,y,V )

|x− y|n−2
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for some C, ε > 0, with the distance function

d(x, y, V ) = inf
γ

ˆ 1

0

m(γ(t), V )|γ′(t)| dt,

where γ : [0, 1] → Rn is absolutely continuous, γ(0) = x, γ(1) = y,
and m is the Fefferman–Phong maximal function. This question is ad-
dressed in [MP], along with the corresponding estimates from below.
Analogous results will be proved for the magnetic Schrodinger operator,
−(∇− iB)2 + V . See [She4] for the case of −∆ + V .

2. Basic assumptions and notation

Throughout this article, the summation convention will be used. Let
n ≥ 3 denote the dimension of the space, and let N ≥ 1 denote the
number of components in each vector function. Let Ω ⊂ Rn be an open,
connected set. We use the notation Br(x) to denote a ball of radius r > 0
centered at x ∈ Rn, and the abbreviated notation Br when x is clear
from the context. For any x ∈ Ω, r > 0, we define Ωr(x) := Ω ∩ Br(x).
Let C∞c (Ω) denote the set of all infinitely differentiable functions with
compact support in Ω. We set 2∗ = 2n

n−2 .

For any open set Ω ⊂ Rn, define the space Y 1,2(Ω) as the family of all
weakly differentiable functions u ∈ L2∗(Ω) whose weak derivatives are
functions in L2(Ω). The space Y 1,2(Ω) is endowed with the norm

(2.1) ‖u‖2Y 1,2(Ω) := ‖u‖2L2∗ (Ω) + ‖Du‖2L2(Ω).

Define Y 1,2
0 (Ω) as the closure of C∞c (Ω) in Y 1,2(Ω). When Ω = Rn,

Y 1,2(Rn) = Y 1,2
0 (Rn) (see, e.g., Appendix A). By the Sobolev inequality,

(2.2) ‖u‖L2∗ (Ω) ≤ cn‖Du‖L2(Ω) for all u ∈ Y 1,2
0 (Ω).

It follows that W 1,2
0 (Ω) ⊂ Y 1,2

0 (Ω) with set equality when Ω has finite
measure. Here, W 1,2(Ω) is the family of all weakly differentiable func-
tions u ∈ L2(Ω) whose weak derivatives are functions in L2(Ω). The
norm on W 1,2(Ω) is given by

‖u‖W 1,2(Ω) = ‖u‖L2(Ω) + ‖Du‖L2(Ω),

and W 1,2
0 (Ω) is the closure of C∞c (Ω) in W 1,2(Ω). We shall mostly be

talking about the spaces of vector-valued functions in Y 1,2
0 (Ω)N . The

bilinear form

(2.3) 〈u,v〉Y 1,2
0 (Ω)N :=

ˆ
Ω

Dαu
iDαv

i
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defines an inner product on Y 1,2
0 (Ω)N .With this inner product, Y 1,2

0 (Ω)N

is a Hilbert space with norm

‖u‖Y 1,2
0 (Ω)N := 〈u,u〉1/2

Y 1,2
0 (Ω)N

= ‖Du‖L2(Ω)N .

For the sake of brevity, we sometimes drop the superscript of dimension
from the norm notation when it is understood from the context. For
further properties of Y 1,2(Ω), and some relationships between Y 1,2(Ω)
and W 1,2(Ω), we refer the reader to Appendix A.

Hofmann and Kim used the space Y 1,2(Ω)N in their constructions
of fundamental matrices and Green matrices for homogeneous opera-
tors [HK]. Since we are concerned with non-homogeneous operators,
this function space will not always be appropriate, but we intend to
mimic some of its properties. To this end, we will define the pair consist-
ing of a non-homogeneous elliptic operator and a suitably accompanying
Banach space, and then show that standard cases of interest fit in this
framework.

We assume that for any Ω ⊂ Rn open and connected, there exists
a Banach space F(Ω) consisting of weakly differentiable, vector-valued
L1

loc(Ω) functions that satisfy the following properties:

A1) Whenever U ⊂ Ω,

(2.4) u ∈ F(Ω)→ u|U ∈ F(U), with ‖u|U‖F(U) ≤ ‖u‖F(Ω).

A2) C∞c (Ω)N functions belong to F(Ω). The space F0(Ω), defined as
the closure of C∞c (Ω)N with respect to the F(Ω)-norm, is a Hilbert
space with respect to some ‖ · ‖F0(Ω) such that

‖u‖F0(Ω) ≈ ‖u‖F(Ω) for all u ∈ F0(Ω).

A3) The space F0(Ω) is continuously embedded into Y 1,2
0 (Ω)N and re-

spectively, there exists c0 > 0 such that for any u ∈ F0(Ω)

(2.5) ‖u‖Y 1,2
0 (Ω)N ≤ c0‖u‖F(Ω).

Note that this embedding and (2.2) imply a homogeneous Sobolev
inequality in F0(Ω):

(2.6) ‖u‖L2∗ (U) . ‖Du‖L2(U) for any u ∈ F0(Ω),

which will be used repeatedly throughout.

A4) For any U ⊂ Rn open and connected

(2.7)
u ∈ F(Ω) and ξ ∈ C∞c (U) =⇒ uξ ∈ F(Ω ∩ U),

u ∈ F(Ω) and ξ ∈ C∞c (Ω ∩ U) =⇒ uξ ∈ F0(Ω ∩ U),

with ‖uξ‖F(Ω∩U) ≤ Cξ ‖u‖F(Ω).
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It follows, in particular, that

(2.8) F(Ω) ⊂ Y 1,2
loc (Ω)N .

Indeed, for any x ∈ Ω there exists a ball Br(x) ⊂ Ω. If u ∈ F(Ω)

and ξ ∈ C∞c (Br), we have uξ ∈ F0(Ω) ↪→ Y 1,2
0 (Ω)N . Hence, taking

ξ ≡ 1 on Br/2(x), we conclude that u ∈ Y 1,2(Br/2(x))N .
Another consequence of (2.7) is that for any U ⊂ Rn open and

connected

(2.9) if u ∈ F0(Ω) and ξ ∈ C∞c (U) =⇒ uξ ∈ F0(Ω ∩ U).

Indeed, if u∈F0(Ω) then there exists a sequence {un}n∈N⊂C∞c (Ω)
which converges to u in F(Ω). But then {ξun}n∈N ⊂ C∞c (Ω ∩ U)
is Cauchy in F(Ω ∩ U) and in Y 1,2(Ω ∩ U)N by (2.7) and (2.5).
Therefore, it converges in F(Ω ∩ U) and in Y 1,2(Ω ∩ U)N to some

element of F0(Ω ∩ U) ↪→ Y 1,2
0 (Ω ∩ U)N , call it v. And it follows

that v = uξ as elements of Y 1,2
0 (Ω ∩ U)N .

For future reference, we mention that for Ω, U ⊂ Rn open and con-
nected, the assumption

(2.10) u ∈ F(Ω), u = 0 on U ∩ ∂Ω,

is always meant in the weak sense of

(2.11) u ∈ F(Ω) and uξ ∈ F0(Ω) for any ξ ∈ C∞c (U).

This definition of (weakly) vanishing on the boundary is independent
of the choice of U . Indeed, suppose V is another open and connected
subset of Rn such that V ∩ ∂Ω = U ∩ ∂Ω and let ξ ∈ C∞c (V ). Choose
ψ ∈ C∞c (U ∩ V ) such that 0 ≤ ψ ≤ 1 and ψ ≡ 1 on the support of ξ
in some neighborhood of the boundary. Then ξ(1 − ψ)|Ω ∈ C∞c (Ω), so
by (2.7) we have uξ(1 − ψ) ∈ F0(Ω). Additionally, ξψ ∈ C∞c (U), so
by (2.11), uξψ ∈ F0(Ω). Therefore, uξ = uξψ + uξ(1− ψ) ∈ F0(Ω), as
desired.

Before stating the remaining properties of F(Ω), we define the elliptic
operator. Let Aαβ = Aαβ(x), α, β ∈ {1, . . . , n}, be an N × N matrix
with bounded measurable coefficients defined on Ω. We assume that
Aαβ satisfies an ellipticity condition in the form of a G̊arding inequality

(2.12)

ˆ
Ω

Aαβij (x)∂βφ
j(x)∂αφ

i(x) dx ≥ λ
N∑
i=1

n∑
α=1

ˆ
Ω

|∂αφi(x)|2 dx

for all φ ∈ F0(Ω)
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and a boundedness assumption

(2.13)

N∑
i,j=1

n∑
α,β=1

|Aαβij (x)|2 ≤ Λ2 for all x ∈ Ω,

for some 0 < λ,Λ < ∞. Let V denote the zeroth order term, an N ×
N matrix defined on Ω. The first order terms, denoted by bα and dβ ,
for each α, β ∈ {1, . . . , }, are N ×N matrices defined on Ω. We assume
that there exist p ∈

(
n
2 ,∞

]
and s, t ∈ (n,∞] such that

(2.14) V ∈ Lploc(Ω)N×N , b ∈ Lsloc(Ω)n×N×N , d ∈ Ltloc(Ω)n×N×N .

We now formally fix the notation and then we will discuss the proper
meaning of the operators at hand. For every u=(u1, . . . , uN )T in Floc(Ω)

(and hence, in Y 1,2
loc (Ω)N ) we define

(2.15) Lu = −Dα(AαβDβu).

If we write out (2.15) component-wise, we have

(Lu)i = −Dα(Aαβij Dβu
j), for each i = 1, . . . , N.

The non-homogeneous second-order operator is written as

Lu := Lu−Dα(bαu) + dβDβu + Vu

= −Dα(AαβDβu + bαu) + dβDβu + Vu,
(2.16)

or, component-wise,

(Lu)i=−Dα(Aαβij Dβu
j+bαiju

j)+dβijDβu
j+Viju

j , for each i=1, . . . , N.

The transpose operator of L, denoted by L∗, is defined by

L∗u = −Dα[(Aαβ)∗Dβu],

where (Aαβ)∗ = (Aβα)T , or rather (Aαβij )∗ = Aβαji . Note that the adjoint

coefficients, (Aαβij )∗ satisfy the same ellipticity assumptions as Aαβij given

by (2.12) and (2.13). Take (bα)∗ = (dα)T , (dβ)∗ = (bβ)T , and V∗ =
VT . The adjoint operator to L is given by

L∗u := L∗u−Dα[(bα)∗u] + (dβ)∗Dβu + V∗u

= −Dα[(Aβα)TDβu + (dα)Tu] + (bβ)TDβu + VTu,
(2.17)

or

(L∗u)i=−Dα(Aβαji Dβu
j+dαjiu

j)+bβjiDβu
j+Vjiu

j, for each i=1, . . . , N.

All operators, L, L∗, L, L∗ are understood in the sense of distribu-
tions on Ω. Specifically, for every u ∈ Y 1,2

loc (Ω)N and v ∈ C∞c (Ω)N , we
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use the naturally associated bilinear form and write the action of the
functional Lu on v as

(Lu,v)=B[u,v]

=

ˆ
Ω

AαβDβu ·Dαv+bαu ·Dαv+dβDβu · v+Vu · v

=

ˆ
Ω

Aαβij Dβu
jDαv

i+bαiju
jDαv

i+dβijDβu
jvi+Viju

jvi.

(2.18)

It is not hard to check that for such v, u and for the coefficients satisfy-
ing (2.13), (2.14), the bilinear form above is well-defined and finite. We
often drop the Ω from the subscript on the integral when it is under-
stood. Similarly, B∗[·, ·] denotes the bilinear operator associated to L∗,
given by

(L∗u,v)=B∗[u,v]

=

ˆ
(Aβα)TDβu·Dαv+(dα)Tu·Dαv+(bβ)TDβu·v+VTu·v

=

ˆ
Aβαji Dβu

jDαv
i+dαjiu

jDαv
i+bβjiDβu

jvi+Vjiu
jvi.

(2.19)

Clearly,

(2.20) B[v,u] = B∗[u,v].

For any vector distribution f on Ω and u as above we always understand
Lu = f on Ω in the weak sense, that is, as B[u,v] = f(v) for all v ∈
C∞c (Ω)N . Typically f will be an element of some L`(Ω)N space and
so the action of f on v is then simply

´
f · v. The identity L∗u = f is

interpreted similarly.
Returning to the properties of the Banach space F(Ω) and the asso-

ciated Hilbert space F0(Ω), we require that B and B∗ can be extended
to bounded and accretive bilinear forms on F0(Ω) × F0(Ω) so that the
Lax–Milgram theorem may be applied in F0(Ω).

A5) Boundedness hypotheses:
There exists a constant Γ > 0 so that for any u,v ∈ F0(Ω),

(2.21) B[u,v] ≤ Γ‖u‖F‖v‖F.

A6) Coercivity hypotheses:
There exists a constant γ > 0 so that for any u ∈ F0(Ω),

(2.22) γ‖u‖2F ≤ B[u,u].

Finally, we assume
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A7) The Caccioppoli inequality: If u∈F(Ω) is a weak solution to Lu =
0 in Ω and ζ ∈ C∞(Rn) is such that Dζ ∈ C∞c (Ω) and ζu ∈ F0(Ω),
∂iζ u ∈ L2(Ω)N , i = 1, . . . n, then

(2.23)

ˆ
|Du|2ζ2 ≤ C

ˆ
|u|2|Dζ|2,

where C is a constant that depends on n, s, t, γ, Γ, ‖b‖Ls(Ω), and
‖d‖Lt(Ω). However, C is independent of the set on which ζ and Dζ
are supported.

We remark that the assumption Dζ ∈ C∞c (Ω) implies that ζ is
a constant in the exterior of some large ball and, in particular, one
can show that under the assumptions of A7) we have also ζ2u ∈
F0(Ω) (using A4)). This will be useful later on. We also remark
that the right-hand side of (2.23) is finite by our assumptions.

Finally, let us point out that normally the Caccioppoli inequality
will be used either in a ball or in the complement of the ball, that
is, ζ = η or ζ = 1− η for η ∈ C∞c (B2R) with η = 1 on BR, where
BR is some ball in Rn possibly intersecting ∂Ω. It is, in fact, only
the second case (the complement of the ball) which is needed for
construction of the fundamental solution.

Throughout the paper, whenever we assume that A1)–A7) hold, we
mean that the assumptions described by A1)–A7) hold for the collections
of spaces F(Ω) and F0(Ω) and the elliptic operators L and L∗ with
bilinear forms B and B∗, respectively.

We shall discuss extensively in Section 7 and below how the common
examples (notably, homogeneous elliptic systems, and non-homogeneous
elliptic systems with lower order terms in suitable Lp or Bp classes) fit
into this framework.

To avoid confusion, we finally point out that F(Ω) is of course a col-
lection of Banach spaces, indexed by the domain Ω, and the connection
between F(Ω1) and F(Ω2) for Ω1 ∩ Ω2 6= ∅ is seen through the prop-
erty A1). That is, F(U) contains all restrictions of elements of F(Ω),
when U ⊂ Ω. We do not assume that any element of F(U) can be
extended to F(Ω). This is typical, e.g., for Sobolev spaces W 1,2(Ω),
because the extension property might fail on bad domains.

3. Fundamental matrices and Green matrices

This section resembles the work done in [HK], but we deal here with
operators that have lower order terms. In addition to the assumptions
regarding F(Ω), F0(Ω), L, and B that are described in the previous
section, we assume that all solutions satisfy certain de Giorgi–Nash–
Moser estimates. Recall that in [HK] the authors imposed that all
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solutions to Lu = 0 satisfy bounds on Dirichlet integrals (their results
applied only to homogeneous operators). Here, instead, we assume that
weak solutions to non-homogeneous equations, Lu = f , for suitable f ,
satisfy certain scale-invariant Moser-type estimates and that solutions to
homogeneous equations, Lu = 0, are Hölder continuous. We shall make
it precise below. To start though, let us introduce a slightly weaker
hypothesis (a Moser-type local bound):

• For any y ∈ Ω, there exists an Ry ∈ (0,∞] such that whenever
0 < 2r < Ry, f ∈ L`(Ωr(y))N for some ` ∈

(
n
2 ,∞

]
, u ∈ F(Ω2r(y))

satisfies u = 0 on ∂Ω ∩ B2r(y) in the weak sense of (2.11), and
either Lu = f or L∗u = f in Ωr(y) in the weak sense, then for any
q > 0 there is a C > 0 so that

(3.1) ‖u‖L∞(Ωr/2(y)) ≤ C
[
r−

n
q ‖u‖Lq(Ωr(y)) + r2−n` ‖f‖L`(Ωr(y))

]
.

Without loss of generality, we can assume that the righthand side
of (3.1) is finite. Indeed, if we take ζ ∈ C∞c (B2r(y)) such that ζ ≡ 1 on
Br(y) then uζ ∈ F0(Ω2r) assures that u ∈ L2∗(Ωr)

N by the homogenous
Sobolev inequality, (2.6). Then (3.1) shows that u ∈ Lq(Ωr/2)N for any
q <∞. Strictly speaking, it would be more coherent then to write (3.1)
for r < Ry/4 but we ignore this minor inconsistency as clearly in practice
one can always adjust the constants when proving (3.1). If ` =∞, then
we interpret 1

` to equal 0. This convention will be used throughout.
Note that the constant C in the estimate above is allowed to depend

on the choice of L, but it should be independent of r and Ry. In other
words, we assume that all solutions satisfy a local scale-invariant Moser
boundedness condition.

In this respect, we would like to make the following remark. All
boundedness and Hölder continuity conditions on solutions that we im-
pose are local in nature. However, slightly abusing the terminology, we
refer to a given condition as local if it only holds for balls of the radius
smaller than R0, for some fixed R0 > 0, depending or not depending on
the center of the ball. As such, (3.1) is local. Later on, we will also talk
about interior estimates which hold for balls inside Ω and boundary es-
timates in which balls are allowed to intersect the boundary. Either can
be local or global depending on whether the size of the balls is restricted,
and the interior estimates are of course always local if Ω 6= Rn. In any
case, we are always careful to specify the exact condition.

Remark 3.1. If Ry = dist(y, ∂Ω) then ∂Ω ∩Br = ∅, hence, in that case,
(3.1) is merely an interior (rather than a boundary) condition.
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3.1. A general construction method. First, we establish a support-
ing lemma that will make the proofs in the following sections more con-
cise. We follow closely the argument in [HK].

Lemma 3.2. Let Ω be an open connected subset of Rn. Assume that
A1)–A7) hold. Then for all y ∈ Ω, 0 < ρ < dy := dist(y, ∂Ω), k ∈
{1, . . . , N}, there exists vρ = vρ;y,k ∈ F0(Ω) such that

(3.2) B[vρ,u] =

 
Bρ(y)

uk =
1

|Bρ(y)|

ˆ
Bρ(y)

uk, ∀u ∈ F0(Ω).

If, in addition, (3.1) holds, then there exists a function v = vy,k and a
subsequence {ρµ}∞µ=1, ρµ → 0, such that

vρµ ⇀ v in W 1,q(Ωr(y))N , ∀r < 1
2Ry, ∀q ∈

(
1, n

n−1

)
,(3.3)

vρµ ⇀ v in Lq(Ωr(y))N , ∀r < 1
2Ry, ∀q ∈

(
1, n

n−2

)
,(3.4)

vρµ ⇀ v in Y 1,2(Ω \ Ωr(y))N , ∀r > 0.(3.5)

For any φ ∈ C∞c (Ω)N ,

(3.6) B[v, φ] = φk(y).

If f ∈ L∞c (Ω)N and u ∈ F0(Ω) is the unique weak solution to L∗u = f ,
then for a.e. y ∈ Ω,

(3.7) uk(y) =

ˆ
Ω

v · f .

Furthermore, v satisfies the following estimates:

‖v‖L2∗ (Ω\Ωr(y))≤Cr1−n2 , ∀r< 1
2Ry,(3.8)

‖Dv‖L2(Ω\Ωr(y))≤Cr1−n2 , ∀r< 1
2Ry,(3.9)

‖v‖Lq(Ωr(y))≤Cqr2−n+n
q , ∀r< 1

2Ry, ∀q∈
[
1, n

n−2

)
,(3.10)

‖Dv‖Lq(Ωr(y))≤Cqr1−n+n
q , ∀r< 1

2Ry, ∀q∈
[
1, n

n−1

)
,(3.11)

|{x∈Ω : |v(x)|>τ}|≤Cτ−
n
n−2 , ∀τ >

(
1
2Ry

)2−n
,(3.12)

|{x∈Ω : |Dv(x)|>τ}|≤Cτ−
n
n−1 , ∀τ >

(
1
2Ry

)1−n
,(3.13)

|v(x)|≤CR2−n
x,y for a.e. x∈Ω, where Rx,y :=min{Rx, Ry, |x− y|},(3.14)

where each constant depends on n, N , c0, Γ, γ, and the constants
from (2.23) and (3.1), and each Cq depends additionally on q.
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Proof of Lemma 3.2: Let u ∈ F0(Ω). Fix y ∈ Ω, 0 < ρ < dy, and
k ∈ {1, . . . , N}, and consider the linear functional

u 7→
 
Bρ(y)

uk.

By the Hölder inequality, (2.6), and (2.5),∣∣∣∣∣
 
Bρ(y)

uk

∣∣∣∣∣ ≤ 1

|Bρ(y)|

ˆ
Bρ(y)

|u| ≤ |Bρ(y)|
2−n
2n

(ˆ
Ω

|u|
2n
n−2

)n−2
2n

≤ cn|Bρ(y)|
2−n
2n

(ˆ
Ω

|Du|2
) 1

2

≤ c0cnρ
2−n
2 ‖u‖F(Ω).

(3.15)

Therefore, the functional is bounded on F0(Ω), and by the Lax–Milgram
theorem there exists a unique vρ ∈ F0(Ω) satisfying (3.2). By coercivity
of B given by (2.22) along with (3.15), we obtain

γ‖vρ‖2F(Ω) ≤ B[vρ,vρ] =

∣∣∣∣∣
 
Bρ(y)

vkρ

∣∣∣∣∣ ≤ c0cnρ 2−n
2 ‖vρ‖F(Ω)

so that

(3.16) ‖Dvρ‖L2(Ω) ≤ c0‖vρ‖F(Ω) ≤ Cρ
2−n
2 ,

where the first inequality is by (2.5).
For f ∈ L∞c (Ω)N , consider the linear functional

F0(Ω) 3 w 7→
ˆ

Ω

f ·w.

This functional is bounded on F0(Ω) since for every w ∈ F0(Ω), and any
` ∈

(
n
2 ,∞

]
, ∣∣∣∣ˆ

Ω

f ·w
∣∣∣∣ ≤ ‖f‖L`(Ω)‖w‖

L
2n
n−2 (Ω)

|supp f |
n+2
2n −

1
`

≤ C‖f‖L`(Ω)|supp f |
n+2
2n −

1
` ‖w‖F(Ω),

(3.17)

where we have again used (2.6) and (2.5). Then, once again by Lax–
Milgram, we obtain u ∈ F0(Ω) such that

(3.18) B∗[u,w] =

ˆ
Ω

f ·w, ∀w ∈ F0(Ω).

Set w = u in (3.18) and use the coercivity assumption, (2.22), for B∗
and (3.17) to get

(3.19) ‖u‖F(Ω) ≤ C‖f‖L`(Ω)|supp f |
n+2
2n −

1
` .
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Also, if we take w = vρ in (3.18), we get

(3.20)

ˆ
Ω

f · vρ = B∗[u,vρ] = B[vρ,u] =

 
Bρ(y)

uk.

Let f ∈ L∞c (Ω)N be supported in Ωr(y), where 0 < 2r < Ry, and let
u be as in (3.18). Since u ∈ F0(Ω), then A1) implies that u ∈ F(Ω2r)
and A4) gives u = 0 on ∂Ω ∩ Ω2r so that (3.1) is applicable. Then,
by (3.1) with q = 2n

n−2 and ` ∈
(
n
2 ,∞

]
,

‖u‖2L∞(Ωr/2(y)) ≤ C
(
r2−n‖u‖2

L
2n
n−2 (Ωr(y))

+ r4− 2n
` ‖f‖2L`(Ωr(y))

)
.

By (2.6), (2.5), and (3.19) with supp f ⊂ Ωr(y),

‖u‖2L2∗ (Ωr(y)) ≤ ‖u‖
2
L2∗ (Ω) ≤ C‖u‖

2
F(Ω)

≤ C|Ωr(y)|1+ 2
n−

2
` ‖f‖2L`(Ω) ≤ C|Br(y)|1+ 2

n−
2
` ‖f‖2L`(Ω),

where, as before, 2∗= 2n
n−2 . Combining the previous two inequalities, we

get

‖u‖2L∞(Ωr/2(y)) ≤ Cr
4− 2n

` ‖f‖2L`(Ω).

Therefore,

‖u‖L∞(Ωr/2(y)) ≤ Cr2−n` ‖f‖L`(Ω)

= Cr2−n` ‖f‖L`(Ωr(y)), ∀` ∈
(
n
2 ,∞

]
.

(3.21)

By (3.20) and (3.21), if ρ ≤ r/2, ρ < dy, we have∣∣∣∣∣
ˆ

Ωr(y)

f · vρ

∣∣∣∣∣ =

∣∣∣∣ˆ
Ω

f · vρ
∣∣∣∣ ≤  

Bρ(y)

|u| ≤ ‖u‖L∞(Bρ(y))

≤ ‖u‖L∞(Ωr/2(y)) ≤ Cr2−n` ‖f‖L`(Ωr(y)), ∀` ∈
(
n
2 ,∞

]
.

By duality, this implies that for r < 1
2Ry,

(3.22) ‖vρ‖Lq(Ωr(y))≤Cr2−n+n
q , for all ρ≤ r

2 , ρ<dy, ∀q∈
[
1, n

n−2

)
.

Fix x 6= y such that r := 4
3 |x− y| <

1
2Ry. For ρ ≤ r/2, ρ < dy, vρ is

a weak solution to Lvρ = 0 in Ωr/4(x). Moreover, since vρ ∈ F0(Ω),
then A1) implies that vρ ∈ F(Ωr/2(x)) and A4) implies that vρ = 0
on ∂Ω ∩ Ωr/2(x) so we may use (3.1). Thus, applying (3.1) with q = 1
and (3.22), we get for a.e. x ∈ Ω as above,

|vρ(x)| ≤ Cr−n‖vρ‖L1(Ωr/4(x))

≤ Cr−n‖vρ‖L1(Ωr(y)) ≤ Cr2−n ≈ |x− y|2−n.
(3.23)
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Now, for any r < 1
2Ry and ρ ≤ r/2, ρ < dy, let ζ be a cut-off function

such that

(3.24) ζ∈C∞(Rn), 0 ≤ ζ ≤ 1, ζ ≡ 1 outside Br(y),

ζ ≡ 0 in Br/2(y), and |Dζ| ≤ C/r.

Then vρζ,vρ∂
iζ ∈ F0(Ω \ Ωr/2(y)), for all i = 1, . . . , n. For the func-

tions vρ∂
iζ, this fact follows from (2.9). The function vρζ is a little more

delicate since ζ is not compactly supported. However, since ζ equals 1
in the complement of Br(y), then 1− ζ is compactly supported. Thus, if
{vn} ⊂ C∞c (Ω)N converges to vρ in the F(Ω)-norm, then, by (2.9),
{vn(1 − ζ)} ⊂ C∞c (Ω)N converges to vρ(1 − ζ) in the F(Ω)-norm.
Adding up these statements, we conclude that {vnζ} ⊂ C∞c (Ω)N ap-
proximates vρζ in F(Ω), as required.

Now, since Lvρ = 0 in Ω\Ωr/2(y), the Caccioppoli inequality, (2.23),
implies thatˆ

Ω

ζ2|Dvρ|2 ≤ C
ˆ

Ω

|Dζ|2|vρ|2

≤ Cr−2

ˆ
Ωr(y)\Ωr/2(y)

|vρ|2, ∀ρ ≤ r
2 , ρ < dy.

(3.25)

Combining (3.25) and (3.23), we have for all r < 1
2Ry and ζ as above,ˆ

Ω

|D(ζvρ)|2≤2

ˆ
Ω

ζ2|Dvρ|2 + 2

ˆ
Ω

|Dζ|2|vρ|2

≤Cr−2̂

Ωr(y)\Ωr/2(y)

|vρ|2≤Cr2−n, ∀ρ ≤ r
2 , ρ<dy.

(3.26)

It follows from (2.6) and (3.26) that for r < 1
2Ry,ˆ

Ω\Ωr(y)

|vρ|
2n
n−2 ≤

ˆ
Ω

|ζvρ|
2n
n−2

≤
(ˆ

Ω

|D(ζvρ)|2
) n
n−2

≤ Cr−n, ∀ρ ≤ r
2 , ρ<dy.

(3.27)

On the other hand, if r
2 < ρ < dy, then (2.6) and (3.16) imply

(3.28)

ˆ
Ω\Ωr(y)

|vρ|
2n
n−2 ≤

ˆ
Ω

|vρ|
2n
n−2 ≤ C

(ˆ
Ω

|Dvρ|2
) n
n−2

≤ Cr−n.

Therefore, combining the previous two results, we have

(3.29)

ˆ
Ω\Ωr(y)

|vρ|
2n
n−2 ≤ Cr−n, ∀r < 1

2Ry, ∀0 < ρ < dy.
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Fix τ > (Ry/2)2−n. If Ry = ∞, then fix τ > 0. Let Aτ = {x ∈ Ω :

|vρ| > τ} and set r = τ
1

2−n . Note that r < 1
2Ry. Then, using (3.29), we

see that if 0 < ρ < dy,

|Aτ \ Ωr(y)| ≤ τ−
2n
n−2

ˆ
Aτ\Ωr(y)

|vρ|
2n
n−2 = Cτ−

n
n−2 .

Since |Aτ ∩ Ωr(y)| ≤ |Ωr(y)| ≤ Crn = Cτ−
n
n−2 , we have

(3.30) |{x∈Ω : |vρ(x)|>τ}|≤Cτ−
n
n−2 if τ >

(
Ry
2

)2−n
, ∀0<ρ<dy.

Fix r < 1
2Ry and let ζ be as in (3.24). Then (3.26) gives

ˆ
Ω\Ωr(y)

|Dvρ|2 ≤ Cr2−n, ∀r < 1
2Ry, ∀ρ ≤ r

2 .

Now, if r
2 < ρ < dy, we have from (3.16) that

ˆ
Ω\Ωr(y)

|Dvρ|2 ≤
ˆ

Ω

|Dvρ|2 ≤ Cρ2−n ≤ Cr2−n.

Combining the previous two results yields

(3.31)

ˆ
Ω\Ωr(y)

|Dvρ|2 ≤ Cr2−n, ∀r < 1
2Ry, ∀0 < ρ < dy.

Fix τ >(Ry/2)1−n. If Ry=∞, let τ > 0. Let Aτ ={x∈Ω : |Dvρ| > τ}
and set r = τ

1
1−n . Note that r < 1

2Ry. Then, using (3.31), we see that
if 0 < ρ < dy,

|Aτ \ Ωr(y)| ≤ τ−2

ˆ
Aτ\Ωr(y)

|Dvρ|2 ≤ Cτ−
n
n−1 .

Since |Aτ ∩ Ωr(y)| ≤ Crn = Cτ−
n
n−1 , then

(3.32) |{x∈Ω: |Dvρ(x)|>τ}|≤Cτ−
n
n−1 if τ >

(
1
2Ry

)1−n
, ∀0<ρ<dy.

For any σ > (Ry/2)1−n and q > 0, we have

ˆ
Ωr(y)

|Dvρ|q ≤ σq|Ωr(y)|+
ˆ
{|Dvρ|>σ}

|Dvρ|q.



554 B. Davey, J. Hill, S. Mayboroda

By (3.32), for q ∈
(
0, n

n−1

)
and ρ ∈ (0, dy),

ˆ
{|Dvρ|>σ}

|Dvρ|q =

ˆ ∞
0

qτ q−1|{|Dvρ| > max{τ, σ}}| dτ

≤ Cσ−
n
n−1

ˆ σ

0

qτ q−1 dτ + C

ˆ ∞
σ

qτ q−1− n
n−1 dτ

= C

(
1− q

q − n
n−1

)
σq−

n
n−1 .

Therefore, taking σ = r1−n, we conclude that

(3.33)

ˆ
Ωr(y)

|Dvρ|q ≤ Cqrq(1−n)+n,

∀r < 1
2Ry, ∀0 < ρ < dy, ∀q ∈

(
0, n

n−1

)
.

By the same process with (3.30) in place of (3.32) and σ = r2−n, we
have

(3.34)

ˆ
Ωr(y)

|vρ|q ≤ Cqrq(2−n)+n,

∀r < 1
2Ry, ∀0 < ρ < dy, ∀q ∈

(
0, n

n−2

)
.

Fix q ∈
(
1, n

n−1

)
and q̃ ∈

(
1, n

n−2

)
. From (3.33) and (3.34), it follows

that for any r < 1
2Ry

(3.35) ‖vρ‖W 1,q(Ωr(y))≤C(r) and ‖vρ‖Lq̃(Ωr(y))≤C(r) uniformly in ρ.

Therefore, (using diagonalization) we can show that there exists a se-
quence {ρµ}∞µ=1 tending to 0 and a function v = vy,k such that

(3.36) vρµ⇀v in W 1,q(Ωr(y))N and in Lq̃(Ωr(y))N , for all r< 1
2Ry.

Furthermore, for fixed r0 < r, (3.29) and (3.31) imply uniform bounds
on vρµ in Y 1,2(Ω \ Ωr0(y))N for small ρµ. Thus, there exists a subse-
quence of {ρµ} (which we will not rename) and a function ṽ = ṽy,k such
that

(3.37) vρµ ⇀ ṽ in Y 1,2(Ω \ Ωr0(y))N .

Since v ≡ ṽ on Ωr(y) \ Ωr0(y), we can extend v to the entire Ω by
setting v = ṽ on Ω \ Ωr(y). For ease of notation, we call the extended
function v. Applying the diagonalization process again, we conclude
that there exists a sequence ρµ → 0 and a function v on Ω such that

(3.38) vρµ ⇀ v in W 1,q(Ωr(y))N and in Lq̃(Ωr(y))N ,
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and

(3.39) vρµ ⇀ v in Y 1,2(Ω \ Ωr0(y))N ,

for all r0 < r < 1
2Ry.

Let φ∈C∞c (Ω)N and r< 1
2Ry such that r<dy. Choose η ∈ C∞c (Br(y))

to be a cutoff function so that η≡1 in Br/2(y). We write φ=ηφ+(1−η)φ.
By (3.2) and the definition of B,

lim
µ→∞

 
Bρµ (y)

ηφk = lim
µ→∞

B[vρµ;y,k, ηφ]

= lim
µ→∞

ˆ
Ω

Aαβij Dβvjρµ;y,kDα(ηφi) + bαijv
j
ρµ;y,kDα(ηφi)

+ dβijDβvjρµ;y,kηφ
i + Vijv

j
ρµ;y,kηφ

i.

Note that ηφi and D(ηφi) belong to C∞c (Ωr(y)). From this, the bound-
edness of A given by (2.13), and the assumptions on V, b, and d
given by (2.14), it follows that there exists a q′ > n such that each of

Aαβij Dα(ηφi), bαijDα(ηφi), dβijηφ
i belongs to Lq

′
(Ωr(y))N , and Vijηφ

i be-

longs to Lq
′/2(Ωr(y))N . Therefore, by (3.38),

lim
µ→∞

 
Bρµ (y)

ηφk =

ˆ
Ω

Aαβij Dβvjy,kDα(ηφi) + bαijv
j
y,kDα(ηφi)

+ dβijDβvjy,kηφ
i + Vijv

j
y,kηφ

i

= B[vy,k, ηφ].

(3.40)

Another application of (3.2) shows that

lim
µ→∞

 
Bρµ (y)

(1− η)φk

= lim
µ→∞

ˆ
Ω

Aαβij Dβvjρµ;y,kDα[(1− η)φi] + bαijv
j
ρµ;y,kDα[(1− η)φi]

+ lim
µ→∞

ˆ
Ω

dβijDβvjρµ;y,k(1− η)φi + Vijv
j
ρµ;y,k(1− η)φi.

Since φ∈C∞c (Ω)N and η ∈C∞c (Br(y)), then (1 − η)φ and D[(1 − η)φ]
belong to C∞c (Ω \ Br/2(y))N . In combination with (2.13), this implies

that each Aαβij Dα[(1−η)φi] belongs to L2(Ω\Br/2(y))N . The assumption

on d given in (2.14) implies that each dβij(1 − η)φi belongs to L2(Ω \
Br/2(y))N as well. And the assumption on b and V given in (2.14) imply

that every bαijDα[(1−η)φi] and Vij(1−η)φi belong to L
2n
n+2 (Ω\Br/2(y))N .



556 B. Davey, J. Hill, S. Mayboroda

Therefore, it follows from (3.39) that

lim
µ→∞

 
Bρµ (y)

(1− η)φk

=

ˆ
Ω

Aαβij Dβvjy,kDα[(1− η)φi] + bαijv
j
y,kDα[(1− η)φi]

+

ˆ
Ω

dβijDβvjy,k(1−η)φi+Vijv
j
y,k(1−η)φi=B[vy,k, (1−η)φ].

(3.41)

It follows from combining (3.40) and (3.41) that for any φ ∈ C∞c (Ω)N ,

φk(y)= lim
µ→∞

 
Bρµ (y)

φk= lim
µ→∞

 
Bρµ (y)

ηφk+ lim
µ→∞

 
Bρµ (y)

(1− η)φk

=B[vy,k, ηφ] + B[vy,k, (1− η)φ] = B[vy,k, φ],

(3.42)

so that (3.6) holds.
As before, for any f ∈ L∞c (Ω)N , let u ∈ F0(Ω) be the unique weak

solution to L∗u = f , i.e., assume that u ∈ F0(Ω) satisfies (3.18). Then
for a.e. y ∈ Ω,

uk(y) = lim
µ→∞

 
Bρµ (y)

uk = lim
µ→∞

B[vρµ;y,k,u]

= lim
µ→∞

B∗[u,vρµ;y,k] = lim
µ→∞

ˆ
Ω

vρµ · f ,

where we have used (3.2). For η ∈ C∞c (Br(y)) as defined in the previous

paragraph, since ηf ∈ Lq′(Br(y))N and (1− η)f ∈ L
2n
n+2 (Ω \Br/2(y))N ,

then it follows from (3.38) and (3.39) that

lim
µ→∞

ˆ
Ω

vρµ · f = lim
µ→∞

ˆ
Br(y)

vρµ · ηf + lim
µ→∞

ˆ
Ω\Br/2(y)

vρµ · (1− η)f

=

ˆ
Br(y)

v · ηf +

ˆ
Ω\Br/2(y)

v · (1− η)f =

ˆ
Ω

v · f .

Combining the last two equations gives (3.7).
The estimates (3.8)–(3.13) follow almost directly by passage to the

limit. Indeed, for any r < 1
2Ry and any g ∈ L∞c (Ωr(y))N , (3.34) implies

that ∣∣∣∣ˆ
Ω

v · g
∣∣∣∣ = lim

µ→∞

∣∣∣∣ˆ
Ω

vρµ · g
∣∣∣∣ ≤ Cqr2−n+n

q ‖g‖Lq′ (Ωr(y)),

where q′ is the Hölder conjugate exponent of q ∈
[
1, n

n−2

)
. By duality,

we obtain that for every q ∈
[
1, n

n−2

)
,

(3.43) ‖v‖Lq(Ωr(y)) ≤ Cqr2−n+n
q , ∀r < 1

2Ry,
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that is, (3.10) holds. A similar argument using (3.33), (3.29), and (3.31),
yields (3.11), (3.8), and (3.9), respectively. Now, as in the proofs of (3.30)
and (3.32), (3.8) and (3.9) give (3.12) and (3.13).

Passing to the proof of (3.14), fix x 6= y. For a.e. x ∈ Ω, the Lebesgue
differentiation theorem implies that

v(x) = lim
δ→0+

 
Ωδ(x)

v = lim
δ→0+

1

|Ωδ|

ˆ
vχΩδ(x),

where χ denotes an indicator function. Assuming as we may that 2δ ≤
min{dx, |x − y|}, it follows that χΩδ(x) = χBδ(x) ∈ L

2n
n+2 (Ω \ Ωδ(y)).

Therefore, (3.39) implies that

1

|Bδ|

ˆ
vχBδ(x) = lim

µ→∞

1

|Bδ|

ˆ
vρµ χBδ(x) = lim

µ→∞

 
Bδ(x)

vρµ .

If |x− y| ≤ 1
4Ry and ρµ ≤ 1

3 |x− y|, ρµ < dy, then (3.23) implies that for
a.e. z ∈ Bδ(x)

|vρµ(z)| ≤ C|z − y|2−n,
where C is independent of ρµ. Since |z − y| > 1

2 |x − y| for every z ∈
Bδ(x) ⊂ B|x−y|/2(x), then

(3.44) ‖vρµ‖L∞(Bδ(x)) ≤ C|x− y|2−n.

On the other hand, if |x − y|> 1
4Ry, then for r := 1

8 min{Rx, Ry}, the
restriction property, A1), implies that vρµ ∈ F(Ω2r(x)) and it follows
from A4) that vρµ vanishes along Ω2r(x)∩∂Ω. As long as ρµ≤r, ρµ<dy,
Lvρµ =0 in Ωr(x), so we may apply (3.1) with q = 2∗. We have

‖vρµ‖L∞(Ωr/2(x)) ≤ Cr−
n−2
2

(ˆ
Ωr(x)

|vρµ |2
∗

) 1
2∗

≤ Cr−
n−2
2

(ˆ
Ω\Ωr(y)

|vρµ |2
∗

) 1
2∗

≤ Cr2−n,

(3.45)

where the last inequality follows from (3.29). If we defineRx,y = min{Rx,
Ry, |x − y|}, then (3.44) and (3.45) imply that for δ and ρµ sufficiently
small (independently of each other),

(3.46) ‖vρµ‖L∞(Bδ(x)) ≤ CR2−n
x,y .

By combining with the observations above, we see that for a.e. x ∈ Ω,

v(x) = lim
δ→0+

1

|Ωδ|

ˆ
vχΩδ(x) = lim

δ→0+
lim
µ→∞

 
Bδ(x)

vρµ

≤ lim
δ→0+

lim
µ→∞

CR2−n
x,y = CR2−n

x,y .
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3.2. Fundamental matrix. In this section, we construct the funda-
mental matrix associated to L on Ω = Rn with n ≥ 3. We maintain the
assumptions A1)–A7) with Ω = Rn and replace (3.1) with the following
global (interior) scale-invariant Moser-type bound. For the sake of fu-
ture reference, within these definitions we maintain a general set Ω and
emphasize their interior nature.

(IB) Let Ω be a connected open set in Rn. We say that (IB) holds in Ω
if whenever u ∈ F(B2R) is a weak solution to Lu = f or L∗u = f
in BR, for some BR ⊂ Ω, R > 0, where f ∈ L`(BR)N for some
` ∈

(
n
2 ,∞

]
, then for any q > 0,

(3.47) ‖u‖L∞(BR/2) ≤ C
[
R−

n
q ‖u‖Lq(BR) +R2−n` ‖f‖L`(BR)

]
,

where the constant C > 0 is independent of R > 0.

We also assume a local Hölder continuity condition for solutions:

(H) Let Ω be a connected open set in Rn. We say that (H) holds in Ω
if whenever u ∈ F(B2R0) is a weak solution to Lu = 0 or L∗u = 0
in BR0

for some B2R0
⊂ Ω, R0 > 0, then there exists η ∈ (0, 1),

depending on R0, and CR0
> 0 so that whenever 0 < R ≤ R0,

(3.48) sup
x,y∈BR/2, x 6=y

|u(x)− u(y)|
|x− y|η

≤ CR0
R−η

( 
BR

|u|2
∗
) 1

2∗

.

Notice that (IB) is (3.1) with Ry = dy. Note also that the solutions
to Lu = f and Lu = 0 above are well-defined in the weak sense for the
same reason as those in (3.1).

The assumption (H) for equations with lower order terms implies a
version of (IB) with C depending on R0. However, since it is essential to
our constructions that C in (IB) be independent of R, we require both
of the assumptions (IB) and (H). In fact, determining the appropriate
dependence of constants in (H) and (IB) that are sufficient for the con-
struction of the fundamental solution was one of the biggest challenges
in going from the constructions in [HK] and [KK] to our constructions
for systems with lower order terms.

Existence of the fundamental solution may be obtained even when
properties (IB) and (H) are replaced by the weaker assumption (3.1) (see
Proposition 3.5). What is gained by property (IB) over (3.1) is a quan-
tification of the constraint given by Ry. The property (H) assures Hölder
continuity and, in addition, helps to show that ΓΓΓ(x, y) = ΓΓΓ∗(y, x)T , which
leads to analogous estimates for ΓΓΓ(x, ·) as for ΓΓΓ(·, y).
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Definition 3.3. We say that the matrix function ΓΓΓ(x, y)=(Γij(x, y))Ni,j=1

defined on {(x, y) ∈ Rn × Rn : x 6= y} is the fundamental matrix of L if
it satisfies the following properties:

(1) ΓΓΓ(·, y) is locally integrable and LΓΓΓ(·, y) = δyI for all y ∈ Rn in the
sense that for every φ = (φ1, . . . , φN )T ∈ C∞c (Rn)N ,

ˆ
Rn
Aαβij DβΓjk(·, y)Dαφ

i+ bαijΓjk(·, y)Dαφ
i

+ dβijDβΓjk(·, y)φi + VijΓjk(·, y)φi = φk(y).

(2) For all y ∈ Rn and r > 0, ΓΓΓ(·, y) ∈ Y 1,2(Rn \Br(y))N×N .

(3) For any f =(f1, . . . , fN )T∈L∞c (Rn)N , the function u=(u1, . . . , uN )T

given by

uk(y) =

ˆ
Rn

Γjk(x, y)f j(x) dx

belongs to F0(Rn) and satisfies L∗u = f in the sense that for every
φ = (φ1, . . . , φN )T ∈ C∞c (Rn)N ,

ˆ
Rn
Aαβij Dαu

iDβφ
j + bαijDαu

iφj + dβiju
iDβφ

j + Viju
iφj =

ˆ
Rn
f jφj .

We say that the matrix function ΓΓΓ(x, y) is the continuous fundamental
matrix if it satisfies the conditions above and is also continuous.

Remark 3.4. As we will see below, we first establish the existence of
a fundamental matrix using an application of Lemma 3.2. With the
additional assumption of Hölder continuity of solutions, we then show
that our fundamental matrix is in fact a continuous fundamental matrix.

We show here that there is at most one fundamental matrix. In gen-
eral, we mean uniqueness in the sense of Lebesgue, i.e. almost everywhere
uniqueness. However, when we refer to the continuous fundamental ma-
trix, we mean true pointwise equivalence.

Assume that ΓΓΓ and Γ̃ΓΓ are fundamental matrices satisfying Defini-
tion 3.3. Then, for all f ∈ L∞c (Ω)N , the functions u and ũ given by

uk(y) =

ˆ
Rn

Γjk(x, y)f j(x) dx, ũk(y) =

ˆ
Rn

Γ̃jk(x, y)f j(x) dx

satisfy

L∗(u− ũ) = 0 in Rn
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and u − ũ ∈ F0(Rn). By uniqueness of solutions ensured by the Lax–
Milgram lemma, u− ũ ≡ 0. Thus, for a.e. x ∈ Rn,ˆ

Rn
[Γjk(x, y)− Γ̃jk(x, y)]f j(x) dx = 0, ∀f ∈ L∞c (Rn)N .

Therefore, ΓΓΓ=Γ̃ΓΓ a.e. in {x 6= y}. If we further assume that ΓΓΓ and Γ̃ΓΓ are

continuous fundamental matrices, then we conclude that ΓΓΓ≡Γ̃ΓΓ in {x 6=y}.

Proposition 3.5. Assume that A1)–A7) and (3.1) hold. Then there
exists a fundamental matrix, ΓΓΓ(x, y) = (Γij(x, y))Ni,j=1, {x 6= y}, unique
in the Lebesgue sense, that satisfies Definition 3.3. Furthermore, ΓΓΓ(x, y)
satisfies the following estimates:

‖ΓΓΓ(·, y)‖Y 1,2(Rn\Br(y))≤Cr1−n2 , ∀r< 1
2Ry,(3.49)

‖ΓΓΓ(·, y)‖Lq(Br(y))≤Cqr2−n+n
q , ∀q∈

[
1, n

n−2

)
, ∀r< 1

2Ry,(3.50)

‖DΓΓΓ(·, y)‖Lq(Br(y))≤Cqr1−n+n
q , ∀q∈

[
1, n

n−1

)
, r< 1

2Ry,(3.51)

|{x∈Rn : |ΓΓΓ(x, y)|>τ}|≤Cτ−
n
n−2 , ∀τ >

(
1
2Ry

)2−n
,(3.52)

|{x∈Rn : |DxΓΓΓ(x, y)|>τ}|≤Cτ−
n
n−1 , ∀τ >

(
1
2Ry

)1−n
,(3.53)

|ΓΓΓ(x, y)| ≤ CR2−n
x,y , where Rx,y := min(Rx, Ry, |x− y|),(3.54)

where each constant depends on n, N , c0, Γ, γ, and the constants
from (2.23) and (3.1), and each Cq depends additionally on q.

Proof: By assumption, the hypotheses of Lemma 3.2 are satisfied, and
for each y ∈ Rn, 0 < ρ < dy, and k = 1, . . . , N , we obtain {vρ;y,k} ⊂
F0(Rn) and vy,k satisfying properties (3.2)–(3.7) and the estimates (3.8)–
(3.14).

For each y ∈ Rn, define ΓΓΓρ(·, y) and ΓΓΓ(·, y) to be the N × N matrix
functions whose kth columns are given by vTρ;y,k and vTy,k, respectively.
That ΓΓΓ is the fundamental matrix of L follows immediately from the
conclusions of Lemma 3.2. One can also deduce from Lemma 3.2 that
ΓΓΓ(·, y) satisfies (3.49)–(3.54) as a function of x.

Theorem 3.6. Assume that A1)–A7) as well as properties (IB) and
(H) hold. Then there exists a unique continuous fundamental matrix,
ΓΓΓ(x, y) = (Γij(x, y))Ni,j=1, {x 6= y}, that satisfies Definition 3.3. We

have ΓΓΓ(x, y) = ΓΓΓ∗(y, x)T , where ΓΓΓ∗ is the unique continuous fundamen-
tal matrix associated to L∗. Furthermore, ΓΓΓ(x, y) satisfies the following
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estimates:

‖ΓΓΓ(·, y)‖Y 1,2(Rn\Br(y))(3.55)

+‖ΓΓΓ(x, ·)‖Y 1,2(Rn\Br(x))≤Cr1−n2 , ∀r>0,

‖ΓΓΓ(·, y)‖Lq(Br(y))(3.56)

+‖ΓΓΓ(x, ·)‖Lq(Br(x))≤Cqr2−n+n
q , ∀q∈

[
1, n

n−2

)
, ∀r>0,

‖DΓΓΓ(·, y)‖Lq(Br(y))(3.57)

+‖DΓΓΓ(x, ·)‖Lq(Br(x))≤Cqr1−n+n
q , ∀q∈

[
1, n

n−1

)
, ∀r>0,

|{x∈Rn : |ΓΓΓ(x, y)|>τ}|(3.58)

+|{y ∈ Rn : |ΓΓΓ(x, y)| > τ}|≤Cτ−
n
n−2 , ∀τ >0,

|{x∈Rn : |DxΓΓΓ(x, y)|>τ}|(3.59)

+|{y ∈ Rn : |DyΓΓΓ(x, y)| > τ}|≤Cτ−
n
n−1 , ∀τ >0,

|ΓΓΓ(x, y)| ≤ C|x− y|2−n, ∀x 6=y,(3.60)

where each constant depends on n, N , c0, Γ, γ, and the constants
from (2.23) and (IB), and each Cq depends additionally on q. More-
over, for any 0 < R ≤ R0 < |x− y|,

(3.61) |ΓΓΓ(x, y)−ΓΓΓ(z, y)| ≤ CR0
C

(
|x− z|
R

)η
R2−n

whenever |x− z| < R
2 and

(3.62) |ΓΓΓ(x, y)−ΓΓΓ(x, z)| ≤ CR0
C

(
|y − z|
R

)η
R2−n

whenever |y − z| < R
2 , where CR0

and η = η(R0) are the same as in
assumption (H).

Proof: By our assumptions, Proposition 3.5 holds with Ry = ∞ for all
y ∈ Rn. Let ΓΓΓρ(·, y) and ΓΓΓ(·, y) be as in Proposition 3.5.

Fix x, y ∈ Rn and 0 < R ≤ R0 < |x−y|. Then LΓΓΓ(·, y) = 0 on BR0
(x).

Therefore, by assumption (H) and the pointwise bound (3.54), whenever
|x− z| < R

2 we have

|ΓΓΓ(x, y)−ΓΓΓ(z, y)| ≤ CR0

(
|x− z|
R

)η
C‖ΓΓΓ(·, y)‖L∞(BR(x))

≤ CR0
C

(
|x− z|
R

)η
R2−n.

This is the Hölder continuity of ΓΓΓ(·, y) described by (3.61).
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Using the pointwise bound on vρ in place of those for v, a similar
statement holds for ΓΓΓρ with ρ ≤ 3

8 |x − y|, and it follows that for any
compact set K b Rn\{y}, the sequence {ΓΓΓρµ(·, y)}∞µ=1 is equicontinuous
on K. Furthermore, for any such K b Rn\{y}, there are constants CK <
∞ and ρK > 0 such that for all ρ < ρK ,

‖ΓΓΓρ(·, y)‖L∞(K) ≤ CK .

Passing to a subsequence if necessary, we have that for any such compact
K b Rn \ {y},

(3.63) ΓΓΓρµ(·, y)→ ΓΓΓ(·, y)

uniformly on K.
We now aim to show

ΓΓΓ(x, y) = ΓΓΓ∗(y, x)T ,

where ΓΓΓ∗ is the fundamental matrix associated to L∗. Let v̂σ = v̂σ;x,k de-
note the averaged fundamental vector from Lemma 3.2 associated to L∗.
By the same arguments used for vρ, we obtain a sequence {σν}∞ν=1,

σν → 0, such that Γ̂ΓΓ
σν

(·, x), a matrix whose k-th column is v̂Tσν ;x,k, con-

verges to ΓΓΓ∗(·, x) uniformly on compact subsets of Rn\{x}, where ΓΓΓ∗(·, x)
is a fundamental matrix for L∗ that satisfies the properties analogous to
those for ΓΓΓ(·, y). In particular, ΓΓΓ∗(·, x) is Hölder continuous.

By (3.2), for ρµ and σν sufficiently small,

(3.64)

 
Bρ(y)̂

Γσkl(·, x)=B[vρ;y,l, v̂σ;x,k]=B∗[v̂σ;x,k,vρ;y,l]=

 
Bσ(x)

Γρlk(·, y).

Define

gklµν :=

 
Bρµ (y)

Γ̂σνkl (·, x) =

 
Bσν (x)

Γ
ρµ
lk (·, y).

By continuity of Γ
ρµ
lk (·, y), it follows that for any x 6= y ∈ Rn,

lim
ν→∞

gklµν = lim
ν→∞

 
Bρµ (y)

Γ̂σνkl (·, x) = Γ
ρµ
lk (x, y),

so that by (3.63),

lim
µ→∞

lim
ν→∞

gklµν = lim
µ→∞

Γ
ρµ
lk (x, y) = Γlk(x, y).

But by weak convergence in W 1,q(Br(y)), i.e., (3.3) with Ry =∞,

lim
ν→∞

gklµν = lim
ν→∞

 
Bρµ (y)

Γ̂σνkl (·, x) =

 
Bρµ (y)

Γ∗kl(·, x),
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and it follows then by continuity of Γ∗kl(·, x) that

lim
µ→∞

lim
ν→∞

gklµν = lim
µ→∞

 
Bρµ (y)

Γ∗kl(·, x) = Γ∗kl(y, x).

Therefore, for all k, l ∈ {1, . . . , N}, x 6= y,

Γlk(x, y) = Γ∗kl(y, x),

or equivalently, for all x 6= y,

(3.65) ΓΓΓ(x, y) = ΓΓΓ∗(y, x)T .

Consequently, all the estimates which hold for ΓΓΓ(·, y) hold analogously
for ΓΓΓ(x, ·).
Remark 3.7. We have seen that there is a subsequence {ρµ}∞µ=1, ρµ → 0,
such that ΓΓΓρµ(x, y) → ΓΓΓ(x, y) for all x ∈ Rn \ {y}. In fact, a stronger
fact can be proved. By (3.64),

Γρlk(x, y)= lim
ν→∞

 
Bσν (x)

Γρlk(·, y)= lim
ν→∞

 
Bρ(y)

Γ̂σνkl (·, x)=

 
Bρ(y)

Γ∗kl(·, x).

By (3.65), this gives

Γρlk(x, y) =

 
Bρ(y)

Γlk(x, z) dz.

By continuity, for all x 6= y,

(3.66) lim
ρ→0

ΓΓΓρ(x, y) = ΓΓΓ(x, y).

Theorem 3.8. Assume that A1)–A7) as well as properties (IB) and (H)

hold. If f ∈(L
2n
n+2 (Rn)∩L`loc(Rn))N for some `∈

(
n
2 ,∞

]
, then there exists

a unique u ∈ F0(Rn) that is a weak solution to Lu = f . Furthermore,
we have

(3.67) uk(x) =

ˆ
Rn

Γki(x, y)f i(y) dy, k = 1, . . . , N,

for a.e. x ∈ Rn.

Proof: We see from (3.17) that

F0(Rn) 3 w 7→
ˆ
Rn

f ·w

defines a bounded linear functional on F0(Rn). Therefore, the existence
of a unique u ∈ F0(Rn) that is a weak solution to Lu = f follows from
the Lax–Milgram theorem.

By definition of a weak solution, we have

(3.68)

ˆ
Rn

f · v̂σ = B[u, v̂σ] = B∗[v̂σ,u] =

 
Ωσ(x)

uk,
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where v̂σ = v̂σ;y,k is the averaged fundamental vector from Lemma 3.2
associated to L∗. Taking the limit in σ of the left-hand side, we get

(3.69) lim
σ→0

ˆ
Rn

f ·v̂σ= lim
σ→0

(ˆ
B1(x)

f · v̂σ +

ˆ
Rn\B1(x)

f · v̂σ

)
=

ˆ
Rn

f ·v̂,

where v̂ is the k-th column of ΓΓΓ∗(·, x). Here, we have used (3.22) and f ∈
L`loc(Rn)N for ` ∈

(
n
2 ,∞

]
to establish convergence of the first integral,

and we have used (3.5) and f ∈ L
2n
n+2 (Rn)N to establish convergence of

the second integral. Combining (3.68) and (3.69), we get

uk(x) =

ˆ
Rn

Γ∗ik(y, x)f i(y) dy, for a.e. x ∈ Rn.

The conclusion (3.67) now follows from (3.65).

3.3. Green matrix. Here we show existence of the Green matrix of L
on any connected open set Ω ⊂ Rn with n ≥ 3.

Definition 3.9. Let Ω be an open, connected subset of Rn. We say
that the matrix function G(x, y) = (Gij(x, y))Ni,j=1 defined on the set
{(x, y) ∈ Ω × Ω : x 6= y} is the Green matrix of L if it satisfies the
following properties:

(1) G(·, y) is locally integrable and LG(·, y) = δyI for all y ∈ Ω in the
sense that for every φ = (φ1, . . . , φN )T ∈ C∞c (Ω)N ,ˆ

Ω

Aαβij DβGjk(·, y)Dαφ
i + bαijGjk(·, y)Dαφ

i

+ dβijDβGjk(·, y)φi + VijGjk(·, y)φi = φk(y).

(2) For all y ∈ Ω and r > 0, G(·, y) ∈ Y 1,2(Ω\Ωr(y))N×N . In addition,
G(·, y) vanishes on ∂Ω in the sense that for every ζ ∈ C∞c (Ω)
satisfying ζ ≡ 1 on Br(y) for some r > 0, we have

(1− ζ)G(·, y) ∈ Y 1,2
0 (Ω \ Ωr(y))N×N .

(3) For any f =(f1, . . . , fN )T∈L∞c (Ω)N, the function u=(u1, . . . , uN )T

given by

uk(y) =

ˆ
Ω

Gjk(x, y)f j(x) dx

belongs to F0(Ω) and satisfies L∗u = f in the sense that for every
φ = (φ1, . . . , φN )T ∈ C∞c (Ω)N ,ˆ

Ω

Aαβij Dαu
iDβφ

j + bαijDαu
iφj + dβiju

iDβφ
j + Viju

iφj =

ˆ
Ω

f jφj .

We say that the matrix function G(x, y) is the continuous Green matrix
if it satisfies the conditions above and is also continuous.
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As in the case of the (continuous) fundamental matrix, and by the
same argument, there exists at most one (continuous) Green matrix,
where the sense of uniqueness is also as before.

Theorem 3.10. Let Ω be an open, connected, proper subset of Rn. De-
note dx := dist(x, ∂Ω) for x∈Ω. Assume that A1)–A7) as well as prop-
erties (IB) and (H) hold. Then there exists a unique continuous Green
matrix G(x, y) = (Gij(x, y))Ni,j=1, defined in {x, y ∈ Ω, x 6= y}, that

satisfies Definition 3.9. We have G(x, y) = G∗(y, x)T , where G∗ is the
unique continuous Green matrix associated to L∗. Furthermore, G(x, y)
satisfies the following estimates:

‖G(·, y)‖Y 1,2(Ω\Br(y))≤Cr1−n/2, ∀r< 1
2 dy,(3.70)

‖G(·, y)‖Lq(Br(y))≤Cqr2−n+n
q , ∀r< 1

2dy, ∀q∈
[
1, n

n−2

)
,(3.71)

‖DG(·, y)‖Lq(Br(y))≤Cqr1−n+n
q , ∀r< 1

2dy, ∀q∈
[
1, n

n−1

)
,(3.72)

|{x∈Ω : |G(x, y)|>τ}|≤Cτ−
n
n−2 , ∀τ >

(
1
2 dy

)2−n
,(3.73)

|{x∈Ω : |DxG(x, y)|>τ}|≤Cτ−
n
n−1 , ∀τ >

(
1
2 dy

)1−n
,(3.74)

‖G(x, ·)‖Y 1,2(Ω\Br(x))≤Cr1−n/2, ∀r< 1
2 dx,(3.75)

‖G(x, ·)‖Lq(Br(x))≤Cqr2−n+n
q , ∀r< 1

2 dx, ∀q∈
[
1, n

n−2

)
,(3.76)

‖DG(x, ·)‖Lq(Br(x))≤Cqr1−n+n
q , ∀r< 1

2 dx, ∀q∈
[
1, n

n−1

)
,(3.77)

|{y∈Ω : |G(x, y)|>τ}|≤Cτ−
n
n−2 , ∀τ >

(
1
2 dx

)2−n
,(3.78)

|{y∈Ω : |DyG(x, y)|>τ}|≤Cτ−
n
n−1 , ∀τ >

(
1
2 dx

)1−n
,(3.79)

|G(x, y)| ≤ Cd2−n
x,y , ∀x 6= y, where dx,y := min(dx, dy, |x− y|),(3.80)

where the constants depend on n, N , c0, Γ, γ, and the constants from
(2.23) and (IB), and each Cq depends additionally on q. Moreover, for
any 0 < R ≤ R0 <

1
2 dx,y,

(3.81) |G(x, y)−G(z, y)| ≤ CR0
C

(
|x− z|
R

)η
R2−n,

whenever |x− z| < R
2 and

(3.82) |G(x, y)−G(x, z)| ≤ CR0
C

(
|y − z|
R

)η
R2−n,

whenever |y − z| < R
2 , where CR0

and η = η(R0) are the same as in
assumption (H).
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Proof: The hypotheses of Lemma 3.2 are satisfied with Ry = dy, for
all y ∈ Ω. For each y ∈ Ω, 0 < ρ < dy, and k = 1, . . . , N , we ob-
tain {vρ;y,k} ⊂ F0(Ω) and v = vy,k satisfying (3.2)–(3.7) and the esti-
mates (3.8)–(3.14), where Ry = dy and Rx,y = min{dx, dy, |x− y|}.

We define G(·, y) to be the matrix whose columns are given by vTy,k for

k = 1, . . . , N , and we define similarly the averaged Green matrix Gρ(·, y).
Then estimates (3.70)–(3.74) and (3.80) are inherited directly from Lem-
ma 3.2.

We now prove that G(x, y) satisfies Definition 3.9. This definition
largely resembles that of the fundamental matrix, and the proof can be
executed analogously, except for an additional requirement to prove that
G(·, y) = 0 on ∂Ω in the sense that for all ζ ∈ C∞c (Ω) satisfying ζ ≡ 1
on Br(y) for some r > 0, we have

(3.83) (1− ζ)G(·, y) ∈ Y 1,2
0 (Ω)N×N .

By Mazur’s lemma, Y 1,2
0 (Ω)N is weakly closed in Y 1,2(Ω)N . Therefore,

since (1 − ζ)vρµ = vρµ − ζvρµ ∈ Y
1,2
0 (Ω)N for all ρµ < dy, it suffices

for (3.83) to show that

(3.84) (1− ζ)vρµ ⇀ (1− ζ)v in Y 1,2(Ω)N .

Since (1− ζ) ≡ 0 on Br(y), the result (3.84) follows from (3.5). Indeed,ˆ
Ω

(1− ζ)Gkl(·, y)φ=

ˆ
Ω

Gkl(·, y)(1− ζ)φ= lim
µ→∞

ˆ
Ω

G
ρµ
kl (·, y)(1−ζ)φ

= lim
µ→∞

ˆ
Ω

(1− ζ)G
ρµ
kl (·, y)φ, ∀φ ∈ L

2n
n+2 (Ω),

andˆ
Ω

D[(1− ζ)Gkl(·, y)] · ψ=−
ˆ

Ω

Gkl(·, y)Dζ · ψ+

ˆ
Ω

DGkl(·, y) · (1− ζ)ψ

=− lim
µ→∞

ˆ
Ω

G
ρµ
kl (·, y)Dζ · ψ

+ lim
µ→∞

ˆ
Ω

DG
ρµ
kl (·, y) · (1− ζ)ψ

= lim
µ→∞

ˆ
Ω

D[(1−ζ)G
ρµ
kl (·, y)] · ψ, ∀ψ∈L2(Ω)N .

Therefore, G(x, y) is the unique Green matrix associated to L.
It follows from (3.70) and property (H) that for any 0<R≤R0≤ 1

2dx,y,

there exists η=η(R0) and CR0>0 such that, whenever |x− z| ≤ R
2 ,

(3.85) |G(x, y)−G(z, y)| ≤ CR0
C

(
|x− z|
R

)η
R2−n.
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By the same argument that lead to (3.63), this implies that, passing to
a subsequence if necessary, for any compact K b Ω \ {y},

(3.86) Gρµ(·, y)→ G(·, y)

uniformly on K, and from here the same argument as the one for (3.65)
proves that

(3.87) G(x, y) = G∗(y, x)T , ∀x, y ∈ Ω, x 6= y.

The remaining properties, (3.75)–(3.79), follow from Lemma 3.2 applied
to G∗(·, x) in combination with (3.87).

Remark 3.11. As with the fundamental matrix, we obtain

(3.88) Gρ(x, y) =

 
Ωρ(y)

G(x, z) dz,

and, by continuity,

(3.89) lim
ρ→0

Gρ(x, y) = G(x, y), ∀x, y ∈ Ω, x 6= y.

3.4. Global estimates for the Green matrix. It was observed in
[KK] that if the interior boundedness assumption (IB) is altered as below
(to being valid on balls possibly intersecting the boundary), then the
pointwise and local Lq estimates of G can be freed of their dependence
on the distances to the boundary for the homogeneous elliptic operators.
Similarly, assuming local boundedness on boundary balls gives enhanced
Green function estimates in our setting.

(BB) Let Ω be a connected open set in Rn. We say that (BB) holds in Ω
if whenever u ∈ F(Ω2R) is a weak solution to Lu = f or L∗u = f
in ΩR, for some R > 0, where f ∈ L`(ΩR)N for some ` ∈

(
n
2 ,∞

]
,

and u ≡ 0 on ∂Ω ∩ BR, then u is a bounded function and for
any q > 0,

(3.90) ‖u‖L∞(ΩR/2) ≤ C[R−
n
q ‖u‖Lq(ΩR) +R2−n` ‖f‖L`(ΩR)],

where the constant C is independent of R.

We note that condition (BB) holds, for example, whenever (IB) holds
for an extended operator L# defined on Rn with L = L# on Ω. This
fact can often be established by a reflection argument.
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Corollary 3.12. Let Ω be an open, connected, proper subset of Rn.
Assume that A1)–A7) as well as properties (BB) and (H) hold. Then
the continuous Green matrix satisfies the following global estimates:

‖G(·, y)‖Y 1,2(Ω\Br(y))(3.91)

+‖G(x, ·)‖Y 1,2(Ω\Br(x))≤Cr1−n/2, ∀r>0,

‖G(·, y)‖Lq(Br(y))(3.92)

+‖G(x, ·)‖Lq(Br(x))≤Cqr2−n+n
q , ∀r>0, ∀q∈

[
1, n

n−2

)
,

‖DG(·, y)‖Lq(Br(y))(3.93)

+‖DG(x, ·)‖Lq(Br(x))≤Cqr1−n+n
q , ∀r>0, ∀q∈

[
1, n

n−1

)
,

|{x ∈ Ω : |G(x, y)| > τ}|(3.94)

+|{y ∈ Ω : |G(x, y)| > τ}|≤Cτ−
n
n−2 , ∀τ >0,

|{x ∈ Ω : |DxG(x, y)| > τ}|(3.95)

+|{y ∈ Ω : |DyG(x, y)| > τ}|≤Cτ−
n
n−1 , ∀τ >0,

|G(x, y)| ≤ C|x− y|2−n, ∀x 6=y,(3.96)

where the constants depend on n, N , c0, Γ, γ and the constants from
(2.23) and (BB), and each Cq depends additionally on q. The Hölder
continuity estimates of Theorem 3.10 remain unchanged.

Proof: As in the proof of Theorem 3.10, the global estimates are inher-
ited directly from Lemma 3.2 with Rx, Ry =∞ for all x, y ∈ Ω.

Remark 3.13. In conclusion, ΓΓΓ(x, y) exists and satisfies the estimates of
Theorem 3.6 whenever (IB) and (H) hold for solutions. The conclusion
of Theorem 3.6 also states that

ΓΓΓ(·, y) ∈ Y 1,2(Rn \Br(y))N×N for any r > 0.

However, it does not follow from Theorem 3.6 that ΓΓΓ(·, y) ∈ F(Rn \
Br(y)) for the general space F. In Section 7, we examine a number of
examples and show that in each case, a version of this statement holds
for ΓΓΓ(·, y) as well as ΓΓΓ(x, ·), G(·, y), and G(x, ·). Details may be found
in Subsection 7.4.

4. A Caccioppoli inequality

The remainder of the paper will essentially be a discussion of the
major examples that fit our theory. In this section we prove a version of
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the Caccioppoli inequality. In the next two sections we demonstrate local
boundedness and Hölder continuity of solutions (for equations, rather
than systems, only). And finally, in Section 7, we tie it all together by
presenting the most common examples.

Lemma 4.1. Let Ω ⊂ Rn be open and connected. Assume that F(Ω),
F0(Ω), L, and B satisfy A1)–A5). Suppose b ∈ Ls(Ω)n×N×N , d ∈
Lt(Ω)n×N×N for some s, t ∈ [n,∞], and (instead of assuming A6)),
assume that either

• s, t = n and B[v,v] ≥ γ‖Dv‖2L2(Ω)N for every v ∈ F0(Ω); or

• s, t ∈ (n,∞] and B[v,v] ≥ γ‖v‖2W 1,2(Ω)N for every v ∈ F0(Ω).

Let u ∈ F(Ω) and ζ ∈ C∞(Rn) with Dζ ∈ C∞c (Rn) be such that uζ ∈
F0(Ω), ∂iζ u ∈ L2(Ω)N , i = 1, . . . , n, and B[u,uζ2] ≤

´
f ·u ζ2 for some

f ∈ L`(Ω)N , ` ∈
(
n
2 ,∞

]
. Then

(4.1)

ˆ
|Du|2ζ2 ≤ C

ˆ
|u|2|Dζ|2 + c

∣∣∣∣ˆ f · u ζ2

∣∣∣∣ ,
where C = C(n, s, t, γ,Λ, ‖b‖Ls(Ω), ‖d‖Lt(Ω)), c = c(γ).

Remark 4.2. Let us make a few comments before the proof. First, as
in the comments to A7), we remark that the condition Dζ ∈ C∞c (Rn)
implies that ζ is a constant outside some large ball (call it Cζ) and hence,
Cζ − ζ ∈ C∞c (Rn). Then, by A4), uζ2 = Cζuζ − (Cζ − ζ)uζ ∈ F0(Ω).
We shall use this in the proof. Also, the conditions uζ ∈ F0(Ω), ∂iζ u ∈
L2(Ω)N , i = 1, . . . , n, and Dζ ∈ C∞c (Rn), along with (2.5), ensure that
the first and the second integral in (4.1) are finite. The last one is finite
for otherwise both the assumptions and the conclusion of the lemma are
meaningless.

Second, if we do assume A6), then the condition B[v,v]≥γ‖Dv‖2L2(Ω)N

for every v ∈ F0(Ω) follows from (2.5). Moreover, the actual require-
ments on b and d that are necessary to carry out the arguments, and ap-
pear in the constant C, are b ∈ Ls(Ω∩U)n×N×N , d ∈ Lt(Ω∩U)n×N×N

for any U containing the support of Dζ. Since the latter is compact, one
could always reduce the case s, t > n to the case s = t = n and hence
to work in the first regimen. However, such a reduction would bring up
the dependence of the constants on the size of the support of Dζ, and
this is typically not desirable.
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Proof: Let u, ζ be as in the statement. A computation shows that

B[uζ,uζ] = B[u,uζ2]

+

ˆ
Aαβ [(−Dβu · uDαζ + uDβζ ·Dαu)ζ + u · uDβζDαζ]

+

ˆ
(−bαuζ · uDαζ + dβuDβζ · uζ).

By the assumption, B[u,uζ2] ≤
´
|f ||u|ζ2.

By (2.13),ˆ
Aαβ [(−Dβu · uDαζ + uDβζ ·Dαu)ζ + u · uDβζDαζ]

≤ 2Λ

ˆ
|Du||Dζ||u|η + Λ

ˆ
|Dζ|2|u|2

≤
(

8Λ2

γ
+ Λ

)ˆ
|u|2|Dζ|2 +

γ

8

ˆ
|Du|2ζ2.

If s ∈ (n,∞), then since uζ ∈ F0(Ω),∣∣∣∣ˆ bαuζ · uDαζ

∣∣∣∣ ≤ ˆ
|b||uζ|ns |uζ|1−ns |uDζ|

≤ ‖b‖Ls(Ω)‖uζ‖
n
s

L2∗ (Ω)
‖uζ‖1−

n
s

L2(Ω)‖uDζ‖L2(Ω)

≤ c
n
s
n ‖b‖Ls(Ω)‖D(uζ)‖

n
s

L2(Ω)‖uζ‖
1−ns
L2(Ω)‖uDζ‖L2(Ω)

≤ γ

4
‖D(uζ)‖2L2(Ω) +

γ

2
‖uζ‖2L2(Ω)

+
Cn,s
γ
‖b‖2Ls(Ω)

ˆ
|u|2|Dζ|2.

Similarly, if s =∞, then∣∣∣∣ˆ bαuζ · uDαζ

∣∣∣∣ ≤ ‖b‖L∞(Ω)‖uζ‖L2(Ω)‖uDζ‖L2(Ω)

≤ γ

2
‖uζ‖2L2(Ω) +

1

2γ
‖b‖2L∞(Ω)

ˆ
|u|2|Dζ|2.

Finally, if s = n, then∣∣∣∣ˆ bαuζ · uDαζ

∣∣∣∣ ≤ ˆ
|b||uζ||uDζ| ≤ ‖b‖Ln(Ω)‖uζ‖L2∗ (Ω)‖uDζ‖L2(Ω)

≤ γ

4

ˆ
|D(uζ)|2 +

c2n
γ
‖b‖2Ln(Ω)

ˆ
|u|2|Dζ|2.

Analogous inequalities hold for d.
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It follows from the inequalities above and the coercivity assumption
on B that

γ

4

ˆ
|Du|2ζ2 − γ

2

ˆ
|u|2|Dζ|2 ≤ γ

2

ˆ
|D(uζ)|2

≤

(
8Λ2

γ
+ Λ +

Cn,s‖b‖2Ls(Ω)

γ
+
Cn,t‖d‖2Lt(Ω)

γ

) ˆ
|u|2|Dζ|2

+
γ

8

ˆ
|Du|2ζ2 +

ˆ
|f ||u|ζ2,

which leads to the claimed inequality after rearrangements.

5. Local boundedness in the equation setting

For general elliptic systems, homogeneous or not, (IB), (BB), (H), or
even the fact of local boundedness of solutions may fail. For counterex-
amples, we refer to [MNP] for dimension n ≥ 5 and [Fre] for lower
dimensions. In this and the next section we discuss the cases when local
boundedness is valid, restricting ourselves to the context of equations
rather than systems, i.e., to N = 1. We insist that such a restriction is
taken in Sections 5 and 6 only and that this restriction is not necessary
in order for (IB), (BB), (H) to hold. Nonetheless, it is perhaps the most
commonly used application. Much of the material in Sections 5 and 6, or
at least analogous arguments, have appeared in classical literature (e.g.,
[GT], [HL], [Sta]). However, we have to carefully track the constants,
the exact nature of dependence on b, d, V, the impact of coercivity,
and the resulting scale-invariance, since this is crucial for building the
fundamental solutions. Therefore, for completeness, we present the full
arguments.

The following lemma gives a scale-invariant (independent of the choice
of R) version of local boundedness. To prove the lemma, we will use
de Giorgi’s approach, as explained in [HL], [Sta]. The novelty of our
argument is that rather than assuming ellipticity of the homogeneous
operator, we assume coercivity of the bilinear form associated to the
full operator. This allows us to prove a scale-invariant version of local
boundedness under a certain sign assumption on the lower order terms.
In other words, we avoid picking up dependencies on the size of the
domain over which we are working. Recall that ΩR = BR ∩ Ω.

We continue to work in the abstract framework that was first intro-
duced in Section 2, but we will have to impose some further properties on
our function spaces in order to show that local boundedness and interior
Hölder continuity are in fact reasonable assumptions.
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B1) For any R > 0, k ≥ 0, if u ∈ F(ΩR) satisfies u = 0 along ∂Ω ∩BR
(as usual, in the sense of (2.10)–(2.11)), then ζ(u− k)+ ∈ F0(ΩR),
∂iζ(u − k)+ ∈ L2(ΩR), i = 1, . . . , n, for any non-negative ζ ∈
C∞c (BR), where (u− k)+ := max{u− k, 0}.

B2) For any ball BR ⊂ Rn, R > 0, if u ∈ F(BR) is non-negative, and
k, ω > 0, then (u+ k)−ω ∈ F(BR).

Lemma 5.1. Let Ω ⊂ Rn be open and connected and take N = 1.
Assume that F(Ω), F0(Ω), L, and B satisfy A1)–A5) and B1). Sup-
pose b ∈ Ls(ΩR)n, d ∈ Lt(ΩR)n for some s, t ∈ [n,∞], and (instead of
assuming A6)) assume that either

• s, t = n and B[v, v] ≥ γ‖Dv‖2L2(ΩR) for every v ∈ F0(ΩR); or

• s, t ∈ (n,∞] and B[v, v] ≥ γ‖v‖2W 1,2(ΩR) for every v ∈ F0(ΩR).

Assume also that

(5.1) V −Dαb
α ≥ 0 in ΩR in the sense of distributions.

Let u ∈ F(Ω2R) satisfy u = 0 along ∂Ω∩B2R. Let f ∈ L`(ΩR) for some
` ∈

(
n
2 ,∞

]
and assume that Lu ≤ f in ΩR weakly in the sense that for

any ϕ ∈ F0(BR) such that ϕ ≥ 0 in ΩR, we have

(5.2) B[u, ϕ] ≤
ˆ
fϕ.

Then u+ ∈ L∞loc(ΩR) and for any r < R, q > 0,

(5.3) sup
Ωr

u+ ≤ C

(R− r)
n
q
‖u+‖Lq(ΩR) + cqR

2−n` ‖f‖L`(ΩR),

where C = C(n, q, s, t, `, γ,Λ, ‖b‖Ls(ΩR), ‖d‖Lt(ΩR)) and cq depends only
on q.

Remark 5.2. Let us remark that (5.3) is of course vacuous if ‖u+‖Lq(ΩR)

is not finite. In practice, however, this is not a concern because in
any ball of radius strictly smaller than R, the norm is finite and hence
we can apply (5.3) in such a ball. Indeed, ‖u+‖Lq(ΩR) < ∞ for any
u ∈ F(Ω2R) by (2.8). Therefore, by applying (5.3) with q = 2, we
conclude that ‖u+‖L∞(Ωr) is finite for any r <R. Hence, ‖u+‖Lq(Ωr) is
finite for any r < R. Below, we will first prove (5.3) with q = 2 and then
assume that ‖u+‖Lq(ΩR) is finite. (Again, one can always take a slightly
smaller ball if necessary.)

Remark 5.3. If ΩR = BR, then ∂Ω ∩ΩR is empty so that the boundary
condition on u is vacuously satisfied. Therefore, this version of local
boundedness is applicable for all of our settings, i.e. when we are con-
cerned with the boundary and when we are not.
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Remark 5.4. As previously pointed out, the estimate (5.3) is scale-in-
variant since it doesn’t depend on R. In our applications, we will as-
sume that b ∈ Ls(Ω)n and d ∈ Lt(Ω)n. Since ‖b‖Ls(ΩR) ≤ ‖b‖Ls(Ω)

and ‖d‖Lt(ΩR) ≤ ‖d‖Lt(Ω) for every R, then this lemma shows that we
may establish local bounds with constants that are independent of the
subdomain, ΩR.

Proof: We will first prove the case of q = 2 and r = 1
2R. Fix ζ ∈

C∞c (BR), a cutoff function for which 0 ≤ ζ ≤ 1. For some k ≥ 0, define
v = (u− k)+. By B1), vζ, vζ2 ∈ F0(ΩR). Lemma 7.6 from [GT] implies
that Dv = Du for u > k and Dv = 0 for u ≤ k (since (2.8) implies that
v is weakly differentiable on Ω).

Since V −Dαb
α ≥ 0 in the sense of distributions and supp(vζ2) is a

subset of {u ≥ k}, then

B[v, vζ2] =

ˆ
(AαβDβv + bαv)Dα(vζ2) + (dβDβv + V v)vζ2

= B[u, vζ2]− k
ˆ

(V −Dαb
α)vζ2 ≤

ˆ
fvζ2,

where we used (5.2) with ϕ := vζ2 ∈ F0(ΩR), ϕ ≥ 0 to get the last
inequality.

Since vζ ∈ F0(ΩR), v∂iζ ∈ L2(ΩR), and Dζ is compactly supported,
then Lemma 4.1 is applicable with u = v. It follows that

ˆ
|Dv|2ζ2≤

[(
8Λ

γ

)2

+
8Λ

γ
+ 4

+8
Cn,s‖b‖2Ls(ΩR)+Cn,t‖d‖2Lt(ΩR)

γ2

]ˆ
|v|2|Dζ|2+

8

γ

ˆ
|f ||v|ζ2.

By Hölder and Sobolev inequalities with 2∗ = 2n
n−2 ,

ˆ
|f |vζ2 ≤

(ˆ
|f |`
) 1
`
(ˆ
|vζ|2

∗
) 1

2∗

|{vζ 6= 0}|1− 1
`−

1
2∗

≤ γ

32

ˆ
|D(vζ)|2 +

8c2n
γ
‖f‖2L`(ΩR)|{vζ 6= 0}|1+ 2

n−
2
` .

(5.4)
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Therefore,ˆ
|D(vζ)|2 ≤ 4

[(
8Λ

γ

)2

+
8Λ

γ
+ 5

+ 8
Cn,s‖b‖2Ls(ΩR) + Cn,t‖d‖2Lt(ΩR)

γ2

] ˆ
|v|2|Dζ|2

+

(
16cn
γ
‖f‖L`(ΩR)

)2

|{vζ 6= 0}|1+ 2
n−

2
` .

Since the Hölder and Sobolev inequalities imply thatˆ
(vζ)2 ≤

(ˆ
(vζ)2∗

)2/2∗

|{vζ 6= 0}|1− 2
2∗ ≤ c2n

ˆ
|D(vζ)|2|{vζ 6= 0}| 2n ,

then

(5.5)

ˆ
(vζ)2 ≤ C1

4

ˆ
v2|Dζ|2|{vζ 6= 0}|ε1 + C1F

2|{vζ 6= 0}|1+ε2 ,

where ε1 = 2
n , ε2 = 4

n −
2
` > 0, F = ‖f‖L`(ΩR), and

C1 = 16c2n

[(
8Λ

γ

)2

+
8Λ

γ
+ 5

+ 8
Cn,s‖b‖2Ls(ΩR) + Cn,t‖d‖2Lt(ΩR)

γ2

]
+

(
16c2n
γ

)2

.

(5.6)

For fixed 0 < r ≤ ρ ≤ R, let ζ ∈ C∞c (Bρ) be such that ζ ≡ 1 in Br
and |Dζ| ≤ 2

ρ−r in BR. We let A(k, r) = {x ∈ Ωr : u ≥ k} = supp v∩Ωr.

Then, for any 0 < r < ρ ≤ R and k ≥ 0, it follows from (5.5) that

(5.7)

ˆ
A(k,r)

(u−k)2≤ C1

[
|A(k, ρ)|ε1
(ρ− r)2

ˆ
A(k,ρ)

(u− k)2+F 2|A(k, ρ)|1+ε2

]
.

Considering r = R/2, the goal is to show that there exists a k ≥ 0
such that ˆ

A(k,R/2)

(u− k)2 = 0.

Take h > k ≥ 0 and 0 < r < R. Since A(k, r) ⊃ A(h, r), thenˆ
A(h,r)

(u− h)2 ≤
ˆ
A(k,r)

(u− k)2

and

|A(h, r)| = |Br ∩ {u− k > h− k}| ≤ 1

(h− k)2

ˆ
A(k,r)

(u− k)2.
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Using these inequalities in (5.7) above, we have that for h > k ≥ 0 and
1
2R ≤ r < ρ ≤ R
ˆ
A(h,r)

(u− h)2 ≤ C1

[
|A(h, ρ)|ε1
(ρ− r)2

ˆ
A(h,ρ)

(u− h)2 + F 2|A(h, ρ)|1+ε2

]

≤ C1

 1

(ρ− r)2(h− k)2ε1

[ˆ
A(k,ρ)

(u− k)2

]1+ε1

+
F 2

(h− k)2(1+ε2)

[ˆ
A(k,ρ)

(u− k)2

]1+ε2


or

‖(u− h)+‖L2(Ωr) ≤ C2

[
1

(ρ− r)(h− k)ε1
‖(u− k)+‖1+ε1

L2(Ωρ)

+
F

(h− k)1+ε2
‖(u− k)+‖1+ε2

L2(Ωρ)

]
,

(5.8)

where C2 depends on C1.
Set ϕ(k, r) = ‖(u− k)+‖L2(Ωr). For i = 0, 1, 2, . . . , define

ki = K

(
1− 1

2i

)
, ri =

R

2
+

R

2i+1
,

so that

ki − ki−1 =
K

2i
, ri−1 − ri =

R

2i+1
,

where K > 0 is to be determined. Then it follows from (5.8) with
ρ = ri−1, r = ri, h = ki, and k = ki−1 that

ϕ(ki, ri) ≤ C2

[
2

2(1+ε1)i

RKε1
ϕ(ki−1, ri−1)1+ε1

+F

(
2i

K

)1+ε2

ϕ(ki−1, ri−1)1+ε2

]
, i ≥ 1.

(5.9)

Claim. There exists µ > 1 and K sufficiently large (depending, in par-
ticular, on µ) such that for any i = 0, 1, . . .

(5.10) ϕ(ki, ri) ≤
ϕ(k0, r0)

µi
.
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It is clear that the claim holds for i = 0. Assume that the claim holds
for i− 1. Then

ϕ(ki−1, ri−1)1+ε ≤
[
ϕ(k0, r0)

µi−1

]1+ε

=

[
ϕ(k0, r0)ε

µiε−(1+ε)

]
ϕ(k0, r0)

µi
.

Substituting this expression into (5.9), we have

ϕ(ki, ri) ≤ C2

[
2µ(1+ε1)

(
2(1+ε1)

µε1

)i [
ϕ(k0, r0)

R
n
2K

]ε1

+µ(1+ε2)

(
2(1+ε2)

µε2

)i
R
n
2 ε2F

K

[
ϕ(k0, r0)

R
n
2K

]ε2] ϕ(k0, r0)

µi
.

If we choose µ > 1 so that µεi ≥ 22+εi for each i, then for the claim to
hold we need

C2

{
2µ(1+ε1)

[
R−

n
2 ϕ(k0, r0)

K

]ε1
+µ(1+ε2)R

2−n` F

K

[
R−

n
2 ϕ(k0, r0)

K

]ε2}
≤ 1.

Thus, we choose K = C0R
−n/2ϕ(k0, r0) +R2−n` F for some C0 � 1 that

depends on C2, µ, and each εi.
Taking i → ∞ in (5.10) shows that ϕ

(
K, R2

)
= 0. In other words,

since ϕ(k0, r0) = ϕ(0, R) = ‖u+‖L2(ΩR),

sup
ΩR/2

u+ ≤ K ≤ C0R
−n2 ‖u+‖L2(ΩR) +R2−n` ‖f‖L`(ΩR).

For any q ∈ [2,∞], an application of the Hölder inequality gives

(5.11) sup
ΩR/2

u+ ≤ C0R
−nq ‖u+‖Lq(ΩR) +R2−n` ‖f‖L`(ΩR).

To obtain an estimate in ΩθR, we apply (5.11) to Ω(1−θ)R(y), where
y ∈ ΩθR. That is, for any y ∈ ΩθR,

u+(y) ≤ sup
Ω (1−θ)R

2

(y)

u+ ≤ C0[(1− θ)R]−
n
q ‖u+‖Lq(ΩR) +R2−n` ‖f‖L`(ΩR).

Now for θ ∈ (0, 1), R > 0, and q ∈ (0, 2), we have

‖u+‖L∞(ΩθR) ≤ C0[(1− θ)R]−
n
2 ‖u+‖L2(ΩR) +R2−n` ‖f‖L`(ΩR)

≤ C0[(1− θ)R]−
n
2 ‖u+‖1−

q
2

L∞(ΩR)

[ˆ
ΩR

(u+)q
] 1

2

+R2−n` ‖f‖L`(ΩR)

≤ 1

2
‖u+‖L∞(ΩR) + C0,q[(1− θ)R]−

n
q

[ˆ
ΩR

(u+)q
] 1
q

+R2−n` ‖f‖L`(ΩR),
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where C0,q depends on q and C0. Assuming that ‖u+‖L∞(ΩR) < ∞
(recall the remark before the proof), set h(t) = ‖u+‖L∞(Ωt) for t ∈ (0, R].
Then, for θ ∈ (0, 1), R > 0, and q ∈ (0, 2), we have

h(r) ≤ 1

2
h(R) +

C0,q

(R− r)
n
q
‖u+‖Lq(ΩR) +R2−n` ‖f‖L`(ΩR).

It follows from Lemma 4.3 in [HL] that for any r < R,

‖u+‖L∞(Ωr) ≤ cq
[

C0,q

(R− r)
n
q
‖u+‖Lq(ΩR) +R2−n` ‖f‖L`(ΩR)

]
.

Remark 5.5. If u is a supersolution, then the conclusions of the previous
lemmas apply to u− in place of u+.

Now we prove a slightly different version of Moser boundedness. We
show that without the assumptions of coercivity and non-degeneracy,
solutions are still locally bounded, but there is a dependence on the size
of the domain and on the negative part of the zeroth order potential.

Lemma 5.6. Let Ω ⊂ Rn be open and connected and take N = 1.
Assume that F(Ω), F0(Ω), L, and B satisfy A1)–A5) and B1). Sup-
pose V = V+ − V− where V± ≥ 0 a.e. and V− ∈ Lp(ΩR) for some
p ∈

(
n
2 ,∞

]
. Assume that b ∈ Ls(ΩR)n, d ∈ Lt(ΩR)n for some s, t ∈

(n,∞]. Let u ∈F(Ω2R) satisfy u= 0 along ∂Ω ∩ B2R. Let f ∈ L`(ΩR)
for some ` ∈

(
n
2 ,∞

]
and assume that Lu ≤ f in ΩR weakly in the

sense that for any ϕ ∈ F0(BR) such that ϕ ≥ 0 in ΩR, we have (5.2).
Then u+ ∈ L∞loc(ΩR) and for any r < R, q > 0, (5.3) holds with C =

C(n, q, p, s, t, `, λ,Λ, R2−np ‖V−‖Lp(ΩR), R
1−ns ‖b‖Ls(ΩR), R

1−nt ‖d‖Lt(ΩR)),
where cq depends only on q.

Proof: We will first prove the case of q = 2, R = 1, and r = 1
2 . Fix

ζ ∈ C∞c (B1), a cutoff function for which 0 ≤ ζ ≤ 1. For some k ≥ 0,
define v = (u− k)+. By B1), vζ, vζ2 ∈ F0(Ω1), and Dv = Du for u > k,
Dv = 0 for u ≤ k, by Lemma 7.6 from [GT] (since (2.8) implies that
v is weakly differentiable on Ω).

Since supp(vζ2) is a subset of {u ≥ k}, then a computation givesˆ
AαβDβvDαvζ

2 = B[u, vζ2]− 2

ˆ
AαβDβvDαζvζ

−
ˆ

[bαvDα(vζ2) + (dβDβv + V v)vζ2]

− k
ˆ

[bαDα(vζ2) + V vζ2].
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Therefore,ˆ
AαβDβ(vζ)Dα(vζ)

= B[u, vζ2] +

ˆ
Aαβ(DβζDαv −DβvDαζ)vζ +

ˆ
AαβDβζDαζ|v|2

−
ˆ

[bαvDα(vζ2) + (dβDβv + V v)vζ2]− k
ˆ

[bαDα(vζ2) + V vζ2]

≤
ˆ

(f + kV−)vζ2 − k
ˆ
bαDα(vζ)ζ − k

ˆ
bαDαζvζ

+

ˆ
Aαβ(DβζDαv −DβvDαζ)vζ +

ˆ
AαβDβζDαζ|v|2

−
ˆ

(bα − dα)Dαζv
2ζ −

ˆ
(bα + dα)Dα(vζ)vζ +

ˆ
V−v

2ζ2,

where we used (5.2) with ϕ := vζ2 ∈ F0(Ω1), ϕ ≥ 0 to get the first term
in the last inequality. An application of the Hölder, Sobolev, and Young
inequalities shows that
ˆ
bαDαζv

2ζ ≤ λ

4

ˆ
|D(vζ)|2 +

16c2n
λ
‖b‖2Ls(Ω1)

ˆ
v2|Dζ|2|{vζ 6= 0}| 2n− 2

s .

Similarly,ˆ
bαDα(vζ)vζ ≤ cn‖b‖Ls(Ω1)

ˆ
|D(vζ)|2|{vζ 6= 0}| 1n− 1

s ,

ˆ
V−v

2ζ2 ≤ c2n‖V−‖Lp(Ω1)

ˆ
|D(vζ)|2|{vζ 6= 0}|

2
n−

1
p .

The ellipticity condition, (2.12), in combination with bounded-
ness (2.13) and the computations above, shows that
ˆ
|D(vζ)|2 ≤ 4

λ

ˆ
(f + kV−)vζ2 − 4k

λ

ˆ
bαDα(vζ)ζ − 4k

λ

ˆ
bαDαζvζ

+
4

λ2

[
8Λ2 + λΛ +

λ2

4
+ 16c2n

(
‖b‖2Ls(Ω1)|{vζ 6= 0}| 2n− 2

s

+ ‖d‖2Lt(Ω1)|{vζ 6= 0}| 2n− 2
t

)] ˆ
v2|Dζ|2

+
4cn
λ

(
‖b‖Ls(Ω1)|{vζ 6= 0}| 1n− 1

s + ‖d‖Lt(Ω1)|{vζ 6= 0}| 1n− 1
t

+ cn‖V−‖Lp(Ω1)|{vζ 6= 0}|
2
n−

1
p

)ˆ
|D(vζ)|2.
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As in (5.4),

ˆ
fvζ2 ≤ λ

32

ˆ
|D(vζ)|2 +

8c2n
λ
‖f‖2L`(Ω1)|{vζ 6= 0}|1+ 2

n−
2
` ,

ˆ
V−vζ

2 ≤ λ

32k

ˆ
|D(vζ)|2 +

8kc2n
λ
‖V−‖2Lp(Ω1)|{vζ 6= 0}|1+ 2

n−
2
p .

Similarly,
ˆ
bαDα(vζ)ζ ≤ λ

32k

ˆ
|D(vζ)|2 +

8k

λ
‖b‖2Ls(Ω1)|{vζ 6= 0}|1− 2

s ,

ˆ
bαDαζvζ ≤

λ

32k

ˆ
v2|Dζ|2 +

8k

λ
‖b‖2Ls(Ω1)|{vζ 6= 0}|1− 2

s .

It follows that

ˆ
|D(vζ)|2 ≤

(
8cn
λ
‖f‖L`(Ω1)

)2

|{vζ 6= 0}|1+ 2
n−

2
`

+ k2

[(
8cn
λ
‖V−‖Lp(Ω1)

)2

|{vζ 6= 0}|1+ 2
n−

2
p

+ 2

(
8

λ
‖b‖Ls(Ω1)

)2

|{vζ 6= 0}|1− 2
s

]

+
8

λ2

[
8Λ2 + λΛ +

λ2

4
+ 16c2n(‖b‖2Ls(Ω1)|{vζ 6= 0}| 2n− 2

s

+ ‖d‖2Lt(Ω1)|{vζ 6= 0}| 2n− 2
t )

]ˆ
v2|Dζ|2

+
8cn
λ

(
‖b‖Ls(Ω1)|{vζ 6= 0}| 1n− 1

s + ‖d‖Lt(Ω1)|{vζ 6= 0}| 1n− 1
t

+ cn‖V−‖Lp(Ω1)|{vζ 6= 0}|
2
n−

1
p

)ˆ
|D(vζ)|2.

If |{vζ 6= 0}| is chosen so that

(5.12) |{vζ 6= 0}| ≤ min

{(
λ

32cn‖b‖Ls(Ω1)

) ns
s−n

,

(
λ

32cn‖d‖Lt(Ω1)

) nt
t−n

,

(
λ

32c2n‖V−‖Lp(Ω1)

) np
2p−n

}
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then ˆ
|D(vζ)|2 ≤

(
256Λ2

λ2
+

32Λ

λ
+

9λ2

8

)ˆ
v2|Dζ|2

+

(
16cn
λ
‖f‖L`(Ω1)

)2

|{vζ 6= 0}|1+ 2
n−

2
`

+

(
16kcn
λ
‖V−‖Lp(Ω1)

)2

|{vζ 6= 0}|1+ 2
n−

2
p

+ 2

(
16k

λ
‖b‖Ls(Ω1)

)2

|{vζ 6= 0}|1− 2
s .

Since the Hölder and Sobolev inequalities imply that
ˆ

(vζ)2 ≤
(ˆ

(vζ)2∗
)2/2∗

|{vζ 6= 0}|1− 2
2∗ ≤ c2n

ˆ
|D(vζ)|2|{vζ 6= 0}| 2n ,

then

(5.13)

ˆ
(vζ)2 ≤ C1

4

ˆ
v2|Dζ|2|{vζ 6= 0}|ε +C1(F + k)2|{vζ 6= 0}|1+ε,

where ε = min
{

2
n ,

4
n −

2
` ,

4
n −

2
p ,

2
n −

2
s

}
> 0, F = ‖f‖L`(Ω1), and

C1 = c2n

[(
32Λ

λ

)2

+
128Λ

λ
+

9λ2

2
+

(
32cn
λ

)2

+

(
32cn
λ
‖V−‖Lp(Ω1)

)2

+ 2

(
32

λ
‖b‖Ls(Ω1)

)2
]
.

For fixed 0 < r ≤ ρ ≤ 1, let ζ ∈ C∞c (Bρ) be such that ζ ≡ 1 in
Br and |Dζ| ≤ 2

ρ−r in B1. We let A(k, r) = {x ∈ Ωr : u ≥ k} =

supp v ∩ Ωr. Then, for any 0 < r < ρ ≤ 1 and k ≥ 0, if (5.12) holds,
then (5.13) implies that

(5.14)

ˆ
A(k,r)

(u−k)2≤C1

[
|A(k, ρ)|ε

(ρ− r)2

ˆ
A(k,ρ)

(u−k)2+(F+k)2|A(k, ρ)|1+ε

]
.

Since the Hölder inequality implies that

|A(k, r)| ≤ 1

k

ˆ
A(k,r)

u+ ≤ 1

k

(ˆ
ΩR

|u+|2
) 1

2

|A(k, r)| 12 ,

then |{vζ 6= 0}| ≤ 1
k2 ‖u

+‖2L2(ΩR). To ensure that (5.12) holds, we take

(5.15) k ≥ k0 := C‖u+‖L2(ΩR),
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where

C :=

(
32cn
λ
‖b‖Ls(Ω1)

) ns
2s−2n

+

(
32cn
λ
‖d‖Lt(Ω1)

) nt
2t−2n

+

(
32c2n
λ
‖V−‖Lp(Ω1)

) np
4p−2n

.

The goal is to show that there exists a k ≥ k0 such thatˆ
A(k,1/2)

(u− k)2 = 0.

With h > k ≥ k0 and 0 < r < 1, it follows from the arguments in the
previous proof that

(5.16) ‖(u−h)+‖L2(Ωr)≤C2

[
1

(ρ−r)(h−k)ε
+

F + h

(h−k)1+ε

]
‖(u−k)+‖1+ε

L2(Ωρ),

where C2 depends on C1.
Set ϕ(k, r) = ‖(u− k)+‖L2(Ωr). For i = 0, 1, 2, . . . , define

ki = k0 +K

(
1− 1

2i

)
, ri =

1

2
+

1

2i+1
,

where K > 0 is to be determined. Then it follows from (5.16) with
ρ = ri−1, r = ri, h = ki, and k = ki−1 that for i ≥ 1

(5.17) ϕ(ki, ri) ≤ C2

[
3

2(1+ε)i

Kε
+ (F + k0)

(
2i

K

)1+ε
]
ϕ(ki−1, ri−1)1+ε.

Claim. There exists µ > 1 and K sufficiently large (depending, in par-
ticular, on µ) such that for any i = 0, 1, . . . (5.10) holds.

Clearly, the claim holds for i = 0. If the claim holds for i− 1, then

ϕ(ki, ri) ≤ C2µ
1+ε

[
3 +

F + k0

K

](
21+ε

µε

)i(
ϕ(k0, r0)

K

)ε
ϕ(k0, r0)

µi
.

If we choose µ > 1 so that µε ≥ 21+ε, then for the claim to hold we need

C2µ
1+ε

[
3 +

F + k0

K

](
ϕ(k0, r0)

K

)ε
≤ 1.

Setting K = C0ϕ(k0, r0) +F + k0 for some C0 � 1 that depends on C2,
µ, and ε, gives the claim.

Taking i→∞ in (5.10) shows that ϕ
(
k0 +K, 1

2

)
=0. Since ϕ(k0, r0)=

ϕ(k0, 1) ≤ ‖u+‖L2(Ω1), then

sup
Ω1/2

u+ ≤ K+k0 ≤ C0‖u+‖L2(ΩR)+F+2k0 = C3‖u+‖L2(Ω1)+‖f‖L`(Ω1),

where C3 = C0 + 2C.
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The estimate for R 6= 1 follows from a standard scaling argument.
Assume that Lu = f weakly on ΩR. Let uR(x) = u(Rx), VR(x) =
R2V (Rx), bR(x) = Rb(Rx), dR(x) = Rd(Rx), fR(x) = R2f(Rx), and
define LR to be the scaled version of L. Then LRuR = fR on B1. Since
LR has the same ellipticity constant as L, then by the previous estimate,

sup
ΩR/2

u+ = sup
Ω1/2

u+
R ≤ C3,R‖u+

R‖L2(Ω1) + ‖fR‖L`(Ω1)

≤ C3,RR
−n/2‖u+‖L2(ΩR) +R2−n` ‖f‖L`(ΩR),

where

C3,R= c

[(
32Λ

λ

)2

+
128Λ

λ
+

9λ2

2
+

(
32cn
λ

)2

+

(
32cn
λ

R2−np ‖V−‖Lp(ΩR)

)2

+ 2

(
32

λ
R1−ns ‖b‖Ls(ΩR)

)2
]c1

+ 2

[(
32c2n
λ

R2−np ‖V−‖Lp(ΩR)

) np
4p−2n

+

(
32cn
λ

R1−ns ‖b‖Ls(ΩR)

) ns
2s−2n

+

(
32cn
λ

R1−nt ‖d‖Lt(ΩR)

) nt
2t−2n

]
grows with R.

The rest of the proof, which includes q 6= 2 and r = θR for θ 6= 1
2 ,

follows that of the previous lemma.

6. Interior Hölder continuity in the equation setting

Within this section, we prove Hölder continuity of solutions to gen-
eral second-order elliptic equations with lower order terms. Towards
proving Hölder continuity of solutions, we first show that a lower bound
holds for all non-negative supersolutions to our PDE. The combination
of this lower bound with the upper bounds in Section 5 and the argu-
ments presented in Corollary 4.18 from [HL] leads to the proof of Hölder
continuity.

To prove the lower bound, we use some of the ideas presented in [HL],
but since lower order terms were not considered there, we have added
the details. Again, the general approach that we follow is based on
the ideas of de Giorgi. Similar estimates are presented in [GT] using
Moser’s approach. We actually avoid the use of Moser’s iteration, and
as a consequence, we prove a lower bound for u in terms of ‖u‖q0 for only
one q0 instead of a full range of values as was done in [HL] and [GT].
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For us, the lower bound is a step towards Hölder continuity, so a single q0

is sufficient.
Since our proofs are different from those in [HL] and [GT], we have

included the details here. We also present the structure of the associated
constants.

To start, we prove the following result that uses the John–Nirenberg
lemma.

Lemma 6.1. Take N = 1. Assume that F(BR), F0(BR), L, and B
satisfy A1)–A5) and B2). Suppose V = V+ − V− where V± ≥ 0 a.e.
and V+ ∈ Lp(BR) for some p ∈

(
n
2 ,∞

]
. Assume that there exists s, t ∈

(n,∞] so that b ∈ Ls(BR)n, d ∈ Lt(BR)n. Assume that f ∈ L`(BR) for
some ` ∈

(
n
2 ,∞

]
, gα ∈ Lm(BR) for some m ∈ (n,∞]. Let u ∈ F(BR) be

a non-negative supersolution in the sense that for any ϕ ∈ F0(BR) such
that ϕ ≥ 0 in BR, we have

(6.1) B[u, ϕ] ≥ −
ˆ
fϕ+

ˆ
gαDαϕ.

Then there exists

q0(n, p, s, t, λ,Λ, R2−np ‖V+‖Lp(BR), R
1−ns ‖b‖Ls(BR), R

1−nt ‖d‖Lt(BR)) > 0

so that for any k ≥ |BR|
2
n−

1
` ‖f‖L`(BR) + |BR|

1
n−

1
m ‖g‖Lm(BR), and any

Br(y) ⊂ B3R/4,

(6.2)

ˆ
Br(y)

(u+ k)−q0
ˆ
Br(y)

(u+ k)q0 ≤ Cnr2n.

Remark 6.2. This lemma is analogous to the first step of the proof of
Theorem 4.15 from [HL], except that here we have lower order terms.

Proof: Let ζ∈C∞c (BR) be a cutoff function, 0≤ζ≤1. By B2) with ω=1,
for any k > 0, ū := (u + k)−1 ∈ F(BR). It follows from A4) that
ϕ := ūζ2 ∈ F0(BR). Since u is a supersolution, we have

0≤
ˆ

(AαβDβu+ bαu)Dαϕ+ dβDβuϕ+ V uϕ+

ˆ
fū−1ζ2 −

ˆ
gαDαϕ

=−
ˆ
AαβDβwDαwζ

2 + 2

ˆ
AαβDβwDαζζ

−
ˆ (

1− k

ū

)
bαDαwζ

2 + 2

ˆ (
1− k

ū

)
bαDαζ ζ

+

ˆ
dβDβwζ

2+

ˆ
V

(
1− k

ū

)
ζ2+

ˆ
f

ū
ζ2+

ˆ
gα

ū
Dαwζ

2−2

ˆ
gα

ū
ζDαζ,



584 B. Davey, J. Hill, S. Mayboroda

where we have set w = log ū. With f̃ := f
ū , g̃ := |g|

ū , we rearrange and
bound to get

λ

ˆ
|Dw|2ζ2 ≤

ˆ
AαβDβwDαwζ

2

≤ 2Λ

ˆ
|Dw||Dζ|ζ +

ˆ
(|b|+ |d|+ |g̃|)|Dw|ζ2

+ 2

ˆ
(|b|+ |g̃|)|Dζ|ζ +

ˆ
(|V+|+ f̃)ζ2

≤ λ

2

ˆ
|Dw|2ζ2 + C1

ˆ
|Dζ|2,

where

C1 =
8Λ2

λ
+

2c2n
λ

(
|BR|

1
n−

1
s ‖b‖Ls(BR) + |BR|

1
n−

1
t ‖d‖Lt(BR)

+ |BR|
1
n−

1
m ‖g̃‖Lm(BR)

)2

+ 2cn

(
|BR|

1
n−

1
s ‖b‖Ls(BR) + |BR|

1
n−

1
m ‖g̃‖Lm(BR)

)
+ c2n

(
|BR|

2
n−

1
p ‖V+‖Lp(BR) + |BR|

2
n−

1
` ‖f̃‖L`(BR)

)
.

If |BR|
2
n−

1
` ‖f‖L`(BR) + |BR|

1
n−

1
m ‖g‖Lm(BR) > 0, then we choose k =

|BR|
2
n−

1
` ‖f‖L`(BR) + |BR|

1
n−

1
m ‖g‖Lm(BR). Otherwise, we choose k > 0

to be arbitrary and eventually take k → 0+. Then

(6.3)

ˆ
|Dw|2ζ2 ≤ C2

ˆ
|Dζ|2,

where

C2 =

(
4Λ

λ

)2

+

(
2cn
λ

)2(
|BR|

1
n−

1
s ‖b‖Ls(BR)+|BR|

1
n−

1
t ‖d‖Lt(BR)+1

)2
+

4cn
λ

(
|BR|

1
n−

1
s ‖b‖Ls(BR) + 1

)
+

2c2n
λ

(
|BR|

2
n−

1
p ‖V+‖Lp(BR) + 1

)
.

(6.4)

Let Br(y) ⊂ B3R/4. Choose ζ so that ζ ≡ 1 in Br(y), supp ζ b BR, and

|Dζ| ≤ C
r . It follows from the Hölder inequality, Poincaré inequality,
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then (6.3), that for any Br(y) ⊂ B3R/4,

ˆ
Br(y)

|w − wy,r| ≤ |Br|
1
2

(ˆ
Br(y)

|w − wy,r|2
)1

2

≤ cnr
n+2
2

(ˆ
Br

|Dw|2
)1

2

≤ cnr
n+2
2

(
C2

ˆ
|Dζ|2

) 1
2

≤ C3r
n,

where wy,r =
ffl
Br(y)

w and C3 = cn
√
C2. Therefore, w is a BMO func-

tion. By the John–Nirenberg lemma, there exists q1, C4 > 0, depending
only on n, so that for any Br(y) ⊂ B3R/4ˆ

Br(y)

e
q1
C3
|w−wy,r| ≤ C4r

n.

Therefore, with q0 = q1
C3

= q1
cn
√
C2

,ˆ
Br(y)

ū−q0
ˆ
Br(y)

ūq0 =

ˆ
Br(y)

e−q0log ū

ˆ
Br(y)

eq0log ū

=

ˆ
Br(y)

e−q0(w−wy,r)

ˆ
Br(y)

eq0(w−wy,r)

=

ˆ
Br(y)

eq0|w−wy,r|
ˆ
Br(y)

e−q0|w−wy,r|≤ C4r
2n.

Remark 6.3. We sometimes use the notation q0(R) to refer to the expo-
nent q0 associated to the ball of radius R.

With the previous estimate, we can prove a lower bound for solutions.

Lemma 6.4. Take N = 1. Assume that F(BR), F0(BR), L, and B
satisfy A1)–A5) and B1)–B2). Assume that there exists p ∈

(
n
2 ,∞

]
,

s, t ∈ (n,∞] so that V+ ∈ Lp(BR), b ∈ Ls(BR), d ∈ Lt(BR). Assume
that f ∈ L`(BR) for some ` ∈

(
n
2 ,∞

]
, gα ∈ Lm(BR) for some m ∈

(n,∞]. Suppose u ∈ F(BR) is a nonnegative supersolution in the sense
that for any ϕ ∈ F0(BR) such that ϕ ≥ 0 in BR, (6.1) holds. Then for
q0 = q0(R) (see Remark 6.3), we have( 

B3R/4

uq0

)1
q0

≤ C0

(
inf
BR/2

u+|BR|
2
n−

1
` ‖f‖L`(BR)+|BR|

1
n−

1
m ‖g‖Lm(BR)

)
,

where C0 = C0(n, q0, p, s, t, `,m, λ,Λ, R
2−np ‖V+‖Lp(BR), R

1−ns ‖b‖Ls(BR),

R1−nt ‖d‖Ls(BR)).
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Proof: If |BR|
2
n−

1
` ‖f‖L`(BR) + |BR|

1
n−

1
m ‖g‖Lm(BR) > 0, let

k = |BR|
2
n−

1
` ‖f‖L`(BR) + |BR|

1
n−

1
m ‖g‖Lm(BR).

Otherwise, if f, g ≡ 0, let k > 0 and eventually take to k → 0+. Set

ū = u + k. Let ξ ∈ C∞c (BR), ξ ≥ 0, and set ϕ = ū−(1+ 1
2 q0)ξ ≥ 0,

where q0 = q0(R) is the constant given to us in Lemma 6.1. By B2) with
ω = 1 + q0

2 and an application of A4), ϕ ∈ F0(BR), so we may use it as
a test function.

Set w = ū−
q0
2 so that Dw = − q02 ū

−(1+
q0
2 )Dū. By B2), w ∈ F(BR)

as well. Thenˆ
AαβDβuDαϕ+ bαuDαϕ+ dβDβuϕ+ V uϕ

= − 2

q0

ˆ
AαβDβwDαξ − 4

4 + 2q0

q2
0

ˆ
AαβDβ(ū−

1
4 q0)Dα(ū−

1
4 q0)ξ

+

ˆ (
1− k

ū

)
bαwDαξ +

2 + q0

q0

ˆ (
1− k

ū

)
bαDαwξ

− 2

q0

ˆ
dβDβwξ +

ˆ (
1− k

ū

)
V wξ.

It follows from (6.1), with f̃ = f
ū , g̃α = gα

ū thatˆ
AαβDβwDαξ ≤ −4

2 + q0

q0

ˆ
AαβDβ(ū−

q0
4 )Dα(ū−

q0
4 )ξ

+
q0

2

ˆ (
1− k

ū

)
bαwDαξ+

(
1+

q0

2

)ˆ (
1− k

ū

)
bαDαwξ

−
ˆ
dβDβwξ +

q0

2

ˆ (
1− k

ū

)
V wξ

+
q0

2

ˆ
f̃wξ −

(
1 +

q0

2

) ˆ
g̃αDαwξ −

q0

2

ˆ
g̃αwDαξ.

Therefore, with b̃α= q0
2

[
g̃α+

(
k
ū−1

)
bα
]
, d̃β=dβ+

(
1+ q0

2

)[(
k
ū−1

)
bβ+g̃β

]
,

and Ṽ = − q02 (V+ + f̃), we have that
ˆ
AαβDβwDαξ + b̃αwDαξ + d̃βDβwξ − Ṽ wξ

≤ −4

(
1 +

2

q0

)ˆ
AαβDβ(ū−

q0
4 )Dα(ū−

q0
4 )ξ ≤ 0.

Since ξ ∈ C∞c (BR) is arbitrary and nonnegative, then it follows from A2)

that L̃w ≤ 0 in BR in the weak sense. We may apply Lemma 5.6 to w.



Fundamental Matrices and Green Matrices 587

Thus,

sup
BR/2

w ≤ CR−n2 ‖w‖L2(B3R/4),

where C = C(n, q0, p, s, t, `,m, λ,Λ, R
2−np ‖V+‖Lp(ΩR), R

1−ns ‖b‖Ls(ΩR),

R1−nt ‖d‖Lt(ΩR)). Since w = ū−
1
2 q0 and ū = u+ k, then

inf
BR/2

u+ k = inf
BR/2

ū = ( sup
BR/2

w)−
2
q0 ≥ (CR−

n
2 ‖w‖L2(B3R/4))

− 2
q0

≥ C−
2
q0R

n
q0

(ˆ
B3R/4

ū−q0

)− 1
q0

.

By Lemma 6.1,(ˆ
B3R/4

ū−q0

)− 1
q0

≥

CnRn( 
B3R/4

ūq0

)−1
− 1

q0

and therefore,

inf
BR/2

u+k ≥ (C2Cn)−
1
q0

( 
B3R/4

ūq0

) 1
q0

≥ (C2Cn)−
1
q0

( 
B3R/4

uq0

) 1
q0

,

since ū ≥ u ≥ 0.

By combining our upper and lower bounds, we arrive at the following
Harnack inequality.

Lemma 6.5. Take N = 1. Assume that F(B2R), F0(B2R), L, and B
satisfy A1)–A5) and B1)–B2). Assume that there exists p ∈

(
n
2 ,∞

]
,

s, t ∈ (n,∞] so that V ∈ Lp(BR), b ∈ Ls(BR)n, and d ∈ Lt(BR)n. Let
f ∈ L`(BR) for some ` ∈

(
n
2 ,∞

]
. Let u ∈ F(B2R) be a non-negative

solution in the sense that B[u, ϕ] =
´
fϕ for any ϕ ∈ F0(BR). Then

sup
BR/4

u ≤ C(R) inf
BR/2

u+ c(R)R2−n` ‖f‖L`(BR),

where C(R) = CC0|B3/4|
1
q0 and c(R) = CC0|B3/4|

1
q0 |B1|

2
n−

1
` +cq0 , with

q0 = q0(R), C and cq0 as in Lemma 5.6, and C0 as in Lemma 6.4.

The proof is an application of Lemmas 5.6 and 6.4.

Proof: By Lemma 5.6 with q0 = q0(R),

sup
BR/4

u ≤ CR−
n
q0 ‖u‖Lq0 (B3R/4) + cq0R

2−n` ‖f‖L`(BR),
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where C = C(n, q0, p, s, t, `, λ, Λ, R2−np ‖V−‖Lp(ΩR), R
1−ns ‖b‖Ls(ΩR),

R1−nt ‖d‖Lt(ΩR)). By Lemma 6.4,( 
B3R/4

uq0

) 1
q0

≤ C0

(
inf
BR/2

u+ |BR|
2
n−

1
` ‖f‖L`(BR)

)
,

where C0 = C0(n, q0, p, s, t, `, λ,Λ, R
2−np ‖V+‖Lp(BR), R

1−ns ‖b‖Ls(BR),

R1−nt ‖d‖Ls(BR)). Thus,

sup
BR/4

u ≤ CC0|B3/4|
1
q0 inf
BR/2

u

+
(
CC0|B3/4|

1
q0 |B1|

2
n−

1
` + cq0

)
R2−n` ‖f‖L`(BR).

Now we have all of the tools we need to prove interior Hölder conti-
nuity of solutions.

Lemma 6.6. Take N = 1. Assume that F(B2R0), F0(B2R0), L, and
B satisfy A1)–A5) and B1)–B2). Assume that there exists p ∈

(
n
2 ,∞

]
,

s, t ∈ (n,∞] so that V ∈ Lp(BR0
), b ∈ Ls(BR0

)n, and d ∈ Lt(BR0
)n.

Let u ∈ F(B2R0
) be a solution in the sense that B[u, ϕ] = 0 for any

ϕ ∈ F0(BR0
). Let C0 = C0(R0) be as given in Lemma 6.4. Then there

exists η(n, p, s, C0) ∈ (0, 1), such that for any R ≤ R0, if x, y ∈ BR/2

|u(x)− u(y)| ≤ C
(
|x− y|
R

)η ( 
BR

|u|2
∗
) 1

2∗

,

where C(n, p, s, t, λ,Λ, η, C0(R0), R
2−np
0 ‖V ‖Lp(BR0

), R
1−ns
0 ‖b‖Ls(BR0

),

R
1−nt
0 ‖d‖Lt(BR0

)).

Proof: Assume first that R = 2. For r ∈ (0, 1), let m(r) = inf
Br
u, M(r) =

sup
Br

u. By our previous results, −∞ < m(r) ≤ M(r) < ∞. Set M0 =

sup
B1

|u|. Let q0 = q0(1) as given in Lemma 6.1. The Minkowski inequality

shows that

M(r)−m(r)=

( 
B3r/4

|M(r)−m(r)|q0
)1
q0

≤

( 
B3r/4

|M(r)− u|q0
)1
q0

+

( 
B3r/4

|u−m(r)|q0
)1
q0

.

(6.5)
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Let ϕ ∈ F0(Br) be such that ϕ ≥ 0 in Br. Since M(r)− u ≥ 0 and

B[M(r)−u, ϕ]=

ˆ
[AαβDβ(M(r)− u) + bα(M)(r)− u)]Dαϕ

+ [dβDβ(M(r)− u) + V (M(r)− u)]ϕ

=−B[u, ϕ] +M(r)

ˆ
(V −Dαb

α)ϕ = M(r)

ˆ
(V −Dαb

α)ϕ,

then by Lemma 6.4 with f := −M(r)V ∈ Lp(Br) and gα := M(r)bα ∈
Ls(Br),

(6.6)

( 
B3r/4

|M(r)− u|q0
) 1
q0

≤ C0

[
inf
Br/2

[M(r)−u]+M0

(
|Br|

2
n−

1
p ‖V ‖Lp(Br)+|Br|

1
n−

1
s ‖b‖Ls(Br)

)]
.

Similarly, since u−m(r) ≥ 0 and

B[u−m(r), ϕ]=

ˆ
[AαβDβ(u−m(r)) + bα(u−m(r))]Dαϕ

+ [dβDβ(u−m(r)) + V (u−m(r))]ϕ

=B[u, ϕ]−m(r)

ˆ
(V −Dαb

α)ϕ=−m(r)

ˆ
(V −Dαb

α)ϕ,

then

(6.7)

( 
B3r/4

|u−m(r)|q0
) 1
q0

≤ C0

[
inf
Br/2

[u−m(r)]+M0

(
|Br|

2
n−

1
p ‖V ‖Lp(Br)+|Br|

1
n−

1
s ‖b‖Ls(Br)

)]
.

Combining (6.5), (6.6), and (6.7), we see that

1

C0
[M(r)−m(r)] ≤M(r)−M

(r
2

)
+m

(r
2

)
−m(r)

+ 2M0

(
|B1|

2
n−

1
p r2−np ‖V ‖Lp(Br) + |B1|

1
n−

1
s r1−ns ‖b‖Ls(Br)

)
.

Set ω(r) = oscBr u = M(r) − m(r), δ = min
{

2− n
p , 1−

n
s

}
, c =

2 max
{
|B1|

2
n−

1
p , |B1|

1
n−

1
s

}
. Since C0 = C0(r) is monotonically increas-

ing,

ω
(r

2

)
≤
(

1− 1

C0(1)

)
ω(r) + crδM0(‖V ‖Lp(B1) + ‖b‖Ls(B1)).
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Choose µ ∈ (0, 1), so that η := (1 − µ) log(1−C0(1)−1)

log( 1
2 )

< µδ. For any

such η, it follows from Lemma 4.19 in [HL] that for any ρ ∈ [0, 1),

ω(ρ) ≤ 2η

1− C0(1)−1
ρηω(1) +

cC0(1)

2δ(1−µ)
(‖V ‖Lp(B1) + ‖b‖Ls(Br))ρ

ηM0.

By Lemma 5.6,

ω(1) ≤ C
(ˆ

B2

|u|2
∗
) 1

2∗

,

M0 = sup
B1

|u| ≤ C
(ˆ

B2

|u|2
∗
) 1

2∗

.

Thus,

ω(ρ) ≤ Cρη
(ˆ

B2

|u|2
∗
) 1

2∗

,

where C(n, p, s, t,λ,Λ, η,C0(1),‖V ‖Lp(B2),‖b‖Ls(B2),‖d‖Lt(B2)). The usual
scaling argument gives the general result.

7. Examples

Within this section, we show that a number of cases satisfy the as-
sumptions from our general set-up:

Case 1. Homogeneous operators: When b,d,V≡0, take F(Ω)=Y 1,2(Ω)N.
This case was studied by Hofmann and Kim in [HK] and fits into
our framework.

Case 2. Lower order coefficients in Lp, Sobolev space: When b, d, V are
in some Lp spaces and satisfy a non-degeneracy condition, F(Ω) =
W 1,2(Ω)N .

Case 3. Reverse Hölder potentials: When V ∈ Bp for some p ∈
[
n
2 ,∞

)
(to be defined below), b,d ≡ 0, we define F(Ω) = W 1,2

V (Ω)N , a
weighted Sobolev space, with the weight function depending on the
potential function V.

The goal of this section is to show that each of the three cases listed
above fits into the framework described in Section 2. More specifically,
we first show that F(Ω) and F0(Ω) satisfy assumptions A1)–A4). Then
we show that A5)–A7) hold for F(Ω), F0(Ω), L, and B; we prove bound-
edness as in (2.21), coercivity as in (2.22), and the Caccioppoli inequal-
ity (2.23). At this point, if we assume that (IB), (BB), and (H) also hold,
then we have the full set of results on fundamental and Green matrices.
Going further, we consider the case of real equations (as opposed to real
systems), and we justify the assumptions of (IB), (BB), and (H) in each
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of the cases described above. To this end, due to Sections 5 and 6, we
will only have to show that B1)–B2) hold. We remind the reader that
for systems, the assumptions (IB), (BB), and (H) may actually fail.

7.1. Homogeneous operators. We start with the case when V,b,d≡
0, L = L, and

B[u,v] = B[u,v] :=

ˆ
AαβDβu ·Dαv =

ˆ
Aαβij Dβu

j Dαv
i.

By ellipticity (2.12) and boundedness (2.13) of the matrix A, B[·, ·] is
comparable to the inner product given by (2.3). Therefore, it is natural
to take the Banach space to be F(Ω) = Y 1,2(Ω)N , while the associated

Hilbert space is F0(Ω) = Y 1,2
0 (Ω)N , for all Ω open and connected.

The restriction property (2.4) is obviously true in this setting. It
is also clear that C∞c (Ω)N functions belong to Y 1,2(Ω)N , and, by the

discussion in the beginning of Section 2, Y 1,2
0 (Ω)N is a Hilbert space

equipped with the scalar product (2.3). A3) is trivially satisfied.
By Lemma D.2, C∞(U)N ∩ Y 1,2(U)N is dense in Y 1,2(U)N for any

bounded U . This implies (2.7) since we may assume that U in (2.7) is
bounded because the support of ξ is bounded. With ξ ∈ C∞c (U), it is
immediate that uξ ∈ L2∗(Ω ∩ U)N and

∂

∂xi
(uξ) = ξ

∂u

∂xi
+ u

∂ξ

∂xi
∈ L2(Ω ∩ U)N ,

where we have used that u ∈ L2∗(Ω ∩ U)N ↪→ L2(Ω ∩ U)N since U is
bounded. It follows that ‖uξ‖Y 1,2(Ω∩U) ≤ Cξ‖u‖Y 1,2(Ω). Now if {un} ⊂
C∞(Ω ∩ U)N approximates u in the Y 1,2(Ω ∩ U)N -norm, then for ξ ∈
C∞c (U), we observe that {unξ} ⊂ C∞(Ω ∩ U)N approximates uξ since

‖unξ − uξ‖Y 1,2(Ω∩U) ≤ ‖D(un − u)‖L2(Ω∩U)‖ξ‖L∞(Ω∩U)

+ ‖un − u‖L2(Ω∩U)‖Dξ‖L∞(Ω∩U)

+ ‖un − u‖L2∗ (Ω∩U)‖ξ‖L∞(Ω∩U).

(7.1)

Applying the Hölder inequality to the second term, the latter is ma-
jorized by ‖un − u‖Y 1,2(U∩Ω), as desired. A similar argument implies

that when ξ ∈ C∞c (Ω ∩ U), {unξ} ⊂ C∞c (Ω ∩ U)N approximates uξ.
Turning to A5)–A7), (2.21) and (2.22) follow directly from (2.13)

and (2.12) with Γ = Λ and γ = λ. The Caccioppoli inequality is well-
known in this context, however one can also refer to Lemma 4.1. Indeed,
since all of the lower order coefficients vanish, then Lemma 4.1 applies
to give the Caccioppoli inequality (2.23) with C = C(n, λ,Λ). All in all,
A1)–A7) are verified in this setting.
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Reducing to the case of equations, i.e., N=1, conditions (IB) and (BB)
hold with C = C(n, q, `, λ,Λ) due to Lemma 4.1 from [HL], or one could
also use Lemma 5.1 by showing that B1) holds.

If one wants to show B1), it is enough to observe that its proof can

be reduced to the case of F(Ω) = W 1,2(Ω). This is because Y 1,2
0 (ΩR) =

W 1,2
0 (ΩR) by Lemma A.7. Indeed, for any u ∈ Y 1,2(ΩR) ↪→ W 1,2(ΩR)

(see Lemma A.7), if uζ ∈ Y 1,2
0 (ΩR) for all ζ ∈ C∞c (BR), then uζ ∈

W 1,2
0 (ΩR). If B1) holds for F(Ω) = W 1,2(Ω), we have for all ζ smooth

compactly supported non-negative ζ(u − k)+ ∈ W 1,2
0 (ΩR) = Y 1,2

0 (ΩR)
by Lemma A.7, as desired. Clearly, the property ∂iζ(u− k)+ ∈ L2(ΩR)
is also inherited. We will postpone the proof of B1) for F(Ω) = W 1,2(Ω)
to Case 2.

In this context, (H) also can be found in the literature, specifically,
Corollary 4.18 from [HL] applies since the spacesW 1,2(BR) and Y 1,2(BR)
coincide for any BR ⊂ Ω (see Corollary A.11). The latter fact also allows
us to reduce the proof of B2) to the case of F(Ω) = W 1,2(Ω) (discussed
below) should we prefer to use Lemma 6.6.

7.2. Lower order coefficients in Lp, Sobolev space. Assume that
there exist exponents p ∈

(
n
2 ,∞

]
, s, t ∈ (n,∞] so that V ∈ Lp(Ω)N×N ,

b ∈ Ls(Ω)n×N×N , and d ∈ Lt(Ω)n×N×N . Set F(Ω) = W 1,2(Ω)N and

F0(Ω) = W 1,2
0 (Ω)N .

To establish the assumptions A1) through A4), we rely on a number
of facts regarding Sobolev spaces which are contained in Appendix D,
with further details in [Eva], for example.

The property (2.4) is straightforward and therefore A1) holds. Clearly,

C∞c (Ω)N is contained in W 1,2(Ω)N and the completion, W 1,2
0 (Ω)N , is a

Hilbert space with respect to ‖ · ‖W 1,2
0 (Ω)N = ‖ · ‖W 1,2(Ω)N . A3) follows

from Lemma A.1. For u ∈W 1,2(Ω)N and ξ ∈ C∞c (U), boundedness of ξ
and Dξ implies that uξ ∈ W 1,2(Ω ∩ U)N , and, as in the previous case,
‖uξ‖W 1,2(Ω∩U) ≤ Cξ‖u‖W 1,2(Ω). By Lemma D.2, C∞(U)N ∩W 1,2(U)N

is dense in W 1,2(U)N , so that (2.7), and hence A4), holds by the same
argument as in Case 1, similar to (7.1).

Boundedness of the matrix A, (2.13), implies that for any u,v ∈
W 1,2

0 (Ω)N ,

B[u,v] ≤ Λ

ˆ
|Du||Dv|+

ˆ
|b||u||Dv|+

ˆ
|d||Du||v|+

ˆ
|V||u||v|.

By the Hölder inequality
ˆ
|Du||Dv| ≤

(ˆ
|Du|2

) 1
2
(ˆ
|Dv|2

) 1
2

.
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By Hölder, homogeneous Sobolev and Young’s inequalities, since s ∈
(n,∞],ˆ
|b||u||Dv|=

ˆ
|b||u|

s−n
s |u|ns |Dv|

≤
(ˆ
|b|s

) 1
s
(ˆ
|u|2

) s−n
2s
(ˆ
|u|2

∗
)n−2

2s
(ˆ
|Dv|2

) 1
2

≤c
n
2s
n ‖b‖Ls(Ω)

(ˆ
|u|2

) s−n
2s
(ˆ
|Du|2

) n
2s
(ˆ
|Dv|2

) 1
2

≤c
n
2s
n ‖b‖Ls(Ω)

[(
1− n

s

)ˆ
|u|2+

n

s

ˆ
|Du|2

]1
2
(ˆ
|Dv|2

)1
2

,

where we as usual interpret 1
s to be 0 in the case where s =∞. Similarly,

ˆ
|d||Du||v|≤c

n
2t
n ‖d‖Lt(Ω)

(ˆ
|Du|2

)1
2
[(

1− n

t

)ˆ
|v|2+

n

t

ˆ
|Dv|2

] 1
2

,

and

ˆ
|V||u||v| ≤ c

n
2p
n ‖V‖Lp(Ω)

[(
1− n

2p

)ˆ
|u|2 +

n

2p

ˆ
|Du|2

] 1
2

×
[(

1− n

2p

)ˆ
|v|2 +

n

2p

ˆ
|Dv|2

] 1
2

.

Combining these inequalities, we see that

B[u,v] ≤ (Λ + c
n
2s
n ‖b‖Ls(Ω) + c

n
2t
n ‖d‖Lt(Ω)

+ c
n
2p
n ‖V‖Lp(Ω))‖u‖W 1,2(Ω)N ‖v‖W 1,2(Ω)N .

Therefore, we may take Γ = Λ+c
n
2s
n ‖b‖Ls(Ω)+c

n
2t
n ‖d‖Lt(Ω)+c

n
2p
n ‖V‖Lp(Ω)

so that (2.21), and therefore A5), holds. Clearly, the estimate from below
on B[u,u] may or may not be satisfied without further assumptions on
the lower order terms. Thus, we have to assume that for some γ > 0,
depending on λ, V, b, d,

γ(‖u‖2L2(Rn)N + ‖Du‖2L2(Rn)N ) ≤ B[u,u].

In other words, we assume that (2.22) holds. This is valid, for instance,
if V is positive definite and the first order terms are small with respect
to the zeroth and second order terms. To be specific, we say that V is
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positive definite if there exists ε > 0 so that for any ξ ∈ RN , Vij(x)ξiξj ≥
ε|ξ|2 for every x ∈ Ω. In this case,

B[u,u] ≥ λ
ˆ
|Du|2 +

ˆ
bαu ·Dαu +

ˆ
dβDβu · u + ε

ˆ
|u|2.

If b and d are small in the sense that for some δ1, δ2 > 0∣∣∣∣ˆ bαu ·Dαu +

ˆ
dβDβu · u

∣∣∣∣ ≤ λ

1 + δ1

ˆ
|Du|2 +

ε

1 + δ2

ˆ
|u|2,

then it follows that B[u,u] ≥ γ‖u‖2W 1,2(Ω)N , where γ=min
{
λδ1

1+δ1
, εδ2

1+δ2

}
.

There are other conditions that we could impose to ensure that the lower
bounds holds for some γ > 0. When N = 1, the lower bound holds also
in the presence of more involved non-degeneracy assumptions on the
zeroth and first order terms that we discuss below.

By Lemma 4.1, the Caccioppoli inequality, (2.23), holds with C =
C(n, s, t, γ,Λ, ‖b‖Ls(Ω), ‖d‖Lt(Ω)).

Moving towards (IB), (BB), (H), when N = 1,

(7.2) Lu = −Dα(AαβDβu+ bαu) + dβDβu+ V u,

where λ|ξ|2 ≤ Aαβ(x)ξαξβ ≤ Λ|ξ|2 for all x ∈ Ω, ξ ∈ Rn, V ∈ Lp(Ω),
bα ∈ Ls(Ω), and dβ ∈ Lt(Ω). Moreover,

(7.3) B[u, v] =

ˆ
AαβDβuDαv + bαuDαv + dβDβuv + V uv.

Since u ∈ L2(Ω) ∩ L2∗(Ω) and Du ∈ L2(Ω), then by an application of

the Hölder inequality D|u|2 = 2uDu ∈ Lp(Ω) for any p ∈
[
1, n

n−1

]
. It

follows that Dαb
α and Dβd

β can be paired with |u|2 in the sense of
distributions. That is,

B[u, u] =

ˆ
AαβDβuDαu+

1

2
bαDα|u|2 +

1

2
dβDβ |u|2 + V |u|2

=

ˆ
AαβDβuDαu+

(
V − 1

2
Dαb

α − 1

2
Dβd

β

)
|u|2,

(7.4)

where the integrals above are interpreted as pairings in dual spaces.
Note that to ensure coercivity of the bilinear form, it suffices, for

example, to assume that there exists δ > 0 so that V − 1
2Dαb

α− 1
2Dβd

β ≥
δ in the sense of distributions. That is, for any ϕ ∈ C∞c (Ω) such that
ϕ ≥ 0, ˆ (

V − 1

2
Dαb

α − 1

2
Dβd

β − δ
)
ϕ ≥ 0.
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In this case, we see from (7.4) that the bound from below, (2.22), holds
with γ=min{λ, δ}. If we further assume that V−Dαb

α≥0 and V−Dβd
β≥

0 in Ω in the sense of distributions, then Lemma 5.1 implies that (IB) and
(BB) hold for this setting with C = C(n, q, s, t, `, γ,Λ, ‖b‖Ls(Ω), ‖d‖Lt(Ω))
in (3.47) and (3.90) as long as B1) holds. If B2) also holds, then it follows
from Lemma 6.6 that assumption (H) is also valid.

Therefore, we need to show that assumptions B1) and B2) are valid
for F(Ω) = W 1,2(Ω). These facts are commonly used in the classical ar-
guments for De Giorgi–Nash–Moser estimates, but the proofs are often
omitted. One can find details, e.g., in [HKM]. Since ΩR is bounded,
then Lemma D.2 implies that W 1,2(Ω) could also be defined as a com-
pletion of C∞(ΩR) in the W 1,2(Ω)-norm, thereby coinciding with the
Sobolev space H1,2(Ω; dx) of [HKM]. Then, given that u∈W 1,2(ΩR),
Theorem 1.20 of [HKM] implies that (u − k)+ ∈ W 1,2(Ω), and there-
fore (u − k)+ζ ∈W 1,2(Ω), (u − k)+∂

iζ ∈ L2(Ω), i = 1, . . . , n (by a di-

rect computation). Also, since we assume that uζ ∈ W 1,2
0 (Ω), then

(uζ)+ ∈ W 1,2
0 (Ω) by Lemma 1.23 of [HKM]. Finally, if ζ and k are

non-negative, 0 ≤ (u−k)+ζ ≤ (uζ)+ and hence, (u−k)+ζ∈W 1,2
0 (Ω) by

Lemma 1.25(ii) of [HKM], as desired.
To show that B2) holds, we use a modification of the arguments given

in Theorem 1.18 of [HKM]. We work with f(t) = (t + k)−ω, t ≥ 0,
which belongs to C1(R+) and has a bounded derivative on R+ (not on
the entire R). The exact same argument applies upon observing that
a non-negative function u ∈ W 1,2(BR) can be approximated by non-
negative ui ∈ C∞(BR) due to Corollary D.3.

7.3. Reverse Hölder potentials. Recall that Bp, 1 < p < ∞, de-
notes the reverse Hölder class of all (real-valued) nonnegative locally
Lp integrable functions that satisfy the reverse Hölder inequality. That
is, w ∈ Bp if there exists a constant C so that for any ball B ⊂ Rn,

(7.5)

( 
B

w(x)p dx

)1/p

≤ C
 
B

w(x) dx.

If w ∈ Bp, then it follows from an application of the Hölder inequality
that w ∈ Bq for any q < p. Moreover, if w ∈ Bp, then there exists ε > 0,
depending on w and n, so that w ∈ Bp+ε as well [Geh].

For an N ×N matrix function M(x), define lower and upper bounds
on M in the following way

M`(x) = inf{Mij(x)ξjξi : ξ ∈ RN , |ξ| = 1},
Mu(x) = sup{|Mij(x)ξjζi| : ξ, ζ ∈ RN , |ξ| = 1 = |ζ|}.
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For the zeroth order term V, we assume that there exist constants
c1, c2 > 0 and a non-trivial V ∈ Bp for some p ∈

[
n
2 ,∞

)
(and there-

fore p ∈
(
n
2 ,∞

)
without loss of generality) so that

(7.6) c1V ≤ V` ≤ Vu ≤ c2V.

Even if Ω is a proper subset of Rn, we still assume that V is associated
to some V ∈ Bp which is defined on all of Rn. Since V ∈ Bp, then V is
a Muckenhoupt A∞ weight, and it follows that V (x) dx is a doubling
measure. As V is assumed to be non-trivial, it follows from the doubling
property that V cannot vanish on any open set. We set b,d = 0.

One might wonder whether an appropriate matrix Bp class could be
suitable in this context. We did not pursue this topic, in part, because
the theory of matrix reverse Hölder classes seems to be largely undevel-
oped. For the case of p = 2, some (very limited) discussion can be found
in [Ros2]. Developing the theory of matrix Bp for p 6= 2 was not in the
scope of the present work.

Let m(x, V ) denote the Fefferman–Phong maximal function associ-
ated to V ∈ Bp. This function was introduced by Shen in [She1], mo-
tivated by the work of Fefferman and Phong in [Fef]. For the definition
and additional details we refer the reader to Appendix B. For any open
set Ω ⊂ Rn, we define the space W 1,2

V (Ω) as the family of all weakly
differentiable functions u ∈ L2(Ω,m(x, V )2 dx), whose weak derivatives

are functions in L2(Ω, dx). We endow the space W 1,2
V (Ω) with the norm

‖u‖2
W 1,2
V (Ω)

:= ‖u‖2L2(Ω,m(x,V )2 dx) + ‖Du‖2L2(Ω,dx)

= ‖um(·, V )‖2L2(Ω) + ‖Du‖2L2(Ω).
(7.7)

Since m(·, V ) is non-degenerate in the sense that it is bounded away from
zero on any bounded set (see for example Lemma B.3 and Remark B.5),
it follows that ‖ · ‖2

W 1,2
V (Ω)

is indeed a norm and this norm makes the

space complete (details in Appendix C). The space W 1,2
0,V (Ω) is defined

as the closure of C∞c (Ω) in W 1,2
V (Ω). For further properties of W 1,2

V (Ω),
we refer the reader to Appendix C. Perhaps the most important fact that
we want to highlight here is that on bounded sets W 1,2

V (Ω) and W 1,2(Ω)
coincide (with the norm comparison depending on the set though) – see
Remark C.1.

Remark 7.1. Using V (x) in place ofm(x, V )2, we define the space Ŵ 1,2
V (Ω)

as the family of all weakly differentiable functions u ∈ L2(Ω, V (x) dx)

whose weak derivatives are functions in L2(Ω, dx). The space Ŵ 1,2
V (Ω)
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is endowed with the norm

‖u‖2
Ŵ 1,2
V (Ω)

:= ‖u‖2L2(Ω,V (x) dx) + ‖Du‖2L2(Ω,dx)

= ‖uV 1/2‖2L2(Ω) + ‖Du‖2L2(Ω).
(7.8)

Since V is also non-degenerate, this is indeed a norm and not a semi-
norm. We define Ŵ 1,2

0,V (Ω) as the closure of C∞c (Ω) in Ŵ 1,2
V (Ω).

The space Ŵ 1,2
V (Ω) serves as an alternative (but not equivalent) Hilbert

space to W 1,2
V (Ω) for the case of reverse Hölder zeroth order terms. The

spaces Ŵ 1,2
0,V (Ω) and W 1,2

0,V (Ω) are the same – see Appendix C. In practice,

we find it easier to work with W 1,2
V (Ω) compared to Ŵ 1,2

V (Ω) due to

the aforementioned fact that W 1,2
V (Ω) coincides with the usual Sobolev

spaces W 1,2(Ω) whenever Ω is bounded.

For V specified above, we set F(Ω)=W 1,2
V (Ω)N and F0(Ω)=W 1,2

0,V (Ω)N.

Define the inner product on W 1,2
V (Ω)N by

〈u,v〉W 1,2
V (Ω)N :=

ˆ
Ω

Dαu
iDαv

i + uivim(·, V )2.

As above, A1) and A2) follow directly from the definition. A3) is
shown using the exact same argument as that for Lemma A.1. For u ∈
W 1,2
V (Ω)N and ξ ∈ C∞c (U), it follows from the boundedness of ξ and Dξ,

along with Remark B.5, that uξ ∈W 1,2
V (Ω∩U)N with ‖uξ‖W 1,2

V (Ω∩U) ≤
Cξ‖u‖W 1,2

V (Ω). Using the density of smooth functions in W 1,2
V (U)N for

any bounded domain U , i.e., Lemma D.2, the remainder of A4) follows
from the arguments in Cases 1 and 2, with appropriate modifications
to (7.1).

The next goal is to show that boundedness and coercivity given by
(2.21) and (2.22) hold. At this point we recall Lemma C.6. Having that

at hand, for any u,v ∈W 1,2
0,V (Ω) we have

B[u,v] =

ˆ
AαβDβu ·Dαv + Vu · v ≤ Λ

ˆ
|Du||Dv|+ c2

ˆ
V |u||v|

≤ Λ

(ˆ
|Du|2

) 1
2
(ˆ
|Dv|2

) 1
2

+ c2

(ˆ
V |u|2

) 1
2
(ˆ

V |v|2
) 1

2

≤ (Λ + c2CV,n)‖u‖W 1,2
V (Ω)N ‖v‖W 1,2

V (Ω)N ,
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where the last line follows from Lemma C.6. Therefore, boundedness
holds with Γ = Λ + C CV,n. Since

B[u,u] =

ˆ
AαβDβu ·Dαu + Vu · u ≥ λ

ˆ
|Du|2 + c1

ˆ
V |u|2

≥ λ

2

ˆ
|Du|2 + min

{
λ

2
, c1

}[ˆ
|Du|2 +

ˆ
V |u|2

]
,

then by another application of Lemma C.6, we see that coercivity holds
with γ = min

{
λ
2 ,

λ
2C ,

c1
C

}
.

By Lemma 4.1, (2.23) holds with C = C(n, γ,Λ).
When N = 1, L and B are given by (7.2) and (7.3), respectively, with

b, d = 0 and V ∈ Bp for some p ∈
(
n
2 ,∞

)
, without loss of generality.

By the non-negativity of V , Lemma 5.1 implies that (IB) and (BB) hold
for this setting with C = C(n, q, `, γ,Λ) in (3.47) and (3.90) whenever
B1) holds. Since V ∈ Lploc, Lemma 6.6 shows that assumption (H) holds
under the additional assumption of B2). In turn, B1) and B2) in the

setting of F(Ω) = W 1,2
V (Ω)N follow directly from the same statements

for F(Ω) = W 1,2(Ω)N , i.e., Case 2, and Remark B.5 since ΩR and BR are
bounded and the statements B1) and B2) are qualitative (they assure
membership in the corresponding function spaces, without particular
norm control).

Remark 7.2. We point out that for the case of equations (N = 1) with
the potentials in Bp class for some p ∈

[
n
2 ,∞

)
, a stronger version of the

Harnack inequality than Lemma 6.5 is possible, without the dependence
of constants on the size of the ball [CFG]. In the present paper, we
do not need this stronger estimate, and we aim to keep the discussion
uniform across several cases.

7.4. Conclusions. From the above arguments, we conclude that ΓΓΓ(x, y)
exists and satisfies the estimates of Theorem 3.6, where in the vector
case (N > 1) we must assume that (IB) and (H) hold for solutions. The
estimates of Theorem 3.6 imply immediately that

ΓΓΓ(·, y) ∈ Y 1,2(Rn \Br(y))N×N for any r > 0.

With these estimates, however, it does not follow that ΓΓΓ(·, y) ∈ F(Rn \
Br(y)) for the general space F.

Nevertheless, in many reasonable cases it is true. In Case 1, it follows
clearly since F(Rn \ Br(y)) = Y 1,2(Rn \ Br(y))N . In Case 2, it is true

locally – i.e., we have that ΓΓΓ(·, y) ∈ W 1,2
loc (Rn \ {y})N×N because of

the relationship between the spaces (see Lemma A.7). Furthermore, for
|U | < ∞, the space Y 1,2(U) embeds continuously into W 1,2(U), so we
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have

‖ΓΓΓ(·, y)‖W 1,2(U\Br(y)) ≤ CU‖ΓΓΓ(·, y)‖Y 1,2(U\Br(y))

≤ CUCr1−n2 , ∀r > 0,
(7.9)

where C is the constant of Theorem 3.6. In Case 3, observe that for
|U | <∞,

W 1,2
V (U)N×N ↪→W 1,2(U)N×N ↪→ Y 1,2(U)N×N

(see Remark C.1). Thus a similar estimate to (7.9) holds in Case 3.
By the same reasoning, similar conclusions hold for ΓΓΓ(x, ·), G(·, y),

and G(x, ·).

Appendix A. Function spaces Y 1,2 and W 1,2

Let Ω be an open, connected subset of Rn, n ≥ 3. Let us recall the
definitions. Define the space Y 1,2(Ω) as the family of all weakly differ-
entiable functions u ∈ L2∗(Ω), with 2∗ = 2n

n−2 , whose weak derivatives

are functions in L2(Ω), endowed with the norm

‖u‖Y 1,2(Ω) = ‖u‖L2∗ (Ω) + ‖Du‖L2(Ω).

Define Y 1,2
0 to be the closure of C∞c (Ω) in the Y 1,2(Ω)-norm. Define

W 1,2(Ω) to be the space of all weakly differentiable functions u ∈ L2(Ω),
whose weak derivatives are functions in L2(Ω), endowed with the norm

‖u‖W 1,2(Ω) = ‖u‖L2(Ω) + ‖Du‖L2(Ω).

Let W 1,2
0 (Ω) be the closure of C∞c (Ω) in the W 1,2-norm.

This section will explore various connections betweenW and Y -spaces.
We remark that for any open connected set Ω in Rn, by completeness
of W 1,2(Ω) and Y 1,2(Ω),

(A.1) W 1,2
0 (Ω) ↪→W 1,2(Ω) and Y 1,2

0 (Ω) ↪→ Y 1,2(Ω).

Lemma A.1. For any open set Ω ⊂ Rn

W 1,2
0 (Ω) ↪→ Y 1,2

0 (Ω).

Proof: Let u ∈ W 1,2
0 (Ω). Then there exists ui ∈ C∞c (Ω) such that

lim
i→∞

‖ui−u‖W 1,2(Ω) =0. By the Sobolev inequality applied to ui−uk we

have

‖ui − uk‖L2∗ (Ω) ≤ cn‖Dui −Duk‖L2(Ω) ≤ cn‖ui − uk‖W 1,2(Ω),

and therefore, {ui}∞i=1 is Cauchy in Y 1,2(Ω). Hence, there is a limit

in Y 1,2
0 (Ω) and since this limit is, in particular, in L2∗(Ω), it must coin-

cide with u a.e.
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Before stating the next result, we recall a standard smoothing proce-
dure.

Definition A.2. For any U ⊂ Rn open, and any ε > 0, define Uε =
{x ∈ U : dist(x, ∂U) > ε}.

Definition A.3. Define the function φ ∈ C∞c (Rn) by

φ(x) =

{
C exp

(
1

|x|2−1

)
if |x| < 1,

0 otherwise,

where the constant C > 0 is chosen so that
´
Rn φ(x) dx = 1. We refer

to φ as the standard mollifier.
For every ε > 0, set

φε(x) =
C

εn
φ
(x
ε

)
.

We remark that for every ε > 0, φε ∈ C∞c (Rn), suppφε ⊂ Bε(0) and´
Rn φε(x) dx = 1.

Definition A.4. For any function f that is locally integrable in U , we
may define

fε := φε ∗ f in Uε.

That is, for every x ∈ Uε,

fε(x) =

ˆ
Bε(0)

φε(y)f(x− y) dy =

ˆ
U

φε(x− y)f(y) dy.

The proofs of the first four statements below may be found in the
appendix of [Eva], and the last one is a part of the proof of Theorem 1
in [Eva, §5.3.1].

Lemma A.5 (Properties of mollifiers). Let U be an arbitrary open set
in Rn and let f ∈ L1

loc(U). Then

(1) fε ∈ C∞(Uε).

(2) fε → f a.e. as ε→ 0.

(3) If f ∈ C(U), then fε → f uniformly on compact subsets of U .

(4) If 1 ≤ q <∞ and f ∈ Lqloc(U), then fε → f in Lqloc(U).

(5) If, in addition, f is weakly differentiable on U and Df ∈ L1
loc(U),

then
Dfε = φε ∗Df in Uε.

Lemma A.6. If Ω = Rn, then we have the following relations:

(A.2) W 1,2
0 (Rn) = W 1,2(Rn) ↪→ Y 1,2

0 (Rn) = Y 1,2(Rn),

where the inclusion is strict.
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Proof: To show that W 1,2
0 (Rn) = W 1,2(Rn), we take any u ∈W 1,2(Rn),

multiply it by a smooth cut-off function ζR, for R > 0, that is supported
in B2R and equal to 1 on BR, and convolve the product with a standard
mollifier φε, ε > 0. One can show that uR,ε := φε∗(uζR) ∈ C∞c (Rn) con-
verges to u in L2(Rn), and that the derivatives converge to Du in L2(Rn),
as ε→ 0, R→∞. Indeed, one can see directly from the properties of the
Lebesgue integral that uR belongs to W 1,2(Rn) and converges to u in the
W 1,2(Rn)-norm since u ∈ W 1,2(Rn). Now, since each uR is compactly
supported, the fact that uR,ε converge to uR as ε→ 0 in L2 is due to (4)
in Lemma A.5. The fact that each DuR,ε exists and converges to DuR
in L2(Rn) follows from a combination of (5) and (4) in Lemma A.5. The

same argument shows that Y 1,2
0 (Rn) = Y 1,2(Rn).

We only have to show that the inclusion is strict. To this end, consider

(A.3) f(x) :=
1

(1 + |x|)n/m+1/2

with 2n
n−1 < m < 2∗. A direct computation shows that

(A.4) ‖Df‖L2(Rn) <∞, ‖f‖L2∗ (Rn) <∞, and ‖f‖L2(Rn) =∞,

so that

(A.5) f ∈ Y 1,2(Rn) \W 1,2(Rn).

Therefore, W 1,2(Rn) ( Y 1,2(Rn).

Lemma A.7. If |Ω| <∞, then we have the relations

(A.6) W 1,2
0 (Ω) = Y 1,2

0 (Ω) ↪→ Y 1,2(Ω) ↪→W 1,2(Ω),

where the last inclusion may be an equality for certain domains (see, e.g.,
the next lemma), and the norm of the embeddings Y 1,2(Ω) ↪→ W 1,2(Ω)

and Y 1,2
0 (Ω) ↪→W 1,2

0 (Ω) depends on |Ω|.

Proof: One side of the first equality in (A.6) is due to Lemma A.1. On

the other hand, for u ∈ Y 1,2
0 (Ω) (or more generally, u ∈ Y 1,2(Ω)), since

|Ω| <∞, we have by Hölder inequality

(A.7) ‖u‖L2(Ω) ≤ CΩ‖u‖L2∗ (Ω).

Therefore, Y 1,2(Ω) ↪→ W 1,2(Ω) and we can prove that Y 1,2
0 (Ω) ↪→

W 1,2
0 (Ω) roughly the same way as Lemma A.1, using (A.7) to make sure

that the sequence which is Cauchy in Y 1,2
0 (Ω) is also Cauchy in W 1,2

0 (Ω).
Together with (A.1), this finishes the proof of the lemma.
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Now, the opposite inclusion, W 1,2(Ω) ↪→ Y 1,2(Ω), is a question of
validity of the Sobolev embedding W 1,2(Ω) ↪→ L2∗(Ω). It may fail, but
it holds, e.g., for Lipschitz domains. Following [Ste1], we adopt the
following definitions.

We say that Ω is a Lipschitz graph domain (or special Lipschitz do-
main) if there exists a Lipschitz function φ : Rn−1 → R such that

Ω = {(x′, xn) : xn > φ(x′)}.
We say that Ω is a Lipschitz domain (or a minimally smooth domain,
following Stein’s terminology) if there exists an ε > 0, N ∈ N, M > 0,
and a sequence of open sets U1, . . . , Um, . . . along with the correspond-
ing Lipschitz functions φ1, . . . , φm, . . . defined on Rn−1 and having a
Lipschitz constant bounded by M , such that

(1) If x ∈ ∂Ω then B(x, ε) ⊂ Ui for some i.
(2) No point of Rn is contained in more than N of the Ui’s.
(3) For each i we have, up to rotation, that

Ui ∩ Ω = Ui ∩ {(x′, xn) : xn > φi(x
′)}.

If Ω satisfies the definition above and is bounded, we refer to it as a
bounded Lipschitz domain.

Definition A.8. We say that Ω is a Sobolev extension domain if there
exists a linear mapping E : W 1,2(Ω)→W 1,2(Rn) and a constant CE > 0
such that for all u ∈W 1,2(Ω),

Eu|Ω = u,(A.8)

‖Eu‖W 1,2(Rn) ≤ CE‖u‖W 1,2(Ω).(A.9)

Theorem A.9 ([Ste1, VI, §3.3]). Lipschitz domains are Sobolev exten-
sion domains. The constant of the corresponding extension operator, CE ,
depends on the number of graphs and their Lipschitz constants.

Lemma A.10. If Ω is a Sobolev extension domain, then we have the
inclusion (which may be equality)

(A.10) W 1,2(Ω) ↪→ Y 1,2(Ω),

with the constant in the accompanying estimate for norms depending
on CE .

Proof: If Ω is a Sobolev extension domain, then it follows from (A.8),
(A.9), and Lemma A.6 that for all u∈W 1,2(Ω) we have Eu∈W 1,2(Rn) ↪→
Y 1,2(Rn) and

‖u‖L2∗ (Ω) ≤ ‖Eu‖L2∗ (Rn) ≤ Cn(‖Eu‖L2(Rn) + ‖D(Eu)‖L2(Rn))

≤ CnCE(‖u‖L2(Ω) + ‖Du‖L2(Ω)).
(A.11)
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Corollary A.11. If Ω is a bounded Lipschitz domain, then we have the
following relations:

(A.12) W 1,2
0 (Ω) = Y 1,2

0 (Ω) ↪→ Y 1,2(Ω) = W 1,2(Ω).

Lemma A.12. If Ω is a Lipschitz graph domain, then we have the
following relations:

W 1,2
0 (Ω) ↪→ Y 1,2

0 (Ω)
not comparable←−−−−−−−−−→W 1,2(Ω) ↪→ Y 1,2(Ω),

where the inclusions cannot be made equalities.

Proof: The inclusions are given by Lemmas A.1 and A.10.
Without loss of generality, assume 0 ∈ ∂Ω. Let Γ ⊂ Ω be a cone with

its vertex at 0 and its axis in the xn-direction. Define

γ := {x ∈ Γ : dist(x, ∂Γ) > 1}.
Let ζ ∈ C∞c (Γ) be a smooth cutoff function such that ζ ≡ 1 in γ, ζ ≡ 0
in Ω \ Γ, and |Dζ| ≤ C. Note that ζ ≡ 0 on ∂Ω. Let f(x) be as in the
counterexample given by (A.3) with 2n

n−1 < m < 2∗. Consider

g(x) := ζ(x)f(x).

Then, a computation similar to that which gives (A.4) also gives

g ∈ L2∗(Ω) \ L2(Ω).

It remains only to show that Dg ∈ L2(Γ \ γ). Since the cones γ and Γ
have equal aperture, we have for sufficiently large s,

|(Γ \ γ) ∩ ∂Bs(0)| ≤ Csn−2.

Consequently, a direct computation shows

‖f‖L2(Γ\γ) <∞.
Notice that for t > 1, (Γ \ γ) ∩ {xn = t} forms a (n− 1)-dimensional

annulus of width 1. Thus, we have

|(Γ \ γ) ∩ ∂Bs(0)| ≤ Csn−2, ∀s > 1,

and

‖f‖L2(Γ\γ) ≤
ˆ
B1

|f |2 + C

ˆ ∞
1

|f(s)|2sn−2 ds

≤ C + C

ˆ ∞
1

s(1−2/m)n−3 ds <∞,

where in the last step we have used that (1− 2/m)n < 2.
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Therefore, ˆ
Ω

|Dg|2 ≤ 2

ˆ
Γ\γ
|Dζ|2|f |2 + 2

ˆ
Γ

|ζ2||Df |2

≤ C
[
‖f‖L2(Γ\γ) +

ˆ
Ω

|Df |2
]
<∞

so that g ∈ Y 1,2(Ω). As in the proof of Lemma A.6, multiplying g
by smooth cut-offs ζR, we obtain a sequence of C∞c (Ω) functions that

approximate g in the Y 1,2(Ω)-norm. Thus, g ∈ Y 1,2
0 (Ω) or more precisely,

g ∈ Y 1,2
0 (Ω) \W 1,2(Ω).

Therefore, Y 1,2
0 (Ω) 6⊆ W 1,2(Ω). The fact that the opposite inclusion

fails is obvious as elements of W 1,2(Ω) do not need to have trace zero
on ∂Ω (in the sense of approximation by smooth compactly supported
functions).

Appendix B. The auxiliary function m(x, V )

Within this section, we will quote a number of results from [She2].
Other versions of these lemmas and definitions appeared in [She1] and
[She3], and are related to the ideas of Fefferman and Phong [Fef]. We
omit the proofs in our exposition.

Recall that V ∈ Bp, 1 < p < ∞, if there exists a constant C so that
for any ball B ⊂ Rn,

(B.1)

( 
B

V (x)p dx

)1/p

≤ C
 
B

V (x) dx.

If V ∈ Bp, then V is a Muckenhoupt A∞ weight function [Ste2]. There-
fore, V (x) dx is a doubling measure. That is, there exists a constant C0

such that ˆ
B(x,2r)

V (y) dy ≤ C0

ˆ
B(x,r)

V (y) dy.

This fact is very useful in establishing the following results. We now
define

(B.2) ψ(x, r;V ) =
1

rn−2

ˆ
B(x,r)

V (y) dy.

We will at times use the shorter notation ψ(x, r) when it is understood
that this function is associated to V .

We assume that V ∈ Bp for some p ∈
[
n
2 ,∞

)
. In fact, it follows from

the self-improvement result for reverse Hölder classes that V ∈ Bp for
some p ∈

(
n
2 ,∞

)
[Geh]. Therefore, we will assume throughout that the

inequality is strict.
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Lemma B.1 ([She2, Lemma 1.2]). If V ∈ Bp, then there exists a
constant C > 0 so that for any 0 < r < R <∞,

ψ(x, r;V ) ≤ C
( r
R

)2−np
ψ(x,R;V ).

The proof of Lemma B.1 uses the reverse Hölder inequality (B.1) as
well the Hölder inequality.

As V ≥ 0, then for every x ∈ Rn, either there exists r > 0 so that
ψ(x, r;V ) > 0 or V ≡ 0 a.e. in Rn. For now, we assume that V 6≡ 0.
Since p > n

2 , the power 2− n
p > 0, and

lim
r→0+

ψ(x, r;V ) = 0,(B.3)

lim
r→∞

ψ(x, r;V ) =∞.(B.4)

This leads to the following definition.

Definition B.2. For x ∈ Rn, the function m(x, V ) is defined by

(B.5)
1

m(x, V )
= sup

r>0
{r : ψ(x, r;V ) ≤ 1}.

It follows from (B.3) and (B.4) that 0 < m(x, V ) < ∞ and for ev-
ery x ∈ Rn

(B.6) ψ

(
x,

1

m(x, V )
;V

)
= 1.

Furthermore, from Lemma B.1, if ψ(x, r;V ) ∼ 1, then r ∼ 1
m(x,V ) . If

r = 1
m(x,V ) then

ffl
B(x,r)

V (y) dy = 1
ωnr2

, where ωn is the measure of the

unit ball in Rn.

Lemma B.3 ([She2, Lemma 1.4]). There exist constants C, c, k0 > 0
so that for any x, y ∈ Rn,

(a) m(x, V ) ∼ m(y, V ) if |x− y| ≤ C

m(x, V )
,

(b) m(y, V ) ≤ C[1 + |x− y|m(x, V )]k0m(x, V ),

(c) m(y, V ) ≥ cm(x, V )

[1 + |x− y|m(x, V )]k0/(k0+1)
.

Corollary B.4 ([She2, Corollary 1.5]). There exist constants C, c, k0>0
so that for any x, y ∈ Rn,

c[1+|x−y|m(y, V )]1/(k0+1)≤1+|x−y|m(x, V )≤C[1+|x−y|m(y, V )]k0+1.
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Remark B.5. Another important consequence of Lemma B.3 is that
m(x, V ) is locally bounded from above and below. More specifically,
for any bounded open set U ⊂ Rn, there exists a constant C = CU > 0,
depending on U and on the constants in Lemma B.3, such that

1

C
≤ m(x, V ) ≤ C, for any x ∈ U.

Indeed, the collection {B1/m(x,V )(x)}x∈U is an open covering of U .

Since U is compact, then there exists a finite collection of points,

x1, . . . , xM , such that U ⊂
M⋃
i=1

B1/m(xi,V )(xi). It follows from Lemma B.3

that there exists C > 0, depending on V , n, so that for any x ∈ U ,
C−1min{m(xi, V )}Mi=1≤m(x, V )≤C max{m(xi, V )}Mi=1. In other words,
m(x, V ) is bounded above and below on U , and consequently on U .

Lemma B.6 ([She2, Lemma 1.8]). There exist constants C, k0 > 0 so
that if R ≥ 1

m(x,V )

1

Rn−2

ˆ
B(x,R)

V (y) dy ≤ C[Rm(x, V )]k0 .

The last lemma that we will quote from [She2] is the Fefferman–
Phong inequality.

Lemma B.7 ([She2, Lemma 1.9], see also [Fef]). If u ∈ C1
c (Rn), thenˆ

Rn
|u(x)|2m(x, V )2 dx ≤ C

[ˆ
Rn
|Du(x)|2 dx+

ˆ
Rn
|u(x)|2V (x) dx

]
.

If V ≡ 0, then m(x, V ) ≡ 0 and the previous four results are auto-
matically satisfied.

Appendix C. The weighted Sobolev space W 1,2
V

Recall that we define W 1,2
V (Ω) as the family of all weakly differentiable

functions u ∈ L2(Ω,m(x, V )2 dx) whose weak derivatives are functions

in L2(Ω, dx). The norm and inner product on W 1,2
V (Ω) are given by

‖u‖2
W 1,2
V (Ω)

:= ‖um(·, V )‖2L2(Ω) + ‖Du‖2L2(Ω),

〈u, v〉W 1,2
V (Ω) := 〈um(·, V ), vm(·, V )〉L2(Ω) + 〈Du,Dv〉L2(Ω).

W 1,2
0,V (Ω) is defined as the closure of C∞c (Ω) in W 1,2

V (Ω). Recall also the

analogously defined spaces Ŵ 1,2
V (Ω) and Ŵ 1,2

0,V (Ω) with V (x) in place

of m(x, V )2 in the norms, see Remark 7.1. Here we prove the claim

stated in Remark 7.1 to the effect that Ŵ 1,2
0,V (Ω) = W 1,2

0,V (Ω) for any
open set Ω ⊂ Rn.
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Remark C.1. Assume that V ∈ Bp for some p ∈
(
n
2 ,∞

)
. First of all,

we observe that by Remark B.5, for any bounded open set U ⊂ Rn,
the spaces W 1,2

V (U) and W 1,2(U) coincide, albeit the norms are only
comparable modulo multiplicative constants that depend on U .

First we prove that the weighted Sobolev spaces are indeed Hilbert
spaces as defined.

Lemma C.2. Let Ω ⊂ Rn be open and let η ∈ L1
loc(Ω) be real-valued

with η > 0 a.e. The inner product

〈u, v〉L2(Ω,η(x) dx) =

ˆ
Ω

u(x)v(x)η(x) dx

makes L2(Ω, η(x) dx) a Hilbert space.

Proof: It is easy to check that L2(Ω, η(x) dx) is a vector space and
〈·, ·, 〉L2(Ω,η(x) dx) defines an inner product that generates a norm on the
space.

To prove completeness, it suffices to show that L2(Ω, η(x) dx) is uni-
tarily equivalent to L2(Ω). Consider the map

φ : L2(Ω)→ L2(Ω, η(x) dx) : f 7→ fη−1/2.

For f ∈ L2(Ω), we have

‖φ(f)‖L2(Ω,η(x) dx) =

ˆ
Ω

(fη−1/2)(fη−1/2)η = ‖f‖L2(Ω).

Thus, φ is injective. For g ∈ L2(Ω, η(x) dx), take f = gη1/2. Then
f ∈ L2(Ω) and φ(f) = g. Thus, φ is surjective. Finally, we check

〈φ(f), φ(g)〉L2(Ω,η(x) dx) =

ˆ
Ω

(fη−1/2)(gη−1/2)η =

ˆ
Ω

fg =〈f, g〉L2(Ω).

Lemma C.3. Let Ω ⊂ Rn be open and let η ∈ L1
loc(Ω) be real-valued

with η > 0 a.e. Define the space W 1,2
η (Ω) as a collection of functions in

L2(Ω, η(x) dx) that are weakly differentiable in Ω with the weak gradient
in L2(Ω). The inner product

〈u, v〉W 1,2
η (Ω) =

ˆ
Ω

Du ·Dv +

ˆ
Ω

uvη

makes W 1,2
η (Ω) a Hilbert space.

Proof: A quick computation verifies that 〈·, ·〉W 1,2
η (Ω) is an inner product

generating the norm on the space. It remains only to show completeness.
Let {uk} be a Cauchy sequence in W 1,2

η (Ω). Then {uk} is Cauchy in

L2(Ω, η(x) dx), so by Lemma C.2 there exists u ∈ L2(Ω, η(x) dx) such
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that

(C.1) uk → u in L2(Ω, η(x) dx).

Furthermore, for α = 1, . . . , n, {Dαuk} is Cauchy in L2(Ω), so there
exists vα ∈ L2(Ω) such that

(C.2) Dαuk → vα in L2(Ω).

It remains to show that vα = Dαu. Let ζ ∈ C∞c (Ω). We need to show
that ˆ

Ω

vαζ = −
ˆ

Ω

uDζ.

First, suppose supp(ζ) ⊂ B, where B is an open ball that is compactly
contained in Ω. The Poincaré inequality yields∥∥∥∥(uk− 

B

uk

)
−
(
uj−

 
B

uj

)∥∥∥∥
L2(B)

=

∥∥∥∥uk − uj −  
B

(uk − uj)
∥∥∥∥
L2(B)

≤ C‖D(uk − uj)‖L2(B).

Therefore, {uk − ck} is Cauchy in L2(B), with ck =
ffl
B
uk. Thus, there

exists ũ ∈ L2(B) such that

(C.3) uk − ck → ũ in L2(B).

By Hölder’s inequality,

‖(uk − ck − ũ)η1/2‖L1(B) ≤ ‖uk − ck − ũ‖L2(B)‖η1/2‖L2(B)

= ‖uk − ck − ũ‖L2(B)‖η‖
1/2
L1(B) → 0.

(C.4)

Therefore, by (C.4),

(C.5) (uk − ck)η1/2 → ũη1/2 in L1(B).

By (C.1), ukη
1/2 → uη1/2 in L2(B), so it follows that

(C.6) ukη
1/2 → uη1/2 in L1(B).

Combining the previous two results shows that

ckη
1/2 → (u− ũ)η1/2 in L1(B).

Since each ck is a constant, it follows that lim
k→∞

ck = c, where c is some

fixed constant. This fact, in combination with (C.5), implies that

ukη
1/2 → (ũ+ c)η1/2 in L1(B).

With (C.6), using that η is almost everywhere non-vanishing, we con-
clude that ũ + c = u a.e. in B. From (C.3) and the fact that {ck} is a
convergent sequence of real numbers, we have

(C.7) uk → ũ+ c = u in L2(B).
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Therefore, by (C.2) and (C.7),

(C.8)

ˆ
B

vαζ = lim
k→∞

ˆ
B

Dαukζ = − lim
k→∞

ˆ
B

ukDαζ = −
ˆ
B

uDαζ.

Now, for any ζ ∈ C∞c (Ω), we can cover supp(ζ) with finitely many
balls, {Bi}, with each Bi compactly contained in Ω. Using a partition of
unity argument and the result (C.8), we obtain the desired equality.

Corollary C.4. Let Ω ⊂ Rn be an open set. The spaces W 1,2
V (Ω),

Ŵ 1,2
V (Ω), W 1,2

0,V (Ω), and Ŵ 1,2
0,V (Ω) are Hilbert spaces.

Proof: This follows directly from the previous lemma and the fact that
W 1,2

0,V (Ω) and Ŵ 1,2
0,V (Ω) are defined as the closure of C∞c (Ω) in their re-

spective spaces.

The following lemma shows an important relationship between
W 1,2
V (Rn) and Ŵ 1,2

V (Rn).

Lemma C.5. Assume that V ∈ Bp for some p > n
2 . Then for any

u∈W 1,2
V (Rn),ˆ

Rn
V (x)|u(x)|2 dx ≤ CV,n

(ˆ
Rn
|Du(x)|2 dx+

ˆ
Rn
|u(x)|2m(x, V )2 dx

)
= CV,n‖u‖2W 1,2

V (Rn)
.

(C.9)

Conversely, for any u ∈ Ŵ 1,2
V (Rn)ˆ

Rn
|u(x)|2m(x, V )2 dx ≤ CV,n

(ˆ
Rn
|Du(x)|2 dx+

ˆ
Rn
|u(x)|2V (x) dx

)
= CV,n‖u‖2Ŵ 1,2

V (Rn)
.

(C.10)

In other words, W 1,2
V (Rn) = Ŵ 1,2

V (Rn).

Proof: This is essentially Theorem 1.13 in [She4]. We only remark that
our V dx satisfies the conditions of dµ in the aforementioned theorem by
Remark 0.10 in [She4], and that the functions with Du ∈ L2(Rn) are
L2

loc(Rn) – this is a standard part of the proof of the Poincaré inequality
(see, e.g., [Maz, 1.1.2]).

If Ω ⊂ Rn is open and connected, then a similar relationship holds
for W 1,2

0,V (Ω) and Ŵ 1,2
0,V (Ω) and we have the following result.

Lemma C.6. Assume that V ∈ Bp for some p > n
2 . Then for any open

set Ω ⊂ Rn we have W 1,2
0,V (Ω) = Ŵ 1,2

0,V (Ω), and ‖ · ‖W 1,2
0,V (Ω) ≈ ‖ · ‖Ŵ 1,2

0,V (Ω)

with implicit constants depending on dimension and the Bp constant of V
only.
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Proof: Let u ∈W 1,2
0,V (Ω). By definition, there exists ui ∈ C∞c (Ω) so that

lim
i→∞

‖ui − u‖W 1,2
V (Ω) = 0. Applying Lemma C.5 to ui − uk, we deduce

that the sequence {ui}∞i=1 is Cauchy in Ŵ 1,2
0,V (Ω). Hence, it has a limit

in Ŵ 1,2
0,V (Ω) and this limit must coincide with u a.e. since V > 0 a.e.

and m(x, V ) > 0 for all x ∈ Rn. Applying again Lemma C.5, we deduce
the desired control of norms. The same argument works in the converse
direction.

Appendix D. Smoothing and approximations

Here we build on Lemma A.5 and collect some results that are related
to approximation by smooth functions.

Lemma D.1 (Local approximation by smooth functions). Let U ⊂ Rn
be open. Let F(U) be either Y 1,2(U), W 1,2(U), or W 1,2

V (U). Assume
that u ∈ F(U), and set uε = φε ∗ u in Uε. Then uε ∈ C∞(Uε) for each
ε > 0 and uε → u in Floc(U) as ε→ 0.

The case of F(U) = W 1,2(U) appears in [Eva], the case F(U) =

W 1,2
V (U) is the exact same statement due to the local nature of the result

and Remark C.1. The case of F(U) = Y 1,2(U) is a slight modification
of the aforementioned proof in [Eva], and we omit it.

Lemma D.2 (Global approximation by smooth functions). Assume that

U is bounded. Let F(U) be either Y 1,2(U), W 1,2(U), or W 1,2
V (U). If

u ∈ F(U), then there exists a sequence {uk}∞k=1 ⊂ C∞(U) ∩ F(U) such
that lim

k→∞
uk = u in F(U).

When F(U) = W 1,2(U), this is Theorem 2 from §5.3.2 of [Eva], the

case F(U) = W 1,2
V (U) is the same due to boundedness of U and Re-

mark C.1, and the case F(U) = Y 1,2(U) is proved in an analogous way.
However, we outline the proof here as some elements of it will be useful
down the road.

Proof: We have that U =
∞⋃
i=1

Ui where Ui = {x ∈ U : dist(x, ∂U) > 1
i }.

Set Wi = Ui+3 − U i+1. Choose W0 b U so that U =
∞⋃
i=0

Wi. Let

{ζi}∞0=1 be a smooth partition of unity subordinate to {Wi}∞i=1. In other

words, for each i, 0 ≤ ζi ≤ 1, ζi ∈ C∞c (Wi), and
∞∑
i=1

ζi = 1 on U . Let

u ∈ F(U). Since each ζi ∈ C∞c (U), then supp(uζi) ⊂ Wi and by a
straightforward argument similar to the proof of Lemma 1(iv) from §5.2
of [Eva], uζi ∈ F(U).



Fundamental Matrices and Green Matrices 611

For each i = 0, 1, . . . , define Xi = Ui+4 − U i ⊃Wi. Fix δ > 0. Then,
for each i, choose εi > 0 so small that ui := φεi ∗ (uζi) is such that
suppui ⊂ Xi and ‖ui − uζi‖F(U) ≤ δ2−i−1. The second property is
guaranteed by Lemma D.1.

Define v :=
∞∑
i=1

ui. For any open set W b U , there are at most

finitely many terms in the sum for v, so it follows that v ∈ C∞(W ). As

u =
∞∑
i=1

uζi then for each W b U , we have that

‖v − u‖F(W ) ≤
∞∑
i=0

‖ui − uζi‖F(W ) ≤ δ
∞∑
i=0

2−i−1 = δ.

By taking the supremum over all sets W b U , we conclude that ‖v −
u‖F(U) ≤ δ, and the conclusion of the lemma follows.

Since the mollification of an a.e. non-negative function is also non-
negative, the following corollary is true.

Corollary D.3 (Global approximation by smooth non-negative func-
tions). Assume that U is bounded. Let F(U) be either Y 1,2(U), W 1,2(U),

or W 1,2
V (U). If u ∈ F(U) is non-negative a.e., then there exists a se-

quence {uk}∞k=1 ⊂ C∞(U) ∩ F(U) of non-negative functions such that
lim
k→∞

uk = u in F(U).

Finally, if u is compactly supported in U , then it follows from the
previous lemma that u may be approximated by smooth compactly sup-
ported functions.

Lemma D.4 (Global approximation by smooth compactly supported
functions). Assume that U is bounded. Let F(U) be either Y 1,2(U),

W 1,2(U), or W 1,2
V (U). If u ∈ F(U) and suppu b U , then there exists a

sequence {uk}∞k=1 ⊂ C∞c (U) ∩ F(U) such that lim
k→∞

uk = u in F(U).

We sketch the proof of the lemma.

Proof: Define Ui, Wi, ζi as in the proof of Lemma D.2 and conclude as

before that each uζi ∈ F(U). Since suppu b U , and U =
∞⋃
i=0

Wi, then

there exists M ∈ N so that suppu ⊂
M⋃
i=0

Wi. Therefore, u =
M∑
i=0

uζi.

Then (for i = 0, . . . ,M) define Xi, u
i as before so that suppui ⊂ Xi and

‖ui − uζi‖F(U) ≤ δ2−i−1 and set v :=
M∑
i=1

ui. Since each ui ∈ C∞c (U),
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then v ∈ C∞c (U) as well. Moreover,

‖v − u‖F(U) ≤
M∑
i=0

‖ui − uζi‖F(U) ≤ δ
M∑
i=0

2−i−1 = δ

and the conclusion follows.

References

[Aro] D. G. Aronson, Non-negative solutions of linear parabolic
equations, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 607–694.

[AQ] P. Auscher and M. Qafsaoui, Equivalence between regular-
ity theorems and heat kernel estimates for higher order elliptic
operators and systems under divergence form, J. Funct. Anal.
177(2) (2000), 310–364. DOI: 10.1006/jfan.2000.3643.

[AT] P. Auscher and Ph. Tchamitchian, Square root problem for
divergence operators and related topics, Astérisque 249 (1998),
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[GW] M. Grüter and K.-O. Widman, The Green function for
uniformly elliptic equations, Manuscripta Math. 37(3) (1982),
303–342. DOI: 10.1007/BF01166225.

[HL] Q. Han and F. Lin, “Elliptic Partial Differential Equa-
tions”, Second edition, Courant Lecture Notes in Mathemat-
ics 1, Courant Institute of Mathematical Sciences, New York;
American Mathematical Society, Providence, RI, 2011.

[HKM] J. Heinonen, T. Kilpeläinen, and O. Martio, “Nonlin-
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