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Abstract. We show that, to some extent, the behavior of an entire function of

several complex variables is reflected by its behavior on algebraic subvarieties.

1. Introduction

Let f be a holomorphic function on Cn; given a family of algebraic subvarieties
of Cn, is it possible to determine the order of growth of f from the order of growth
of the restriction of f along a general member of the family? For linear subspaces
of Cn, this problem was intensively studied by Pierre Lelong (see for example [7],
[8]). The order of growth for entire functions can be defined in the following way.

Definition 1. Let f be an entire function f(z) on Cn. We say that f is of finite
order if if there exists a positive number t such that |f(z)| = O(exp(|z|t). If f is of
finite order, then the order of growth (or simply the order) of f is defined as

ρ = inf{t : |f(z)| = O(exp(|z|t)}.
If f is not of finite order, we say that f is of infinite order.
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The order of growth can be defined also for meromorphic functions, using Nevan-
linna theory. However, since in this paper we consider only entire functions, we shall
not state the definition, and refer instead to [5]. An interesting result concerning
the order of meromorphic functions was proved by Gauthier and Hengartner.

Theorem 2. Let S2n−1 denote the (2n − 1)-sphere of radius 1 in Cn and, for
θ ∈ S2n−1, let Lθ denote the line passing through θ and the origin. Let f be a
meromorphic function on Cn. Then, f |Lθ is of the same order as f, for almost all
θ ∈ S2n−1. Moreover, if there exists a set of positive measure S ⊂ S2n−1 such that
f |Lθ is rational for all θ ∈ S, then f is rational.

In the present paper we investigate to what extent the order of growth of an
entire function is reflected by its behavior along members of a family of algebraic
subvarieties of Cn. Since we cannot provide a general theory, we consider only
some classical examples of families (Section 2 and Section 3). In Section 4 we show,
by contrast, that the behavior of an entire function f along real curves does not
provide any information about the order of growth of f .

2. Traces along subvarieties passing through the origin

2.1. Grassmannians. LetGk denote the Grassmannian manifold of k-dimensional
planes passing through the origin in Cn. If E is a k-plane in Cn, we denote by [E]
the corresponding point in Gk. Gauthier and Hengartner [5] showed that the order
of a meromorphic function on Cn is determined by the order of the restriction of
f along lines (or k-planes more generally) through the origin. In fact the following
result, from which Theorem 2 follows as a particular case, is proved in [5].

Theorem 3. Let f be a meromorphic function on Cn. Then f |X is of the same
order as f for all [X] ∈ Gk outside a set of measure zero.

We wish to consider such matters with regards to topological rather than measure-
theoretic genericity. To this end we introduce the following lemmas.

Lemma 4. Let p : Y → X be a surjective map of irreducible quasi-projective
varieties. If S is Zariski dense in X, then p−1(S) is Zariski dense in Y . If S′ is
Zariski dense in Y , then p(S′) is Zariski dense in X

Proof. In this proof, all topological notions and notations are with respect to the
Zariski topologies. Let Z = p−1(S). Then, by Chevalley’s theorem, its image p(Z)
is locally closed, that is, open in its closure. Since p(Z) contains S, it follows that
p(Z) is open in X. Therefore the dimension on Z equals the sum of the dimension
of X and the dimension of a general fiber of p, which is the same as the dimension
of Y . Since Y irreducible, we must have Y = Z, which proves the first part.

As for the second part, if p(S′) is contained in a subvariety V , then p−1(V ) is a
subvariety of Y containing S′. Thus, p−1(V ) = Y and V = X.

�

Lemma 5. Let S ⊂ Gk be a Zariski dense subset. Then S̃ = ∪[E]∈SE is Zariski
dense in Cn.

Proof. Let S ⊂ Cn × Gk be the set {(x, [E]) : x ∈ E}. As a product of quasi-
projective varieties, it is also quasi-projective. Denote the projections p1 (resp. p2)
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on the factors Cn (resp. Gk). Lemma 4 implies that S′ = p−1
2 (S) is Zariski dense

in S. We note that S̃ = p1(S′), which is dense by the second part of Lemma 4.
�

Theorem 6. Let f be an entire function on Cn, such that f | E is a polynomial
of degree at most d, for all [E] ∈ S, where S ⊂ Gk is Zariski dense. Then f is a
polynomial of degree at most d.

Proof. Let

f =

∞∑
k=0

fk

be the homogeneous expansion of f. For k > d, the polynomial fk is zero on S̃,
which is Zariski dense. Therefore fk = 0, which completes the proof.

�

Remark 7. In Lemma 5 of [5] the authors show a similar result without assuming
a uniform bound on the polynomials f | E. However, the set S in their case is non-
polar. A Zariski dense set can be polar. For example, every countable subset of C
having an accumulation point is both Zariski dense and polar. The following exam-
ple shows that the conclusion of Theorem 6 fails, if we merely drop the restriction
on the degrees of the polynomials.

Example 8. Let λj be a sequence of distinct non-zero complex numbers. For each
j, set

gk(z, w) = ηk

k−1∏
j=1

(w − λjz),

where ηk is chosen so that |gk| < 2−k on the ball centered at the origin and of radius
k and moreover, ak = ηk(−1)kλ1λ2 · · ·λk > 0. Then,

f(z, w) =

∞∑
k=1

gk(z, w)

is an entire function which is not a polynomial, since

f(z, 0) =

∞∑
k=1

akz
k, ak > 0, k = 1, 2, · · · .

Now, for fixed j we write

f(z, w) =

j−1∑
k=1

pk(z, w) +

∞∑
k=j

pk(z, w),

for all (z, w). In particular, on the line w = λjz, we have

f(z, w) =

j−1∑
k=1

pk(z, λjz) +

∞∑
k=j

pk(z, λjz),

where the first term is a polynomial in z and the second term is zero, since pk(z, λjz) =
0, for j ≤ k. Thus, on the line w = λjz, the function f(z, w) is a polynomial in z.
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2.2. Weighted projective spaces. Let (a1, . . . , an) be a vector, whose compo-
nents ak are positive integers, for k = 1, · · · , n. Fix z = (z1, . . . zn) ∈ Cn a non-zero
vector, and consider the curve C parametrized by γ(t) = (ta1z1, . . . t

anzn), t ∈
C. The collection of all such curves, for z ranging over all non-zero vectors , is
parametrized by the weighted projective space P(a1,...an), which is defined as fol-
lows.

Definition 9. Given a vector (a1, . . . an) of positive integers, consider the action
of the multiplicative group C∗ on Cn \ {0} defined by

t(z1, . . . zn) = (ta1z1, . . . t
anzn).

The quotient space (Cn \ {0}) /C∗ = P(a1,...an) is called weighted projective space
with weight vector (a1, . . . an).

The standard projective space is therefore P(1,...1) = Pn−1. We refer to [2] for
the proof of the following well known facts: the weighted projective space P(a1,...an)

is a projective variety of dimension (n− 1), and P(a1,...an) is smooth if and only if
P(a1,...an) is isomorphic to the projective space of dimension (n− 1) .

Example 10. The map

f : P1,2 −→ P1

[w0 : w1] 7−→ [w2
0 : w1] = [z0 : z1]

is an isomorphism since [
√
z0 : z1] = [−√z0 : z1] in P1,2.

Definition 11. Given a vector a = (a1, . . . an), the a-degree of a polynomial is
defined by letting the a-degree of the monomial wk be ak, and then extending the
definition according to the definition of degree function. A polynomial is said to be
weighted homogeneous of a-degree d, if all its monomial terms have a-degree d.

The common zero locus of a finite collection of weighted homogeneous polyno-
mials defines an algebraic subvariety of P(a1,...an). Let z = (z1, . . . zn) be a non-
zero vector in Cn: we denote by C = Cz the image of the curve γ(t) = γz(t) =
(ta1z1, . . . t

anzn) and by [C] ∈ P(a1,...an) the corresponding point on the weighted
projective space. We say that such a curve C (and by abuse also [C]) is an a-curve.

Definition 12. If f(z) is an entire function on Cn, the restriction to C = Cz is
an entire function of one variable t, and we say that f |C is a polynomial of degree
d if f is a polynomial of degree d in the variable t. We say that f |C is of finite
order if f(tza1 , · · · tzan) is of finite order as a function of t.

Note that, if f is a polynomial of a-degree d, then it is a polynomial of degree
d along every a-curve C ∈ P(a1,...an). The following analogue of Theorem 6 shows
conversely that, if f is a polynomial of degree d along every a-curve C ∈ P(a1,...an),
then f is a polynomial of a-degree d.

Theorem 13. Let f be an entire function in Cn. Assume that there exists a Zariski
dense subset S ⊂ P(a1,...an), such that f |C is a polynomial of degree at most d, for
all a-curves [C] ∈ S. Then f is a polynomial of a-degree at most d and hence of
degree at most

∑
(d/ak).

Proof. Since every monomial zm = zm1
1 · · · zmn

n is weighted homogeneous of a-
degree a ·m, we may write f uniquely as a weighted homogeneous expansion f =
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∑
fk, where fk is weighted homogeneous of a-degree k. Indeed, if

∑
pm(z) is the

homogeneous expansion of f, then

f(z) =
∑

pm(z) =

∞∑
k=0

( ∑
a·m=k

pm(z)

)
=

∞∑
k=0

fk(z).

Then, for all k > d, fk is identically equal to zero on a Zariski dense subset S̃ =⋃
[C]∈S C; hence it must be identically equal to 0. �

In Nevanlinna theory, polynomial functions all have the same order, and that
makes Theorem 3 uninteresting for polynomials. We shall now generalize Theorem
3 in non-trivial cases. In order to do this, we introduce some simple geometry that
allows us to apply the results from [5]. Let [w1 : · · · : wn] be the homogeneous
coordinates in Pn−1 and [z1 : · · · : zn] be the homogeneous coordinates in P(a1,...an).
Let Γk be the group of ak-th roots of 1, and let Γ = Γ1 × · · · × Γn. Consider the
action of Γ on Pn−1 given by

(ε1, . . . εn)[w1 : · · · : wn] = [ε1w1 : · · · : εnwn].

Lemma 14. P(a1,...an) is isomorphic to the quotient Pn−1/Γ with respect to the
action defined as above.

Proof. Leaving the proof to the reader, we merely give the quotient map γ′ : Pn−1 →
P(a1,...an), since it will be used in the sequel:

(1) γ′([w1 : · · · : wn]) = [wa11 : · · · : wann ].

�

Let γ : Cn\{0} → Cn\{0} be the equivariant mapping defined by γ(w1, . . . wn) =
(wa11 , . . . wann ), and denote by π : Cn \ {0} → Pn−1 and π′ : Cn − {0} → P(a1,...an)

the quotient maps. Then the following diagram is commutative:

Cn \ {0} π−−−−→ Pn−1yγ yγ′

Cn \ {0} π′

−−−−→ P(a1,...an)

It follows that a curve (ta1z1, . . . t
anzn) naturally lifts to a union of a1a2 . . . an

lines (tz
1/a1
1 , . . . , tz

1/an
n ) (counting multiplicity).

Lemma 15. Let f be an entire function of finite order. Then for any [C] ∈ Pa1,···an ,
the restriction f |C is of finite order.

Proof. Let R > 1, A and ρ positive numbers such that if |(z1, . . . zn)| > R, then
|f(z1, . . . zn)| < A exp |(z1, . . . , zn)|ρ. Clearly if w = (w1, . . . , wn) is sufficiently
large, then |(wa11 , . . . , wann )| is larger than R. Let a = max{a1, . . . , an}. We may
assume ‖w‖ > 1; so

|(f ◦ γ)(w1, . . . , wn)| = |f(wa11 , . . . , wann )| < A exp(|(wa11 , . . . , wann )|ρ) ≤

A exp
(

(
∑
|wk|2ak)ρ/2

)
< A exp(nρ/2‖w‖aρ) < A′ exp(‖w‖aρ+1),

for large w which concludes the proof.
�
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The previous two lemmas show that the order of f along a twisted curve C, which
is image of (ta1z1, . . . t

anzn), is determined by the order of f ◦ γ along the inverse
image of this curve under γ, which consists of a finite union of lines. Moreover, the
behavior of f ◦ γ is the same on each of those lines: if L is any line that projects to
C (that is γ(L) = C), then (f ◦ γ)|L behaves like f | C.

We shall define a measure on the weighted projective spaces. Let µ be the stan-
dard measure on Pn−1, induced by the Fubini-Study metric. If U is a measurable
set, we define the average measure of U :

µ̂(U) =
∑
g∈Γ

g(U).

Define a subset O ⊂ P(a1,...an) to be measurable if and only if the inverse image

γ′−1(O) is measurable in Pn−1. The collection of such measurable subsets forms
a sigma-algebra and the average measure µ̂ descends to a measure on P(a1,...an).
Since Γ is a finite group, a subset O ⊂ P(a1,...an) has measure zero if and only if

γ′−1(O) ⊂ Pn−1 has measure zero.

Theorem 16. Let f be a a holomorphic function on Cn of order ρ. Then for all
[C] ∈ Pa1,···an outside a set of measure zero, f |C is of order ρ.

Proof. Consider the pull-back f̃ = f ◦ γ. By the previous Lemma, f̃ is of finite
order ρ̃. Hence, by Theorem 3 f̃ |L is of finite order ρ̃ for almost all lines. More-

over, f̃ |L is of order ρ̃ if and only if f̃ |gL is of order ρ for all g ∈ Γ. Fix a non
zero vector (z1, . . . zn) and let (w1, . . . wn) be such that γ(w1, . . . wn) = (z1, . . . zn).

Let C be parametrized by γ(t) = (ta1z1, . . . t
anzn). Since f̃(tw1, . . . twn) = f ◦

γ(tw1, . . . twn) = f(ta1z1, . . . t
anzn), it follows that f has order ρ̃ along the curve

C. Since f̃ has order ρ̃ outside a set of lines of measure zero, f has the same order
ρ outside a set of curves of measure zero. �

3. Traces along parallel translations of subvarieties

Let V0 ⊂ Cn be a subvariety of Cn and u ∈ Cn be a fixed vector. In this section
we study the traces of a holomorphic function along a family {Vc}, for c ∈ C, where
the varieties Vc = V0 +cu are obtained by translation in the direction u.. The space
that parametrizes such a family is not compact.

3.1. Parallel hyperplanes. The analogue of Theorem 6 does not hold, as the
function f(x, y) = ex − y shows. In the next subsection we shall show, however,
that something can be said even in this case. The following example is an analogue
of Example 8.

Example 17. Given an increasing sequence {nj : j = 1, 2, · · · } of positive integers,
and given a sequence of distinct points ej ∈ C, there is an entire function f(z, w)
having the property that, for each j the function f(ej , ·) is a polynomial of degree
nj . Moreover, if z 6= ej for all j, then f(z, ·) is not a polynomial.

For each k = 1, 2, · · · , we define a polynomial gk(z) as follows: set g1 = 1 and
for k > 1, set

gk(z) = ak

k−1∏
j=1

(z − ej),
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where ak 6= 0 is chosen so small that

max
|z|≤k

|gk(z)| ≤ 1

2kknk
.

The series
∞∑
k=1

gk(z)wnk

converges uniformly on compacta. Indeed, writing
∞∑
k=1

gk(z)wnk =

m∑
k=1

gk(z)wnk +

∞∑
k=m+1

gk(z)wnk ,

and noting that, for |z| ≤ m, |w| ≤ m, and k > m, we have the estimate

|gk(z)wnk | ≤ 1

2kknk
knk =

1

2k
,

we see that on |z| ≤ n, |w| ≤ n, the series is a polynomial plus a uniformly conver-
gent series. Hence, the series converges uniformly on compacta and represents an
entire function f(z, w). Note that, for z = em,

f(em, w) =

m−1∑
k=1

gk(ek)wnk + am

m∏
j=1

(em − ej)wnm +

∞∑
k=m+1

gk(em)wnk ,

is a polynomial of degree nm (and no less), since each gk is a polynomial of degree
nk and gk(em) = 0, for k > m.

The second part of the statement follows immediately by looking at the construc-
tion of f . Indeed, if z is different from all ej , then gk(z) 6= 0 for all k. Thus,

f(z, w) =

∞∑
k=1

gk(z)wk =

∞∑
k=1

akw
k,

where ak 6= 0, k = 1, 2, · · · .

In the preceding example, we may choose the sequence {ej} to be dense so as
to obtain a function f(z, w) which is a polynomial in w for a dense set of z but for
each n the set of z for which f(z, ·) is a polynomial of degree n has no accumulation
point.

3.2. Tube domains. Most studies on the order of growth of entire functions are
concerned only with functions of finite order. Let Mf (r) = max|z≤r| |f(z)|. Then
the order of an entire function can be expressed as follows [7, page 9]

ρ(f) = lim sup
r→∞

log logMf (r)

log r
.

If f is an entire function of a single complex variable, then the order of f can also
be expressed [7, Theorem 1.9 a)] in terms of the MacLaurin coefficients {an} of f :

ρ(f) = lim sup
n→∞

n log n

log(1/|an|)
.

Suppose f(z, w) is holomorphic on a tube domain D × C, where D is a domain
in C. We may write

f(z, w) =

∞∑
n=0

an(z)wn, z ∈ D,

c©2012Albanian J. Math. 57

http://www.aulonapress.com


Traces of entire functions on algebraic subvarieties Donzelli, Gauthier

where an ∈ O(D), n = 0, 1, · · · . For a compact subset K ⊂ D, we denote

Mn(K) = max
z∈K
|an(z)|.

Definition 18. A holomorphic function f(z, w) defined on a tube domain D × C
is said to be of order ρK in the w direction over K if

ρK(f) = lim sup
n→∞

n log n

log(1/Mn(K))
.

A holomorphic function f(z, w) in a tube domain D × C is locally of finite (re-
spectively infinite) order in the w direction if it is of finite (respectively infinite)
order in the w direction over every relatively compact open subset of D.

From the Cauchy inequalities, it follows that Mn(K) → 0, as n → ∞. Thus, if
K1 ⊂ K2, we have for large n that 0 ≤ logMn(K2)/ logMn(K1) ≤ 1. Consequently,
if K1 ⊂ K2, then ρK1

(f) ≤ ρK2
(f). The following Harnack type principle is due to

Pierre Lelong [8, Th. 33].

Lemma 19. If f is holomorphic in a tube domain D×C and D1, D2 are relatively
compact open subsets of D, then for sufficiently large n, the ratio

logMn(D1)

logMn(D2)

is bounded from below and from above by two positive numbers (we agree to disregard
those n for which Mn(Dj) = 0, since Mn(D1) = 0 if and only if Mn(D2) = 0).

Recall that a subset Y of a topological space S is said to be residual if S \ Y is
of first Baire category. If S is of second category, then we may think of a residual
subset as topologically representing the ‘majority’ of points of S in the sense that,
not only Y is ‘large’ but also S \ Y is ‘small’. As a consequence of the previous
lemma we have the following.

Theorem 20. If f is holomorphic in a 2-dimensional tube domain D × C, then
either the order of f in the w direction is locally finite or it is locally infinite. In
the first case, fz is of course of finite order for every z ∈ D. In the second case, the
order of fz is infinite for most z, in the sense that the set of such z is residual in
D.

Proof. The first assertion in an immediate consequence of the previous lemma. The
second assertion is trivial. To prove the third assertion, suppose that the order of f
in the w direction is locally infinite. Let E the set of z ∈ D for which ρ(fz) < +∞.
Then

E = ∪j,k{z ∈ D : |f(z, w)| ≤ k exp(|w|j)} = ∪j,kEj,k.
Clearly, each Ej,k is closed and it is nowhere dense since f is locally of infinite order
in the w direction. This concludes the proof. �

Example 21. Given an increasing sequence {nj : j = 1, 2, · · · } of positive integers,
and given a sequence of distinct points ej ∈ C, there is an entire function F (z, w)
having the property that, for each j the function F (ej , ·) is of order nj (and no
less).

Proof. In Example 17, we construct an entire function f(z, w), such that, for each
ej , the function f(ej , ·) is a polynomial of degree nj (and no less). Put F = ef . �
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The following theorem is a consequence of Theorem 20.

Theorem 22. Let f be an entire function. Then f is either of finite order, or it
is of infinite order on a residual set of lines through the origin.

Proof. Let σX :→ C2 be the blow up of C2 at the origin. It is well known X is
the total space of a line bundle π : X → P1, and it follows that for all u ∈ P1

X0 = X − π−1(u) ∼= C2. Therefore the the theorem follows if we apply Theorem
20 to f ◦ σ|X0 . �

3.3. Traces along translations of submanifolds. In this section we consider the
case of families that are obtained by translating a given subvariety. The difficulty
that arises is that members of the family can have non-empty intersection.

Lemma 23. Let p : X → Y be a map of Stein manifolds, where dimX = m and
dimY = 1. Assume further that, for each y ∈ Y , p−1(y) is a Stein manifold. Let f
is a holomorphic function on Y . If there exists a subset S of Y with an accumulation
point , such that f |p−1(y) is constant for all y ∈ S, then f is constant on each fiber
of p.

Proof. Given a point y ∈ S, there exists an open neighborhood O of y, and a system
of local coordinates on O centered at y, say (z, t1, . . . tm−1), such that p−1(y) ∩
O = {z = 0} (see [6]). We can construct the locally defined vector fields, for
k = 1, . . .m− n:

vk =
∂

∂tk
Hence vk(f) is identically zero on p−1(y) ∩ O, for all y ∈ S. Since p−1(y) ∩ O is
open in p−1(y), it follows that vk(f)(x) = 0 for all x ∈ p−1(y) for all y ∈ S. The
zero locus of vk(p) contains infinitely many irreducible components accumulating at
p−1(y), which is possible only if vk(p) is identically zero. It follows that f is constant

along each fiber over p(O), and f descends to a function f̃ on p(O). Consider now a

maximal open set U ⊂ Y over which f̃ extends as a holomorphic function. Suppose
that U 6= Y : since f̃ ◦ p = f on p−1(U), f itself would not be an entire function.
Hence U = Y , and f descends to an entire function on Y . Therefore f descends to
a function on Y .

�

Lemma 24. Let f be an entire function on Cn, and V0 be a proper embedding of
Cn−1 into Cn containing the origin. For z ∈ Cn, we write z = (z1, z

′), with z1 ∈ C
and z′ ∈ Cn−1. For a vector (c, 0′) let Vc = V0 + (c, 0′). Suppose that there exists
a sequence of vectors (ck, 0

′) converging to (0, 0′) such that f is bounded along the
translate Vck , for all k. Then f is constant on each Vc

Proof. First of all, by Liouville’s theorem, f is constant on each Vck . Since V0 is an
analytic submanifold of Cn, there exists an open polydisk D0 containing (0, 0′) and
a holomorphic function g on D0 such that V0 ∩ D0 coincides with the zero locus
of g. Therefore, if we let Dc = D0 + (c, 0′), Vc ∩ Dc is given by the zero locus of
g(z1 − c, z′). Consider the open set O = ∪cOc ⊂ Cn+1, where Oc = Dc × {c}. We
may consider O as the image of the polydisc D0 by the automorphism of Cn+1 given
by(z, z′, c) 7→ (z+ c, z′, c). Hence, O is Stein. Consider the holomorphic function G
defined on O by G(z1, z

′, c) = g(z1 − c, z′). Let q : Cn+1 → Cn be the projection
map q(z1, z

′, c) = (z1, z
′), and p be the projection p(z1, z

′, c) = c. Moreover, let
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V be the n-dimensional Stein submanifold of O given by G = 0, and restrict the
projections p and q to V. The pull back f̃ = f ◦ q is a holomorphic function on V
with is constant on the fibers p−1(ck) = (Vck ∩Dck)× {ck}. Hence, by Lemma 23,

f̃ is constant on each fiber of p. This implies that f is constant on Vc ∩Dc, for all
c ∈ C: by the identity principle, it must be constant on the entire submanifold Vc,
for all c. �

Remark 25. If Vc ∩ Vc′ 6= ∅ for all (c, c′) belonging to an open set of C2, then f
must be a constant function.

4. Traces along real curves

In the previous sections we established that in many interesting situations, the
behavior of an entire function is dictated by the behavior of its restriction along
complex subvarieties. In the following section we show that this is not true if we
replace complex subvarieties by real subvarieties.

Definition 26. For E a subset of C, we denote by A(E) the family of continuous
functions on E which are holomorphic on the interior of E. We say that E is an
approximation set if, for each function g ∈ A(E) and each ε > 0 on E, there exists
an entire function f, such that |f − g| < ε on E.

Approximation sets have been completely characterized by Norair U. Arakelian
(see [3]). In fact, on approximation sets, we can do better than uniform approxi-
mation as the following lemma shows (see [3, p. 161]).

Lemma 27. Let E be an approximation set in C. Then, for each g ∈ A(E) and
each ε > 0, there is an entire function f such that on E, not only |f(z)− g(z)| < ε
but also |f(z)− g(z)| → 0 as z →∞ on E.

An asymptotic path in Cn is a continuous curve γ : [0,+∞) → Cn, such that
γ(t) → ∞, as t → +∞. We assume that γ(0) = 0. An asymptotic path is said
to be simple if γ is injective; it is said to be strictly monotonic if |γ(t)| is strictly
increasing.

Theorem 28. (a) In C, for every simple asymptotic path γ, there exist entire
functions of arbitrarily fast growth which tend to zero along γ.
(b) In C2, there exists a simple asymptotic path γ such that, if an entire function
f tends to zero along γ, then f ≡ 0.

Proof. (a) Let γ be a simple asymptotic path in C.We may construct another simple
asymptotic path σ disjoint from γ. The union E = γ ∪ σ is an approximation set
and so, by Lemma 27, if ε > 0 and ϕ : [0,+∞) is an arbitrary continuous function,
setting g(z) = 0 on γ and g(z) = ϕ(|z|) + ε on σ, we obtain an entire function f for
which

f(z)→ 0, z ∈ γ; |f(z)| > ϕ(|z|), z ∈ σ.
This proves (a).

(b) Anatoliy Georgievich Vitushkin [10] showed the existence of a compact totally
disconnected set K in C2, whose polynomial hull contains the bidisc. We may
assume that K is contained in the bidisc. Given r > 0, by covering the sphere Sr of
center 0 and radius r by finitely many bidiscs, we see that there exists a compact
totally disconnected set Kr whose polynomial hull contains the sphere Sr. Since
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we may cover by arbitrarily small bidiscs, given ε > 0, we may assume that Kr is
contained in the shell

A(r, ε) = {(z, w) :< r − ε <
√
|z|2 + |w|2 < r + ε}.

Since the hull of Kr contains the sphere Sr, it also contains the closed ball Br.
In this fashion we may construct a sequence Kj , j = 1, 2, · · · of compact totally

disconnected sets, such that for each j, the polynomial hull of Kj contains the

ball Bj of radius j, and Kj is contained in the shell A(j, ε). Now, by a theorem
of Louis Antoine [1], for each j, there exists a simple arc γj , which passes through
each point of Kj and we may assume that γj ⊂ A(j, ε). It is easy to construct a
simple asymptotic path γ, which contains each γj . Suppose f is an entire function
which tends to zero on γ. Fix r > 0 and δ > 0. Choose j so large that |f | < δ on
γ ∩Kj and the hull of Kj contains Br. Since the polynomial hull is the same as the
holomorphic hull, |f | < δ on Br. Since r and δ were arbitrary positive numbers,
f = 0. This completes the proof of (b). �

If γ is an asymptotic path in C and θ is a rotation of Cn, we denote by γθ the
asymptotic path obtained by the corresponding rotation of γ.

Theorem 29. Let γ be a strictly monotonic simple asymptotic path in C, and
let ϕ be a positive continuous function on [0,+∞). Then, there exists an entire
function f on C such that, for every γθ, f(z)→ 0 as z →∞ on γθ and moreover,
max|z|=r |f(z)| > ϕ(r), for each r ≥ 0.

Proof. Thus, there exist entire functions tending to zero on every rotation of γ and
having arbitrarily fast growth. To obtain such a function f we may first construct a
strip U containing γ such that E = C\U is connected and locally connected. Thus
E is a set of uniform approximation. We may construct U close enough to γ that
every rotation γθ of γ is eventually in E. We may construct a simple asymptotic
path σ ⊂ U \ γ. The set F = E ∪ σ ∪ γ is also a set of approximation. We define
a function g ∈ A(F ) by setting g = 0 on E and γ and g some continuous function
on σ which grows so quickly that ϕ(|z|) = o(g(z)) as z →∞ on σ. Since F is a set
of approximation, there exists an entire function f such that |f(z)− g(z)| → 0, as
z →∞ on F. In particular, for ε > 0 and sufficiently large r, if z ∈ σ, with |z| = r

|f(z)| > |g(z)| − o(1) >
ϕ(|z|)
ε
− o(1) > ϕ(r).

�

Corollary 30. Let ϕ be a positive continuous function on [0,+∞). Then, there
exists an entire function f on C2 such that, f(z)→ 0 along every real ray from the
origin and moreover,

max
|z|2+|w|2=r2

|f(z, w)| > ϕ(r), ∀r ≥ 0.

Proof. Set ϕ1(r) =
√
ϕ(r
√

2). By Theorem 29 , there is an entire function f1 of one

complex variable tending to zero on each ray and such that max|z|=r |f1(z)| > ϕ1(r).

Set f(z, w) = f1(z)f1(w). Let Xζ be the real ray in C2 passing through a point
ζ ∈ S3, where ζ = (r1e

iθ1 , r2e
iθ2), r2

1 +r2
2 = 1. We may assume r1 6= 0. A point of Xζ

has the form (ρr1e
iθ1 , ρr2e

iθ2) and f(z, w) = f1(ρr1e
iθ1)f1(ρr2e

iθ2). As ρ → +∞,
ρrje

iθj remain respectively on the rays arg z = θj , j = 1, 2. Thus, f1(z) → 0 and
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f2(w) remains bounded. Hence f(z, w) → 0. We have shown that f tends to zero
along each real ray from the origin.

Now we check the growth of f.

max
|z|2+|w|2=r2

|f(z, w)| ≥ max
|z|2=|w|2=r2/2

|f1(z)||f1(w)|

≥ max
|u|=r/

√
2
|f1(u)|2 > (ϕ1(r/

√
2))2 = ϕ(r).

Thus, f has the required growth. �
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