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Abstract. The problem of finding full automorphism groups of compact Rie-

mann surfaces is classical, though complete results are only known for a few
families. One tool used in some classification schemes is strong branching; a

condition derived by Accola in [1]. In the following, we survey the main ideas

behind strong branching including a general survey of current results. We also
provide new results for families for which we can find the full automorphism

group using strong branching and an inductive version of strong branching.
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1. Introduction

Ideally, we would like to be able to determine the full automorphism group of a
Riemann surface given some partial information about the surface such as defining
equations, uniformization by a Fuchsian group, a branched covering map to a known
surface, or a “sufficiently large”group of automorphisms. In this paper we are
particularly interested in the interplay of the last two items. For our purposes, a
subgroupG of the automorphism group of a Riemann surface S is called “sufficiently
large” if S/G has genus zero. Alternatively, S is called a regular n-gonal surface. A
regular n-gonal surface is one for which the quotient map πG : S → S/G w P1(C)
is a regular branched covering of the sphere P1(C) of degree n = |G| , branched
over a finite set of points BG = {Q1, . . . , Qt}. This class of surfaces includes
these important cases: hyperelliptic surfaces, superelliptic surfaces, cyclic n-gonal
surfaces, quasi-platonic surfaces, as well as many others. In the moduli space of
surfaces of fixed genus σ ≥ 2 the “most common” surfaces with automorphisms are
regular n-gonal surfaces. We use this fact and the important cases described above
as justification for focusing on the study on regular n-gonal surfaces. The notion
of “most common” can be made precise using Breuer’s data on low genus actions
[5], see the end of Section 4.2.
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Finding automorphism groups of n-gonal surfaces.
Let us describe an approach to finding the full automorphism group of an n-gonal

surface. We assume we are given a group, G, of automorphisms with genus zero
quotient S/G. We will also assume that we have very precise information about how
G acts on S and the map πG : S → P1(C). Throughout the paper let A = Aut(S),
N = NorA(G), and K = N/G. Since N normalizes G, then K acts as a group of
automorphisms of S/G w P1(C). The candidate groups K are precisely known and
given the structure of the map πG : S → P1(C), the structure of the group N may
be determined, as well as the map πN : S → S/N w P1(C). See Section 3.1 for
details.

If N = A then we are done. Otherwise we have exceptional automorphisms
in A − N. The branched covering πA/N : S/N → S/A is a rational map of the
sphere, and its monodromy can be determined. The monodromy may then be
used to construct the extension N < A. The latter situation is unusual and takes
considerable work using MAGMA [4] or GAP [11] to solve. See Section 3.2 for
details.

A tricky step in the aforementioned process is deciding whether or not G is
normal in A without any prior knowledge of A. In general, an answer to this
question is likely very difficult. However, if the map πG is strongly branched – a
concept introduced by Accola [1] – G is guaranteed to have a subgroup M that is
normal in A. Strong branching is checked by an easily verifiable inequality. Using
strong branching, the classification process splits up into two cases:

(1) The genus of S is larger than a lower bound determined by strong branching,
and there is a normal subgroup M E A contained in G. If G = M , then
A = N , and we can compute A as described above. If M is a proper
subgroup of G then S = S/M is a surface upon which both A = A/M and
G = G/M act, and A ≤ Aut(S). Presumably we can compute A ≤ Aut(S),
since it is a smaller genus problem, and then constructA fromM ↪→ A� A.
See Proposition 4.4.

(2) The genus of S is less than or equal to the critical genus. Then, we have
to look for exceptional automorphisms (after finding the normalizer) in a
finite number of cases, working as noted above.

Since strong branching simplifies the process of finding A, there is much potential for
its use in determining full automorphism groups, possibly inductively as suggested
by case 1. To date, strong branching has been used for a number of different families,
with perhaps the most comprehensive use in determining full automorphism groups
of cyclic p-gonal surfaces, see [22] and Subsection 5.1.1 (a surface is cyclic p-gonal
when G has prime order).

Our main motivational goal in the following is to provide tools and techniques
derived from the concept of strong branching to help classify full automorphism
groups, and to provide explicit examples of how these techniques are used. We
shall do this through first describing the general idea behind strong branching and
surveying the current results in classification of automorphism groups that can be
attributed to strong branching. Following this, we shall provide new classification
results using strong branching, both single stage and inductively.
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Outline of paper
The outline of our work is as follows. In Section 2 we covering preliminaries on

branched coverings and ramification, the Riemann-Hurwitz theorem, group actions,
and families of surfaces with a simultaneous group action. In Section 3 we provide
details on how to determine whether or not an n-gonal group G extends to some
larger automorphism group, providing very explicit results in certain special cases.
In Section 4 we introduce strong branching, weakly normal actions and trivial core
actions. In Section 5 we apply the concepts and methods of Sections 2 and 4,
particularly strong branching, to finding full automorphism groups of families of
n-gonal surfaces, surveying the known results and presenting new ones.
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2. Preliminaries

There are several tools for working with group actions on Riemann surfaces:
Fuchsian groups, function fields, and branched covering theory. In this paper we use
branched covering theory since strong branching and group actions are conveniently
formulated in these terms. Moreover, these methods work in positive characteristic.

2.1. Branched coverings and differentials. Let S1, S2 be two Riemann surfaces
of genus σ1 and σ2, respectively, and π : S1 → S2 a branched covering (holomorphic
map) of degree n. Some items related to the map π, useful in understanding the
Riemann Hurwitz formula are:

(1) The differential map on tangent bundles

dπ : TP (S1)→ Tπ(P )(S2)

and its dual pullback map of meromorphic differential 1-forms

dπ∗ : Ω1(S2)→ Ω1(S1).

(2) A divisor (dπ) defined on S1 by

(dπ) =
∑
P∈S1

ordP (dπ)P.

The value ordP (dπ) is computed by first writing, in local coordinates cen-
tered at 0 in the domain and target,

π(z) = ze(P )f(z), f(z) 6= 0.

Then

dπ = ze(P )−1(e(P )f(z)dz + zdf(z)).

Since

e(P )f(z)dz + zdf(z) = e(P )f(0)dz
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at z = 0 then ordP (dπ) = e(P )−1. Now e(P ) ≥ 1 for all P, it is independent
of the coordinatization, and e(P ) > 1 for at most finitely many points. Thus
the divisor (dπ) of the differential dπ is given by

(1) (dπ) =
∑
P∈S1

(e(P )− 1)P.

2.2. Ramification and the Riemann-Hurwitz equation.

Definition 2.1. The total ramification of a branched covering π is the degree of
the divisor in equation (1):

(2) Rπ =
∑
P∈S1

(e(P )− 1) .

If ω is a differential form on S2 then the degree of the divisor (dπ∗(ω)) may be
computed in two ways: first as a differential form on S1 with degree 2(σ1− 1) and,
secondly, as the degree of the pullback dπ∗(ω) to get 2n(σ2−1)+

∑
P∈S1

(e(P )− 1) .
The first term comes from pulling back the zeros and poles of ω and the second
term comes from the ramification of the branched covering. The Riemann-Hurwitz
equation may then be written:

(3) 2(σ1 − 1) = 2n(σ2 − 1) +
∑
P∈S1

(e(P )− 1)

or

(4) 2(σ1 − 1)− 2n(σ2 − 1) = Rπ.

Note that we may use equation (4) to compute either σ1, σ2 or n. Specifically, for
the index we must have:

(5) n =
2(σ1 − 1)−Rπ

2(σ2 − 1)
.

If Q1, . . . , Qt are the points on S2 over which π is ramified, then another version
of the Riemann-Hurwitz equation which emphasizes this branching is:

Rπ =
∑
P∈S1

(e(P )− 1) =

t∑
j=1

∑
π(P )=Qj

(e(P )− 1) .

Now
∑
π(P )=Qj

(e(P )− 1) = n−
∣∣π−1(Qj)

∣∣ , so that we also have:

(6) Rπ = n

t∑
j=1

(
1−

∣∣π−1(Qj)
∣∣

n

)
.

It follows that if we can count singular preimages, the total ramification is easily
calculated.

2.3. Group actions, generating vectors, and signatures. We now survey the
main tools we need to describe group actions on surfaces.

Actions and surface kernel epimorphisms
The finite group G acts conformally on the Riemann surface S if there is a

monomorphism:

ε : G ↪→ Aut(S).
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When there is no confusion we will identify G with it image ε(G). Such actions
of G allow us to construct surfaces and analyze their automorphism groups with
the group G as the starting point. Our primary tool for working with actions are
surface kernel epimorphisms and the corresponding generating vectors, which we
proceed to define.

The quotient surface S/G = T is a closed Riemann surface of genus τ with a
unique conformal structure such that

(7) πG : S → S/G = T

is holomorphic. The quotient map πG : S → T is ramified uniformly (all branching
orders are the same on a given fiber) over a finite set BG = {Q1, . . . , Qt} such that
πG is an unramified covering exactly over T ◦ = T −BG. Let S◦ = π−1

G (T ◦) so that
πG : S◦ → T ◦ is an unramified covering space whose group of deck transformation
equals ε(G), restricted to S◦. This covering determines a normal subgroup ΠG =
π1(S◦) C π1(T ◦) and an exact sequence ΠG ↪→ π1(T ◦) � ε(G) by mapping loops

to deck transformations, via path lifting. Combine the last map with ε(G)
ε−1

→ G to
get an exact sequence

(8) ΠG ↪→ π1(T ◦)
ξ
� G.

The map ξ, which we call a surface kernel epimorphism, is an analogue to sur-
face kernel epimorphisms for Fuchsian groups. The map ξ is well-defined only up
to automorphisms of G. We detail this dependence and some questions related to
computations with ξ at the end of this subsection.

Generating systems and generating vectors
The fundamental group π1(T ◦) has presentation:

(9)

{
αi, βi, γj , 1 ≤ i ≤ τ, 1 ≤ j ≤ t

∣∣∣∣ τ∏
i=1

[αi, βi]

t∏
j=1

γj = 1

}
.

We denote the ordered generating set (α1, . . . , ατ , β1, . . . , βτ , γ1, . . . , γt) by G, noting
that it is not unique.

Define

ai = ξ(αi), bi = ξ(βi), cj = ξ(γj).

The 2τ + t tuple

(10) V = (a1, . . . , aτ , b1, . . . , bτ , c1, . . . , ct)

is called a generating vector for the action. We observe that

(11) G = 〈a1, . . . , aτ , b1, . . . , bτ , c1, . . . , ct〉 ,
as ξ is surjective. Since the element cj generates the stabilizer of some point Pj
lying over Qj , we have:

(12) o(cj) = nj,

the ramification degree at Pj . Finally, the relation in (9), combined with equation
(12), shows that a generating vector satisfies the following relations:

(13)

τ∏
i=1

[ai, bi]

t∏
j=1

cj = cn1
1 = · · · = cntt = 1.
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The signature of the action – actually of the generating vector – is (τ ;n1, . . . , nt).
For conciseness, we call the “vector” V given in equation (10) a (τ ;n1, . . . , nt)-
generating vector of G. We call the number τ (the genus of S/G) the orbit genus
and the numbers n1, . . . , nt the periods of the signature. In the n-gonal case with
τ = 0 we write (n1, . . . , nt). By the orbit-stabilizer theorem, |G| = nj

∣∣π−1
G (Qj)

∣∣ .
Therefore, when the action of a group G on a compact Riemann surface S of genus
σ is described using the signature (τ ;n1, . . . , nt) the Riemann-Hurwitz formula can
be rewritten as a genus formula:

(14) σ = 1 + n(τ − 1) +
n

2

t∑
j=1

(
1− 1

nj

)
,

or the area of a fundamental domain

(15)
Area(S/G)

2π
=

2σ − 2

|G|
= (2τ − 2) +

t∑
j=1

(
1− 1

nj

)
.

Any 2τ + t tuple of elements of G satisfying conditions (11)-(13) is called a
(τ ;n1, . . . , nt)-generating vector, even though it may not have arisen from a G
action. However, all such arbitrary generating vectors do arise from surfaces with
a G action. We state this as a proposition and show the construction in the proof
sketch.

Proposition 2.1. Suppose we are given a surface T of genus τ, a branch set BG =
{Q1, . . . , Qt} ⊂ T, Q0 ∈ T ◦ = T − BG and generating set G of π1(T ◦, Q0) as
given in (9). Then, given an arbitrary generating vector V, as in equation (10),
with signature (τ ;n1, . . . , nt) we may construct a surface S with G action such that
S/G = T, πG is branched over BG, and such that V is the generating vector of the
action.

Proof. Using the generating vector V we can construct a surface kernel epimorphism

ΠG ↪→ π1(T ◦, Q0)
ξ
� G. The subgroup ΠG defines a holomorphic unbranched

covering of S◦ → T ◦ with deck group G. Using the Riemann removable singularity
theorem we can close up S◦ and T ◦ to a branched covering S → T with G action.

�

Example 2.1. If G is cyclic of order 7 with generator x, then (x, x, x5) is a (7, 7, 7)-
generating vector for G. Using the Riemann-Hurwitz formula, we see that we get
a G action with signature (7, 7, 7) on a surface of genus 3.

In the case of n-gonal actions, the primary focus of this paper, we only have the
generators γ1, . . . , γt. We need to describe γ1, . . . , γt so that we may compute the
action of conformal maps upon them.

Construction 2.2. Such a system may be constructed as follows.

(1) Select a system of arcs from the base point Q0 to the Qj so that the arcs
only intersect at Q0.

(2) Moreover, in a small neighborhood of Q0 the counterclockwise order of the
arcs is determined by the given order Q1, . . . , Qt of the end points.

(3) To construct γj we start out from Q0 along the arc to Qj , stopping just
short of Qj , encircling Qj counterclockwise once in a small circle centered
at Qj , and then return to Q0 along the initial path.
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Figure 1. Construction 2.2.

It follows from the construction that the γj generate the group and that γ1 · · · γt =
1. See Figure 1.
Dependence on base points

We have left out base points to simplify the exposition, and so ξ is ambiguous
up to inner automorphisms. First suppose that Q0 ∈ T ◦, and that path lifting
π1(T ◦) � ε(G) is defined with respect to the point P0 lying over Q0. If another
point gP0 is selected and ξ′ is the new surface kernel epimorphism then

(16) ξ′ = Adg ◦ ξ,

where Adg(x) = gxg−1. Next, given two base points Q0, Q
′
0 ∈ T ◦ and a path

δ from Q0 to Q′0, the loop concatenation map ϕδ : π1(T ◦, Q0) → π1(T ◦, Q′0),
ϕδ : α → δ−1 ∗ α ∗ δ is an isomorphism unique up to an inner automorphisms of
π1(T ◦, Q0) and π1(T ◦, Q′0). For, if δ1, δ2 are two different paths Q0 to Q′0 then

ϕδ2 = ϕδ1 ◦Adδ2∗δ−1
1

and

ϕδ2 = Adδ−1
1 ∗δ2

◦ ϕδ1 .

Now suppose that ξ and ξ′ are defined with respect to P0 ∈ π−1
G (Q0) and P ′0 ∈

π−1
G (Q′0), δ̃ is a path from P0 to P ′0 in S◦, and δ = πG(δ̃ ). Then

(17) ξ = ξ′ ◦ ϕδ.

If δ′ is any other path from Q0 to Q′0 then

ξ′ ◦ ϕδ′ = ξ′ ◦Adδ−1∗δ′ ◦ ϕδ(18)

= Adξ′(δ−1∗δ′) ◦ ξ′ ◦ ϕδ
= Adξ′(δ−1∗δ′) ◦ ξ.

Action on generating vectors
Generating vectors for actions are not unique. We may first apply any automor-

phism ω of G to the G action ε to obtain ω◦ε. The result V → ωV on the generating
vector is

(a1, . . . , aτ , b1, . . . , bτ , c1, . . . , ct)→ (ωa1, . . . , ωaτ , ωb1, . . . , ωbτ , ωc1, . . . , ωct) .

The action of an automorphism does not affect the surface constructed from the
generating vector since the subgroup ΠG is not affected by ω. This is consistent
with our observations on the dependence on base points in equations (16),(17), and
(18).

Secondly, we may use a different generating set G′, and in turn this change of
generating set has an effect on generating vectors. In the n-gonal case it can be
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shown that any such transformation G → G′ has the form

(19) γj → ψjγθ(j)ψ
−1
j

where ψj is a word in γ1, . . . , γt, and θ is a permutation of 1, . . . , t. The action on
the generating vectors is

(20) cj → wjcθ(j)w
−1
j ,

where wj is obtained by replacing γi by ci, for all i, in ψj . In the Abelian case the
transformation is given by

(21) cj → cθ(j).

We call the actions given by equations (19) and (20) braid actions. Any two generat-
ing vectors (c1, . . . , ct) and (c′1, . . . , c

′
t) are called braid equivalent if c′j = wjcθ(j)w

−1
j

under the braid action. If θ is trivial we say that the vectors are pure braid equiva-
lent. The origin of the term braid action is given in Remark 2.1. The braid action
on the surfaces lying over (T,BG) is discussed at the end of Section 2.5.

Also see [16] for more on the braid action.

Remark 2.1. Here is the connection to braid groups and the justification for
calling the action in (19) and (20) the braid action. We may continuously move
one branch set {Q1, . . . , Qt} to another via a path (Q1(s), . . . , Qt(s)), 0 ≤ s ≤ 1,
with (Q1(0), . . . , Qt(0)) = (Q1, . . . , Qt) By standard theory, there is a family of
homeomorphisms

hs : T − {Q1, . . . , Qt} → T − {Q1(s), . . . , Qt(s)}.
If {Q1(1), . . . , Qt(1)} = {Q1, . . . , Qt} as sets then the homeomorphism h1 is a
homeomorphism of T ◦ inducing the transformations in equations (19) and (20).
The path

(Q1(s), . . . , Qt(s)), 0 ≤ s ≤ 1

with {Q1(1), . . . , Qt(1)} = {Q1, . . . , Qt} is a braid and hence we use the term braid
action.

2.4. Generating vectors and signatures of subgroups. Our main approach
to determining the full automorphism group of a surface will be to start with a
group which we know acts on a surface, and then see if it extends to a larger
group. Accordingly, we need to know how signatures of groups are related to their
subgroups. Fortunately, once a G action has been specified via a (τ ;n1, . . . , nt)-
generating vector, we can recover the signature of a subgroup G ≤ A using the
following theorem of Singerman [20].

Theorem 2.3. For a group A, given a (τA;n1, . . . , nt)-generating vector

(a1, . . . , aτA , b1, . . . , bτA , c1, . . . , ct)

for A, the signature of the subgroup G with index d is

(τG;m1,1,m1,2, . . . ,m1,θ1 , . . .mt,θt)

where

(1) If Φ: A → Sd is the permutation representation of A on the cosets of G,
then the permutation Φ(cj) has precisely θj cycles of length less than nj,
the lengths of these cycles being

nj/mj,1, . . . nj/mj,θj .

Albanian J. Math. 12 (2018), no. 1, 89-129.
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(2) The index d satisfies

(22) d =

2τG − 2 +
t∑

j=1

θj∑
i=1

(
1− 1

mj,i

)
2τA − 2 +

t∑
j=1

(
1− 1

nj

) .

When G is normal in A, so that A = N , the cycles of Φ(cj) all have the same
length. Thus by considering the action of N/G on S/G, Theorem 2.3 can be
simplified to:

Proposition 2.4. For a group N , given a (τN ;n1, . . . , nt)-generating vector

(a1, . . . , aτN , b1, . . . , bτN , c1, . . . , ct)

for N , the signature of the normal subgroup G of index d is

(τG;m1,1,m1,2, . . . ,m1,θ1 , . . .mt,θt)

where:

(1) mj,i = nj/lj and θj = d/lj where lj is the order of cjG in N/G, and
(2) the index d satisfies

(23) d =
2τG − 2

2τN − 2 +
t∑

j=1

(
1− 1

lj

) .
Remark 2.2. LetA be a group acting on the surface S with signature (τA;n1, . . . , nt).
Let G < A act on S with signature (τG;m1, . . . ,ms). We can compute the index
d = |A| / |G| without knowing the structure of S/G → S/A. Specifically, as in
Theorem 2.3, or using equation (15),we have

(24) d = |A| / |G| = (2σ − 2)/ |G|
(2σ − 2)/ |A|

=

2τG − 2 +
s∑
j=1

(
1− 1

mj

)
2τA − 2 +

t∑
j=1

(
1− 1

nj

) .
Remark 2.3. Using Theorem 2.3, a MAGMA script can be written that takes a
finite group A and a generating vector V = (c1, . . . , ct) and computes the genus
σ of the surface S, defined by A and V and the signature of the action for every
subgroup G ≤ A. We use this script to look for interesting n-gonal subgroup actions
given a proposed full automorphism group.

2.5. Equivalence, families, and equisymmetry of actions. When trying to
extend the known action of a n-gonal group G to a larger, normalizing group, the
notion of conformal equivalence of actions naturally arises, specifically the diagram
(26). In turn, this leads to looking for relations among the branch points on the
quotient surface. The notion of strong branching, to be discussed in the next sec-
tion, automatically forces an action to have numerous branch points. By varying
the branch points we get families of surface with the “same” action. Thus, in our
quest to classify surface automorphism groups, it is useful to introduce the inter-
related, clarifying concepts of conformal equivalence of actions, families of actions,
and equisymmetry of actions.
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Equivalence of actions
Two actions ε1, ε2 of G on possibly different surfaces S1, S2 are conformally

equivalent if there is an equivariant, conformal homeomorphism h : S1 → S2 and
an automorphism ω ∈ Aut(G) such that hε1(ω(g)) = ε2(g)h, or more conveniently:

(25) ε2(g) = hε1(ω(g))h−1,∀g ∈ G.

The conformal map h : S1 → S2 induces a conformal map h : T1 → T2, and in
diagram form we have:

(26)

S1 S2

T1 T2

h

πG1
πG2

h

where G1 and G2 denote the subgroups ε1(G) ≤ Aut(S1), ε2(G) ≤ Aut(S2). The
conformal homeomorphism h : T1 → T2 must preserve branch points and their
orders and hence defines a conformal homeomorphism T ◦1 → T ◦2 . Frequently, we
shall start with the bottom of diagram (26) given and want to fill in the top.

We start our discussion with the following proposition expressing conformal
equivalence in terms of generating vectors.

Proposition 2.5. Let S1 and S2 be surfaces, and let G1 ≤ Aut(S1) and G2 ≤
Aut(S2) be subgroups (that are not initially assumed to be of the form ε1(G) and
ε2(G)), but satisfy diagram (26). Let T1 and T2, be the respective quotients. Also,
let

G = {α1, . . . , ατ , β1, . . . , βτ , γ1, . . . , γt}
be a generating system for π1(T ◦1 , Q0) and (a1, . . . , aτ , b1, . . . , bτ , c1, . . . , ct) the cor-
responding generating vector for G1, determined by a point P0, lying over Q0. Then
the following hold:

(1) The group G2 = hG1h
−1 and hence G1 = ε1(G) and G2 = ε2(G) for a

common group G acting on S1 and S2.
(2) The map h maps the branch points of πG1 to branch points of πG2 of the

same order. Hence h : T ◦1 → T ◦2 is a conformal homeomorphism.
(3) Let

G′ = {α′1, . . . , α′τ , β′1, . . . , β′τ , γ′1, . . . , γ′t}
be the generating system for π1(T ◦2 , h(Q0)) obtained by applying h to G, and
(a′1, . . . , a

′
τ , b
′
1, . . . , b

′
τ , c
′
1, . . . , c

′
t) the generating vector of G2 derived from G′

at
the point h(P0). Then

(27) a′i = haih
−1, b′i = hbih

−1, c′j = hcjh
−1

for all i and j.

Proof. To see statement 1, observe that h maps G1 orbits to G2 orbits, namely
h(G1P ) = G2h(P ) for all P ∈ S1. For any P ∈ S1, and g ∈ G1

h(g(P )) = g′(h(P ))

for some g′ ∈ G2. Setting P = h−1(P ′) we get

h(g(h−1(P ′))) = g′(h(h−1(P ′))) = g′(P ′).
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It follows that hgh−1 ∈ G2. Thus g → hgh−1 maps G1 to G2 with inverse g′ →
h−1g′h.

By statement 1, we observe that |G1| = |G2|. For statement 2, observe that the
branching order at a pointQ = πG1(P ) equals |G1| /

∣∣π−1
G1

(Q)
∣∣ = |G2| /

∣∣π−1
G2

(h(Q))
∣∣ ,

so branching orders are preserved.
For equation 3, let P0 lie over Q0, α ∈ π1(T ◦1 , Q0) and let α̃ be the lift of α to

S◦1 that is based at P0. The lift of h(α) to S◦2 starting at h(P0) will be h(α̃). Thus
ξ′(h(α)) is the element x ∈ G2 such that

h(α̃)(1) = x(h(P0)),

h(ξ(α)P0) = x(h(P0)),

hξ(α)h−1 = x.

This establishes criterion (27). �

Now, assume that the bottom and sides of the diagram (26) are given. If we want
to fill in the top as in diagram (28), where the map, h, to be filled in is denoted by
a dashed arrow, we need a criterion that, when satisfied, guarantees the existence
of the covering transformation h.

(28)

S1 S2

T1 T2

h

πε1(G) πε2(G)

h

Proposition 2.6. Suppose that we have two actions ε1, ε2 of the same group G
on two surfaces S1, S2 as diagram (28). Suppose further that h is a conformal
homeomorphism, and that h is a map to be found as indicated by the dotted line.
We also assume that:

(1) The map h maps the branch points of πε1(G) to branch points of πε2(G) of

the same order. Hence h : T ◦1 → T ◦2 is a conformal homeomorphism.
(2) Let

G = {α1, . . . , ατ , β1, . . . , βτ , γ1, . . . , γt}
be a generating system for π1(T ◦1 , Q0) and (a1, . . . , aτ , b1, . . . , bτ , c1, . . . , ct)
the corresponding generating vector of G obtained from G and a specific P0

lying over Q0. Let Q′0 = h(Q0), P ′0 ∈ π−1
ε2(G)(Q

′
0) and

G′ = {α′1, . . . , α′τ , β′1, . . . , β′τ , γ′1, . . . , γ′t}

be the generating system for π1(T ◦2 , Q
′
0) obtained by applying h to G, and

(a′1, . . . , a
′
τ , b
′
1, . . . , b

′
τ , c
′
1, . . . , c

′
t) the generating vector of G derived from G′,

with lifting starting at P ′0.

Then there exists an invertible conformal map h as in diagram (28) with h(P0) =
P ′0, if and only if there is a automorphism ω of G such that

(29) a′i = ω(ai), b
′
i = ω(bi), c

′
j = ω(cj).

for all i and j.

Proof. If h : S1 → S2 exists, completing the diagram (28), then as we saw in
Proposition 2.5 the automorphism ω is induced by conjugation by h, pulled back
to G.
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For the other direction let us assume that the criterion (29) holds and prove that
h exists. From covering space theory, the map h exists (with the branch points and
preimages removed) if and only if

h∗ ◦
(
πε1(G)

)
∗ (π1(S◦1 , P0)) =

(
πε2(G)

)
∗ (π1(S◦2 , P

′
0)).

Consider the diagram

π1(S◦1 , P0) π1(S◦2 , P
′
0)

π1(T ◦1 , Q0) π1(T ◦2 , Q
′
0)

G G

h∗

(πε1(G))∗ (πε2(G))∗
h∗

ξ ξ′

ω

We are proposing that putting the map h∗ (suitably restricted) into the top row
gives a commutative diagram. In particular, we need to prove that the image is
as suggested. The only arrow in question is the top row, indicated by the dashed
arrow. The subdiagram formed from the bottom two rows is commutative since
the commutativity requirement holds for every element of the generating set G
of π1(T ◦1 , Q0), according to equation (29). Furthermore, the horizontal maps are
isomorphisms and the vertical maps are surjections. Now consider the subdiagram
formed from the top two rows. The vertical maps are injective because the columns
of diagram (28) are covering spaces. Since the columns of the entire diagram are
exact and the bottom subdiagram commutes then h∗ in the top row maps the kernels
isomorphically as suggested. Thus, by covering space theory, we have constructed
a partial map h : S◦1 → S◦2 . As shown in the proof of Proposition 2.1, the map
h may be completed to a conformal homeomorphism h : S1 → S2 satisfying the
requirements. �

Remark 2.4. If we allow h in equation (25) to be just a homeomorphism then
the actions are said to be topologically equivalent. For a given genus there are only
finitely many topological equivalence classes. For more detail see [6] and [7].

Remark 2.5. Suppose we have fixed a quotient surface T, (ordered) branch set
BG = {Q1, . . . , Qt} , and signature S = (τ, n1, . . . , nt) . Once we have fixed a gen-
erating set G ⊂ π1(T ◦, Q0) we can enumerate the surfaces S → T and actions
ε : G → Aut(S) with the given T, BG, S by means of generating vectors. The ac-
tions are in 1− 1 correspondence with the generating vectors. The automorphism
group Aut(G) acts freely on the generating vectors. Each Aut(G) class of vectors
determines a unique branched covering space S → T with G-action and a unique
subgroup ε(G) ≤ Aut(S). Two such coverings S1 → T, S2 → T, are equivalent if and
only if the diagram (28) can be completed with T1 = T2 and h ∈ Aut(T,BG,S), the
group of conformal automorphism of T respecting the branch points and signature.
Thus the set of all covers S → T and equivalence classes of actions ε : G→ Aut(S)
are the equivalence classes of generating vectors under the action of Aut(T,BG,S)×
Aut(G). For more detail see [6] and [7].

Families of curves and equisymmetry
Special placement of the branch points allows for extra automorphisms beyond

the action of G. For instance Shaska [19] determines which hyperelliptic curves have
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extra automorphisms by means of equations in the coefficients of the defining equa-
tions of hyperelliptic curves. In [16] Magaard, Shaska, Shpectorov, and Völklein
discuss families of curves in moduli space and the links to the braid action and
Hurwitz spaces. Our notion of family is very informal and is closer to a Hurwitz
space than the equisymmetric strata of the branch locus of moduli space, discussed
in [6]. Our definition will allow for curves in positive characteristic, so we use the
term curve instead of surface. The example of cyclic n-gonal curves, in Section 5.1,
is a simple tractable example.

A family of curves {Sb : b ∈ B} is a morphism π : E → B such that each
Sb = π−1(b), b ∈ B is a smooth closed curve (compact Riemann surface). We
assume that B is an irreducible variety or connected manifold. A family of actions
for a family of smooth curves π : E → B is a family of monomorphisms

εb : G→ Aut(π−1(b)), b ∈ B

such that: for each g ∈ G the map (b, x) → (b, εb(g)x) is an automorphism of the
variety (manifold) V = {(b, x) : π(x) = b} . In [12], Guerrero discusses an expanded
version of families of curves by using holomorphic families of curves where now the
map π : E → B is holomorphic and B is a connected, complex manifold.

We also allow holomorphic families, since it is useful in studying the moduli
space and Teichmüller space of surfaces. However, in the positive characteristic
case, B must be an irreducible, locally-closed variety.

Two actions ε1 : G → Aut(S1) and ε2 : G → Aut(S2) of G on S1 and S2 are
(directly) equisymmetric ε1 ∼D ε2 if there is a family of curves π : E → B with a
family of actions εb : G → Aut(π−1(b)), b ∈ B such that there are b1, b2 ∈ B with
isomorphisms φi : π−1(bi) w Si and εi = φi◦εbi◦φ−1

i . Two actions ε1 : G→ Aut(S1)
and εm : G→ Aut(Sm) are equisymmetric if there is a sequence of surfaces Si and
actions εi : G→ Aut(Si) such that ε1 ∼D ε2, ε2 ∼D ε3, . . . , εm−1 ∼D εm. Typically
the relations εi ∼D εi+1 come from distinct families as i varies.

Remark 2.6. It is possible that two G actions are equisymmetric without the
automorphism groups of the surfaces being isomorphic. In such a case we may
have εi(G) � Aut(Si) even though εb(G) = Aut(π−1(b)) generically. In fact these
are the very cases we are interested in.

More on the braid action
Now we want to consider the effect of a change in basis. The change of generating

set G → G′ for n-gonal actions over a fixed pair (T,BG) induces an automorphism
Φ : π1(T ◦, Q0) → π1(T ◦, Q0). This induces a right action of Aut(π1(T ◦, Q0)) on
generating vectors via the action on surface kernel epimorphisms given by

(30) ξ → ξΦ = ξ ◦ Φ.

Now suppose that G, G′,V = (c1, . . . , ct) , and V ′ = (c′1, . . . , c
′
t) are related by

G′ = Φ(G)

and

(31) ξ = ξ(G′) = ξ(Φ(G)) = ξΦ(G) = VΦ.

The explicit equations, derived from (19) and (20), are

(32) γ′j = Φ(γj) = ψjγθ(j)ψ
−1
j
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and

(33) c′j = cΦj = wjcθ(j)w
−1
j .

The equations G′ = Φ(G) and V ′ = VΦ simply say that the surface constructed
from T, BG, G′, ξ, and V ′ is the same as the surface constructed from T, BG, G,
ξΦ, and V ′. Thus we can restrict our attention to a single generating set G. Two
surfaces constructed in such a way will be called braid companions.

Proposition 2.7. Let G, T, BG = {Q1, . . . , Qt}, S, G , and π1(T ◦, Q0)
ξ
� G be as

defined above and held fixed. Then we have:

(1) The surfaces S with G-action such that S/G = T and S → T is branched
over B with signature S are in 1-1 correspondence with the S-generating
vectors of G.

(2) Let Φ ∈ Aut(π1(T ◦, Q0)). Then Φ is induced by a homeomorphism h of T ◦

and the generating vector of the G-action on the surface induced by ξ ◦ Φ
is VΦ defined by equation (33).

(3) If the homeomorphism h above is orientation preserving then Φ is induced
by a braid (Q1(s), . . . , Qt(s)), 0 ≤ s ≤ 1 in P1(C)t as in Remark 2.1. Braid
equivalent actions are equisymmetric.

(4) The set of generating vectors {V} and the corresponding induced surfaces
{SV} with the given signature S consists of several orbits of the group
AutS(π1(T ◦, Q0)) where the subscript denotes the subgroup of automor-
phisms preserving the signature. Specifically the permutation θ in equation
(33) should preserve the signature S.

(5) The braid action is generated by the following transformations.

c′j+1 = cj , c
′
j = cjcj+1c

−1
j ,

c′k = ck, otherwise.

Proof. Statements 1, 2, and 4 follow from previous discussion. Statements 3 and 5
are well known from the literature [3]. �

3. Finding automorphism groups and their signatures for n-gonal
surfaces

In this section we describe processes for determining automorphism groups of
n-gonal surfaces by examining whether or not an n-gonal action of G extends to a
larger group A. For some results on cyclic groups see [10]. These processes natu-
rally break up into two cases depending on whether G is normal in A as suggested
in the introduction. We deal with each case separately in the next two subsections.
We approach the problem with two different methods depending on the chosen
equivalence type: topological or conformal. We first briefly describe the methods
and then give some details and examples in the next two subsections. In each sub-
section we first describe signature theorems that apply to Method 1 and then give
some details about Method 2. In Section 5, Method 1 is extensively used.

Method 1: topological equivalence
The first method is “moduli free”, namely we try to extend the G action up to

topological equivalence. We are not too concerned about the actual configuration
of BG, just the associated signature S.
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For this method, we first find possible N and then possible A algebraically. In
each case the structures of the inclusions G C N and N < A and the given signature
S of the G action restrict the possibilities for N and A and their signatures. Next,
generating vectors for N and then A are sought, which is a purely computational
problem. The action of A on a surface restricts to one of G, and the signature
of the action of G can be computed by Theorem 2.3. If G is n-gonal then we
compare its signature with S. With more work (beyond the scope of this paper)
we may compute a generating vector for the action of G by using the monodromy
representation of A on A/G and compare the vectors in order to understand if they
are topologically equivalent. In this paper we mainly focus the question of which
signatures extend.

Method 2: conformal equivalence
Before starting we recall the definition of the core of a subgroup of a group. If

G < H the core of G in H is given by

(34) CoreH(G) =
⋂
x∈H

xGx−1.

We say that G has a trivial core in H or G < H is a trivial core pair if

(35) CoreH(G) = {1} .

In our second method we retain the information on BG so when we extend, the
extensions that are permissible depend on BG. We keep on extending the action of
G to larger groups in a stepwise fashion. Given the available computational tools,
especially the primitive groups database, we use an inductive method with three
cases. For G < A consider any chain of subgroups

(36) G = G0 < G1 < · · · < Gs = A

where for each successive pair Gj < Gj+1 we have one of the following cases:

(1) Case 1: The subgroup Gj C Gj+1.
(2) Case 2: The coset space Gj+1/Gj is a faithful, primitive action space for

Gj+1, namely CoreGj+1
(Gj) = {1} and there are no intermediate groups

Gj < H < Gj+1.
(3) Case 3: There is {1} CM < Gj with M C Gj+1.

Any chain of groups can be refined into such a chain. Case 3 is the general case and
Cases 1 and 2 are the missing extreme cases where the core is trivial or all of Gj .
In Case 2 we want a primitive action space so that we can use the primitive groups
database. The transitive group database could be used but it is too unwieldily and
does not have the range of the primitive groups database.

Starting with G, a branch set BG, signature (0;n1 . . . , nt), and generating vector
(c1 . . . , ct) we construct successive extensions Gj < Gj+1. Assuming we have con-
structed an action of Gj+1, the map πj+1 : S/Gj → S/Gj+1 is a rational map of P1

to itself and the branch set BGj lies over BGj+1
via πj+1. Furthermore, to construct

the action of Gj+1, a generating vector Vj+1 for Gj+1, with signature Sj+1, needs
to be computed with respect to a generating set Gj+1 ⊂ π1(P1−BGj+1) that is com-
patible with the map πj+1. We discuss the construction of the generating vector
and action in the next two subsections. When we can no longer extend the chain
we have found the automorphism group of S. The Hurwitz bound H ≤ 84 (σ − 1)
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forces

(37)
|H|
|G|
≤ 42 ·

 t∑
j=1

(
1− 1

ni

)
− 2

 ,

so that the process terminates.

Remark 3.1. We note that the sequence (36) depends on the configuration of the
branch set BG. Typically it is difficult to precisely determine the branch set BGj
and generating vector Vj . The scope of this paper allows us say the following: we
can find all extensions G < H, and all generating vectors for n-gonal actions of H
on a surface S such that the signature of the restricted G action on S has the initial
signature (n1 . . . , nt). In principal, the branch set BH can be lifted all the way up to
S/G to produce branch set B′G, and likewise a generating set G′0 ⊂ π1(P1−BG) and
generating vector V ′0. Even if B′G = BG, the generating vectors V ′0 and V may not
be easily comparable since the original generating sets G and G′0 may not be equal.
So we can say that there is a G action on a surface S′ that “looks like” the original
G-action and extends to H. More precisely in the general family of surfaces with
G-action with a fixed signature S there is a subfamily where the action extends to
H. Typically “looks like” will mean that S′ and S will be braid companions.

Remark 3.2. Though not directly relevant to our work here, the papers [2] and
[13] discuss the possible monodromy groups of rational maps φ : P1(C) → P1(C).
Our maps S/G → S/A are such maps, so the cited works allow us to say general
things about the extensions G < A.

3.1. The normal extension case.

3.1.1. Platonic Groups. Given an n-gonal group G, since G is normal in N , the
group K = N/G acts on the surface S/G = P1, so that K is a finite subgroup of
PSL (2,C). All such groups, and their signatures, are well known:

Theorem 3.1. Any finite K ≤ PSL (2,C) is isomorphic to one of Ck, Dk, A4,
S4 or S5 (Ck is cyclic group of order k and Dk dihedral group of order 2k). The
signatures for each such group are given in Table 1.

Group Signature

Ck (k, k)
Dk (2, 2, k)
A4 (2, 3, 3)
S4 (2, 3, 4)
A5 (2, 3, 5)

Table 1. Groups of Automorphisms and Signatures of P1

Notation 3.2. An orbit K · P is called singular if KP 6= {1} and is called regular
if KP = {1} .

Thus the possible N ’s satisfy the short exact sequence

G ↪→ N � K

which can be solved for a given G and K.
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3.1.2. Signatures for N . The possible signatures for a normal extension N can be
recovered from G and K using Proposition 2.4. Specifically, we have the following,
which is a generalization of [22, Proposition 4.1]:

Proposition 3.3. Suppose the signature of K = N/G is (d1, d2, d3) (with d3 deleted
if K = Ck) and let O(G) denote the set of orders of elements in G.

(1) The signature of N is of the form

(a1d1, a2d2, a3d3,m1, . . . ,ms)

where ai ∈ O(G) and mi ∈ O(G)\{1}.
(2) The signature of G is

( a1, . . . a1︸ ︷︷ ︸
|K|/d1−times

, a2, . . . a2︸ ︷︷ ︸
|K|/d2−times

, a3, . . . a3︸ ︷︷ ︸
|K|/d3−times

,m1, . . .m1︸ ︷︷ ︸
|K|−times

, . . .mr, . . .ms︸ ︷︷ ︸
|K|−times

)

where any 1’s are removed.

Technically speaking, the way Proposition 3.3 has been stated, we are starting
with the signature for N and finding the signature for G. However, given a specific
signature for G, it is not hard to see how to reverse this process to determine the
possible K’s which could extend G and the corresponding signatures for N . We
illustrate with a example.

Example 3.1. Example 2.1 shows the cyclic group G of order 7 acts on a genus
3 surface with signature (7, 7, 7). We determine the signatures of possible normal
extensions.

First, since none of the periods are divisible by 2, we can only have K = Ck
for some k. This means that N has signature of the form (a1k, a2k, 7) where
a1, a2 ∈ {1, 7}. Since G has just three periods, we must have k ≤ 3. When k = 3,
we must have a1 = a2 = 1 and N has signature (3, 3, 7). When k = 2, must have
exactly one of a1 or a2 equal to 7, and N has signature (2, 7 · 2, 7).

We note that just because a given N and corresponding signature for N exist
does not mean that an n-gonal group G extends to N acting on an n-gonal surface.
Thus next we consider conditions on generating vectors for an n-gonal group G
which ensures the extension to some larger group N .

3.1.3. Normally extending actions by cyclic groups. Fix a branch set BG = {Q1,
. . . , Qt}, a generating system G = (γ1, . . . , γt) , and signature S = (n1, . . . , nt) . As
in Remark 2.5, all possible n-gonal G actions with given BG and S are determined
by a generating vector (c1, . . . , ct) with respect to G. When classifying and analyzing
actions via generating vectors, all vectors need to be computed with respect to
the given G. When trying to extend a given action with respect to a subgroup of
Aut(T,BG,S) (see Remark 2.5) we need to choose a G adapted to transformations
in Aut(T,BG,S). We now consider the simple case that an automorphism h of S
normalizes the action of G, so K = Ck =

〈
h
〉
. Since h normalizes G we have the

following diagram

(38)

S S

T T

h

πG πG

h
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where h is the induced map. We will construct a set of loops in T ◦ adapted to the
action of h and compute the action.

Construction 3.4. For the purpose of discussion, we may assume that h : z → uz
is a rotation where u is a kth root of 1. It follows then that the set BG consists of
possible singular

〈
h
〉

orbits {0} and/or {∞} and p regular orbits
{
zi, . . . u

k−1zi
}

for various distinct zi in C∗.
(1) Select a ray ` from 0 to ∞ that contains no point of BG. The k transforms

uj` of ` cut up C into k wedges W1, . . . ,Wk, where Wj is the wedge bounded
by uj−1` and uj`. Each of the orbits

{
zi, . . . u

k−1zi
}

meets each wedge in a

unique interior point ujzi. We assume that zi ∈W1 for all i.
(2) Order the zi so that |z1| ≤ · · · ≤ |zp| .
(3) Next we draw a simple, smooth arc ζ(t), 0 ≤ t ≤ 1, lying in W1, that

starts at z1, ends at zp and passes through all the intermediate zi in order.
Modify the arc ζ slightly so that zi lies slightly to the right of the curve as
we traverse from start to finish.

(4) Select a point Q0 on ` with 0 < |Q0| < |z1| .
(5) We construct a series of p loops γi,1 defined as follows:

(a) Follow a path from Q0 to ζ(0) (the same path for each zi).
(b) Follow a path from ζ(0) to a point ζ(ti) very near zi. Pick t1 = 0,

tp = 1, and the other ti increasing in value.
(c) Make a short excursion from ζ(ti) towards zi.
(d) Make a small counterclockwise circle that lies entirely to the left of ζ.
(e) After circling zi return to Q0 reversing the steps in a,b,c.

(6) The transformation z → uj−1z maps W1 to Wj and maps γi,1 to ui−1
∗ (γi,1)

Let δj be the counterclockwise arc from Q0 to uj−1Q0 along the circle |z| =
|Q0| .

(7) Define

γi,j = δju
j−1
∗ (γi,1) δ−1

j .

(8) Let γ1 be the arc that travels along ` towards 0 encircles 0 in a small circle
about the origin and reverses course along ` back to Q0. Let γ2 be the arc
that travels along ` towards ∞ encircles all the finite branch points by a
large circle about the origin and then reverses course along ` back to Q0.

Let G = (γ2, γ1,1, . . . , γp,1, . . . , γ1,k, . . . , γp,k, γ1) . By construction the paths can
be jiggled slightly so that the conditions of Construction 2.2 are satisfied. Denoting(

p∏
i=1

γi,j

)
by Γj we have,

γ2

k∏
j=1

(
p∏
i=1

γi,j

)
γ1 = γ2

 k∏
j=1

Γj

 γ1 = 1.

The inside product Γj is an ordered product over the branch points in a wedge. See
Figure 2.

Proposition 3.5. Let all notation be as in Construction 3.4 and let

V = (c2, c1,1, . . . , cp,1, . . . , c1,k, . . . , cp,k, c1)

Albanian J. Math. 12 (2018), no. 1, 89-129.

http://albanian-j-math.com/magaard.html


Broughton, Camacho, Paulhus, Winarski, Wootton 107

δ2

δ3

`

u`

u2`

∞

Q0

uQ0

u2Q0

0

γ1

γ2

ζ(t)

z1 = ζ(t1)

z2

ζ(t2)
z3 = ζ(t3)

W1

W2

W3

γ1,1

γ2,1

γ3,1

uz1

uz2

uz3

γ1,2

γ2,2

γ3,2

u2z1 u2z2

u2z3

γ1,3
γ2,3

γ3,3

γ2

Figure 2. Construction 3.4.

be the corresponding generating vector. Then

δ1h∗(γ1)δ−1
1 = γ1

δ1h∗(γ2)δ−1
1 = Γ−1

1 γ2Γ1

δ1h∗(γi,j)δ
−1
1 = γi,j+1, 1 ≤ i ≤ p, 1 ≤ j ≤ k − 1

δ1h∗(γi,k)δ−1
1 = γ1γi,1γ

−1
1 , 1 ≤ i ≤ p.

Letting Ci =

(
p∏
i=1

ci,j

)
,then the G action extends to an action G̃ on S with G ↪→

G̃�
〈
h
〉

if and only if there is an automorphism ω of G such that

ω(c1) = c1

ω(c2) = C−1
1 c2C1

ω(ci,j) = ci.j+1, 1 ≤ i ≤ p, 1 ≤ j ≤ k − 1

ω(ci,k) = c1ci,1c
−1
1 , 1 ≤ i ≤ p.

Moreover

G̃ =
〈
h,G : hk ∈ G, hgh−1 = ω(g), g ∈ G

〉
.

Proof. We leave to the reader the proofs of the first, third, and fourth formulas for
the transforms of the elements of G. For the second formula we write

γ2Γ1 · · ·Γkγ1 = 1
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and denoting γ → γ′ the transform γ′ = δ1h∗(γ)δ−1
1 we see that Γ′j = Γj+1 for

1 ≤ j ≤ k − 1, and Γ′k = γ1Γ1γ
−1
1 . It follows that

γ′2Γ′1 · · ·Γ′kγ′1 = 1

γ′2Γ2 · · ·Γkγ1Γ1γ
−1
1 γ1 = 1

γ′2Γ2 · · ·Γkγ1Γ1 = 1

γ′2Γ2 · · ·ΓkΓ1Γ−1
1 γ1Γ1 = 1.

Now

Γ1 · · ·Γk = γ−1
2 γ−1

1

Γ2 · · ·ΓkΓ1 = Γ−1
1 γ−1

2 γ−1
1 Γ1,

and

1 = γ′2Γ2 · · ·ΓkΓ1Γ−1
1 γ1Γ1

= γ′2Γ−1
1 γ−1

2 γ−1
1 Γ1Γ−1

1 γ1Γ1

= γ′2Γ−1
1 γ−1

2 Γ1.

It follows that

γ′2 = Γ−1
1 γ2Γ1.

The rest of the proof is a straightforward application of Proposition 2.6. �

Example 3.2. Let G be the cyclic group of order 7 with generator x. From
Example 3.1, we know there is a possible C3 extension where N has signature
(3, 3, 7). Letting BG = {1, u, u2} where u is a third root of unity, generating
vectors from Proposition 3.5 will be of the form (1, xa, xb, xc, 1) where a+ b+ c is
divisible by 7 (note: c1 and c2 are trivial since neither 0 nor ∞ are in BG, so the
corresponding loops are trivial in the fundamental group). One such generating
vector is (1, x, x2, x4, 1). For this generating vector, it is easy to check that ω(x) =
x2 is an automorphism of G which satisfies the given properties in Proposition 3.5
for extension. Thus N = 〈x, h : hxh−1 = x2〉 is an extension of G.

Extending actions for more general groups
To determine other possible normal extensions by other groups we proceed as

follows. For each possible K, we first find a representative of K so that {Q1, . . . , Qt}
is a union of complete orbits of K. Then:

(1) For a given K find a set generators of K.
(2) For each generator h of a generating set for K carry out the analysis for a

single automorphism to see if h lifts.

3.2. The non-normal extension case.

3.2.1. Finding Possible Signatures for A. Finding the possible signatures for A is
more difficult than for N , so rather than provide an explicit statement, we describe
the basic process.

The first step in this process is finding the possible indices of N in A. Now,
since we are assuming A is an automorphism group of a compact Riemann surface
of genus σ, there are natural bounds on the size of A, with maximal values arising
when the signature for A has just three periods. For example, Table 2 from Lemma
3.2 in [21] gives all possible signatures for A when |A| ≥ 13

2 (2σ − 2).
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Signature Additional Conditions |A|
(3, 3, n) 4 ≤ n ≤ 5 3n

n−3 (2σ − 2)

(2, 5, 5) 10(2σ − 2)
(2, 4, n) 4 ≤ n ≤ 10 4n

n−4 (2σ − 2)

(2, 3, n) 7 ≤ n ≤ 78 6n
n−6 (2σ − 2)

Table 2. Signatures for Large Automorphism Groups

Using these bounds, we get corresponding bounds on d, the index of N in A.
Specifically, either

(39) d =
|A|
|N |
≤ 13

2
·

(
s∑
i=1

(
1− 1

mi

)
− 2

)
,

where (m1, . . . ,ms) is the signature of N or the signature of A appears in Table 2
and the index d can be calculated exactly.

Next, if A does not have signature from Table 2, we can build the possible
signatures for A as follows. Let t1, . . . to denote the orders of non-trivial elements
of N . For a given index d which satisfies the inequality in equation (39), letting
d1, . . . , dq denote the divisors of d (including 1), A will have a signature of the form
((t1d1)a1,1 , (t2d1)a2,1 , . . . , (todq)

ao,q ) where:

• the signatures for N and A and the index d satisfy equation (22)
• for each mi, there exists an nj with mi|nj
• the signatures for N and A are compatible with some permutation repre-

sentation Φ given in part (1) of Theorem 2.3.

Remark 3.3. We do not need to build the explicit representation given in the last
step – just know that a compatible representation exists.

Remark 3.4. The process we have described for building signatures for A can be
streamlined significantly, especially when we know the specific structure of N and
its corresponding signature.

We illustrate with an example.

Example 3.3. Starting with the group action with signature (3, 3, 7) from Example
3.2, we find the possible signatures for non-normal extensions. First, equation (39)
yields

d ≤ 13

2
· 4

21
< 2,

which is impossible, and so any signatures for non-normal extensions must come
from Table 2. Since there must be periods divisible by both 3 and 7, this just leaves
signatures of the form (2, 3, n) where n is divisible by 7. Calculation shows that
the only possible one of these signatures which satisfy equation (22) is (2, 3, 7), so
in particular, this is the only possible signature for a non-normal extension.

Remark 3.5. We note that the inclusion of signatures in Example 3.3 is already
well known. Our purpose however was to illustrate the basic process of finding
signatures for non-normal extensions.
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3.2.2. Primitive trivial core extensions. Now suppose we have a non-normal exten-
sion G < H. We are going to focus on Case 3 described at the beginning of this
section. We may find all H, generating vectors VH , the corresponding S/G→ S/H,
and lifted branch sets, lifted generating sets GG, and generating vectors VC in the
steps below. Once the candidates have been found they need to be compared to
the original BG, G, and V.

Steps to find H:

1. Find the possible indices d = |H| / |G| using the bound in (37).
2. For each d, search for primitive groups H of degree d whose point stabilizer

is isomorphic to G.
3. For each H so determined, find all n-gonal signatures SH such that an
H-action with the given signature produces an n-gonal surface S with the
given genus σ. Use the Riemann Hurwitz Theorem.

Steps to find signatures and generating vectors:

4. Using Theorem 2.3, and the permutation representation of H on H/G find
out which signatures SH induce an n-gonal action of G with signature S.
Generating vectors are not needed at this stage, just the conjugacy classes
of the elements of a generating vector.

5. For each signature found in Step 4 find all generating vectors VH of H with
the given signature.

Lifting Steps:

6. For each generating vector in Step 5 determine the map S/G→ S/H as a
rational function.

7. For each generating vector in Step 5 determine a lifted generating set GH .
8. For each map in Step 6 lift BH to a branch set B on S/G.
9. For each generating vector VH find a generating vector VG of the G action

(details below).

Comparison steps:

10. For each lift B in Step 7 compare BH to BG.
11. Compare the generating vector VG with the original V (details below)

In the rest of the section we illustrate the steps above through example.

Finding H

Example 3.4. We start by considering the smallest non-Abelian example, G = Σ3.
Then G acts on a surface of genus 8 with signature (2, 2, 2, 2, 2, 2) and generating
vector ((1, 2), (1, 2), (2, 3), (2, 3), (1, 3), (1, 3)). From equation (37) we get d ≤ 42×1.
Here is a table of possible extensions computed using MAGMA.

H t |H/G| potential SH # VH/|Aut(H)|
Σ4 3 4 (4, 4, 4) 0
Σ4 4 4 (2, 2, 2, 4) 4
A5 3 10 (2, 5, 5) 1

We see from the third column that there are two possible extensions. In the second
row there are generically 4 different surfaces though for certain configurations some
of the surfaces may be conformally equivalent.
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Example 3.5. We consider the smallest simple example G = A5. Using the prim-
itive groups database in MAGMA we can check which primitive groups H have
A5 as a point stabilizer. There are 11 such groups H with primitive permutation
degree less than 250. Among the groups, we have A5, A5×A5, SL(2, 11), PSL(2, q)
for q = 16, 19, 29, 31, and A5 n Frq for (q, r) = (2, 4), (3, 4), and (5, 3).

Finding a G and V
Let U = S/H, BH = {R1, . . . Rr} and H = {δ1, . . . , δr} be a generating set

for π1(U◦, R0), with Q0 lying over R0, and (d1, . . . , dr) a generating vector for
the H action. By covering space theory it may be shown that there are words
ψj ∈ π1(U◦, R0) such that

(40) γj = ψj
(
δζ(j)

)ej
ψ−1
j

where πH/G(Qj) = Rζ(j) and ej = o(d
ζ(j)

)/o(cj). Once we have H then we can

compute an induced generating vector from a generating vector VH = (d1, . . . , dr)
via:

(41) cj = wj
(
dζ(j)

)ej
w−1
j .

One way to compute the words in (40) is to have an explicit geometric model for
πH/G : S/G→ S/H and then compute the images π∗H/G directly. This can be done

for small examples.

Example 3.6. Let G = Σ3, H = Σ4,VH = ((1, 2), (2, 3), (3, 4), (1, 2, 3, 4)). If we
let R4 =∞ the πH/G is a polynomial and a plausible map for πH/G is

πH/G : z → z2
(
3z2 − 4(λ+ 1)z + 6λ

)
,

where λ is a parameter. In the domain of πH/G there is a ramification point of order
4 at∞, and ramification point of order 2 at 0. The other ramification points are the
other zeros of the derivative π′H/G(z) = 12z (z − 1) (z − λ) , namely 1 and λ. The

images of 0, 1, λ and ∞ under πH/G are 0, 2λ − 1, λ3 (2− λ) , and ∞, respectively.
Certain values of λ must be excluded to keep the values distinct. The preimages as
formulae in λ could be computed but the solutions are ungainly. For λ = 3 we get:

π−1
H/G(0) =

{
0, 0,

8

3
+

1

3

√
10,

8

3
− 1

3

√
10

}
,

π−1
H/G(5) =

{
1, 1,

5

3
+

2

3

√
10,

5

3
− 2

3

√
10

}
,

π−1
H/G(−27) =

{
3, 3,−1

3
+

2

3
i
√

2,−1

3
− 2

3
i
√

2

}
,

π−1
H/G(∞) = {∞,∞,∞,∞} .

Repeated entries indicate a ramification point.

Example 3.7. Let G and H be as in the example above, let H = {δ1, δ2, δ3, δ4} be
a generating system for the H action. The monodromy vector for the action of H
is the same as the generating vector. Using only the information in the monodromy
vector, one can draw a lift of the system H in S/H to S/G via πH/G : S/G→ S/H
with appropriate punctures. The lift is a system of arcs and loops in S/G. One
can select loops {γ1, γ2, γ3, γ4, γ5, γ6} that encircle {Q1, Q2, Q3, Q4, Q5, Q6} in some
order. The {γ1, γ2, γ3, γ4, γ5, γ6} can be modified by braid operations to achieve the
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correct ordering on BG. For the sake of argument we are going to assume that no
reordering is necessary.

γ1 = δ−1
4 δ1δ4, γ2 = δ−1

4 δ2δ4, γ3 = δ1δ2δ3δ
−1
2 δ−1

1

γ4 = δ1δ3δ
−1
1 , γ5 = δ2, γ6 = δ3

and

c1 = d−1
4 d1d4, c2 = d−1

4 d2d4, c3 = d1d2d
−1
2 d−1

1

c4 = d1d3d
−1
1 , c5 = d2, c6 = d3.

We compute:

c1 = (2, 3), c2 = (3, 4), c3 = (2, 3)

c4 = (3, 4), c5 = (2, 3), c6 = (3, 4).

The group generated by the cj is the symmetric group on {2, 3, 4}, the stabilizer
of 1. To compare the generating vector with the original, we first conjugate the
stabilizer of 1 to Σ3 and then use the braid action.

Remark 3.6. In general the map π1(T ◦, Q0) → π1(U◦, R0) can be computed
directly from the monodromy vector (Φ(d1), . . . ,Φ(dr)), where Φ : H → Σd is the
monodromy representation the cosets of H/G.

4. Strong branching and weakly malnormal actions

In this section, we introduce the main ideas behind strong branching. We also
introduce an additional condition which, when combined with strong branching,
ensures the n-gonal subgroup is normal in the full automorphism group.

4.1. Strong branching. In [1], Accola introduced strong branching.

Definition 4.1. Let π : S1 → S2 be a branched covering of degree n. The covering
π is strongly branched if

(42) Rπ > 2n(n− 1)(σ2 + 1),

or, equivalently,

(43) σ1 > n2σ2 + (n− 1)2.

If the conditions do not hold then π is a called weakly branched.

Remark 4.1. If S2 has genus 0 then the formulas become

Rπ > 2n(n− 1)(44)

σ1 > (n− 1)2.(45)

For conciseness, if the map S → S/G is strongly branched, we shall also say that
the group action of G is strongly branched.

In the context of finding automorphism groups, as indicated in Section 3, for
a given n-gonal group, finding a normal extension (if one exists) is a difficult but
tractable problem. In contrast however, finding non-normal extensions seems much
more difficult. Strong branching ensures the existence of certain normal subgroups
in the full automorphism group of a surface, thus making calculation of A more
straightforward. Specifically, we have:
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Proposition 4.1. Let G be a group of automorphisms acting on a surface S such
that S → S/G is strongly branched. Then there is a unique, normal, non-trivial
subgroup M of Aut(S) such that M ≤ G, and S → S/M is strongly branched.

Proof. By the proof of Corollary 3 of [1] there is a unique, maximal intermediate
surface S → U → S/G such that S → U is a Galois, strongly branched covering
of degree exceeding one. Accordingly, there is a non-trivial subgroup M ≤ G such
that U = S/M , and, as U is unique, M must be normal. �

4.2. Number of branch points and families of actions. Next we focus on the
number of branch points for each action.

Number of branch points
One unfortunate drawback of using strong branching is that either the cut-off

genus in equation (45) tends to be large or the number of branch points in the
quotient is large. When considering surfaces as regular, branched coverings of
quotients with branch points, it is more natural to use the number and order of
the branch points, action signatures, and group orders as constraints rather than
the genus of S, as in equation (45). Specifically, assuming a regular n-gonal action
π : S → S/G, and using equation (6), the strong branching criterion (44) can be
written

(46)

t∑
j=1

(
1− 1

nj

)
> 2(n− 1),

upon noting that
∣∣π−1(Qj)

∣∣n = n/nj .
If all the nj = n, as in the prime cyclic case and the superelliptic case then we

must have:

(47) t > 2n.

The worst possible case (largest t) is when nj = 2 for all j and then we must have
t > 4(n − 1). For a weaker lower bound on t, if we replace all the 1 − 1

nj
by 1 we

must have

(48) t > 2(n− 1).

We can use equation (46) to estimate the number of weakly branched, potential
signatures for a G action. Let e1, . . . , er be the orders of non-trivial elements of
G, In a given n-gonal signature (n1, . . . , nt) , let xk = |{j : nj = ek}| , then from
equation (46) a signature is weakly branched if

(49)

r∑
k=1

(
1− 1

ek

)
xk ≤ 2(n− 1).

The number of nonnegative integer solutions to this equation has a reasonable
approximation (lower bound) by the volume of the simplex in the positive Rrorthant
bounded by the hyperplane

∑r
k=1

ek−1
ek

xk = 2(n− 1). Thus

#signatures ≥ (2n− 2)r

r!

r∏
k=1

ek
ek − 1

.
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For G = A5 the smallest non-Abelian simple group, e1 = 2, e2 = 3, e3 = 5 and

#signatures ≥ 1183

3!

2

1

3

2

5

4
= 1026895.

The actual number of potential n-gonal signatures is 1053238, directly computed
using MAGMA.

The proportions of strongly branched actions and n-gonal actions
One obvious lingering question underlying our work is how frequently strong

branching can be used in determining full automorphism groups. Specifically, our
goal is to develop methods to find full automorphism groups for n-gonal surfaces
and for surfaces which admit strongly branched group actions (and combinations
of both). In this context, the question of how frequently these methods can be
used for a fixed genus comes down to what proportion of group-signature pairs
are either strongly branched or n-gonal for a fixed genus. The large bound on the
number of branch points and/or quotient genus suggests that group-signature pairs
with groups that are strongly branched are rare. In contrast however, the high
frequency of genus-0 actions suggests that group-signature pairs for automorphism
groups of n-gonal surfaces should actually be quite frequent. It is not immediately
clear how to prove such assertions in general, but the available data for low genus
actions (such as Breuer’s lists, up to genus 48, in [5]) supports the following:

• In a fixed genus, the proportion of total actions which are strongly branched
lies roughly between 2% and 5%.
• The number of group-signature pairs for n-gonal actions is a substantial

proportion of all actions. Indeed, over all genera less that 49, 55% of
actions are n-gonal.
• In a fixed genus, the proportion of n-gonal actions which are strongly

branched is around 10% on average.

In particular, the frequency with which n-gonal surfaces seem to occur certainly
supports further development of techniques to find their automorphism groups.
Though strong branching occurs less frequently, further study of strongly branched
actions makes sense since they are more tractable than the general case and the
strong branching condition provides a good theoretical cut-off point.

Remark 4.2. According to equations (46), (47), and (48), in the presence of strong
branching, we have a large dimensional family π : E → B where the typical fiber has
a G action with a given signature (n1, . . . , nt), e.g., the cyclic n-gonal families. In
many cases, for a typical fiber π−1(b) the action of G on π−1(b) constitutes the full
automorphism group A, and strong branching does not tell us anything special since
the guaranteed normal subgroup satisfies M = G = A. In this case we have a large
open set B◦ ⊂ B of G-equisymmetry. For special values of b (actually subvarieties)
Aut(π−1(b)) is strictly larger than the image of G. The various possibilities for
M ≤ G ≤ A with M C A correspond to subvarieties of B, with equisymmetric
actions of A.

4.3. Weakly malnormal actions. We now introduce a key concept that allows
us to use strong branching to guarantee normality. Recall that a subgroup G of a
group A is called malnormal if G∩ xGx−1is trivial whenever x /∈ G. We generalize
this definition.
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Definition 4.2. A subgroup G of a group A is said to be weakly malnormal if and
only if G ∩ xGx−1 is trivial when x /∈ NA(G). Now suppose that G acts on S via
ε : G ↪→ Aut(S). We say that the action of G on S is weakly malnormal if ε(G) is
a weakly malnormal subgroup of A, the full automorphism group S.

Next, we present some useful facts about weak malnormality.

Proposition 4.2. Let G act on S and A = Aut(S). The following statements
characterize weakly malnormal actions:

(1) If G E A, then G is automatically weakly malnormal in A.
(2) If G is weakly malnormal in A, but not normal, then G has a trivial core

in A.
(3) If the subgroup G < A is weakly malnormal then for any non-trivial M ≤ G,

we must have NA(M) ≤ NA(G).
(4) If G is cyclic then NA(G) = NA(M) for any non-trivial M ≤ G if and only

if G is weakly malnormal in A.

Proof. Statements 1 and 2 are left to the reader. To prove statement 3, suppose
x ∈ NA(M). Then for all x ∈ A, G ∩ xGx−1 ≥ M ∩ xMx−1 = M > {1}. Since G
is weakly malnormal, it follows that x ∈ NA(G). For statement 4, suppose that G
is cyclic and weakly malnormal in A. We already have NA(M) ≤ NA(G). Suppose
that x ∈ NA(G). Then M and xMx−1 both lie in G and so must equal each
other since G has a unique subgroup of order |M |. It follows that x ∈ NA(M)
and NA(G) = NA(M). For the converse that x ∈ A − N and suppose that M =
G∩xGx−1 is not trivial, then both M ≤ G and x−1Mx ≤ G, so that M and x−1Mx
both equal the unique subgroup of G of order |M | . Thus x ∈ NA(M) = NA(G).
This contradicts x ∈ A−N so that we must have G ∩ xGx−1 = {1}. �

In the next Proposition we see how to use strong branching and weak normality
to prove normality results.

Proposition 4.3. Suppose that G has a weakly malnormal action on S and that
πG : S → S/G is strongly branched. Then G is normal in A.

Proof. Let M be the non-trivial normal subgroup of A contained in G guaranteed
by Proposition 4.1. If G is not normal then

M =
⋂
x∈A

xMx−1 ≤
⋂
x∈A

xGx−1 = {1} ,

a contradiction. �

According to Proposition 4.1 if S → S/G is strongly branched then CoreA(G)
is not trivial since G is guaranteed to have a non-trivial normal subgroup. In
the introduction it was suggested that if M = CoreA(G) < G then we look at
actions on S/M. Some useful properties of such actions are summarized in the next
proposition.

Proposition 4.4. Let S is a Riemann surface, A = Aut(S) and G ≤ A and let
M = CoreA(G) be a proper subgroup of G. Then S = S/M is a surface upon which
both A = A/M and G = G/M act naturally, and A ≤ Aut(S). Moreover, if G � A
then S → S/G is not strongly branched.
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Proof. The proof that S is a Riemann surface and that A and G act naturally is
straightforward.

To show that if G � A, then S → S/G is not strongly branched, we proceed by
contradiction. If S → S/G is strongly branched then there would be a non-trivial
subgroup of G that is normal in Aut(S). However, if G � A, then

CoreA(G) =
⋂
x∈A

xGx−1 =
⋂
x∈A

(
xGx−1/M

)
= M/M = {1}

and

CoreAut(S)(G) ≤ CoreA(G) = {1} .

Therefore G does not contain a non-trivial subgroup that is normal in Aut(S),
a contradiction. �

5. Determining Automorphism Groups

We finish by illustrating the tools and techniques we have developed to determine
full automorphism groups of families of surfaces through explicit examples. We
shall start with the most well known family – cyclic n-gonal surfaces – providing
a brief survey of the known results, and introducing new ones. Following this,
we shall provide a general outline of how to use strong branching in determining
full automorphism groups when there is an n-gonal group which is simple, and
then illustrate by exploring in detail the family of surfaces with n-gonal group
isomorphic to the alternating group A5. Throughout the whole section, we provide
explicit details of how the techniques we employ can be used or adapted to other
similar families. Where we feel confident, we will also provide conjectures that we
hope will motivate further work.

5.1. Cyclic n-gonal actions. A ubiquitous and important case of group actions
are those for which G is cyclic and S/G has genus 0. Such surfaces have tractable
equations. A convenient form for such surfaces is given in the following.

Example 5.1. Let m1, . . . ,mt, and n be integers satisfying:

(1) 1 ≤ mj < n,
(2) n divides m1 + · · ·+mt, and
(3) gcd(m1, . . . ,mt) = 1.

Then the surface S defined by

(50) yn = (x− a1)m1(x− a2)m2 · · · (x− at)mt ,

where the a1, . . . , at, are distinct, is an irreducible cyclic n-gonal surface. If mj > 1

the point (aj , 0) is singular. There are dj = gcd(mj , n) local branches of S at

(aj , 0). The normalization map ν : S → S resolves the singularities and dj points

lie over (aj , 0). The action of G = Cn on S is defined by (x, y) → (x, uky) where
u = exp(2πi/n). This action lifts to S and the quotient map πG : S → S/G, called

the n-gonal morphism, is given by πG : S
υ→ S

π→ P1 where π(x, y) = x. The map
πG is branched over each Qj = aj , but is unbranched at∞, by condition 2. Letting
g be the automorphism (x, y)→ (x, uy), we have cj = gmj and cj fixes the dj points
lying over Qj . The order of cj is n/dj so n = njdj . For more details see [7].

Remark 5.1. If n = p is prime we call the surface p-gonal.
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Example 5.2. Two interesting special cases of cyclic n-gonal surfaces are superel-
liptic surfaces and generalized superelliptic surfaces. Superelliptic surfaces are those
surfaces of the form

yn = f(x)

where f(x) is square free and n does not divide the degree of f. The point at∞ will
be a point of ramification. Of special interest is the case n = p a prime. A gener-
alized superelliptic surface has an equation as given in (50) where gcd(mj , n) = 1,
or alternatively those cyclic n-gonal surfaces whose cyclic group of automorphisms
has signature (n, . . . , n).

Example 5.3. Continuing Example 5.1, consider the family of curves defined by

(51) yn = (x− a1)m1 · · · · · (x− at)mt

with (a1, . . . , at) ∈ Ct−∆, where ∆ is the multidiagonal. The family is constructed
by first taking all points of the form (x, y, a1, . . . , at) ∈ Ct+2 that satisfy (51) and
then forming the closure E1 of these points in P2× (Ct−∆). After normalizing E1

we get π : E → B = Ct −∆ such that π(x, y, a1, . . . , at) = (a1, . . . , at). The action
εb, b ∈ B of G = Cn on E1 is defined by (x, y) → (x, uky) where u = exp(2πi/n).
The action is then lifted to E.

Remark 5.2. Every n-gonal action of a group G branched over t points can be
included in a family π : E → B where B is a finite covering of Ct − ∆ (Hurwitz
space).

5.1.1. Determining automorphism groups of cyclic p-gonal surfaces. Though full
results are known, see for example [22], we briefly describe how to determine the full
automorphism group when G has prime order p. In this case, the strong branching
cut-off is σ = (p− 1)2 and so we have:

Proposition 5.1. For prime |G|, if σ > (p− 1)2 then G is normal in A.

As outlined in Section 1, we split up the classification of automorphism groups
into the two cases of whether or not G is normal.

The normal case
Assuming that G is normal, then N = A satisfies the short exact sequence

G ↪→ N � K

Determining the possible solutions for N is straightforward, with most cases being
split extensions. Next, for each possible N , we can use Proposition 3.3 to construct
possible signatures for N and then determine whether or not such an action exists
by constructing generating vectors, or showing none exist. We illustrate with an
example.

Example 5.4. When K = Ck, the solutions to the short exact sequence

G ↪→ N � Ck.

are a direct product G × Ck, a semi-direct product G o Ck and the cyclic group
Ckp (note that for certain k, these groups might coincide).
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Since the signature of Ck is (k, k) and the signature of G is (p, . . . , p︸ ︷︷ ︸
r−times

), using

Proposition 3.3, the possible signatures of N are

(0; k, k, p, . . . , p︸ ︷︷ ︸
r/k−times

), (0k, kp, p, . . . , p︸ ︷︷ ︸
(r−1)/k−times

), (0; kp, kp, p, . . . , p︸ ︷︷ ︸
(r−2)/k−times

).

When a non-trivial semi-direct product GoCk exists, the only possible signature
for which there can exist a generating vector is (0; k, k, p, . . . , p).

If gcd(p, k) = 1, then Ck × Cp = Ckp, and any of the three signatures could act
as the signature of such a group action.

Finally, if gcd(p, k) = p, then Ck×Cp and Ckp are distinct. In this case, whenA =
Ck×Cp, a generating vector could only exist for the signature (0; k, k, p, . . . , p) and
forA = Ckp, a generating vector could only exist for the signature (0; kp, kp, p, . . . , p).

In nearly all cases, a generating vector for the given group exists and is easy to
construct. We leave the details to the reader.

See [8] for additional examples on normal extensions of cyclic actions.

The non-normal case
Now suppose that G is not normal in A. In this case, as expected, determining

the possible A and signatures requires some ad hoc argumentation, so we refer to
[22] for full details. We survey the basic steps here simplifying where possible.

We first note that automorphism groups for small primes can be found compu-
tationally using Breuer’s database, [5]. For a given p, the strong branching cut-off
is σ = (p − 1)2, and so each A for p ≤ 7 can be determined. Using this database,
we obtain four different automorphisms groups whose details we summarize in the
first four rows of Table 3. We henceforth then assume that p ≥ 11.

Next, using the strong branching cut-off and the Riemann-Hurwitz formula, it
is easy to show that when p ≥ 11, any Sylow subgroup S of A has order either p2

or p. We analyze these two cases individually.
First suppose that S, a Sylow p-subgroup of A, has order p2. If S is cyclic,

it must have signature (p2, p2, p, . . . , p︸ ︷︷ ︸
`−times

), see Example 5.4. For signatures of this

form, the strong branching cut-off yields (p2, p2, p) as the only possibility. If S is
elementary Abelian, then it must have signature (p, . . . , p︸ ︷︷ ︸

`−times

), and again using the

strong branching cut-off, we must have ` = 3 or ` = 4. Each of these signatures
can now be analyzed individually, and by doing so we find three different families
of surfaces with non-normal overgroup, see the last three rows in Table 3.

Now suppose that p2 - |A|. By Corollary 3.4 of [22], we know that N > G, and
for the sake of simplicity, we also assume K 6= Ck . By looking at stabilizers of
fixed points, we see that the signature of A differs only slightly from the signature
of N , see Lemma 7.1 of [22]. Specifically:

Lemma 5.2. There exists integers m1, . . . ,mν1 , o1, . . . , oτ , oi a multiple of p and
each integer mj and oi/p relatively prime to p such that:

(1) the signature of N is (m1, . . . ,mν1 , o1, . . . , oτ , p, . . . , p︸ ︷︷ ︸
` times

),

(2) the signature of K is (m1, . . . ,mν1 , o1/p, . . . , oτ/p)
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(3) the signature of A is (n1, . . . , nν2 , o1, . . . , oτ , p, . . . , p︸ ︷︷ ︸
` times

).

Moreover, each mi must divide at least one nj.

Next, instead of estimating the index d of N in A as outlined in Section 3.2, we
can use Lemma 5.2 and equation (22) to calculate it explicitly:

(52) d =

−2 +
ν1∑
i=1

(
1− 1

mi

)
+

τ∑
i=1

(
1− 1

oi

)
+ l
(
p−1
p

)
−2 +

ν2∑
i=1

(
1− 1

ni

)
+

τ∑
i=1

(
1− 1

oi

)
+ l
(
p−1
p

)
which we can then simplify to:

(53) d = 1 +

∑ν1
i=1

(
1− 1

m1

)
−

ν2∑
i=1

(
1− 1

ni

)
−2 +

ν2∑
i=1

(
1− 1

ni

)
+

τ∑
i=1

(
1− 1

oi

)
+ l
(
p−1
p

) .
Under the assumption that p ≥ 11, we know all the possible signatures for K.
Therefore it is straightforward, though time consuming, to show, except for a small
number of cases which can be easily checked by hand, that if the extension is not
normal, we must have d < 12. However, by Sylow theory, we know the index d
of N in A has to be congruent to 1 modulo p, which is impossible since p ≥ 11.
Hence there are no further non-normal extensions of p-gonal groups to those already
appearing in Table 3.

p Signature of A Signature of N Genus Group A

3 (0; 2, 3, 8) (0; 2, 2, 2, 3) 2 GL(2, 3)
3 (0; 2, 3, 12) (0; 3, 4, 12) 3 [48, 33]
5 (0; 2, 4, 5) (0; 4, 4, 5) 4 S5

7 (0; 2, 3, 7) (0; 3, 3, 7) 3 PSL(2, 7)

p ≥ 5 (0; 2, 3, 2p) (0; 2, p, 2p) (p−1)(p−2)
2 (Cp × Cp)o S3

p ≥ 3 (0; 2, 2, 2, p) (0; 2, 2, p, p) (p− 1)2 (Cp × Cp)o V4

p ≥ 3 (0; 2, 4, 2p) (0; 2, 2p, 2p) (p− 1)2 (Cp × Cp)oD4

Table 3. Automorphism Groups of p-gonal Surfaces when A 6= N

5.1.2. Strong branching and general cyclic n-gonal surfaces. The obvious natural
question to ask is whether the techniques we adopted for cyclic p-gonal surfaces can
be used to determine full automorphism groups for other cyclic n-gonal surfaces.
Strong branching played a key role in determining these groups as it ensured that
there were only finitely many cases for which A 6= N , and from there we could
apply ad hoc argumentation to construct the signature of A from the signature
of N . Unfortunately the following example shows that for general cyclic n-gonal
surfaces, strong branching does not ensure normality, and in particular, it is possible
to construct infinitely many n-gonal surfaces for which A 6= N .
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Example 5.5. Let A = 〈x, y|x4 = y3 = xyx−1 = y−1〉, and G = 〈x〉. The group
A has order 12 and G is a cyclic subgroup of order 4. We can define a generating
vector for A with signature (0; 2, . . . , 2︸ ︷︷ ︸

r times

, 4, 4, 4, 4) for r even as follows:

(x2, x2, . . . , x2, x, x−1, x, x−1y2)

Using Theorem 2.3, it is easy to show that the signature of the subgroup G is
(0; 2, . . . , 2︸ ︷︷ ︸

3r times

, 4, 4, 4, 4) and the corresponding genus of the surface S on which A acts

is σ = 3r + 7.
In the context of determining full automorphism groups, we observe that S is

cyclic 4-gonal and the group G is never normal in A. However, the genus of S can
be made arbitrarily large, so in particular, we can construct infinitely many cyclic
4-gonal surfaces of arbitrarily large genus for which a cyclic 4-gonal subgroup is not
normal in A. A similar example can be constructed for n = 9 = 32, though the
same construction fails for larger primes.

These group actions provide examples of strongly branched actions where the
subgroup M from Proposition 4.1 is strictly contained in G.

5.1.3. Generalized superelliptic surfaces. The key result in determining automor-
phism groups for p-gonal surfaces was the fact that there were only finitely many
group-signature pairs for which A 6= N , and this was due to strong branching –
provided σ > (p − 1)2, G was guaranteed to be normal. In contrast, Example 5.5
showed there is little hope that strong branching will allow us to easily determine
automorphism groups of all cyclic n-gonal surfaces. Therefore, this leads to the
question of whether there are families of cyclic n-gonal surfaces, aside from the
p-gonal ones, for which strong branching ensures normality of the cyclic n-gonal
group in the full automorphism group. One such class is the generalized superel-
liptic surfaces (which includes the superelliptic surfaces).

Proposition 5.3. Suppose that S is a generalized superelliptic n-gonal surface with
cyclic automorphism group G. Further suppose that S → S/G is strongly branched,
σ > (n− 1)2, n = |G| . Then G is normal in A.

Proof. Since S is generalized superelliptic, then the stabilizer subgroup of G of any
fixed point P is of order n, or equivalently GP = G, if GP > {1} . Let M be the
normal subgroup of A contained in G, guaranteed by Proposition 4.1. Now suppose
that P is any fixed point of G and that x ∈ A−N satisfying G∩xGx−1 = M > {1} .
Then GP ≥M > {1} and so GP = G. Next GxP = xGPx

−1 = xGx−1 ≥M > {1}.
It follows that GxP = G and xGx−1 = GxP = G, a contradiction to x ∈ A−N. �

The importance of Proposition 5.3 is that G is normal when σ > (n − 1)2, and
hence just like with the p-gonal case, for a given n, there are only finitely many
possible A’s for which A 6= N . Now, for a superelliptic surface S, when A = N , all
possible A and the corresponding signatures were determined in [18]. In particular,
the problem of complete classification comes down to analyzing just the A for which
A 6= N .

To date, such a classification remains elusive. However, computational results
for small n (n ≤ 12), and attempts at generalizing the tools and techniques used
for the cyclic p-gonal case suggest that there are no further families of groups, see
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[9]. Consequently, we conjecture that the families already discovered (extended for
all n) are the only possible ones for which A 6= N . Specifically:

Conjecture 5.4. Suppose S is generalized superelliptic with A 6= N . Then A is
one of the groups given in Table 3.

See [15] for additional details on generalized superelliptic surfaces.

5.1.4. Cyclic n-gonal cases which are not superelliptic. Suppose now that G = Cn,
and let S, A and N be as before. The strong branching condition only guarantees
that there is cyclic subgroup M = Cm E A with 1 < m ≤ n. We would like to
study cases where Cm is a proper subgroup of G, and to be specific we will focus
on examples where n = p2. The analysis using strong branching works as follows,
assuming a classification of surfaces of any genus, with action group Cm.

(1) Assume S → S/G is strongly branched to obtain M E G with {1} < M E
A. We may assume that M = CoreA(G).
(a) If M = G then compute A = N as an extension of G using the methods

in Section 3.1.
(b) If G 6 A then consider the quotient case S = S/M, and the series of

groups G ≤ A ≤ Aut(S′) where G′ = G/M , A′ = A/M, A′′ = Aut(S′).
Determine A′ as a subgroup of A′′ and then solve M ↪→ A� A′.

(2) If S → S/G is not strongly branched then use the methods of Section 3.2
to find A, assuming A 6= N. There are only finitely many cases to consider.

We will only consider what happens where M < G. Let us first consider the
generalities of case n = p2, and then work specific examples for low primes. To
help with the bookkeeping of the numerous branch points we use the following
notation. For 0 < k < n define

uk =
∣∣{j : cj = xk

}∣∣ .
A branch point has order p or p2. If we let t1 be the number of branch points of
order p and t2 be the number of branch points of order p2, then we have:

p2−1∑
k=1

kuk = 0 mod p2,

t1 =

p−1∑
k=1

upk,

t2 = t− t1 ≥ 2.

We need t2 ≥ 2, otherwise |〈c1, . . . , ct〉| = p < |G| . Thus

(54) RπG = n

t∑
j=1

(
1− 1

nj

)
= p(p− 1)t1 +

(
p2 − 1

)
t2.

Using equation (14) the genus of S is given by

σ = 1 + p2(−1) +
p2

2

(
p− 1

p
t1 +

p2 − 1

p2
t2

)
= 1− p2 +

p(p− 1)

2
t1 +

p2 − 1

2
t2.
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Using equations (46) and (54), we see how many branch points are needed for strong
branching:

p− 1

p
t1 +

p2 − 1

p2
t2 > 2(p2 − 1)

or

(55) t1 > 2p(p+ 1)− p+ 1

p
t2.

Suppose G = 〈x〉, and assume the non-trivial subgroup guaranteed by strong
branching is M = 〈xp〉 . According to Proposition 2.4 the number of ramification
points of M acting on S is pt1 + t2 each with ramification order p and so RπM =
(pt1 + t2)(p− 1). By equation (4) the genus σ′ satisfies

σ′ = 1 +
1

2p
(2(σ − 1)−RπM )

= 1 +
1

2p

(
2

(
−p2 +

p(p− 1)

2
t1 +

p2 − 1

2
t2

)
− (pt1 + t2)(p− 1)

)
=

(p− 1)

2
t2 + 1− p.

The possible automorphism groups of S′ are known from the classification of p-
groups, except that extra work is needed for σ′ = 0, 1. The automorphism group of
S can be pieced together from Aut(S′) and M . If we assume that G is not normal
in A then M is normal by the strong branching condition.

Example 5.6. Let us make a table of σ, σ′ and the describe the cases for small
primes p = 2, 3, 5, 7. According to Harvey, t2 must be even when p = 2. Assuming
strong branching we get

p σ σ′ restriction
2 −3 + t1 + 3 t22

t2
2 − 1 t1 > 12− 3 t22

3 −8 + 3t1 + 4t2 t2 − 2 t1 > 24− 4
3 t2

5 −24 + 10t1 + 12t2 2t2 − 4 t1 > 60− 6
5 t2

7 −48 + 21t1 + 24t2 3t2 − 6 t1 > 112− 8
7 t2

Let us now describe examples of such possible groups.

Example 5.7. Let p and q be primes such that p divides q − 1. Write Cp2 =
〈x〉 and Cq = 〈y〉 in multiplicative format. Let a ∈ C∗q = Aut(Cq) be such that
ap = 1 mod q which exists by divisibility conditions. Let Cp2 act upon Cq = 〈y〉 by

θ : Cp2 → C∗q = Aut(Cq)

xj · yk = θ(xj)(yk)→
(
yk
)aj

.

Then the semi-direct product

A = Cp2 n Cq =
〈
x, y : xp

2

= yq = 1, x−1yx = ya
〉

satisfies:

• 〈y〉 , 〈xp〉 C A,
• xpy has order pq, and
• 〈x〉 6 A. Indeed any cyclic subgroup of order p2 is self-normalizing.
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Example 5.8. Let A = C9 n C7 =
〈
x, y : x9 = y7 = 1, x−1yx = y2

〉
. (A is Small-

Group(63,1) in MAGMA). The vector V = (x7, xy, xy5) is a generating vector
with signature (9, 9, 9), yielding a surface of genus 22. Using MAGMA as in
Remark 2.3 we see that there is a cyclic subgroup of order 9 whose signature is
(3, 3, 3, 3, 3, 3, 9, 9, 9). This action is not strongly branched and so the non-normal
extension is not a surprise. Next consider a generating vector obtained from V
prepending 3 copies of x3 to V, i.e., (x3, x3, x3, x7, xy, xy5). The signature of the
action of G has signature (327, 93) and the surface has genus 85. This action is
strongly branched. It is conceivable that the automorphism group is larger but the
subgroup M must be

〈
x3
〉
. Also of interest, in this case σ′ = 1 and so the quotient

S/G is a torus that supports a group of automorphisms of the form C3 n C7.

5.2. Simple n-gonal groups and strong branching. In the current literature,
the only families for which strong branching has been used to determine full auto-
morphism groups are cyclic groups, but there are other families for which strong
branching should provide the framework for determining all possible automorphism
groups. The most obvious of these is the family of simple groups. Specifically, since
simple groups have no normal subgroups, we have:

Proposition 5.5. For G simple, if σ > (|G| − 1)2 then G is normal in A.

In particular, for a given simple n-gonal group G, Proposition 5.5 ensures that
there are only finitely many possible A for which A 6= N and so we can use the
same techniques for finding A as we have previously outlined.

The normal case for simple groups
When A = N , so G is normal in its full automorphism group, the possible

signatures for A satisfy Proposition 3.3 with the possible A being solutions to the
short exact sequence:

G ↪→ A� K,

We note that for a given simple group G, there could be a tremendous number of
solutions to this short exact sequence, Moreover, there is no guarantee that these
solutions should all split as we saw with the cyclic p-gonal case. In particular,
for an arbitrary simple group, the normal case actually seems significantly more
difficult than we have seen before. Fortunately however, for many simple groups,
the following result of Rose ensures that this sequence splits, see [17, Theorem 2.7].

Theorem 5.6. If the center of G is trivial and the automorphism group of G splits
over its inner automorphism group, then all extensions over G split.

In particular, when the conditions of Theorem 5.6 are satisfied, such as with
most alternating groups, then A ∼= K nG, and finding all such groups of this form
is significantly more tractable than the general case.

The non-normal case for simple groups
For the case A 6= N , the problem is purely computational with only finitely

many solutions, so in principle, the groups and signatures can be calculated using
GAP or MAGMA. In practice of course, complete classification is not likely since
the strong branching cut-off for an arbitrary simple group is going to be quite
large, and finite group databases do not typically include groups of high enough
order. However, through additional ad hoc argumentation, and by restricting to
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intermediate extensions as outlined in Section 3, restrictions can be imposed on
the possible groups and signatures which allow for steps to be made towards a
more comprehensive classification. The following is an example of the types of
computational results we can obtain to restrict our search.

Proposition 5.7. If G is simple, A 6= N , and d is the index of N in A, then the
number of periods r of the signature of A is bounded by:

4

(
|G| − 2

d
+ 1

)
≥ r ≥ 3.

Proof. Since A 6= N , we must have σ ≤ (|G| − 1)2. Suppose that (m1, . . . ,mr) is
the signature of A. By the Riemann-Hurwitz formula,

σ − 1 = |A|

(
−1 +

1

2

r∑
i=1

(
1− 1

mi

))
.

Using the bound on σ then gives us

|G|(|G| − 2)

|A|
≥ −1 +

1

2

r∑
i=1

(
1− 1

mi

)
.

Rewrite this as

(56) 2

(
|G| − 2

d
+ 1

)
≥

r∑
i=1

(
1− 1

mi

)
.

Since mi ≥ 2 for each i,
r∑
i=1

(
1− 1

mi

)
≥ r

2

and thus

4

(
|G| − 2

d
+ 1

)
≥ r ≥ 3.

�

Remark 5.3. We note that Proposition 5.7 actually holds provided the action of
the group is weakly malnormal.

5.2.1. Determining Automorphism Groups when G = A5. We finish by illustrating
how such a classification might proceed by providing partial results for the first
non-trivial case of this: when G = A5. As is standard, we break the classification
into two cases depending upon whether or not A5 is normal in A.

The normal case when G = A5

First we consider the case where A = N . Now we know any such group satisfies
the short exact sequence

G ↪→ A� K

where K is one of the groups from Table 1. Moreover, since A5 satisfies the hypothe-
ses of Theorem 5.6, this sequence splits. In particular, A is a semidirect product
which, for convenience, we consider as an outer semi-direct product A5oψK where
ψ : K → Aut(A5) = S5 is the corresponding homomorphism defined by conjugation
of elements of K on A5. We can use these facts to determine all possible A’s.
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Proposition 5.8. Suppose that G = A5 and A = N . Then the possibilities for A
are as follows:

(1) For all K, the direct product A = A5 ×K.
(2) For K = S4, K = Ck for k even or K = Dk for any k, we have an addi-

tional non-trivial semi-direct product A5oψK where ψ : K → Aut(A5) = S5

is defined to have image 〈(1, 2)〉 with kernel the unique index 2 subgroup of
K.

(3) Further, for K = Dk, k even and k > 2, we have a second non-trivial
semi-direct product A5oK where ψ : K → Aut(A5) = S5 is defined to have
image 〈(1, 2)〉 with kernel an index 2 dihedral group.

Proof. Since A = A5 oψ K, we just need to describe all such semi-direct products
for each K. For K = A4, S4 and A5, this can be done computationally using GAP
and we attain the stated results. We need to explore in more detail the two infinite
families K = Ck and K = Dk

For A = A5 oψ K, let K1 be the kernel of ψ. Then the group A5 oψ̄ (K/K1)

where ψ̄ is the induced homomorphism is either a non-trivial semi-direct product
where ψ̄ has trivial kernel, or it is isomorphic to A5 and consequently A is a direct
product A5 ×K. Thus we consider A5 oψ̄ K/K1 for each possible K and K1.

First suppose that K = Ck. Then K/K1 is cyclic, and since it is a subgroup of
Aut(A5) = S5 it is either order 2, 3, 4 or 5. However, for each of these possibilities,
simple computation using GAP gives a non-trivial semi-direct product A5oψ̄K/K1

only when K/K1 is cyclic of order 2, and in this case ψ̄ can be defined as in the
statement of the theorem. The result follows.

Next suppose that K = Dk. Then K/K1 is either cyclic of order 2 or dihedral.
Therefore, since it is a subgroup of Aut(A5) = S5 it is either cyclic of order 2
or dihedral of order 4, 6, 8, or 10. Again, for each of these possibilities, simple
computation using GAP gives a non-trivial semi-direct product A5 oψ̄ K/K1 only

when K/K1 is cyclic of order 2 with the image of ψ̄ as defined in the statement of
the theorem. When k is odd, there is precisely one possible non-trivial kernel being
the index 2 cyclic subgroup. When k is even and k > 2, there are three possible
non-trivial kernels: the index two cyclic subgroup and the two index 2 dihedral
subgroups, though the latter two yield isomorphic semi-direct products. The result
follows.

�

The possible signatures with which the different normal extensions can act can be
determined using Proposition 3.3. For a given such signature, determining whether
or not an action exists depends on whether or not we can construct a generating
vector, and this can in principle be done exhaustively. We note however that
for a given A, there are many simple arguments which will eliminate signatures
without having to consider generating vectors. Rather than presenting all possible
signatures for all possible A, we illustrate with an example of how the general
process follows, noting that for other A, the same general process holds. First, we
fix the following notation.

Notation 5.9. In a signature, we use the expression m
(ki)
i to denote ki copies of

the periods mi.
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Example 5.9. Suppose that K = C2, the cyclic group of order 2. Then there
are two possibilities for A: the direct product A5 × C2 and the semidirect product
A5 o C2 which is isomorphic to the symmetric group S5. Since the signature of K
is (2, 2), the possible signatures for each A are of the form

(57) (2a1, 2a2, 2
(a), 3(b), 5(c))

where a1, a2 ∈ {1, 2, 3, 5}. We now proceed by cases.
First suppose that A = C2×A5. Then A contains elements of orders 2, 3, 5, 6 and

10, but not 4, so in particular, we can only have a1, a2 ∈ {1, 3, 5}. Of all remaining
possible signatures of the form given in (57), the only ones for which a generating
vector for A with n-gonal subgroup A5 cannot be created are (2 · 3, 2 · 3, 3) and
(2·3, 2·3, 2). Hence A = C2×A5 acts on an n-gonal surface S with n-gonal subgroup
A5 with all signatures of the form (2a1, 2a2, 2

(a), 3(b), 5(c)) for a1, a2 ∈ {1, 3, 5}
except (2 · 3, 2 · 3, 3) and (2 · 3, 2 · 3, 2).

Next suppose that A = S5. Then A contains elements of order 2, 3, 4, 5 and 6 but
not 10 so in particular, we can only have a1, a2 ∈ {1, 2, 3}. Of all remaining possible
signatures of the form given in (57), the only ones for which a generating vector
for A with n-gonal subgroup A5 cannot be created are (2, 2, 3, 3) and (2, 2, 2, 3).
Hence A = S5 acts on an n-gonal surface S with n-gonal subgroup A5 with all
signatures of the form (2a1, 2a2, 2

(a), 3(b), 5(c)) for a1, a2 ∈ {1, 2, 3} except (2, 2, 3, 3)
and (2, 2, 2, 3).

5.3. The non-normal case when G = A5. Now suppose that A 6= N . Based on
the computational evidence so far (see Example 3.5), there appear to be far more
non-normal cases than we saw in the cyclic p-gonal case and at least currently there
seems no obvious way to nicely categorize these non-normal extensions as we did
in the cyclic p-gonal case. Therefore, rather than providing complete results, which
currently seems computationally intractable, we shall provide some first steps to
the general problem, and then illustrate with a few specific examples.

General facts for the non-normal case
By the strong branching condition, we know if A 6= N , then the genus of S must

satisfy σ < (|A5|−1)2 = 3481. Application of the Hurwitz bound then implies that
the order of A and the index d of N in A satisfy

|A| ≤ 84(σ − 1) = 292, 320 and d ≤ 4872.

We know any signature for A5 is of the form (2(a), 3(b), 5(c)) for integers a, b and
c so we can use the strong branching cut-off and the Riemann-Hurwitz formula to
determine bounds on a, b and c. Specifically we have:

(60− 1)2 − 1 ≥ σ − 1 = −60 +
60

2

(
a

(
1− 1

2

)
+ b

(
1− 1

2

)
+ c

(
1− 1

2

))
which simplifies to

3540 ≥ 15a+ 20b+ 24c.

It follows that

a ≤ 230, b ≤ 172, c ≤ 147.

We note that not all choices of a, b and c are valid signatures and some may give
a genus beyond the strong branching cut-off.
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Next we observe by Proposition 5.7 that the number of periods of A satisfies

r ≤ 4

(
58

d
+ 1

)
.

In particular, as d increases, the number of possible periods for A decreases, and in
particular, when d > 232, then A has just three or four periods.

These conditions significantly reduce the number of possible non-normal exten-
sions and the possible signatures, so at this point, to proceed with determining
non-normal n-gonal extensions of A5, we would follow the steps outlined in Section
3.

Determining alternating extensions of A5

To illustrate our work, we consider n-gonal extensions of A5 to all the alternating
groups within the strong branching cut-off. Since |A| ≤ 292, 320, this gives A6, A7

and A8 as possibilities. Also, we know that A5 < A6 < A7 < A8 with each
containment being maximal, so the intermediate extensions are each primitive.

Consider first A6 actions. The signature of an A6 action will be of the form
(0; 2a1 , 3b1 , 4c1 , 5d1). As with A5, we can use the strong branching cut-off and
Riemann-Hurwitz formula to determine bounds on a1, b1, c1 and d1, see equation
(5.3). Specifically, we get:

3480 ≥ 360

(
−1 +

1

2

(
a1

2
+

2b1
3

+
3c1
4

+
4d1

5

))
which simplifies to

3840 ≥ 90a1 + 120b1 + 135c1 + 144d1.

There are 38 164 solutions to this inequality, but with A6 being relatively small
in order, for each of these signatures, we can construct all possible generating
vectors, and then apply Theorem 2.3 to each of the conjugacy classes of subgroups
isomorphic to A5 to check which ones are n-gonal. Using this process, we obtain 22
distinct solutions corresponding to actual signatures for n-gonal A6 actions with a
n-gonal A5 subgroup. This is given in Table 4.

Sig(A6) Sig(A5) σ Sig(A6) Sig(A5) σ

(2, 4, 5) (2(3), 5) 10 (2(5)) (2(10)) 91

(3(2), 4) (2, 3(3)) 16 (2, 3(3)) (2(2), 3(6)) 91

(2, 5(2)) (2(2), 5(2)) 19 (2, 3(2), 4) (2(3), 3(6)) 106

(3(2), 5) (3(3), 5) 25 (2, 3(2), 5) (2(2), 3(6), 5) 115

(3, 4, 5) (2, 3(3), 5) 40 (2(4), 3) (2(8), 3(3)) 121

(2(3), 4) (2(7)) 46 (3(3), 4) (2, 3(9)) 136

(3(2), 5) (3(3), 5(2)) 49 (3(3), 5) (3(9), 5) 145

(2(3), 5) (2(6), 5) 55 (2(3), 3(2)) (2(6), 3(6)) 151

(2(2), 3(2)) (2(4), 3(3)) 61 (2(2), 3(3)) (2(4), 3(9)) 181

(2(2), 3, 4) (2(5), 3(3)) 76 (2, 3(4)) (2(2), 3(12)) 211

(2(2), 3, 5) (2(4), 3(3), 5) 85 (3(5)) (3(15)) 241

Table 4. Signatures of n-gonal A6 actions on surfaces of genus σ
with corresponding signatures of n-gonal A5 subgroups.
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Remark 5.4. We note that in Table 4, we have only listed group signatures pairs
and have not specified the number of distinct actions. In many cases, there are mul-
tiple actions up to the different types of equivalency, such as topological equivalence
or simultaneous conjugation.

Next we consider n-gonal A7 actions. Similar computations yield just 1021
possible signatures for A7 that satisfy the strong branching cut-off. Once again,
for each of these signatures, we can construct all possible generating vectors, and
apply Theorem 2.3 to each of the conjugacy classes of subgroups isomorphic to A5

to check which ones are n-gonal, and in this case, we obtain no possible solutions.
In particular, there is no surface on which A7 acts as an n-gonal group on which
A5 also acts as an n-gonal group.

Finally, since there are no solutions for A7, and every subgroup of A8 isomorphic
to A5 is contained in an intermediate subgroup isomorphic to A7, there cannot be
any solutions for A8 either. Hence, the only alternating n-gonal extensions of an
n-gonal group A5 are given in Table 4.

Remark 5.5. One of the main results which allowed for complete results in de-
termining non-normal extensions of cyclic p-gonal surfaces was the fact that when
G is not the full automorphism group then G is not self-normalizing, see Corollary
3.3 of [22]. Since A5 is maximal and non-normal in A6, we see that this result does
not extend to other groups.
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