
ALBANIAN JOURNAL OF MATHEMATICS
Volume 12, Number 1, Pages 15–23
ISSN: 1930-1235; (2018)

ON MACBEATH’S FORMULA FOR HYPERBOLIC MANIFOLDS

GRZEGORZ GROMADZKI

Faculty of Mathematics, Physics and Informatics,
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Abstract. Around 1973, Macbeath provided a formula for the number of
fixed points of an element in a group G of conformal automorphisms of a closed

Riemann surface S of genus at least two. Such a formula was initially used to

obtain the character of the representation associated to the induced action of
G on the first homology group of S, and later turned out to be extremely useful

in many other contexts. By using a simple counting procedure, we provide a

similar formula for the number of connected components of an element in a
finite group of isometries of a hyperbolic manifold.
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1. Introduction

Let S be a closed Riemann surface of genus at least two and letG be a (necessarily
finite) group of conformal automorphisms of S. In 1973, Macbeath [14] found a
formula for the number of fixed points of each g ∈ G in terms of the topological
action of G (see Section 4). Later, in [5, 6, 7, 12], a generalization of this formula
to count the number of connected components of fixed points, has been found for
the cases of anti-conformal automorphisms of compact Riemann surfaces and also
for dianalytic automorphisms of bordered and unbordered compact Klein surfaces
(both in orientable and non-orientable cases). Let us note that if H is a finite group
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On Macbeath’s formula for hyperbolic manifolds 16

of orientation-preserving homeomorphisms of a closed orientable surface X, then
it is well known that on X there is the structure of a Riemann surface making H
to act as a group of conformal automorphisms; so actually Macbeath’s formulas
can be applied for arbitrary periodic self-homeomorphisms. Furthermore, due to
well known description of discrete cocompact groups of isometries of the hyperbolic
plane, the formulas in the 2-dimensional case have more explicit character.

Now, let us assume we are given a pair (M,G), where M is an (n+1)-dimensional
hyperbolic manifold, where n ≥ 1, and G is a finite group of its isometries. Then
there is a triple (F ,K, θ), where K is a group of isometries of the hyperbolic (n+1)-
dimensional spaceHn+1 and θ : K → G is a surjective homomorphism with a torsion
free kernel F , so that M = Hn+1/F and M/G = Hn+1/K. Under the assumption
that K is finitely generated and it has a finite number of conjugacy classes of finite
order elements (we say that it is of finite type), by using an elementary counting
method on G, we may obtain a formula, similar to Macbeath’s one, to count the
number of connected components of a non-trivial element g ∈ G (see Theorem
3.3). It seems that a similar formula is not provided in the literature. Examples
of Kleinian groups K of finite type are the geometrically finite ones [4, 13] and, for
n = 2, the locus of geometrically finite Kleinian groups is dense on the space of
finitely generated Kleinian groups [3,18,19]; two examples are provided in the last
section.

We should remark that, by suitable modification of the proof of Theorem 3.3, it
can be shown that the provided formula to count the number of connected com-
ponents of isometries still valid for G being a finite group of isometries of a Rie-

mannian manifold M for which its universal Riemannian cover space M̃ has the
property that its finite order isometries have non-empty and connected set of fixed

points. Examples of these are for M̃ being either (i) the Teichmüller space Tg of
genus g ≥ 1 Riemann surfaces or (ii) the Siegel space Hg parametrizing principally
polarized abelian varieties.

2. Preliminaries

In this section we recall some concepts and facts concerning isometries of hyper-
bolic spaces, (extended) Kleinian groups and its associated manifolds, which shall
be used in the rest of this paper. Good references on these are, for instance, the
classical books [16,17].

2.1. Hyperbolic space. For n ≥ 1, we shall use as a model of the (n + 1)-
dimensional hyperbolic space Hn+1 the (n+ 1)-dimensional upper-half space {x =
(x1, . . . , xn+1) ∈ Rn+1 : xn+1 > 0} equipped with the Riemannian metric ds =
‖dx‖/xn+1. Its conformal boundary is the n-dimensional sphere Sn = Rn ∪ {∞}.
Each (n − 1)-dimensional sphere Σ ⊂ Sn (for n = 1, Σ is understood as two dif-
ferent points) has associated a reflection σ = σΣ having Σ as its locus of fixed
points. By the Poincaré extension theorem, the reflection σ extends naturally to
an order two orientation reversing isometry of Hn+1; this being the reflection on
the half-n-dimensional sphere inside Hn+1 induced by Σ. A Möbius (respectively,
extended Möbius) transformation of Sn is the composition of an even (respectively
odd) number of reflections. By the classical complex analysis, for n = 2, and the

Liouville Theorem, for n ≥ 3, the group M̂n, composed by all Möbius and ex-
tended Möbius transformations, is the full group of conformal automorphisms of
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Sn. We shall denote denote by Mn its canonical subgroup of index two consisting
of all Möbius transformations. Again, by the Poincaré extension theorem, every
Möbius (respectively, extended Möbius) transformation extends to an orientation-
preserving (respectively, orientation-reversing) isometry of Hn+1 and all isometries

of Hn+1 are obtained in this way. This allows us to identify the group M̂n with
the group Isom(Hn+1) of all isometries of Hn+1 and Mn with the index two sub-

group Isom+(Hn+1) of all its orientation-preserving isometries. An element of M̂n,
viewed as an isometry of Hn+1, may or may not have fixed points in Hn+1 and
if the former is the case, then it is called elliptic if it preserves orientation and
pseudo-elliptic otherwise. The locus of fixed points, in the hyperbolic space, of an
elliptic or pseudo-elliptic transformation is known to be either a point or a totally
geodesic subspace of Hn+1.

2.2. Kleinian groups. A Kleinian group is a discrete subgroup of Mn and an

extended Kleinian group is a discrete subgroup of M̂n not contained inMn. Elliptic
or pseudo-elliptic transformations of a (extended) Kleinian group have necessarily

finite orders. Let us note, from the definition, that a subgroup K of M̂n is an
extended Kleinian group if and only if K+ = K ∩Mn is a Kleinian group.

Associated to an (extended) Kleinian group F <Mn is a (n + 1)-dimensional
(orientable if it is Kleinian) hyperbolic orbifold MF = Hn+1/F . If, moreover, F is
torsion free, then MF is a (n + 1)-dimensional hyperbolic manifold, which means
that it carries a natural complete Riemannian metric of constant negative curvature
inherited from the one of Hn+1.

Assuming F to be a torsion free Kleinian group, so MF is an orientable hy-
perbolic manifold, by a conformal automorphism (respectively, anti-conformal au-
tomorphism) of MF we means an orientation-preserving (respectively, orientation-
reversing) self-isometry. We denote by Aut(MF ) the group of all conformal/anti-
conformal automorphisms of MF .

A Kleinian group F is called geometrically finite if it has a finite-sided fundamen-
tal polyhedron in Hn+1, in particular, it is finitely generated and the hyperbolic
volume of Hullε(Λ(F))/F is finite, where Λ(F) ⊂ Sn stands for the limit set of F
and Hullε(Λ(F)) is the ε-neighborhood of the convex hull of Λ(F) in Hn+1. An ex-
tended Kleinian group is geometrically finite if its index two orientation-preserving
half Kleinian group is so. Finite index extensions of geometrically finite groups are
still geometrically finite. Another properties of geometrically finite groups can be
found, for instance, in [1, 16].

2.3. A finiteness property. Let us consider an (extended) Kleinian group K <
Mn. We will say that K is of finite type if it is finitely generated and it contains a
finite number of conjugacy classes of elements of finite order.

Remark 2.1. If n ∈ {1, 2} and K is finitely generated, then it is of finite type [4],
but for n ≥ 3, the finitely generated condition does not always ensure the finite
type property [13], but it holds true if K is known to be geometrically finite.

So, if K < Mn is of finite type, then we are able to find a collection of finite
order elements {κ1, . . . , κr} ⊂ K so that the following holds:

(ecs1) each κi generates a maximal cyclic subgroup of K;
(ecs2) the cyclic subgroups generated by κ1, . . . , κr are pairwise non-conjugate in

K;
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On Macbeath’s formula for hyperbolic manifolds 18

(ecs3) the collection is maximal with respect to the above two properties.

In the above, following the terminology used by Maclachlan in [15] for Fuchsian
groups, we will say that the collection {κ1, . . . , κr} is an elliptic complete system
(e.c.s. in short) and any of its elements is called a canonical generating symmetry
of K.

3. Quantitative aspects of the set of fixed points: Macbeath’s
formula

In this section, we let K be an (extended) Kleinian group of finite type, G a
finite group and θ : K → G a surjective homomorphism with a torsion free (finitely
generated) Kleinian group F . Let us denote by π : Hn+1 → MF a universal
covering with F as its group of deck transformations. The finite group G =θ K/F
is a subgroup of Aut(MF ). Next, we proceed to search for a Macbeath’s formula
that permits to count the number of connected components of fixed points of each
non-trivial element g ∈ G.

If κ ∈ K, g = θ(κ), h ∈ Hn+1 and x = π(h), then g(x) = π(κ(h)). We shall keep
all these notations throughout the rest of this paper

Each finite order element κ ∈ K defines an automorphism θ(κ) ∈ G acting with
fixed points (the set of fixed points of κ are sent by π to fixed points of θ(κ)). The
converse is clear as π is a local homeomorphism.

Lemma 3.1. The sets of fixed points of two distinct non-trivial elements of K of
finite orders inducing the same automorphisms of MF are disjoint.

Proof. Let κ, κ′ be elements of finite order of K and let θ(κ) = θ(κ′). Let us assume
they have non-disjoint connected components, say C and C ′, of their loci of fixed
points. If y ∈ C ∩C ′, then y is a fixed point of κ−1κ′ ∈ ker θ = F . As F is torsion
free and κ−1κ′ has a fixed point, we must have that κ−1κ′ = 1. �

Since K is of finite type, we may find an e.c.s. {κ1, . . . , κr} for K, which we
assume, from now on, to be fixed. Let us denote by mj the order of κj .

If g ∈ G is a non-trivial element, say of order m, with fixed points, then property
(ecs3) ensures that g = θ(κ) for some elliptic element κ of K which is conjugated
to a power of some canonical generating symmetry κj . Let J(g) be the set of

such j ∈ {1, . . . , r} for which g = θ(ωjκ
nj

j ω
−1
j ) for some ωj ∈ K and some nj ∈

{1, . . . ,mj −1}. As ker θ = F is torsion free, we may see in the above equality that
the order of g and that of κ

nj

j is the same, that is, m = mj/ gcd(mj , nj).

Remark 3.2. For n = 1, K is either a Fuchsian or an NEC group, so the set of
fixed points of an elliptic element κ ∈ K consist in a single point and, as the only
finite order orientation reversing isometries of the hyperbolic plane are reflections,
the locus of fixed points in this case is a geodesic line. In particular, different elliptic
elements of the same order have different sets of fixed points. Unfortunately, this
is no longer true for symmetries of higher dimensional spaces and this is a one of
the essential differences between Macbeath’s formula for Riemann surfaces and our
formula for hyperbolic manifolds of higher dimensions. For instance, Let n ≥ 4 and
take A,B ∈ On(R) generating a non-cyclic finite group U . Assume that none of
them has eigenvalue equal to 1 and so that they are non-conjugate in U (this can
be done for n ≥ 4). Let us consider the isometries of the hyperbolic (n+ 1)-space,
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in this example modeled by the unit ball in Rn+1, given by

TA =

[
A 0
0 1

]
, TB =

[
B 0
0 1

]
.

Then, K = 〈TA, TB〉 ∼= U is a finite extended Kleinian group, where TA and TB
both share the same geodesic set of fixed points, but they are non-conjugated in K.

As note in the above remark, although different canonical generating symmetries
give rise to different connected components of their sets of fixed points, it is no longer
true for their powers of the same order. In order to neutralize that deficiency while
we count the number of connected components of Fix(g), for g ∈ G−{I}, we must
define the following equivalence relation on J(g):

j1, j2 ∈ J(g) : j1 ∼ j2 ⇔ Fix(κ
nj1
j1

) ∩ Fix(κ
nj2
j2

) 6= ∅.
The above relation is equivalent for the sets of fixed points of elliptic elements

to be projected on the same subset of MF . Let I(g) be a set of representatives for
the quotient set J(g)/∼.

Finally, as the set C of fixed point of an isometry of finite order κ ∈ K is a totally
geodesic subspace of Hn+1, its image ` = π(C) is a connected component of the set
of fixed points of θ(κ); this being again a totally geodesic submanifold of MF . Let
G` be the subgroup of G leaving ` set-wise invariant (the elements of G` permutes
the points on ` and may or may not have fixed points on it).

We have now introduced all notations and facts needed to state and prove our
main result concerning the number of connected components of the locus of fixed
points of isometries in G.

Theorem 3.3 (Macbeath’s formula for hyperbolic manifolds). Let K be an (ex-
tended) Kleinian group of finite type, G a finite abstract group and θ : K → G a
surjective homomorphism whose kernel F is torsion free. Fix an elliptic complete
system κ1, . . . , κr for K and suppose that κi has order mi. Let g ∈ G be a non-
trivial element of order m with non-empty set of fixed points. Then the number of
connected components of the set of fixed points of g in the hyperbolic manifold MF
is

|NG〈g〉|
∑
i∈I(g)

1/ni,

where NG〈g〉 stands for the normalizer in G of the cyclic subgroup 〈g〉 and ni is

the order of the θ-image of the K-normalizer of 〈κmi/m
i 〉.

Proof. Let π be a universal covering Hn+1 → MF induced by F and let g ∈ G be
non-trivial of order m acting with fixed points on MF . For each j ∈ J(g) we also
set sj := mj/m = gcd(mj , nj). Let κ ∈ K so that θ(κ) = g. Then, for h ∈ Hn+1,
we have that x = π(h) is a fixed point of g if and only if π(h) = π(κ(h)) and so if
and only if γ(h) = κ(h) for some γ ∈ F . This means that γ−1κ ∈ K has a fixed
point and hence it is conjugate to a power of some element κi of e.c.s. and therefore
g = θ(ωκαsii ω−1) for some α coprime with m and ω ∈ K. Clearly neither i, nor α
and nor ω must be unique here. So given i ∈ J(g) consider

Ni(g) = {ω ∈ K : g = θ(ωκtii ω
−1) for some ti}.

If we let Ci to be the totally geodesic subspace of the set of fixed points of κtii
and if we denote by Ki its stabilizer in K, which is the normalizer of 〈κsii 〉, then
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x ∈ π(ω(Ci)). Conversely, given ω ∈ Ni(g), π(ω(Ci)) ⊆ Fix(g). It follows that

Fix(g) =
⋃

i∈I(g)

⋃
ω∈Ni(g)

π(ω(Ci)).

Let us fix ωi in Ni(g). Then for any orther ω ∈ Ni(g), ωKi = ωiKi and so
Ni(g) is the left coset ωiKi. Furthermore ω ∈ Ni(g), gives θ(ω−1

i ω) ∈ NG〈g〉 and so

ω−1
i ω ∈ θ−1(NG〈g〉) which in turn means thatNi(g) is also left coset ωi θ

−1(NG〈g〉).
Now, `i = π(ω(Ci)) is a one of the connected components of the set of fixed points
of g and notice that θ(ωKiω−1) = G`i . Given ν, ν′ ∈ θ−1(NG〈g〉), we have the
following chain of equivalences

π(ωiν(Ci)) ∩ π(ωiν
′(Ci)) 6= ∅ ⇔ π(ωiν(Ci)) = π(ωiν

′(Ci)) ⇔
γωiν(Ci)) = ωiν

′(Ci), for some γ ∈ F ⇔ γ′ν′−1ν(Ci) = Ci, for some γ′ ∈ F ⇔
θ(ν′−1ν) ∈ G`i ⇔ ν′−1ν ∈ θ−1(G`i) ⇔
θ(ν′−1)θ(ν) ∈ θ(ωKiω−1).

The first equivalence follows from Lemma 3.1, the third is a consequence of the
normality of F in K; the remainder are rather clear. Thus, each i ∈ I(g) produces

[θ−1(NG〈g〉) : θ−1(G`i)] =
|NG〈g〉|
|G`i |

=
|NG〈g〉|
ni

connected components of the locus of fixed points of g. Finally, in order to get
the desired formula, we need to prove that π(ωi(Ci)) ∩ π(ωj(Cj)) = ∅, if i, j ∈ I(g)
with i 6= j. In fact, otherwise (by Lemma 3.1) if they intersect, then necessarily
π(ωi(Ci)) = π(ωj(Cj)); so for arbitrary ci ∈ Ci we have γωi(ci) = ωj(cj) for some

cj ∈ Cj and some γ ∈ F . Therefore ω−1
j γωi(Ci) = Cj . In other words, there

is an element η ∈ K so that ηκtii η
−1 and κ

tj
j have the same set of fixed points,

contradicting the definition of the set I(g). �

It follows from the proof of the above Theorem the following upper bound.

Corollary 3.4. Let K,F , G, θ, π, κi and mi be as in Theorem 3.3. Then the number
of connected components of the set of fixed points of g ∈ G does not exceed

|NG〈g〉|
∑
j∈J(g)

1/mj .

Proof. Indeed |I(g)| ≤ |J(g)| and mi ≤ ni. �

4. Comments concerning dimension two

Due to a better understanding and description of discrete cocompact groups of
isometries of the hyperbolic plane H2, the formulas in Theorem 3.3 have a more
explicit character. In fact, as the locus Fix(κi) of any canonical elliptic generator
xi of a Fuchsian group, is a single point pi and G{pi} = 〈xi〉, Theorem 3.3 reduces
to Macbeath’s counting formula in [14].

Corollary 4.1 (Macbeath’s counting formula for Riemann surfaces [14]). Let K
be a finitely generated discrete group of orientation-preserving isometries of the
hyperbolic plane H2 and let x1, . . . , xr be the a set of canonical elliptic generators
of it of orders m1, . . . ,mr, respectively. Let G be a finite group and θ : K → G
be a surjective homomorphism, whose kernel F is torsion free. We may consider
the natural action of G =θ K/F , by orientation preserving automorphisms, of the
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Riemann surface S = H2/F . Then the number of fixed points of g ∈ G is given by
the formula

|NG(〈g〉)|
∑

1/mi,

where N stands for the normalizer and the sum is taken over those i for which g
is conjugate to a power of the image θ(xi). In particular the number of fixed points
of g is finite.

An anti-holomorphic automorphism of a compact Riemann surface of genus g,
with fixed points, must be an involution; its locus of fixed points consist of s ∈
{1, . . . , g + 1} disjoint sets, each of which is homeomorphic to a circle (ovals) by a
well known result due to Harnack. A canonical elliptic generator ci, of a NEC group,
inducing an anti-holomorphic automorphisms (with fixed points) is a reflection,
which is determined by its axis. In this way, we see that G` = θ(C(Λ, ci))) and
therefore Theorem 3.3 reduces to the main result from [6].

Corollary 4.2. Let K be an NEC-group, G be a finite group and let θ : K → G be a
surjective homomorphism whose kernel is a torsion free cocompact Fuchsian group
F . Let us consider the action of G, under θ, on the compact Riemann surface
S = H2/F as a group of conformal and anticonformal automorphisms. Then a
symmetry σ with fixed points is conjugate to θ(c) for some canonical reflection c of
K and it has ∑

[C(G, θ(ci)) : θ(C(K, ci)) ]

ovals, where C stands for thre centralizer, ci run over nonconjugate canonical re-
flections of K, whose images under θ belongs to the orbit of σ in G.

Remark 4.3. An algebraic structure of the centralizers of reflections in an NEC-
group was found by Singerman in [20]. There is a simple method, based on the
geometry of the hyperbolic plane, to find explicit formulas for them as described in
[8]. Similarly, effective formulas are also known for periodic self-homeomorphisms
of non-orientable or bordered compact surfaces [5, 7].

5. A couple of examples in hyperbolic 3-dimensional case

We shall give two examples of 3-dimensional hyperbolic manifolds, to see how
our formula works in practice.

Example 5.1 (Generalized Fermat 3-manifolds). Let m, k ≥ 3 be integers. A
generalized Fermat manifold of type (m, k) is a compact hyperbolic 3-manifold N
admitting a group H ∼= Zkm of isometries so that the hyperbolic orbifold M/G is
homeomorphic (as orbifolds) to the orbifold O whose underlying space is the unit
3-dimensional sphere S3 and the conical locus is given by k disjoint loops (each one
of index m) as shown in Figure 1 (for the case k = 10). In this case, the group H is
called a generalized Fermat group of type (m, k) and the pair (N,H) a generalized
Fermat pair of type (m, k). By Mostow’s rigidity theorem, up to isometry, there
is only one generalized Fermat pair of type (m, k). As the 3-orbifold O is closed,
Haken and homotopically atoroidal, it has a hyperbolic structure [2, 9], that is,
there is Kleinian group K for which O = H3/K (see Figure 2). We have that K is
generated by x1, . . . , xk subject to the relations:

xm1 = . . . = xmk = 1, xix
−1
i+1x

−1
i xi+1 = xi+1x

−1
i+2x

−1
i+1xi+2,
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where i are taken modulo k. The collection x1, . . . , xk is a elliptic complete system
of K and the derived subgroup K′ of K is torsion free [11]. So M = H3/K′ is a closed
hyperbolic 3-manifold with abelian group G = K/K′ ∼= Zkm of automorphisms. Let
us now consider the canonical projection θ : K → G and set ai = θ(xi). By
Theorem 3.3, the number of connected components of fixed points of each ai is
exactly mk−1. In fact, in this example we have that NG〈ai〉 = G, so |NG〈ai〉| = mk,
and NK〈xi〉 = 〈xi〉.

Figure 1. k = 10 Figure 2. O = H3/K

Example 5.2 (Extended Schottky groups). An extended Schottky group of rank g
is an extended Kleinian group whose canonical subgroup of orientation preserving
isometries is a Schottky group of rank g [10]. An example, of rank g = 5, is as
follows. Choose three pairwise disjoint circles on the complex plane, all of them
bounding a common 3-connected region. For each of these circles, we take either
a reflection or an imaginary reflection that permutes both discs bounded by such
a circle. Let us denote these transformations by κ1, κ2 and κ3, and let K be
the group generated by them. It happens that K is an extended Kleinian group
isomorphic to the free product of three copies of Z2, NK〈κi〉 = 〈κi〉 and {κ1, κ2, κ3}
is a elliptic complete system of it. If we consider the surjective homomorphism
θ : K → G = Z3

2 = 〈a1, a2, a3〉, defined by θ(κi) = ai, for i = 1, 2, 3, then its kernel

F = ker θ = 〈〈(κ2κ1)2, (κ2κ3)2, (κ1κ3)2〉〉,
were the last stands for the normal closure, is a Schottky group of rank 5. So
M = H3/F is homeomorphic to the interior of a handlebody of genus 5 admitting
three symmetries a1, a2 and a3, each one of order two. Since G is abelian, we have
that |NG〈ai〉| = 8 and |θ(NK〈κi〉| = |〈ai〉| = 2. It follows from the counting formula
of Theorem 3.3 that each ai has exactly 4 connected components of its set of fixed
points; all of them being either isolated points or discs.
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Albanian J. Math. 12 (2018), no. 2, 15-23.

http://albanian-j-math.com/magaard.html


Gromadzki, Hidalgo 23

[3] J. F. Brock and K. W. Bromberg. On the density of geometrically finite Kleinian groups.
Acta Math. 192 (2004), 33–93.

[4] M. Feighn and G. Mess. Conjugacy classes of finite subgroups in Kleinian groups. Amer. J.
of Math. 113 (1991), 179–188.

[5] J.M. Gamboa, G. Gromadzki. On the set of fixed points of automorphisms of bordered Klein

surfaces. Revista Mathematica Iberoamericana 28 No. 1 (2012), 113–126.
[6] G. Gromadzki. On a Harnack-Natanzon theorem for the family of real forms of Riemann

surfaces. Journal Pure Appl. Algebra 121 (1997) 253–269.

[7] G. Gromadzki. On fixed points of automorphisms of non-orientable unbordered Klein surfaces.
Publ. Mat. 53 No. 1 (2009) 73–82.

[8] G. Gromadzki. Symmetries of Riemann surfaces from a combinatorial point of view. London

Mathematical Society Lecture Note Series, Cambridge University Press 287 (2001), 91–112.
[9] H. Helling, A. C. Kim, J. L. Mennicke. Some honey-combs in hyperbolic 3-space. Comm.

Algebra 23 No. 14 (1995), 5169–5206.

[10] R. A. Hidalgo and B. Maskit. On Klein-Schottky groups. Pacific J. of Math. (2) 220 (2005),
313–328.

[11] R. A. Hidalgo and A. Mednykh. Geometric orbifolds with torsion free derived subgroup.
Siberian Mathematical Journal 51 No. 1 (2010) 38–47.

[12] M. Izquierdo, D. Singerman. On the fixed-point set of automorphisms of non-orientable sur-

faces without boundary. Geom. Topol. Monogr. 1 (1998) 295–301.
[13] M. Kapovich and L. Potyagailo. On absence of Ahlfors’ and Sullivan’s finiteness theorems for

Kleinian groups in higher dimensions. Siberian Math. Journ. 32 (1991), 227–237.

[14] A.M. Macbeath. Action of automorphisms of a compact Riemann surface on the first homol-
ogy group. Bull. London Math. Soc. 5 (1973) 103–108.

[15] C. Maclachlan. Maximal normal Fuchsian groups. Illinois J. Math. 15 (1971) 104–113.

[16] B. Maskit. Kleinian Groups, GMW, Springer–Verlag, 1987.
[17] K. Matsuzaki, M. Taniguchi. Hyperbolic Manifolds and Kleinina Groups. Oxford Mathemati-

cal Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press,

New York, 1998.
[18] H. Namazi and J. Souto. Non-realizability, ending laminations and the

density conjecture. https://web.archive.org/web/20090715232851/http://www-
personal.umich.edu/ jsouto/papers.html

[19] K. Ohshika. Realising end invariants by limits of minimally parabolic, geometrically finite

groups. Geometry and Topology 15 (2) (2011), 827–890.
[20] D Singerman. On the structure of non-euclidean crystallographic groups. Proc.Camb.Phil.Soc.

76 (1974), 233–240.

albanian-j-math.com/archives/2018-03.pdf

http://albanian-j-math.com/archives/2018-03.pdf

	1. Introduction
	2. Preliminaries
	2.1. Hyperbolic space
	2.2. Kleinian groups
	2.3. A finiteness property

	3. Quantitative aspects of the set of fixed points: Macbeath's formula
	4. Comments concerning dimension two
	5. A couple of examples in hyperbolic 3-dimensional case
	References

