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Abstract: The aim of this article is to study the existence of certain reducible,
metabelian representations of knot groups into SL(n,C) which generalize the repre-

sentations studied previously by G. Burde and G. de Rham. Under specific hypothe-

ses we prove the existence of irreducible deformations of such representations of knot
groups into SL(n,C).
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1. Introduction

In [3] the authors studied the deformations of certain metabelian, re-
ducible representations of knot groups into SL(3,C). In this paper we
continue this study by generalizing the results of [3] to the group SL(n,C)
(see Theorem 1.1).

Let Γ be a finitely generated group. The set Rn(Γ) := R(Γ,SL(n,C))
of homomorphisms of Γ in SL(n,C) is called the SL(n,C)-representation
variety of Γ. It is a (not necessarily irreducible) algebraic variety. A
representation ρ : Γ → SL(n,C) is called abelian (resp. metabelian) if
the restriction of ρ to the first (resp. second) commutator subgroup of Γ
is trivial. The representation ρ : Γ → SL(n) is called reducible if there
exists a proper subspace V ⊂ Cn such that ρ(Γ) preserves V . Otherwise
ρ is called irreducible.

Let K ⊂ M3 be a knot in a three-dimensional integer homology
sphere M3. We let Γ = ΓK denote the knot group of K i.e. ΓK is
the fundamental group of the knot complement M3 r K. Since the
ring of complex Laurent polynomials C[t±1] is a principal ideal domain,
the complex Alexander module A(t) of K decomposes into a direct sum
of cyclic modules. A generator of the order ideal of A(t) is called the
Alexander polynomial of K. It will be denoted by ∆K(t) ∈ C[t±1], and
it is unique up to multiplication by a unit c tk ∈ C[t±1], c ∈ C∗, k ∈ Z.
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For a given root α ∈ C∗ of ∆K(t) we let τα denote the (t − α)-torsion
of the Alexander module. (For details see Section 2.)

The main result of this article is the following theorem which gener-
alizes the results of [3] where the case n = 3 was investigated. It also
applies in the case n = 2 which was studied in [1] and [14, Theorem 1.1].

Theorem 1.1. Let K be a knot in the 3-dimensional integer homology
sphere M3. If the (t − α)-torsion τα of the Alexander module is cyclic
of the form C[t±1]

/
(t − α)n−1, n ≥ 2, then for each λ ∈ C∗ such that

λn = α there exists a certain reducible metabelian representation %λ of
the knot group Γ into SL(n,C). Moreover, the representation %λ is a
smooth point of the representation variety Rn(Γ). It is contained in a
unique (n2 +n−2)-dimensional component R%λ of Rn(Γ) which contains
irreducible non-metabelian representations which deform %λ.

This paper is organised as follows. In Section 2 we introduce some
notations and recall some facts which will be used in this article. In
Section 3 we study the existence of certain reducible representations.
These representations were previously studied in [16], and we treat the
existence results from a more general point of view. Section 4 is devoted
to the proof of Proposition 4.1, and it contains all necessary cohomolog-
ical calculations. In the last section we prove that there are irreducible
non-metabelian deformations of the initial reducible representation.
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2. Notations and facts

To shorten notation we will simply write SL(n) and GL(n) instead
of SL(n,C) and GL(n,C) respectively. The same notation applies for
the Lie algebras sl(n) = sl(n,C) and gl(n) = gl(n,C).

2.1. Group cohomology. The general reference for group cohomology
is K. S. Brown’s book [6]. Let A be a Γ-module. We denote by C∗(Γ;A)
the cochain complex; the coboundary operator δ : Cn(Γ;A)→Cn+1(Γ;A)
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is given by:

δf(γ1, . . . , γn+1) = γ1 · f(γ2, . . . , γn+1)

+
n∑
i=1

(−1)if(γ1, . . . , γi−1, γiγi+1, . . . , γn+1)

+ (−1)n+1f(γ1, . . . , γn).

The coboundaries (respectively cocycles, cohomology) of Γ with coeffi-
cients in A are denoted by B∗(Γ;A) (respectively Z∗(Γ;A), H∗(Γ;A)).
In what follows 1-cocycles and 1-coboundaries will be also called deriva-
tions and principal derivations respectively.

Let A1, A2, and A3 be Γ-modules. The cup product of two cochains
u ∈ Cp(Γ;A1) and v ∈ Cq(Γ;A2) is the cochain u` v ∈ Cp+q(Γ;A1⊗A2)
defined by

(1) u ` v(γ1, . . . , γp+q) := u(γ1, . . . , γp)⊗(γ1 · · · γp) ·v(γp+1, . . . , γp+q).

Here A1 ⊗ A2 is a Γ-module via the diagonal action. It is possible to
combine the cup product with any Γ-invariant bilinear map A1 ⊗A2 →
A3. We are mainly interested in the product map C⊗C→ C.

Remark 2.1. Notice that our definition of the cup product (1) differs
from the convention used in [6, V.3] by the sign (−1)pq. Hence with the
definition (1) the following formula holds:

δ(u` v) = (−1)q δu` v + u` δv.

A short exact sequence

0 −→ A1
i−→ A2

p−→ A3 −→ 0

of Γ-modules gives rise to a short exact sequence of cochain complexes:

0 −→ C∗(Γ;A1)
i∗−→ C∗(Γ;A2)

p∗−→ C∗(Γ;A3) −→ 0.

We will make use of the corresponding long exact cohomology sequence
(see [6, III. Proposition 6.1]):

0 −→ H0(Γ;A1) −→ H0(Γ;A2) −→ H0(Γ;A3)
β0

−→ H1(Γ;A1) −→ · · ·

Recall that the Bockstein homomorphism βn : Hn(Γ;A3)→Hn+1(Γ;A1)
is determined by the snake lemma: if z ∈ Zn(Γ;A3) is a cocycle and if
z̃ ∈ (p∗)−1(z) ⊂ Cn(Γ;A2) is any lift of z then δ2(z̃) ∈ Im(i∗), where
δ2 denotes the coboundary operator of C∗(Γ;A2). It follows that any
cochain z′ ∈ Cn+1(Γ;A3) such that i∗(z′) = δ2(z̃) is a cocycle and that
its cohomology class only depends on the cohomology class represented
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by z. The cocycle z′ represents the image of the cohomology class rep-
resented by z under βn.

Remark 2.2. By abuse of notation and if no confusion can arise, we will
write sometimes βn(z) for a cocycle z ∈ Zn(Γ;A3) even if the map βn is
only well defined on cohomology classes. This will simplify the notations.

We will make use of the following known fact [13, Lemma 3.1]:

Lemma 2.3. Let Γ be a finitely presented group, and A a Γ-module.
Suppose that X is any CW-complex with π1(X) ∼= Γ. Then there are
natural morphisms Hi(X;A) → Hi(Γ;A) which are isomorphisms for
i = 0, 1 and a surjection for i = 2. In cohomology there are natural
morphisms Hi(Γ;A) → Hi(X;A) which are isomorphisms for i = 0, 1
and an injection for i = 2.

2.2. The Alexander module. Let K ⊂ M3 be a knot in a three-
dimensional integer homology sphere M3. We let X = M3\V (K) de-
note its complement where V (K) is a tubular neighborhood of K. Let
Γ = π1(X) denote the fundamental group of X and h : Γ → Z, h(γ) =
lk(γ,K), the canonical projection. There is a short exact splitting se-
quence

(2) 1 −→ Γ′ −→ Γ −→ 〈t | −〉 −→ 1,

where Γ′ = [Γ,Γ] denotes the commutator subgroup of Γ. The surjection
is given by γ 7→ th(γ). Hence Γ is isomorphic to the semi-direct prod-
uct Γ′ o Z. Note that Γ′ is the fundamental group of the infinite cyclic
covering X∞ of X. The abelian group Γ′/Γ′′ ∼= H1(X∞; Z) becomes a
Z[t±1]-module via the action of the group of covering transformations
which is isomorphic to 〈t | −〉. The Z[t±1]-moduleH1(X∞; Z) is a finitely
generated torsion module called the Alexander module of K. There are
isomorphisms of Z[t±1]-modules

Hq(Γ; Z[t±1]) ∼= Hq(X; Z[t±1]) ∼= Hq(X∞; Z), q = 0, 1,

where Γ acts on Z[t±1] via γ p(t) = th(γ) p(t) for all γ ∈ Γ and p(t) ∈
Z[t±1]. (See [9, Chapter 5] for more details.) In what follows we are
mainly interested in the complex version C⊗ Γ′/Γ′′ ∼= H1(Γ; C[t±1]) of
the Alexander module. As C[t±1] is a principal ideal domain, the Alexan-
der module H1(Γ; C[t±1]) decomposes into a direct sum of cyclic modules
of the form C[t±1]/(t−α)k, α ∈ C∗ \{1} i.e. there exist α1, . . . , αs ∈ C∗

such that

H1(Γ; C[t±1]) ∼= τα1
⊕ · · · ⊕ ταs , where ταj =

nαj⊕
ij=1

C[t±1]
/

(t− αj)rij
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denotes the (t − αj)-torsion of H1(Γ; C[t±1]). A generator of the order
ideal of H1(X∞; C) is called the Alexander polynomial ∆K(t) ∈ C[t±1]
of K i.e. ∆K(t) is the product

∆K(t) =

s∏
j=1

nαj∏
ij=1

(t− αj)rji .

Notice that the Alexander polynomial is symmetric and is well defined
up to multiplication by a unit c tk of C[t±1], c ∈ C∗, k ∈ Z. Moreover,
∆K(1) 6= 0 (see [8]), and hence the (t − 1)-torsion of the Alexander
module is trivial. In fact, it is well known that, up to multiplication
by a unit, we can assume that ∆K is normalized in the following way:
∆K ∈ Z[t] ⊂ C[t±1] is a polynomial with integer coefficients such that
∆K(0) 6= 0 and ∆K(1) = 1 (see [8, 8.D]).

For completeness we will state the next lemma which shows that the
cohomology groupsH∗(X; C[t±1]/(t−α)k) are determined by the Alexan-
der module H1(Γ; C[t±1]). Recall that the action of Γ on C[t±1]/(t−α)k

is induced by γ p(t) = th(γ)p(t).

Lemma 2.4. Let K ⊂M3 be a knot with exterior X = M3\V (K) and
Γ its fundamental group. Let α ∈ C∗ and let τα = ⊕nαi=1C[t±1]

/
(t− α)ri

denote the (t−α)-torsion of the Alexander module H1(Γ; C[t±1]). Then
if α = 1 we have that τ1 is trivial and

Hq(X; C[t±1]/(t− 1)k) ∼=

{
C for q = 0, 1,

0 for q ≥ 2.

Moreover, for α 6= 1 we have:

Hq(X; C[t±1]/(t− α)k) ∼=

{
0 for q 6= 1, 2,

⊕nαi=1C[t±1]
/

(t− α)min(k,ri) for q = 1, 2.

In particular, H1(Γ; C[t±1]/(t− α)k) 6= 0 if and only H1(Γ; C[t±1]) has
non-trivial (t− α)-torsion i.e. if ∆K(α) = 0.

Proof: During this proof we put Λ = C[t±1]. Let A be a Λ-module, then
by the extension of scalars [6, III.3] we have an isomorphism

Hq(X;A) ∼= Hq
(

HomΛ(C∗(X∞; C);A)
)
.

Since Λ is a principal ideal domain, we can apply the universal coefficient
theorem and obtain

Hq(X;A) ∼= Ext1
Λ(Hq−1(X∞; C), A)⊕HomΛ(Hq(X∞; C), A).
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Now H0(X∞; C) ∼= C ∼= Λ/(t−1) and Hk(X∞; C) = 0 for k ≥ 2 (see [8,
Proposition 8.16]). Therefore,

H0(X;A) ∼= HomΛ(H0(X∞; C), A),

H1(X;A) ∼= Ext1
Λ(H0(X∞; C), A)⊕HomΛ(H1(X∞; C), A),

H2(X;A) ∼= Ext1
Λ(H1(X∞; C), A).

To complete the proof, observe that for α, β ∈ C∗ and k, l ∈ N we have
the following:

HomΛ

(
Λ/(t− α)k,Λ/(t− β)l

) ∼= {0 if α 6= β,

Λ
/

(t− α)m if α = β,

Ext1
Λ

(
Λ/(t− α)k,Λ/(t− β)l

) ∼= {0 if α 6= β,

Λ
/

(t− α)m if α = β,

where m = min{k, l} (see [9, Proposition 2.4]). Notice that for β 6= α,
multiplication by (t− β) induces an isomorphism of Λ/(t− α)k.

Corollary 2.5. Let K ⊂M3 be a knot and Γ its group. Let α ∈ C∗ and
let τα = ⊕nαi=1C[t±1]

/
(t−α)ri denote the (t−α)-torsion of the Alexander

module H1(Γ; C[t±1]). Then we have that

Hq(Γ; C[t±1]/(t− 1)k) ∼=

{
C for q = 0, 1,

0 for q = 2,

and, for α 6= 1 we have:

Hq(Γ; C[t±1]/(t− α)k) ∼=

{
0 for q = 0,

⊕nαi=1C[t±1]
/

(t− α)min(k,ri) for q = 1.

Proof: This is an immediate consequence of Lemmas 2.3 and 2.4.

2.3. Representation variety. Let Γ be a finitely generated group.
The set of all homomorphisms of Γ into SL(n) has the structure of an
affine algebraic set (see [17] for details). In what follows this affine
algebraic set will be denoted by R(Γ,SL(n)) or simply by Rn(Γ). Let
ρ : Γ → SL(n) be a representation. The Lie algebra sl(n) becomes a
Γ-module via Ad ◦ρ. This module will be simply denoted by sl(n)ρ. A
1-cocycle or derivation d ∈ Z1(Γ; sl(n)ρ) is a map d : Γ→ sl(n) satisfying

d(γ1γ2) = d(γ1) + Ad ◦ρ(γ1)(d(γ2)), ∀ γ1, γ2 ∈ Γ.

It was observed by André Weil [19] that there is a natural inclusion
of the Zariski tangent space TZar

ρ (Rn(Γ)) ↪→ Z1(Γ; sl(n)ρ). Informally
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speaking, given a smooth curve ρε of representations through ρ0 = ρ one
gets a derivation d : Γ→ sl(n) by defining

d(γ) :=
d ρε(γ)

d ε

∣∣∣∣
ε=0

ρ(γ)−1, ∀ γ ∈ Γ.

It is easy to see that the tangent space to the orbit by conjugation
corresponds to the space of principal derivations B1(Γ; sl(n)ρ). Here,
b : Γ → sl(n) is a principal derivation if there exists x ∈ sl(n) such that
b(γ) = Ad ◦ρ(γ)(x)− x. A detailed account can be found in [17].

For the convenience of the reader, we state the following result which
is implicitly contained in [3, 14, 13]. A detailed proof of the following
streamlined version can be found in [12]:

Proposition 2.6. Let M be an orientable 3-manifold with infinite
fundamental group π1(M) and incompressible torus boundary, and let
ρ : π1(M)→ SL(n) be a representation.

If dimH1(π1(M); sl(n)ρ) = n − 1 then ρ is a smooth point of the
SL(n)-representation variety Rn(π1(M)). More precisely, ρ is contained
in a unique component of dimension n2 +n−2−dimH0(π1(M); sl(n)ρ).

3. Reducible metabelian representations

Recall that every nonzero complex number α ∈ C∗ determines an
action of a knot group Γ on the complex numbers given by γ x = αh(γ)x
for γ ∈ Γ and x ∈ C. The resulting Γ-module will be denoted by Cα.
Notice that Cα is isomorphic to C[t±1]/(t− α).

It is easy to see that a map Γ→ GL(2,C) given by

(3) γ 7−→
(

1 z1(γ)
0 1

)(
αh(γ) 0

0 1

)
=

(
αh(γ) z1(γ)

0 1

)
is a representation if and only if the map z1 : Γ→ Cα is a derivation i.e.

δz1(γ1, γ2) = αh(γ1)z1(γ2)− z1(γ1γ2) + z1(γ1) = 0 for all γ1, γ2 ∈ Γ.

The representation given by (3) is non-abelian if and only if α 6= 1
and the derivation z1 is not a principal one. Hence it follows from Corol-
lary 2.5 that such a reducible non-abelian representation exists if and
only if α is a root of the Alexander polynomial. These representations
were first studied independently by G. Burde [7] and G. de Rham [10].

We extend these considerations to a map Γ → GL(3,C). It follows
easily that

(4) γ 7−→

αh(γ) z1(γ) z2(γ)
0 1 h(γ)
0 0 1
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is a representation if and only if δz1 = 0 and δz2 + z1 `h = 0 i.e.{
δz1(γ1, γ2) = 0 for all γ1, γ2 ∈ Γ,

δz2(γ1, γ2) + z1(γ1)h(γ2) = 0 for all γ1, γ2 ∈ Γ.

It was proved in [4, Theorem 3.2] that the 2-cocycle z1 `h represents
a non-trivial cohomology class in H2(Γ; Cα) provided that z1 is not a
principal derivation and that the (t−α)-torsion of the Alexander module
is semi-simple i.e. τα = C[t±1]/(t− α)⊕ · · · ⊕C[t±1]/(t− α). Hence if
we suppose that z1 is not a principal derivation then it is clear that a
non-abelian representation Γ → GL(3,C) given by (4) can only exist if
the (t−α)-torsion τα of the Alexander module has a direct summand of
the form C[t±1]/(t− α)s, s ≥ 2.

Representations Γ→ GL(n,C) of this type were studied in [16] where
it was shown that the whole structure of the (t−α)-torsion of the Alexan-
der module can be recovered.

Let α ∈ C∗ be a non-zero complex number and n ∈ Z, n > 1. In what
follows we consider the cyclic C[t±1]-module C[t±1]/(t− α)n−1 and the
semi-direct product

C[t±1]
/

(t− α)n−1 o Z,

where the multiplication is given by (p1, n1)(p2, n2)=(p1+t
n1p2, n1+n2).

Let In ∈ SL(n) and Nn ∈ GL(n) denote the identity matrix and the
upper triangular Jordan normal form of a nilpotent matrix of degree n
respectively. For later use we note the following lemma which follows
easily from the Jordan normal form theorem:

Lemma 3.1. Let α ∈ C∗ be a nonzero complex number and let Cn be
the C[t±1]-module with the action of tk given by

(5) tk a = αk a Jkn ,

where a ∈ Cn and Jn = In + Nn. Then the C[t±1]-module Cn is iso-
morphic to C[t±1]/(t− α)n.

There is a direct method to construct a reducible metabelian represen-
tation of C[t±1]/(t−α)n−1oZ into GL(n,C) (see [5, Proposition 3.13]).
A direct calculation gives that

(a, 0) 7−→
(

1 a
0 In−1

)
, (0, 1) 7−→

(
α 0
0 J−1

n−1

)
defines a faithful representation C[t±1]/(t− α)n−1 o Z→ GL(n,C).

Note that the short exact splitting sequence (2) induces the sequence

1 −→ Γ′/Γ′′ −→ Γ/Γ′′ −→ 〈t | −〉 −→ 1.
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Hence Γ/Γ′′ is isomorphic to the semi-direct product Γ′/Γ′′oZ. Now, if
ρ : Γ→ GL(n,C) is a metabelian representation, then ρ factors through
Γ/Γ′′ and thus through the metabelian group Γ′/Γ′′ o Z.

Therefore, if the Alexander module H1(X∞,C) has a direct summand
of the form C[t±1]

/
(t − α)s with s ≥ n − 1 ≥ 1, we obtain a reducible,

metabelian, non-abelian representation %̃ : Γ→ GL(n,C) as follows:

%̃ : Γ ∼= Γ′ o Z −→ Γ′/Γ′′ o Z −→ (C⊗ Γ′/Γ′′) o Z

−→ C[t±1]
/

(t− α)s o Z −→ C[t±1]
/

(t− α)n−1 o Z −→ GL(n,C)

and given by

(6) %̃(γ) =

(
1 z̃(γ)
0 In−1

)(
αh(γ) 0

0 J
−h(γ)
n−1

)
.

It is easy to see that a map %̃ : Γ → GL(n) given by (6) is a homomor-
phism if and only if z̃ : Γ → Cn−1 is a derivation i.e. for all γ1, γ2 ∈ Γ
we have

(7) z̃(γ1γ2) = z̃(γ1) + αh(γ1)z̃(γ2)J
h(γ1)
n−1 .

For a better description of the cocycle z̃, we introduce the following
notations: for m, k ∈ Z, k ≥ 0, we define
(8)

hk(γ) :=

(
h(γ)
k

)
, where

(
m
k

)
:=

{
m(m−1)···(m−k+1)

k! if k > 0,

1 if k = 0.

Observe that if m, k ∈ Z and 0 ≤ m < k then (mk ) = 0.
It follows directly from the properties of the binomial coefficients that

for each k ∈ Z, k ≥ 0, the cochains hk ∈ C1(Γ; C) are defined and satisfy:

(9) δhk +

k−1∑
i=1

hi`hk−i = 0.

Lemma 3.2. Let z̃ : Γ→ Cn−1 be a map satisfying (7). The components
z̃k : Γ→ Cα, 1 ≤ k ≤ n− 1, of z̃ satisfy the equations

δz̃k +

k−1∑
i=1

hi` z̃k−i = 0.

In particular z̃1 : Γ→ Cα is a derivation.
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Proof: Note that h0≡1, h1 =h, Jmn−1 =(In−1+Nn−1)m=
∑
i≥0(mi )N i

n−1,

and (x1, . . . , xn−1)Jmn−1 = (x′1, x
′
2, . . . , x

′
n−1) where

x′k =
k−1∑
i=0

(
m
i

)
xk−i = xk +

k−1∑
i=1

(
m
i

)
xk−i.

It follows from this formula that z̃(γ1γ2) = z̃(γ1) + αh(γ1)z̃(γ2)J
h(γ1)
n−1

holds if and only if for k = 1, . . . , n− 1 we have

z̃k(γ1γ2) = z̃k(γ1) + αh(γ1)z̃k(γ2) +

k−1∑
i=1

hi(γ1)αh(γ1)z̃k−i(γ2).

In other words 0 = δz̃k +
∑k−1
i=1 hi` z̃k−i holds.

From now on we will suppose that, for α ∈ C∗\{1}, the (t−α)-torsion
of the Alexander module is cyclic of the form

τα = C[t±1]
/

(t− α)n−1, where n ≥ 2.

This is equivalent to requiring that α is a root of the Alexander polyno-
mial ∆K(t) of multiplicity n−1 and that dimH1(Γ; Cα) = 1 (see Corol-
lary 2.5).

Remark 3.3. Notice that by Blanchfield-duality [11, Chapter 7] the (t−
α−1)-torsion of the Alexander module H1(Γ; C[t±1]) is also of the form

τα−1 = C[t±1]/(t− α−1)n−1.

More precisely, the Alexander polynomial ∆K(t) is symmetric and hence
α−1 is also a root of ∆K(t) of multiplicity n−1 and dimH1(Γ; Cα−1) = 1.

Let %̃ : Γ → GL(n) be a representation given by (6) i.e. for all γ ∈ Γ
we have

%̃(γ) =

(
1 z̃(γ)
0 In−1

)(
αh(γ) 0

0 J
−h(γ)
n−1

)
.

We will say that %̃ can be upgraded to a representation into GL(n+1,C)
if there is a cochain z̃n : Γ → Cα such that the map Γ → GL(n + 1,C)
given by

γ 7−→
(

1 (z̃(γ), z̃n(γ))
0 In

)(
αh(γ) 0

0 J
−h(γ)
n

)
is a representation.

Lemma 3.4. Suppose that the (t− α)-torsion of the Alexander module
is cyclic of the form τα = C[t±1]

/
(t − α)n−1, n ≥ 2 and let %̃ : Γ →

GL(n,C) be a representation given by (6).
Then %̃ cannot be upgraded to a representation into GL(n+1,C) unless

z̃1 : Γ→ Cα is a principal derivation.
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Proof: By Lemma 3.1, the C[t±1]-module Cn−1 with the action given
by ta = α a Jn−1 is isomorphic to C[t±1]/(t − α)n−1. Hence it follows
from the universal coefficient theorem that, for l ≥ n− 1, we have:

H1(Γ; C[t±1]/(t− α)l)∼=HomC[t±1]

(
H1(Γ; C[t±1]),C[t±1]/(t− α)l

)
∼=HomC[t±1]

(
C[t±1]/(t− α)n−1,C[t±1]/(t− α)l

)
∼=C[t±1]/(t− α)n−1.

Hence if l > n − 1 then every derivation z̃ : Γ → C[t±1]/(t − α)l, given
by z̃(γ) = (z̃1(γ), . . . , z̃l(γ)) is cohomologous to a derivation for which
the first l− n+ 1 components vanish. This proves the conclusion of the
lemma.

Notice that the unipotent matrices Jn and J−1
n are similar: a di-

rect calculation shows that PnJnP
−1
n = J−1

n where Pn = (pij), pij =
(−1)j

(
j
i

)
. The matrix Pn is upper triangular with ±1 in the diagonal

and P 2
n is the identity matrix, and therefore Pn = P−1

n .
Hence %̃ is conjugate to a representation % : Γ→ GL(n,C) given by

(10)

%(γ) =

(
αh(γ) z(γ)

0 J
h(γ)
n−1

)
=


αh(γ) z1(γ) z2(γ) . . . zn−1(γ)

0 1 h1(γ) . . . hn−2(γ)
...

. . .
. . .

. . .
...

...
. . . 1 h1(γ)

0 . . . . . . 0 1

 ,

where z = (z1, . . . , zn−1) : Γ→ Cn−1 satisfies

z(γ1γ2) = αh(γ1)z(γ2) + z(γ1)J
h(γ2)
n−1 .

It follows directly that z(γ) = z̃(γ)Pn−1J
h(γ)
n−1 and in particular z1 = −z̃1.

The same argument as in the proof of Lemma 3.2 shows that the
cochains zk : Γ→ Cα satisfy:

δzk +

k−1∑
i=1

zi`hk−i = 0 for k = 1, . . . , n− 1.

Therefore, the representation % : Γ→ GL(n,C) can be upgraded into

a representation Γ → GL(n + 1,C) if and only if
∑n−1
i=1 zi`hn−i is a

principal derivation.
Hence we obtain the following:
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Proposition 3.5. Suppose that the (t−α)-torsion of the Alexander mod-
ule is cyclic of the form τα = C[t±1]

/
(t − α)n−1, n ≥ 2. Let %̃, % : Γ →

GL(n,C) be the representations given by (6) and (10) respectively where
z̃1 = −z1 : Γ → Cα is a non-principal derivation. Then the representa-
tions %̃ and % cannot be upgraded to representations Γ → GL(n + 1,C)
i.e. the cocycles

n−1∑
i=1

hi` z̃n−i and

n−1∑
i=1

zi`hn−i

represent nontrivial cohomology classes in H2(Γ; Cα).

Proof: The proposition follows from Lemma 3.4 and the above consid-
erations.

Corollary 3.6. Suppose that the (t−α)-torsion of the Alexander module
is cyclic of the form τα = C[t±1]

/
(t− α)n−1, n ≥ 2. Then

dimH2(Γ; Cα±1) = 1.

Proof: Proposition 3.5 implies that dimH2(Γ; Cα±1) ≥ 1, and by Lem-
mas 2.4 and 2.3 we obtain the claimed result.

Example 3.7. Let us consider the knots 31, 810, and 820 in S3. Their
Alexander polynomials are given by ∆31

(t) = t2 − t + 1, ∆820
(t) =

(t2 − t + 1)2, and ∆810
(t) = (t2 − t + 1)3. In each case the Alexander

module is cyclic.
A presentation of Γ31 is given by Γ31 = 〈S, T | STS = TST 〉. The

knots 810 and 820 can be realized as the closures of σ̂ = 810 and τ̂ = 820 of
the braids σ = σ−1

1 σ2
2σ
−2
1 σ3

2 and τ = σ3
1σ2σ

−3
1 σ2 in the braid group B3

on three strands. This gives the following presentations for the knot
groups:

Γ810
= 〈x1, x2, x3 | x1 = σ(x1), x2 = σ(x2)〉,

Γ820
= 〈y1, y2, y3 | y1 = τ(y1), y2 = τ(y2)〉.

All our computer supported calculations were carried out by using
SageMath [18]. Moreover, we made a worksheet which contains the cal-
culations and more details (available at http://mat.uab.cat/pubmat).

We let α denote the primitive 6-th root of unity. For the trefoil knot
a non-abelian reducible representation (10) is given by

%31
(S) =

(
α 0
0 1

)
and %31

(T ) =

(
α 1
0 1

)
.

http://mat.uab.cat/pubmat/fitxers/download/FileType:other/FolderName:./FileName:Examples_SLn.ipynb


Irreducible Representations of Knot Groups into SL(n,C) 375

Notice that %31
can not be upgraded to a representation into GL(3,C)

since α is a simple root of ∆31
. This follows from Proposition 3.5 or

from direct calculation (see also the worksheet).
For the knot 820 a non-principal derivation z1 : Γ820

→ Cα is given
by z1(y1) = 0, z1(y2) = z1(y3) = 1. Thus we obtain the reducible

metabelian representation %
(2)
820

: Γ820
→ GL(2,C) given by

%
(2)
820

(y1) =

(
α 0
0 1

)
, %

(2)
820

(y2) =

(
α 1
0 1

)
, %

(2)
820

(y3) =

(
α 1
0 1

)
.

This representation can be upgraded to the representation %
(3)
820

: Γ820
→

GL(3,C) given by %
(3)
820

(yi) = Ai where

A1 =

α 0 0
0 1 1
0 0 1

 , A2 =

α 1 0
0 1 1
0 0 1

 , A3 =

α 1 α+ 1
0 1 1
0 0 1

 .

Proposition 3.5 or computer supported calculations (see the worksheet)

show that %
(3)
820

can not be upgraded to a representation into GL(4,C).

Similarly, for the knot 810 the representations %
(2)
810

and %
(3)
810

can be

upgraded but %
(4)
810

cannot (see the worksheet). The representation %
(4)
810

:

Γ810
→ GL(4,C) is given by %

(4)
810

(xi) = Bi where

B1 =


α 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 , B2 =


α 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 ,

B3 =


α 1 α− 2 α+ 3
0 1 1 0
0 0 1 1
0 0 0 1

 .

4. Cohomological computations

We suppose throughout this section that K ⊂M3 is a knot in a three
dimensional integer homology sphere M3 and that the (t − α)-torsion
of its Alexander module is cyclic of the form τα = C[t±1]

/
(t − α)n−1,

n ≥ 2, where α ∈ C∗ is a nonzero complex number. Let % : Γ → GL(n)
be a representation given by (10) where z1 : Γ → Cα is a non-principal
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derivation:

%(γ) =

(
αh(γ) z(γ)

0 J
h(γ)
n−1

)
=


αh(γ) z1(γ) z2(γ) . . . zn−1(γ)

0 1 h1(γ) . . . hn−2(γ)
...

. . .
. . .

. . .
...

...
. . . 1 h1(γ)

0 . . . . . . 0 1

 .

We choose an n-th root λ of α and we define a reducible metabelian
representation %λ : Γ→ SL(n) by

(11) %λ(γ) = λ−h(γ)%(γ).

The aim of the following sections is to calculate the first cohomology
groups of Γ with coefficients in the Lie algebra sl(n)Ad ◦%λ . Notice that
the action of Γ via Ad ◦% and Ad ◦%λ preserve sl(n) and coincide since
the center of GL(n) is the kernel of Ad: GL(n)→ Aut(gl(n)). Hence we
have the following isomorphisms of Γ-modules:

(12) sl(n)Ad ◦%λ
∼= sl(n)Ad ◦% and gl(n)Ad ◦% = sl(n)Ad ◦% ⊕C In,

where Γ acts trivially on the center CIn of gl(n). We will prove the
following result:

Proposition 4.1. Let K⊂M3 be a knot and suppose that the (t−α)-tor-
sion of the Alexander module of K is of the form τα = C[t±1]

/
(t−α)n−1.

Then for the representation %λ : Γ→ SL(n) we have H0(Γ; sl(n)Ad ◦%λ) =
0 and

dimH1(Γ; sl(n)Ad ◦%λ) = n− 1.

Notice that Propositions 4.1 and 2.6 will prove the first part of Theo-
rem 1.1. The proof of Proposition 4.1 will occupy the rest of this section.

Example 4.2. Proposition 4.1 applies to the representations %
(2)
31

, %
(3)
820

,

and %
(4)
810

. Therefore, the corresponding SL(n)-representations are smooth
points of the representation variety, and are limits of irreducible repre-
sentations.

Computer supported calculations for 820 show that

dimH1(Γ; sl(2)
Ad ◦%(2)820

) = 2.

Similar calculations for 810 give

dimH1(Γ; sl(2)
Ad ◦%(2)810

) = 2 and dimH1(Γ; sl(3)
Ad ◦%(3)810

) = 3

(see the worksheet). Therefore, Proposition 4.1 does not apply for the

corresponding SL(n)-representations. However, the representations %
(2)
820
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and %
(2)
810

factor through surjections π1 : Γ810 → Γ31 and π2 : Γ820 → Γ31

respectively. These surjections are defined by π1(x1) = T , π1(x2) = S,
π1(x3) = T , and π2(y1) = S, π2(y2) = π2(y3) = T as indicated in

Figure 1 (see also the worksheet). Hence, %
(2)
820

and %
(2)
810

are limits of
irreducible representations. See also [2].

S T T

T

S

T

T

S T T

T S T

TST−1

T
S

T

T

T−1ST

T S T

Figure 1. The surjections π1 : Γ810 → Γ31 and
π2 : Γ820 → Γ31 .

Throughout this section we will consider gl(n) as a Γ-module via
Ad ◦% and for simplicity we will write gl(n) for gl(n)Ad ◦%. It follows
from Equation (12) that

(13) H∗(Γ; gl(n)) ∼= H∗(Γ; sl(n))⊕H∗(Γ; C).

In order to compute the first cohomology groups H∗(Γ, gl(n)) and
describe the cocycles, we will construct and use an adequate filtration of
the coefficient algebra gl(n).

4.1. The setup. Let (E1, . . . , En) denote the canonical basis of the

space of column vectors. Hence Eji := Ei · tEj , 1 ≤ i, j ≤ n, form the
canonical basis of gl(n).
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Note that for A ∈ GL(n), AdA(Eji ) = (AEi)(
tEjA

−1). The Lie
algebra gl(n) turns into a Γ-module via Ad ◦% i.e. for all γ ∈ Γ we
have

γ · Eji = (%(γ)Ei)(
tEj%(γ−1)).

Explicitly we have

γ · E1
1 =


αh(γ)

0
...
0

(α−h(γ), z1(γ−1), . . . , zn−1(γ−1)
)

= E1
1 + αh(γ)z1(γ−1)E2

1 + · · ·+ αh(γ)zn−1(γ−1)En1 ;

(14)

for 1 < k ≤ n:

(15) γ ·Ek1 = αh(γ)Ek1 +αh(γ)h1(γ−1)Ek+1
1 + · · ·+αh(γ)hn−k(γ−1)En1 ;

(16) γ · E1
k =



zk−1(γ)
hk−2(γ)

...
h1(γ)

1
0
...


(
α−h(γ), z1(γ−1), . . . , zn−1(γ−1)

)
;

and for 1 < i, j ≤ n:

(17) γ · Eji =



zi−1(γ)
hi−2(γ)

...
h1(γ)

1
0
...


(

0, . . . , 0, 1, h1(γ−1), . . . , hn−j(γ
−1)
)
.

For a given family (Xi)i∈I , Xi ∈ gl(n), we let 〈Xi | i ∈ I〉 ⊂ gl(n)
denote the subspace of gl(n) generated by the family.
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Remark 4.3. A first consequence of these calculations is that if c ∈
C1(Γ; C) is a cochain, then for 2 ≤ i ≤ n and 1 ≤ j ≤ n we have:

δgl(cEji ) = (δc)Eji +(h1 ` c)Eji−1 + · · ·+(hi−2 ` c)Ej2 +(zi−1 ` c)Ej1 +x,

where x : Γ × Γ → 〈Elk | 1 ≤ k ≤ i, j < l ≤ n〉 is a 2-cochain. Here
δgl and δ denote the coboundary operators of C1(Γ; gl(n)) and C1(Γ; C)
respectively.

In what follows we will also make use of the following Γ-modules: for
0 ≤ i ≤ n − 1, we define C(i) = 〈Elk | 1 ≤ k ≤ n, n − i ≤ l ≤ n〉. We
have

(18) C(i) =




0 . . . 0 c1,n−i . . . c1,n
0 . . . 0 c2,n−i . . . c2,n
...

...
...

...
...

0 . . . 0 cn−1,n−i . . . cn−1,n

0 . . . 0 cn,n−i . . . cn,n

 : ci,j ∈ C


and gl(n) = C(n − 1) ⊃ C(n − 2) ⊃ · · · ⊃ C(0) = 〈En1 , . . . , Enn〉 ⊃
C(−1) = 0.

We will denote by X + C(i) ∈ C(k)/C(i) the class represented by
X ∈ C(k), 0 ≤ i < k ≤ n− 1.

4.2. Cohomology with coefficients in C(i). The aim of this sub-
section is to prove that for 0 ≤ i ≤ n − 2 the cohomology groups
Hq(Γ;C(i)), 0 ≤ q ≤ 2, vanish (see Proposition 4.8). First we will prove
this for i = 0 and in order to conclude we will apply the isomorphism
C(0) ∼= C(i)/C(i − 1) (see Lemma 4.6). Finally Lemma 4.7 permits us
to compute a certain Bockstein operator.

Lemma 4.4. The vector space 〈En1 〉 is a submodule of C(0) and thus of
gl(n) = C(n− 1) and we have

H0(Γ; 〈En1 〉) = 0, dimH1(Γ; 〈En1 〉) = dimH2(Γ; 〈En1 〉) = 1.

More precisely, the cocycles z1E
n
1 ∈ Z1(Γ; 〈En1 〉) and(

n−1∑
i=1

zi`hn−i

)
En1 ∈ Z2(Γ; 〈En1 〉)

represent generators of H1(Γ; 〈En1 〉) and H2(Γ; 〈En1 〉) respectively.

Proof: The isomorphism 〈En1 〉 ∼= Cα, Corollary 2.5, and Corollary 3.6
imply the dimension formulas. The form of the generating cocycles fol-
lows from the isomorphism 〈En1 〉 ∼= Cα and Proposition 3.5.
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Lemma 4.5. The Γ-module C(0)/〈En1 〉 is isomorphic to C[t±1]/(t −
1)n−1. In particular, we obtain:

(1) for q=0, 1 dimHq(Γ;C(0)/〈En1 〉)=1 and H2(Γ;C(0)/〈En1 〉) = 0,
(2) the vector En2 represents a generator of H0(Γ;C(0)/〈En1 〉) and the

cochain v̄1 : Γ→ C(0) given by

v̄1(γ) = h1(γ)Enn + h2(γ)Enn−1 + · · ·+ hn−2(γ)En2

represents a generator of H1(Γ;C(0)/〈En1 〉).

Proof: First notice that C(0)/〈En1 〉 is a (n−1)-dimensional vector space.
More precisely, a basis of this space is represented by the elements

Enn , E
n
n−1, . . . , E

n
2 .

It follows from (17) that the action of Γ on C(0)/〈En1 〉 factors through
h : Γ→ Z. More precisely, we have for all γ ∈ Γ such that h(γ) = 1 and
for all 0 ≤ l ≤ n− 1

γ · Enn−l = Enn−l + Enn−l−1.

Here we used the fact that if h(γ) = 1 then hi(γ) = 0 for all 2 ≤ i ≤ n−1.
On the other hand(

1 = (t− 1)0, (t− 1), . . . , (t− 1)n−2
)

represents a basis of C[t±1]/(t − 1)n−1 and we have for all γ ∈ Γ such
that h(γ) = 1:

γ · (t− 1)l = (t− 1)l + (t− 1)l+1 + p,

where p ∈ (t− 1)n−1C[t±1] and 0 ≤ l ≤ n− 2. Hence the bijection

ϕ : {(t− 1)l | 0 ≤ l ≤ n− 2} −→ {Enn−l | 0 ≤ l ≤ n− 2}

given by ϕ : (t − 1)l 7→ Enn−l, 0 ≤ l ≤ n − 2, induces an isomorphism of
Γ-modules

ϕ : C[t±1]/(t− 1)n−1 ∼=−→ C(0)/〈En1 〉.

Now, the first assertion follows from Corollary 2.5.
Moreover, it follows from the above considerations that En2 represents

a generator of H0(Γ;C(0)/〈En1 〉). To prove the second assertion consider
the following short exact sequence

0 −→ C[t±1]/(t− 1)n−2 (t−1)·−−−−→ C[t±1]/(t− 1)n−1 −→ C −→ 0
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which gives the following long exact sequence in cohomology:

0 −→ H0(Γ; C[t±1]/(t− 1)n−2)
∼=−→ H0(Γ; C[t±1]/(t− 1)n−1)

−→ H0(Γ; C)
β0

−→ H1(Γ; C[t±1]/(t− 1)n−2)

−→ H1(Γ; C[t±1]/(t− 1)n−1)
∼=−→ H1(Γ; C)

−→ H2(Γ; C[t±1]/(t− 1)n−2) = 0.

The isomorphisms and the vanishing of H2(Γ; C[t±1]/(t− 1)n−2) follow
directly from Corollary 2.5.

Hence the Bockstein operator β0 is an isomorphism: the element e0 =
1 ∈ C[t±1]/(t− 1)n−1 projects onto a generator of H0(Γ; C) and if δn−1

denotes the coboundary operator of C∗(Γ; C[t±1]/(t− 1)n−1) we obtain:

δn−1(e0)(γ) = (γ − 1) · e0

= h1(γ)e1 + h2(γ)e2 + · · ·+ hn−2(γ)en−1

= (t− 1) · (h1(γ)e0 + h2(γ)e1 + · · ·+ hn−2(γ)en−2).

Hence the cocycle γ 7→ h1(γ)e0 +h2(γ)e1 + · · ·+hn−2(γ)en−2 represents
a generator of H1(Γ; C[t±1]/(t − 1)n−2). To conclude, recall that the
isomorphism C[t±1]/(t − 1)n−1 ∼= C(0)/〈En1 〉 is induced by the map
ϕ : el 7→ Enn−l, 0 ≤ l ≤ n− 2.

Lemma 4.6. For i ∈ Z, 0 ≤ i ≤ n − 3, the Γ-module C(i + 1)/C(i) is
isomorphic to C(0).

Proof: It follows from (17) that, for all i ∈ Z, 0 ≤ i ≤ n−2, the bijection

φ : {En−(i+1)
n−j + C(i) | 0 ≤ j ≤ n− 1} −→ {Enn−j | 0 ≤ j ≤ n− 1}

given by φ(E
n−(i+1)
n−j +C(i)) = Enn−j induces an isomorphism of Γ-mod-

ules φ : C(i+ 1)/C(i)→ C(0).

Let us recall the definition of the cochains hi ∈ C1(Γ; C), given by

hi(γ) =
(
h(γ)
i

)
(see Equation (8)). Recall also that for 1 ≤ i ≤ n− 1 the

cochains hi ∈ C1(Γ; C) satisfy Equation (9):

δhi +

i−1∑
j=1

hj `hi−j = 0.
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Lemma 4.7. Let δgl denote the coboundary operator of C∗(Γ; gl(n)).
Then for all 0 ≤ k ≤ n−2 there exists a cochain xk−1 ∈ C2(Γ;C(k−1))
such that

δgl

(
n∑
i=2

hn−i+1E
n−k
i

)
=

(
n−1∑
i=1

zi`hn−i

)
En−k1 + xk−1.

Proof: Equation (17) and Remark 4.3 imply that

δgl(hn−i+1E
n−k
i ) = zi−1 `hn−i+1E

n−k
1

+

i−1∑
l=2

hi−l`hn−i+1E
n−k
l + δhn−i+1E

n−k
i + xi,k−1,

where xi,k−1∈C2(Γ;C(k−1)) and δ is the boundary operator of C∗(Γ; C).
Therefore,

δgl

(
n∑
i=2

hn−i+1E
n−k
i

)
=

(
n∑
i=2

zi−1 `hn−i+1

)
En−k1

+

n∑
i=2

i−1∑
l=2

hi−l`hn−i+1E
n−k
l

+

n∑
i=2

δhn−i+1E
n−k
i + xk−1,

where xk−1 =
∑n
i=2 xi,k−1 ∈ C2(Γ;C(k − 1)), A direct calculation gives

that
n∑
i=2

i−1∑
l=2

hi−l`hn−i+1E
n−k
l =

n−1∑
l=2

n∑
i=l+1

hi−l`hn−i+1E
n−k
l

=

n−1∑
l=2

(
n−l∑
i=1

hi`hn−l+1−i

)
En−kl .

Thus

δgl(hn−i+1E
n−k
i ) =

(
n−1∑
i=1

zi`hn−i

)
En−k1 + δh1E

n−k
n

+

n−2∑
i=1

(
δhn−i +

n−i−1∑
l=1

hl`hn−i−l

)
En−ki + xk−1.

Now δh1 = 0 and by (9) we have δhn−i+
∑n−i
l=1 hl`hn−i+1−l = 0. Hence

we obtain the claimed formula.
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Proposition 4.8. For all i ∈ Z, 0 ≤ i ≤ n− 2, and 0 ≤ q ≤ 2 we have

Hq(Γ;C(i)) = 0.

Proof: We start by proving the result for i = 0. Consider the short exact
sequence

(19) 0 −→ 〈En1 〉 �−→ C(0) −→→ C(0)/〈En1 〉 −→ 0.

As the C[t±1]-modules 〈En1 〉 and Cα
∼= C[t±1]/(t − α) are isomorphic,

the sequence (19) gives us a long exact sequence in cohomology:

0 = H0(Γ; 〈En1 〉) −→ H0(Γ;C(0)) −→ H0(Γ;C(0)/〈En1 〉)
β0
0−→ H1(Γ; 〈En1 〉) −→ H1(Γ;C(0)) −→ H1(Γ;C(0)/〈En1 〉)
β1
0−→ H2(Γ; 〈En1 〉) −→ H2(Γ;C(0)) −→ H2(Γ;C(0)/〈En1 〉) = 0.

Here, for q = 0, 1, we denoted by βq0 : Hq(Γ;C(0)/〈En1 〉)→Hq+1(Γ; 〈En1 〉)
the Bockstein homomorphism. By Lemma 4.5, En2 represents a generator
of H0(Γ;C(0)/〈En1 〉), so

β0
0(En2 )(γ) = (γ − 1) · (En2 )

= γ · En2 − En2 = z1(γ)En1 .

By Lemma 4.4, z1E
n
1 is a generator of H1(Γ; 〈En1 〉), and by Lemma 4.5

dimH0(Γ;C(0)/〈En1 〉) = 1 = dimH1(Γ; 〈En1 〉), thus β0
0 is an isomor-

phism. Consequently H0(Γ;C(0))=0 as H0(Γ; 〈En1 〉) = 0 by Lemma 4.4.
Now by Lemma 4.5, the cochain v̄1 : Γ→ C(0) given by

v̄1(γ) = h1(γ)Enn + h2(γ)Enn−1 + · · ·+ hn−1(γ)En2

represents a generator of H1(Γ;C(0)/〈En1 〉) and by Lemma 4.7

β1
0(h1E

n
n + h2E

n
n−1 + · · ·+ hn−1E

n
2 ) =

(
n−1∑
i=1

zi`hn−i

)
En1 .

Moreover, by Proposition 3.5 the cocycle
(∑n−1

i=1 zi`hn−i

)
En1 represents

a generator ofH2(Γ;〈En1 〉). Thus β1
0 is an isomorphism andHq(Γ;C(0))=

0 for q = 1, 2.
Now suppose that Hq(Γ;C(i0)) = 0 for 0 ≤ i0 ≤ n − 3, q = 0, 1, 2,

and consider the following short exact sequence of Γ-modules:

(20) 0 −→ C(i0) �−→ C(i0 + 1) −→→ C(i0 + 1)/C(i0) −→ 0.
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This sequence induces a long exact sequence in cohomology

0 −→ H0(Γ;C(i0)) −→ H0(Γ;C(i0 + 1))

−→H0(Γ;C(i0 + 1)/C(i0))−→H1(Γ;C(i0))−→H1(Γ;C(i0 + 1))

−→H1(Γ;C(i0 + 1)/C(i0))−→H2(Γ;C(i0))−→H2(Γ;C(i0 + 1))

−→ H2(Γ;C(i0 + 1)/C(i0)) −→ · · ·

By Lemma 4.6 we have C(i0 + 1)/C(i0) ∼= C(0). Hence Hq(Γ;C(i0 +
1)/C(i0)) = 0, and the hypothesis implies that Hq(Γ;C(i0 + 1)) ∼=
Hq(Γ;C(i0)) = 0 for q = 0, 1, 2.

4.3. Cohomology with coefficients in gl(n). In this subsection we
will prove Proposition 4.1.

Proof of Proposition 4.1: In order to compute the dimensions of the co-
homology groups Hq(Γ; gl(n)), q = 0, 1, we consider the short exact
sequence

(21) 0 −→ C(n− 2) �−→ C(n− 1) = gl(n) −→→ gl(n)/C(n− 2) −→ 0.

The sequence (21) gives rise to the following long exact cohomology
sequence:

0 −→ H0(Γ;C(n− 2)) −→ H0(Γ; gl(n))

−→ H0(Γ; gl(n)/C(n− 2)) −→ H1(Γ;C(n− 2)) −→ H1(Γ; gl(n))

−→ H1(Γ; gl(n)/C(n− 2)) −→ H2(Γ;C(n− 2)) −→ · · ·

As Hq(Γ;C(n− 2)) = 0, q = 0, 1, 2, we conclude that

Hq(Γ; gl(n)) ∼= Hq(Γ; gl(n)/C(n− 2)) for q = 0, 1.

It remains to understand the quotient gl(n)/C(n− 2).
Clearly the vectors E1

n, . . . , E
1
1 represent a basis of gl(n)/C(n−2) and

there exists a Γ-module A such that the following sequence

(22) 0 −→ 〈E1
1 + C(n− 2)〉 �−→ gl(n)/C(n− 2) −→→ A −→ 0



Irreducible Representations of Knot Groups into SL(n,C) 385

is exact. Now the sequence (22) induces the following exact cohomology
sequence:

(23) 0−→H0(Γ; 〈E1
1 +C(n−2)〉)−→H0(Γ; gl(n)/C(n−2))−→H0(Γ;A)

−→ H1(Γ; 〈E1
1 +C(n− 2)〉) −→ H1(Γ; gl(n)/C(n− 2))

−→ H1(Γ;A) −→ H2(Γ; 〈E1
1 +C(n− 2)〉)

−→ H2(Γ; gl(n)/C(n−2)) −→ H2(Γ;A) −→ · · ·

Observe that the action of Γ on 〈E1
1 + C(n − 2)〉 is trivial. Therefore,

〈E1
1 + C(n− 2)〉 and C are isomorphic Γ-modules. By Corollary 2.5 we

obtain

dimHq(Γ; 〈E1
1 + C(n− 2)〉) = 1 for q = 0, 1

and H2(Γ; 〈E1
1 + C(n− 2)〉) = 0.

To complete the proof we will make use of Lemma 4.9, which states
that the Γ-module A is isomorphic to C[t±1]/(t− α−1)n−1. Recall that
Lemma 2.4 implies that H0(Γ; C[t±1]/(t− α−1)n−1) = 0 and

dimH1(Γ; C[t±1]/(t− α−1)n−1) = n− 1.

Therefore, sequence (23) gives:

H0(Γ; gl(n)) ∼= H0(Γ; gl(n)/C(n− 2)) ∼= H0(Γ; C) ∼= C.

The short exact sequence

0 −→ H1(Γ; C) �−→ H1(Γ; gl(n)/C(n− 2))

∼= H1(Γ; gl(n)) −→→ H1(Γ;A) −→ 0

implies that dimH1(Γ; gl(n)) = n. The proposition follows now from
Equation (13).

Lemma 4.9. The Γ-module A is isomorphic to C[t±1]/(t − α−1)n−1.
Consequently

H0(Γ;A) = 0, dimH1(Γ;A) = n− 1.

Proof of Lemma 4.9: The proof is similar to the proof of Lemma 4.5.
As a C-vector space the dimension of A is n− 1 and a basis is given by(
E1
n, . . . , E

1
2

)
where E

1

i = E1
i +C(n− 2) ∈ A is the class represented by

E1
i , 2 ≤ i ≤ n. In order to prove that A is isomorphic to C[t±1]/(t −

α−1)n−1 observe that by (16)

γ · E1
k = α−h(γ)(E1

k + h1(γ)E1
k−1 + · · ·+ hk−2(γ)E1

2) +Xk,
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where Xk ∈ E1
1 + C(n − 2). Therefore, the action of Γ on A factors

through h : Γ → Z. More precisely, we have for all γ ∈ Γ such that
h(γ) = 1

γ · E1

k = α−1(E
1

k + E
1

k−1).

On the other hand el = (α(t− α−1))l, 0 ≤ l ≤ n− 2, represents a basis
of C[t±1]/(t− α−1)n−1 and we have for all γ ∈ Γ such that h(γ) = 1:

γ · el = α−1(el + el+1) + p, where p ∈ (t− α−1)n−1C[t±1].

Hence the bijection ψ : {el | 0 ≤ l ≤ n − 2} → {E1

k | 2 ≤ k ≤ n} given

by ϕ : el 7→ E
1

n−l, 0 ≤ l ≤ n − 2, induces an isomorphism of Γ-modules

ψ : C[t±1]/(t− α−1)n−1
∼=−→ A.

Finally, the dimension equations follow from Lemma 2.4 and Re-
mark 3.3.

We obtain immediately that under the hypotheses of Proposition 4.1
the representation %λ is a smooth point of the representation vari-
ety Rn(Γ). This proves the first part of Theorem 1.1.

Proposition 4.10. Let K ⊂M3 be a knot in the homology sphere M3.
If the (t − α)-torsion τα of the Alexander module is cyclic of the form
C[t, t−1]

/
(t − α)n−1, n ≥ 2, then the representation %λ is a smooth

point of the representation variety Rn(Γ); it is contained in a unique
(n2 + n− 2)-dimensional component R%λ of Rn(Γ).

Proof: By Proposition 2.6 and Proposition 4.1, the representation %λ
is contained in a unique component R%λ of dimension (n2 + n − 2).
Moreover,

dimZ1(Γ; sl(n)) = dimH1(Γ; sl(n)) + dimB1(Γ; sl(n))

= (n− 1) + (n2 − 1)

= n2 + n− 2.

Hence the representation %λ is a smooth point of Rn(Γ) which is con-
tained in an unique (n2 + n− 2)-dimensional component R%λ .

For later use, we describe more precisely the derivations vk : Γ →
sl(n), 1 ≤ k ≤ n− 1, which represent a basis of H1(Γ; sl(n)).

Corollary 4.11. There exists cochains z−1 , . . . , z
−
n−1 ∈ C1(Γ; Cα−1)

such that δz−k +
∑k−1
i=1 hi` z−k−i = 0 for k = 1, . . . , n − 1 and z−1 : Γ →

Cα−1 is a non-principal derivation.
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Moreover, there exist cochains gk : Γ → C and xk : Γ → C(n − 2),
1 ≤ k ≤ n− 1, such that the cochains vk : Γ→ sl(n) given by

vk = gkE
1
1 + z−k E

1
2 + · · ·+ z−1 E

1
k+1 + xk

are cocycles and represent a basis of H1(Γ; sl(n)).

Proof: Recall that the vector space A admits as a basis the family(
E

1

n, . . . , E
1

2

)
and that it is isomorphic to C[t±1]/(t − α−1)n−1. More-

over it is easily seen that A is isomorphic to the Γ-module of column
vectors Cn−1 where the action is given by tka = α−kJkn−1a. Hence a

cochain z− : Γ → A with coordinates z− = t(z−n−1, . . . , z
−
1 ) is a cocycle

in Z1(Γ;A) if and only if for all γ1, γ2 ∈ Γ

z−(γ1γ2) = z−(γ1) + α−h(γ1)J
h(γ1)
n−1 z−(γ2).

It follows, as in the proof of Lemma 3.2, that this is equivalent to

z−k (γ1γ2) = z−k (γ1) + α−h(γ1)z−k (γ2) +

k−1∑
i=1

hi(γ1)α−h(γ1)z−k−i(γ2).

In other words, for 1 ≤ k ≤ n− 1,

0 = δz−k +

k−1∑
i=1

hi ^ z−k−i.

By Remark 3.3, if z−1 ∈ Z1(Γ; Cα−1) is a non-principal derivation, there
exist cochains z−k : Γ→ Cα−1 , 2 ≤ k ≤ n− 1, such that

0 = δz−k +

k−1∑
i=1

hi ^ z−k−i.

Consequently, as dimH1(Γ;A) = n− 1, the cochains

z−k = z−k E
1

2 + · · ·+ z−1 E
1

k+1, 1 ≤ k ≤ n− 1,

represent a basis of H1(Γ;A). The proof is completed by noticing that
the projection H1(Γ; gl(n))→ H1(Γ;A) restricts to an isomorphism be-
tween H1(Γ; sl(n)) and H1(Γ;A).

5. Irreducible SL(n) representations

This section will be devoted to the proof of the last part of Theo-
rem 1.1. In Proposition 4.10 we proved that the representation %λ is a
smooth point of Rn(Γ) which is contained in a unique (n2 + n − 2)-di-
mensional component R%λ . Then, to prove the existence of irreducible
representations in that component, we will make use of Corollary 4.11
and Burnside’s theorem on matrix algebras.
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We start with the following technical lemma which is implicitly con-
tained in [14, §2].

Lemma 5.1. Let Γ be the knot group of K ⊂M3, and let ϕ : Γ→ Z be
an epimorphism. Then there exists a presentation

Γ ∼= 〈S1, . . . , Sk | V1, . . . , Vk−1〉,

such that ϕ(Si) = 1 for all 1 ≤ i ≤ k.

Proof: Every presentation of Γ, obtained from a cell decomposition of
X = M3\V (K), has deficiency one [15, Chapter V], i.e. we have a
presentation Γ ∼= 〈T1, . . . , Tl | W1, . . . ,Wl−1〉. We put ai = ϕ(Ti). Then
the gcd{ai | 1 ≤ i ≤ k} = 1 since ϕ is surjective. Therefore we obtain

bi ∈ Z such that 1 =
∑l
i=1 aibi, and S = T b11 T b22 · · ·T

bl
l maps under ϕ

to 1. We define Si = TiS
1−ai . We obtain a presentation

Γ∼=〈S, S1, . . . , Sl, T1, . . . , Tl |S−1T b11 · · ·T
bl
l , SiS

ai−1T−1
i ,W1, . . . ,Wl−1〉,

and by Tietze transformations Γ ∼= 〈S, S1, . . . , Sl | V1, . . . , Vl〉. Now, the
deficiency of the latter presentation is one, and each generator maps to 1
under ϕ.

Proof of the last part of Theorem 1.1: To prove that the componentR%λ
contains irreducible non-metabelian representations, we will generalize
the argument given in [3] for n = 3.

By Lemma 5.1, we obtain a presentation of the knot group Γ =
〈S1, . . . , Sk | V1, . . . , Vk−1〉 such that h(Si) = 1. This condition as-
sures that each principal derivation d : Γ → Cα satisfies d(Si) = d(Sj)
for all 1 ≤ i, j ≤ k. Modulo conjugation of the representation %λ,
we can assume that z1(S1) = · · · = zn−1(S1) = 0. This conjuga-
tion corresponds to adding a principal derivation to the cochains zi,
1 ≤ i ≤ n − 1. We will also assume that the second generator S2

verifies z1(S2) = b1 6= 0 = z1(S1). This is always possible since z1 is
non-principal derivation. Hence

%λ(S1) = α−1/n

(
α 0
0 Jn−1

)
and %λ(S2) = α−1/n

(
α b
0 Jn−1

)
,

where b = (b1, . . . , bn−1) with b1 ∈ C∗ and bi = zi(S2) ∈ C for 2 ≤ i ≤
n− 1.

Let vn−1 ∈ Z1(Γ; sl(n)) be a cocycle such that:

vn−1 = z−1 E
1
n + z−2 E

1
n−1 + · · ·+ z−n−1E

1
2 + gn−1E

1
1 + xn−1
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given by Corollary 4.11. Up to adding a principal derivation to the cocy-
cle z−1 we assume that z−1 (S1) = 0. Notice that, the proof of Lemma 5.5
of [3] generalizes to our situation, and hence z−1 (S2) 6= 0.

Let ρt be a deformation of %λ with leading term vn−1:

ρt =
(
In + t vn−1 + o(t)

)
%λ, where lim

t→0

o(t)

t
= 0.

We may apply the following lemma (whose proof is completely analogous
to that of Lemma 5.3 in [3]) to this deformation for A(t) = ρt(S1).

Lemma 5.2. Let ρt : Γ → SL(n) be a curve in Rn(Γ) with ρ0 = %λ.
Then there exists a curve Ct in SL(n) such that C0 = In and

AdCt ◦ρt(S1) =


a11(t) 0 . . . 0

0 a22(t) . . . a2n(t)
...

...
...

0 an2(t) . . . ann(t)


for all sufficiently small t.

Therefore, we may suppose that an1(t) = 0, and since

an1(t) = tλn−1
(
z−1 (S1) + δc(S1)

)
+ o(t), for c ∈ C,

it follows that

a′n1(0) = λn−1(z−1 (S1) + (α−1 − 1)c) = 0

and hence c = 0. ForB(t) = ρt(S2), we obtain b′n1(0) = λn−1z−1 (S2) 6= 0.
Hence, we can apply the following technical lemma (whose proof will be
postponed to the end of this section).

Lemma 5.3. Let A(t) = (aij(t))1≤i,j≤n and B(t) = (bij(t))1≤i,j≤n be
matrices depending analytically on t such that

A(t) =

(
a11(t) 0

0 A11(t)

)
, A(0) = %λ(S1) = α−1/n

(
α 0
0 Jn−1

)
,

and

B(0) = %λ(S2) = α−1/n

(
α b
0 Jn−1

)
.

If the first derivative b′n1(0) 6= 0 then for sufficiently small t, t 6= 0, the
matrices A(t) and B(t) generate the full matrix algebra M(n,C).

Hence for sufficiently small t 6= 0 we obtain that A(t) = ρt(S1) and
B(t) = ρt(S2) generate M(n,C). By Burnside’s matrix theorem, such a
representation ρt is irreducible.
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To conclude the proof of Theorem 1.1, we will prove that all irre-
ducible representations sufficiently close to %λ are non-metabelian. In
order to do so, we will make use of the following result of H. U. Bo-
den and S. Friedl [5, Theorem 1.2]: for every irreducible metabelian
representation ρ : Γ → SL(n) we have tr ρ(S1) = 0. Now, we have
tr %λ(S1) = λ−1(λn + n − 1) and we claim that λn + n − 1 6= 0. Notice
that α = λn is a root of the normalized Alexander polynomial ∆K and
λn+n−1 = 0 would imply that 1−n is a root of ∆K . This in turn would
imply that t+n−1 divides ∆K(t) and hence n divides ∆K(1) = 1 which
is impossible since n ≥ 2. Therefore, tr(ρ(S1)) 6= 0 for all irreducible
representations sufficiently close to %λ. This proves Theorem 1.1.

Remark 5.4. Let ρλ : Γ → SL(n) be the diagonal representation given
by ρλ(µ) = diag(λn−1, λ−1In−1) where µ is a meridian of K. The or-
bit O(ρλ) of ρλ under the action of conjugation of SL(n) is contained in

the closure O(%λ). Hence %λ and ρλ project to the same point χλ of the
variety of characters Xn(Γ) = Rn(Γ) � SL(n).

It would be natural to study the local picture of the variety of char-
acters Xn(Γ) = Rn(Γ) � SL(n) at χλ as done in [13, §8]. Unfortunately,
there are much more technical difficulties since in this case the qua-
dratic cone Q(ρλ) coincides with the Zariski tangent space Z1(Γ; sl(n)ρλ).
Therefore the third obstruction has to be considered.

Proof of Lemma 5.3: The proof follows exactly the proof of Proposi-
tion 5.4 in [3]. We denote by At ⊂ gl(n) the algebra generated by A(t)
and B(t). For any matrix A we let PA(X) denote its characteristic
polynomial. We have PA11(0) = (λ−1 − X)n−1 and a11(0) = λn−1.
Since α = λn 6= 1 we obtain PA11(0)(a11(0)) 6= 0. It follows that
PA11(t)(a11(t)) 6= 0 for small t and hence

1

PA11(t)(a11(t))
PA11(t)(A(t)) =

(
1 0
0 0

)

=


1
0
...
0

⊗ (1, 0, . . . , 0) ∈ C[A(t)] ⊂ At.

In the next step we will prove that

At


1
0
...
0

 = Cn and (1, 0, . . . , 0)At = Cn, for small t ∈ C.
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It follows from this that At contains all rank one matrices since a rank
one matrix can be written as v⊗w where v is a column vector and w is a
row vector. Note also that A(v⊗w) = (Av)⊗w and (v⊗w)A = v⊗(wA).
Since each matrix is the sum of rank one matrices the proposition follows.

Now consider the vectors

(1, 0, . . . , 0)A(0), (1, 0, . . . , 0)B(0), . . . , (1, 0, . . . , 0)B(0)n−1.

Then for 1 ≤ k ≤ n− 1:

(1, 0, . . . , 0)B(0)k = λ−k

αk, b k−1∑
j=0

αk−1−jJj


and the dimension D of the vector space

〈(1, 0, . . . , 0)A(0), (1, 0, . . . , 0)B(0), . . . (1, 0, . . . , 0)B(0)n−1〉

is equal to

D = dim

〈
(α, 0), (α, b), (α2, αb+ bJ), . . . ,

αn−1, b

k−1∑
j=0

αk−1−jJj

〉

= dim〈(α, 0), (0, b), (0, bJ), . . . , (0, bJn−2)〉.

Here, J = Jn−1 = In−1 +Nn−1 where Nn−1 ∈ GL(n−1,C) is the upper
triangular Jordan normal form of a nilpotent matrix of degree n − 1.
Then a direct calculation gives that

dim〈b, bJ, . . . , bJn−2〉 = dim〈b, bN, . . . , bNn−2〉 = n− 1, as b1 6= 0.

Thus dim〈(1, 0, . . . , 0)A(0), (1, 0, . . . , 0)B(0), . . . (1, 0, . . . , 0)B(0)n−1〉 =
n and the vectors

(1, 0, . . . , 0)A(0), (1, 0, . . . , 0)B(0), . . . , (1, 0, . . . , 0)B(0)n−1

form a basis of the space of row vectors. This proves that (1, 0, . . . , 0)At
is the space of row vectors for sufficiently small t.

In the final step consider the n column vectors

a1(t) = A(t)


1
0
...
0

 , ai+2(t) = Ai(t)B(t)


1
0
...
0

 , 0 ≤ i ≤ n− 2
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and write B(t)

( 1
0
...
0

)
=
(
b11(t)
b(t)

)
for the first column of B(t); then

a1(t) =

(
a11(t)

0

)
, ai+2(t) = Ai(t)

(
b11(t)
b(t)

)
, 0 ≤ i ≤ n− 2.

Define the function f(t) := det(a1(t), . . . , an(t)) and g(t) by:

f(t) = a11(t)g(t), where g(t) = det
(
b(t), A11(t)b(t), . . . , An−2

11 (t)b(t)
)
.

Now, for k ≥ 0 the k-th derivative g(k)(t) of g(t) is given by:∑
s1,...,sn−1≥0

cs1,...,sn−1det
(
b(s1)(t), (A11(t)b(t))(s2), . . . , (An−2

11 (t)b(t))(sn−1)
)
,

where

cs1,...,sn−1
=

{(
k

s1,...,sn−1

)
= k!

s1!···sn−1! if s1 + · · ·+ sn−1 = k;

0 othewise.

As b(0) = 0 we obtain, for 0 ≤ k ≤ n− 2, g(k)(0) = 0 and consequently
f (k)(0) = 0 for all 0 ≤ k ≤ n− 2.

Now, for k = n− 1, we have

g(n−1)(0)

(n− 1)!
= det

(
b′(0), (A11(t)b(t))′(0), . . . , (An−2

11 (t)b(t))′(0)
)

= det
(
b′(0), A11(0)b′(0), . . . , An−2

11 (0)b′(0)
)

= det
(
b′(0), (λ−1J)b′(0), . . . , (λ−1J)n−2b′(0)

)
= det

(
b′(0), λ−1Nb′(0), . . . , λ−(n−2)Nn−2b′(0)

)
6= 0 since b′n1 6= 0.

Thus, f (n−1)(0) = a11(0)g(n−1)(0) 6= 0 and f(t) 6= 0 for sufficiently
small t, t 6= 0.

References

[1] L. Ben Abdelghani, Espace des représentations du groupe d’un
nœd classique dans un groupe de Lie, Ann. Inst. Fourier (Grenoble)
50(4) (2000), 1297–1321.

[2] L. Ben Abdelghani, Tangent cones and local geometry of the
representation and character varieties of knot groups, Algebr. Geom.
Topol. 10(1) (2010), 433–463. DOI: 10.2140/agt.2010.10.433.

http://dx.doi.org/10.2140/agt.2010.10.433


Irreducible Representations of Knot Groups into SL(n,C) 393

[3] L. Ben Abdelghani, M. Heusener, and H. Jebali, Deforma-
tions of metabelian representations of knot groups into SL(3,C), J.
Knot Theory Ramifications 19(3) (2010), 385–404. DOI: 10.1142/

S0218216510007887.
[4] L. Ben Abdelghani and D. Lines, Involutions on knot groups

and varieties of representations in a Lie group, J. Knot Theory Ram-
ifications 11(1) (2002), 81–104. DOI: 10.1142/S0218216502001482.

[5] H. U. Boden and S. Friedl, Metabelian SL(n,C) representa-
tions of knot groups, Pacific J. Math. 238(1) (2008), 7–25. DOI:

10.2140/pjm.2008.238.7.
[6] K. S. Brown, “Cohomology of Groups”, Graduate Texts in Math-

ematics 87, Springer-Verlag, New York-Berlin, 1982.
[7] G. Burde, Darstellungen von Knotengruppen, Math. Ann. 173(1)

(1967), 24–33. DOI: 10.1007/BF01351516.
[8] G. Burde, Z. Heiner, and M. Heusener, “Knots”, 3rd fully

revised and extented edition, Walter de Gruyter, Berlin, 2013.
[9] J. F. Davis and P. Kirk, “Lecture Notes in Algebraic Topology”,

Graduate Studies in Mathematics 35, American Mathematical So-
ciety, Providence, RI, 2001. DOI: 10.1090/gsm/035.

[10] G. de Rham, Introduction aux polynômes d’un nœud, Enseigne-
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