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Abstract: Given a Muckenhoupt weight w and a second order divergence form
elliptic operator L, we consider different versions of the weighted Hardy space Hi(w)
defined by conical square functions and non-tangential maximal functions associated
with the heat and Poisson semigroups generated by L. We show that all of them
are isomorphic and also that H} (w) admits a molecular characterization. One of the
advantages of our methods is that our assumptions extend naturally the unweighted
theory developed by S. Hofmann and S. Mayboroda in [19] and we can immediately
recover the unweighted case. Some of our tools consist in establishing weighted norm
inequalities for the non-tangential maximal functions, as well as comparing them with
some conical square functions in weighted Lebesgue spaces.

2010 Mathematics Subject Classification: 42B30, 35J15, 42B37, 42B25, 47D06,
47G10.

Key words: Hardy spaces, second order divergence form elliptic operators, heat
and Poisson semigroups, conical square functions, non-tangential maximal functions,
molecular decomposition, Muckenhoupt weights, off-diagonal estimates.

CONTENTS

1. Introduction 476
2. Preliminaries 479
2.1.  Muckenhoupt weights 479
2.2.  Elliptic operators 480
2.3. Off-diagonal estimates 481
2.4. Conical square functions and non-tangential maximal

functions 482

The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-
2013)/ ERC agreement no. 615112 HAPDEGMT. Both authors acknowledge financial
support from the Spanish Ministry of Economy and Competitiveness, through the
“Severo Ochoa Programme for Centres of Excellence in R&D” (SEV-2015-0554).
Both authors would like to thank P. Auscher for his useful comments and suggestions.



476 J. M. MARTELL, C. PRISUELOS-ARRIBAS

3. Definitions and main results 483
3.1. Molecular weighted Hardy spaces 484
3.2. Weighted Hardy spaces associated with operators 485
3.3. Main results 485
4. Auxiliary results 486
5. Characterization of the weighted Hardy spaces defined by
square functions associated with the heat semigroup 490
5.1. Proof of Proposition 5.2 491
5.2.  Proof of Proposition 5.1, part (a) 497
5.3. Proof of Proposition 5.1, part (b) 506
6. Characterization of the weighted Hardy spaces defined by
square functions associated with the Poisson semigroup 507
6.1. Proof of Proposition 6.1, part (a) 507
6.2. Proof of Proposition 6.1, part (b) 511
6.3. Proof of Proposition 6.1, part (c) 511
7. Non-tangential maximal functions 511
7.1. Proof of Proposition 7.1, part (a) 512
7.2.  Proof of Proposition 7.1, part (b) 512
7.3. Proof of Proposition 7.2 515
7.4. Characterization of the weighted Hardy spaces associated
with Ny and AMp 525
References 533

1. Introduction

This is the second of a series of three papers whose aim is to study
and develop a theory for weighted Hardy spaces associated with different
operators. The study of Hardy spaces began in the early 1900s in the
context of Fourier series and complex analysis in one variable. It was not
until 1960 when the theory in R" started developing by E. M. Stein and
G. Weiss [25]. A few years later R. R. Coifman in [12] and R. H. Latter
in [22] gave an atomic decomposition of the Hardy spaces HP, 0 <
p < 1. This atomic decomposition turns out to be a very important
tool when studying the boundedness of some singular integral operators,
since in most cases checking the action of the operator in question on
these simpler elements (atoms) suffices to conclude its boundedness in
the corresponding Hardy space.

Another stage in the progress of the theory of Hardy spaces was done
by J. Garcfa-Cuerva in [15] (see also [26]) when he considered R™ with



WEIGHTED HARDY SPACES ASSOCIATED WITH ELLIPTIC OPERATORS 477

the measure given by a Muckenhoupt weight. These spaces were called
weighted Hardy spaces, and among other contributions, he also charac-
terized them using an atomic decomposition.

In general, the development of the theory of Hardy spaces has con-
tributed to give us a better understanding of some other topics as in
the theory of singular integrals operators, maximal functions, multiplier
operators, etc. However, there are some operators that escape from the
theory of these classical Hardy spaces. These are, for example, the oper-
ators associated with a second order divergence form elliptic operator L,
such as the conical square functions and non-tangential maximal func-
tions defined by the heat and Poisson semigroups generated by the op-
erator L, (see (2.14)—(2.19) and (2.20)—(2.21) for the precise definitions
of these operators).

The theory of Hardy spaces associated with elliptic operators L was
initiated in an unpublished work by P. Auscher, X. T. Duong, and
A. McIntosh [3]. P. Auscher and E. Russ in [9] considered the case on
which the heat kernel associated with L is smooth and satisfies pointwise
Gaussian bounds, this occurs for instance for real symmetric operators.
There, among other things, it was shown that the corresponding Hardy
space associated with L agrees with the classical Hardy space. In the set-
ting of Riemannian manifolds satisfying the doubling volume property,
Hardy spaces associated with the Laplace—Beltrami operator are intro-
duced in [8] by P. Auscher, A. McIntosh, and E. Russ and it is shown that
they admit several characterizations. Simultaneously, in the Euclidean
setting, the study of Hardy spaces related to the conical square functions
and non-tangential maximal functions associated with the heat and Pois-
son semigroups generated by divergence form elliptic operators L was
taken by S. Hofmann and S. Mayboroda in [19], for p = 1. The new
point was that only a form of decay weaker than pointwise bounds and
satisfied in many occurrences was enough to develop a theory. This
was followed later on by a second article of S. Hofmann, S. Mayboroda,
and A. McIntosh [20], for a general p and simultaneously by an article of
R. Jiang and D. Yang [21]. A natural line of study in the context of these
new Hardy spaces is the development of a weighted theory for them, as
J. Garcia-Cuerva did in the classical setting. Some interesting progress
has been done in this regard by T. A. Bui, J. Cao, L. D. Ky, D. Yang,
and S. Yang in [10, 11]. The results obtained in [11] in the particular
case p(z,t) := tw(x), where w is a Muckenhoupt weight, give character-
izations of the weighted Hardy spaces that, however, only recover part
of the results obtained in the unweighted case by simply taking w = 1.
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In this paper we take a further step, and present a different approach
to the theory of weighted Hardy spaces H] (w) (the general case HY (w)
will be treated in the forthcoming paper [24]) associated with a second
order divergence form elliptic operator, which naturally generalizes the
unweighted setting developed in [19]. We define weighted Hardy spaces
associated with the conical square functions considered in (2.14)-(2.19)
which are written in terms of the heat and Poisson semigroups generated
by the elliptic operator. Also, we use non-tangential maximal functions
as defined in (2.20)—(2.21). We show that the corresponding spaces are
all isomorphic and admit a molecular characterization. This is partic-
ularly useful to prove different properties of these spaces as happens in
the classical setting and in the context of second order divergence form
elliptic operators considered in [19].

Some of the ingredients that are crucial in the present work are taken
from the first part of this series of papers [23] (see also [4]), where we
already obtained optimal ranges for the weighted norm inequalities sat-
isfied by the heat and Poisson conical square functions associated with
the elliptic operator. Here, we need to obtain analogous results for the
non-tangential maximal functions associated with the heat and Poisson
semigroups (see Section 7). All these weighted norm inequalities for the
conical square functions and the non-tangential maximal functions, along
with the important fact that our molecules belong naturally to weighted
Lebesgue spaces, allow us to impose natural conditions that in partic-
ular lead to fully recover the results obtained in [19] by simply taking
the weight identically one. It is relevant to note that in [10, 11] their
molecules belong to unweighted Lebesgue spaces and also their ranges
of boundedness of the conical square functions are smaller. This makes
their hypothesis somehow stronger (although sometimes they cannot be
compared with ours) and, despite making a very big effort to present
a very general theory, the unweighted case does not follow immediately
from their work.

The plan of this paper is as follows. In the next section we present
some preliminaries concerning Muckenhoupt weights, elliptic operators
and introduce the conical square functions and non-tangential maximal
functions. In Section 3 we define the different versions of the weighted
Hardy spaces and state our main results. Section 4 contains some aux-
iliary results. Sections 5 and 6 deal with the characterization of the
weighted Hardy spaces defined in terms of square functions associated
with the heat and Poisson semigroups, respectively. Finally, in Section 7
we study the non-tangential maximal functions and the weighted Hardy
spaces associated with them.
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2. Preliminaries

2.1. Muckenhoupt weights. We will work with Muckenhoupt
weights w, which are locally integrable positive functions. We say that
w € A if, for every ball B C R"™, there holds

][ w(z)de < Cw(y), forae. ye B,
B

or, equivalently, M,w < Cw a.e. where M, denotes the uncentered
Hardy-Littlewood maximal operator over balls in R™. For each 1 < p <
oo, we say that w € A, if it satisfies

(]i w(z) d:z:) (]{9 w(a) = dx)p_l <C, VBCR"

The reverse Holder classes are defined as follows: for each 1 < s < oo,
w € RHy if, for every ball B C R", we have

(f w(xfdx)i <o f wyas

For s = 0o, w € RH provided that there exists a constant C' such that
for every ball B C R"

w(y) < C’][ w(z)dz, for a.e.y € B.
B

Notice that we have excluded the case ¢ = 1 since the class RH; consists

of all the weights, and that is the way RH; is understood in what follows.
We sum up some of the properties of these classes in the following

result, see for instance [16], [14], or [17].

Proposition 2.1.
(i) A1 C A, CAy forl<p<g<oo.

) RHoo C RH; C RH), for1 <p < g < oo.

(i) IfweA,, 1 <p < oo, then there exists 1 < g < p such that we A,.
)

If we RH;, 1 < s < oo, then there exists s < r < oo such that
weRH,.

v) A= U A4,= U RH,.

1<p<oo 1<s<oo
(vi) If 1 <p < o0, w € A, if and only if wi=? € Ay
(vil) For every 1<p<oo, we A, if and only if M is bounded on LP(w).
Also, w € Ay if and only if M is bounded from L (w) into LY (w),
where M denotes the centered Hardy—Littlewood mazximal operator.
For a weight w € A, define
(22) ry=inf{l<r<oco:we€A}, sy:=inf{l<s<oo:wéeRHy}.
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Notice that according to our definition s,, is the conjugated exponent of
the one defined in [6, Lemma 4.1]. Given 0 < py < qp < 00, w € Ao,
and according to [6, Lemma 4.1] we have

(2.3) Ww(po,qo) :== {p tpo<p<qo,wE A% N RH(%O),} = (porw, 3—2) .
If po = 0 and gg < oo it is understood that the only condition that stays
iswe RH a9 Analogously, if 0 < py and gy = oo the only assumption
iswe A%. Finally W,,(0, c0) = (0, 00).

We recall some properties of Muckenhoupt weights. Let w be a weight

in A, if w € A,., 1 < r < oo, for every ball B and every measurable
set £ C B,

w(B) (1B
24 s > (j37) -

This implies in particular that w is a doubling measure:
(2.5) w(AB) < [w]a, A" "w(B), VB, VA>1.

Besides, if w € RHy, 1 < s < 00,
1
w(E) 1EI\*
(29) o) <l (131) "

2.2. Elliptic operators. Let A be an n xn matrix of complex and
L*>-valued coefficients defined on R™. We assume that this matrix sat-
isfies the following ellipticity (or “accretivity”) condition: there exist
0 <A <A < oo such that

(2.7) NEPP <ReA(z)€-€ and |A(z)€-C| < AJE[C],

for all £,¢ € C™ and almost every x € R™. We have used the notation
E-C=&G+ -+ &, and therefore £ -  is the usual inner product
in C". Associated with this matrix we define the second order divergence
form elliptic operator

(2.8) Lf = —div(AVY),

which is understood in the standard weak sense as a maximal-accretive
operator on L?(R") with domain D(L) by means of a sesquilinear form.

As in [1] and [7], we denote respectively by (p_(L),p+(L)) and
(¢—(L),q+(L)) the maximal open intervals on which the heat semi-
group {e~*},- 0 and its gradient {v/tV,e~'L};~ 0 are uniformly bounded
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on LP(R™):
. 42
(2.9) p—(L) := inf {p € (1,00) : su}oj le™ L”Lp(]Rn)*)Lp(Rn) < oo} ,
t>

2L|

210)  pe(z) i=sup {p € (1,00) s sup ™ urenrszreny < 0
t>

(211)  ¢-(L)

. _ 42
inf {p € (1,00) : sup [|tVye " X Lo @ny o Lo @En) < oo},
>0

)
(2.12)  g4(L) :=sup {P € (1,00): sup [#Vye™ |l Lo @n) - Lo @ny < OO} :
>

From [1] (see also [7]) we know that p_(L)=1and p;(L)=0c0if n = 1,2;
and if n > 3 then p_(L) < f—fz and py (L) > 2%, Moreover, q_(L) =
p—(L), ¢+(L)* < p4(L) (where ¢4 (L)* is the Sobolev exponent of g (L)
as defined below), and we always have ¢y (L) >2, with ¢4 (L)=oc0 if n=1.
Note that in place of the semigroup {e~**};~o we are using its rescal-
ing {e=""L},~0. We do so since all the “heat” square functions are writ-
ten using the latter and also because in the context of the off-diagonal
estimates discussed below it will simplify some computations.
Besides, for every K € Ny and 0 < ¢ < 0o let us set
qn :
S {n— GKT1)q’ if 2K +1)q<mn,
00, if 2K +1)qg>n.

Corresponding to the case K = 0, we write ¢* := ¢%*.

2.3. Off-diagonal estimates. We briefly recall the notion of off-diag-
onal estimates. Let {T;}:~¢ be a family of linear operators and let 1 <
p < q < oco. We say that {1}}:>0 satisfies LP(R™) — L9(R™) off-diagonal
estimates of exponential type, denoted by {Ti}is0 € Foo(LP — L7), if
for all closed sets E, F, all f, and all t > 0 we have

d(E,F)2

(i 1y _,
IT(f15) 1pl|Lagn) < Ct ™% 0 e ™ & ||f 1pl| Lo @n).

Analogously, given 8 > 0, we say that {T}};~¢ satisfies LP — L? off-
diagonal estimates of polynomial type with order 8 > 0, denoted by
{T;}i>0 € Fp(LP — L7) if for all closed sets E, F', all f, and all ¢ > 0
we have

d(E F)2 )(5+’2‘ %*%))

(i1
IT:(f1e)1r||La@n) < Ct =) (1 + I

1 1E| Le@n).-
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The heat and Poisson semigroups satisfy respectively off-diagonal esti-
mates of exponential and polynomial type. Before making this precise, let
us recall the definition of p_ (L), p+ (L), g—(L), and ¢4 (L) in (2.9)—(2.10)
and in (2.11)—(2.12). The importance of these parameters stems from the
fact that, besides giving the maximal intervals on which either the heat
semigroup or its gradient are uniformly bounded, they characterize the
maximal open intervals on which off-diagonal estimates of exponential
type hold (see [1] and [7]). More precisely, for every m € Ny, there hold

{(PL)" e F im0 € FoolLP — L) forall p_(L) <p < q < py (L)
and
(Ve P a0 € Foo(LP — L9 forall ¢_(L) <p < q < g4 (L).
From these off-diagonal estimates we have, for every m € Ny,

(VI e™ ™ }img € Fy (L7 — L),

forall p_(L) < p < ¢ < p4+(L), and

[V, (PD)™ e LY o, {4V, (PL) e Y ino € Foo(LP — LY),
(Y, (tVL)*" e VY 0 € Fmgr (L — LY),

{1V, (VD)™ eV} s € 1 (LF — 1Y),

1
2

for all ¢_ (L) < p < ¢ < q4+(L) (see [23, Section 2]).

2.4. Conical square functions and non-tangential maximal func-
tions. The operator —L generates a C%-semigroup {e~**};~ of contrac-
tions on L?(R™) which is called the heat semigroup. Using this semigroup
and the corresponding Poisson semigroup {e’tﬁ}bo, one can define
different conical square functions which all have an expression of the
form

(213) Qo‘f(x)—<// ﬂ()|th<y>|2ffff) . eR,

where a > 0 and T'*(z) := {(y,t) € R} : |[x—y| < at} denotes the cone
(of aperture «) with vertex at z € R™ (see (4.1)). When o = 1 we just
write @ f(z) and I'(x). More precisely, we introduce the following conical
square functions written in terms of the heat semigroup {e~*'};~o (hence
the subscript H): for every m € N,

(2.14) St f(2) = ( A ( )|(t2L>me-t“f(y)|2fi’ff ) ,
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and, for every m € Ny := N U {0},

m —t L 2dy di :
(2.15) Coif (@ (//W) 1, (L) ) th) ,

m —t? dyd %
(2.16) Gmuf(z (//F(I) [tV (t’L) Lty )l2tg+1t>

In the same manner, let us consider conical square functions associ-

ated with the Poisson semigroup {e~*VZ},5o (hence the subscript P):
given K € N,

and for every K € Ny,

(218) GK,pm):(//F ()|tvy<tﬁ>“<e-tﬁf<y>foff) ,

(2.19) Grpf(x <//F( ) [tV (tVL)* e 7tff( )I%ﬁf)

Corresponding to the cases m = 0 or K = 0 we simply write G f :=
Gouf, Guf == Gouf, Gpf := Gopf, and Gpf := Gopf. Besides, we
set Suf:=8iuf, Sef:=81pf.

We also introduce the non-tangential maximal functions Ny and Np
associated respectively with the heat and Poisson semigroups:

(2.20) Nuf(z) = sup (/ le - Lf( ) Zdz)
(y,t)el(x) B(y,t)

and

(2.21) Nef(z) = sup ( / |etﬁf<z>|2dz)
(wel (@) \JB(y.1) ¢

3. Definitions and main results

As in the classical setting our weighted Hardy spaces will admit sev-
eral characterizations using molecules, conical square functions, or non-
tangential maximal functions. They will extend the definitions and re-
sults obtained in the unweighted case in [19], to weights w € A, such

that Wy, (p— (L), p+(L)) # 0.
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3.1. Molecular weighted Hardy spaces. To set the stage, we take a
molecular version of the weighted Hardy space as the original definition,
and we shall show that all the other definitions are isomorphic to that
one and one another. In order to formalize the notion of molecules and
molecular decomposition we introduce the following notation: given a
cube QQ C R™ we set

C1(Q):=4Q, Ci(Q):=2"'Q\2'Q, for i>2, and

(3.1) )
Qi :=2"1Q, for i>1.

Definition 3.2 (Molecules and molecular representation). Let w € A,
p € Wy(p—(L),p+(L)), e > 0, and M € Nsuch that M > %(rw—p%@)).

(a) Molecules: We say that a function m € LP(w) (belonging to
the range of L* in LP(w)) is a (w,p,e, M)-molecule if, for some
cube @ C R™, m satisfies

_ _ LM
[0 ot = Y 25w(271Q) 77 Y I((UQ)* L) " m) 10, (@) llr(w) < 1.
i>1 k=0
Henceforth, we refer to the previous expression as the molecular
w-norm of m. Additionally, any cube @ satisfying that expression,
is called a cube associated with m. Besides, note that if m is a
(w,p, e, M )-molecule, in particular we have

- —ie i 1_
(3:3)  I((U(Q)*L) " m)1c, (@) llLrw) < 27w FQ) 7,
i=1,2,...;k=0,1,..., M.

(b) Molecular representation: For any function f € LP(w), we say
that the sum », yA;m; is a (w,p,e, M)-representation of f, if
the following conditions are satisfied:

(i) {Ai}ieN e/t
(ii) For every i € N, m; is a (w, p,e, M )-molecule.
(iii) f =) ;enAim; in LP(w).
These objects are a weighted version of the ones defined in [19] in the
unweighted case.
We finally define the molecular weighted Hardy spaces.

Definition 3.4 (Molecular weighted Hardy spaces). For w € Ay, p €
Wy (p—(L),p+(L)), >0, and M €N such that M >3 (r“’_p%(L))’ we de-

fine the molecular weighted Hardy space Hip’E’M(w) as the completion
of the set

pr@M(w) = {f:Z)\imi :Z)\imi is a (w, p, e, M)-representation of f},

i=1 i=1
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with respect to the norm,

HfHHi,p,E,MW) :=inf {Z [ :Z Aim; is a (w, p, e, M)-representation of f}.
i=1 =1

We shall show below that the Hardy spaces Hi,p,s,M (w) do not depend

on the choice of the allowable parameters p, €, and M. Hence, at this

point, it is convenient for us to make a choice of these parameters and

define the weighted Hardy space as the one associated with this choice:

Notation 3.5. From now on, we fix w € Awo, po € Wy (p—(L),p+ (L)),
gp > 0, and My € N such that My > %(rw — ﬁ(L)) and set H} (w) :=

H}lvpovE()aMU (w)
3.2. Weighted Hardy spaces associated with operators. We next

define other versions of the molecular weighted Hardy spaces defined
above using different operators.

Definition 3.6 (Weighted Hardy spaces associated with an operator).
Let w € Ao and take ¢ € W, (p—(L),p+(L)). Given a sublinear op-
erator 7 acting on functions of L4(w) we define the weighted Hardy
space H} ,(w) as the completion of the set

(3.7) Hr,(w) = {f € L(w) : Tf € L' (w)},
with respect to the norm

(3.8) ey wy = 1T fllzr -

In our results 7 will be any of the square functions presented in (2.14)—
(2.19), or the non-tangential maximal functions defined in (2.20)—(2.21).

3.3. Main results.

Theorem 3.9. Given w € Ay, let H} (w) be the fized molecular Hardy
space as in Notation 3.5. For every p € Wy (p—(L),p+(L)), € > 0,
and M € N such that M > %(rw — p%(L)), the following spaces are

isomorphic to H} (w) (and therefore one another) with equivalent norms

Hi,p,s,M(w)§ Hé (w), m e N;

m,H:P

Hé‘;m)H,p(w), m € No; and Hém,H,p(w), m € Np.

In particular, none of these spaces depend (modulo isomorphisms) on the
choice of the allowable parameters p, €, M, and m.
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Theorem 3.10. Given w € An, let HL (w) be the fized molecular Hardy
space as in Notation 3.5. For every p € Wy, (p—(L),p+ (L)), the follow-
ing spaces are isomorphic to H} (w) (and therefore one another) with
equivalent norms

Héx,p»p(w)’ K eN; HéK)P,p(w)7 K €Np; and HéK‘Pyp(w)7 K € Np.

In particular, none of these spaces depend (modulo isomorphisms) on the
choice of p, and K.

Theorem 3.11. Given w € An, let H} (w) be the fized molecular Hardy
space as in Notation 3.5. For every p € Wy, (p—(L),p+(L)), the follow-
ing spaces are isomorphic to H} (w) (and therefore one another) with
equivalent norms

H}\[H,p(w) and Hjl\/P,p(w).
In particular, none of these spaces depend (modulo isomorphisms) on the
choice of p.

4. Auxiliary results

In this section we introduce some notation and establish some aux-
iliary results that will be very useful in order to simplify the proofs of
Theorems 3.9, 3.10, and 3.11.

Let RT‘l be the upper-half space, that is, the set of points (y,t) €
R™ x R with t > 0. Given a > 0 and z € R" we define the cone of
aperture o with vertex at x by

(4.1) I%(z) = {(y,t) R} : o —y| < at}.
When a = 1 we simply write I'(x). For a closed set E in R™, set
(4.2) RY(E) = | I (x).

zelE

When o = 1 we simplify the notation by writing R(E) instead of R!(E).
Besides, for a function F' defined in ]R:L_H and for every x € R™, let
us consider

1
: dydt\*

(1) 17l = ( [ rwor@s)
() t

Using ideas from [19, Lemma 5.4], we obtain the following result:

Lemma 4.4. For allw € Ay, and f € L?*(R™). There hold
@) ISm.afllerw) S NGm-1,u8fllLr(w), for allm € N and 0 < p < oo,
(b) ISk pfllrrw) S NGr-1,pfllLr(w), for all K € N and 0 < p < co.

Furthermore, one can see that (a) and (b) hold for all functions f €
Li(w) with w € Ass and q € Wy (p— (L), p+(L)).
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Proof: We start by proving part (a). Fix z € R™ and ¢ > 0, and consider

_ 12 _ _

B:=B(z,1), [fy):=@"L)" " 2 f(y), and H(y):= f(y) - (s,
where (f)ap =fi5 f(y) dy. Then, applying the fact that {t*Le~""L},s g€
Foo(L? — L?) and that t2Le=""L1 = t2L1 = 0 (see [1]), we obtain that

</|tLe% \dy) </|tL672 )|? dy)l
([ 1ere S mm )l an)

+Z</ |t Le™ Tt (H1g, <B>)(y)2dy>;

i>2

([ mora) oo ([ wra)

ji>2
=TI+ eV

=2

By Poincaré inequality, we conclude that

1<t (/B |vyf<y)|2dy) ‘)

1

~ ~ 2 .
1< ( Lo 1) = (P dy) L B
2i+1pB

and that

|(f)2k3 - (f)z“lB‘

M-

k=2
_ i ~ N 3
SN EDY) (7[ 1F () = (Parsrpl? dy)
k=2 \/2FT1B
i N 3
<D 20Ty ( / IV, Fly)P? dy)
=2 2k+23
Then,

([ e s fwra) 5t( | |vy}“<y>|2dy)é

—|—Z 76412 W(J k>+k (/2

j>2

\vyﬂy)\zdy)Q

k+2p

1

Sy e </2a'+23 1tV F(y)|” dy)§ :

Jj=1
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and therefore

Smuf(z Z evan’y af (@),
i>1
recall the definition of G%iH in (2.13) and (2.15). Then, for every 0 <

p < oo and w € A, taking the LP(w) norm in both sides of the previous
inequality and applying change of angles (see [23, Proposition 3.2]), we
conclude that

Y j+3
IS 1 fllr(w) S Ze NGE L w Sl L ()

j>1

ead
SNGm-vufllrw Y e SNGm-rufllLrw)-

jz1

As for part (b), fix w € Ay, f € L2(R"), and 0 < p < oo, and note
that following the same argument of [19, Lemma 5.4]!, there exist a
dimensional constant kg € N and C; > 0 such that for all K € N and
k € Np.

ok+ko ok+ko

Stef(@) < 0 (GRS @) (SEn" 1@) "

where recall the definitions of S%;P and G%ii?]) in (2.13), (2.17), and
(2.18). Now, for some R > 0, to be determinate later, consider

5 f() = S RFSEef(@) and G f) = SO RMGE, 1)

k=0 k=0

By the above inequality, and using Young’s inequality, we have

[ee] 1
_ ket k k+k 3
<SR (GERGE T @) (SEE 1)
k=0
(4.5) < % <012R2k ZR (k+ko)G2k+ko F(z) +ZR—(k+ko)Sf{li;kof(x)>
k=0 k=0
< % (RQ’“OC%’G*f(x) +8*f(x)) :

Besides, since Sk p is bounded from L?*(R") to L%*(R") (see for in-
stance [23]), applying [13, Proposition 4, Section 3] or [2], and choosing

1We want to thank Steve Hofmann for sharing with us this argument that was omitted
n [19, Lemma 5.4].
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R > 2311 we have that

* - — k
IS fllp2@ny <D R ISKp fllz2en)

o kn X kn
R™*27% ISx.pfllLz@mny < ZR k2% 1/l 2 @ny < o0,

0 k=0

hence §*f(z) < oo a.e. x € R™. Then, by (4.5),
Skpf(z) <8 f(z) < CR™G f(x).

Hence, taking the LP(w) norm in the previous inequality, by [23, Propo-

sition 3.29], we conclude that, for rq > max{p/2,r,} and R = 27t >
22+

(]2 I

S

ES
Il

i (1 k
ISKe fllreaw S D RE2GR_1p fllr(w)
k=0

kn

oo
— 0
SRS R (IGrorefllerw) S IGk-1p fllLew)-
k=0

Following the explanation of [23, Remark 4.22] we conclude (a) and (b)
for all functions f € L (w) with w € Ay and ¢ € Wy, (p— (L), p+(L)). O

To conclude this section we present some estimates for (w,p,e, M)-
molecules.
Lemma 4.6. Given p > pg, w € APL7 €>0, and M € N, let m be a
0

(w, p, e, M)-molecule and let Q be a cube associated with w. For every
1>1and k=0,1,2,..., M, there holds

(@)’ L) " m)1c, (@) llro n) S 27 Fw(2H1Q) 27 Q).
Proof: Using Holder’s inequality, (3.3), and the fact that w € A» , we
have that "
I1(((Q)* L) m)16, (@)l Lro m)

< ( / 1(£(Q)2 L)~ m(y)"w(y) dy> ’
i (Q)

1

’ P ) 11

- (7[ w(y)' ™5 dy>p T Qe
211+1Q

_1
. . . 1
< 27’Ew(21+1Q)%71 (][ w(y) dy) ! |21+1Q|p075
2:+1Q

< 2—i5w(2i+lQ)—1|2i+lQ|%. O
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5. Characterization of the weighted Hardy spaces
defined by square functions associated
with the heat semigroup

Theorem 3.9 follows at once from the following proposition:

Proposition 5.1. Let w € Ao, p,q € Wy(p—(L),p+(L)), e >0, K €
No, and M € N be such that M > %(Tw E— ) Then:

p—(L)
(a) H} o ar(w) = H

Sm,,H,p(w) with equivalent norms, for all m € N.
(b) Hg,

(w) and H (w) are isomorphic, for all m € N.

m,H,P m,H,q

(c) Hy ,onr(w) = H%;Hp(w) = Hé”hH)p(w), with equivalent norms,
for all m € Ng.

In order to prove Proposition 5.1 we need to show that, for m € Ny, the
L' (w) norms of the square functions Sm+1,1, G, and G, 1, applied to
(w, p, e, M )-molecules, are uniformly controlled. Moreover, we shall show
in Proposition 5.3 that all the square functions in (2.14)—(2.19) satisfy
those uniform estimates. That proposition follows from the following
general result:

Proposition 5.2. Let w € A and let {T;}i>0 be a family of sublinear
operators satisfying the following conditions:

(a) {Ti}es0 € Foo(LP® — L?) for allp_(L) < po < 2.

(b) Sf(z) = (ffl"(ac) |7§f(y)\2;1§ff)% is bounded on LP(w) for every
pe Ww(p—(L)’p-‘r(L))'
(¢) There exists C > 0 so that for every t > 0 there holds Ty = CT% o

_2
e 2

L

(d) For every A > 0, there exists Cx > 0 such that for every t > 0 it
follows that

—At2L
T\/mt :CA'EOG .

Then, for every m, a (w,p, &, M)-molecule with p € W,,(p— (L), p+(L)),
>0, and M > 2(ry, — p%(L))’ it follows that ||S™||11(w) < 1, with
constants independent of m.

Assuming this result momentarily we obtain the following:
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Proposition 5.3. Let S be any of the square functions considered in
(2.14)~(2.19). For every w € As and m a (w, P:E M)-molecule with
p € Wy(p—(L),p+(L)), € >0, and M > %(rw -5 (L ) there hold

(a) [[Sm]z1w) < C.

(b) Forall f € Hy . 2 (w), [SfllLrcw) S I fllmy
Proof: Assuming (a) let us prove (b). Fix w € A, and take p €
Wa(p— (L), p+(L)), € > 0, and M € N such that M > %(r, — p%(L))
Then, for f € H} P, o (w), there exists a (w, p, e, M )-representation of f,
f =2, Asm;, such that

LpsM w)*

oo

> o< 20 flly e

i=1
On the other hand, since > -, \;m; converges in LP(w) and since for

any choice of S, we have that S is a sublinear operator bounded on L?(w)
(see [23, Theorems 1.12 and 1.13]) and by part (a), we have

(Sm)

< Z|/\ S™il 11wy < CZ Al S A My oo

i=1

1SFllzrw) =

L (w)

as desired.

As for part (a), we first show the desired estimate for Gy. To this
end, notice that [tV, e " Lf2 = [tV,e L2 + 4[t2Le "L f|2. Be-
sides, both 7; := tVye_tzL and T; := t2Le~t"L satisfy the hypotheses
of Proposition 5.2: (a) follows from the off-diagonal estimates satisfied
by the families {tV, e~ L};o0 and {2Le™"" L}~ (see Subsection 2.3);
(b) is contained in [23, Theorem 1.12, part (a)]; and finally (c¢) and (d)
follow from easy calculations. Thus we can apply Proposition 5.2 and
obtain the desired estimate for Gy.

To obtain the estimates for the other square functions we can use [23,
Theorems 1.14 and 1.15, Remark 4.22], and the fact that Sgf < %ng.
Easy details are left to the interested reader. O

5.1. Proof of Proposition 5.2. Fix w € A, p € Wy, (p—(L),p+ (L)),
e>0, M > %(rw — ﬁ(m), and m a (w,p,e, M)-molecule. Let @ be a
we can pick p_ (L) < pp < 2,

cube associated with m. Since w € A -
P

close enough to p_ (L), so that w € A» and simultaneously
Po

(54) v S ()
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For every j,i > 1, consider Q; := 27'Q, m; := wlg, (), and Cj; :=
C;(Qi). Note that
[Tem (y)| < [Tem(y)[L(0,00)) () + [Tem(y)[L1e(q),00) (8) = Fi(y,t) + F2(y,1),
and therefore, recalling (4.3),
15021y < B 1y + IINEele |1y = 2+ 11
We estimate each term in turn. Note first that

Ly t) <D ITemi(y)[L0.q) (t) = Y Friy,t)

i>1 i>1
Then,
I 5 Z||H|F1,i|”1‘(')||L1(16Qi,w) + ZZ|HHFMH|F(~)”Ll(cji,w)
i>1 j>4i>1
(5.5)
=: ZL—FZZLZ
i>1 >4 i>1

For I;, apply Holder’s inequality, hypothesis (b), (2.5), and (3.3) (for k =
0), to obtain
I; < HgmiHLl(16Qi,w)

(56) % ~ i, —1e
Sw(16Q:) 7" S| Lrw) S w(Q:i) [[millLe(w) < 2

To estimate I};, note that, for every j >4 and ¢ > 1, 0 < t < 4(Q), and

z € Cj;, it follows that B(z,t) C 2912Q; \ 2771Q,. This, hypothesis (a),
and Lemma 4.6 imply that

1
2 2
</ | Temi (y) | dy) < (/ v | Temi (y)[? dy)
B(z,t) 20+2Q;\27-1Q;

_ ( ) —c4 Z(Q)
<t 2 [[millLeo g

4”(@ )2

St BT T T w(Q) Qi
Then, (2.5) and easy calculations lead to

1
qQ) a1 190(Q;)? 2
(/ t 2n( 55 2)6*6# t:l-tl w(z) dz
0

2 w(Q) QT w@ Q) Q) ([ et )
2,

Ji S

. 1
Lo S 27" w(Qi) Q| 7o /
C

Jt

—ie_—c4l
S27%e .
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Plugging this and (5.6) into (5.5), we finally conclude the desired esti-
mate for I:

(5.7) 1<y 27 43 Yo e <.

i>1 §>4i>1
We turn now to estimate I1. First, set
Bg:=(—e @M and Ag:=1- Bg,

and observe that

(6.8) Fa(y,t) < |TeAemw(y)|1e(0),00) (t) + | Te Bom(y)|11(Q),00) (1)
= F3(y7 t) + F4(y7t)'

We start estimating the term related to F5. To do that, consider

)= hi(y) =D _((UQ)*L) Mm(y)) 1c, ) (),

i>1 i>1
and note that
Fy(y,t) <Y |TeAQ(UQ)* L)  hi(y) [ 116(@) 00 (£)-

i>1
Then, we obtain

IIEs e 2 )

dy dt\?
(// Taalt Q) 1)L o (0

i>1 L1(16Q;,w)
1
dy dt\?
TS (] maat@rn k1o, 0557 )
j>41i>1 L(Cji,w)

= I+ Y Il

i>1 J>4i>1

Before estimating II;, and II;;, note that by [7, Proposition 5.8] one
can easily obtain that the operator Ag(¢(Q)*L)™ is bounded on LP(w)
uniformly on @ since p € W,,(p—(L),p+(L)) and

Aq(U(@)*L)M= (I—(I—e_Z(Q)zL) YUQ)L ZC’“ w(kO(Q )Me—kt’(Q)%‘

This, Holder’s inequality, hypothesis (b), (2.5), and (3.3) imply

L L —1ie
(5.9) IIi < w(16Q:)¥ || AQ(U(Q)* L)  hill Lo (wy S w(Qi) ™ [[hill Loy <27
We turn now to estimate I1;;. Note that for every x € Cj;, j > 4,1 2> 1
{(y,t) : y € B(z,t), t > £(Q)} C E1UE2U E3,
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where
Er=(2772Q:\ 2771Q0) x [0(Q),27720(Q))], Fa:=2"Q: x (27720(Q:), o0),
and
Eg—(Ucl ) (2'72(Qu), )
1>5
Consequently,

3

1 3
y dy dt \? ;
I <w(27Q E (/ [ TeAq (¢ )Mhz(y)‘Q t3+1> =w(2Q)) g Gi.
E;

=1 =1

Now observe that hypothesis (¢) implies
t2
I TeAQ(UQ)* L) hil = CIT s e™ 7 " Aq(UQ)* L) hil.
Besides,
.2 M 0°O)? M
E_TLAQ(K(Q)QL)]M — ch,l\/l (@) (52Q7tL)Me_s%'tL,
k=1 SQ,t
where
12\ 2
sQu = (ké(Q)Z + 5) )
Then, applying hypothesis (a), the fact that {(tQL)Me*tQL}boG Foo(LPO—

LPo) together with [23, Lemma 2.1] (see also [18, Lemma 2.3]), and
Lemma 4.6, we have

M i—2,00.
G1 S Z /2J Z(Ql)<£(Q)2)2M
o Vao St
_s2 dt
X /*2@\ —1g ‘Tf SQtL)Ju Qe ( )| d t"+1>
2i+2Q,\20-1Q;

1
21-20(Q;) on _ tie@? g\ 2 . 1
S (/ QM o em T S ) 2T w(Qi) Qi

4(Q)

S 27j(2M+%)271‘(2M+s)w(Qi)—1.

Similarly,

1
oo 2 )
@5(/ | E<Q>4Mt“M?oit> 2 w(Q) @il
29720(Qy)

< Z_j(zM-s-%)Q—i(m-s-a)w(Qi)—l

I
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and
1
> 2n 2ds\ 2
Gs S Z M Fpg gmes” 28
0 S

x (20F00(Q) TR Q)M 2 w(@) 7 @il

n

< 2—j(21\1+p0)27i(2]w+5)w(Q_)—1.
Collecting the estimates for G, G2, and G3 gives us
0 < w(2j+1Qi)2—j(2M+%)2—i(2M+s) < 2*j(2M+%*%)2—i(2A4+5)7
~ w(@) ~
where we have used that w € A ruro by the definition of r,, and the
P

fact that p_(L) < po, and (2.5). By this and by (5.9), we conclude that
(5.4) yields
rwpon

(5.10) H|||F3|||1"(.)HL1(w> < 2277;5_’_222_]'(2M+%_7p_(1,) ) g—i(2M+e) <1.

i>1 i>4i>1

We next estimate Fj:

1
dy dt \2
H\||F4|||r<»>HL1(w)SZ (// \ﬁBsz‘(y)Fl[aQ)m)(ﬂﬁ)
i>1 ) L1(16Q;,w)

1

dy dt \E

+ZZ (// |7;BQmi(y)|21[€(Q),oo)(t)tnT)

i>1 >4 re) L1(Cj,w)

=y IILi+ Y > I

i>1 i>1 >4

Note that the fact that the semigroup {e~*};~ is uniformly bounded
on LP(w), since it was assumed that p € Wy, (p—(L),p+(L)) (see [7,
Proposition 5.8]), easily gives that Bg is bounded on LP(w) uniformly
in . Hence, Holder’s inequality, hypothesis (b), and (3.3) (for k = 0)
yield

L5 i —ie
(65.11) I S w(16Q:) " ||SBomillrr(w) S w(16Q:)?” [|my|l ey S 27 .
Now, change the variable ¢ into /1+ Mt and use hypothesis (d) to obtain

dy dt )5

2
;S (// - T sare Bomi(y)] 1[5(@)/\/71“»1,00)(75)@
rv ) LY(Cj;,w)
1
~ —Mt2L 2 dy dt \2
~ (// _— |Tie Bom;(y)| 1[2(@)/x/71+1tl,oo)(t)tnT
r () Ll(Cji,u))




496 J. M. MARTELL, C. PRISUELOS-ARRIBAS

Now, note that for Ei, E, closed subsets in R™ and f € LP(R™) such
that supp(f) C E1, we have

(5.12)
—Mt2L —t2L —(t24+4(Q)>)L\M
lle ‘ BQfHLPO(EQ) = (e I ) fHLPo(Ez)

£(Q)? M
_ H are—(r-‘—t?)L dr) f

LPO(Es)

2 2
“«Q) “«Q) o\ M (ry ey ML A
<[ T ML) Me Fl oo,
0

« dry---drys
(7-1 + ity +Mt2)M

«Q)? «Q)? d(B.EBg)?
< ¢ ST A AE dri---dry [/
~ Jo o (r1+---+ru+ M2)M LPo(Ey)

~ t2

Q)M _od(B1Bo)?
<(Q) & T fll ooy

where we have used that {({2L)Me="L}, o € Foo(LP° — LPO) since
p—(L) <po <2 <pi(L). .

On the other hand, setting 6y = (1 + M)~ 2, for every z € Cj;, we
have

{(y,t) : y € B(w,051't), 0rl(Q) < t < 00} C Ey U Ey U E,
where

Ero= (2772Qi\ 271Q0) x [0ml(Q), 27 00 (Qu)],

EQ = QjQz‘ X (2j7201\/[€(Qi),OO), and

By = <U cz(czi)) X (27200 0(Qs), 00).

(=4}

Then we have that

dy dt
i S w( 2]+1 Z(/ [Tee” " LBQmi(y)|2 tn+1) 2J+1 ZGZ

At this point we proceed much as in the estimates of G, G2, and G3.
Applying (5.12), we obtain that

115 < w(2j+lQi)2—j(2M+%)2—i(2M+e) < 2*]'(2M+%*%)2—i(2]\4+5)

w(Q:)
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where we have used that w € A ruro, by the definition of r,, and the
p_

fact that p_(L) < po, and (2.5). From this and (5.11), we conclude that
(5.4) yields

H‘HF4H|F()”L1(U7) < 22—26 + 222*] 2M+ p (L) )2—2'(2]W+E) S 1.

i>1 i>1 j>4
By this, (5.10), and (5.8), we conclude that IT < 1, which, together
with (5.7), gives the desired estimate: [[S™|[1(w) S 1. O

We devote the remaining of this section to proving Proposition 5.1.

5.2. Proof of Proposition 5.1, part (a). Fix wGAOO, PEW,, (p—(L),

p+(L)), e >0, and m, M € N such that M > 2 (w*p )
For all f € H} p.e.m(w), applying Proposition 5.3, we obtain that
(5.13) [Smafllrwy S MMy . 0

Then, since in particular f € LP(w), we conclude that f € H  .(w),
and hence HJ , _ \/(w) CHg o (w).

As for proving the converse inclusion, we shall show that for all
fe ]HI5 - p(w) we can find a (w, p,e, M)-representation of f, i.e. f =

> ooy Aim;, such that

DIl S 1Sm s fll Lt -

Following some ideas of [19, Lemma 4.2], for each [ € Z and for some
0 < v < 1 to be chosen later, we set

O ={zeR":Snuf(z) > 21}7

|E; N B(z,7)|

|B(z, )]
E :=R"\ O, and Of :=R*"\ Ef = {z € R" : M(1p,)(z) > 1 —~},
where M is the centered Hardy—Littlewood maximal operator. We have
that O; and O are open, and that O;41 C Oy, Of; € Oy, and O; C Of.
Besides, since w € Ao then M: L™ (w) — L™ (w), for every r > 1.
AL50, St flloe) < 1F 1oty < 00, because p € Wap_ (L), ps (L))
(see [23, Theorem 1.12]). Hence

El*::{a:E]R" >, forallr>0},

(5.14) w(O7) < 3 (00) £ g Smit S By % 51 1 Wiy <00, VIEE,
and E} cannot be empty. Therefore, for each I, we can take a Whitney

decomposition {Q7}jen, of OF:
=JQ/, diam(Q]) <d(Q],R"\ O;) < 4diam(Q),

JEN
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and the cubes Q{ have disjoint interiors. Finally, define, for each j € N
and [ € Z, the sets

(5.15) 1Y = Q] x (0,50)) N (07 \ Oy, )

where 6\1* = {(z,t) € RY"" . d(z,R" \ Of) > t} and we note that

R™\ O = R(E}), (see (4.2)).
Let us show that

supp T (a) =supp(s* )" fw) < (U (07 \ O ) v UF

lEZ
(5.16)

lez,jeN

where F; := Mez0; and Fy C R\ UjezOF with

p(Fy) == //nﬂ 1r, (y,s)@ =0 = p(F2).

The fact that u(IFq) = 0 follows easily. Indeed, note first that, by (5.14),
and since Of,; C O;, we conclude that

. 1
(ﬂ0l> = hm w(O)) <l£n20% =0.
lez

Consequently |N;czO}| = 0, since the Lebesgue measure and the measure
given by w are mutually absolutely continuous. Hence, clearly

e dy ds ds
N(Fl):/o [ 1n@s) NW/N noi|®

lez
Finally let us find Fy, and hence obtain (5.16). Note that

wpt = (U010 ) o (e U (071 00) )

1€z lez
(U@ o) )umo (Ui )
lez 1€7,
Then, it suffices to show that
(5.17) Tif(y) =0, pae (y,) eRE\(JOr
lez

Consider F the set of Lebesgue points of [T, f(z)|? as a function of the
variables (z,s) € R} for the measure dzds which is mutually ab-
solutely continuous with respect to p. Note that [|Sp uf|lrrw) < 00
implies that |T,f(z)> € LL (R}, drds), and hence p(RT \ F) = 0.
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To conclude (5.17), we observe that R’} \(Ulezé\f) =Mz R(E}) (recall
the definition of R(E}) in (4.2)), and then we just need to prove that
(5.18) Tif(y) =0, V(y,t) € [|R(E)NF.

lez
On the one hand, if (y,t) € MiezR(E}), for every | € Z there exists z;

such that (y,t) € T'(z;) and S, 11 f(21) < 2. On the other hand, (y,t) €
F implies

( Ho|B y,1),7)| B((yt)r)‘t r of

Given r > 0, consider

- x if y =y,
Ty = r(y—z .
y— 5t iy £,

2|ly—a]
it is easy to see that B((«],t),%) C I'(z;) N B((y,t),r), for all | € Z
and 0 < r < t. Combining all these facts we have that, for (y,t) €
mZGZ,]?’('E’I*) N ]F7

Tt 2 o ; Tt 2 _ TS 2 drd
T3/ (y)] B((x{,t),r/4)|//]3((zlr7t)7r/4)|| FWP = T f ()| d ds
: )
|B((z7,t),r/4)| T dd
" |B((27,t),m/4)] //B((z{,t),r/zx) T f ()| dw ds
(t+r)mtt

Ni T f(W)? = T f (2)|?| do ds+ 4.
1B((y,t), 7 |//B<<yt>r> et

Then, letting first I — —oo and then r — 0, we conclude (5.18) by (5.19).
Now consider the following Calderén reproducing formula for f €
LP(w):

f@=C [ (et @ T
(5.20) 0 N p
—C lim (2L) e L)M+2 p() U

N — oo N1 t ’
with the integral converging in LP(w).
Remark 5.21. A priori, by L?(R") functional calculus, we have the above

equalities for functions in L?(R™). Here we explain how to extend them
to functions in LP(w) for all p € Wy, (p—(L),p+(L)). Fixing such a p,

we first introduce the operator 7"/ = ((2L)me " LYM+L N[ > 0, whose
adjoint (in L2(R™)) is (TM)* = (((PL*)me " F )M+ = M and set
QY f(x,t) = TM. f(x) for (z,t) € RT"" and f € L*(R"). Since p €
Wi (p—(L), p4 (L)) then p' € W1y (p—(L*), p4(L*)) by [6, Lemma 4.4]
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and the fact that py(L*) = py(L)" in [1]. Thus, the vertical square
function defined by 7;*/. is bounded on LV (w'=P") (see [5]). Writing

H = L?((0,00), %), we obtain

||Q1[Vz[h|| = ||||Q%Ih||H|}Lp’(w1—p’>

LE (=) T

(5.22) = (/Rn </OOO | T h(z) 2%) %/w(x)lfp’ dm) '

< ”hHLp’ (wl=r")"

Therefore, QM : L¥' (w'~?") — Lﬁ/ (w'=?") and hence its adjoint (QM)*
is bounded from Lfj(w) to LP(w) (see also [1, 5]). Moreover, for h €
L%(R™) and f € L*(R™), we have that

(@) b D) aaany = e @ Dy = [ [ 1w VT )

=// ﬁ%h(yi)%mdy,
R™ JO

where it is implicitly understood that T,/ h(y,t) = T, (h(:,t))(y). Con-
sequently, for every h € L(R™),
(@) k) = [ TR T = [ (@t e .
0 0

Note that 5(Q%)*Qo*f = f for every f € L?(R"), where according to
the notation introduced above QY. f(z,t) =T, f(z) = (t2L)m6_t2Lf(a:).
On the other hand, for every f € LP(w) and g € L?(R") N LP(w) we
have that
If = C(Q1') Q- fllzw(wy < IF = gllzr () +CN(QL)* QL (9 = Sl )

SIS = gl +1Q0+(9 = Aty SIS = 9llr ),

where we have used the boundedness of (Qﬁ/[ )* along with the fact that
Q9. is bounded from LP(w) to LE(w), the latter follows as in (5.22)
with LP(w) in place of L¥ (w!'~?") since p € Wy (p_ (L), p4 (L)). Using
now that L?(R™) N LP(w) is dense in LP(w) we easily conclude that f =
C(QM)*QY. f for every f € LP(w). This is the first equality in (5.20).

To obtain the second equality in (5.20) we write Iy = [N~!, N] and
observe that for every h € LE(w), one has that 17,h — h in LE(w) as
N — oo, and therefore (QM)*(1;,h) — (QM)*h in LP(w) as N — cc.
Taking now f € LP(w), as mentioned above, Q%.f € LE(w) and it
follows that (QM)* (17, Q%. f) — (QM)*(QY. f) on LP(w), which is what
we were seeking to prove.
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Once we have justified the Calderén reproducing formula (5.20) we
use (5.16) to obtain that

(5.23)

=~ [ 2 vm 2L\ M1 2 \vm _—t2L dt
f(l’):C/ ((t"L)"e™" ™) ( > L (5 0)(EL)"e f('))(x)

0 JEN,IEZ
=C lim " ((tQL)metgL)M“< > 1Tj(-,t)(t2L)met2Lf(-)> (z)—

Nzoe -t jentez
in LP(w). Now, set
-1
=3
where flj;m(:r,t) = lle (:C7t)(t2L)me*t2Lf(x). We will show that

N = 2u(@) and ()= 5 [(EDE TR L 0)6

(5.24) Z 5’A{m{ is a (w, p, e, M)-representation of f.
JeENIEZ
We start showing that there exists a uniform constant Cy such that
C’O_Im{ is a (w, p,e, M)-molecule, for all j € N and | € Z. To this end,
we estimate, for all0 < k < M, 1 <4, j € N, and | € Z, the LP(w) norms
of the functions (€(Q{)2L)*km{ 1Ci(Q{)' Before that, we set

ROD(BL) = {(y.1) € R(ETL) 1y € QF, 0 <t < 5v/nl(Q))}.
For all (y,t) € T/ we have that

t <d(y,R"\ Of) < d(Q],R"\ Of) + diam(Q]) < 5diam(Q7),
and thus

(5.25) T7 c /D (B,
Then, for all (y,t) € le and ¢ = 11/n,
(5.26) B(y,t) C eQ].

Now, by definition of le , we have that for every (y,t) € le there exists

Yo € B}, such that |Ej 1N B(yo,t)| >7v|B(yo,t)| and |yo —y| <t. Besides,
considering z:=vy — %7 we have that B(z, %) C B(yo,t) N B(y,t).
Consequently,

¥IB(yo, t)| < |Ei+1 N B(yo,t)] < [Ei1 N By, t)| + |B(yo, t) \ B(y,1)]

t
< B 1 By, 0)] + ]B@o,t) \B(z, 5)]

1
~ B 1 B+ 1B, 0] (1 51 )



502 J. M. MARTELL, C. PRISUELOS-ARRIBAS

Then, for y =1 — 2”“, we obtain
(5.27) t" < [Eia N B(y,1)]-

We are now ready to consider the case ¢ = 1. For every t > 0,
let T; = (t2L)mMAm—ke—t*(M+1)L anq for every h € LP (w!~?") write
Qrh(z,t):=T;*h(z), with (z,t) R} ™", Asin Remark 5.21 one can show
that Qp : LP (w'=?") — L (w=?'), since p' € W1 (p—(L*), p+(L*)).
Hence its adjoint QF has a bounded extension from L (w) to LP(w),
where

:/ ﬁh(x,t)%:/ (P Ly ML )
0 0

Here, as before, Trh(z, ) =T;(h(:,t))(z), for (z,t) R Write g(x,t):=
tQkfl],m(a;, t) and

Z:={he Lp,(wlfp,) Al Lo (p1-wry =1, supph C 4Q71.
From (5.26), (5.27), and (5.25) we obtain

(5.28)
||((£(Q‘Z)2L)7kmg)14(;){||Lp(w)
[ 7\ —2k oo
_ (Q;\E / (tZL)7nM+m—ke—t2(]\/I+1)L§(.7t)% |
1 0 LP(4Q] ,w)
ng —2k .
= (713- sup Q19(y) - h(y) dy
Al heZ |Jrn
E J dtd
(Q sup/ / 3y, 1) - T, h(y) y‘
het |Jrn

U [ 160y 1) 7 hiw) [ do s dy
hez JJ 1] B(y,t)NEp 41

1 _
<L oup / // (L) e E f(y) - Ty )|ffffdx
/\ hel’ QINE 44

> )\j HSm Hf”Lp(CQJﬂEH_l w) SuleHT h”'F( )HLp (wl=p")

1 G\ Lol *
< 57vQnr? Sup |17 Allle) [ . 17

L1 .
=w(@)" 1§LIEII;HH\72 Pllle e | g gui-vr):
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where in the last inequality we have used that S,,, mf(z) < 2!+ for every
x € Ejyq. To estimate the term with the sup we fix h € Z and note that

changing variable ¢ into \/A/t[iﬂ and using [23, Proposition 3.29]

(7

VM1

T lle || o7 1= Ca

1
D VMFL () LP'(wlfp’)

VMF1

e

1"() Lpl (wlfp/)

1
3
/ (2L )™M +m— k,—t2 Lh( )‘2di/:l1t
() ¢

Lpl(wl_F/ )

S Hh”LPl(wl*P/) = 17

where the last estimate holds since p’é W,/ (p— (L*), p+ (L*)) (see [23]).
Plugging this into (5.28) we conclude that

(5.29) (@7 L) ™ ™)Ly 2wy < w(@))r~

Consider now 7 > 2. Note that w € RH(”(L))/ implies that w € RH( a0y
for some gy with max{2,p} < go < p+(L). Then,

H(( (Q]) ) m{) C; (QJ)HLP(UJ)

1

< 3
>\l

| @i s (@ nme g ol g

LP(C;(Q]),w)

uQnH~*

(e T
l

N

> kg2 i dt
o / |2k (2 )Mkt (M+1)L(flj,m('7t))‘7

0 t

L90(C(Q)))

Applying Minkowski’s inequality, the fact that {(t2L)™e *'L},y €
Foo(L? — L®), and (5.25) we obtain the following estimate for the
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last integral above:

/Ooo |t2k(t L)mM+m k 7t (M+1)L( ( ))‘7

L90(C(Q)))

)HLQO(CAQ{)) t

VRUQ]) . 3 . aie@)? gt
S A O 0 ) e
. .
%
m 2 dy dt
’f(//w(t?L) ey )
T}
Nt j) N2 %
5¢/nl(Q io(Q
% / S t_2 (%_qlg)e* : (tzl) @
0 t

=: IIl X I[z.

</ R Ly e TV (] (1) -
0

For 11, we proceed as in the estimate of the second inequality in (5.28)
and obtain after invoking (5.27)

1
2
I < Qi) // (L) e £ ()2 dw dy -2
B(y,t)NE;+1 ¢

i\ 2k N2k |74 ol
Sf Z(Q?y HS"LvaHLz(CQ{ﬁElJrl) ’S Z(Q{f |Qg|22 '

(Q)

As for 11, changing the variable ¢ into 2 we get

1
L S (2Q)) " we ( / t2n<%—;o)e—ct2%) :
0

< @U@ T
Hence, for i > 2, using (2.5),

. -~ . 1 _eqt o _in i S o1
H((Z(Qi)zl’) kmg)lci(Q{)HLP(w) S Fe * 272 217,0(2 +1Q{)p
) )

i . L1
Ser M w@ ol

From this and (5.29), we infer that there exists a constant Cy > 0 such
that, forall j € Nand [ € Z, ”m{“mol,w < Cy. Therefore, for every j € N
and [ € Z, we have that Co_lm{ are (w,p, e, M)-molecules associated
with the cubes Qg .
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Let us now prove that {A{ }ien, 1ez € ¢*. Since for each [ €Z, {Qé }ienis
a Whitney decomposition of O, by (5.14), and since f € Hg . (w),

we obtain
S = Y 2weh = 2w
JEN,leZ JEN,IEZ LEZ
S SEICIED oY "
(5.30) e e

<C/ w{z € R™ : Spnf(x) > A}) dr
= CHSm,HfHLl(w) < oo.

Thus to conclude (5.24) we finally show that
f= Z CXw! in LP(w).

JEN, IEZ
With the notation in Remark 5.21, recalling that

F o (@,8) = g (2, ) (L) "™ f (),

where the sets {le }jen, ez are pairwise disjoint, it follows that

S f ST 1]

JEN,IEZ JEN,IEZ

(5.31)

Li(w) L (w)

([T1enme Lff‘”)

Hence, by (5.23), Remark 5.21, and the dominated convergence theorem,

< S llee w)-

LP(w)

Hf— S ONm =C||(o¥y* (Z flm>— > Q).
JHI<SK LP (w) J+1>0 JHISKE LP (w)
(5.32) ¢l (X 7.
J+HI>K LP (w)
Z flj;m — 0, as K —o0.
JHI>K LE(w)

This proves (5.31) and therefore, >
sentation of f such that

S NS ISmufllew:

J+1>0

Tyl 3
1150 Xy is a (w,p, e, M)-repre-

Consequently, f €H} pear(w) and Hf”HlL,p,E,M(w) SISm Sl Lt (), which
completes the proof. O
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5.3. Proof of Proposition 5.1, part (b). Fix w € AOO, p,q €
Wy (p—(L),p+(L)), € > 0, and m, M € N such that M > Z(r,, (L))

For f € H}S%H’p(w) consider the (w, p, e, M)—representatlon of f, (f =
Zj+|l\>0 Aj m7) obtained in the proof of Propositiqn 5.1, part (a). Then,
define for each N € N, fy := ZO<J’+IHSN Ajm]. We have that, for
cach N €N, fn,f - fn € Hj o, ear(w) =Hg . (w). Moreover, since
Dl N A w] is a (w, p, e, M)-representation of f — fxn, we have

1Smun(f = F)llzrcwy = 1 = Iy e SIS = Inllay |, )
J
< > W=
JHI>N
Consequently in order to conclude that f € H émﬁqu(w), it is enough
to show that, for each N € N, fy € H}Sm_H’q(w), or equivalently that
fn € H}:7q7E,M(w). Let us see the latter, for every N, following the

same computations done in the proof of part (a) to show that the m{
are (w,p,e, M)-molecules, but replacing the LP(w) norm with the
L%(w) norm, we obtain that, for all 4,5 e Nl € Z, and 0 < k < M,

v L Cedi 1
HEQD*L) il 0 gy S € (2100
Hence, m{ is a multiple of a (w, ¢, &, M)-molecule. Besides, using (2.5),

HfNHLq(w) Z Z ‘)‘]”ImlHLq(C (Qi)w)

i>1 0<j+|l|<N

i —edt o Nl
<SS Nl w@ )

121 0<j+|l|<N

< Y dw@iser Y 2w@)

0<j+|lI<N 0<j+[lSN
19
Son NSmufllotw) < oo,
where 0y := ming<;i <y w(Q7). Then, for each N € N, we have

that the function ZO<j+|l\§N )\{m{ is a (w, ¢, &, M)-representation of fy.
Hence, {fn}nen CHp 4 pr(w) =Hg o (w). O

5.3.1. Proof of Proposition 5.1, part (c). For f € H{ (W),

applying Lemma 4.4, part (a), and the fact that G, nf(z) < gm,Hf( )
for every x € R™ and for every m € Ny, we conclude

ISmt1,0fllLrw) S NGmufllrrw) < NGmufllrrw)-
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This and part (a) of Proposition 5.1 imply
]H[é'm,,HaP(w) C Hé}m,H,P(w) - H‘ls’m+1,H;P(w) = H}J,p,e,M(w)'
To finish the proof, take f € H}L,p,e,]\/f (w). Then, by Proposition 5.3, we
have that
1Gmufller ) S 1l

L, (W)

Consequently, Hy, , o (w) CHS . (w). O

6. Characterization of the weighted Hardy spaces
defined by square functions associated with
the Poisson semigroup

In this section, we prove Theorem 3.10, which is obtained as a conse-
quence of the following proposition.

Proposition 6.1. Given w € A, p,q € Wy (p—(L),p+(L)), K,M € N
such that M > g(rw - %), and eg = 2M + 2K + 5 — nry, there hold:

(a) H1L7P7EU7M(w) = H}SK’P’p(w), with equivalent norms.
(b) HéK,P’p(w) and HéK,P’q(w) are isomorphic.

(c) H1L7P7EO)M(w) :H%;K_pr(w) :HéK_LPJ,(w), with equivalent norms.

6.1. Proof of Proposition 6.1, part (a). To prove the left-to-the-
right inclusion observe that if f € H , _ /(w), in particular f € LP(w),
and from Proposition 5.3, part (b), we have that

ISK.PfllLrwy S 11l

L,p,Eo.M(u}).

Therefore, we conclude that HlL,p,so,M(w) C Hg, o p(W)-

As for proving the converse, take f € H,__ (w) and define the same

sets, (Oy, Ol*,le, ...), defined in the proof of Proposition 5.1, part (a),
but replacing Sy, u with Sk p. Besides, consider the following Calderén
reproducing formula of f,

dt

fla) =€ [ (@D eI ) @)

N
—Caim [ (D) VE(RD)R eV () (@)
N—oo [n-1 t
Following the ideas in Remark 5.21, these equalities can be extended
from L?(R™) to LP(w), if we show that the vertical square function as-

sociated with (t2L*)2M+Ke=tVL" is bounded on LP (w'=P"), but this
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follows from (6.3) below with L* in place of L and [5]. After this obser-
vation we continue with the proof, again following the same computa-
tions as in the proof of Proposition 5.1, part (a), considering T, f(x) :==

(t2L)X eV f(z), we can show that supp T, f(z) C (UleZO* \ O/l;)
with p(F) = 0 (u(z,s) = 2£92). Consequently, we have that

: N - - dt
fla)=C Jim [ (£2L)"" e t”( > (D) e tﬁf(o)(m)p

N=eo /N jEN,l€Z
in LP(w). Hence, considering
N = 2lw(QF)
and

mi(@)i= 5 [ @D (0D e ) @) T
1
we show that, for some constant C' >0, we have the following (w, p,eq,M)-
representation of f:
f=c > Nmwl

JEN, l€Z
To that end, we have to show the following:
() {N}er,

(b) there exists a constant Cy > 0 such that C’O_lm{ is a (w,p,e0, M)-
molecule, for all j € N and [ € Z,

(¢) f=CYjen ez N ™] in LP(w).

Statement (a) follows from the definition of the cubes Q{ , and the sets O;
and Oy, and from the fact that ||Sk pf||11(w) < 0. Indeed, proceeding
as in (5.30), we have

Yo Ni= Yo 2w@) <Y 2'w(0r) £ 2w(0) SIISkp fllt () < oo
jeN ez jEN,lez lez lez

The proofs of (b) and (c) are similar to those of Proposition 5.1, part (a),
so we shall skip some details. To show (b), fix jEN, l€Z, and 0<k< M,
k € N. We need to compute the following norms, for every ¢ > 1,

@D ™ )1, gl

For i = 1, let T; := (tQL)2M+K_ke_tf, for t > 0, and for every h €
LP (w'=?") define Qph(z,t) := T *h(x), with (z,t) € R’ Applying
the subordination formula

(6.2) V() =C / o fy)du
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we have that, for every K € N,

N Kt a\ - [ [ g2 dt\* d
</ E*2)%e ﬁf(“f)2tt> < u</ (L) e uLf(w)|2tt) 0

1
e} ~ o) . 2
(6.3) s/ e“u“%d“( |<t2L>Ket2Lf<x>2dt>
0 u 0 t
2K 2L pdt
N (L) e ™" “f(z)]"—
0 t
Therefore,
”QLhHLp (wi=—v’ ) ”QLhHH”LP wl=p")

H t L) QM+ K—k —t\/Fh|2dt>

(/ (217 )2MHK gt L*h|2it)
0

5 HhHLp’(wl—p/):

L' (wi=r")

<

L' (wl=7")

where we have used that p’ € (p_(L*), p4+(L*)) since p+(L*) = px(L)’
see [1], [6, Lemma 4.4], and [5]. Thus, Qy, is bounded from L?' (w'~

to LY (wl_p/), and, as in Remark 5.21, we have that its adjoint operator,

sz(ﬂl') :/ (t L)21V1+K k —tff( )Cit7
0
has a bounded extension from L (w) to LP(w).
After this observations we can treat the case i = 1. Write f} ;- (z,1) :=

Ly (2,1)(1L) e e VI f(x), §lx,t) = t** ] ;- (x,1), and consider

T:={he L (w ™) supph C 4Q] and |[hl| s (1—p) = 1}.
Proceeding as in (5.28), we have

N2 =k QN
((e(Q7)°L) m{)14Q{||LP(w) = Titgl};

Qrg(x) - h(x) dx

RTL
1
S EHS}QPJC( )||LP(CQ-7QEZ+1 w) SUPHmT h|||1" )HLp’(wl—p/)
Sw(@)r!
The last inequality follows from the fact that Sk pf(z) < 2!+1 for all

x € Ej41 and also since the conical square function define by 7,* is
bounded on L¥ (w' ") as p’ € W1 (p—(L*), p1 (L*)) (see [23]).
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For ¢ > 2, take max{2,p} < qo < p4+(L) close enough to p; (L) such
that w € RH (). Since {(tVI)*Ke t\r}bo € Fr, (L2 — L%), for

every K € N, taking r, < r < 7y + ; close enough to ry, so that
M > %(r - %), recalling that 0 < k < M, and using (2.5), we have that

1 o i L L1
1(@])*L) *mi)1 cu@i e ) 5;5(62{) Pw@ Q)T 27Q]| T
1

1
x/wt% / " dy vt
0 ci(@)) t

<2 (@) w(@ Q) P2 Q™
>(2M+Kk+;+;(;;0>>

5./nl(Q7 ip
></ R <1+C4 “ep®
0

12
)
j dt
x (/ | f;K<y,t>2dy> i
Q1

1
2

(LM eI () ()W)

) ) . . L1
S2EwE QDI ([ Sk s o
cQ]ﬂEhH

. 1
5v/me(QY) iprAI2\—(AM+2K —2k+14n(2—1)) ;. \2
( / lf%@f#(wic”@ﬂ) a0 Vdt
0

t2 t

< 271'(21V1+2K+%+17rn)w(2i+1Qg)%
< 27i€027i(rwn77‘n+1) ( 1+1Q])%
Therefore, it follows that ||m{ [lmot,ws < Co for some constant Cy uniform
injeNandleZ.

Let us finally prove that f = C} .y ez ANl in LP(w). We follow
the same computations as in the proof of Proposition 5.1, part (a), we

first see that by (6.3)
> dt\?
27 \K  —tVL g2
([Tensered)
L (w)

> fim
([T 1enee Lf|2dt>

JEN,LEZ
This yields (5.32) where in this case QM g(z) = _(tQL*)QMJ’Ke_t*/Fg(x),
(z,t) € RT‘l. Consequently, f = CZjeN,leZ Nmwl e HlL,p,eo,M(w)’ and

ST 1l

JEN,leZ

LP (w) LP (w)

<

~

S I ee (w)-
LP(w)
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also,

) . .
HfHHIL,p,aO,M(w)S Z ATl = Z 2w(@Q7)

JEN, €z JEN, 1€
S ZQlw(Ol) SISk P fllrrw) = HfH]HI}SK ()" O
ez o

6.2. Proof of Proposition 6.1, part (b). Given w € A, and p,q €
Wa(p— (L), p1 (L)), from part (a), we have that Hy , . 5 (w)=H, , (w)

and Hp , . \(w)=Hg,  (w), with equivalent norms. Hence we have the
following isomorphisms H,%7p7607M(w) R HéKypyp(w) and H£7q7€07M(w) R~
Héx,p,q(w>‘ On the other hand, from Proposition 5.1, parts (a) and (b),
we have that

Hp oo (W) & Hgye oy p(w) % He ey q(w) = Hi g e, 01 (w).
Therefore, we conclude that the spaces HéK’P’p(w) and HéKYP)q(w) are

isomorphic. O

6.3. Proof of Proposition 6.1, part (c). For f € Hg,_ | o p(W), ap-

plying Lemma 4.4, part (b), and the fact that Gx_1 p f(z) < Gx—1.pf(2)
for every x € R™ and for every K € N, we conclude that

ISP fllLrw) S NGr-1,PfllLr(w) < N1Gr-1,PfIlL1(w)-
This and Proposition 6.1, part (a), imply
HéfoP,P(w) - Héxfl,Pvp(w) - H}SK,PJ?(U)) = HIL,P,EoyM(w)'

To complete the proof, take f € H} a(w). In particular we have that

L,p,eo,
f € LP(w), and by Proposition 5.3, ||Gx—1,p fllL1w) S [fllut , )
Then, Hi’p’EO’M(w) C HéKil,P’p(w). O

7. Non-tangential maximal functions

Before starting with the characterization of the Hardy spaces Hy, (w)
and Hjy, (w). We study the LP(w) boundedness of N and Np (see
(2.20)—(2.21)). Additionally we need to see how they control the corre-
sponding square functions. The results are the following:

Proposition 7.1. Given w € Ay,. There hold
(a) Ny is bounded on LP(w) for all p € Wy, (p—(L), ),
(b) Np is bounded on LP(w) for all p € Wy, (p—(L),p+(L)).

Proposition 7.2. Given an arbitrary f € L2(R™), for all w € A and
0 < p < o0, there hold

() 1Gp fllLrw) S INpfllLew)s
) 1GafllLe(w) S INafllLew) -
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7.1. Proof of Proposition 7.1, part (a). Fix w € Ay and p €
W (p—(L),0). Take py € (p—(L),2) and apply the LP°(R™) — L*(R")
off-diagonal estimates satisfied by the family {e‘tzL }i>0 to obtain

1
» 1
g2 dz\ 2 P
Wt fll oy < ( / sup(/ e “f<z>2;) w(x)dx>
Rn t>0 B(z,2t)
, o\ 5
S e~V / su (/ z po—z) *w(z) de
23 ( ([ ) )

j=1
1

i dn P
Sy e 2w < s Mpof(x)pw(m)dm> SIMpo fllLrw),

Jjz1

where M, f i= (M| f[P0)7s.
Now, take p_(L) < pp < 2 close enough to p_(L) so that w € Ax .

PO
Consequently, M, is bounded on LP(w), and then, we conclude that

INVafllLewy S IMpo fllze )y S IFIILew)- O

7.2. Proof of Proposition 7.1, part (b). First, notice that we can
split Np as follows

Nef(z) < sup (/B ( )|<e—tﬁe—t2L>f<z>2dz>

~ (yHer(a) tn

2 d %
N N S Ol
(vl (@) \JB(y,0) t

= sup / e E — e PR fEPE )+ Nuf (@)
B(y,t)

(y,t)eT (@) tn
=:mp f(z) + Nuf(z).

After applying the subordination formula (6.2) and Minkowski’s integral
inequality, we obtain that

1
_2 —t2L 2dy

e du —e - -

(/B o O

T t2 g 2L 2dy %du

sowp [Cub ([ e ey re )

>0 Jo B(x,2t) tr u

< _2p 2L ady \” du
+ sup e ‘u [(e” " —e Wl —=1I+I1.
>0 B(x,2¢) 3 U

1
1

[N
N
U
S

oo
mp f(z) S sup/ e "u
0

Nl

D=
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We first deal with I. Take p_(L) < py < 2, and apply the LP°(R™) —
L2(R™) off-diagonal estimates satisfied by {e="F},5,

1
2L, 11y e dy\?* d

[:sup/ u / |e t2 (6 (41u ;)t L_e QL)f(y)Q% 7'114
t>0.Jo B(z,2t) t u

E
i (L _1y2 _12 PO du,

<sup§ ec/ 2 f e” @I _em Tl r(y)|Po dy —.
t>0 B(z,2j+2t)|( ) ( )| u

Now, notice that when 0 < u < i, we have

ST
o+

[N

(@ et <2 [T e )
V2
t
2Va 2 dr
< Q/t \rzLe Lf(y)|7
<
1
0o 3
< log(u*%)% (/ \T2L67T2Lf(y)|2ﬂ)
0 T
1
=:log(u™ 2)2 guf(y)
Therefore,
b 1 1d g
15 e / log(u™#)u? "= su ][ gl dy
= o U t>0 B(z,2i+2¢)

S Mo (guf) ().
On the other hand, for i <u < o0,
_ 2 _ ¢ _r d
et wli<e [ pte )l s

2/u
1

t 2
< log(2v/a)* ( /. TQLe”Lf(yn?d:) .
NG
Hence,

oo 2
Ilﬁsup/ ““log(2v/u) 32 / |r?Le™" L fly )|2ﬁd—y du
t>0 i B(x,2t)

r tn u
2
<sup/ ue / / |r2L67T2Lf(y) 2dy dr)" du
t>0 B(x,2t) o U
%
S et P B ) du= e s @ au,
% 0 J B(z,4\/ur) r i

|
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recall the definition of Sﬁﬁ in (2.13) and (2.14). Gathering these esti-
mates gives us, for p_ (L) < py < 2,

Mﬂ@SMMWM@+£2”%ﬁﬂ@w+Mﬂm Ve € R™.

4

Let w € Ay and p € W,y (p—(L),p+ (L)), taking norms on LP(w) and
applying [23, Proposition 3.29], we obtain, for r > max{p/2,r,} and
p—(L) <po <2,

oo

INe fllLew) S 1Mo (guf) | L2 (w) +/ u2re” " dul|SufllLew) + NufllLew)

1
4

S Mo (gu )| e (w) + ISHF || e (w) + INEFll 2P (w)-

Now, taking pg close enough to p_(L) so that w € A» , we have that
PO

the maximal operator M, is bounded on LP(w). Besides, since p €
W (p_(L),ps (L)) C Wy(p_(L),), we have that gy, Sg, and Ny
are bounded operators on LP(w), (see [5, Theorem 7.6, (a)], [23, Theo-
rem 1.12; (a)], and Proposition 7.1, part (a), respectively). Consequently,
we conclude (b). O

We next establish Lemma 7.3, whose proof follows similarly to that
of [19, Lemma 6.2]. Consider, for all k > 1,

1
" dz\?
M@= s ([ e

(v.)€" (@) \J B(y,xt) t

and we simply write AV when x = 1.

Lemma 7.3. Givenw € A, 0 <p < oo, and k > 1,

K n(i+z
IN® Flloo ) S K" ETRUN Flloo )

Proof: Consider Oy := {z € R" : N f(z) > A}, E) := R™\O,, and, for
v = l—ﬁ, the set of y-density EY := {x eR”:Vr >0, % >
7}. Note that Of :=R"\ E; = {z € R" : M(10,)(z) > 1/(4r)"}.

We claim that for every A > 0,

(7.4) Nf(z) < (36)2 N, for all z € EX.
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Assuming this, let 0 < p < oo and w € A, 1 < r < o0, so that
M: L"(w) — L™ (w). Hence, we have

IN®F ey = p/ooo N~ lw({z € R : N® f(z) > A}) dA
=p(3K) 7 /oo N hy({z € R™ : N™ f(z) > (36) % A}) dA
0

gp(gn)%/ AP~ Lw(03) dA
0

< p(3K) 7 (4k)™" / AL (0y) dA
0

= (3%) F (AR) "IN F IS

which finishes the proof.

So it just remains to show (7.4). First, note that if « € E5 then, for
every (y,t) € I'?%(x), B(y,t) N E) # 0. To prove this, suppose by way
of contradiction that B(y,t) C Oy. Then, since B(y,t) C B(z, 3xt),

|B(y,t)| 1 1

M(1o,)(z) > ]{B(LM) Lo, (z)dz > |B(z,3kt)]  (3k)" ~ (4k)™’

which implies that « € O3, a contradiction. Therefore, there exists
yo € B(y,t) (in particular (y,t) € I'(yo)) such that N f(yo) < A. Hence,
for all (y,t) € I'**(x), with = € EY,

(7.5) / PEDP%) < sup / FEPL ) =N ) <A
B(y.1) ¢ (2.9)€T (o) \/ B(2,5) 5"

On the other hand, given « € E} and (y,t) € I'"(x), we have that
B(y,kt) C U;B(y;,t), where {B(y;,t)}; is a collection of at most
(3k)™ balls such that y; € B(y,xt) and then |y; — x| < 2kt (equiva-
lently (y;,t) € I'**(z)). Thus,

dz dz
F(z,H)]*-=2 < / F(z,t)|*-= < (3r)"\?,
/B(y,ms)‘ (=01 Z B<yi,t>‘ SRR
where we have used (7.5), since z € E} and (y;,t) € I'**(x). Finally

taking the supremum over all (y,t) € I'*(x), we obtain (7.4) as desired:
N=f(x)? < (3k)"N\?, V€ E3. O

7.3. Proof of Proposition 7.2. We start by proving part (a). Fix
w € Ay, 0 < p < oo,and f € L2(R"). For every N > 1 and a > 1, we
define

(7.6) Ky :={(y,t) eR}" :y € B(O,N),t € (N"',N)}
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%
o ~ _ dy dt
G2 n f(a) = </ / Licy (4, )]tV e tﬁf(y)IQtfH) :
0 B(z,at)

when a = 1 we just write Gp n. Then, supp G§ y f C B(0, (a+1)N) and,
1

since the vertical square function ([, |tVy’te*t‘Ef(y) |24£) % is bounded

on L?(R™), we have that 1G98 N fllLew) < CNE||f| z2@myw(B(0, (a +

1)N))? < co.
Following the ideas used in the proofs of [19, Theorems 6.1 and 7.1].
For every A > 0, set

Oy :={zeR": N5 f(z) >} and E,:=R"\O,,
where
%
Nef@ = sw ([ e P
(e (@) \JBy,nt) t

and k is some positive number that we will determine during the proof.
Besides, consider

) . [ExN Bz, r)| (1
B = R™: B 25
x {fﬂ SRS B T2
* n * n L
O} :=R"\E} = {gg €R": Mllo,)(=) > 5}'

Since Oy is open, Oy C O3 and then Ef C Ej. Also, since w € A,
for r > r,,, we have that M: L"(w) — L™*°(w). Consequently w(O3) <
Cpw(0y). On the other hand, consider the set

Ox:={x e R": G nf(x) > A}
Proceeding as in the proof of [23, Proposition 3.2, part (a)], we can show
that Oy is open and, since ||GF n f|Lr(w) < 00, then w(O,) < oo which

implies that 5,\ ; R™. Hence, taking a Whitney decomposition of 6;0
there exists a family of closed cubes {Q;},en with disjoint interiors such
that

U@ =01 and diam(Q;) < d(Q;,R"\ Oy) < 4diam(Q;).
JEN
We claim that there exists a positive constant c,, depending on the
weight, such that, for every 0 < v < 1 and a = 124/7,
(17) w({e € Bl s Gon f(2) > 2X, NEf(z) < 7AD)
< Cyw{z € R" : Gp yf(x) > A}).
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Assuming this momentarily, we would get
w{z € R": Gp,n f(z)>2A}) <w(O3,)
+w({z € Ejx: Ge N f(z) > 20 Np f(2) <vA})
+ w(Ox)
<Cyw({x € R" : Gp yf(x) > A})
+ Cw({z € R" : NF f(z) > yA}).
Multiplying both sides of the previous inequality by AP~! and integrating
in A > 0, we would have
1Ge. N FIlT 0y < CYNGE N FIIT 0 (1) + CHINE FIIT 0 (1) -

Then, applying [23, Proposition 3.2] and Lemma 7.3 with /' = Np we
would obtain

HgP,Nf”ip(w) < Cay™ ||Qp,Nf||’£,,(w) + Cﬁ,“/”NPf”ip(wy

Finally, since [|Gp N f|r(w) < 1G5 n fllLr(w) < 00, taking v small enough
such that C,y» < %, we would conclude that, for some constant C' > 0
uniform on N,

1Ge.~ fllLe(w)y < ClINP fllLe(w)-

This and the Monotone Convergence Theorem would readily lead to
the desired estimate. Therefore, to complete the proof we just need to
show (7.7). Notice that since Gp v f < g8 nf, we have

{z € By : Gp N f(x) > 22X\, N f(x) <A}
C U{m € E:/\ NQj: Genf(z) > 20N f(z) < yAL

jEN
Consequently, since w € A, to obtain (7.7) it is enough to show
(7.8) {z € E5xNQj: Goun f(x) > 2XNF f(z) <A} < O9°|Q;1-
To this end, consider u(y, t) := e~V f(y),

1
dydt\*
Gr g f(a (/WJ [, Lo DTty )th) ,

Q5 it 3
Gr v f (@ </ [t 9ty 0 )
B(z,t)

We have that Gp nf < Gp 1, nvf+ Gpojnf and that Gp 1 v f(x) <A
for all z € Q;. Indeed, notice that for each j, there exists z; € R™\ Oy

and
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such that d(z;,Q;) < 4diam @Q;. Besides, if (y,t) is such that ¢ > e(%)j)’
z € Qj, and y € B(x,t), then

lz; =yl < log — 2| + [z — y| < 5vVnl(Q;) +t < 11v/nt.
Hence, for a = 12y/n and for all 2 € Q;, we have

dy dt
gP 1,4, Nf /Z(QJ / 1KN y7 ‘tvy tu(y7 t)|2 tg_'.l

dy dt o
< Lt Tl D T = G )< 0%
re(z;

This and Chebychev’s inequality imply that
{z € E5xNQ;: Ge v f(z) > 20 Np f(z) < yAY

<Hx e E;NQy:Gpajnf(z) > A}

1
< ﬁ/ gP,2,j,Nf($)2dﬂU
- nQ,

“Qy)

dydt
[tV ,tu(y,t)\z dx
A2 /* ng/ /B(:c,t) Y tntl

V) /E;AQQ Ge2f(= )

J

To estimate the last integral above, for 0 <e < Z(%)j)

5 dydt ) *
2
(7.10) Gpo.cf(x) = </ / [tV cu(y, t)]? ti/*l )

, consider the function

B(z,t)
Besides, for g > 0, consider the region
€ ; * n t
RAOHENQ) = ) {0 e R x (Bp0Q) sy ol < £ }.

IGE:‘MQQJ'
and we set

(7.11) 5= (" 7).

where A is as in (2.8). Then, we have that there exist 0 < A < A < oo
such that

(7.12) Me* <ReB(@)€-€ and |B(2)€- ¢l < A€,
for all £,¢ € C"*! and almost every z € R™. Moreover, we have that
(7.13) Oru(y,t) = divy, (tB(y)Vy,u(y, t)).

Finally notice that

PUR) dy dt -
Gpo.f(z / / . [tV cu(y,t)|? tfﬂ , forall B (271, 1).
|z y‘<fg
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From this we immediately see

(10 [ Gracf@rans ] V. cu(y, ) dy dt,
B2,nQ; REH@DP (B2, nq,)

for all € (27',1).
Applying (7.12) and integration by parts in the last integral above, we
have that

// 1V ey, |2 dy di
RE4@P (B2, Q)

< Re// tB(y)Vy,cu(y,t) - Vyu(y, t)dy dt
JR@08 (52 ;)
1

tB(y)Vy,u(y,t) - Vyu(y,t
5 . 100y [ Tw0:0) Tl

+ tBy)Vyauly, £) - Vyeuly,t)] dydt
< .. [ div,, (LB () Vy ey, ) uly, O
RUQID P (B Q;)
;

— divy ¢ (tB(y) Vy,eu(y, t))uly, t)} dy dt

[ e [tB) V(9. 1) - vy (v, D
8RE,Z<QJ),B(E;AQQJ_)

+ BV yauly D) - Vi (9, Ouly, 1)) do,

where vy ; is the outer unit normal associated with the domain of inte-
gration.

Now, using (7.13) in the first integral, (7.12) in the second one, and
the fact that |vy¢+(y,t)| = 1, we obtain

t|Vyeu(y, t)|* dy dt
//R-E’[‘(Qj)’ﬁ(E:)\ﬁQj) Y )

<

~

I v [0y, 1) - w1 — .0 - u(y.t)] dy
REEG) (E;/\mQj)

+/ tIVy,eu(y, 1) u(y, t)| do
BRE.UQJ')’B(E;XHQJ') ’

- Beluly, )|* dy dt
’ //Rs,e(Qj)vB<E;>\ﬂQj>

tVy,euly, t)||u(y, t)] do.
/aRe,e<Qj>,a(E:mQj) Y
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Then, applying again integration by parts and Cauchy—Schwartz’s in-
equality, we conclude that

tVyeu(y,t)|? dy dt
‘//’R‘E’“Qj)’B(E::)\ﬁQj) Yy

< lu(y, t)|* do

/BRE’Z(QJ')’H(E;AOQJ‘)

(7.15) UV yuly, t)|u(y, t)| do

of
ORE (Qj)’B(E:AﬁQj)

<

~

lu(y, t)|* do
/anfv“%)vﬁ(E;Aan)

+/ o |tVy7tu(y,t)|2da.
ORE (Q:,)vﬁ(E;Aan)

Now, observe that

IR (1, Qj>:{<y, ) € RIMdly, Qs N By =5, fe < < ﬂé(@»}
U{y e R" :d(y,Q; N E}y) <&} x {Be}
Uy € R 1 d(y,Q; 1 Eln) < £Qy)} x {60(@)}

=H(B)UT(e) x {Be} UT(U(Q;)) x {BLQ))},

and for every function h: Rﬁ“ - R

/ hda:/ hdcr+/ h(y, Be ) dy
oRE @B (B2 Q;) H(B) T()

[ b Q) d.
T(Qj))
Besides, consider

BOD (B2 N Q) = {(y,t) €R" x (27", £(Q))) :
27 d(y, B3N Q;) <t <d(y, E:xNQ;)}

and F(y,t) == w We have that

d(y, Q; N EX
IF (0] < o+ WL

ST -z t #0, for a.e. y € R,
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where JF denotes the Jacobian of F'. Then, integrating in 5 € (1/2,1)
and applying the coarea formula

1 1
hdadﬁg/ / Ml oo o do dg
/; /Hm 1 Jr1age BT (EAANQ))

< )
< o PO 5 ROV F D)
< by 1Ty, 0)] dy di
Bs,e(Qj)<E;>\an)
1 d(y,Q; N E*
< //. h(y,t)~ <1+ M) dy dt
Bs,an)(E;Aan) t t

dy dt
5//54(@-) Py, )=
B4R (B2, nQ;)

On the other hand, doing the change of variables e = ¢, we have

! °1 dy dt
[ [ nwsayas= [ ] nnayas || .0 2
O] s €T <(BX,NQ;)

where
B (EZNQj) == {(y,t) €R" x (27 '¢,¢e) 1 d(y, B3\ N Qy) < 2t}.
Analogously

! dy dt
[ [ wwseenayass [ ) 2
JL JT@;)) BREIN(ENQ; )

where
BYRD(E N Q)) == {(y,1) € R" x (271Q;),U(Q;)) : d(y, B3 N Q;) < 2t}.

Therefore, applying the previous estimates with h(y,t) = |u(y,t)|?, and
h(y,t) = |tV u(y, t)]?, and also (7.14) and (7.15), we have

/ Gpo.ef(x) de = 2/ / Gpo,.f(z)* dxdp
EX,NQ; *NQ,
1 p
< u(y, t)|* do df
A /BREMJ.),H<EWJ_)| )

1
—l—/ / [tV cu(y,t)|* do dj
1 Jore @8 (B2 ;) Y

dydt dy dt
<. utw P %%+ [ 19y, 0ty 2 L
B(EZ,NQ;) B(EZ,NQ;)

= I+1II,

(7.16)
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where
B(EZ;\ N Q) =B (EZ N Q;) UB @) (B N Q) uB "% (B, NQ;)).

Hence,

I< ju(y, 2 L2 Ju(y, 1) 2244
t 2(Q ;) t
Be(EX,NQ;) B9 (B, nQ;)

dy dt
+// ) fuly, O = = D+ Lo + I,
B (QJ')(E;/\F'WQJ-)

and analogously I < IIy + 115+ I13. We start estimating I;. For every
(y,1) € B°(E3,\NQ;), there exists yo € E7, NQ; such that y € B(yo, 2t).
Besides, since yo € EJ\ N Qj, from the definition of £7, we have that
|Eyx N B(yo,2t)| > Ct"™ and then |E,x N B(y, 4t)| > Ct"™. Thus, we have

for k > 4,
dy dt
ns / fu(y, )| dz 22
B2 (BX,nQ;) J B, xnB(y,4t) 3

€ dy dx dt
= T T
£ J8Q;NE,\ J/B(x,4t)

€ " 2d$dt<
s/ﬁ/QmEﬂNPﬂ) 1Qs1(70).

2

The second inequality follows applying Fubini and noticing that (y,t) €
BE(E*AI’WQJ) and z € E,\NB(y, 4t) 1mply that z€ E,\N8Q;, y€ B(x,4t),

and t€ (2 , 5) where we recall that e < 2491) . Similarly, for 11,

dy dt
mx [ / 1V, u(y, DI do L2
B=(B2,0Q;) J B, ANB(y.4t) t

dt
</ // 19, 0y, 7 2L 4o,
8Q,;NE.x B(w,4t) 3

Now, consider the elliptic operator Eu(y, t) :== —divy (B(y)Vy,u(y,t)),
(where B is the matrix defined in (7.11)). Besides, for each z € 8Q; N
E,, cover the truncated cone I'2:54(x) := {(y,t) € R" x (g/2,¢) : |:r -

y| < 4t} by dyadic cubes R; C RT‘I, of side length £, 16f </l < 8\F

Then, the family {2R;};en has control overlap. Hence since Lu = 0,
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apply Caccioppoli’s inequality and obtain for k > 5

M
: dy dt 1
S e 0PG5 S S ] 9t 0 ava
£ JB(z,4t) € ; ;

3 L v
2e
u(y, t)|? dy dt
entt / /B(z 5t)

S ok [ aNEs e S A

£

4

2/\

Z/\

Consequently, 1T} < fSQjﬁEw\ NEf(z)?dz < |Q;|(vA)?. Arguing in the
same way, we obtain that Iy < |Q;|(vA)? and 1T < |Q;](vA)?.

Finally, for I5 and I I3, we decompose R”\(E:/\QQJ-) = O\ U(R™\Q),
(which is an open set since the cubes @); are closed and O,*; , is open), into
a family of Whitney balls {B(xx, )}, such that U B(xk,rr) =
O*A U (R™\ @), and for some constants 0 < ¢; < ¢ < 1 and ¢3 € N,

crd(zr, B3\NQ;) < i < cod(wr, EX,NQ5), and 3702 1p(ay ) () < 3,
for all z € R™. Besides, consider the set
K = {k: d(zx, E5x N1 Q;)) < 2(1 — c2) " 0(Qy)}-
We are going to see that
(7.17)  BYC(E N Q;) € | Blak, i) x [ru(ez ' — 1)/2,mi(ci " +1)).
keEK

Indeed, for (y,t) € B=“Q)(EZ, NQ;), we have that £/2 < t < £(Q;),
y € R"\ (B3, NQj), and
(7.18) 27d(y, B3N Q) <t <d(y, B3N Q).
Then, there exists k such that y € B(zg, 7). We see that k € K and
ri(c;t —1)/2 <t < rgp(e;* +1). On the one hand, we have

d(y, B3N Qy) < ly — w| + dlz, B} N Qy) < e+ ey v = (L4 ¢1 ),
and, on the other hand,

d(y, E5a N Qj) = d(we, B N Qj) — |y — x| = (ch2_1 —m) = (e = .

Therefore, by (7.18), we have that ¢ € [ri(c;* —1)/2,r1(c; ' +1)]. From
this and recalling that ¢t < ¢(Q;), we have

d(zr, B3 N Qj) < |y — ax| +d(y, Ejx N Qj) < i + 26(Q;)
2t _
< m +20(Q;) < 2(1 — c2) 1 (Qy),
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which in turn gives us that k € K. Moreover, note that for every k € K ,
we have that

(719)  B(xg,m) C C(c2)Qj, with Cleg) :=4(1 —ca) '(ca+ 1)+ 1.

Indeed, note that since £3,NQ; C Q; then d(zg, Q;) < d(xg, :/\OQj).
Hence, for zg € B(xy, 7)) and xq, being the center of Q);, we have,

1
|20 — Q; o0 < @0 — Thloo + |Th — T, lo0 STk + (2(1 —e) T+ 5) UQj)

_ 200Q;
< (41 —c2) Mea+1)+1) (gf).
Now, since Ei;)\ C E, then
* -1 262
d(zr, Qi NEy ) <d(xk, BN Qj) < e 1 £ ——— 1,
01(1 — CQ)

which implies that, for x > (202 D there exists € QQ; N E, such that
|Z — x| < kt, then

2d 2
[ P s [ ol <A@ < a7
B(zg,1=2t) B(wy,kt)

2¢
T—cs

Therefore, by (7.19), we have

ri(er " +D) dy dt
< 204y
D DY N ! o [ P

keK

r (e 1) du dt
< 204y
Zm /’k“2 -y /Bm 2¢p [uly 0) tnt+l

t
keK 1—cgp )

SN Yk SN U Blak,m)

keEK keK

S1Q51(7N)2.

Similarly, arguing as in the estimate of I1; (taking x larger if necessary),
we conclude that IT3 < |Q;[(7A)?. Gathering the estimates obtained
for I and I gives us that

[ Gract@)?dn < Clol00
IANQ;
with C independent of €. Now, recall the definitions of Gp 2 and Gp o .
in (7.9) and (7.10) respectively. Then, let € — 0 and obtain

/ Gr 2 f(2)? dz < C|Q;| (VM)
E* NQ;

*
YA

This, together with (7.9), yields (7.8).
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In order to complete the proof of Proposition 7.2, we need to establish
part (b). The argument follows the lines of [19, Theorem 6.1] and the
proof of part (a), so we only sketch the main changes. Consider, for o >
1, for each N > 1, K as in (7.6), and

1
_ dydt\”’
Ginf(z <// 1y (0, O[tVye F f(y )I2tf+1> ;

we write Gu,x when a = 1. Notice that supp Gf xf C B(0, (o + 1)N)
and much as before

1GTi v Pl < Cllfllzny N Ew(B(O, (a+ 1N))7 < oo,
Hence, it is enough to show part (b) with Gy n in place of Gy with
constants uniform in N. We follow the proof of part (a), replacing Q‘F)," N
and Np with Gf v and Nu, respectively, (Gp,n with Gp y when a = 1).

We also need to replace u(y, t) with v(y,t) := e=*"L f(y) and tVyu(y,y)
with tVyu(y,t). We also use the ellipticity of the matrix A (see (2.7))
instead of the properties of the block matrix B defined in (7.11). Then,
we have that

/ Citne f(2)? do < // oy, I dy dt
EX\NQ; B(EZ,NQj)
+ //~ {1V, 0y, ) dydt = T+ T1.
B(E?,nQ;)

From here the proof proceeds much as the proof of part (a): term T is
estimated as term I, and term IT as term IT but, in this case, as in
the proof of [19, Theorem 6.1], we need to use the following parabolic
Caccioppoli inequality (see [19, Lemma 2.8]):

Lemma 7.20. S’uppose Orf = —Lf in Iz (x0,t0), where I.(xg,tg) =
B(xy, ) [to — cr?,to], to > 4er?, and ¢ > 0. Then, there exists C =
C(\, A, ¢) > 0 such that

// IV f (e, )] dar dt < 7// | f(w, )|? da dt. O
(z0,t0) Iz (z0,t0)

Remark 7.21. Following the explanation of [23, Remark 4.22], one can
see that Proposition 7.2 holds for all functions f € L(w) with w € Ay
and ¢ € Wy, (p—(L),p+(L)). Details are left to the interested reader.

7.4. Characterization of the weighted Hardy spaces associated
with Mg and ANp. The proof of Theorem 3.11 requires several steps.
The first one consists in obtaining that the L!(w) norms of the non-
tangential maximal functions applied to (w,p,e, M)-molecules are uni-
formly controlled.
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Proposition 7.22. Let w € A, let p € Wy (p—(L),p+(L)), € > 0, and
M € N such that M > g(rw — p%(L)), and let m be a (w,p,e, M)-mol-
ecule. There hold:

(a) [INVam|11(w) + NP 1) < C.

(b) For all f € HY , . p(w),

INafll oty + INP fllrtwy S HfH]HIIL () B-

p,e, M

Proof: Assuming part (a), the proof of part (b) is similar to that of
Proposition 5.3, part (b), but applying Proposition 7.1 instead of [23,
Theorems 1.12 and 1.13].

Let us prove part (a). Fix w € As, p € Wy(p—(L),p+(L)), € > 0,
M € N such that M > %(rw — p%(L)) Then, take m a (w, p,e, M)-mol-
ecule, and ) a cube associated with m. Besides we fix pg, ¢, and 7 with
p—(L) < po < min{2, p} < max{? p} < q < p4+(L) and 7 > 1y so that
TUEAP ﬂRH( )/andM> ( po

We start by deahng with NH For every z € R", we have

1

_ dz \?
Nim(x) < wp [ e P
(v,t) €T (x), 0<t<L(Q) J B(y,t) t

1
3
+ sup / |67t2Lm(z)\2d—: =:Fim(z) + Fom(x).
(W DET(@), t>£Q)  B(y,0) t

Besides, recalling the notation introduced in (3.1), we can write m =
Zizl wle, (@) =: Zi21 m;. Hence,

IFimll ) SO 11160, Frmill iy + YD l11e; @0 Frmillw)

(7 23) i>1 i>1j>4
i>1 i>1 j>4

To estimate I;, we apply Holder’s inequality, Proposition 7.1, and (3.3)
for k =0:

(T21) LS w(@)Y INumilr ) S w(@) i) <27

As for I;;, note that for every z € C;(Q;), 0 < t < 4(Q), and (y,t) €
['(z), we have that B(y,t) C 2/t2Q; \ 2771Q;. Then, applying that
{e™ L} 50 € Foo(LPo — L?) and Lemma 4.6, we get

1

2 d 2
Fim(z) < sup / le™" Fmy(z) 282
0<t<L(Q) J2i+1Q;\29-1Q; tr

n _ 491 e)? 4 it
< sup e @ mil|proe S w(@) e
0<t<e(Q)
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Therefore, taking the norm in L' (w) in the previous expression and using
that w € Ao, we obtain that I;; < e=<¥"" This, (7.23), and (7.24) yield
[F1m| L) < C.

We turn now to estimate the norm in L!(w) of Fom. Considering
Bg = - e~ HQ)? LyM Aq =1 — Bq, and m = ({(Q)?>L) Mm, and
noticing that we can write m = .o, mlg,(q) =: >_;5; M;. Then, for
every x € R,

m(z) = Bom(z) + Agm(x)

=3 (BQmiu) +> Ck,M<ke<Q>2L>Me’““Q“ﬁn(m)) |
i>1 k=1

Besides, proceeding as in (7.24) and applying the fact that, for every

1 < k < M, the operators (k{(Q)2L)Me=*(@°L and B, are bounded
on LP(w) (see [7]), we have that
(7.25)

Z(H]-IGQLFQBle”Ll w)'FZ (1160, F2(k(Q)*L)Me QL ;] 11w )> <C.
i>1 k=1

Next, consider #j; := v M + 1 and note that, for every j > 4,1 > 1,
v € C5(Qi), UQ) /0w <t < 273(Qi)/0m, and (y,0mt) € T(x), we
have that B(y,0pt) C 2972Q; \ 2771Q;. Therefore, since {e~ L},0 €
Foo(LPo — L?) and by the LPo(R™)— LP°(R") off-diagonal estimates satis-
fied by the family {e‘tQLBQ}DO (see (5.12)), applying [23, Lemma 2.1]
(see also [18, Lemma 2.3]), and Lemma 4.6, we have

M, a2
FQBsz‘(-'E) ,S HmiHLpo(Rn) sup (@) e T2
KDy 2390 t
¢ 2M n
+ Sup <@> t Po)
t>$ﬁ%>
Sw(Qq)” 1g—i(2M+e) =i (2M+50)
Then, using (2.5), we easily obtain that
(7.26) 11, @ FaBamill 1wy S 27 i(2M+e) o= J(2M+L,m)

forall j >4 and ¢ > 1.
Note now that, for every j >4, i > 1, 2 € C;(Q,), {(Q)/V2 < t <

29730(Q;)/V2, and (y,V2t) € T'(z), we have that B(y, v2t) C 2772Q; \
2771Q);. Then, proceeding as in the estimate of FyBgm;, but using

this time the off-diagonal estimates satisfied by the family {tQLe_t2L}t>0
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instead of the ones satisfied by {e’tQLBQ}DO, we have that, for every 1 <
k<M,

Fo((kE(Q)L)M e * @ L 5 ()
S —_—
- (v, ft)esfl(lf) >4D (t + k4(Q)?

1

- </ e H((# + k(Q))L )Me(t"’+’“(Q>2>Lai<z>l2dZ>2
B(y,V2t)

tTL

_ V4 M, AT )?
5||mi|Lvo(R")< sup <@> t roe 2

(@) _, . 21730@Q))
vz <ttTR

< w(Qu) 2N IS,

Then, |[1¢, (0. F2AQW|1iw) S 2—i(2M+8)2*j(21M+%7?n)7 for all j > 4
and ¢ > 1. This, (7.26), and (7.25), and splitting the norm of Fom as
n (7.23), allow us to conclude that ||Fom|[z1(,) < C.

We now consider Np. Note that, in the proof of Proposition 7.1,
part (b), (and following the notation introduced there with f = m) we
saw that Npm(z) < mpm(z) + Mgm(z). Then, since we have already
proved that [|[Nam| 1) < C, wejust need to consider mpm. Applying,

the subordination formula (6.2), we have that
%
1 _ d d
mpm(z) S swp [ u? (et — e m(x) PSS
(v, t)GF(Z) B(y t) t U
1
Cu 1 _2 - dz\’ d
+ sup / e u? / (e Wl _e tQL)m(z) 2—5 e
(y.t)el(z) J 1 B(y,t) t u
=141l

Note that IT is bounded by the term IT (with f = m) in the proof
of Proposition 7.1, part (b). Hence, applying [23, Proposition 3.2] and
Proposition 5.3, part (a), we get

o]

1Tl ) < / ¢S 1t < / we™ dullSum| 1w < C,
1

1

recall the definition of Sﬁﬁ in (2.13) and (2.14).
Next, we estimate I. We shall use the notation introduced before
for m;, m;, Bg, and Ag, and also in (3.1). Proceeding as in the estimate
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of the term I (with f = m) in the proof of Proposition 7.1, part (b), we
have

(7.27)
e oo _ d
I,SZG ed! sup f </ |r?Le "L )? "
>1 (y,t)Er(z)\ J B(y,2!+1t) %
- Ldr\2
l
§267C4 sup ][ (/ |r2Le™" ‘L m(z)] —) dz
I>1 (y,1) €T (2),0<t<(Q)\ / B(y,2!+1t) \Jo r

1 e 2 dr\? "
+ Z e sup ][ (/ |r2Le™" Lm(z)|2—) dz
=1 (5,)€0(2), 1>\ B(y,2+10) \J L "

=Y e (Fum(z) + Faum(a)).

We first estimate F; ;m(z). Note that considering the following vertical
square functions

1
£¢(Q) s dr\ 2
gram(z) = < / r2Le”" Lm(a:>|”>
0 T
1

e = (/;) (ag)z)w (L) e i (a) 2ij°> ’

We have that

and

1

PO
Fram(z) < sup f g1 m(2)[ " d
(y,t)el(z),0<t<L(Q) B(y,2!+1t)
1

(7.28) ~ 7
+  swp f Jgut2(2) [P0 dz
(y,t)€l(2),0<t<L(Q) B(y,2!t1t)

=: F{ ym(z) + F{ m().
Applying Hoélder’s inequality, (2.5), and by the boundedness on LP(w)
of the maximal operator M, (recall that w € A ) and the vertical
square function gg 1 (see [5]), and by (3.3), we have “that
||12l+3QiF11,lmi”L1(w) S a3 g, Moo (gr,1m4) [ L1 (20
S w@'Q) My (g1 mi) oy S 27727
Now observe that for every i > 1, j > 1+ 3, 2 € C;(Q;), 0 < t < {(Q),

and (y,t) € I'(x) we have that B(y,2!"t) c 2772Q; \ 2971Q,. Then,
applying Holder’s inequality, Minkowski’s integral inequality, the fact
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that w € RH (1) and {rzLe*TQL}mO € F(LPo — L7), and Lemma 4.6,
we obtain that

11c; 00 Fi, zmzﬂLl(w Sw(@HQi) Y [ Mpy(Lair20,\0i-10, 98,14 || Lo (w)

E

Qi
21 Q,) P ||121+2Q \29-10; 91,15 || Lo (w)
23+1Q |2J+1Q |~ a H121+2Q \2i-1Q, 9H, 1m1HL<1 (R™)

8

1

w

( )e
( )
( )
(@71 Q) 127 Qi 74 [l oo gay

20(Q) 43+ie()2 2n | 2n 2 j+i
X e T 2 f%*Tﬂ <e M,
0 r

Therefore,
IFL |11y S Z 111430, FLimill 21w
i>1
(7.29) - L Inp
+) 03 ey o Flamilliw S 2
i>15>143

Similarly, noticing that gy » (disregarding the factor (£(Q)?/r?))*M since
it is controlled by one) is bounded on L?(w) (see [5]), we get

1 _ i
[Lpi430, FEimill 11w S w(2'Qi) 7 | My (g2 || e () S 277277,
and, since {(r2L)M+le=r"LY _ e F(LPo — L9), proceeding as before,

~ ; ; 1.
e, Framill oy S w(@1Q:)127 Qi ™ [[M]| Lro an)

1

o0 2\ 2M 43+ie()2 2n | 2n 2
X / (Z(?) et
)\ T r

< 27j(2M7L % —nTF) 2—1’(21VI+5) )

Hence, splitting ||Filﬁﬁ||L1(w) as in (7.29), and by (7.28), we obtain that
HFl,lm”Ll(w) S 2””.

Let us turn to the estimate of F5;m. Consider the vertical square
function

o (z) = ( [ (@)™ |(rzL)M*le—*Lﬁm(w)“ff”)é ,
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and note that
(7.30)

| Fypmm gy < ZZ(\

i>135>1

lc;@ sup
(w)6F(~)J(Q)<t§2j*’*4f-’<Qi)

1
. P
x (][ o4 (2)P° dz) ’
B(y,2!t1t)

L1 (w)
]‘Cj(Qi) sup
(y,)EL(),t>20~1=40(Q;)

1
x (7[ g i (2)[7° dz) "
B(y,2!t1t) L1 (w)

=: ZZ(|\1cj(Qi)F21,zi7)i||L1(w> + 11, @) Foimill 11 ()

i>1>1

SO arag, Fau®illpiy + Y > Ile, @) Faamill L)
i>1 i>15>1+3

+ Z o143, F5mill Lt w) + Z Z 110, @0 Fomill 11 (uw)-

i>1 i>15>1+3

"

Next, for every ¢(Q) < t < v/2r we have that g is controlled by gn

(where gy is defined in the proof of Proposition 7.1, part (b)) and gy is
bounded on LP(w) (see [5]), hence, for a = 1,2,

1 ~
19430, Fauimill 11wy S w(2'Qi) " Moy (gr™:) || o ()
w(2 Ql)p Hmz”LP(w) < 2lnT2—'Lg

We observe now that for every ¢ > 1, j > 1+ 3, z € C;(Q,), 4(Q) <
t < 22],+1 0(Q;), and (y,t) € T'(z), we have that B(y,2!*'t) c 20+2Q; \
2/71Q;. Therefore, arguing as in the estimate of [|1¢; () Ff ™l (w)
and ||1Cj(Qi)F12,ZT?’i||L1(w)7 we have that

_ : 1 _
116,00 Faumill Lt wy S (2 Qi) 7 | My (1ai+20,1 2510, 91,6(0) ™3| Lr ()
<2 1(2M+5)2 J(2M+——nr

and

~ ; : 1
e, Foamill iy S w(@1Qi)127Qul ™ [ ™| Lro ()

x </;j§m (ﬂ?))wr-zn( L1y (ir)

< 2cl2—i(2M+s)2—j(2M+;—(’)—nF)
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Consequently, by (7.30) we conclude that ||Fs;m|11(,) < 2'°. Then, in
view of (7.27), this and the estimate obtained for ||F1;m|11(,) imply
that [|1]| 1,y < C, which finishes the proof. O

Hence, we are ready to prove the next proposition which easily implies
Theorem 3.11.

Proposition 7.31. Let w € Ay, p € Wy (p—(L),p+(L)), M € N such
that M > %(rw - %), and g9 = 2M + 2 + 5§ — ryn, there hold
(a) Hyg, ,(w) =HE, (w)=H}  _ 3 (w), with equivalent norms.

(b) Hy, ,(w) =Hg, ,(w) =H} (w), with equivalent norms.

Proof: Fix w € Aco, p € Wy(p—(L),p+ (L)), M € N such that M >
%(rw - %), and g9 = 2M + 2+ 5 — ryn.

In order to prove part (a), note that for f € H
tion 7.22, part (b) yields that

1 ety oy = INBF It oy S 11

Therefore, since in particular f € LP(w), we have that f € Hj,_ pw).

\P,€0, M

1

L,p,507M<w)7 PI"OpOSi—

»PvEOvM(w).

Take now f € H}\[Hm(w). Lemma 4.4, part (a), Proposition 7.2,
part (b), and Remark 7.21 imply

ISufllLrwy S NGHSLt(w) S INaFIlL1 ()
Then f € H}Smp(w). Consequently, from Proposition 5.1, part (a), f €
HI p,eo,ne (w), and

< <
WAl o S Iy, S 17l

As for part (b), take f € HlL,p,EO)M(w) and apply Proposition 7.22,
part (b), to obtain

Hf||]1-ﬂ}\/P,p(w) = INpfllLrw) S H.f”HlL)pYEOYM(w)'

Hence, since again f € LP(w), we have that f € H}\[P,p(w).
Finally, notice that for f € H}\/P7p(w) Proposition 7.2, part (a), and
Remark 7.21 imply that
G fllL1w) S NP FIL1 ()

Therefore, f € Hép’p(w). Then, applying Proposition 6.1, part (c), we
conclude that

I1£ 1152

Lop.eg,m (W

and f € Hy , . (w). O

) S Iy, oy S WSl
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