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Abstract: Given a Muckenhoupt weight w and a second order divergence form

elliptic operator L, we consider different versions of the weighted Hardy space H1
L(w)

defined by conical square functions and non-tangential maximal functions associated
with the heat and Poisson semigroups generated by L. We show that all of them

are isomorphic and also that H1
L(w) admits a molecular characterization. One of the

advantages of our methods is that our assumptions extend naturally the unweighted
theory developed by S. Hofmann and S. Mayboroda in [19] and we can immediately

recover the unweighted case. Some of our tools consist in establishing weighted norm

inequalities for the non-tangential maximal functions, as well as comparing them with
some conical square functions in weighted Lebesgue spaces.
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1. Introduction

This is the second of a series of three papers whose aim is to study
and develop a theory for weighted Hardy spaces associated with different
operators. The study of Hardy spaces began in the early 1900s in the
context of Fourier series and complex analysis in one variable. It was not
until 1960 when the theory in Rn started developing by E. M. Stein and
G. Weiss [25]. A few years later R. R. Coifman in [12] and R. H. Latter
in [22] gave an atomic decomposition of the Hardy spaces Hp, 0 <
p ≤ 1. This atomic decomposition turns out to be a very important
tool when studying the boundedness of some singular integral operators,
since in most cases checking the action of the operator in question on
these simpler elements (atoms) suffices to conclude its boundedness in
the corresponding Hardy space.

Another stage in the progress of the theory of Hardy spaces was done
by J. Garćıa-Cuerva in [15] (see also [26]) when he considered Rn with
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the measure given by a Muckenhoupt weight. These spaces were called
weighted Hardy spaces, and among other contributions, he also charac-
terized them using an atomic decomposition.

In general, the development of the theory of Hardy spaces has con-
tributed to give us a better understanding of some other topics as in
the theory of singular integrals operators, maximal functions, multiplier
operators, etc. However, there are some operators that escape from the
theory of these classical Hardy spaces. These are, for example, the oper-
ators associated with a second order divergence form elliptic operator L,
such as the conical square functions and non-tangential maximal func-
tions defined by the heat and Poisson semigroups generated by the op-
erator L, (see (2.14)–(2.19) and (2.20)–(2.21) for the precise definitions
of these operators).

The theory of Hardy spaces associated with elliptic operators L was
initiated in an unpublished work by P. Auscher, X. T. Duong, and
A. McIntosh [3]. P. Auscher and E. Russ in [9] considered the case on
which the heat kernel associated with L is smooth and satisfies pointwise
Gaussian bounds, this occurs for instance for real symmetric operators.
There, among other things, it was shown that the corresponding Hardy
space associated with L agrees with the classical Hardy space. In the set-
ting of Riemannian manifolds satisfying the doubling volume property,
Hardy spaces associated with the Laplace–Beltrami operator are intro-
duced in [8] by P. Auscher, A. McIntosh, and E. Russ and it is shown that
they admit several characterizations. Simultaneously, in the Euclidean
setting, the study of Hardy spaces related to the conical square functions
and non-tangential maximal functions associated with the heat and Pois-
son semigroups generated by divergence form elliptic operators L was
taken by S. Hofmann and S. Mayboroda in [19], for p = 1. The new
point was that only a form of decay weaker than pointwise bounds and
satisfied in many occurrences was enough to develop a theory. This
was followed later on by a second article of S. Hofmann, S. Mayboroda,
and A. McIntosh [20], for a general p and simultaneously by an article of
R. Jiang and D. Yang [21]. A natural line of study in the context of these
new Hardy spaces is the development of a weighted theory for them, as
J. Garćıa-Cuerva did in the classical setting. Some interesting progress
has been done in this regard by T. A. Bui, J. Cao, L. D. Ky, D. Yang,
and S. Yang in [10, 11]. The results obtained in [11] in the particular
case ϕ(x, t) := tw(x), where w is a Muckenhoupt weight, give character-
izations of the weighted Hardy spaces that, however, only recover part
of the results obtained in the unweighted case by simply taking w = 1.
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In this paper we take a further step, and present a different approach
to the theory of weighted Hardy spaces H1

L(w) (the general case Hp
L(w)

will be treated in the forthcoming paper [24]) associated with a second
order divergence form elliptic operator, which naturally generalizes the
unweighted setting developed in [19]. We define weighted Hardy spaces
associated with the conical square functions considered in (2.14)–(2.19)
which are written in terms of the heat and Poisson semigroups generated
by the elliptic operator. Also, we use non-tangential maximal functions
as defined in (2.20)–(2.21). We show that the corresponding spaces are
all isomorphic and admit a molecular characterization. This is partic-
ularly useful to prove different properties of these spaces as happens in
the classical setting and in the context of second order divergence form
elliptic operators considered in [19].

Some of the ingredients that are crucial in the present work are taken
from the first part of this series of papers [23] (see also [4]), where we
already obtained optimal ranges for the weighted norm inequalities sat-
isfied by the heat and Poisson conical square functions associated with
the elliptic operator. Here, we need to obtain analogous results for the
non-tangential maximal functions associated with the heat and Poisson
semigroups (see Section 7). All these weighted norm inequalities for the
conical square functions and the non-tangential maximal functions, along
with the important fact that our molecules belong naturally to weighted
Lebesgue spaces, allow us to impose natural conditions that in partic-
ular lead to fully recover the results obtained in [19] by simply taking
the weight identically one. It is relevant to note that in [10, 11] their
molecules belong to unweighted Lebesgue spaces and also their ranges
of boundedness of the conical square functions are smaller. This makes
their hypothesis somehow stronger (although sometimes they cannot be
compared with ours) and, despite making a very big effort to present
a very general theory, the unweighted case does not follow immediately
from their work.

The plan of this paper is as follows. In the next section we present
some preliminaries concerning Muckenhoupt weights, elliptic operators
and introduce the conical square functions and non-tangential maximal
functions. In Section 3 we define the different versions of the weighted
Hardy spaces and state our main results. Section 4 contains some aux-
iliary results. Sections 5 and 6 deal with the characterization of the
weighted Hardy spaces defined in terms of square functions associated
with the heat and Poisson semigroups, respectively. Finally, in Section 7
we study the non-tangential maximal functions and the weighted Hardy
spaces associated with them.
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2. Preliminaries

2.1. Muckenhoupt weights. We will work with Muckenhoupt
weights w, which are locally integrable positive functions. We say that
w ∈ A1 if, for every ball B ⊂ Rn, there holds 

B

w(x) dx ≤ Cw(y), for a.e. y ∈ B,

or, equivalently, Muw ≤ Cw a.e. where Mu denotes the uncentered
Hardy–Littlewood maximal operator over balls in Rn. For each 1 < p <
∞, we say that w ∈ Ap if it satisfies( 

B

w(x) dx

)( 
B

w(x)1−p′ dx

)p−1

≤ C, ∀B ⊂ Rn.

The reverse Hölder classes are defined as follows: for each 1 < s < ∞,
w ∈ RHs if, for every ball B ⊂ Rn, we have( 

B

w(x)s dx

) 1
s

≤ C
 
B

w(x) dx.

For s =∞, w ∈ RH∞ provided that there exists a constant C such that
for every ball B ⊂ Rn

w(y) ≤ C
 
B

w(x) dx, for a.e. y ∈ B.

Notice that we have excluded the case q = 1 since the class RH1 consists
of all the weights, and that is the way RH1 is understood in what follows.

We sum up some of the properties of these classes in the following
result, see for instance [16], [14], or [17].

Proposition 2.1.

(i) A1 ⊂ Ap ⊂ Aq for 1 ≤ p ≤ q <∞.

(ii) RH∞ ⊂ RHq ⊂ RHp for 1 < p ≤ q ≤ ∞.

(iii) If w∈Ap, 1 < p <∞, then there exists 1 < q < p such that w∈Aq.
(iv) If w ∈ RHs, 1 < s < ∞, then there exists s < r < ∞ such that

w∈RHr.

(v) A∞ =
⋃

1≤p<∞
Ap =

⋃
1<s≤∞

RHs.

(vi) If 1 < p <∞, w ∈ Ap if and only if w1−p′ ∈ Ap′ .
(vii) For every 1<p<∞, w∈Ap if and only if M is bounded on Lp(w).

Also, w ∈ A1 if and only ifM is bounded from L1(w) into L1,∞(w),
whereM denotes the centered Hardy–Littlewood maximal operator.

For a weight w ∈ A∞, define

(2.2) rw := inf{1 ≤ r <∞ : w ∈ Ar}, sw := inf{1 ≤ s <∞ : w ∈ RHs′}.
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Notice that according to our definition sw is the conjugated exponent of
the one defined in [6, Lemma 4.1]. Given 0 ≤ p0 < q0 ≤ ∞, w ∈ A∞,
and according to [6, Lemma 4.1] we have

(2.3) Ww(p0, q0) :=
{
p : p0 < p < q0, w ∈ A p

p0
∩RH(

q0
p

)′

}
=

(
p0rw,

q0
sw

)
.

If p0 = 0 and q0 <∞ it is understood that the only condition that stays
is w ∈ RH(

q0
p )′ . Analogously, if 0 < p0 and q0 =∞ the only assumption

is w ∈ A p
p0

. Finally Ww(0,∞) = (0,∞).

We recall some properties of Muckenhoupt weights. Let w be a weight
in A∞, if w ∈ Ar, 1 ≤ r < ∞, for every ball B and every measurable
set E ⊂ B,

(2.4)
w(E)

w(B)
≥ [w]−1

Ar

(
|E|
|B|

)r
.

This implies in particular that w is a doubling measure:

(2.5) w(λB) ≤ [w]Arλ
n rw(B), ∀B, ∀λ > 1.

Besides, if w ∈ RHs′ , 1 ≤ s <∞,

(2.6)
w(E)

w(B)
≤ [w]RHs′

(
|E|
|B|

) 1
s

.

2.2. Elliptic operators. Let A be an n×n matrix of complex and
L∞-valued coefficients defined on Rn. We assume that this matrix sat-
isfies the following ellipticity (or “accretivity”) condition: there exist
0 < λ ≤ Λ <∞ such that

(2.7) λ|ξ|2 ≤ ReA(x) ξ · ξ̄ and |A(x) ξ · ζ̄| ≤ Λ|ξ||ζ|,

for all ξ, ζ ∈ Cn and almost every x ∈ Rn. We have used the notation
ξ · ζ = ξ1 ζ1 + · · · + ξn ζn and therefore ξ · ζ̄ is the usual inner product
in Cn. Associated with this matrix we define the second order divergence
form elliptic operator

(2.8) Lf = −div(A∇f),

which is understood in the standard weak sense as a maximal-accretive
operator on L2(Rn) with domain D(L) by means of a sesquilinear form.

As in [1] and [7], we denote respectively by (p−(L), p+(L)) and
(q−(L), q+(L)) the maximal open intervals on which the heat semi-
group {e−tL}t>0 and its gradient {

√
t∇ye−tL}t>0 are uniformly bounded
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on Lp(Rn):

p−(L) := inf

{
p ∈ (1,∞) : sup

t>0
‖e−t

2L‖Lp(Rn)→Lp(Rn) <∞
}
,(2.9)

p+(L) := sup

{
p ∈ (1,∞) : sup

t>0
‖e−t

2L‖Lp(Rn)→Lp(Rn) <∞
}
,(2.10)

q−(L) := inf

{
p ∈ (1,∞) : sup

t>0
‖t∇ye−t

2L‖Lp(Rn)→Lp(Rn) <∞
}
,(2.11)

q+(L) := sup

{
p ∈ (1,∞) : sup

t>0
‖t∇ye−t

2L‖Lp(Rn)→Lp(Rn) <∞
}
.(2.12)

From [1] (see also [7]) we know that p−(L)=1 and p+(L)=∞ if n = 1, 2;
and if n ≥ 3 then p−(L) < 2n

n+2 and p+(L) > 2n
n−2 . Moreover, q−(L) =

p−(L), q+(L)∗ ≤ p+(L) (where q+(L)∗ is the Sobolev exponent of q+(L)
as defined below), and we always have q+(L)>2, with q+(L)=∞ if n=1.

Note that in place of the semigroup {e−tL}t>0 we are using its rescal-

ing {e−t2L}t>0. We do so since all the “heat” square functions are writ-
ten using the latter and also because in the context of the off-diagonal
estimates discussed below it will simplify some computations.

Besides, for every K ∈ N0 and 0 < q <∞ let us set

qK,∗ :=


q n

n− (2K + 1) q
, if (2K + 1) q < n,

∞, if (2K + 1) q ≥ n.

Corresponding to the case K = 0, we write q∗ := q0,∗.

2.3. Off-diagonal estimates. We briefly recall the notion of off-diag-
onal estimates. Let {Tt}t>0 be a family of linear operators and let 1 ≤
p ≤ q ≤ ∞. We say that {Tt}t>0 satisfies Lp(Rn)− Lq(Rn) off-diagonal
estimates of exponential type, denoted by {Tt}t>0 ∈ F∞(Lp → Lq), if
for all closed sets E, F , all f , and all t > 0 we have

‖Tt(f 1E)1F ‖Lq(Rn) ≤ Ct−n( 1
p
− 1
q

)
e
−c d(E,F )2

t2 ‖f 1E‖Lp(Rn).

Analogously, given β > 0, we say that {Tt}t>0 satisfies Lp − Lq off-
diagonal estimates of polynomial type with order β > 0, denoted by
{Tt}t>0 ∈ Fβ(Lp → Lq) if for all closed sets E, F , all f , and all t > 0
we have

‖Tt(f 1E)1F ‖Lq(Rn) ≤ Ct−n( 1
p
− 1
q

)

(
1 +

d(E,F )2

t2

)−(β+n
2

( 1
p
− 1
q

))

‖f 1E‖Lp(Rn).
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The heat and Poisson semigroups satisfy respectively off-diagonal esti-
mates of exponential and polynomial type. Before making this precise, let
us recall the definition of p−(L), p+(L), q−(L), and q+(L) in (2.9)–(2.10)
and in (2.11)–(2.12). The importance of these parameters stems from the
fact that, besides giving the maximal intervals on which either the heat
semigroup or its gradient are uniformly bounded, they characterize the
maximal open intervals on which off-diagonal estimates of exponential
type hold (see [1] and [7]). More precisely, for every m ∈ N0, there hold

{(t2L)me−t
2L}t>0 ∈ F∞(Lp − Lq) for all p−(L) < p ≤ q < p+(L)

and

{t∇ye−t
2L}t>0 ∈ F∞(Lp − Lq) for all q−(L) < p ≤ q < q+(L).

From these off-diagonal estimates we have, for every m ∈ N0,

{(t
√
L)2me−t

√
L}t>0 ∈ Fm+ 1

2
(Lp → Lq),

for all p−(L) < p ≤ q < p+(L), and

{t∇y(t2L)me−t
2L}t>0, {t∇y,t(t2L)me−t

2L}t>0 ∈ F∞(Lp → Lq),

{t∇y(t
√
L)2me−t

√
L}t>0 ∈ Fm+1(Lp → Lq),

{t∇y,t(t
√
L)2me−t

√
L}t>0 ∈ Fm+ 1

2
(Lp → Lq),

for all q−(L) < p ≤ q < q+(L) (see [23, Section 2]).

2.4. Conical square functions and non-tangential maximal func-
tions. The operator −L generates a C0-semigroup {e−tL}t>0 of contrac-
tions on L2(Rn) which is called the heat semigroup. Using this semigroup

and the corresponding Poisson semigroup {e−t
√
L}t>0, one can define

different conical square functions which all have an expression of the
form

(2.13) Qαf(x) =

(¨
Γα(x)

|Ttf(y)|2 dy dt
tn+1

) 1
2

, x ∈ Rn,

where α > 0 and Γα(x) := {(y, t) ∈ Rn+1
+ : |x−y| < αt} denotes the cone

(of aperture α) with vertex at x ∈ Rn (see (4.1)). When α = 1 we just
write Qf(x) and Γ(x). More precisely, we introduce the following conical
square functions written in terms of the heat semigroup {e−tL}t>0 (hence
the subscript H): for every m ∈ N,

(2.14) Sm,Hf(x) =

(¨
Γ(x)

|(t2L)me−t
2Lf(y)|2 dy dt

tn+1

) 1
2

,
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and, for every m ∈ N0 := N ∪ {0},

Gm,Hf(x) =

(¨
Γ(x)

|t∇y(t2L)me−t
2Lf(y)|2 dy dt

tn+1

) 1
2

,(2.15)

Gm,Hf(x) =

(¨
Γ(x)

|t∇y,t(t2L)me−t
2Lf(y)|2 dy dt

tn+1

) 1
2

.(2.16)

In the same manner, let us consider conical square functions associ-

ated with the Poisson semigroup {e−t
√
L}t>0 (hence the subscript P):

given K ∈ N,

(2.17) SK,Pf(x) =

(¨
Γ(x)

|(t
√
L)2Ke−t

√
Lf(y)|2 dy dt

tn+1

) 1
2

,

and for every K ∈ N0,

GK,Pf(x) =

(¨
Γ(x)

|t∇y(t
√
L)2Ke−t

√
Lf(y)|2 dy dt

tn+1

) 1
2

,(2.18)

GK,Pf(x) =

(¨
Γ(x)

|t∇y,t(t
√
L)2Ke−t

√
Lf(y)|2 dy dt

tn+1

) 1
2

.(2.19)

Corresponding to the cases m = 0 or K = 0 we simply write GHf :=
G0,Hf , GHf := G0,Hf , GPf := G0,Pf , and GPf := G0,Pf . Besides, we
set SHf := S1,Hf , SPf := S1,Pf .

We also introduce the non-tangential maximal functions NH and NP

associated respectively with the heat and Poisson semigroups:

(2.20) NHf(x) = sup
(y,t)∈Γ(x)

(ˆ
B(y,t)

|e−t
2Lf(z)|2 dz

tn

) 1
2

and

(2.21) NPf(x) = sup
(y,t)∈Γ(x)

(ˆ
B(y,t)

|e−t
√
Lf(z)|2 dz

tn

) 1
2

.

3. Definitions and main results

As in the classical setting our weighted Hardy spaces will admit sev-
eral characterizations using molecules, conical square functions, or non-
tangential maximal functions. They will extend the definitions and re-
sults obtained in the unweighted case in [19], to weights w ∈ A∞ such
that Ww(p−(L), p+(L)) 6= ∅.
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3.1. Molecular weighted Hardy spaces. To set the stage, we take a
molecular version of the weighted Hardy space as the original definition,
and we shall show that all the other definitions are isomorphic to that
one and one another. In order to formalize the notion of molecules and
molecular decomposition we introduce the following notation: given a
cube Q ⊂ Rn we set

(3.1)
C1(Q) := 4Q, Ci(Q) := 2i+1Q\2iQ, for i ≥ 2, and

Qi := 2i+1Q, for i ≥ 1.

Definition 3.2 (Molecules and molecular representation). Let w ∈ A∞,
p ∈ Ww(p−(L), p+(L)), ε > 0, and M ∈ N such that M > n

2

(
rw− 1

p−(L)

)
.

(a) Molecules: We say that a function m ∈ Lp(w) (belonging to
the range of Lk in Lp(w)) is a (w, p, ε,M)-molecule if, for some
cube Q ⊂ Rn, m satisfies

‖m‖mol,w :=
∑
i≥1

2iεw(2i+1Q)
1− 1

p

M∑
k=0

‖((`(Q)2L)−km)1Ci(Q)‖Lp(w) < 1.

Henceforth, we refer to the previous expression as the molecular
w-norm ofm. Additionally, any cube Q satisfying that expression,
is called a cube associated with m. Besides, note that if m is a
(w, p, ε,M)-molecule, in particular we have

(3.3) ‖((`(Q)2L)−km)1Ci(Q)‖Lp(w) ≤ 2−iεw(2i+1Q)
1
p
−1
,

i = 1, 2, . . . ; k = 0, 1, . . . ,M.

(b) Molecular representation: For any function f ∈ Lp(w), we say
that the sum

∑
i∈N λimi is a (w, p, ε,M)-representation of f , if

the following conditions are satisfied:
(i) {λi}i∈N ∈ `1.
(ii) For every i ∈ N, mi is a (w, p, ε,M)-molecule.
(iii) f =

∑
i∈N λimi in Lp(w).

These objects are a weighted version of the ones defined in [19] in the
unweighted case.

We finally define the molecular weighted Hardy spaces.

Definition 3.4 (Molecular weighted Hardy spaces). For w ∈ A∞, p ∈
Ww(p−(L), p+(L)), ε>0, and M ∈N such that M> n

2

(
rw− 1

p−(L)

)
, we de-

fine the molecular weighted Hardy space H1
L,p,ε,M (w) as the completion

of the set

H1
L,p,ε,M (w) :=

{
f=

∞∑
i=1

λimi :

∞∑
i=1

λimi is a (w, p, ε,M)-representation of f

}
,
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with respect to the norm,

‖f‖H1
L,p,ε,M

(w) :=inf

{
∞∑
i=1

|λi| :
∞∑
i=1

λimi is a (w, p, ε,M)-representation of f

}
.

We shall show below that the Hardy spacesH1
L,p,ε,M (w) do not depend

on the choice of the allowable parameters p, ε, and M . Hence, at this
point, it is convenient for us to make a choice of these parameters and
define the weighted Hardy space as the one associated with this choice:

Notation 3.5. From now on, we fix w ∈ A∞, p0 ∈ Ww(p−(L), p+(L)),
ε0 > 0, and M0 ∈ N such that M0 >

n
2

(
rw − 1

p−(L)

)
and set H1

L(w) :=

H1
L,p0,ε0,M0

(w).

3.2. Weighted Hardy spaces associated with operators. We next
define other versions of the molecular weighted Hardy spaces defined
above using different operators.

Definition 3.6 (Weighted Hardy spaces associated with an operator).
Let w ∈ A∞ and take q ∈ Ww(p−(L), p+(L)). Given a sublinear op-
erator T acting on functions of Lq(w) we define the weighted Hardy
space H1

T ,q(w) as the completion of the set

(3.7) H1
T ,q(w) := {f ∈ Lq(w) : T f ∈ L1(w)},

with respect to the norm

(3.8) ‖f‖H1
T ,q(w) := ‖T f‖L1(w).

In our results T will be any of the square functions presented in (2.14)–
(2.19), or the non-tangential maximal functions defined in (2.20)–(2.21).

3.3. Main results.

Theorem 3.9. Given w ∈ A∞, let H1
L(w) be the fixed molecular Hardy

space as in Notation 3.5. For every p ∈ Ww(p−(L), p+(L)), ε > 0,
and M ∈ N such that M > n

2

(
rw − 1

p−(L)

)
, the following spaces are

isomorphic to H1
L(w) (and therefore one another) with equivalent norms

H1
L,p,ε,M (w); H1

Sm,H,p(w), m ∈ N;

H1
Gm,H,p(w), m ∈ N0; and H1

Gm,H,p(w), m ∈ N0.

In particular, none of these spaces depend (modulo isomorphisms) on the
choice of the allowable parameters p, ε, M , and m.
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Theorem 3.10. Given w ∈ A∞, let H1
L(w) be the fixed molecular Hardy

space as in Notation 3.5. For every p ∈ Ww(p−(L), p+(L)), the follow-
ing spaces are isomorphic to H1

L(w) (and therefore one another) with
equivalent norms

H1
SK,P,p(w), K ∈ N; H1

GK,P,p(w), K ∈ N0; and H1
GK,P,p(w), K ∈ N0.

In particular, none of these spaces depend (modulo isomorphisms) on the
choice of p, and K.

Theorem 3.11. Given w ∈ A∞, let H1
L(w) be the fixed molecular Hardy

space as in Notation 3.5. For every p ∈ Ww(p−(L), p+(L)), the follow-
ing spaces are isomorphic to H1

L(w) (and therefore one another) with
equivalent norms

H1
NH,p(w) and H1

NP,p(w).

In particular, none of these spaces depend (modulo isomorphisms) on the
choice of p.

4. Auxiliary results

In this section we introduce some notation and establish some aux-
iliary results that will be very useful in order to simplify the proofs of
Theorems 3.9, 3.10, and 3.11.

Let Rn+1
+ be the upper-half space, that is, the set of points (y, t) ∈

Rn × R with t > 0. Given α > 0 and x ∈ Rn we define the cone of
aperture α with vertex at x by

(4.1) Γα(x) := {(y, t) ∈ Rn+1
+ : |x− y| < αt}.

When α = 1 we simply write Γ(x). For a closed set E in Rn, set

(4.2) Rα(E) :=
⋃
x∈E

Γα(x).

When α = 1 we simplify the notation by writing R(E) instead of R1(E).
Besides, for a function F defined in Rn+1

+ and for every x ∈ Rn, let
us consider

(4.3) |||F |||Γ(x) :=

(¨
Γ(x)

|F (y, t)|2 dy dt
tn+1

) 1
2

.

Using ideas from [19, Lemma 5.4], we obtain the following result:

Lemma 4.4. For all w ∈ A∞ and f ∈ L2(Rn). There hold

(a) ‖Sm,Hf‖Lp(w) . ‖Gm−1,Hf‖Lp(w), for all m ∈ N and 0 < p <∞,

(b) ‖SK,Pf‖Lp(w) . ‖GK−1,Pf‖Lp(w), for all K ∈ N and 0 < p <∞.

Furthermore, one can see that (a) and (b) hold for all functions f ∈
Lq(w) with w ∈ A∞ and q ∈ Ww(p−(L), p+(L)).
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Proof: We start by proving part (a). Fix x ∈ Rn and t > 0, and consider

B := B(x, t), f̃(y) := (t2L)m−1e−
t2

2
Lf(y), and H(y) := f̃(y)− (f̃)4B ,

where (f̃)4B=
ffl

4B
f̃(y) dy. Then, applying the fact that {t2Le−t2L}t>0∈

F∞(L2 → L2) and that t2Le−t
2L1 = t2L1 = 0 (see [1]), we obtain that(ˆ

B

|t2Le−
t2

2
Lf̃(y)|2 dy

)1
2

=

(ˆ
B

|t2Le−
t2

2
LH(y)|2 dy

)1
2

.

(ˆ
B

|t2Le−
t2

2
L(H14B)(y)|2 dy

)1
2

+
∑
j≥2

(ˆ
B

|t2Le−
t2

2
L(H1Cj(B))(y)|2 dy

)1
2

.

(ˆ
4B

|H(y)|2 dy
)1

2

+
∑
j≥2

e−c4
j
(ˆ

2j+1B

|H(y)|2 dy
)1

2

=: I +
∑
j≥2

e−c4
j

Ij .

By Poincaré inequality, we conclude that

I . t

(ˆ
8B

|∇y f̃(y)|2 dy
) 1

2

,

and that

Ij .

(ˆ
2j+1B

|f̃(y)− (f̃)2j+1B |
2 dy

) 1
2

+ |2j+1B|1/2
j∑

k=2

|(f̃)2kB − (f̃)2k+1B |

. |2j+1B|1/2
j∑

k=2

( 
2k+1B

|f̃(y)− (f̃)2k+1B |
2 dy

) 1
2

.
j∑

k=2

2(j−k)n/22kt

(ˆ
2k+2B

|∇y f̃(y)|2 dy
) 1

2

.

Then,(ˆ
B

|t2Le−
t2

2
Lf̃(y)|2 dy

)1
2

. t

(ˆ
8B

|∇y f̃(y)|2 dy
)1

2

+
∑
j≥2

e−c4
j
j∑

k=2

2
n(j−k)

2
+kt

(ˆ
2k+2B

|∇y f̃(y)|2 dy
)1

2

.
∑
j≥1

e−c4
j
(ˆ

2j+2B

|t∇y f̃(y)|2 dy
)1

2

,
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and therefore

Sm,Hf(x) .
∑
j≥1

e−c4
j

G2j+3

m−1,Hf(x),

recall the definition of G2j+3

m−1,H in (2.13) and (2.15). Then, for every 0 <

p <∞ and w ∈ A∞, taking the Lp(w) norm in both sides of the previous
inequality and applying change of angles (see [23, Proposition 3.2]), we
conclude that

‖Sm,Hf‖Lp(w) .
∑
j≥1

e−c4
j

‖G2j+3

m−1,Hf‖Lp(w)

. ‖Gm−1,Hf‖Lp(w)

∑
j≥1

e−c4
j

. ‖Gm−1,Hf‖Lp(w).

As for part (b), fix w ∈ A∞, f ∈ L2(Rn), and 0 < p < ∞, and note
that following the same argument of [19, Lemma 5.4]1, there exist a
dimensional constant k0 ∈ N and C1 > 0 such that for all K ∈ N and
k ∈ N0.

S2k

K,Pf(x) ≤ C1

(
G2k+k0
K−1,Pf(x)

) 1
2
(
S2k+k0
K,P f(x)

) 1
2
,

where recall the definitions of S2k

K,P and G2k+k0
K−1,P in (2.13), (2.17), and

(2.18). Now, for some R > 0, to be determinate later, consider

S∗f(x) :=

∞∑
k=0

R−kS2k

K,Pf(x) and G∗f(x) :=

∞∑
k=0

R−kG2k

K−1,Pf(x).

By the above inequality, and using Young’s inequality, we have

S∗f(x) ≤
∞∑
k=0

R−(k+k0)
(
C2

1R
2k0G2k+k0

K−1,Pf(x)
) 1

2
(
S2k+k0
K,P f(x)

) 1
2

≤ 1

2

(
C2

1R
2k0

∞∑
k=0

R−(k+k0)G2k+k0
K−1,Pf(x) +

∞∑
k=0

R−(k+k0)S2k+k0
K,P f(x)

)
(4.5)

≤ 1

2

(
R2k0C2

1G∗f(x) + S∗f(x)
)
.

Besides, since SK,P is bounded from L2(Rn) to L2(Rn) (see for in-
stance [23]), applying [13, Proposition 4, Section 3] or [2], and choosing

1We want to thank Steve Hofmann for sharing with us this argument that was omitted
in [19, Lemma 5.4].
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R > 2
n
2 +1, we have that

‖S∗f‖L2(Rn) ≤
∞∑
k=0

R−k‖S2k

K,Pf‖L2(Rn)

.
∞∑
k=0

R−k2
kn
2 ‖SK,Pf‖L2(Rn) .

∞∑
k=0

R−k2
kn
2 ‖f‖L2(Rn) <∞,

hence S∗f(x) <∞ a.e. x ∈ Rn. Then, by (4.5),

SK,Pf(x) ≤ S∗f(x) ≤ CR2k0G∗f(x).

Hence, taking the Lp(w) norm in the previous inequality, by [23, Propo-

sition 3.29], we conclude that, for r0 > max{p/2, rw} and R = 2
nr0
p +1 >

2
n
2 +1,

‖SK,Pf‖Lp(w) .
∞∑
k=0

R−(k−2k0)‖G2k

K−1,Pf‖Lp(w)

. R2k0

∞∑
k=0

R−k2
knr0
p ‖GK−1,Pf‖Lp(w) . ‖GK−1,Pf‖Lp(w).

Following the explanation of [23, Remark 4.22] we conclude (a) and (b)
for all functions f ∈ Lq(w) with w ∈ A∞ and q ∈ Ww(p−(L), p+(L)).

To conclude this section we present some estimates for (w, p, ε,M)-
molecules.

Lemma 4.6. Given p > p0, w ∈ A p
p0

, ε > 0, and M ∈ N, let m be a

(w, p, ε,M)-molecule and let Q be a cube associated with m. For every
i ≥ 1 and k = 0, 1, 2, . . . ,M , there holds

‖((`(Q)2L)−km)1Ci(Q)‖Lp0 (Rn) . 2−iεw(2i+1Q)−1|2i+1Q|
1
p0 .

Proof: Using Hölder’s inequality, (3.3), and the fact that w ∈ A p
p0

, we

have that

‖((`(Q)2L)−km)1Ci(Q)‖Lp0 (Rn)

≤

(ˆ
Ci(Q)

|(`(Q)2L)−km(y)|pw(y) dy

) 1
p

×
( 

2i+1Q

w(y)
1−( p

p0
)′
dy

) 1
p

( p
p0
−1)

|2i+1Q|
1
p0
− 1
p

. 2−iεw(2i+1Q)
1
p
−1

( 
2i+1Q

w(y) dy

)− 1
p

|2i+1Q|
1
p0
− 1
p

. 2−iεw(2i+1Q)−1|2i+1Q|
1
p0 .
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5. Characterization of the weighted Hardy spaces
defined by square functions associated

with the heat semigroup

Theorem 3.9 follows at once from the following proposition:

Proposition 5.1. Let w ∈ A∞, p, q ∈ Ww(p−(L), p+(L)), ε > 0, K ∈
N0, and M ∈ N be such that M > n

2

(
rw − 1

p−(L)

)
. Then:

(a) H1
L,p,ε,M (w) = H1

Sm,H,p(w) with equivalent norms, for all m ∈ N.

(b) H1
Sm,H,p(w) and H1

Sm,H,q(w) are isomorphic, for all m ∈ N.

(c) H1
L,p,ε,M (w) = H1

Gm,H,p
(w) = H1

Gm,H,p(w), with equivalent norms,

for all m ∈ N0.

In order to prove Proposition 5.1 we need to show that, for m∈N0, the
L1(w) norms of the square functions Sm+1,H, Gm,H, and Gm,H, applied to
(w, p, ε,M)-molecules, are uniformly controlled. Moreover, we shall show
in Proposition 5.3 that all the square functions in (2.14)–(2.19) satisfy
those uniform estimates. That proposition follows from the following
general result:

Proposition 5.2. Let w ∈ A∞ and let {Tt}t>0 be a family of sublinear
operators satisfying the following conditions:

(a) {Tt}t>0 ∈ F∞(Lp0 → L2) for all p−(L) < p0 ≤ 2.

(b) Ŝf(x) :=
(˜

Γ(x)
|Ttf(y)|2 dy dttn+1

) 1
2 is bounded on Lp(w) for every

p ∈ Ww(p−(L), p+(L)).

(c) There exists C > 0 so that for every t > 0 there holds Tt = C T t√
2
◦

e−
t2

2 L.

(d) For every λ > 0, there exists Cλ > 0 such that for every t > 0 it
follows that

T√1+λt = Cλ Tt ◦ e−λt
2L.

Then, for every m, a (w, p, ε,M)-molecule with p ∈ Ww(p−(L), p+(L)),

ε > 0, and M > n
2

(
rw − 1

p−(L)

)
, it follows that ‖Ŝm‖L1(w) . 1, with

constants independent of m.

Assuming this result momentarily we obtain the following:
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Proposition 5.3. Let S be any of the square functions considered in
(2.14)–(2.19). For every w ∈ A∞ and m a (w, p, ε,M)-molecule with
p ∈ Ww(p−(L), p+(L)), ε > 0, and M > n

2

(
rw − 1

p−(L)

)
, there hold

(a) ‖Sm‖L1(w) ≤ C.

(b) For all f ∈ H1
L,p,ε,M (w), ‖Sf‖L1(w) . ‖f‖H1

L,p,ε,M (w).

Proof: Assuming (a) let us prove (b). Fix w ∈ A∞ and take p ∈
Ww(p−(L), p+(L)), ε > 0, and M ∈ N such that M > n

2

(
rw − 1

p−(L)

)
.

Then, for f ∈ H1
L,p,ε,M (w), there exists a (w, p, ε,M)-representation of f ,

f =
∑∞
i=1 λimi, such that

∞∑
i=1

|λi| ≤ 2‖f‖H1
L,p,ε,M

(w).

On the other hand, since
∑∞
i=1 λimi converges in Lp(w) and since for

any choice of S, we have that S is a sublinear operator bounded on Lp(w)
(see [23, Theorems 1.12 and 1.13]) and by part (a), we have

‖Sf‖L1(w) =

∥∥∥∥∥S
( ∞∑
i=1

λimi

)∥∥∥∥∥
L1(w)

≤
∞∑
i=1

|λi|‖Smi‖L1(w) ≤ C
∞∑
i=1

|λi| . ‖f‖H1
L,p,ε,M

(w),

as desired.
As for part (a), we first show the desired estimate for GH. To this

end, notice that |t∇y,te−t
2Lf |2 = |t∇ye−t

2Lf |2 + 4|t2Le−t2Lf |2. Be-

sides, both Tt := t∇ye−t
2L and Tt := t2Le−t

2L satisfy the hypotheses
of Proposition 5.2: (a) follows from the off-diagonal estimates satisfied

by the families {t∇ye−t
2L}t>0 and {t2Le−t2L}t>0 (see Subsection 2.3);

(b) is contained in [23, Theorem 1.12, part (a)]; and finally (c) and (d)
follow from easy calculations. Thus we can apply Proposition 5.2 and
obtain the desired estimate for GH.

To obtain the estimates for the other square functions we can use [23,
Theorems 1.14 and 1.15, Remark 4.22], and the fact that SHf ≤ 1

2GHf .
Easy details are left to the interested reader.

5.1. Proof of Proposition 5.2. Fix w ∈ A∞, p ∈ Ww(p−(L), p+(L)),
ε > 0, M > n

2

(
rw − 1

p−(L)

)
, and m a (w, p, ε,M)-molecule. Let Q be a

cube associated with m. Since w ∈ A p
p−(L)

we can pick p−(L) < p0 < 2,

close enough to p−(L), so that w ∈ A p
p0

and simultaneously

(5.4) M >
n

2

(
rwp0

p−(L)
− 1

p0

)
.
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For every j, i ≥ 1, consider Qi := 2i+1Q, mi :=m1Ci(Q), and Cji :=
Cj(Qi). Note that

|Ttm(y)| ≤ |Ttm(y)|1(0,`(Q))(t) + |Ttm(y)|1[`(Q),∞)(t) =: F1(y, t) + F2(y, t),

and therefore, recalling (4.3),

‖Ŝm‖L1(w) ≤
∥∥|||F1|||Γ(·)

∥∥
L1(w)

+
∥∥|||F2|||Γ(·)

∥∥
L1(w)

=: I + II.

We estimate each term in turn. Note first that

F1(y, t) ≤
∑
i≥1

|Ttmi(y)|1(0,`(Q))(t) =:
∑
i≥1

F1,i(y, t).

Then,

I .
∑
i≥1

∥∥|||F1,i|||Γ(·)
∥∥
L1(16Qi,w)

+
∑
j≥4

∑
i≥1

∥∥|||F1,i|||Γ(·)
∥∥
L1(Cji,w)

=:
∑
i≥1

Ii +
∑
j≥4

∑
i≥1

Iji.
(5.5)

For Ii, apply Hölder’s inequality, hypothesis (b), (2.5), and (3.3) (for k =
0), to obtain

Ii ≤ ‖Ŝmi‖L1(16Qi,w)

. w(16Qi)
1
p′ ‖Ŝmi‖Lp(w) . w(Qi)

1
p′ ‖mi‖Lp(w) ≤ 2−iε.

(5.6)

To estimate Iji, note that, for every j ≥ 4 and i ≥ 1, 0 < t < `(Q), and
x ∈ Cji, it follows that B(x, t) ⊂ 2j+2Qi \ 2j−1Qi. This, hypothesis (a),
and Lemma 4.6 imply that(ˆ

B(x,t)

|Ttmi(y)|2 dy

) 1
2

≤

(ˆ
2j+2Qi\2j−1Qi

|Ttmi(y)|2 dy

) 1
2

≤ t−n( 1
p0
− 1

2
)
e
−c 4j`(Qi)

2

t2 ‖mi‖Lp0 (Rn)

. t
−n( 1

p0
− 1

2
)
e
−c 4j`(Qi)

2

t2 2−iεw(Qi)
−1|Qi|

1
p0 .

Then, (2.5) and easy calculations lead to

Iji . 2−iεw(Qi)
−1|Qi|

1
p0

ˆ
Cji

(ˆ `(Q)

0

t
−2n

(
1
p0
− 1

2

)
e
−c 4j`(Qi)

2

t2
dt

tn+1

) 1
2

w(x) dx

. 2−iεw(Qi)
−1|Qi|

1
p0 w(2j+1Qi)(4

j `(Qi)
2)
− n

2p0

(ˆ ∞
2j+i

s
2n
p0 e−cs

2 ds

s

) 1
2

. 2−iεe−c4
j

.
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Plugging this and (5.6) into (5.5), we finally conclude the desired esti-
mate for I:

(5.7) I ≤
∑
i≥1

2−iε +
∑
j≥4

∑
i≥1

2−iεe−c4
j

. 1.

We turn now to estimate II. First, set

BQ := (I − e−`(Q)2L)M and AQ := I −BQ,

and observe that

(5.8) F2(y, t) ≤ |TtAQm(y)|1[`(Q),∞)(t) + |TtBQm(y)|1[`(Q),∞)(t)

=: F3(y, t) + F4(y, t).

We start estimating the term related to F3. To do that, consider

h(y) :=
∑
i≥1

hi(y) :=
∑
i≥1

((`(Q)2L)−Mm(y))1Ci(Q)(y),

and note that

F3(y, t) ≤
∑
i≥1

|TtAQ(`(Q)2L)Mhi(y)|1[`(Q),∞)(t).

Then, we obtain∥∥|||F3|||Γ(·)
∥∥
L1(w)

≤
∑
i≥1

∥∥∥∥∥
(¨

Γ(·)
|TtAQ(`(Q)2L)Mhi(y)|21[`(Q),∞)(t)

dy dt

tn+1

)1
2

∥∥∥∥∥
L1(16Qi,w)

+
∑
j≥4

∑
i≥1

∥∥∥∥∥
(¨

Γ(·)
|TtAQ(`(Q)2L)Mhi(y)|21[`(Q),∞)(t)

dy dt

tn+1

)1
2

∥∥∥∥∥
L1(Cji,w)

=:
∑
i≥1

IIi +
∑
j≥4

∑
i≥1

IIji.

Before estimating IIi and IIji, note that by [7, Proposition 5.8] one
can easily obtain that the operator AQ(`(Q)2L)M is bounded on Lp(w)
uniformly on Q since p ∈ Ww(p−(L), p+(L)) and

AQ(`(Q)2L)M=(I−(I−e−`(Q)2L)M )(`(Q)2L)M=

M∑
k=1

Ck,M (k`(Q)2L)Me−k`(Q)2L.

This, Hölder’s inequality, hypothesis (b), (2.5), and (3.3) imply

(5.9) IIi ≤ w(16Qi)
1
p′ ‖AQ(`(Q)2L)Mhi‖Lp(w) . w(Qi)

1
p′ ‖hi‖Lp(w) ≤ 2−iε.

We turn now to estimate IIji. Note that for every x ∈ Cji, j ≥ 4, i ≥ 1

{(y, t) : y ∈ B(x, t), t ≥ `(Q)} ⊂ E1 ∪ E2 ∪ E3,
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where

E1 := (2j+2Qi \ 2j−1Qi)× [`(Q), 2j−2`(Qi)], E2 := 2jQi × (2j−2`(Qi),∞),

and

E3 :=

(⋃
l≥j

Cl(Qi)

)
× (2j−2`(Qi),∞).

Consequently,

IIji≤w(2j+1Qi)

3∑
l=1

(¨
El

|TtAQ(`(Q)2L)Mhi(y)|2 dy dt
tn+1

)1
2

=:w(2j+1Qi)

3∑
l=1

Gl.

Now observe that hypothesis (c) implies

|TtAQ(`(Q)2L)Mhi| = C|T t√
2
e−

t2

2
LAQ(`(Q)2L)Mhi|.

Besides,

e−
t2

2
LAQ(`(Q)2L)M =

M∑
k=1

Ck,M

(
`(Q)2

s2
Q,t

)M
(s2
Q,tL)Me−s

2
Q,tL,

where

sQ,t :=

(
k`(Q)2 +

t2

2

) 1
2

.

Then, applying hypothesis (a), the fact that {(t2L)Me−t
2L}t>0∈F∞(Lp0→

Lp0) together with [23, Lemma 2.1] (see also [18, Lemma 2.3]), and
Lemma 4.6, we have

G1 .
M∑
k=1

(ˆ 2j−2`(Qi)

`(Q)

(
`(Q)2

s2
Q,t

)2M

×
ˆ

2j+2Qi\2j−1Qi

|T t√
2
(s2
Q,tL)Me−s

2
Q,tLhi(y)|2 dy dt

tn+1

1
2

.

(ˆ 2j−2`(Qi)

`(Q)

`(Q)4M t
−4M− 2n

p0 e
−c 4j+i`(Q)2

t2
dt

t

) 1
2

2−iεw(Qi)
−1|Qi|

1
p0

. 2
−j(2M+ n

p0
)
2−i(2M+ε)w(Qi)

−1.

Similarly,

G2 .

(ˆ ∞
2j−2`(Qi)

`(Q)4M t
−4M− 2n

p0
dt

t

) 1
2

2−iεw(Qi)
−1|Qi|

1
p0

. 2
−j(2M+ n

p0
)
2−i(2M+ε)w(Qi)

−1,
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and

G3 .
∑
l≥j

(ˆ ∞
0

s
4M+ 2n

p0 e−cs
2 ds

s

) 1
2

× (2(l+i)`(Q))
−(2M+ n

p0
)
`(Q)2M2−iεw(Qi)

−1|Qi|
1
p0

. 2
−j(2M+ n

p0
)
2−i(2M+ε)w(Qi)

−1.

Collecting the estimates for G1, G2, and G3 gives us

IIji .
w(2j+1Qi)

w(Qi)
2
−j(2M+ n

p0
)
2−i(2M+ε) . 2

−j(2M+ n
p0
− rwp0n
p−(L)

)
2−i(2M+ε),

where we have used that w ∈ A rwp0
p−(L)

, by the definition of rw and the

fact that p−(L) < p0, and (2.5). By this and by (5.9), we conclude that
(5.4) yields

(5.10)
∥∥|||F3|||Γ(·)

∥∥
L1(w)

.
∑
i≥1

2−iε+
∑
j≥4

∑
i≥1

2
−j(2M+ n

p0
− rwp0n
p−(L)

)
2−i(2M+ε).1.

We next estimate F4:∥∥|||F4|||Γ(·)
∥∥
L1(w)

≤
∑
i≥1

∥∥∥∥∥
(¨

Γ(·)
|TtBQmi(y)|21[`(Q),∞)(t)

dy dt

tn+1

)1
2

∥∥∥∥∥
L1(16Qi,w)

+
∑
i≥1

∑
j≥4

∥∥∥∥∥
(¨

Γ(·)
|TtBQmi(y)|21[`(Q),∞)(t)

dy dt

tn+1

)1
2

∥∥∥∥∥
L1(Cji,w)

=:
∑
i≥1

IIIi +
∑
i≥1

∑
j≥4

IIIji.

Note that the fact that the semigroup {e−tL}t>0 is uniformly bounded
on Lp(w), since it was assumed that p ∈ Ww(p−(L), p+(L)) (see [7,
Proposition 5.8]), easily gives that BQ is bounded on Lp(w) uniformly
in Q. Hence, Hölder’s inequality, hypothesis (b), and (3.3) (for k = 0)
yield

(5.11) IIIi . w(16Qi)
1
p′ ‖ŜBQmi‖Lp(w) . w(16Qi)

1
p′ ‖mi‖Lp(w) . 2−iε.

Now, change the variable t into
√

1+Mt and use hypothesis (d) to obtain

IIIji.

∥∥∥∥∥
(¨

Γ
√

1+M (·)
|T√1+MtBQmi(y)|21[`(Q)/

√
1+M,∞)(t)

dy dt

tn+1

)1
2

∥∥∥∥∥
L1(Cji,w)

≈

∥∥∥∥∥
(¨

Γ
√

1+M (·)
|Tte−Mt2LBQmi(y)|21[`(Q)/

√
1+M,∞)(t)

dy dt

tn+1

)1
2

∥∥∥∥∥
L1(Cji,w)

.
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Now, note that for Ê1, Ê2 closed subsets in Rn, and f ∈ Lp0(Rn) such

that supp(f) ⊂ Ê1, we have

‖e−Mt2LBQf‖Lp0 (Ê2) = ‖(e−t
2L − e−(t2+`(Q)2)L)Mf‖Lp0 (Ê2)

=

∥∥∥∥∥
(ˆ `(Q)2

0

∂re
−(r+t2)L dr

)M
f

∥∥∥∥∥
Lp0 (Ê2)

≤
ˆ `(Q)2

0

· · ·
ˆ `(Q)2

0

‖((r1+ · · ·+rM+Mt2)L)Me−(r1+···+rM+Mt2)Lf‖Lp0 (Ê2)

× dr1 · · · drM
(r1 + · · ·+ rM +Mt2)M

.
ˆ `(Q)2

0

· · ·
ˆ `(Q)2

0

e
−c d(Ê1,Ê2)2

r1+···+rM+Mt2
dr1 · · · drM

(r1 + · · ·+ rM +Mt2)M
‖f‖Lp0 (Ê1)

.

(
`(Q)2

t2

)M
e
−c d(Ê1,Ê2)2

t2+`(Q)2 ‖f‖Lp0 (Ê1),

(5.12)

where we have used that {(t2L)Me−t
2L}t>0 ∈ F∞(Lp0 → Lp0) since

p−(L) < p0 < 2 < p+(L).

On the other hand, setting θM = (1 + M)−
1
2 , for every x ∈ Cji, we

have

{(y, t) : y ∈ B(x, θ−1
M t), θM `(Q) ≤ t <∞} ⊂ Ẽ1 ∪ Ẽ2 ∪ Ẽ3,

where

Ẽ1 := (2j+2Qi \ 2j−1Qi)× [θM `(Q), 2j−2θM `(Qi)],

Ẽ2 := 2jQi × (2j−2θM `(Qi),∞), and

Ẽ3 :=

(⋃
l≥j

Cl(Qi)

)
× (2j−2θM `(Qi),∞).

Then we have that

IIIji . w(2j+1Qi)

3∑
l=1

(¨
Ẽl

|Tte−Mt2LBQmi(y)|2 dy dt
tn+1

)1
2

=:w(2j+1Qi)

3∑
l=1

G̃l.

At this point we proceed much as in the estimates of G1, G2, and G3.
Applying (5.12), we obtain that

IIIji .
w(2j+1Qi)

w(Qi)
2
−j(2M+ n

p0
)
2−i(2M+ε) . 2

−j(2M+ n
p0
− rwp0n
p−(L)

)
2−i(2M+ε),
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where we have used that w ∈ A rwp0
p−(L)

, by the definition of rw and the

fact that p−(L) < p0, and (2.5). From this and (5.11), we conclude that
(5.4) yields∥∥|||F4|||Γ(·)

∥∥
L1(w)

.
∑
i≥1

2−iε +
∑
i≥1

∑
j≥4

2
−j(2M+ n

p0
− rwp0n
p−(L)

)
2−i(2M+ε) . 1.

By this, (5.10), and (5.8), we conclude that II . 1, which, together

with (5.7), gives the desired estimate: ‖Ŝm‖L1(w) . 1.
We devote the remaining of this section to proving Proposition 5.1.

5.2. Proof of Proposition 5.1, part (a). Fix w∈A∞, p∈Ww(p−(L),
p+(L)), ε > 0, and m,M ∈ N such that M > n

2

(
rw − 1

p−(L)

)
.

For all f ∈ H1
L,p,ε,M (w), applying Proposition 5.3, we obtain that

(5.13) ‖Sm,Hf‖L1(w) . ‖f‖H1
L,p,ε,M

(w).

Then, since in particular f ∈ Lp(w), we conclude that f ∈ H1
Sm,H,p(w),

and hence H1
L,p,ε,M (w) ⊂ H1

Sm,H,p(w).

As for proving the converse inclusion, we shall show that for all
f ∈ H1

Sm,H,p(w) we can find a (w, p, ε,M)-representation of f , i.e. f =∑∞
i=1 λimi, such that

∞∑
i=1

|λi| . ‖Sm,Hf‖L1(w).

Following some ideas of [19, Lemma 4.2], for each l ∈ Z and for some
0 < γ < 1 to be chosen later, we set

Ol := {x ∈ Rn : Sm,Hf(x) > 2l},

E∗l :=

{
x ∈ Rn :

|El ∩B(x, r)|
|B(x, r)| ≥ γ, for all r > 0

}
,

El := Rn \ Ol, and O∗l := Rn \ E∗l = {x ∈ Rn : M(1Ol)(x) > 1 − γ},
whereM is the centered Hardy–Littlewood maximal operator. We have
that Ol and O∗l are open, and that Ol+1 ⊆ Ol, O∗l+1 ⊆ O∗l , and Ol ⊆ O∗l .
Besides, since w ∈ A∞ then M : Lr(w) → Lr,∞(w), for every r > rw.
Also, ‖Sm,Hf‖Lp(w) . ‖f‖Lp(w) < ∞, because p ∈ Ww(p−(L), p+(L))
(see [23, Theorem 1.12]). Hence

(5.14) w(O∗l ) ≤ cγ,rw(Ol) .
1

2lp
‖Sm,Hf‖pLp(w) .

1

2lp
‖f‖pLp(w)<∞, ∀l∈Z,

and E∗l cannot be empty. Therefore, for each l, we can take a Whitney

decomposition {Qjl }j∈N, of O∗l :

O∗l =
⋃
j∈N

Qjl , diam(Qjl ) ≤ d(Qjl ,R
n \O∗l ) ≤ 4 diam(Qjl ),
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and the cubes Qjl have disjoint interiors. Finally, define, for each j ∈ N
and l ∈ Z, the sets

(5.15) T jl := (Qjl × (0,∞)) ∩
(
Ô∗l \ Ô∗l+1

)
,

where Ô∗l := {(x, t) ∈ Rn+1
+ : d(x,Rn \ O∗l ) ≥ t} and we note that

Rn \ Ô∗l = R(E∗l ), (see (4.2)).
Let us show that

suppTsf(x) :=supp(s2L)me−s
2Lf(x)⊂

(⋃
l∈Z

(
Ô∗l \ Ô∗l+1

))
∪ F1 ∪ F2

=

( ⋃
l∈Z,j∈N

T jl

)
∪ F1 ∪ F2,

(5.16)

where F1 := ∩l∈ZÔ∗l and F2 ⊂ Rn+1
+ \ ∪l∈ZÔ∗l with

µ(F1) :=

¨
Rn+1
+

1F1(y, s)
dy ds

s
= 0 = µ(F2).

The fact that µ(F1) = 0 follows easily. Indeed, note first that, by (5.14),
and since O∗l+1 ⊂ O∗l , we conclude that

w

(⋂
l∈Z

O∗l

)
= lim
l→∞

w(O∗l ) . lim
l→∞

1

2lp
= 0.

Consequently |∩l∈ZO∗l | = 0, since the Lebesgue measure and the measure
given by w are mutually absolutely continuous. Hence, clearly

µ(F1) =

ˆ ∞
0

ˆ
Rn

1F1(x, s)
dy ds

s
≤ lim
N→∞

ˆ N

N−1

∣∣∣∣⋂
l∈Z

O∗l

∣∣∣∣dss = 0.

Finally let us find F2, and hence obtain (5.16). Note that

Rn+1
+ =

(⋃
l∈Z

(
Ô∗l \ Ô∗l+1

))
∪
(
Rn+1

+ \
⋃
l∈Z

(
Ô∗l \ Ô∗l+1

))

=

(⋃
l∈Z

(
Ô∗l \ Ô∗l+1

))
∪ F1 ∪

(
Rn+1

+ \
⋃
l∈Z

Ô∗l

)
.

Then, it suffices to show that

(5.17) Ttf(y) = 0, µ-a.e. (y, t) ∈ Rn+1
+ \

⋃
l∈Z

Ô∗l .

Consider F the set of Lebesgue points of |Tsf(x)|2 as a function of the
variables (x, s) ∈ Rn+1

+ for the measure dx ds which is mutually ab-
solutely continuous with respect to µ. Note that ‖Sm,Hf‖Lp(w) < ∞
implies that |Tsf(x)|2 ∈ L1

loc(Rn+1
+ , dx ds), and hence µ(Rn+1

+ \ F) = 0.
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To conclude (5.17), we observe that Rn+1
+ \(∪l∈ZÔ∗l )=∩l∈ZR(E∗l ) (recall

the definition of R(E∗l ) in (4.2)), and then we just need to prove that

(5.18) Ttf(y) = 0, ∀(y, t) ∈
⋂
l∈Z

R(E∗l ) ∩ F.

On the one hand, if (y, t) ∈ ∩l∈ZR(E∗l ), for every l ∈ Z there exists xl
such that (y, t) ∈ Γ(xl) and Sm,Hf(xl) ≤ 2l. On the other hand, (y, t) ∈
F implies

(5.19) lim
r→0

1

|B((y, t), r)|

¨
B((y,t),r)

||Ttf(y)|2 − |Tsf(x)|2| dx ds = 0.

Given r > 0, consider

xrl :=

{
xl if y = xl,

y − r(y−xl)
2|y−xl|

if y 6= xl,

it is easy to see that B
(
(xrl , t),

r
4

)
⊂ Γ(xl) ∩ B((y, t), r), for all l ∈ Z

and 0 < r < t. Combining all these facts we have that, for (y, t) ∈
∩l∈ZR(E∗l ) ∩ F,

|Ttf(y)|2 =
1

|B((xrl , t), r/4)|

¨
B((xr

l
,t),r/4)

||Ttf(y)|2 − |Tsf(x)|2| dx ds

+
1

|B((xrl , t), r/4)|

¨
B((xr

l
,t),r/4)

|Tsf(x)|2 dx ds

.
1

|B((y, t), r)|

¨
B((y,t),r)

||Ttf(y)|2 − |Tsf(x)|2| dx ds+
(t+ r)n+1

rn+1
4l.

Then, letting first l→ −∞ and then r → 0, we conclude (5.18) by (5.19).
Now consider the following Calderón reproducing formula for f ∈

Lp(w):

f(x) = C̃

ˆ ∞
0

((t2L)me−t
2L)M+2f(x)

dt

t

= C̃ lim
N→∞

ˆ N

N−1

((t2L)me−t
2L)M+2f(x)

dt

t
,

(5.20)

with the integral converging in Lp(w).

Remark 5.21. A priori, by L2(Rn) functional calculus, we have the above
equalities for functions in L2(Rn). Here we explain how to extend them
to functions in Lp(w) for all p ∈ Ww(p−(L), p+(L)). Fixing such a p,

we first introduce the operator T Mt,L = ((t2L)me−t
2L)M+1, M ≥ 0, whose

adjoint (in L2(Rn)) is (T Mt,L)∗ = ((t2L∗)me−t
2L∗)M+1 = T Mt,L∗ , and set

QML f(x, t) = T Mt,L∗f(x) for (x, t) ∈ Rn+1
+ and f ∈ L2(Rn). Since p ∈

Ww(p−(L), p+(L)) then p′ ∈ Ww1−p′ (p−(L∗), p+(L∗)) by [6, Lemma 4.4]
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and the fact that p±(L∗) = p∓(L)′ in [1]. Thus, the vertical square

function defined by T Mt,L∗ is bounded on Lp
′
(w1−p′) (see [5]). Writing

H = L2
(
(0,∞), dtt

)
, we obtain

‖QML h‖Lp′H (w1−p′ )
=
∥∥‖QML h‖H∥∥Lp′ (w1−p′ )

=

ˆ
Rn

(ˆ ∞
0

|T Mt,L∗h(x)|2 dt
t

) p′
2

w(x)1−p′ dx

 1
p′

. ‖h‖Lp′ (w1−p′ ).

(5.22)

Therefore, QML : Lp
′
(w1−p′) → Lp

′

H (w1−p′) and hence its adjoint (QML )∗

is bounded from LpH(w) to Lp(w) (see also [1, 5]). Moreover, for h ∈
L2
H(Rn) and f ∈ L2(Rn), we have that

〈(QML )∗h, f〉L2(Rn) = 〈h,QML f〉L2
H(Rn) =

ˆ
Rn

ˆ ∞
0

h(y, t)(T Mt,L)∗f(y)
dt

t
dy

=

ˆ
Rn

ˆ ∞
0

T Mt,Lh(y, t)
dt

t
f(y) dy,

where it is implicitly understood that T Mt,Lh(y, t) = T Mt,L(h(·, t))(y). Con-

sequently, for every h ∈ L2
H(Rn),

(QML )∗h(x) =

ˆ ∞
0

T Mt,Lh(x, t)
dt

t
=

ˆ ∞
0

((t2L)me−t
2L)M+1h(x, t)

dt

t
.

Note that C̃(QML )∗Q0
L∗f = f for every f ∈ L2(Rn), where according to

the notation introduced aboveQ0
L∗f(x, t)=T 0

t,Lf(x) = (t2L)me−t
2Lf(x).

On the other hand, for every f ∈ Lp(w) and g ∈ L2(Rn) ∩ Lp(w) we
have that

‖f − C̃(QML )∗Q0
L∗f‖Lp(w)≤ ‖f − g‖Lp(w)+C̃‖(QML )∗Q0

L∗(g − f)‖Lp(w)

. ‖f − g‖Lp(w)+‖Q0
L∗(g − f)‖LpH(w).‖f − g‖Lp(w),

where we have used the boundedness of (QML )∗ along with the fact that
Q0
L∗ is bounded from Lp(w) to LpH(w), the latter follows as in (5.22)

with Lp(w) in place of Lp
′
(w1−p′) since p ∈ Ww(p−(L), p+(L)). Using

now that L2(Rn)∩Lp(w) is dense in Lp(w) we easily conclude that f =

C̃(QML )∗Q0
L∗f for every f ∈ Lp(w). This is the first equality in (5.20).

To obtain the second equality in (5.20) we write IN = [N−1, N ] and
observe that for every h ∈ LpH(w), one has that 1INh → h in LpH(w) as
N → ∞, and therefore (QML )∗(1INh) → (QML )∗h in Lp(w) as N → ∞.
Taking now f ∈ Lp(w), as mentioned above, Q0

L∗f ∈ LpH(w) and it
follows that (QML )∗(1INQ0

L∗f)→ (QML )∗(Q0
L∗f) on Lp(w), which is what

we were seeking to prove.
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Once we have justified the Calderón reproducing formula (5.20) we
use (5.16) to obtain that

f(x)= C̃

ˆ ∞
0

((t2L)me−t
2L)M+1

( ∑
j∈N,l∈Z

1
T
j
l

(·, t)(t2L)me−t
2Lf(·)

)
(x)

dt

t

= C̃ lim
N→∞

ˆ N

N−1

((t2L)me−t
2L)M+1

( ∑
j∈N,l∈Z

1
T
j
l

(·, t)(t2L)me−t
2Lf(·)

)
(x)

dt

t
,

(5.23)

in Lp(w). Now, set

λjl := 2lw(Qjl ) and m
j
l (x) :=

1

λjl

ˆ ∞
0

((t2L)me−t
2L)M+1(f jl,m(·, t))(x)

dt

t
,

where f jl,m(x, t) := 1T jl
(x, t)(t2L)me−t

2Lf(x). We will show that

(5.24)
∑

j∈N,l∈Z

C̃λjlm
j
l is a (w, p, ε,M)-representation of f.

We start showing that there exists a uniform constant C0 such that
C−1

0 m
j
l is a (w, p, ε,M)-molecule, for all j ∈ N and l ∈ Z. To this end,

we estimate, for all 0 ≤ k ≤M , 1 ≤ i, j ∈ N, and l ∈ Z, the Lp(w) norms

of the functions (`(Qjl )
2L)−kmj

l 1Ci(Qjl )
. Before that, we set

R`(Q
j
l
)(E∗l+1) := {(y, t) ∈ R(E∗l+1) : y ∈ Qjl , 0 < t ≤ 5

√
n`(Qjl )}.

For all (y, t) ∈ T jl we have that

t ≤ d(y,Rn \O∗l ) ≤ d(Qjl ,R
n \O∗l ) + diam(Qjl ) ≤ 5 diam(Qjl ),

and thus

(5.25) T jl ⊂ R`(Q
j
l
)(E∗l+1).

Then, for all (y, t) ∈ T jl and c = 11
√
n,

(5.26) B(y, t) ⊂ cQjl .

Now, by definition of T jl , we have that for every (y, t) ∈ T jl there exists
y0∈E∗l+1 such that |El+1∩B(y0, t)|≥γ|B(y0, t)| and |y0−y|<t. Besides,

considering z := y − t(y−y0)
2|y−y0| , we have that B

(
z, t2

)
⊂ B(y0, t) ∩ B(y, t).

Consequently,

γ|B(y0, t)| ≤ |El+1 ∩B(y0, t)| ≤ |El+1 ∩B(y, t)|+ |B(y0, t) \B(y, t)|

≤ |El+1 ∩B(y, t)|+
∣∣∣∣B(y0, t) \B

(
z,
t

2

)∣∣∣∣
= |El+1 ∩B(y, t)|+ |B(y0, t)|

(
1− 1

2n

)
.
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Then, for γ = 1− 1
2n+1 , we obtain

(5.27) tn . |El+1 ∩B(y, t)|.

We are now ready to consider the case i = 1. For every t > 0,

let Tt := (t2L)mM+m−ke−t
2(M+1)L, and for every h ∈ Lp′(w1−p′) write

QLh(x, t) :=T ∗t h(x), with (x, t)∈Rn+1
+ . As in Remark 5.21 one can show

that QL : Lp
′
(w1−p′)→ Lp

′

H (w1−p′), since p′ ∈ Ww1−p′ (p−(L∗), p+(L∗)).
Hence its adjoint Q∗L has a bounded extension from LpH(w) to Lp(w),
where

Q∗Lh(x) =

ˆ ∞
0

Tth(x, t)
dt

t
=

ˆ ∞
0

(t2L)mM+m−ke−t
2(M+1)Lh(x, t)

dt

t
.

Here, as before, Tth(x, t)=Tt(h(·, t))(x), for (x, t)∈Rn+1
+ . Write g̃(x, t) :=

t2kf jl,m(x, t) and

I := {h ∈ Lp
′
(w1−p′) : ‖h‖Lp′ (w1−p′ ) = 1, supph ⊂ 4Qjl }.

From (5.26), (5.27), and (5.25) we obtain

‖((`(Qjl )
2L)−kmj

l )14Q
j
l
‖Lp(w)

=
`(Qjl )

−2k

λjl

∥∥∥∥ˆ ∞
0

(t2L)mM+m−ke−t
2(M+1)Lg̃(·, t)dt

t

∥∥∥∥
Lp(4Q

j
l
,w)

=
`(Qjl )

−2k

λjl
sup
h∈I

∣∣∣∣ˆ
Rn
Q∗Lg̃(y) · h(y) dy

∣∣∣∣
=
`(Qjl )

−2k

λjl
sup
h∈I

∣∣∣∣ˆ
Rn

ˆ ∞
0

g̃(y, t) · T ∗t h(y)
dt dy

t

∣∣∣∣
.
`(Qjl )

−2k

λjl
sup
h∈I

¨
T
j
l

t2k|(t2L)me−t
2Lf(y)·T ∗t h(y)|

ˆ
B(y,t)∩El+1

dx
dt

tn+1
dy

.
1

λjl
sup
h∈I

ˆ
cQ
j
l
∩El+1

¨
Γ(x)

|(t2L)me−t
2Lf(y) · T ∗t h(y)|dy dt

tn+1
dx

≤ 1

λjl
‖Sm,Hf‖Lp(cQ

j
l
∩El+1,w)

sup
h∈I

∥∥|||T ∗t h|||Γ(·)
∥∥
Lp
′
(w1−p′ )

≤ 1

λjl
w(Qjl )

1
p 2l sup

h∈I

∥∥|||T ∗t h|||Γ(·)
∥∥
Lp
′
(w1−p′ )

= w(Qjl )
1
p
−1

sup
h∈I

∥∥|||T ∗t h|||Γ(·)
∥∥
Lp
′
(w1−p′ )

,

(5.28)
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where in the last inequality we have used that Sm,Hf(x) ≤ 2l+1 for every
x ∈ El+1. To estimate the term with the sup we fix h ∈ I and note that
changing variable t into t√

M+1
and using [23, Proposition 3.29]

∥∥|||T ∗t h|||Γ(·)
∥∥
Lp
′
(w1−p′ )

=CM

∥∥∥∥∥
∣∣∣∣∣∣∣∣∣∣∣∣T ∗ t√

M+1
h

∣∣∣∣∣∣∣∣∣∣∣∣
Γ

1√
M+1 (·)

∥∥∥∥∥
Lp
′
(w1−p′ )

.CM

∥∥∥∥∥
∣∣∣∣∣∣∣∣∣∣∣∣T ∗ t√

M+1
h

∣∣∣∣∣∣∣∣∣∣∣∣
Γ(·)

∥∥∥∥∥
Lp
′
(w1−p′ )

=

∥∥∥∥∥
(¨

Γ(·)
|(t2L∗)mM+m−ke−t

2L∗h(y)|2 dy dt
tn+1

)1
2

∥∥∥∥∥
Lp
′
(w1−p′ )

.‖h‖Lp′ (w1−p′ ) = 1,

where the last estimate holds since p′∈Ww1−p′(p−(L∗), p+(L∗)) (see [23]).
Plugging this into (5.28) we conclude that

(5.29) ‖((`(Qjl )
2L)−kmj

l )14Q
j
l
‖Lp(w) . w(Qjl )

1
p
−1
.

Consider now i ≥ 2. Note that w ∈ RH
(
p+(L)

p )′
implies that w ∈ RH(

q0
p )′

for some q0 with max{2, p} < q0 < p+(L). Then,

‖((`(Qjl )
2L)−kmj

l )1Ci(Qjl )
‖Lp(w)

≤ 1

λjl

∥∥∥∥ˆ ∞
0

|(`(Qjl )
2L)−k((t2L)me−t

2L)M+1(f jl,m(·, t))|dt
t

∥∥∥∥
Lp(Ci(Q

j
l
),w)

.
`(Qjl )

−2k

λjl
w(2i+1Qjl )

1
p |2i+1Qjl |

− 1
q0

×
∥∥∥∥ˆ ∞

0

|t2k(t2L)mM+m−ke−t
2(M+1)L(f jl,m(·, t))|dt

t

∥∥∥∥
Lq0 (Ci(Q

j
l
))

.

Applying Minkowski’s inequality, the fact that {(t2L)me−t
2L}t>0 ∈

F∞(L2 → Lq0), and (5.25) we obtain the following estimate for the
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last integral above:∥∥∥∥ˆ ∞
0

|t2k(t2L)mM+m−ke−t
2(M+1)L(f jl,m(·, t))|dt

t

∥∥∥∥
Lq0 (Ci(Q

j
l
))

≤
ˆ ∞

0

t2k‖(t2L)mM+m−ke−t
2(M+1)L(f jl,m(·, t))‖

Lq0 (Ci(Q
j
l
))

dt

t

.
ˆ 5
√
n`(Q

j
l
)

0

(ˆ
Rn

1
Q
j
l
(y)|f jl,m(y, t)|2 dy

) 1
2

t2kt
−n( 1

2
− 1
q0

)
e
−c

4i`(Q
j
l
)2

t2
dt

t

. `(Qjl )
2k

(¨
T
j
l

|(t2L)me−t
2Lf(y)|2 dy dt

t

) 1
2

×

(ˆ 5
√
n`(Q

j
l
)

0

t
−2n( 1

2
− 1
q0

)
e
−c

4i`(Q
j
l
)2

t2
dt

t

) 1
2

=: II1 × II2.

For II1, we proceed as in the estimate of the second inequality in (5.28)
and obtain after invoking (5.27)

II1 . `(Qjl )
2k

(¨
T
j
l

|(t2L)me−t
2Lf(y)|2

ˆ
B(y,t)∩El+1

dx dy
dt

tn+1

) 1
2

. `(Qjl )
2k‖Sm,Hf‖L2(cQ

j
l
∩El+1)

. `(Qjl )
2k|Qjl |

1
2 2l.

As for II2, changing the variable t into
2i`(Qjl )

t we get

II2 . (2i`(Qjl ))
−n( 1

2
− 1
q0

)
e−c4

i
(ˆ ∞

0

t
2n( 1

2
− 1
q0

)
e−ct

2 dt

t

) 1
2

. (2i`(Qjl ))
−n( 1

2
− 1
q0

)
e−c4

i

.

Hence, for i ≥ 2, using (2.5),

‖((`(Qjl )
2L)−kmj

l )1Ci(Qjl )
‖Lp(w) .

1

λjl
e−c4

i

2−
in
2 2lw(2i+1Qjl )

1
p

. e−c4
i

w(2i+1Qjl )
1
p
−1
.

From this and (5.29), we infer that there exists a constant C0 > 0 such

that, for all j ∈ N and l ∈ Z, ‖mj
l ‖mol,w ≤ C0. Therefore, for every j ∈ N

and l ∈ Z, we have that C−1
0 m

j
l are (w, p, ε,M)-molecules associated

with the cubes Qjl .
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Let us now prove that {λjl }j∈N, l∈Z∈`1. Since for each l∈Z, {Qlj}j∈N is

a Whitney decomposition of O∗l , by (5.14), and since f ∈ H1
Sm,H,p(w),

we obtain ∑
j∈N, l∈Z

|λjl | =
∑

j∈N, l∈Z

2lw(Qjl ) =
∑
l∈Z

2lw(O∗l )

.
∑
l∈Z

2lw(Ol) .
∑
l∈Z

ˆ 2l

2l−1

w(Ol) dλ

≤ C
ˆ ∞

0

w({x ∈ Rn : Sm,Hf(x) > λ}) dλ

= C‖Sm,Hf‖L1(w) <∞.

(5.30)

Thus to conclude (5.24) we finally show that

(5.31) f =
∑

j∈N, l∈Z

C̃λjlm
j
l in Lp(w).

With the notation in Remark 5.21, recalling that

f jl,m(x, t) = 1T jl
(x, t)(t2L)me−t

2Lf(x),

where the sets {T jl }j∈N, l∈Z are pairwise disjoint, it follows that∥∥∥∥∥ ∑
j∈N, l∈Z

f jl,m

∥∥∥∥∥
L
p
H(w)

=

∥∥∥∥∥ ∑
j∈N, l∈Z

|f jl,m|

∥∥∥∥∥
L
p
H(w)

≤

∥∥∥∥∥
(ˆ ∞

0

|(t2L)me−t
2Lf |2 dt

t

) 1
2

∥∥∥∥∥
Lp(w)

. ‖f‖Lp(w).

Hence, by (5.23), Remark 5.21, and the dominated convergence theorem,∥∥∥∥∥f − ∑
j+|l|≤K

C̃λjlm
j
l

∥∥∥∥∥
Lp(w)

= C̃

∥∥∥∥∥(QML )∗
( ∑
j+|l|>0

f jl,m

)
−
∑

j+|l|≤K

(QML )∗f jl,m

∥∥∥∥∥
Lp(w)

= C̃

∥∥∥∥∥(QML )∗
( ∑
j+|l|>K

f jl,m

)∥∥∥∥∥
Lp(w)

(5.32)

.

∥∥∥∥∥ ∑
j+|l|>K

f jl,m

∥∥∥∥∥
L
p
H(w)

−→ 0, as K →∞.

This proves (5.31) and therefore,
∑
j+|l|>0 λ

j
lm

j
l is a (w, p, ε,M)-repre-

sentation of f such that∑
j+|l|>0

|λjl | . ‖Sm,Hf‖L1(w).

Consequently, f ∈H1
L,p,ε,M (w) and ‖f‖H1

L,p,ε,M (w).‖Sm,Hf‖L1(w), which

completes the proof.
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5.3. Proof of Proposition 5.1, part (b). Fix w ∈ A∞, p, q ∈
Ww(p−(L), p+(L)), ε > 0, and m,M ∈ N such that M > n

2

(
rw− 1

p−(L)

)
.

For f ∈ H1
Sm,H,p(w) consider the (w, p, ε,M)-representation of f , (f =∑

j+|l|>0 λ
j
lm

j
l ) obtained in the proof of Proposition 5.1, part (a). Then,

define for each N ∈ N, fN :=
∑

0<j+|l|≤N λ
j
lm

j
l . We have that, for

each N ∈ N, fN , f − fN ∈ H1
L,p,ε,M (w) = H1

Sm,H,p(w). Moreover, since∑
j+|l|>N λ

j
lm

j
l is a (w, p, ε,M)-representation of f − fN , we have

‖Sm,H(f − fN )‖L1(w) = ‖f − fN‖H1
Sm,H,p

(w) . ‖f − fN‖H1
L,p,ε,M

(w)

≤
∑

j+|l|>N

|λjl | −→
N→∞

0.

Consequently in order to conclude that f ∈ H1
Sm,H,q(w), it is enough

to show that, for each N ∈ N, fN ∈ H1
Sm,H,q(w), or equivalently that

fN ∈ H1
L,q,ε,M (w). Let us see the latter, for every N , following the

same computations done in the proof of part (a) to show that the mj
l

are (w, p, ε,M)-molecules, but replacing the Lp(w) norm with the
Lq(w) norm, we obtain that, for all i, j ∈ N, l ∈ Z, and 0 ≤ k ≤M ,

‖(`(Qjl )
2L)−kmj

l ‖Lq(Ci(Q
j
l
),w)

. e−c4
i

w(2i+1Qjl )
1
q
−1
.

Hence, mj
l is a multiple of a (w, q, ε,M)-molecule. Besides, using (2.5),

‖fN‖Lq(w) .
∑
i≥1

∑
0<j+|l|≤N

|λjl |‖m
j
l ‖Lq(Ci(Q

j
l
),w)

.
∑
i≥1

∑
0<j+|l|≤N

|λjl |e
−c4iw(2i+1Qjl )

1
q
−1

.
∑

0<j+|l|≤N

2lw(Qjl )
1
q . δ

1
q
−1

N

∑
0<j+|l|≤N

2lw(Qjl )

. δ
1
q
−1

N ‖Sm,Hf‖L1(w) <∞,

where δN := min0<j+|l|≤N w(Qjl ). Then, for each N ∈ N, we have

that the function
∑

0<j+|l|≤N λ
j
lm

j
l is a (w, q, ε,M)-representation of fN .

Hence, {fN}N∈N ⊂ H1
L,q,ε,M (w) = H1

Sm,H,q(w).

5.3.1. Proof of Proposition 5.1, part (c). For f ∈ H1
Gm,H,p(w),

applying Lemma 4.4, part (a), and the fact that Gm,Hf(x) ≤ Gm,Hf(x)
for every x ∈ Rn and for every m ∈ N0, we conclude

‖Sm+1,Hf‖L1(w) . ‖Gm,Hf‖L1(w) ≤ ‖Gm,Hf‖L1(w).
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This and part (a) of Proposition 5.1 imply

H1
Gm,H,p(w) ⊂ H1

Gm,H,p(w) ⊂ H1
Sm+1,H,p(w) = H1

L,p,ε,M (w).

To finish the proof, take f ∈ H1
L,p,ε,M (w). Then, by Proposition 5.3, we

have that

‖Gm,Hf‖L1(w) . ‖f‖H1
L,p,ε,M

(w).

Consequently, H1
L,p,ε,M (w) ⊂ H1

Gm,H,p(w).

6. Characterization of the weighted Hardy spaces
defined by square functions associated with

the Poisson semigroup

In this section, we prove Theorem 3.10, which is obtained as a conse-
quence of the following proposition.

Proposition 6.1. Given w ∈ A∞, p, q ∈ Ww(p−(L), p+(L)), K,M ∈ N
such that M > n

2

(
rw − 1

2

)
, and ε0 = 2M + 2K + n

2 − nrw, there hold:

(a) H1
L,p,ε0,M

(w) = H1
SK,P,p(w), with equivalent norms.

(b) H1
SK,P,p(w) and H1

SK,P,q(w) are isomorphic.

(c) H1
L,p,ε0,M

(w)=H1
GK−1,P,p

(w)=H1
GK−1,P,p

(w),with equivalent norms.

6.1. Proof of Proposition 6.1, part (a). To prove the left-to-the-
right inclusion observe that if f ∈ H1

L,p,ε0,M
(w), in particular f ∈ Lp(w),

and from Proposition 5.3, part (b), we have that

‖SK,Pf‖L1(w) . ‖f‖H1
L,p,ε0,M

(w).

Therefore, we conclude that H1
L,p,ε0,M

(w) ⊂ H1
SK,P,p(w).

As for proving the converse, take f ∈ H1
SK,P,p(w) and define the same

sets, (Ol, O
∗
l , T

j
l , . . . ), defined in the proof of Proposition 5.1, part (a),

but replacing Sm,H with SK,P. Besides, consider the following Calderón
reproducing formula of f ,

f(x) = C

ˆ ∞
0

(((t2L)M+Ke−t
√
L)2f(·))(x)

dt

t

= C lim
N→∞

ˆ N

N−1

(t2L)2M+Ke−t
√
L((t2L)Ke−t

√
Lf(·))(x)

dt

t
.

Following the ideas in Remark 5.21, these equalities can be extended
from L2(Rn) to Lp(w), if we show that the vertical square function as-

sociated with (t2L∗)2M+Ke−t
√
L∗ is bounded on Lp

′
(w1−p′), but this
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follows from (6.3) below with L∗ in place of L and [5]. After this obser-
vation we continue with the proof, again following the same computa-
tions as in the proof of Proposition 5.1, part (a), considering Tsf(x) :=

(t2L)Ke−t
√
Lf(x), we can show that suppTsf(x) ⊂ (∪l∈ZÔ∗l \ Ô∗l+1)∪F,

with µ(F) = 0 (µ(x, s) = dx ds
s ). Consequently, we have that

f(x)=C lim
N→∞

ˆ N

N−1

(t2L)2M+Ke−t
√
L

( ∑
j∈N, l∈Z

1
T
j
l

(·, t)(t2L)Ke−t
√
Lf(·)

)
(x)

dt

t
,

in Lp(w). Hence, considering

λjl := 2lw(Qjl )

and

m
j
l (x) :=

1

λjl

ˆ ∞
0

(t2L)2M+Ke−t
√
L(1

T
j
l

(·, t)(t2L)Ke−t
√
Lf(·))(x)

dt

t
,

we show that, for some constant C>0, we have the following (w, p,ε0,M)-
representation of f :

f = C
∑

j∈N, l∈Z

λjlm
j
l .

To that end, we have to show the following:

(a) {λjl } ∈ `1,

(b) there exists a constant C0 > 0 such that C−1
0 m

j
l is a (w, p, ε0,M)-

molecule, for all j ∈ N and l ∈ Z,

(c) f = C
∑
j∈N, l∈Z λ

j
lm

j
l in Lp(w).

Statement (a) follows from the definition of the cubes Qjl , and the sets Ol
and O∗l , and from the fact that ‖SK,Pf‖L1(w) <∞. Indeed, proceeding
as in (5.30), we have∑
j∈N, l∈Z

|λjl |=
∑

j∈N, l∈Z

2lw(Qjl )≤
∑
l∈Z

2lw(O∗l ) .
∑
l∈Z

2lw(Ol).‖SK,Pf‖L1(w)<∞.

The proofs of (b) and (c) are similar to those of Proposition 5.1, part (a),
so we shall skip some details. To show (b), fix j∈N, l∈Z, and 0≤k≤M ,
k ∈ N. We need to compute the following norms, for every i ≥ 1,

‖((`(Qjl )
2L)−kmj

l )1Ci(Qjl )
‖Lp(w).

For i = 1, let Tt := (t2L)2M+K−ke−t
√
L, for t > 0, and for every h ∈

Lp
′
(w1−p′) define QLh(x, t) := T ∗t h(x), with (x, t) ∈ Rn+1

+ . Applying
the subordination formula

(6.2) e−t
√
Lf(y) = C

ˆ ∞
0

e−u√
u
e−

t2L
4u f(y) du,
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we have that, for every K̃ ∈ N,(ˆ ∞
0

|(t2L)K̃e−t
√
Lf(x)|2 dt

t

)1
2

.
ˆ ∞

0

e−uu
1
2

(ˆ ∞
0

|(t2L)K̃e−
t2

4u
Lf(x)|2 dt

t

)1
2
du

u

.
ˆ ∞

0

e−uuK̃+ 1
2
du

u

(ˆ ∞
0

|(t2L)K̃e−t
2Lf(x)|2 dt

t

)1
2

(6.3)

.

(ˆ ∞
0

|(t2L)K̃e−t
2Lf(x)|2 dt

t

)1
2

.

Therefore,

‖QLh‖
L
p′
H (w1−p′ )

=
∥∥‖QLh‖H∥∥Lp′ (w1−p′ )

=

∥∥∥∥∥
(ˆ ∞

0

|(t2L∗)2M+K−ke−t
√
L∗h|2 dt

t

) 1
2

∥∥∥∥∥
Lp
′
(w1−p′ )

.

∥∥∥∥∥
(ˆ ∞

0

|(t2L∗)2M+K−ke−t
2L∗h|2 dt

t

) 1
2

∥∥∥∥∥
Lp
′
(w1−p′ )

. ‖h‖Lp′ (w1−p′ ),

where we have used that p′ ∈ (p−(L∗), p+(L∗)) since p±(L∗) = p∓(L)′,

see [1], [6, Lemma 4.4], and [5]. Thus, QL is bounded from Lp
′
(w1−p′)

to Lp
′

H (w1−p′), and, as in Remark 5.21, we have that its adjoint operator,

Q∗Lf(x) =

ˆ ∞
0

(t2L)2M+K−ke−t
√
Lf(x, t)

dt

t
,

has a bounded extension from LpH(w) to Lp(w).

After this observations we can treat the case i = 1. Write f jl,K(x, t) :=

1T jl
(x, t)(t2L)Ke−t

√
Lf(x), g̃(x, t) := t2kf jl,K(x, t), and consider

I := {h ∈ Lp
′
(w1−p′) : supph ⊂ 4Qjl and ‖h‖Lp′ (w1−p′ ) = 1}.

Proceeding as in (5.28), we have

‖((`(Qjl )
2L)−kmj

l )14Q
j
l
‖Lp(w) =

`(Qjl )
−2k

λjl
sup
h∈I

∣∣∣∣ˆ
Rn
Q∗Lg̃(x) · h(x) dx

∣∣∣∣
.

1

λjl
‖SK,Pf(x)‖

Lp(cQ
j
l
∩El+1,w)

sup
h∈I

∥∥|||T ∗t h|||Γ(·)
∥∥
Lp
′
(w1−p′ )

. w(Qjl )
1
p
−1
.

The last inequality follows from the fact that SK,Pf(x) ≤ 2l+1 for all
x ∈ El+1 and also since the conical square function define by T ∗t is

bounded on Lp
′
(w1−p′) as p′ ∈ Ww1−p′ (p−(L∗), p+(L∗)) (see [23]).
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For i ≥ 2, take max{2, p} < q0 < p+(L) close enough to p+(L) such

that w ∈ RH(
q0
p )′ . Since {(t

√
L)2K̃e−t

√
L}t>0 ∈ FK̃+ 1

2
(L2 → Lq0), for

every K̃ ∈ N, taking rw < r < rw + 1
n close enough to rw so that

M > n
2

(
r− 1

2

)
, recalling that 0 ≤ k ≤M , and using (2.5), we have that

‖((`(Qjl )
2L)−kmj

l )1Ci(Qjl )
‖Lp(w) .

1

λjl
`(Qjl )

−2kw(2i+1Qjl )
1
p |2i+1Qjl |

− 1
q0

×
ˆ ∞

0

t2k
(ˆ

Ci(Q
j
l
)

∣∣∣(t2L)2M+K−ke−t
√
L(1

Q
j
l
(·)f jl,K(·, t))(y)

∣∣∣q0 dy)1
q0 dt

t

. 2−lw(Qjl )
−1w(2i+1Qjl )

1
p |2i+1Qjl |

− 1
q0

×
ˆ 5
√
n`(Q

j
l
)

0

t
−n( 1

2
− 1
q0

)

(
1 +

c4i`(Qjl )
2

t2

)−(2M+K−k+ 1
2

+n
2

( 1
2
− 1
q0

))

×

(ˆ
Q
j
l

|f jl,K(y, t)|2 dy

) 1
2
dt

t

. 2−l2irnw(2i+1Qjl )
1
p
−1|2i+1Qjl |

− 1
q0

(ˆ
cQ
j
l
∩El+1

|SK,Pf(x)|2 dx

) 1
2

×

(ˆ 5
√
n`(Q

j
l
)

0

t
−2n( 1

2
− 1
q0

)

(
1+

c4i`(Qjl )
2

t2

)−(4M+2K−2k+1+n( 1
2
− 1
q0

))
dt

t

)1
2

. 2−i(2M+2K+n
2

+1−rn)w(2i+1Qjl )
1
p
−1

≤ 2−iε02−i(rwn−rn+1)w(2i+1Qjl )
1
p
−1
.

Therefore, it follows that ‖mj
l ‖mol,w ≤ C0 for some constant C0 uniform

in j ∈ N and l ∈ Z.
Let us finally prove that f = C

∑
j∈N, l∈Z λ

j
lm

j
l in Lp(w). We follow

the same computations as in the proof of Proposition 5.1, part (a), we
first see that by (6.3)∥∥∥∥∥ ∑
j∈N, l∈Z

f jl,m

∥∥∥∥∥
L
p
H(w)

=

∥∥∥∥∥ ∑
j∈N, l∈Z

|f jl,m|

∥∥∥∥∥
L
p
H(w)

≤

∥∥∥∥∥
(ˆ ∞

0

|(t2L)Ke−t
√
Lf |2 dt

t

)1
2

∥∥∥∥∥
Lp(w)

.

∥∥∥∥∥
(ˆ ∞

0

|(t2L)Ke−t
2Lf |2 dt

t

) 1
2

∥∥∥∥∥
Lp(w)

. ‖f‖Lp(w).

This yields (5.32) where in this case QML g(x) = (t2L∗)2M+Ke−t
√
L∗g(x),

(x, t) ∈ Rn+1
+ . Consequently, f = C

∑
j∈N,l∈Z λ

j
lm

j
l ∈ H1

L,p,ε0,M
(w), and
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also,

‖f‖H1
L,p,ε0,M

(w) .
∑

j∈N, l∈Z

|λjl | =
∑

j∈N, l∈Z

2lw(Qjl )

.
∑
l∈Z

2lw(Ol) . ‖SK,Pf‖L1(w) = ‖f‖H1
SK,P,p

(w).

6.2. Proof of Proposition 6.1, part (b). Given w ∈ A∞ and p, q ∈
Ww(p−(L), p+(L)), from part (a), we have that H1

L,p,ε0,M
(w)=H1

SK,P,p(w)

and H1
L,q,ε0,M

(w)=H1
SK,P,q(w), with equivalent norms. Hence we have the

following isomorphisms H1
L,p,ε0,M

(w) ≈ H1
SK,P,p(w) and H1

L,q,ε0,M
(w) ≈

H1
SK,P,q(w). On the other hand, from Proposition 5.1, parts (a) and (b),

we have that

H1
L,p,ε0,M (w) ≈ H1

SK,H,p(w) ≈ H1
SK,H,q(w) ≈ H1

L,q,ε0,M (w).

Therefore, we conclude that the spaces H1
SK,P,p(w) and H1

SK,P,q(w) are

isomorphic.

6.3. Proof of Proposition 6.1, part (c). For f ∈ H1
GK−1,P,p

(w), ap-

plying Lemma 4.4, part (b), and the fact that GK−1,Pf(x) ≤ GK−1,Pf(x)
for every x ∈ Rn and for every K ∈ N, we conclude that

‖SK,Pf‖L1(w) . ‖GK−1,Pf‖L1(w) ≤ ‖GK−1,Pf‖L1(w).

This and Proposition 6.1, part (a), imply

H1
GK−1,P,p(w) ⊂ H1

GK−1,P,p(w) ⊂ H1
SK,P,p(w) = H1

L,p,ε0,M (w).

To complete the proof, take f ∈ H1
L,p,ε0,M

(w). In particular we have that

f ∈ Lp(w), and by Proposition 5.3, ‖GK−1,Pf‖L1(w) . ‖f‖H1
L,p,ε0,M

(w).

Then, H1
L,p,ε0,M

(w) ⊂ H1
GK−1,P,p

(w).

7. Non-tangential maximal functions

Before starting with the characterization of the Hardy spaces H1
NH

(w)

and H1
NP

(w). We study the Lp(w) boundedness of NH and NP (see
(2.20)–(2.21)). Additionally we need to see how they control the corre-
sponding square functions. The results are the following:

Proposition 7.1. Given w ∈ A∞. There hold

(a) NH is bounded on Lp(w) for all p ∈ Ww(p−(L),∞),
(b) NP is bounded on Lp(w) for all p ∈ Ww(p−(L), p+(L)).

Proposition 7.2. Given an arbitrary f ∈ L2(Rn), for all w ∈ A∞ and
0 < p <∞, there hold

(a) ‖GPf‖Lp(w) . ‖NPf‖Lp(w),
(b) ‖GHf‖Lp(w) . ‖NHf‖Lp(w).



512 J. M. Martell, C. Prisuelos-Arribas

7.1. Proof of Proposition 7.1, part (a). Fix w ∈ A∞ and p ∈
Ww(p−(L),∞). Take p0 ∈ (p−(L), 2) and apply the Lp0(Rn) − L2(Rn)

off-diagonal estimates satisfied by the family {e−t2L}t>0 to obtain

‖NHf‖Lp(w) ≤

(ˆ
Rn

sup
t>0

(ˆ
B(x,2t)

|e−t
2Lf(z)|2 dz

tn

) p
2

w(x) dx

) 1
p

.
∑
j≥1

e−c4
j

(ˆ
Rn

sup
t>0

(ˆ
B(x,2j+2t)

|f(z)|p0 dz
tn

) p
p0

w(x) dx

) 1
p

.
∑
j≥1

e−c4
j

2
jn
p0

(ˆ
Rn
Mp0f(x)pw(x) dx

) 1
p

.‖Mp0f‖Lp(w),

where Mp0f := (M|f |p0)
1
p0 .

Now, take p−(L) < p0 < 2 close enough to p−(L) so that w ∈ A p
p0

.

Consequently, Mp0 is bounded on Lp(w), and then, we conclude that

‖NHf‖Lp(w) . ‖Mp0f‖Lp(w) . ‖f‖Lp(w).

7.2. Proof of Proposition 7.1, part (b). First, notice that we can
split NP as follows

NPf(x) ≤ sup
(y,t)∈Γ(x)

(ˆ
B(y,t)

|(e−t
√
L − e−t

2L)f(z)|2 dz
tn

) 1
2

+ sup
(y,t)∈Γ(x)

(ˆ
B(y,t)

|e−t
2Lf(z)|2 dz

tn

) 1
2

= sup
(y,t)∈Γ(x)

(ˆ
B(y,t)

|(e−t
√
L − e−t

2L)f(z)|2 dz
tn

) 1
2

+NHf(x)

=: mPf(x) +NHf(x).

After applying the subordination formula (6.2) and Minkowski’s integral
inequality, we obtain that

mPf(x) . sup
t>0

ˆ ∞
0

e−uu
1
2

(ˆ
B(x,2t)

|(e−
t2

4u
L − e−t

2L)f(y)|2 dy
tn

) 1
2
du

u

. sup
t>0

ˆ 1
4

0

u
1
2

(ˆ
B(x,2t)

|(e−
t2

4u
L − e−t

2L)f(y)|2 dy
tn

) 1
2
du

u

+ sup
t>0

ˆ ∞
1
4

e−uu
1
2

(ˆ
B(x,2t)

|(e−
t2

4u
L − e−t

2L)f(y)|2 dy
tn

)1
2
du

u
=:I+II.
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We first deal with I. Take p−(L) < p0 < 2, and apply the Lp0(Rn) −
L2(Rn) off-diagonal estimates satisfied by {e−t2L}t>0,

I = sup
t>0

ˆ 1
4

0

u
1
2

(ˆ
B(x,2t)

|e−
t2L
2 (e−( 1

4u
− 1

2
)t2L − e−

t2

2
L)f(y)|2 dy

tn

) 1
2
du

u

. sup
t>0

∑
j≥1

e−c4
j
ˆ 1

4

0

u
1
2

( 
B(x,2j+2t)

|(e−( 1
4u
− 1

2
)t2L−e−

t2

2
L)f(y)|p0 dy

) 1
p0 du

u
.

Now, notice that when 0 < u < 1
4 , we have

|(e−( 1
4u
− 1

2
)t2L − e−t

22L)f(y)| ≤ 2

ˆ t
√

1
4u
− 1

2

t√
2

|r2Le−r
2Lf(y)|dr

r

≤ 2

ˆ t
2
√
u

t√
2

|r2Le−r
2Lf(y)|dr

r

. log(u−
1
2 )

1
2

(ˆ ∞
0

|r2Le−r
2Lf(y)|2 dr

r

) 1
2

=: log(u−
1
2 )

1
2 gHf(y).

Therefore,

I .
∑
j≥1

e−c4
j
ˆ 1

4

0

log(u−
1
2 )

1
2 u

1
2
du

u
sup
t>0

( 
B(x,2j+2t)

|gHf(y)|p0 dy

) 1
p0

.Mp0(gHf)(x).

On the other hand, for 1
4 ≤ u <∞,

|(e−
t2

4u
L − e−t

2L)f(y)| ≤ 2

ˆ t

t
2
√
u

|r2Le−r
2Lf(y)|dr

r

. log(2
√
u)

1
2

(ˆ t

t
2
√
u

|r2Le−r
2Lf(y)|2 dr

r

) 1
2

.

Hence,

II . sup
t>0

ˆ ∞
1
4

e−u log(2
√
u)

1
2 u

1
2

(ˆ
B(x,2t)

ˆ t

t
2
√
u

|r2Le−r
2Lf(y)|2 dr

r

dy

tn

)1
2
du

u

. sup
t>0

ˆ ∞
1
4

ue−u
(ˆ t

t
2
√
u

ˆ
B(x,2t)

|r2Le−r
2Lf(y)|2 dy

tn
dr

r

)1
2
du

u

.
ˆ ∞

1
4

e−u
(ˆ ∞

0

ˆ
B(x,4

√
ur)

|r2Le−r
2Lf(y)|2 dy dr

rn+1

)1
2

du=

ˆ ∞
1
4

e−u S4
√
u

H f(x) du,
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recall the definition of S4
√
u

H in (2.13) and (2.14). Gathering these esti-
mates gives us, for p−(L) < p0 < 2,

NPf(x) .Mp0(gHf)(x) +

ˆ ∞
1
4

e−uS4
√
u

H F (x) du+NHf(x), ∀x ∈ Rn.

Let w ∈ A∞ and p ∈ Ww(p−(L), p+(L)), taking norms on Lp(w) and
applying [23, Proposition 3.29], we obtain, for r > max{p/2, rw} and
p−(L) < p0 < 2,

‖NPf‖Lp(w) . ‖Mp0(gHf)‖Lp(w) +

ˆ ∞
1
4

u
nr
2p e−u du‖SHf‖Lp(w) + ‖NHf‖Lp(w)

. ‖Mp0(gHf)‖Lp(w) + ‖SHf‖Lp(w) + ‖NHf‖Lp(w).

Now, taking p0 close enough to p−(L) so that w ∈ A p
p0

, we have that

the maximal operator Mp0 is bounded on Lp(w). Besides, since p ∈
Ww(p−(L), p+(L)) ⊂ Ww(p−(L),∞), we have that gH, SH, and NH

are bounded operators on Lp(w), (see [5, Theorem 7.6, (a)], [23, Theo-
rem 1.12, (a)], and Proposition 7.1, part (a), respectively). Consequently,
we conclude (b).

We next establish Lemma 7.3, whose proof follows similarly to that
of [19, Lemma 6.2]. Consider, for all κ ≥ 1,

N κf(x) := sup
(y,t)∈Γκ(x)

(ˆ
B(y,κt)

|F (z, t)|2 dz
tn

) 1
2

,

and we simply write N when κ = 1.

Lemma 7.3. Given w ∈ Ar, 0 < p <∞, and κ ≥ 1,

‖N κf‖Lp(w) . κ
n( 1

2
+ r
p

)‖Nf‖Lp(w).

Proof: Consider Oλ := {x ∈ Rn : N f(x) > λ}, Eλ := Rn\Oλ, and, for

γ = 1− 1
(4κ)n , the set of γ-density E∗λ :=

{
x ∈ Rn : ∀r > 0, |Eλ∩B(x,r)|

|B(x,r)| ≥
γ
}

. Note that O∗λ := Rn \ E∗λ = {x ∈ Rn :M(1Oλ)(x) > 1/(4κ)n}.
We claim that for every λ > 0,

(7.4) N κf(x) ≤ (3κ)
n
2 λ, for all x ∈ E∗λ.
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Assuming this, let 0 < p < ∞ and w ∈ Ar, 1 ≤ r < ∞, so that
M : Lr(w)→ Lr,∞(w). Hence, we have

‖N κf‖pLp(w) = p

ˆ ∞
0

λp−1w({x ∈ Rn : N κf(x) > λ}) dλ

= p(3κ)
np
2

ˆ ∞
0

λp−1w({x ∈ Rn : N κf(x) > (3κ)
n
2 λ}) dλ

≤ p(3κ)
np
2

ˆ ∞
0

λp−1w(O∗λ) dλ

. p(3κ)
np
2 (4k)nr

ˆ ∞
0

λp−1w(Oλ) dλ

= (3κ)
np
2 (4k)nr‖Nf‖pLp(w),

which finishes the proof.
So it just remains to show (7.4). First, note that if x ∈ E∗λ then, for

every (y, t) ∈ Γ2κ(x), B(y, t) ∩ Eλ 6= ∅. To prove this, suppose by way
of contradiction that B(y, t) ⊂ Oλ. Then, since B(y, t) ⊂ B(x, 3κt),

M(1Oλ)(x) ≥
 
B(x,3κt)

1Oλ(x) dx ≥ |B(y, t)|
|B(x, 3κt)| =

1

(3κ)n
>

1

(4κ)n
,

which implies that x ∈ O∗λ, a contradiction. Therefore, there exists
y0 ∈ B(y, t) (in particular (y, t) ∈ Γ(y0)) such that N f(y0) ≤ λ. Hence,
for all (y, t) ∈ Γ2κ(x), with x ∈ E∗λ,

(7.5)

(ˆ
B(y,t)

|F (ξ, t)|2 dξ
tn

)1
2

≤ sup
(z,s)∈Γ(y0)

(ˆ
B(z,s)

|F (ξ, s)|2 dξ
sn

)1
2

=Nf(y0) ≤ λ.

On the other hand, given x ∈ E∗λ and (y, t) ∈ Γκ(x), we have that
B(y, κt) ⊂ ∪iB(yi, t), where {B(yi, t)}i is a collection of at most
(3κ)n balls such that yi ∈ B(y, κt) and then |yi − x| < 2κt (equiva-
lently (yi, t) ∈ Γ2κ(x)). Thus,ˆ

B(y,κt)

|F (z, t)|2 dz
tn
≤
∑
i

ˆ
B(yi,t)

|F (z, t)|2 dz
tn
≤ (3κ)nλ2,

where we have used (7.5), since x ∈ E∗λ and (yi, t) ∈ Γ2κ(x). Finally
taking the supremum over all (y, t) ∈ Γκ(x), we obtain (7.4) as desired:

N κf(x)2 ≤ (3κ)nλ2, ∀x ∈ E∗λ.

7.3. Proof of Proposition 7.2. We start by proving part (a). Fix
w ∈ A∞, 0 < p < ∞, and f ∈ L2(Rn). For every N > 1 and α ≥ 1, we
define

(7.6) KN := {(y, t) ∈ Rn+1
+ : y ∈ B(0, N), t ∈ (N−1, N)}
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and

GαP,Nf(x) :=

(ˆ ∞
0

ˆ
B(x,αt)

1KN (y, t)|t∇y,te−t
√
Lf(y)|2 dy dt

tn+1

) 1
2

,

when α = 1 we just write GP,N . Then, suppGαP,Nf ⊂ B(0, (α+1)N) and,

since the vertical square function
(´∞

0
|t∇y,te−t

√
Lf(y)|2 dtt

) 1
2 is bounded

on L2(Rn), we have that ‖GαP,Nf‖Lp(w) ≤ CN
n
2 ‖f‖L2(Rn)w(B(0, (α +

1)N))
1
p <∞.

Following the ideas used in the proofs of [19, Theorems 6.1 and 7.1].
For every λ > 0, set

Oλ := {x ∈ Rn : N κ
Pf(x) > λ} and Eλ := Rn \Oλ,

where

N κ
Pf(x) = sup

(y,t)∈Γκ(x)

(ˆ
B(y,κt)

|e−t
√
Lf(z)|2 dz

tn

) 1
2

,

and κ is some positive number that we will determine during the proof.
Besides, consider

E∗λ :=

{
x ∈ Rn : ∀r > 0,

|Eλ ∩B(x, r)|
|B(x, r)| ≥ 1

2

}
,

O∗λ := Rn \ E∗λ =

{
x ∈ Rn :M(1Oλ)(x) >

1

2

}
.

Since Oλ is open, Oλ ⊂ O∗λ and then E∗λ ⊂ Eλ. Also, since w ∈ A∞,
for r > rw, we have thatM : Lr(w)→ Lr,∞(w). Consequently w(O∗λ) ≤
Cww(Oλ). On the other hand, consider the set

Õλ := {x ∈ Rn : GαP,Nf(x) > λ}.

Proceeding as in the proof of [23, Proposition 3.2, part (a)], we can show

that Õλ is open and, since ‖GαP,Nf‖Lp(w) < ∞, then w(Õλ) < ∞ which

implies that Õλ $ Rn. Hence, taking a Whitney decomposition of Õλ,
there exists a family of closed cubes {Qj}j∈N with disjoint interiors such
that ⋃

j∈N

Qj = Õλ and diam(Qj) ≤ d(Qj ,Rn \ Õλ) ≤ 4 diam(Qj).

We claim that there exists a positive constant cw, depending on the
weight, such that, for every 0 < γ < 1 and α = 12

√
n,

(7.7) w({x ∈ E∗γλ : GP,Nf(x) > 2λ, N κ
Pf(x) ≤ γλ})
≤ Cγcww({x ∈ Rn : GαP,Nf(x) > λ}).
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Assuming this momentarily, we would get

w({x ∈ Rn : GP,Nf(x)>2λ}) ≤ w(O∗γλ)

+ w({x ∈ E∗γλ : GP,Nf(x) > 2λ,N κ
Pf(x)≤γλ})

+ w(Oγλ)

≤ Cγcww({x ∈ Rn : GαP,Nf(x) > λ})
+ Cw({x ∈ Rn : N κ

Pf(x) > γλ}).

Multiplying both sides of the previous inequality by λp−1 and integrating
in λ > 0, we would have

‖GP,Nf‖pLp(w) ≤ Cγ
cw‖GαP,Nf‖pLp(w) + Cγ‖N κ

Pf‖pLp(w).

Then, applying [23, Proposition 3.2] and Lemma 7.3 with N = NP we
would obtain

‖GP,Nf‖pLp(w) ≤ Cαγ
cw‖GP,Nf‖pLp(w) + Cκ,γ‖NPf‖pLp(w).

Finally, since ‖GP,Nf‖Lp(w) ≤ ‖GαP,Nf‖Lp(w) <∞, taking γ small enough

such that Cαγ
cw < 1

2 , we would conclude that, for some constant C > 0
uniform on N ,

‖GP,Nf‖Lp(w) ≤ C‖NPf‖Lp(w).

This and the Monotone Convergence Theorem would readily lead to
the desired estimate. Therefore, to complete the proof we just need to
show (7.7). Notice that since GP,Nf ≤ GαP,Nf , we have

{x ∈ E∗γλ : GP,Nf(x) > 2λ,N κ
Pf(x) ≤ γλ}

⊂
⋃
j∈N

{x ∈ E∗γλ ∩Qj : GP,Nf(x) > 2λ,N κ
Pf(x) ≤ γλ}.

Consequently, since w ∈ A∞, to obtain (7.7) it is enough to show

(7.8) |{x ∈ E∗γλ ∩Qj : GP,Nf(x) > 2λ,N κ
Pf(x) ≤ γλ}| ≤ Cγ2|Qj |.

To this end, consider u(y, t) := e−t
√
Lf(y),

GP,1,j,Nf(x) :=

(ˆ ∞
`(Qj)

2

ˆ
B(x,t)

1KN (y, t)|t∇y,tu(y, t)|2 dy dt
tn+1

) 1
2

,

and

GP,2,j,Nf(x) :=

ˆ `(Qj)

2

0

ˆ
B(x,t)

1KN (y, t)|t∇y,tu(y, t)|2 dy dt
tn+1

 1
2

.

We have that GP,Nf ≤ GP,1,j,Nf + GP,2,j,Nf and that GP,1,j,Nf(x) ≤ λ

for all x ∈ Qj . Indeed, notice that for each j, there exists xj ∈ Rn \ Õλ
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such that d(xj , Qj) ≤ 4 diamQj . Besides, if (y, t) is such that t ≥ `(Qj)
2 ,

x ∈ Qj , and y ∈ B(x, t), then

|xj − y| ≤ |xj − x|+ |x− y| < 5
√
n`(Qj) + t ≤ 11

√
nt.

Hence, for α = 12
√
n and for all x ∈ Qj , we have

GP,1,j,Nf(x)2 =

ˆ ∞
`(Qj)

2

ˆ
B(x,t)

1KN (y, t)|t∇y,tu(y, t)|2 dy dt
tn+1

≤
¨

Γα(xj)

1KN (y, t)|t∇y,tu(y, t)|2 dy dt
tn+1

= GαP,Nf(xj)
2≤ λ2.

This and Chebychev’s inequality imply that

|{x ∈ E∗γλ ∩Qj : GP,Nf(x) > 2λ,N κ
Pf(x) ≤ γλ}|

≤ |{x ∈ E∗γλ ∩Qj : GP,2,j,Nf(x) > λ}|

≤ 1

λ2

ˆ
E∗
γλ
∩Qj
GP,2,j,Nf(x)2 dx

≤ 1

λ2

ˆ
E∗
γλ
∩Qj

ˆ `(Qj)

2

0

ˆ
B(x,t)

|t∇y,tu(y, t)|2 dy dt
tn+1

dx

=:
1

λ2

ˆ
E∗
γλ
∩Qj
GP,2f(x)2 dx.

(7.9)

To estimate the last integral above, for 0<ε<
`(Qj)

2 , consider the function

(7.10) GP,2,εf(x) :=

(ˆ `(Qj)

2

ε

ˆ
B(x,t)

|t∇y,tu(y, t)|2 dy dt
tn+1

) 1
2

.

Besides, for β > 0, consider the region

Rε,`(Qj),β(E∗γλ ∩Qj) :=
⋃

x∈E∗
γλ
∩Qj

{
(y, t) ∈ Rn × (βε, β`(Qj)) : |y − x| < t

β

}
,

and we set

(7.11) B(y) :=

(
A(y) 0

0 1

)
,

where A is as in (2.8). Then, we have that there exist 0 < λ̃ ≤ Λ̃ < ∞
such that

(7.12) λ̃ |ξ|2 ≤ ReB(x) ξ · ξ̄ and |B(x) ξ · ζ̄| ≤ Λ̃ |ξ| |ζ|,

for all ξ, ζ ∈ Cn+1 and almost every x ∈ Rn. Moreover, we have that

(7.13) ∂tu(y, t) = divy,t(tB(y)∇y,tu(y, t)).

Finally notice that

GP,2,εf(x)2 .
ˆ β`(Qj)

βε

ˆ
|x−y|< t

β

|t∇y,tu(y, t)|2 dy dt
tn+1

, for all β∈(2−1, 1).
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From this we immediately see

(7.14)

ˆ
E∗
γλ
∩Qj
GP,2,εf(x)2 dx .

¨
Rε,`(Qj),β(E∗

γλ
∩Qj)

t|∇y,tu(y, t)|2 dy dt,

for all β ∈ (2−1, 1).

Applying (7.12) and integration by parts in the last integral above, we
have that¨
Rε,`(Qj),β(E∗

γλ
∩Qj)

t|∇y,tu(y, t)|2 dy dt

. Re

¨
Rε,`(Qj),β(E∗

γλ
∩Qj)

tB(y)∇y,tu(y, t) · ∇y,tu(y, t) dy dt

=
1

2

¨
Rε,`(Qj),β(E∗

γλ
∩Qj)

[
tB(y)∇y,tu(y, t) · ∇y,tu(y, t)

+ tB(y)∇y,tu(y, t) · ∇y,tu(y, t)
]
dy dt

= C

¨
Rε,`(Qj),β(E∗

γλ
∩Qj)

[
−divy,t(tB(y)∇y,tu(y, t))u(y, t)

− divy,t(tB(y)∇y,tu(y, t))u(y, t)
]
dy dt

+

ˆ
∂Rε,`(Qj),β(E∗

γλ
∩Qj)

[
tB(y)∇y,tu(y, t) · υy,t(y, t)u(y, t)

+ tB(y)∇y,tu(y, t) · υy,t(y, t)u(y, t)
]
dσ,

where υy,t is the outer unit normal associated with the domain of inte-
gration.

Now, using (7.13) in the first integral, (7.12) in the second one, and
the fact that |υy,t(y, t)| = 1, we obtain
¨
Rε,`(Qj),β(E∗

γλ
∩Qj)

t|∇y,tu(y, t)|2 dy dt

.

∣∣∣∣∣
¨
Rε,`(Qj),β(E∗

γλ
∩Qj)

[
−∂tu(y, t) · u(y, t)− ∂tu(y, t) · u(y, t)

]
dy dt

∣∣∣∣∣
+

ˆ
∂Rε,`(Qj),β(E∗

γλ
∩Qj)

t|∇y,tu(y, t)||u(y, t)| dσ

=

∣∣∣∣∣−
¨
Rε,`(Qj),β(E∗

γλ
∩Qj)

∂t|u(y, t)|2 dy dt

∣∣∣∣∣
+

ˆ
∂Rε,`(Qj),β(E∗

γλ
∩Qj)

t|∇y,tu(y, t)||u(y, t)| dσ.
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Then, applying again integration by parts and Cauchy–Schwartz’s in-
equality, we conclude that

¨
Rε,`(Qj),β(E∗

γλ
∩Qj)

t|∇y,tu(y, t)|2 dy dt

≤
ˆ
∂Rε,`(Qj),β(E∗

γλ
∩Qj)

|u(y, t)|2 dσ

+

ˆ
∂Rε,`(Qj),β(E∗

γλ
∩Qj)

t|∇y,tu(y, t)||u(y, t)| dσ

.
ˆ
∂Rε,`(Qj),β(E∗

γλ
∩Qj)

|u(y, t)|2 dσ

+

ˆ
∂Rε,`(Qj),β(E∗

γλ
∩Qj)

|t∇y,tu(y, t)|2 dσ.

(7.15)

Now, observe that

∂Rε,`(Qj),β(E∗γλ ∩Qj)=

{
(y, t) ∈ Rn+1

+ : d(y,Qj ∩ E∗γλ)=
t

β
, βε ≤ t ≤ β`(Qj)

}
∪ {y ∈ Rn : d(y,Qj ∩ E∗γλ) < ε} × {βε}

∪ {y ∈ Rn : d(y,Qj ∩ E∗γλ) < `(Qj)} × {β`(Qj)}

=:H(β) ∪ T (ε)× {βε} ∪ T (`(Qj))× {β`(Qj)},

and for every function h : Rn+1
+ → R

ˆ
∂Rε,`(Qj),β(E∗

γλ
∩Qj)

h dσ =

ˆ
H(β)

h dσ +

ˆ
T (ε)

h(y, βε ) dy

+

ˆ
T (`(Qj))

h(y, β`(Qj)) dy.

Besides, consider

Bε,`(Qj)(E∗γλ ∩Qj) :=
{

(y, t) ∈ Rn × (2−1ε, `(Qj)) :

2−1d(y,E∗γλ ∩Qj) < t < d(y,E∗γλ ∩Qj)
}

and F (y, t) :=
d(y,Qj∩E∗γλ)

t . We have that

|JF (y, t)| ≤ 1

|t| +
d(y,Qj ∩ E∗γλ)

t2
, t 6= 0, for a.e. y ∈ Rn,
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where JF denotes the Jacobian of F . Then, integrating in β ∈ (1/2, 1)
and applying the coarea formula
ˆ 1

1
2

ˆ
H(β)

h dσ dβ ≤
ˆ 1

1
2

ˆ
F−1(1/β)

h1Bε,`(Qj)(E∗
γλ
∩Qj)

dσ dβ

≤
¨

Rn+1
+

h(y, t)1Bε,`(Qj)(E∗
γλ
∩Qj)

(y, t)|JF (y, t)| dy dt

≤
¨
Bε,`(Qj)(E∗

γλ
∩Qj)

h(y, t)|JF (y, t)| dy dt

≤
¨
Bε,`(Qj)(E∗

γλ
∩Qj)

h(y, t)
1

t

(
1 +

d(y,Qj ∩ E∗γλ)

t

)
dy dt

.
¨
Bε,`(Qj)(E∗

γλ
∩Qj)

h(y, t)
dy dt

t
.

On the other hand, doing the change of variables βε = t, we have
ˆ 1

1
2

ˆ
T (ε)

h(y, βε) dy dβ =

ˆ ε

ε
2

1

ε

ˆ
T (ε)

h(y, t) dy dt .
¨
Bε(E∗

γλ
∩Qj)

h(y, t)
dy dt

t
,

where

Bε(E∗γλ ∩Qj) := {(y, t) ∈ Rn × (2−1ε, ε) : d(y,E∗γλ ∩Qj) < 2t}.

Analogously
ˆ 1

1
2

ˆ
T (`(Qj))

h(y, β`(Qj)) dy dβ .
¨
B`(Qj)(E∗

γλ
∩Qj)

h(y, t)
dy dt

t
,

where

B`(Qj)(E∗γλ ∩Qj) := {(y, t) ∈ Rn × (2−1`(Qj), `(Qj)) : d(y,E∗γλ ∩Qj) < 2t}.

Therefore, applying the previous estimates with h(y, t) = |u(y, t)|2, and
h(y, t) = |t∇y,tu(y, t)|2, and also (7.14) and (7.15), we have

ˆ
E∗
γλ
∩Qj
GP,2,εf(x)2 dx = 2

ˆ 1

1
2

ˆ
E∗
γλ
∩Qj
GP,2,εf(x)2 dx dβ

.
ˆ 1

1
2

ˆ
∂Rε,`(Qj),β(E∗

γλ
∩Qj)

|u(y, t)|2 dσ dβ

+

ˆ 1

1
2

ˆ
∂Rε,`(Qj),β(E∗

γλ
∩Qj)

|t∇y,tu(y, t)|2 dσ dβ

.
¨
B̃(E∗

γλ
∩Qj)

|u(y, t)|2 dy dt
t

+

¨
B̃(E∗

γλ
∩Qj)

|t∇y,tu(y, t)|2 dy dt
t

=: I + II,

(7.16)
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where

B̃(E∗γλ ∩Qj) := Bε(E∗γλ ∩Qj) ∪ B`(Qj)(E∗γλ ∩Qj) ∪ Bε,`(Qj)(E∗γλ ∩Qj).

Hence,

I .
¨
Bε(E∗

γλ
∩Qj)

|u(y, t)|2 dy dt
t

+

¨
B`(Qj)(E∗

γλ
∩Qj)

|u(y, t)|2 dy dt
t

+

¨
Bε,`(Qj)(E∗

γλ
∩Qj)

|u(y, t)|2 dy dt
t

=: I1 + I2 + I3,

and analogously II . II1 + II2 + II3. We start estimating I1. For every
(y, t) ∈ Bε(E∗γλ∩Qj), there exists y0 ∈ E∗γλ∩Qj such that y ∈ B(y0, 2t).
Besides, since y0 ∈ E∗γλ ∩ Qj , from the definition of E∗γλ we have that

|Eγλ ∩B(y0, 2t)| ≥ Ctn and then |Eγλ ∩B(y, 4t)| ≥ Ctn. Thus, we have
for κ ≥ 4,

I1 .
¨
Bε(E∗

γλ
∩Qj)

ˆ
Eγλ∩B(y,4t)

|u(y, t)|2 dxdy dt
tn+1

.
ˆ ε

ε
2

ˆ
8Qj∩Eγλ

ˆ
B(x,4t)

|u(y, t)|2 dy
tn
dx dt

t

≤
ˆ ε

ε
2

ˆ
8Qj∩Eγλ

N κ
Pf(x)2 dx dt

t
. |Qj |(γλ)2.

The second inequality follows applying Fubini and noticing that (y, t) ∈
Bε(E∗γλ∩Qj) and x∈Eγλ∩B(y, 4t) imply that x∈Eγλ∩8Qj , y∈B(x, 4t),

and t∈
(
ε
2 , ε
)
, where we recall that ε<

`(Qj)
2 . Similarly, for II1,

II1 .
¨
Bε(E∗

γλ
∩Qj)

ˆ
Eγλ∩B(y,4t)

|t∇y,tu(y, t)|2 dxdy dt
tn+1

.
ˆ

8Qj∩Eγλ

ˆ ε

ε
2

ˆ
B(x,4t)

|∇y,tu(y, t)|2 dy dt
tn−1

dx.

Now, consider the elliptic operator L̃u(y, t) := − divy,t(B(y)∇y,tu(y, t)),
(where B is the matrix defined in (7.11)). Besides, for each x ∈ 8Qj ∩
Eγλ, cover the truncated cone Γ

ε
2 ,ε,4(x) := {(y, t) ∈ Rn × (ε/2, ε) : |x−

y| < 4t} by dyadic cubes Ri ⊂ Rn+1
+ , of side length `ε,

ε
16
√
n
< `ε ≤ ε

8
√
n

.

Then, the family {2Ri}i∈N has control overlap. Hence since L̃u = 0,
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apply Caccioppoli’s inequality and obtain for κ ≥ 5
ˆ ε

ε
2

ˆ
B(x,4t)

|∇y,tu(y, t)|2 dy dt
tn−1

.
1

εn−1

M∑
i=1

¨
Ri

|∇y,tu(y, t)|2 dy dt

.
1

εn+1

M∑
i=1

¨
2Ri

|u(y, t)|2 dy dt

.
1

εn+1

ˆ 2ε

ε
4

ˆ
B(x,5t)

|u(y, t)|2 dy dt

.
1

εn+1

ˆ 2ε

ε
4

tn dtN κ
Pf(x)2 . N κ

Pf(x)2.

Consequently, II1 .
´

8Qj∩Eγλ N
κ
Pf(x)2 dx . |Qj |(γλ)2. Arguing in the

same way, we obtain that I2 . |Qj |(γλ)2 and II2 . |Qj |(γλ)2.
Finally, for I3 and II3, we decompose Rn\(E∗γλ∩Qj) = O∗γλ∪(Rn\Qj),

(which is an open set since the cubes Qj are closed and O∗γλ is open), into

a family of Whitney balls {B(xk, rk)}∞k=0, such that ∪∞k=0B(xk, rk) =
O∗γλ ∪ (Rn \ Qj), and for some constants 0 < c1 < c2 < 1 and c3 ∈ N,

c1d(xk, E
∗
γλ∩Qj) ≤ rk ≤ c2d(xk, E

∗
γλ∩Qj), and

∑∞
k=0 1B(xk,rk)(x) ≤ c3,

for all x ∈ Rn. Besides, consider the set

K̃ := {k : d(xk, E
∗
γλ ∩Qj)) ≤ 2(1− c2)−1`(Qj)}.

We are going to see that

(7.17) Bε,`(Qj)(E∗γλ ∩Qj) ⊂
⋃
k∈K̃

B(xk, rk)× [rk(c−1
2 − 1)/2, rk(c−1

1 + 1)].

Indeed, for (y, t) ∈ Bε.`(Qj)(E∗γλ ∩ Qj), we have that ε/2 < t < `(Qj),

y ∈ Rn \ (E∗γλ ∩Qj), and

(7.18) 2−1d(y,E∗γλ ∩Qj) < t < d(y,E∗γλ ∩Qj).

Then, there exists k such that y ∈ B(xk, rk). We see that k ∈ K̃ and
rk(c−1

2 − 1)/2 ≤ t ≤ rk(c−1
1 + 1). On the one hand, we have

d(y,E∗γλ ∩Qj) ≤ |y − xk|+ d(xk, E
∗
γλ ∩Qj) ≤ rk + c−1

1 rk = (1 + c−1
1 )rk,

and, on the other hand,

d(y,E∗γλ ∩Qj) ≥ d(xk, E
∗
γλ ∩Qj)− |y − xk| ≥ (rkc

−1
2 − rk) = (c−1

2 − 1)rk.

Therefore, by (7.18), we have that t ∈ [rk(c−1
2 −1)/2, rk(c−1

1 + 1)]. From
this and recalling that t < `(Qj), we have

d(xk, E
∗
γλ ∩Qj) ≤ |y − xk|+ d(y,E∗γλ ∩Qj) ≤ rk + 2`(Qj)

≤ 2t

(c−1
2 − 1)

+ 2`(Qj) ≤ 2(1− c2)−1`(Qj),
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which in turn gives us that k ∈ K̃. Moreover, note that for every k ∈ K̃,
we have that

(7.19) B(xk, rk) ⊂ C(c2)Qj , with C(c2) := 4(1− c2)−1(c2 + 1) + 1.

Indeed, note that since E∗γλ∩Qj ⊂ Qj then d(xk, Qj) ≤ d(xk, E
∗
γλ∩Qj).

Hence, for x0 ∈ B(xk, rk) and xQj being the center of Qj , we have,

|x0 − xQj |∞ ≤ |x0 − xk|∞ + |xk − xQj |∞ ≤ rk +

(
2(1− c2)−1 +

1

2

)
`(Qj)

≤ (4(1− c2)−1(c2 + 1) + 1)
`(Qj)

2
.

Now, since E∗γλ ⊂ Eγλ then

d(xk, Qj ∩ Eγλ) ≤ d(xk, E
∗
γλ ∩Qj) ≤ c−1

1 rk ≤
2c2

c1(1− c2)
t,

which implies that, for κ > 2c2
c1(1−c2) there exists x̃ ∈ Qj ∩Eγλ such that

|x̃− xk| < κt, thenˆ
B(xk,

2c2
1−c2

t)

|u(y, t)|2 dy
tn
≤
ˆ
B(xk,κt)

|u(y, t)|2 dy
tn
≤ N κ

Pf(x̃) ≤ (γλ)2.

Therefore, by (7.19), we have

I3 ≤
∑
k∈K̃

ˆ rk(c−1
1 +1)

rk(c
−1
2 −1)

2

ˆ
B(xk,rk)

|u(y, t)|2 dy dt
t

.
∑
k∈K̃

rnk

ˆ rk(c−1
1 +1)

rk(c
−1
2 −1)

2

ˆ
B(xk,

2c2
1−c2

t)

|u(y, t)|2 dy dt
tn+1

. (γλ)2
∑
k∈K̃

rnk . (γλ)2

∣∣∣∣ ⋃
k∈K̃

B(xk, rk)

∣∣∣∣ . |Qj |(γλ)2.

Similarly, arguing as in the estimate of II1 (taking κ larger if necessary),
we conclude that II3 . |Qj |(γλ)2. Gathering the estimates obtained
for I and II gives us thatˆ

E∗
γλ
∩Qj
GP,2,εf(x)2 dx ≤ C|Qj |(γλ)2,

with C independent of ε. Now, recall the definitions of GP,2 and GP,2,ε

in (7.9) and (7.10) respectively. Then, let ε→ 0 and obtainˆ
E∗
γλ
∩Qj
GP,2f(x)2 dx ≤ C|Qj |(γλ)2.

This, together with (7.9), yields (7.8).
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In order to complete the proof of Proposition 7.2, we need to establish
part (b). The argument follows the lines of [19, Theorem 6.1] and the
proof of part (a), so we only sketch the main changes. Consider, for α ≥
1, for each N > 1, KN as in (7.6), and

Gα
H,Nf(x) :=

(¨
Γα(x)

1KN (y, t)|t∇ye−t
2Lf(y)|2 dy dt

tn+1

) 1
2

,

we write GH,N when α = 1. Notice that supp Gα
H,Nf ⊂ B(0, (α + 1)N)

and much as before

‖Gα
H,Nf‖Lp(w) ≤ C‖f‖L2(Rn)N

n
2 w(B(0, (α+ 1)N))

1
p <∞.

Hence, it is enough to show part (b) with GH,N in place of GH with
constants uniform in N . We follow the proof of part (a), replacing GαP,N
and NP with Gα

H,N and NH, respectively, (GP,N with GP,N when α = 1).

We also need to replace u(y, t) with v(y, t) := e−t
2Lf(y) and t∇y,tu(y, y)

with t∇yv(y, t). We also use the ellipticity of the matrix A (see (2.7))
instead of the properties of the block matrix B defined in (7.11). Then,
we have thatˆ

E∗
γλ
∩Qj

GH,2,εf(x)2 dx .
¨
B̃(E∗

γλ
∩Qj)

|v(y, t)|2 dy dt

+

¨
B̃(E∗

γλ
∩Qj)

t|∇yv(y, t)|2 dy dt =: Ĩ + ĨI.

From here the proof proceeds much as the proof of part (a): term Ĩ is

estimated as term I, and term ĨI as term II but, in this case, as in
the proof of [19, Theorem 6.1], we need to use the following parabolic
Caccioppoli inequality (see [19, Lemma 2.8]):

Lemma 7.20. Suppose ∂tf = −Lf in I2r(x0, t0), where Ir(x0, t0) =
B(x0, r) × [t0 − cr2, t0], t0 > 4cr2, and c > 0. Then, there exists C =
C(λ,Λ, c) > 0 such that¨

Ir(x0,t0)

|∇xf(x, t)|2 dx dt ≤ C

r2

¨
I2r(x0,t0)

|f(x, t)|2 dx dt.

Remark 7.21. Following the explanation of [23, Remark 4.22], one can
see that Proposition 7.2 holds for all functions f ∈ Lq(w) with w ∈ A∞
and q ∈ Ww(p−(L), p+(L)). Details are left to the interested reader.

7.4. Characterization of the weighted Hardy spaces associated
with NH and NP. The proof of Theorem 3.11 requires several steps.
The first one consists in obtaining that the L1(w) norms of the non-
tangential maximal functions applied to (w, p, ε,M)-molecules are uni-
formly controlled.
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Proposition 7.22. Let w ∈ A∞, let p ∈ Ww(p−(L), p+(L)), ε > 0, and
M ∈ N such that M > n

2

(
rw − 1

p−(L)

)
, and let m be a (w, p, ε,M)-mol-

ecule. There hold:

(a) ‖NHm‖L1(w) + ‖NPm‖L1(w) ≤ C.

(b) For all f ∈ H1
L,p,ε,M (w),

‖NHf‖L1(w) + ‖NPf‖L1(w) . ‖f‖H1
L,p,ε,M

(w)R.

Proof: Assuming part (a), the proof of part (b) is similar to that of
Proposition 5.3, part (b), but applying Proposition 7.1 instead of [23,
Theorems 1.12 and 1.13].

Let us prove part (a). Fix w ∈ A∞, p ∈ Ww(p−(L), p+(L)), ε > 0,
M ∈ N such that M > n

2

(
rw− 1

p−(L)

)
. Then, take m a (w, p, ε,M)-mol-

ecule, and Q a cube associated with m. Besides we fix p0, q, and r̂ with
p−(L) < p0 < min{2, p} ≤ max{2, p} < q < p+(L) and r̂ > rw so that
w ∈ A p

p0
∩RH( qp )′ and M > n

2

(
r̂ − 1

p0

)
.

We start by dealing with NH. For every x ∈ Rn, we have

NHm(x) ≤

(
sup

(y,t)∈Γ(x), 0<t≤`(Q)

ˆ
B(y,t)

|e−t
2L
m(z)|2 dz

tn

)1
2

+

(
sup

(y,t)∈Γ(x), t>`(Q)

ˆ
B(y,t)

|e−t
2L
m(z)|2 dz

tn

)1
2

=:F1m(x) + F2m(x).

Besides, recalling the notation introduced in (3.1), we can write m =∑
i≥1m1Ci(Q) =:

∑
i≥1mi. Hence,

‖F1m‖L1(w) .
∑
i≥1

‖116QiF1mi‖L1(w) +
∑
i≥1

∑
j≥4

‖1Cj(Qi)F1mi‖L1(w)

=:
∑
i≥1

Ii +
∑
i≥1

∑
j≥4

Iji.
(7.23)

To estimate Ii, we apply Hölder’s inequality, Proposition 7.1, and (3.3)
for k = 0:

(7.24) Ii . w(Qi)
1
p′ ‖NHmi‖Lp(w) . w(Qi)

1
p′ ‖mi‖Lp(w) ≤ 2−iε.

As for Iji, note that for every x ∈ Cj(Qi), 0 < t ≤ `(Q), and (y, t) ∈
Γ(x), we have that B(y, t) ⊂ 2j+2Qi \ 2j−1Qi. Then, applying that

{e−t2L}t>0 ∈ F∞(Lp0 → L2) and Lemma 4.6, we get

F1m(x) ≤

(
sup

0<t≤`(Q)

ˆ
2j+1Qi\2j−1Qi

|e−t
2L
mi(z)|2

dz

tn

) 1
2

≤ sup
0<t≤`(Q)

t
− n
p0 e
−c 4j+i`(Q)2

t2 ‖mi‖Lp0 (Rn) . w(Qi)
−1e−c4

j+i

.
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Therefore, taking the norm in L1(w) in the previous expression and using

that w ∈ A∞, we obtain that Iji . e−c4
j+i

. This, (7.23), and (7.24) yield
‖F1m‖L1(w) ≤ C.

We turn now to estimate the norm in L1(w) of F2m. Considering

BQ := (I − e−`(Q)2L)M , AQ := I − BQ, and m̃ := (`(Q)2L)−Mm, and
noticing that we can write m̃ =

∑
i≥1 m̃1Ci(Q) =:

∑
i≥1 m̃i. Then, for

every x ∈ Rn,

m(x) = BQm(x) +AQm(x)

=
∑
i≥1

(
BQmi(x) +

M∑
k=1

Ck,M (k`(Q)2L)Me−k`(Q)2L
m̃i(x)

)
.

Besides, proceeding as in (7.24) and applying the fact that, for every

1 ≤ k ≤ M , the operators (k`(Q)2L)Me−k`(Q)2L and BQ are bounded
on Lp(w) (see [7]), we have that
(7.25)∑
i≥1

(
‖116QiF2BQmi‖L1(w)+

M∑
k=1

‖116QiF2(k`(Q)2L)Me−k`(Q)2L
m̃i‖L1(w)

)
≤C.

Next, consider θM :=
√
M + 1 and note that, for every j ≥ 4, i ≥ 1,

x ∈ Cj(Qi), `(Q)/θM < t ≤ 2j−3`(Qi)/θM , and (y, θM t) ∈ Γ(x), we

have that B(y, θM t) ⊂ 2j+2Qi \ 2j−1Qi. Therefore, since {e−t2L}t>0 ∈
F∞(Lp0−L2) and by the Lp0(Rn)−Lp0(Rn) off-diagonal estimates satis-

fied by the family {e−t2LBQ}t>0 (see (5.12)), applying [23, Lemma 2.1]
(see also [18, Lemma 2.3]), and Lemma 4.6, we have

F2BQmi(x) . ‖mi‖Lp0 (Rn)

(
sup

`(Q)
θM

<t≤ 2j−3`(Qi)
θM

(
`(Q)

t

)2M

t
− n
p0 e
−c 4j+i`(Q)2

t2

+ sup

t>
2j−3`(Qi)

θM

(
`(Q)

t

)2M

t
− n
p0

)

. w(Qi)
−12−i(2M+ε)2

−j(2M+ n
p0

)
.

Then, using (2.5), we easily obtain that

(7.26) ‖1Cj(Qi)F2BQmi‖L1(w) . 2−i(2M+ε)2
−j(2M+ n

p0
−r̂n)

,

for all j ≥ 4 and i ≥ 1.
Note now that, for every j ≥ 4, i ≥ 1, x ∈ Cj(Qi), `(Q)/

√
2 < t ≤

2j−3`(Qi)/
√

2, and (y,
√

2t) ∈ Γ(x), we have that B(y,
√

2t) ⊂ 2j+2Qi \
2j−1Qi. Then, proceeding as in the estimate of F2BQmi, but using

this time the off-diagonal estimates satisfied by the family {t2Le−t2L}t>0
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instead of the ones satisfied by {e−t2LBQ}t>0, we have that, for every 1 ≤
k ≤M ,

F2((k`(Q)2L)Me−k`(Q)2L
m̃i)(x)

. sup
(y,
√

2t)∈Γ(x), t>
`(Q)√

2

(
`(Q)2

t2 + k`(Q)2

)M

×

(ˆ
B(y,

√
2t)

|e−t
2L((t2 + k`(Q)2)L)Me−(t2+k`(Q)2)L

m̃i(z)|2
dz

tn

) 1
2

. ‖m̃i‖Lp0 (Rn)

(
sup

`(Q)√
2
<t≤ 2j−3`(Qi)√

2

(
`(Q)

t

)2M

t
− n
p0 e
−c 4j+i`(Q)2

t2

+ sup

t>
2j−3`(Qi)√

2

(
`(Q)

t

)2M

t
− n
p0

)

. w(Qi)
−12−i(2M+ε)2

−j(2M+ n
p0

)
.

Then, ‖1Cj(Qi)F2AQm‖L1(w) . 2−i(2M+ε)2−j(2M+ n
p0
−r̂n), for all j ≥ 4

and i ≥ 1. This, (7.26), and (7.25), and splitting the norm of F2m as
in (7.23), allow us to conclude that ‖F2m‖L1(w) ≤ C.

We now consider NP. Note that, in the proof of Proposition 7.1,
part (b), (and following the notation introduced there with f = m) we
saw that NPm(x) . mPm(x) +NHm(x). Then, since we have already
proved that ‖NHm‖L1(w) ≤ C, we just need to consider mPm. Applying,
the subordination formula (6.2), we have that

mPm(x) . sup
(y,t)∈Γ(x)

ˆ 1
4

0

u
1
2

(ˆ
B(y,t)

|(e−
t2

4u
L − e−t

2L)m(z)|2 dz
tn

) 1
2
du

u

+ sup
(y,t)∈Γ(x)

ˆ ∞
1
4

e−uu
1
2

(ˆ
B(y,t)

|(e−
t2

4u
L − e−t

2L)m(z)|2 dz
tn

) 1
2
du

u

=: I + II.

Note that II is bounded by the term II (with f = m) in the proof
of Proposition 7.1, part (b). Hence, applying [23, Proposition 3.2] and
Proposition 5.3, part (a), we get

‖II‖L1(w) .
ˆ ∞

1
4

e−u‖S4
√
u

H f‖L1(w) du .
ˆ ∞

1
4

uce−u du‖SHm‖L1(w) ≤ C,

recall the definition of S4
√
u

H in (2.13) and (2.14).
Next, we estimate I. We shall use the notation introduced before

formi, m̃i, BQ, and AQ, and also in (3.1). Proceeding as in the estimate
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of the term I (with f =m) in the proof of Proposition 7.1, part (b), we
have

I .
∑
l≥1

e−c4
l

sup
(y,t)∈Γ(x)

( 
B(y,2l+1t)

(ˆ ∞
t√
2

|r2Le−r
2L
m(z)|2 dr

r

)p0
2

dz

)1
p0

.
∑
l≥1

e−c4
l

sup
(y,t)∈Γ(x),0<t≤`(Q)

( 
B(y,2l+1t)

(ˆ ∞
0

|r2Le−r
2L
m(z)|2 dr

r

)p0
2

dz

)1
p0

+
∑
l≥1

e−c4
l

sup
(y,t)∈Γ(x),t>`(Q)

( 
B(y,2l+1t)

(ˆ ∞
t√
2

|r2Le−r
2L
m(z)|2 dr

r

)p0
2

dz

)1
p0

=:
∑
l≥1

e−c4
l

(F1,lm(x) + F2,lm(x)).

(7.27)

We first estimate F1,lm(x). Note that considering the following vertical
square functions

gH,1m(x) :=

(ˆ `(Q)

0

|r2Le−r
2L
m(x)|2 dr

r

) 1
2

and

gH,2m̃(x) :=

(ˆ ∞
`(Q)

(
`(Q)2

r2

)2M

|(r2L)M+1e−r
2L
m̃(x)|2 dr

r

) 1
2

.

We have that

F1,lm(x) . sup
(y,t)∈Γ(x),0<t≤`(Q)

( 
B(y,2l+1t)

|gH,1m(z)|p0dz

) 1
p0

+ sup
(y,t)∈Γ(x),0<t≤`(Q)

( 
B(y,2l+1t)

|gH,2m̃(z)|p0dz

) 1
p0

=: F 1
1,lm(x) + F 2

1,lm̃(x).

(7.28)

Applying Hölder’s inequality, (2.5), and by the boundedness on Lp(w)
of the maximal operator Mp0 (recall that w ∈ A p

p0
) and the vertical

square function gH,1 (see [5]), and by (3.3), we have that

‖12l+3Qi
F 1

1,lmi‖L1(w) . ‖12l+3Qi
Mp0(gH,1mi)‖L1(w)

. w(2lQi)
1
p′ ‖Mp0(gH,1mi)‖Lp(w) . 2lnr̂2−iε.

Now observe that for every i ≥ 1, j ≥ l + 3, x ∈ Cj(Qi), 0 < t ≤ `(Q),
and (y, t) ∈ Γ(x) we have that B(y, 2l+1t) ⊂ 2j+2Qi \ 2j−1Qi. Then,
applying Hölder’s inequality, Minkowski’s integral inequality, the fact



530 J. M. Martell, C. Prisuelos-Arribas

that w ∈ RH( qp )′ and {r2Le−r
2L}r>0 ∈ F(Lp0 − Lq), and Lemma 4.6,

we obtain that

‖1Cj(Qi)F
1
1,lmi‖L1(w) . w(2j+1Qi)

1
p′ ‖Mp0(12j+2Qi\2j−1Qi

gH,1mi)‖Lp(w)

. w(2j+1Qi)
1
p′ ‖12j+2Qi\2j−1Qi

gH,1mi‖Lp(w)

. w(2j+1Qi)|2j+1Qi|−
1
q ‖12j+2Qi\2j−1Qi

gH,1mi‖Lq(Rn)

. w(2j+1Qi)|2j+1Qi|−
1
q ‖mi‖Lp0 (Rn)

×

(ˆ `(Q)

0

e
−c 4j+i`(Q)2

r2 r
− 2n
p0

+ 2n
q
dr

r

) 1
2

. e−c4
j+i

.

Therefore,

‖F 1
1,lm‖L1(w) .

∑
i≥1

‖12l+3Qi
F 1

1,lmi‖L1(w)

+
∑
i≥1

∑
j≥l+3

‖1Cj(Qi)F
1
1,lmi‖L1(w) . 2lnr̂.

(7.29)

Similarly, noticing that gH,2 (disregarding the factor (`(Q)2/r2))2M since
it is controlled by one) is bounded on Lp(w) (see [5]), we get

‖12l+3Qi
F 2

1,lm̃i‖L1(w) . w(2lQi)
1
p′ ‖Mp0(gH,2m̃i)‖Lp(w) . 2lnr̂2−iε,

and, since {(r2L)M+1e−r
2L}r>0 ∈ F(Lp0 − Lq), proceeding as before,

‖1Cj(Qi)F
2
1,lm̃i‖L1(w) . w(2j+1Qi)|2j+1Qi|−

1
q ‖m̃i‖Lp0 (Rn)

×

(ˆ ∞
`(Q)

(
`(Q)2

r2

)2M

e
−c 4j+i`(Q)2

r2 r
− 2n
p0

+ 2n
q
dr

r

) 1
2

. 2
−j(2M+ n

p0
−nr̂)

2−i(2M+ε).

Hence, splitting ‖F 2
1,lm̃‖L1(w) as in (7.29), and by (7.28), we obtain that

‖F1,lm‖L1(w) ≤ 2lnr̂.
Let us turn to the estimate of F2,lm. Consider the vertical square

function

gH,tm̃(x) :=

(ˆ ∞
t√
2

(
`(Q)

r

)4M

|(r2L)M+1e−r
2L
m̃(x)|2 dr

r

) 1
2

,
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and note that

‖F2,lm‖L1(w) ≤
∑
i≥1

∑
j≥1

(∥∥∥∥1Cj(Qi) sup
(y,t)∈Γ(·),`(Q)<t≤2j−l−4`(Qi)

×
( 

B(y,2l+1t)

|gH,tm̃i(z)|p0 dz
) 1
p0

∥∥∥∥
L1(w)

+

∥∥∥∥1Cj(Qi) sup
(y,t)∈Γ(·),t>2j−l−4`(Qi)

×
( 

B(y,2l+1t)

|gH,tm̃i(z)|p0 dz
) 1
p0

∥∥∥∥
L1(w)

)
=:
∑
i≥1

∑
j≥1

(‖1Cj(Qi)F
1
2,lm̃i‖L1(w) + ‖1Cj(Qi)F

2
2,lm̃i‖L1(w))

.
∑
i≥1

‖12l+3Qi
F 1

2,lm̃i‖L1(w) +
∑
i≥1

∑
j≥l+3

‖1Cj(Qi)F
1
2,lm̃i‖L1(w)

+
∑
i≥1

‖12l+3Qi
F 2

2,lm̃i‖L1(w) +
∑
i≥1

∑
j≥l+3

‖1Cj(Qi)F
2
2,lm̃i‖L1(w).

(7.30)

Next, for every `(Q) < t <
√

2r we have that gH,t is controlled by gH

(where gH is defined in the proof of Proposition 7.1, part (b)) and gH is
bounded on Lp(w) (see [5]), hence, for a = 1, 2,

‖12l+3Qi
F a2,lm̃i‖L1(w) . w(2lQi)

1
p′ ‖Mp0(gHm̃i)‖Lp(w)

. w(2lQi)
1
p′ ‖m̃i‖Lp(w) . 2lnr̂2−iε.

We observe now that for every i ≥ 1, j ≥ l + 3, x ∈ Cj(Qi), `(Q) <

t ≤ 2j−3

2l+1 `(Qi), and (y, t) ∈ Γ(x), we have that B(y, 2l+1t) ⊂ 2j+2Qi \
2j−1Qi. Therefore, arguing as in the estimate of ‖1Cj(Qi)F 1

1,lmi‖L1(w)

and ‖1Cj(Qi)F 2
1,lm̃i‖L1(w), we have that

‖1Cj(Qi)F
1
2,lm̃i‖L1(w) . w(2j+1Qi)

1
p′ ‖Mp0(12j+2Qi\2j−1Qi

gH,`(Q)m̃i)‖Lp(w)

. 2−i(2M+ε)2
−j(2M+ n

p0
−nr̂)

,

and

‖1Cj(Qi)F
2
2,lm̃i‖L1(w) . w(2j+1Qi)|2j+1Qi|−

1
q ‖m̃i‖Lp0 (Rn)

×

(ˆ ∞
2j−l−4`(Qi)√

2

(
`(Q)

r

)4M

r
−2n

(
1
p0
− 1
q

)
dr

r

) 1
2

. 2cl2−i(2M+ε)2
−j(2M+ n

p0
−nr̂)

.
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Consequently, by (7.30) we conclude that ‖F2,lm‖L1(w) ≤ 2lc. Then, in
view of (7.27), this and the estimate obtained for ‖F1,lm‖L1(w) imply
that ‖I‖L1(w) ≤ C, which finishes the proof.

Hence, we are ready to prove the next proposition which easily implies
Theorem 3.11.

Proposition 7.31. Let w ∈ A∞, p ∈ Ww(p−(L), p+(L)), M ∈ N such
that M > n

2

(
rw − 1

2

)
, and ε0 = 2M + 2 + n

2 − rwn, there hold

(a) H1
NH,p

(w) = H1
SH,p(w) = H1

L,p,ε0,M
(w), with equivalent norms.

(b) H1
NP,p

(w) = H1
GP,p(w) = H1

L,p,ε0,M
(w), with equivalent norms.

Proof: Fix w ∈ A∞, p ∈ Ww(p−(L), p+(L)), M ∈ N such that M >
n
2

(
rw − 1

2

)
, and ε0 = 2M + 2 + n

2 − rwn.

In order to prove part (a), note that for f ∈ H1
L,p,ε0,M

(w), Proposi-

tion 7.22, part (b) yields that

‖f‖H1
NH,p

(w) = ‖NHf‖L1(w) . ‖f‖H1
L,p,ε0,M

(w).

Therefore, since in particular f ∈ Lp(w), we have that f ∈ H1
NH,p

(w).

Take now f ∈ H1
NH,p

(w). Lemma 4.4, part (a), Proposition 7.2,

part (b), and Remark 7.21 imply

‖SHf‖L1(w) . ‖GHf‖L1(w) . ‖NHf‖L1(w).

Then f ∈ H1
SH,p(w). Consequently, from Proposition 5.1, part (a), f ∈

H1
L,p,ε0,M

(w), and

‖f‖H1
L,p,ε0,M

(w) . ‖f‖H1
SH,p

(w) . ‖f‖H1
NH,p

(w).

As for part (b), take f ∈ H1
L,p,ε0,M

(w) and apply Proposition 7.22,

part (b), to obtain

‖f‖H1
NP,p

(w) = ‖NPf‖L1(w) . ‖f‖H1
L,p,ε0,M

(w).

Hence, since again f ∈ Lp(w), we have that f ∈ H1
NP,p

(w).

Finally, notice that for f ∈ H1
NP,p

(w) Proposition 7.2, part (a), and
Remark 7.21 imply that

‖GPf‖L1(w) . ‖NPf‖L1(w).

Therefore, f ∈ H1
GP,p(w). Then, applying Proposition 6.1, part (c), we

conclude that

‖f‖H1
L,p,ε0,M

(w) . ‖f‖H1
GP,p

(w) . ‖f‖H1
NP,p

(w),

and f ∈ H1
L,p,ε0,M

(w).
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