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Abstract. The aim of this paper is to extend the Morse theory of (ΛM,E)

with low differentiability and degenerate critical points, where ΛM is the space

of H1-closed curves on an n-dimensional compact manifold M endowed with
a Finsler metric F : TM → R and E : ΛM → R is the associated energy

integral, or simply the energy.

1. Introduction

In the Morse theory with low differentiability and degenerate critical points, on
Hilbert manifolds, the closed geodesics problem for Finsler metric can be developed
as in the Riemannian case; see [1], [7]. In this theory a closed geodesic is a dis-
tinguished closed curve in the Hilbert manifold of H1– closed curves and being a
critical point of the functional integral energy of Finler metric F . The other aspect
is to consider a closed geodesic (or more exactly the tangent vector field along a
closed geodesic) as a periodic orbit in the geodesic flow on the cotangent bundle
T ∗M of a Finsler manifold (M , F ). In this case the geodesic flow is a special
case of a Hamiltonian flow (see, [8], [23], [24]). One of the differences between the
Morse theory for the Finsler and Riemannian cases is that the Finsler energy is
not C2. In fact it is twice differentiable at the critical points, and with strongly
differentiable derivative on these points, but not, in general, outside the regular
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closed curves (see, Theorem 8.1 of this paper). This is a peculiarity of the Finsler
metrics since the energy E is C2 if only if F is the norm of a Riemannian metric.
Therefore, in order to have a Morse theory for the Finsler case we need a Morse
lemma for functions with conditions of low differentiability that, although stronger
than those in [10], are verified by the Finsler energy. This Morse lemma was done in
the papers (see [1], [7]) for the case of isolated critical points of functions with low
differentiability and in a very general context that beyond allowing the adaptation
of Gromoll–Meyer arguments to our case, has probable utility in the treatment of
more general variational problems. A very interesting and important question is to
extend the Gromoll–Meyer theorem for Finsler metrics. In fact this is the case, and
the first demonstration is due to Matthias; see [13]. The Matthias demonstration
used an approach of finite dimension of the Morse theory for closed geodesics of the
manifold of the H1− closed curves, theory inspired by the treatment of Milnor (see
[17]) of the problem of geodesics connecting two points. This type of argument,
elegant and extremely efficient in the cases above, uses in an essential way the ge-
ometry of the metric and does not seem to be appropriate to the study of other
more general 1-dimensional variational problems.

The purpose of this paper is to extend some results of the theory of critical points
that allow to use of the original arguments of Gromoll–Meyer to prove the existence
of infinitely many closed geodesics (non trivial and geometrically distinct) on a
compact simply connected differentiable Finsler manifold whose cohomology ring is
not generated by only one element (i.e., the cohomology ring is not isomorphic to
the one of a compact symmetric space of rank one: a sphere or a complex projective
space, quaternionic or of Cayley), provided that the sequence of the rational Betti
numbers of the space ΛM of parametrized H1−closed curves is unbounded. The
Morse lemma that we proved in the papers [1] and [7] for degenerate critical points
with low differentiability, is for a C1− function defined on an open neighborhood of
0 in a Hilbert space H, where 0 is the only critical point of f , f twice differentiable
at 0 with derivative f ′ strongly differentiable at the origin. This result generalizes
the Morse lemma for a nondegenerate critical point of C2 function that is due to
Cambini (see [2]) and also the Morse lemma for degenerate case for a C2 function
that was extended by Mawhin and Willem; see [15], [16].

We extend to compact connected critical submanifold of a Hilbert manifold the
notion of critical point and we compute the critical groups at an isolated critical
submanifold of the Finsler energy E. In the paper [9], F. Mercuri describes the
Liusternik–Schnirelman theory for the energy E of a Finsler metric F on a smooth
manifold M , and the following properties are proved:

a. The energy E is C1 and the differential is locally Lipschitzian.
b. If M is compact, E satisfy the condition (C) of Palais–Smale.

The our main purpose in this paper is to prove the following:

(1) Under the hypothesis of Proposition 3.2 (A Morse lemma for degenerate

critical points with low differentiability), we prove that the function f̂ asso-
ciated to the degenerate part of the function f , is of class C1, with derivative

(f̂)′ strongly differentiable at y = 0 with (f̂)′′(0) = 0, and also we compute
the local critical groups.

(2) The derivative of the Finsler energy E : ΛM → R is strongly differentiable
on the regular curves and particularly on the closed geodesics, and therefore
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E satisfies the hypothesis of the our Morse lemma for isolated critical points,
possibly degenerate (Proposition 3.2, page 7).

(3) To generalize the Gromoll–Meyer theorem for Riemannian manifolds to
Finsler manifolds.

A more direct approach using the Morse theory on Hilbert manifold now is
possible since the energy functional E in Finsler case satisfies the hypothesis of
our Morse lemma for degenerate critical point with low differentiability. Moreover,
the index formula for Finsler manifolds works the same in the Riemannian case.
The index form of the energy functional E in the Finsler case can be found already
explicitly in standard text books and papers; see [7], [12], [25]. This index theory for
closed geodesics on Finsler manifolds with our previous results permit the conclusion
of the existence of infinitely many closed geodesics on a compact Finsler manifold,
whose cohomology is not isomorphic to that of a compact symmetric space of rank
one.

2. Preliminaries

Let M a Hilbert manifold and f ∈ C2−(M,R), i. e. f is C1-function with
differential df locally Lipschitzian. We assume that the manifold M is regular, i. e.
every neighborhood of a point contains a closed neighborhood. Let u be an isolated
critical point of f . The critical groups (over a field F ) are defined by

Cn(f, u) = Hn({f ≤ c} ∩ U , {f ≤ c} ∩ U − {u}), n = 0, 1, 2, . . . ,

where c = f(u),
{f ≤ c} = {v ∈M : f(v) ≤ c},

U is a closed neighborhood of u, and Hn(A , B) is the n-th singular homology
group of the pair (A , B) over a field F . By excision, the critical groups are inde-
pendent of U . We recall that f satisfies the condition (C) of Palais–Smale over a
closed subset S of M if, for any sequence zn on S such that f(zn) is bounded and
|f ′(zn)| tends to zero, then (zn) has a convergent subsequence and any limit point
is a critical point of f . It is easy to see that a C1 function f , twice differentiable
at critical points that we suppose isolated, and admitting a nondegenerate critical
point, always satisfies the condition (C) in a closed neighborhood of that point. A
piecewise C1 path from u1 to u2 is a piecewice C1 mapping

σ : [a , b]→M

that σ(a) = u1 and σ(b) = u2. We define the length of σ by

L(σ) =

∫ b

a

|σ,(t)| dt,

and the geodesic distance d on M by the

d(u1, u2) = inf{L(σ); σ : [a, b]→M, σ(a) = u1, σ(b) = u2, σ a piecewise C1}.
A subset of M is complete if it is complete for geodesic distance. The gradient of
f is the vector field Of defined on M by

df(u)v = 〈Of(u) , v〉 ∀v ∈ TuM.

Proposition 2.1. Let f ∈ C2−(M,R) and σ(t) = σ(t, u), α(u) ≤ t ≤ β(u), the
unique maximal solution of the equation σ̇(t) = −∇f(σ(t)), σ(0) = u. Then the
following conditions are true:
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(1) Either f(σ(t)) = f(u) or f ◦ σ is non-increasing for all t ≥ 0. Moreover,
for 0 ≤ s ≤ t < β(u), we have

d(σ(t), σ(s)) ≤ L(σ) ≤ (t− s)1/2(f(σ(s))− f(σ(t)))1/2.

(2) If β(u) is finite and the set {σ(t) : 0 ≤ t < β(u)} is contained in a complete
subset of M , then f(σ(t))→ −∞ when t→ β(u).

(3) If the set {σ(t) : 0 ≤ t < β(u)} is contained in a complete subset of M
with f(σ(t)) > a, then β(u) = +∞.

3. Strongly Differentiable Functions

Recall that a function between two Banach spaces, f : E → F , is said to be
strongly differentiable at a when there is a linear map T : E → F , such that for
x, y ∈ E:

f(x)− f(y) = T (x− y) +R(x, y),

where lim
x, y→a

R(x,y)
‖x−y‖ = 0.

Taking y = a, we see that a strongly differentiable function f at a is differen-
tiable at a, with T = f ′(a). Another way to be equivalent to define a strongly
differentiable function is as follows.

The function f : E → F , is said to be strongly differentiable at a, if f is differ-

entiable at a and lim
x, y→a

r(x)−r(y)
‖x−y‖ = 0, where r(y) is the remainder of the Taylor’s

formula for f around a.
In other words, f is strongly differentiable at a, if and only if, it is differentiable

at a and, given ε > 0, there is a neighborhood V of a where r(x) is ε−Lipschitzian,
and therefore f satisfies the condition of Lipschitz, with constant ‖f ′(a)‖+ ε.

It is clear also that if f is differentiable in a neighborhood of a and its differential
f ′ is continuous at a, then f is strongly differentiable at a. Moreover, if f is
continuous in a neighborhood of a and strongly differentiable at a, with invertible
differential, then f is invertible around a. The proof is the same as the classical
inverse function theorem; see [6, chapter 5].

Let f : U ⊂ H → R be a C1 function defined on a open set of a Hilbert space
H and 0 ∈ U . Suppose that f is twice differentiable at 0, having 0 as critical point.
Let N be the kernel of the symmetric operator A : H → H given by

〈Av, u〉 =
1

2
d 2f(0)(v, u).

If the image Im(A) is closed, since A is symmetric, N⊥ = Im(A) and H is de-
composable inH = N⊥ ⊕ N . Thus we can look at z ∈ H as x + y ∈ N⊥ ⊕ N .
Also the corresponding version of the implicit function theorem gives the following
proposition.

Proposition 3.1. Using the conditions and notation above, let 0 be a critical point
of f and suppose that f ′ is strongly differentiable at the origin. Then there is a
continuous function

g : U ⊂ N → N⊥

on an open set U containing 0 such that fx(g(y), y) ≡ 0 and g(0) = 0, where fx
denote the partial derivative with respect to x. Moreover, g is strongly differentiable
at the origin and dg(0) = 0.
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In the paper [1] we proved a degenerate-critical point version of the Morse lemma
as in [4] with conditions of low differentiability that, although stronger than those
in [9], are verified by the Finsler energy E : ΛM → R. These results are contained
as part of the author PhD disertation; see [7].

Proposition 3.2 (A Morse Lemma for degenerate critical points with low differen-
tiability). If f ′ is strongly differentiable at the origin, then there is a neighborhood
V of 0 in H and a homeomorphism ψ : V → ψ(V ) ⊂ H, ψ(0) = 0 such that

f(ψ(x, y)) =
1

2
〈Ax, x〉 + f(g(y), y),

where g is a function g : V
⋂
N → N⊥ strongly differentiable at 0 ∈ N with

g(0) = 0, and dg(0) = 0, the function ψ is differentiable at 0, with ψ(0) = 0 and
dψ(0) = I; see [7] and [1].

The next proposition that we will prove is very important for the computation
of the local critical groups at a isolated critical point, that is reduced to a finite
dimension problem.

Proposition 3.3. Let f : U ⊂ H → R be a C1 function defined on a open set and
let 0 ∈ U be only critical point of f . Suppose that f is twice differentiable at 0 and
that f ′ is strongly differentiable at the origin. Let

z = x+ y ∈ H = N⊥ ⊕N

and fx, fy be the partial derivatives with respect to x and y, and

g : Br(0) ⊂ N → N⊥

be a unique continuous map defined on an open ball Br(0) = {y ∈ N : |y| < r},
such that

fx(g(y), y) ≡ 0,

g is strongly differentiable at the origin with g(0) = 0, dg(0) = 0 and g is Lips-
chitzian on Br(0). Then, the following hold

(1) The function f̂ : Br(0) ⊂ N → R, f̂(y) = f(g(y), y) is of class C1 with

(f̂)′(y) = fy(g(y), y) where 0 ∈ Br(0) is only critical point of f̂ and (f̂)′ is
Lipschitzian on Br(0).

(2) If f satisfies the condition (C) of Palais–Smale, then f̂ also satisfies this
condition.

(3) The function f̂ : Br(0) ⊂ N → R, f̂(y) = f(g(y), y) is twice differen-

tiable at the origin with (f̂)′′(0) = 0, and the derivative (f̂)′ is strongly
differentiable at y = 0.

Proof. We can choose the open set U ⊂ H a convex open set

U = Bδ(0)⊕Br(0),

with g Lipschitzian on Br(0), fx and fy Lipschitzian on Bδ(0) ⊕ Br(0). Let M1 >
0, M2 > 0, M3 > 0 be the constants of Lipschitz for g : Br(0) → Bδ(0), fx :
Bδ(0)⊕Br(0)→ R and fy : Bδ(0)⊕Br(0)→ R, respectively.

Furthermore, let y0, y0 +h ∈ Br(0) with h sufficiently small and fx(g(y0, y0)) =

fx(g(y0 + h), y0 + h) ≡ 0 and r(h) = f̂(y0 + h) − f̂(y0) − fy(g(y0), y0)h be the
remainder of Taylor’s formula. Then, we have
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|r(h)| = |f(g(y0 + h), y0 + h)− f(g(y0, y0))− fy(g(y0), y0)h|
≤ |f(g(y0 + h), y0 + h)− f(g(y0), y0 + h)|

+|f(g(y0), y0 + h)− f(g(y0, y0)− fy(g(y0), y0)h|
≤ |g(y0 + h)− g(y0)| sup

0≤t≤1
|fx(g(y0) + t(g(y0 + h)− g(y0)), y0 + h|

+|h| sup
0≤t≤1

|fy(g(y0), y0 + th)− fy(g(y0), y0)|

≤ M1|h| sup
0≤t≤1

|fx(g(y0) + t(g(y0 + h)− g(y0)), y0 + h)− fx(g(y0), y0)|

+|h| sup
0≤t≤1

|fy(g(y0), y0 + th)− fy(g(y0), y0)|

≤ M1M2|h| sup
0≤t≤1

|(t(g(y0 + h)− g(y0)), h)|+M3|h| sup
0≤t≤1

|(0, th)|

≤ M1M2|h|(|g(y0 + h)− g(y0)|+ |h|) +M3|h|2

= (M1M2(M1 + 1) +M3)|h|2 .

Thus, lim
h→0

|r(h)|
|h|

= 0 and therefore f̂ is differentiable. If y0 ∈ Br(0) is a critical

point of f̂ , then
fx(g(y0), y0) = 0, fy(g(y0), y0) = 0

and being (x, y) = (0, 0) only critical point of f on

U = Bδ(0)⊕Br(0),

then y0 = 0.

The proof that (f̂)′ is Lipschitzian on Br(0), and of items 2., 3. , will be omitted
since it is completely elementary. This completes the proof.

�

4. Computation of the local critical groups

Under the hypotheses of the Morse Lemma, Proposition 3.2, if 0 is the only
critical point of f and f(0) = c. Let V be a closed neighborhood of 0 in H, and a
homeomorphism ψ : V → ψ(V ) ⊂ H, ψ(0) = 0, dψ(0) = I, such that

(f ◦ ψ)(x, y) =
1

2
〈Ax, x〉+ f̂(y), with g : V ∩N → N⊥ and f̂(y) = f(g(y), y),

where dg(0) = 0, g(0) = 0. Let C ⊂ V be a closed neighborhood of 0 with

f(0) = f̂(0) = c. Then the critical groups (over a field F ) of V and C satisfy

Cn(f, 0) = Hn({f ≤ c} ∩ ψ(C) , {f ≤ c} ∩ ψ(C)− {0})
≈ Hn({f ◦ ψ ≤ c} ∩ C , {f ◦ ψ ≤ c} ∩ C − {0}) = Cn(f ◦ ψ , 0)

The Proposition 3.3, allow us to prove the Shifting Theorem, that is due to
Gromoll–Meyer [4]; see also K. C. Chang [18] and [19]. The proof that we give here
is inspired by treatment of Mawhin–Willem [15, pg. 190].

Now we consider the following conditions:
(i) Let M a Hilbert manifold and f ∈ C2−(M,R) such the critical points are

isolated;
(ii) X ⊂M is positively invariant for the flow of gradient field ∇f (i.e. σ(t, u) ∈

X for all u ∈ X and 0 ≤ t < β(u));
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(iii) a < b are real numbers such that f−1([a, b]) ∩X is complete;
(iv) the condition (C) of Palais-Smale over f−1([a, b]) ∩X is satisfied.

Proposition 4.1 (Deformation Lemma). Under the above conditions, if f−1(a, b)∩
X is free of critical points. Then {f ≤ a} ∩ X is a strong deformation retract of
{f ≤ b} ∩X −Kb, where Kb = {u ∈ X : f(u) = b, f ′(u) = 0}; see [15, pg. 181].

We shall use the following result of Relative Homology:

Lemma 4.1. Let A be a subset of Rp containing 0 and let Bk be the k−ball. Then,
for k ≥ 1, Hn(A×Bk, (A×Bk)− {0}) ≈ Hn−k(A,A− {0}).
In particular, if A = {0}, we obtain

Hn(Bk, Bk − {0}) ≈ Hn({0} ×Bk, ({0} ×Bk)− {0})
≈ Hn−k({0}, φ) = δn−k, 0F = δn, kF.

Now we prove that the critical groups at a critical point depend on the Morse
index and the degenerate part.

Proposition 4.2 (Shifting Theorem). Let f : U ⊂ H → R be a C1 function
defined on a open set and let 0 ∈ U be only critical point of f , f(0) = c. Suppose
that f is twice differentiable at 0 and that A = f ′′(0) is a Fredholm operator,
with Morse index k finite, so that f ′ is strongly differentiable at the origin. Then

Cn(f, 0) = Cn−k(f̂ , 0), n = 0, 1, 2, · · · .

Proof. By Proposition 3.2, we consider the function

(f ◦ ψ)(x, y) =
1

2
〈Ax, x〉+ f̂(y) with f(0) = f̂(0) = c.

By Proposition 3.3, 0 ∈ N = Ker(A) is the only critical point of the function

f̂ : W ⊂ N → R, f̂(y) = f(g(y), y), W open set of N , f̂ is of class C1 with (f̂)′

Lipschitzian on W . Since dimN is finite, f̂ satisfy the Palais–Smalle condition over
any closed ball. Let Br(0) ⊂W be a closed ball.

Now we consider the flow defined by the Cauchy problem

σ̇(t, y) = −∇f̂(σ(t, y)), σ(0, y) = y, y ∈W.

Let ε > 0 be sufficiently small and V = B r
2
(0) ∩ {f̂ ≤ c + ε} ⊂ W , such that,

if y ∈ V, σ(t, y) stays in Br(0) for 0 ≤ t < β(y) or σ(t, y) stays in Br(0) until

f̂(σ(t, y)) ≤ c− ε and, therefore the trajectory σ(t, y) must cross the level f̂(y) ≡ c
at an unique point. Let X = Y be the closure in W of the set Y = {σ(t, y) : y ∈
V , 0 ≤ t < β(y)}. Then, X satisfy the following properties:

(i) X is a neighborhood of 0, closed in W , and X is positively invariant for

the flow σ defined by σ̇(t, y) = −∇f̂(σ(t, y)) , σ(t, y) = y.

(ii) 0 ∈ f̂−1([c − ε, c + ε]) ∩X is the only critical point of f̂ and belonging to

the interior of f̂−1([c− ε, c+ ε]) ∩X.

(iii) f̂−1([c − ε, c + ε]) ∩ X is complete, because Br(0) is closed in W , the set

f̂−1([c − ε, c + ε]) ∩ X is contained in Br(0) and closed in Br(0) which

is complete. The condition (C) of Palais–Smalle is satisfied over f̂−1([c −
ε, c+ ε]) ∩X, because f̂ satisfy the condition (C) over Br(0).
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Now, we define Xc = {f̂ ≤ c} ∩ X and Xc+ε = {f̂ ≤ c + ε} ∩ X. We observe

that f̂ is decreasing during the corresponding deformation σ, obtained of field

−∇f̂ : σ̇(t, y) = −∇f̂(t, y), σ(0, y) = y.

The set f̂−1((c, c+ε])∩X = Xc+ε−Xc is free of critical points and union of two
disjoint subsets S1 and S2 such that, for each y ∈ S1, there is a unique t(y) such that

f̂(σ(t(y), y)) = c and, for each y ∈ S2, f̂(σ(t, y))→ 0 and , σ(t, y)→ 0, as t→∞.

We observe that ψ(t, y) = f̂(σ(t, y)) satisfies

∂ψ

∂t
(t(y), y)) = −|∇f̂(σ(t(y), y))|2 6= 0

and t(y) is continuous by the Implicit Function Theorem. Proposition 4.1 implies
Xc is a strong deformation retract of Xc+ε.

Let H = H−⊕H+⊕N be the orthogonal decomposition into subspaces spanned
by the eigenvectors of Fredholm operator A = f ′′(0) having eigenvalue negative,
positive and zero, respectively. A is negative definite on H−, positive definite on
H+, and N = KerA. Let v = x+y = x−+x+ +y the corresponding decomposition
of any v ∈ H. Define the deformation η of C = H− ⊕H+ ⊕Xc+ε by

η : [0, 1]×H− ×H+ ×Xε → H− ×H+ ×Xc+ε

η(t, x−, x+, y) = x− + (1− t)x+ + ϕ(t, v).

Thus, H− × Xc (resp. (H− × Xc) − {0}) is a strong deformation retract of
H− ×Xc+ε (resp. (H− ×Xc+ε)− {0}) and we obtain:

Cn(f, 0) = Cn(f ◦ ψ, 0) = Hn({f ◦ ψ ≤ c} ∩ C, {f ◦ ψ ≤ c} ∩ C − {0})
≈ Hn(H− ×Xc, (H− ×Xc)− {0}).

If k = dimH− ≥ 0, by Lemma 4.1, page 9, we obtain:

Cn(f, 0) ≈ Hn(Xc × Rk, (Xc × Rk)− {0})
≈ Hn(Xc ×Bk, (Xc ×Bk)− {0})
= Hn−k({f̂ ≤ c} ∩X, {f̂ ≤ c} ∩X − {0})
= Cn−k(f̂ , 0).

This completes the proof.
�

5. Information about dimension of critical groups

It is a known fact in Morse theory: for a function f defined on open set U of
a p–dimensional Euclidean space, f ∈ C2(U,R), where v is the only critical point,
the function f , can be approximated with respect to the C2 topology by a function
f̃ ∈ C2(U,R), with critical points in finite number and non degenerate, and that
dim Cn(f, v) is finite for every n and equal to zero for n > p. This fact is proved in
the Lemma 8.6 and Theorem 8.5 of book [15] of J. Mawhin and M. Willem where
the C2 case is treated.

Now we consider a function f : U → R, with low differentiability, defined on
open set U of a p–dimensional Euclidean space, f ∈ C1(U,R), where v is the only
critical point of f , possible degenerate, and f with second derivative at v, and f ′

strongly differentiable at v. Under these conditions we can affirm that dim Cn(f, v)
is finite for every n and is zero for n > p.
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The answer is still true and less assumptions are needed for the function f : If
f is a function defined in an open set U of a Euclidean space of dimension p, f
is continuously differentiable on U and v is an isolated critical point of f , then
dim Cn(f, v) is finite for every n and is zero for n > p.

This last result is contained in Theorem 3.2 of the paper [3] of C. Li, S. Li, and
J. Liu, or in Theorem 1.1 of paper [22] of S. Cingolani and M. Degiovanni, or in
Theorem 1.1 of paper [20] of M. Degiovanni (in finite dimension, all assumptions
are trivially satisfied). This last result gives also the required information for n >
p. Since one can consider Alexander-Spanier cohomology, critical groups can be
obtained as a limit from open subsets of the Euclidean space of dimension p, hence
must vanish for n > p.

By Shifting theorem the computation of the critical groups is reduced to a prob-
lem in finite dimension, and as consequence we have the following result: Under
the assumptions of Proposition 3.2, if 0 is an isolated critical of f and A = f ′′(0) is
a Fredholm operator with finite Morse index k and nullity ν, then the following is
true: dim Cn(f, 0) is finite for every n and equal to zero for n 6∈ {k, k+1, · · · , k+ν}.

6. Critical submanifolds of a Hilbert manifold

Let M be a Hilbert manifold. We recall that a connected submanifold K is
critical for a function f ∈ C1(M,R) if df(x) = 0, ∀x ∈ K. The tangent space to M
at x ∈ K admits the orthogonal decomposition

TxM = TxK ⊕H1(x); H1(x) = T⊥x K.

We will suppose f twice differentiable along K and for x ∈ K, A(x) = 1
2d

2f(x). If
K is critical, TxK ⊂ KerA(x) and since A(x) is symmetric, A(H1(x)) ⊂ H1(x).

Definition 6.1. We will say that K is non-degenerate critical submanifold if
A(x)|H1(x) is an isomorphism for all x ∈ K.

By the preceding definition, if K is non-degenerate then TxK = KerA(x); see
[21]. Now, we will suppose that f ∈ C1(M,R), twice differentiable along a com-
pact, connected critical submanifold K that can be degenerate, and A(x) depends
continuously on x ∈ k.

Definition 6.2. Under the above hypotheses, if U is a sufficiently small closed
neighborhood of K, f ≡ 0 in K, the critical groups of K are defined by

Cn(f,K) = Hn({f ≤ 0} ∩ U, {f ≤ 0} ∩ U −K), n = 0, 1, 2, ...

where F is a field of coefficients.(By excision, the critical groups are independent
of U.)

7. The manifold of closed curves

The material covered in this item can be encountered in [23]. We denote by
M an n−dimensional compact manifold endowed with a Riemannian metric 〈 , 〉.
Let ∇ be the covariant derivative on TM , derived from the Levi-Cività connec-
tion. Let S be the parametrized circle [0, 1]/Z. We will denote by ΛM and
sometimes even simply Λ the set H1(S,M). Here a map c : S → M is called
H1, if it is absolutely continuous, and the derivative ċ(t) (which is defined al-
most everywhere) is square integrable with respect to the Riemannian metric on
M : ‖ċ(t)‖ ∈ L2(S), i.e.,

∫
S
〈ċ(t), ċ(t)〉c(t)dt < ∞. We observe that ΛM has a
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smooth Riemannian manifold structure (modeled on a Hilbert space), which is as-
sociated in a natural way to the Riemannian metric on M . Let c ∈ C∞(S,M) and
consider the pull-back diagram:

c∗TM
c∗π−−−−→ TM

π∗c

y yπ
S −−−−→

c
M

The Riemannian metric and connection on M can be pulled back to a Riemann-
ian metric and a connection on π∗c . We denote them by 〈 , 〉c and ∇c, respectively.
Let

∑
(π∗c ) be the set of all sections of π∗c and

H0(c∗TM) = L2(c∗TM) = {X ∈
∑

(π∗c ) : ‖X(t)‖c ∈ L2(S)}

H1(c∗TM) = {X ∈ C0(π∗c ) : ∇cX exists a.e. and ∇cX ∈ H0(c∗TM)}.

Naturally, Ck(c∗TM) will have the usual meaning for k = 0, 1, . . . ,∞. Then,
Hi(c∗TM), i = 0, 1, are Hilbert spaces (modulo the relation of being equal a. e.)
with respect to the scalar products

〈X ,Y 〉0 =

∫
S

〈X(t) , Y (t)〉c dt , 〈X ,Y 〉1 = 〈X ,Y 〉0 + 〈∇cX ,∇cY 〉0 ,

and we denote by ‖ · ‖i the relative norms. We also consider

C0(T ∗M) = the set of continuous sections

and endow this vector space with the norm ‖X‖∞ = sup
0≤t≤1

‖X(t)‖.

Proposition 7.1. The inclusions

H1(c∗TM) ↪→ C0(c∗TM) ↪→ H0(c∗TM)

are continuous, the first one being compact. More precisely,

‖ · ‖0 ≤ ‖ · ‖∞ ≤
√

2‖ · ‖1.

For i = 0, 1, define Hi(ΛM∗TM) =
⋃
c∈ΛM Hi(c∗TM).

Proposition 7.2. pi : Hi(ΛM∗TM) −→ ΛM, where pi(X)(t) = π(X(t)), has the
structure of a (Hilbert) vector bundle over ΛM and

p1 : H1(ΛM∗TM) −→ ΛM

is isomorphic to TΛM.

Without going into details, we will produce an explicit local trivial structure for
Hi(ΛM∗TM). Let π : TM →M be the smooth vector bundle and

K : T (TM)→ TM

a connection. Then T (TM) splits into its horizontal and vertical sub-bundle

(ThTM)x = ker(K|TxTM) , (T vTM)y = ker(dπ)y .

For x ∈ TM, j = 1, 2, define

(∇j exp)(x) : Tπ(x)M −→ Texp xM,
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by

(∇1 exp)(x) · y = (d exp)(x) ◦ (dπ|ThTM)−1 · y,
(∇2 exp)(x) · y = (d exp)(x) ◦K(x)−1 · y,

where

K(x) : T vxTM −→ Tπ(x)M

is the canonical identification.
Clearly, for x ∈ U ⊂ TM, (∇2 exp)(x) is an isomorphism; the maps

φ̃ic : H1(Uc)×Hi(c∗TM) −→ Hi(ΛM∗TM)

φ̃ic(X,Y )(t) = (∇2 exp)(c∗πX(t)) · (c∗πY (t))

give the required structure, and (φ̃1
c)
−1 ◦ (φ̃1

d) is of form

(φ̃−1
c ◦ φ̃d , d(φ̃−1

c ◦ φ̃d)),

so the last assertion follows.
For any c ∈ ΛM, ċ(t) ∈ Ho(ΛM∗TM). This gives a section

∂ : ΛM → Ho(ΛM∗TM).

Proposition 7.3. ∂ is a smooth map.

Theorem 7.1. The bundle pi : Hi(ΛM∗TM) −→ ΛM has a (unique) Riemannian
metric characterized by the following property: For c ∈ C∞(S,M) the metric on
p−1
i (c) = Hi(c∗TM) is given by the scalar product 〈 , 〉i.

Naturally we will keep denoting this Riemannian metric by 〈 , 〉i. In particular,

TΛM=̃H1(ΛM∗TM)

has a natural Riemannian structure that we will denote also by 〈 , 〉i.

7.1. The integral energy of a Finsler manifold. We consider the manifold
ΛM = H1(S,M) of H1-maps of the circle S into M . Let M be a compact manifold
and F : TM → R a Finsler metric on M (see [14], chapter 1, for details). The
function L = F 2 : TM → R induces a map E : ΛM → R by E(c) =

∫
S
L(ċ(t))dt

called energy integral or simply the energy. Let c ∈ C∞(S,M) and (φc, H
1(Uc)) a

coordinate system near c and Ec = E ◦ φc, where Uc = (c∗π
−1)U , and U is an open

set containing the zero section in TM . Then Ec is the composite of the following
maps:

H1(Uc)
I×∂c−→ H1(Uc)×H0(c∗TM)

λ̃c−→ L1(S) −→ R
where the last map is just integration and λ̃c is induced by the fiber map

λc : Uc ⊕ c∗TM → S × R,

λc(x, y) = (π∗cx, L((∇2 exp)(c∗πx) · c∗πy)),where L = F 2.

We note that λ̃c is well-defined on all of H1(Uc) × H0(c∗TM). In fact, for
(X,Y ) ∈ H1(Uc)×H0(c∗M),∫

S

L((∇2 exp)(c∗πX(t)) · c∗πY (t))dt ≤ K

∫
S

‖(∇2 exp)(c∗πX(t))‖2‖Y (t)‖2dt

which is bounded since ‖X(t)‖∞ is small and Y (t) ∈ H0(c∗TM) = L2(c∗TM).
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For any t ∈ S, consider the restriction of λc to the fiber

λt : (Uc)t ⊕ (c∗TM)t → R.

If we denote by x, y the variables in the first and second factor, respectively, we
have:

(1) λt and
∂λt
∂x

are positively homogeneous of degree 2 in y,

(2)
∂λt
∂y

,
∂2λt
∂x∂y

,
∂2λt
∂y∂x

are positively homogeneous of degree 1 in y,

(3)
∂2λt
∂y2

is positively homogeneous of degree zero in y.

The closed geodesics problem for the Finsler metric can be posed in an analogous
manner to the one for the Riemannian metrics, and the critical points for the
function

E : ΛM → R , E(c) =

∫
S

F 2(ċ(t))dt

are exactly the closed geodesics (see [9]).
The gradient field of E is defined by

〈∇E(c) , X〉1 = dE(c).X for all X ∈ TcΛM.

The energy function E : ΛM → R possesses many properties that are necessary
for the development of the theory of Morse of (ΛM,E). Among these properties
for the function E : ΛM → R we have the following two:

i) E is C2− (i.e. it is C1 and the differential is locally Lipschitzian) and there-
fore E is strongly differentiable.

ii) If M is compact, E satisfy the condition (C) of Palais and Smale:
“Let (cn) be a sequence on ΛM such that the sequence (E(cn)) is bounded
and (‖∇E(cn)‖1) tends to zero. Then (cn) has limit point and any limit
point is a critical point of E”.

Remark 7.1. Condition (C) should be viewed as a substitute for the fact that ΛM
is not locally compact.

The proof that E is differentiable with differential locally Lipschitzian and that
E satisfies the condition (C) of Palais–Smale is due to F. Mercuri and can be found

in the paper [9]. To prove i) it is sufficient to show that λ̃c is C2− with

(dλ̃c)(X,Y )(t) = (dfλc)(X(t), Y (t)), (X,Y ) ∈ H1(Uc)×H0(c∗TM)

where df denotes derivative on the fiber and in this case

(dfλc)(X(t), Y (t))(X1(t), Y1(t)) =
∂λt
∂x

(X(t), Y (t)) ·X1(t) +
∂λt
∂y

(X(t), Y (t)) ·Y1(t)

with (X1, Y1) ∈ H1(Uc)×H0(c∗TM). The other property that is necessary for the

Morse theory of Finsler energy function is the following:
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iii) The derivative of the Finsler energy function E : ΛM → R is strongly
differentiable on the regular curves and particularly on the closed geodesics.

Now our main purpose of this paper is to prove the property iii) enunciated above.

Lemma 7.1. Homogeneity lemma: Let f : Rn −→ Rm be continuous, C∞ on
Rn − {0}, and positively homogeneous of degree α. Then for all x, y ∈ Rn:

(a) If α = 1, there is a constant K with ‖f(x)− f(y)‖ ≤ K‖x− y‖.
(b) If α = 2, there are constants K1,K2 with

‖f(x)− f(y)‖ ≤ K1‖x− y‖2 +K2‖x− y‖‖y‖.

Also, the other statement in (b) is

‖f(x)− f(y)‖ ≤ K ‖x− y‖.max(‖x‖, ‖y‖), where K = max(‖4K1‖, ‖4K2‖).

(c) If α = 0, then f is bounded.

The proof of Lemma 7.1 will be omitted since it is completely elementary.

8. Strong differentiability of derivative of the Finsler energy in a
critical sub-manifold

If we compute the second derivative of E : ΛM → R we see that we need to
use the second derivative of F 2 so that we can carry out the computation only at
regular curves, in particular geodesics. The critical points of function E : ΛM → R
are exactly the closed geodesics. Now if c is a closed geodesic the orbit of c under
the natural action of SO(2) will give a critical sub-manifold.

Theorem 8.1. The derivative of the Finsler energy function E : ΛM → R is
strongly differentiable on the regular curves and particularly on the closed geodesics.

Proof. Let’s now prove that the expression

[d2λ̃c(A,B)](X1, Y1)(X2, Y2) =
∂2λt
∂x2

(A,B)X1X2 +
∂2λt
∂x∂y

(A,B)Y1X2+

+
∂2λt
∂y∂x

(A,B)X1Y2 +
∂2λt
∂y2

(A,B)Y1Y2

= d2
fλc(A,B)(X1, Y1)(X2, Y2),

defines the second derivative of λ̃c. Then, for some s ∈ [0, 1] and

(X1, Y1) ∈ H1(Uc)×H0(c∗TM),

small enough, we consider the remainder R(X −W,Y −Z) of definition of strongly
differentiable function:
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‖R (X −W,Y − Z)‖L1
=

=
∥∥∥[dfλc(X,Y )

]
(X1, Y1)−

[
dfλc(W,Z)

]
(X1, Y1)−

[
d2fλc(A,B)

]
(X −W,Y − Z) (X1, Y1)

∥∥∥
L1

=‖d2fλc(X + s(X −W ), Y + s(Y − Z))(X −W,Y − Z)(X1, Y1)−

− d2fλc(A,B)(X −W,Y − Z)(X1, Y1)‖L1
≤

≤
∫
S
‖
∂2λt

∂x2
(X + s(X −W ), Y + s(Y − Z))−

∂2λt

∂x2
(A,B)‖ · ‖X −W‖ · ‖X1‖dt+

+

∫
S
‖
∂2λt

∂x∂y
(X + s(X −W ), Y + s(Y − Z))−

∂2λt

∂x∂y
(A,B)‖ · ‖Y − Z‖ · ‖X1‖dt+

+

∫
S
‖
∂2λt

∂y∂x
(X + s(X −W ), Y + s(Y − Z))−

∂λt

∂y∂x
(A,B)‖ · ‖X −W‖ · ‖Y1‖dt+

+

∫
S
‖
∂2λt

∂y2
(X + s(X −W ), Y + s(Y − Z))−

∂2λt

∂y2
(A,B)‖ · ‖Y − Z‖ · ‖Y1‖dt

≤
√

2‖X −W‖1 · ‖X1‖∞{
∫
S
‖
∂2λt

∂x2
(X + s(X −W ), Y + s(Y − Z))−

∂2λt

∂x2
(A,B)‖2dt}

1
2 +

+ ‖Y − Z‖0 · ‖X1‖∞{
∫
S
‖
∂2λt

∂x∂y
(X + s(X −W ), Y + s(Y − Z))−

∂2λt

∂x∂y
(A,B)‖2dt}

1
2 +

+
√

2‖X −W‖1 · ‖Y1‖∞{
∫
S
‖
∂2λt

∂y∂x
(X + s(X −W ), Y + s(Y − Z))−

−
∂2λt

∂y∂x
(A,B)‖2dt}

1
2 +M‖Y1‖∞ · ‖Y − Z‖0

≤
√

2 · ‖Y1‖∞ · ‖(X −W,Y − Z)‖H1×H0[∫
S
‖
∂2λt

∂x2
(X + s(X −W ), Y + s(Y − Z))−

∂2λt

∂x2
(A,B)‖2dt

] 1
2

+‖X1‖∞ · ‖(X −W,Y − Z)‖H1×H0[∫
S
‖
∂2λt

∂x∂y
(X + s(X −W ), Y + s(Y − Z))−

∂2λt

∂x∂y
(A,B)‖2dt

] 1
2

+
√

2‖Y1‖∞ · ‖(X −W,Y − Z)‖H1×H0{
∫
S
‖
∂2λt

∂y∂x
(X + s(X −W ), Y + s(Y − Z))−

−
∂2λt

∂y∂x
(A,B)‖2dt}

1
2 +M‖Y1‖∞ · ‖(X −W,Y − Z)‖H1×H0 .

The proof that the derivative of the Finsler energy function E : ΛM → R is
strongly differentiable on the regular curves and particularly on the closed geodesics,
will be concluded if we show that the expressions∫

S

∥∥∥∥∂2λt
∂x2

(X + s(X −W ), Y + s(Y − Z)) − ∂2λt
∂x2

(A,B)

∥∥∥∥2

dt

and ∫
S

∥∥∥∥ ∂2λt
∂x∂y

(X + s(X −W ), Y + s(Y − Z))− ∂2λt
∂x∂y

(A,B)

∥∥∥∥2

dt

have limits equal to zero when (X,Y )→ (A,B) and (W,Z)→ (A,B).
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On one hand,∫
S

∥∥∥∥∂2λt
∂x2

(X + s(X −W ), Y + s(Y − Z)) − ∂2λt
∂x2

(A,B)

∥∥∥∥2

dt ≤

≤
∫
S

[‖∂
2λt
∂x2

(X + s(X −W ), Y + s(Y − Z)) − ∂2λt
∂x2

(X + s(X −W ), B)‖+

+ ‖∂
2λt
∂x2

(X + s(X −W ), B) − ∂2λt
∂x2

(A,B)‖]2dt

≤
∫
S

[K1 · (‖Y −B‖ + ‖Y − Z‖)2 + K2‖B‖ · (‖Y −B‖ + ‖Y − Z‖) +

+ K3(‖X −A‖ + ‖X −W‖)]2dt.

On the other hand,∫
S

∥∥∥∥ ∂2λt
∂x∂y

(X + s(X −W ), Y + s(Y − Z)) − ∂2λt
∂x∂y

(A,B)

∥∥∥∥2

dt ≤

≤
∫
S

[‖ ∂
2λt

∂x∂y
(X + s(X −W ), Y + s(Y − Z)) − ∂2λt

∂x∂y
(X + s(X −W ), B)‖+

+ ‖ ∂
2λt

∂x∂y
(X + s(X −W ), B)‖ − ∂2λt

∂x∂y
(A,B)‖]2dt

≤
∫
S

[K4‖Y −B‖ + ‖Y − Z‖) + K5(‖X −A‖+ ‖X −W‖)]2dt

�

9. Critical submanifolds of the Hilbert manifold ΛM for Finsler
energy E

Let M an n-dimensional compact manifold endowed with a Riemannian metric
〈 , 〉. Let c ∈ ΛM be a closed geodesic of a Finsler metric F : TM → R of
multiplicity m ≥ 1, i.e. c(t) = c(t + 1

m ), for all t ∈ [0, 1]. From the index form

d2E(c) associated to the energy E : ΛM → R, E(c) =
∫
S
F 2(ċ(t))dt, we obtain in

the usual way a self-adjoint operator Ac : TcΛM → TcΛM defined by

d2E(c)(X,Y ) = 〈AcX,Y 〉1 = 〈X,AcY 〉1

and Ac is of the form Ac = I + Kc, where I is the identity and Kc is a compact
operator in the space (TcΛM, ‖ · ‖1). Therefore Ac is a Fredholm operator.

Let

TcΛM = T+
c ΛM ⊕ T−c ΛM ⊕ T 0

c ΛM

be the orthogonal decomposition of tangent space TcΛM into sub-spaces spanned by
the eigenvectors of Ac having eigenvalue > 0, < 0 and = 0 respectively. Theses sub-
spaces are A− invariant and A is negative definite on T−c ΛM and positive definite
on T+

c ΛM. Then dimT−c ΛM and dimT 0
c ΛM are finite. We call dimT−c ΛM and

dimT 0
c ΛM − 1 the index and the nullity of c, respectively. Denote by T ′cΛM the

sub-space of TcΛM of codimension 1 which is orthogonal to ċ ∈ TcΛM . From the
above decomposition we get the orthogonal decomposition

T ′cΛM = T+
c ΛM ⊕ T−c ΛM ⊕ T ′ 0c ΛM,
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where T ′ 0c ΛM = T 0
c ΛM∩T ′cΛM consists of the periodic Jacobi fields along c which

are orthogonal to ċ and index(c) = dimT ′cΛM , nullity(c) = dimT ′ 0c ΛM . We do
not assume that nullity (c) = 0, i.e. that c is non-degenerate.

The closed orbit S ·c of a closed geodesic c, is a closed submanifold of ΛM critical
for energy E : ΛM → R, under the S-action:

S × ΛM → ΛM, (z, d) 7→ z · d

with

z · d(t) = d(t+ r),where z = e2πir ∈ S, 0 ≤ r ≤ 1.

The critical sub-manifold S.c is compact and connected. The connectedness of S.c
implies that the index and nullity of E along S.c are well-defined, i.e. T−z.cΛM and

T
′0
z.cΛM has constant dimensions ( see [21] and [23]).

The closed geodesic c is non-degenerate, if and only if, the orbit S · c is non-
degenerate. This is equivalent to saying that the nullity(c) = 0 or the

nullity(d2E(c)) = dimT 0
c ΛM = 1.

Let µ = µ(S · c) : N → S be the normal bundle of closed geodesic c over S,

induced for embedding z ∈ S → z
1
m · c ∈ ΛM , z

1
m · c(t) = e2πi rm · c(t) == c(t+ r

m )
where m = multiplicity of c and 0 ≤ r ≤ 1. Note that here we do not assume that
S · c is a non-degenerate critical sub-manifold.

Let µ = µ+⊕µ−⊕µ0 be the splitting of the normal bundle, determined by the
splitting

T ′cΛM = T+
c ΛM ⊕ T−c ΛM ⊕ T ′ 0c ΛM

of the fiber.
Using the exponential map, exp, of Levi-Cività connection, we can identify the

total space D = D(S · c) of a sufficiently small ε − disc bundle Dεµ of µ with a
open neighborhood of S ⊂ N. The tangent bundle TΛM has in the usual way a
Riemannian metric defined by

〈X,Y 〉1 = 〈X,Y 〉0 + 〈∇ċX,∇ċY 〉0.

We use the exponential map to pull the Riemannian metric and Finsler energy
integral E back onto D. The action of S on D respects these quantities. For z ∈ S,
we denote by Dz the fiber over z in Dµ. The restriction of E to Dz will be denoted
by Ez. Actually, for our purposes a different metric on D is useful.

Let m be the multiplicity of c. Define on D the following modification of the
Riemannian metric

〈X,Y 〉m = m2〈X,Y 〉0 + 〈∇σ̇X,∇σ̇Y 〉0, X, Y ∈ TσΛM.

On the tangent space of each X ∈ D, the metric 〈 , 〉m is clearly equivalent to
the metric 〈 , 〉1. The index and the nullity of c are not affected by this change of
the metric. The function Ez is C1 and Ez is twice differentiable at Oz with dEz
strongly differentiable at the origin Oz and dEz(Oz) = 0.

Using the previously concepts, we now obtain the generalized Morse lemma for
degenerate critical points with low differentiability for Ez = E|Dz.

Proposition 9.1. (Generalized Morse Lemma for Ez = E|Dz).
Let c be a closed geodesic of a Finsler metric F : TM → R, of nullity l ≥ 0 and
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multiplicity m ≥ 1. We put µ = µ+ ⊕ µ− ⊕ µ0 the splitting of normal bundle,
determined by the splitting of the fiber T

′

cΛM :

T ′cΛM = T+
c ΛM ⊕ T−c ΛM ⊕ T ′ 0c ΛM

where fiber dimension of µ0 is l. We put µ∗ = µ+ ⊕ µ−, i.e., µ = µ∗ ⊕ µ0. Denote
by O+,O−, O0 and O∗ the zero sections of bundles µ+, µ−, µ0 and µ∗, respectively.
Then,

(1) There is a local homeomorphism ψ of D, such that ψ : V → ψ(V ) ⊂ D,
where V is an open set, 0 ∈ V , ψ(0) = 0, with ψ differentiable in 0 and dψ(0) = I.

(2) There is a continuous function g : D0 → D∗ = D+ ⊕ D− that is strongly
differentiable in Oz ∈ D0, and g(0z) = 0z, dg(Oz) = 0.

(3) There is a section z ∈ S → Pz ∈ L(µ∗, µ∗) with

Pz : X ∈ D+ ⊕ D− → Pz(X) ∈ D+

being an orthogonal bundle projection such that, for (X,Y ) ∈ D∗ ⊕ D0

Ez(X,Y ) ≡ (Ez ◦ ψ)(X,Y ) = d2
XEz(Oz)(X,X) + Ez(g(Y ), Y )

= 〈Az(0, 0)X,X〉m + Ez(g(Y ), Y )

= ‖Pz(X)‖2m − ‖(I − Pz)(X)‖2m + Ez(g(Y ), Y )

where ‖X‖2m = 〈Az(0, 0)X+, X+〉m − 〈Az(0, 0)X−, X−〉m .
The homeomorphism

ψ|D0 : D0 → ψ(D0) ⊂ D
(ψ|D0)(Y ) = g(Y ) + Y, d(ψ|D0)(0) = IN , N = T ′ 0c ΛM,

define a topological sub-manifold ψ(D0) ⊂ D, called characteristic sub-manifold at
c.

10. Homological invariants of the energy E at the isolated critical
submanifold

Now we will define homological invariants of a closed F- geodesic c of multiplicity
m ≥ 1 and homological invariants of isolated critical orbits S · c of the energy E
on ΛM. Let c a closed geodesic of multiplicity m, and c0 ∈ ΛM a prime closed
geodesic defined by c0(t) = c( tm ). Put E(c) = m2E(c0) = km. Let µ = µ(S · c)
be the normal bundle over S induced from

z ∈ S 7→ z
1
m · c ∈ ΛM

and let
µ(S · c) = µ+(S · c) ⊕ µ−(S · c) ⊕ µ0(S · c)

be the splitting according to the sign of the eigenvalues, introduced earlier.
We denote by Ez(X,Y ) the local representation of Ez = E|Dz given by the

generalized Morse lemma:

Ez : (Dz(S · c), Oz(S · c))→ (R, km)

Ez(X,Y ) ≡ (Ez ◦ ψ)(X,Y ) = ‖Pz(X)‖2 − ‖(I − Pz)(X)‖2 + Ez(g(Y ), Y )

and by E0,z the function given by

Êz : (D0, z(S · c), O0, z(S · c))→ (R, km) , Êz(Y ) = Ez(g(Y ), Y )

where km = E(c) = m2E(c0), Oz(S · c) denote the origin of fiber Dz(S · c) and
O0,z(S · c) is the origin of D0,z(S · c).

c©2013 Albanian J. Math. 19

http://x.kerkoje.com/index.php/ajm/index


de Souza

The homology groups (over the field of rational numbers) defined by

Ci(E, c) = Hi([Bz, ε(c) ∩ {Ez ≤ km}], Bz, ε(c) ∩ {Ez ≤ km} − {0})

Ci(Êz, c) = Hi([D
0
z, ε(c) ∩ {Êz ≤ km}], D0

z, ε(c) ∩ {Êz ≤ km} − {0})
are the homological invariants associated to the closed F-geodesic c, of multiplicity
m, and Ci(E, c) is the characteristic invariant, Bz, ε(c) is an open disc with center
at the origin of fiber Dz and radius ε > 0, sufficiently small, D0

z, ε(c) is a small
open disc in (D0)z of same center that (D0)z. By excision, these critical groups are
independent of Bz, ε(c) and D0

z, ε(c).

The numbers bi(c) = dimCi(E, c) are called the i-th type number, and b0i (c) =

dimCi(Êz, c) are the i-th singular type number of closed F-geodesic c. Since all
constructions are made equivariantly with respect to the S-action on D(S · c), the
homology groups and the type numbers are independent from the choice of z ∈ S.
These homological invariants are independent the choice of the metric. Let 〈 , 〉 and

〈 , 〉̃ be two Riemannian metrics in the compact manifold M , then are verified the
following conditions:

(1) The unitary tangent bundles of M , in the metrics 〈 , 〉 and 〈 , 〉̃ are compact.
Therefore the induced norms ‖ , ‖ and ‖ , ‖̃ in each tangent space TxM are equiva-
lents.

(2) A map c : S → M is H1 in the metric 〈 , 〉, if and only if, c is H1 in the

metric 〈 , 〉̃. Therefore the manifold ΛM and the vector spaces H0(c∗TM) and
TcΛM = H1(c∗TM) do not depend on the used metric for defining them.

(3) In the space TcΛM = H1(c∗TM) with the scalar products

〈X,Y 〉1 = 〈X(t), Y (t)〉0 + 〈∇cX(t),∇cY (t)〉0
〈X,Y 〉̃1 = 〈X(t), Y (t)̃〉0 + 〈∇̃cX(t), ∇̃cY (t)̃〉0

the induced norms ‖ , ‖1 and ‖ , ‖̃ 1 are equivalents. Therefore, the subspace T
′

cΛM
of TcΛM of codimension 1 which is orthogonal to ċ ∈ TcΛM, and the subspaces
T+
c ΛM and T−c ΛM where d2E(c) is positive definite and negative definite, do not

depend on the Riemannian metric of M .

(4)The homological invariants associated to a closed F−geodesic are indepen-
dent of the choice of the metric, but Dz, Ez depend on the metric.
Remark: The proof of above properties will be omitted since it is elementary.

An immediate consequence of Proposition 4.2, page 9, is the following proposi-
tion.

Proposition 10.1 (Shifting Theorem for Finsler energy). The characteristic in-
variant Ci(E, c) of a closed F-geodesic c, together with the index λ = dimT−c ΛM ,
and nullity l ≥ 0 determines Ci(E, c) completely by

Ci(E, c) = Ci−λ(Êz, c).

By Proposition 4.2 (Shifting theorem) the computation of the critical groups is
reduced to a problem in finite dimension, and as consequence we have the following
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result: dim Ci(E, c) is finite for every i and equal to zero for i 6∈ {λ, λ+1, · · · , λ+l}
(see, [3], [20], [22]), see also papers on the Morse theory [4], [5], [18], [19].

Now will define a local homological invariant Ci(E,S · c) of the energy E at the
isolated critical orbit S.c by

Ci(E,S · c) = Hi(Bε(S · c) ∩ {E(S · c) ≤ k} , Bε(S · c) ∩ {E(S · c) ≤ k} −O(S · c))
where Bε(S · c) =

⋃
z∈S Bz,ε(S · c) is a small tubular neighborhood, which is a

normal bundle of small open discs.
The i-th type number of an isolated critical orbit S · c of energy E is defined by

bi(S · c) = dimCi(E,S · c). The type number bi(S · c) of a critical orbit S · c and
the singular type number of closed F-geodesic c satisfy the inequality

bi(S · c) ≤ 2[b◦i−λ(c) + b◦i−λ−1(c)]

that is obtained making use of the homology theory of action of finite groups and
all homological invariants are taken with respect to coefficients in a field of charac-
teristic zero, which is necessary when we use the transfer map as is done here (see
[5] and [11]). The inspection of the inequalities above is as follows: We denote by
Wc and W−c the sets

Wc = [Bε(c) ∩ {E ≤ k}] , W−c = Bε(c) ∩ {E ≤ k} − {c}
where E(c) = k and by W and W−the sets S ·Wc and S ·W−c respectively. Now
we can write the pair

(W,W−) = (S ×Wc, S ×W−c )/Γ = ((S ×Wc)/Γ, (S ×W−c )/Γ),

where the isotropy group Γ acts on trivial bundle S ×Wc by covering transforma-
tions.

Hence,

Hi(W,W
−) = Hi((S ×Wc)/Γ, (S ×W−c )/Γ)

is isomorphic to the sub-space

Hi(S ×Wc, S ×W−c )Γ,

of all elements in Hi(S × Wc, S × W−c ) which are kept fixed under the induced
operation of Γ on the homology. Observing that Γ acts trivially on Hi(S) we
obtain

Ci(E,S · c) = Hi(S)⊗Hi(Wc, W
−
c )Γ ⊂ Hi(S)⊗ Ci(E, c).

The invariant Ci(E,S ·c) is of finite type as Ci(E, c), i.e., Ci is finite dimensional and

Ci = 0 for almost all i. The fact that Ci+λ(E, c) = Ci(Ê, c) where λ = index (c)
the last equality above yields

Ci(E,S · c) ⊂ Vi ⊕ Vi , Vi = Ci−λ(Ê, c) ⊕ Ci−λ−1(Ê, c)

that in terms of numerical invariants bi(S · c) = dimCi(E,S · c) and b◦i (c) =

dimCi(Ê, c) reads as

bi(S · c) ≤ 2[b◦i−λ(c) + b◦i−λ−1(c)].

Let c be a closed F-geodesic and S.c the associated critical sub-manifold. If
those critical sub-manifolds are non-degenerate ( which is a generic condition on
the space of Finsler metrics, see [24]), in this case we compute the index of E and
prove that index of the non-degenerate critical sub-manifold obtained by covering
m times a given closed F-geodesic and its rotation, is a multiple of the original one.
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At this point it is not difficult to obtain the following analogue of the Gromoll-
Meyer theorem, without the non-degeneracy hypothesis:

Theorem 10.1. (Gromoll-Meyer): Let (M,F ) be a n-dimensional compact simply-
connected Finsler manifold satisfying:“If bk denotes the k-th rational Betti number
of ΛM , there is a sequence kn → ∞ such that bkn → ∞”. Then M has infinitely
many closed F-geodesics ( geometrically distinct ).
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Inc., Boston, MA, 1993. MR 94e:58023

[20] M. Degiovanni, Critical groups of finite type for functionals defined on Banach spaces, Com-
mun. Appl. Anal. 13 (2009), no. 3, 395-410.

[21] R. Bott, Non-degenerate critical manifolds, Ann. of Math.(2)60(1954), 248–261.

[22] S. Cingolani and M. Degiovanni, On the Poincaré–Hopf theorem for functionals defined on
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