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CONVERSION BETWEEN HERMITE AND POPOV NORMAL

FORMS USING AN FGLM-LIKE APPROACH

JOHANNES MIDDEKE

Abstract. We are working with matrices over a ring K[∂;σ, ϑ] of Ore poly-
nomials over a skew �eld K. Extending a result of [18] for usual polynomials
it is shown that in this setting the Hermite and Popov normal forms corre-
spond to Gröbner bases with respect to certain orders. The FGLM algorithm
is adapted to this setting and used for converting Popov forms into Hermite
forms and vice versa. The approach works for arbitrary, that is, not necessarily
square matrices where we establish termination criteria to deal with in�nitely
dimensional factor spaces.

1. Introduction

Since long, normal forms have played a prominent rôle in those branches of
mathematics that involve the study of equational systems. Among these, polyno-
mial systems form a major subclass. But also systems of ordinary linear equations
are important for applications. Usually, these systems are modelled by matrices.
The computation of normal forms can answer some important questions about the
structure of the underlying system.

Linear systems can be represented by matrices with entries being linear oper-
ators. In this paper we will consider Ore polynomials�which some authors also
call skew polynomials. This is a class of non-commutative polynomials that was
introduced by Øystein Ore in [21]. They are a generalisation of the ordinary (com-
mutative) polynomials that includes linear di�erential operators and shift operators.

We will tread Ore polynomials in section 2. There we will also introduce some
notations for matrices that are used in later sections.

Among those normal forms that are used in practise, we will concentrate on the
Hermite and Popov forms. These are both one-sided normal forms, that is, normal
forms with respect to elementary row operations. Invented by Charles Hermite in
[14], the Hermite form was originally a row echelon form for square matrices over
the integers. It has later been extended to non-square matrices and other domains.

The Popov normal form was introduced by Vasile Mihai Popov in [22, 23]. It is
related to row-reduction�a concept that has been described by [12] for commuta-
tive polynomials. We will give de�nitions for this forms in section 3.

Gröbner bases were �rst considered in Bruno Buchberger's PhD thesis [4]�
named after his advisor Wolfgang Gröbner. They are very useful to solve problems
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that are related to polynomial ideals algorithmically, most importantly the solving
of polynomial equations and the ideal membership problem.

It is possible to de�ne Gröbner bases for modules�see, for example, [1]. In [18]
it was shown that matrices in Hermite or Popov form are in fact Gröbner bases
with respect to this de�nition. In section 4 we will introduce Gröbner bases over
Ore polynomials based on [5]. We will extend the result of [18] to this case.

Gröbner bases usually su�er from high computational complexity. In [11] the au-
thors Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard and Teo Mora there-
for attacked a special problem: Compute the Gröbner basis of an zero-dimensional
ideal fast�provided that a Gröbner basis with respect to a di�erent monomial
ordering is already known. Breaking down the problem to linear algebra, they
managed to obtain an e�cient algorithm for that task.

In section 5 of this paper we will adapt the FGLM algorithm to modules over
Ore polynomials. We will modify it in such a way that it also handles sub-modules
that are not �zero-dimensional�. We also will give an estimation of the complexity
of this algorithm in the special case of converting Popov and Hermite forms.

There are other approaches for converting matrices in Popov and Hermite nor-
mal form into each other. One, for example, may be found in [24]. To our best
knowledge, this paper is the �rst though that explores the connection of normal
forms and Gröbner bases to complete this task.

We also compiled a technical report about this topic that contains a MapleTM

implementation for the conversion of Popov into Hermite forms as well as detailed
examples.

2. Basic notations

Ore polynomials�also called skew polynomials by some authors�are a general-
isation of the usual polynomials with a non-commutative multiplication. They are
named after Øystein Ore who was the �rst to describe them in [21]. We will only
give an informal description of Ore polynomials here. A more rigid description may
be found in [9, Chapter 0.10] or [10, Chapter 5.2].

Let K be a (computable) skew �eld, and let σ : K → K be an automorphism. A
map ϑ : K → K such that

ϑ(a+ b) = ϑ(a) + ϑ(b) and ϑ(ab) = σ(a)ϑ(b) + ϑ(a)b

for all a, b ∈ K is called a σ-derivation of K. (The second identity is sometimes
referred to as σ-Leibniz rule.) Let now ∂ be a variable. An Ore polynomial is just
a polynomial expression

an∂
n + an−1∂

n−1 + . . .+ a2∂
2 + a1∂ + a0

where n > 0 and where the coe�cients a0, . . . , an are in K. The set of all Ore
polynomials is denoted by K[∂;σ, ϑ]. Two Ore polynomials in K[∂;σ, ϑ] are added
in the same way as usual polynomials. The multiplication of Ore polynomials is
given by extending the commutation rule

∂a = σ(a)∂ + ϑ(a)

with a ∈ K assuming associativity and distributivity. This de�nes a ring structure
on K[∂;σ, ϑ]. For a proof see [9, Theorem 10.1].
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Example 1. The typical examples of Ore polynomials are the following. See also
[10, Page 186] or [8, Table 2] for further examples.

(1) For K = Q, σ = id and ϑ = 0 (that is, the identity and the constant zero
function respectively) we obtain just the usual commutative polynomials
with the commutation rule ∂a = a∂.

(2) For K = Q(x) (or K being the meromorphic functions in x), σ = id and
ϑ = d/dx we obtain di�erential operators with the commutation rule ∂f =

f∂ + df
dx re�ecting the composition of linear di�erential operators.

(3) For K = Q(n), σ(a(n)) = a(n+ 1) and ϑ = 0 we obtain the shift operators
having the commutation rule ∂a(n) = a(n+ 1)∂.

Obviously, the multiplication of Ore polynomials needs not to be commutative.
(Thus it is also important that we write coe�cients always on the left hand side.)
Still, they retain a lot of the usual properties of ordinary polynomials. Given
f = an∂

n + . . . + a1∂ + a0 where a0, . . . , an ∈ K and an 6= 0, we de�ne the degree
of f as deg f = n. We refer to lcoeff(f) = an as the leading coe�cient of f . For
convenience, we set deg 0 = −∞. Degree and leading coe�cient ful�ll the identities

deg(fg) = deg f + deg g and lcoeff(fg) = lcoeff(f)σdeg f (lcoeff(g))

for all Ore polynomials f and g.
Using this degree function we can do polynomial long division almost as in the

commutative case. We have to distinguish between division from the left and from
the right, though. Furthermore, we can compute left greatest common divisors and
right greatest common divisors. See [10, Theorem 5.8] or [3] for the algorithms and
their proofs of correctness.

For any ring R, we denote the set of m×n matrices over R by Rm×n. The n×n
identity matrix is denoted by 1n and the m × n zero matrix is written as 0m×n.
A square matrix M ∈ Rn×n that has a two-sided inverse M−1 ∈ Rn×n is called
unimodular. The set of n× n unimodular matrices is denoted by GL(R,n).

We will need to extract certain rows or columns from our matrices. For M =
(aij) ∈ Rm×n and 1 6 i 6 m we denote the ith row by Mi,• = (ai,1, . . . , ai,n).
Similarly, for 1 6 j 6 n the jth column is denoted by M•,j = t(a1,j , . . . , am,j),
where t denotes transposition.

The set of row vectors with entries in R of size n will be written as R1×n and
the set of column vectors of size m is denoted by Rm. In this paper, row vectors
are treated as left module over R and column vectors form a right module over R.
We will often regard vectors as matrices with only one row or column respectively.

If in particular R = K[∂;σ, ϑ] is a ring of Ore polynomials, then for a matrixM =
(ai,j) ∈ Rm×n we de�ne degM = max{deg ai,j | i = 1, . . . ,m and j = 1, . . . , n}.
As a further abbreviation we also de�ne the ith row degree for 1 6 i 6 m as
rdegiM = degMi,• = max{deg ai,j | j = 1, . . . , n}. Finally, we will need the leading
vector lvec(M) =

(
coeff∂(degM,ai,j)

)
i,j
∈ Km×n. (We use the name �leading

vector� instead of �leading matrix� because it will mostly be applied to vectors.)

3. Hermite and Popov normal forms

We will now de�ne the main concepts we are dealing with in this paper, namely
Hermite and Popov normal forms. Let again K be any skew �eld with automor-
phism σ : K → K, σ-derivation ϑ : K → K, and let R = K[∂;σ, ϑ].
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We will start with the Hermite normal form. Our de�nition is taken from [13,
De�nition 3.2]. A matrix in Hermite form is basically just in row echelon form with
some additional properties of the degrees of the entries.

De�nition 2 (Hermite normal form). A matrix M = (ai,j) ∈ Rm×n is in Hermite
normal form if and only if there exists indices j1 > j2 > . . . > jm that are called
pivot indices such that

(1) ai,k = 0 if k < ji,
(2) the entries ai,ji are monic, and
(3) deg ai,ji > deg ak,ji for k 6= i.

Every matrix N ∈ Rm×n can be transformed using elementary row operations
into a matrixM whose non-zero rows form a matrix in Hermite normal form. That
is, for every such N there exists an invertible matrix S ∈ GL(R,m) such that

SN =

(
M

0m−s×n

)
where M ∈ Rs×n is in Hermite form. Sometimes we will a little bit sloppily also
refer to the whole right hand side�that is, with zero rows included�as the Hermite
form of N . The computations can be done applying the (matrix form of the)
Euclidean algorithm to the columns of N to achieve a row echelon form and then
using polynomial division to enforce the degree restrictions. See [13, Theorem 3.2]
for a more detailed description in the case of square matrices. We will show later
in corollary 15 that the Hermite form of N is actually uniquely determined.

The de�nition of the Popov normal form is slightly more involved. We need
to proceed in two steps. First we will introduce the concept of row-reducedness
and afterwards as second step we de�ne the Popov as a row-reduced matrix with
additional properties.

Row-reducedness was �rst introduced in [12] for commutative polynomials. A
presentation for Ore polynomials can be found in [2]. We repeat the de�nitions
here for the convenience of the reader. Let M ∈ Rm×n. When we multiplyM from
the left by the matrix D = diag(∂degM−rdeg1M , . . . , ∂degM−rdegmM ), we obtain a
matrix DM with all rows having the same degree degM . Its leading vector

lvec(DM) =

 σdegM−rdeg1M (lvec(M1,•))
...

σdegM−rdegmM (lvec(Mm,•))

 ∈ Km×n

is called the leading (row) coe�cient matrix of M . We denote it by LC(M).

De�nition 3 (Row-reducedness). A matrix M ∈ Rm×n is called row reduced if
LC(M) has full left row rank.

Being row-reduced is the most important requirement for being in Popov normal
form. The other points in the following de�nition basically just make sure that the
matrix is uniquely determined. One can show that a matrix in Popov form has a
leading coe�cient matrix in row-echelon form. See for example [19, Lemma 14] for
a proof. The de�nition is taken from [18, De�nition 1].

De�nition 4 (Popov normal form). A matrix M = (ai,j)ij ∈ Rm×n is said to be
in Popov normal form, if
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(1) M is row-reduced and rdegiM 6 rdegi+1M for all i;
(2) for the ith row there exists a column index ji (the pivot index ) such that

(a) ai,ji is monic and deg ai,ji = rdegiM ;
(b) deg ai,k < rdegiM if k < ji;
(c) deg ak,ji < rdegiM if k 6= i; and
(d) if rdegiM = rdegkM and i < k then ji < jk (that is, pivot indices are

ordered increasingly).

Also Popov forms are normal forms in the sense that each matrix can be trans-
formed by elementary row operations into a matrix whose non-zero rows are in
Popov form. Again this later matrix is sometimes simply referred to as the Popov
form. The conversion can be done by �rst applying row-reduction�which is de-
scribed, for example, in [2, Theorem 2.2]�and then using similar operations to
achieve the degree constraints in the de�nition. See [6, Section 2.5.1] for a more
detailed description.

Remark 5. Hermite forms clearly have independent rows since they are in row ech-
elon form. But also the rows of matrices in Popov form are linearly independent�
actually row-reducedness is already su�cient for that: By the so-called predictable
degree property [2, Lemma A.1 (a)], if v ∈ R1×m and M ∈ Rm×n, then vM = 0 is
only possible if deg vi + rdegiM < 0 for all 1 6 i 6 m. This implies immediately
that v = 0, since the rows of M are all non-zero.

4. Gröbner bases

Gröbner bases have been invented by Bruno Buchberger in [4]. Though initially
de�ned for multivariate commutative polynomials, the concept has since been ex-
tended to more general domains such as Ore polynomials (see, for example, [8]) or
modules over polynomial rings (see, for example, [20]). In this paper we will use
the nice description of Gröbner bases of modules over Poincaré-Birkho�-Witt rings
given in [5, Chapter 5]. Poincaré-Birkho�-Witt rings are a more general class of
non-commutative domains that includes Ore polynomials. See [5, De�nition 2.2.5]
for the de�nition of Poincaré-Birkho�-Witt rings and [5, Corollary 2.3.3] for the
proof that Ore polynomials are included. An approach exclusively for Ore polyno-
mials may be found in [8]�but there seems to be no extension to modules.

We include some of the results of [5] here for completeness and in order to adapt
them to our notation. Let once more K be any skew �eld with automorphism
σ : K → K and σ-derivation ϑ : K → K. Also, let R = K[∂;σ, ϑ]. We will just
brie�y skip through the most important de�nitions and provide pointers to the
corresponding sections of [5]. Readers who are familiar with commutative Gröbner
bases will �nd that everything translates well to the non-commutative case.

For i = 1, . . . , n, let ei denote the ith unit vector in R1×n. A monomial is a
product ∂αei of a power of ∂ and a unit vector where α > 0 and 1 6 i 6 n.
A term is the product of a scalar (that is, an element in K) and a monomial.
There are two obvious ways of introducing a total ordering on monomials. See
also [5, De�nitions 5.3.8 and 5.3.9] and the de�nition of admissible orderings [5,
De�nition 5.3.7].

De�nition 6 (Position over term/term over position ordering). Let ∂αei and ∂
βej

be monomials in R1×n with α, β > 0 and 1 6 i, j 6 n.
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(1) The position over term (POT) ordering is de�ned by

∂αei <pot ∂
βej :⇐⇒ i > j ∨ (i = j ∧ α < β);

(2) the term over position (TOP) ordering is given by

∂αei <top ∂
βej :⇐⇒ α < β ∨ (α = β ∧ i > j).

We will use 6pot, >pot, >pot, and 6top, >top, >top in the usual way.

It is important to note here that we �xed an ordering on the indices (positions).
The reason is that, although for Gröbner basis theory any ordering of the indices
would be �ne, for our application to Hermite and Popov forms this particular
ordering is crucial.

If, for example, n = 3 then the smallest monomials with respect to the position
over term ordering are

(0, 0, 1) <pot (0, 0, ∂) <pot (0, 0, ∂2) <pot . . . <pot (0, 1, 0) <pot (0, ∂, 0)

<pot (0, ∂2, 0) <pot . . . <pot (1, 0, 0) <pot (∂, 0, 0) <pot (∂2, 0, 0) <pot . . .

while with respect to the term over position ordering we obtain the chain

(0, 0, 1) <top (0, 1, 0) <top (1, 0, 0) <top (0, 0, ∂) <top (0, ∂, 0)

<top (∂, 0, 0) <top (0, 0, ∂2) <top (0, ∂2, 0) <top (∂2, 0, 0) <top . . . .

Thus, the position over term ordering has similarities to the lexicographic ordering
in the usual commutative Gröbner basis theory while the term over position ordering
corresponds to the degree lexicographic ordering.

Let now for a while < denote either <pot or <top. Any vector in R1×n may be
written as K-linear combination of monomials. That is, taking v ∈ R1×n there are
k > 0, c1, . . . , ck ∈ K and monomials m1, . . . ,mk such that v = c1m1 + . . .+ ckmk.
If c1 6= 0 and m1 > mj for 2 6 j 6 k, then we call m1 = lmonom<(v) the leading
monomial of v with respect to <. In this case, c1 = lcoeff<(v) is the leading
coe�cient and c1m1 = lterm<(v) is the leading term. (Note the di�erence between
leading coe�cient and leading vector). If no confusion about to which order we
confer may arise, then we just write lmonom(v) instead of lmonom<(v) and the
same for lcoeff(v) and lterm(v). Leading monomial, term and coe�cient of the
zero vector remain unde�ned.

Example 7. With respect to the position over term ordering, the leading monomial
of a non-zero vector v ∈ R1×n corresponds to the term of highest degree of the left-
most non-zero entry of v. With respect to the term over position ordering, the
leading term corresponds to the left-most of the entries of highest degree.

Using the above de�nition of leading term, reduction is de�ned as in the com-
mutative case. That is, if v = c1m1 + . . .+ ckmk is as above and if W ⊆ R1×n \ {0}
is given, then v is said to be reducible by W if there are w ∈ W , 1 6 i 6 k and
α > 0 such that mi = ∂α lmonom(w). Otherwise, v is called irreducible.

Theorem 8. Given v ∈ R1×n and {w1, . . . , ws} ⊆ R1×n \ {0}, there are elements
u1, . . . , us ∈ R and r ∈ R1×n such that

v = u1w1 + . . .+ usws + r

where r is not reducible by {w1, . . . , ws}.
We will call r the remainder of the division of v by {w1, . . . , wn}.
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Proof. This is [5, Theorem 5.4.3]. Directly after the theorem�namely in [5, Algo-
rithm 10]�the division method is explained in detail. �

We have now everything set in order to de�ne Gröbner bases. We start with [5,
De�nition 5.4.7].

De�nition 9 (Gröbner basis). Let M be an R-submodule of R1×n. A �nite set
G ⊆ M is a Gröbner basis for M if for all v ∈ M there is α > 0 and g ∈ G such
that lmonom(v) = ∂α lmonom(g).

Lemma 10. Every non-zero submodule M ⊆ R1×n has a Gröbner basis G, M is
generated by G as a left R-module and the remainder of the division of an element
v ∈ R1×n by G does not dependent on the order of the elements in G.

Furthermore, v ∈M if and only the remainder by division with G is zero.

Proof. These statements are found in [5, Proposition 5.4.8, Corollary 4.10 and
Theorem 5.4.9]. �

The following de�nition is [5, De�nition 4.17].

De�nition 11 (Reduced Gröbner bases). A Gröbner basis G of M ⊆ R1×n is
reduced if for all g ∈ G we have lcoeff(g) = 1 and there is no h ∈ G \ {g} such that
lmonom(h) divides a term in g.

As in the usual, commutative Gröbner basis theory one may de�ne S-polynomials
and prove a Buchberger criterion for Gröbner bases in R1×n. This can be found
in [5, De�nition 5.4.11 and Theorem 5.4.13]. But since we will not need the full
Buchberger criterion in our proofs, we will be content with stating a corollary here.

Theorem 12. Let G = {g1, . . . , gs} ⊆ R1×n with leading monomials lmonom(gk) =
∂αkejk for 1 6 k 6 s. If ji 6= jk whenever i 6= k then G is a Gröbner basis for the
submodule Rg1 + . . .+Rgs ⊆ R1×n generated by its elements.

Proof. This is [5, Corollary 5.4.14]. �

We will now draw the connection from Gröbner bases to normal forms. For this
we have to make the transition between matrices and sets of row vectors. We will
say that a matrixM ∈ Rm×n is a (reduced) Gröbner basis with respect to a certain
term ordering if the set of its rows {M1,•, . . . ,Mm,•} is a (reduced) Gröbner basis
for its row space R1×mM .

The following two theorems are generalisations of [18, Proposition 2 and 4] to
Ore polynomials.

Theorem 13. LetM ∈ Rm×n with the rows sorted in descending order with respect
to position over term ordering. Then M is in Hermite form if and only if the non-
zero rows of M form a reduced Gröbner basis for R1×mM with respect to position
over term ordering.

Proof. By example 7, with respect to position over term ordering, the leading terms
of the rows are exactly those corresponding to the pivot indices in the sense of
de�nition 2. Since the pivot indices are all di�erent, M is a Gröbner basis by
theorem 12, and since the corresponding entries are monic and the entries in the
rows above are of lower degree, we even have a reduced Gröbner bases.
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Conversely, one easily sees, that for a reduced Gröbner bases the leading terms
must be in di�erent positions. Setting these as the pivot indices, from this obser-
vation one deduces all properties listed in de�nition 2. �

Theorem 14. Let M ∈ Rm×n with the rows sorted in ascending order with respect
to term over position ordering. Then M is in Popov form if and only if the non-
zero rows of M form a reduced Gröbner basis for R1×mM with respect to term over
position ordering.

Proof. Analogously to the Hermite form, here the leading terms with respect to
position over term ordering are those corresponding to the pivot indices�this time
in the sense of de�nition 4. Again, they are in di�erent positions and thus we
obtain a Gröbner basis. As before, the properties listed in de�nition 4 make sure
that the Gröbner basis is reduced. Also the converse is easily proven by letting the
pivot indices be the positions of the leading terms and checking the properties in
the de�nition. (For the row-reducedness note that the pivot indices are in di�erent
columns and hence the leading coe�cient matrix must be in row echelon form.) �

Since reduced Gröbner bases for submodules by [5, Theorem 5.4.18] are unique,
from the previous theorems we obtain (together with the existence considerations
from section 3)

Corollary 15. Every matrix has exactly one Hermite form and exactly one Popov
form.

5. FGLM

The �rst version of the FGLM algorithm�named after its inventors�was pre-
sented in [11]. It solves the following problem: Given a Gröbner basis of a zero-
dimensional ideal I in a ring F [x] of commutative polynomials over a �eld F with
respect to a certain term order, compute the Gröbner basis of I with respect to
another term order. That is, the FGLM algorithm allows to convert Gröbner bases
between di�erent term orderings. Since it does so quite e�ciently, it is thus possible
to compute a Gröbner basis for a �slow� term ordering by �rst computing it with
respect to a �fast� term ordering and then using FGLM for conversion.

The main achievement of [11] is, that they managed to break this problem down
to a linear algebra problem: Instead of calculating in F [x] they solve the task
in F [x]/I which is a �nite dimensional vector space over F . In this space they
iterate over all (representatives of) monomials deciding whether they are leading
monomials of an element of the new Gröbner basis or not.

Let again K be a skew �eld with automorphism σ : K → K and σ-derivation
ϑ : K → K. As before we abbreviate K[∂;σ, ϑ] by R. LetM ∈ Rm×n be a Gröbner
bases for the term over position or for the position over term ordering. It will turn
out that the FGLM algorithm translates quite nicely to this setting. There is one
problem, though, namely that R1×n/R1×mM needs not to be �nite dimensional.
That is, we possibly have to traverse over in�nitely many monomials.

Our �rst goal is thus to limit the number of monomials we have to search. For
this we will need the next two lemmata that will give an estimate on the degrees
of Popov and Hermite forms of a given matrix.



FGLM CONVERSION OF NORMAL FORMS 189

Lemma 16. Let A ∈ Rm×n be any matrix and M ∈ Rm×n its Popov form. Then
degM 6 degA.

Proof. By [2, Theorem 2.2] does row-reduction applied to A at most lower the
degree. Furthermore, since the Popov form M is by de�nition also row-reduced,
by [2, Lemma A.1 (d)] we may conclude that its degree is the same as that of the
result of the row-reduction and thus not larger than the degree of A, too. �

The next lemma is [13, Corollary 3.4]. Although in the reference the result is
only stated for square matrices over rings of di�erential operators (see example 1),
following the proofs one easily sees that they generalise to arbitrary Ore polynomials
and to matrices that are not necessarily square.

Lemma 17. Let A ∈ Rm×n be a matrix of full left row-rank, and let M ∈ Rm×n
be its Hermite form. Then degM 6 m degA.

Proof. See [13, Corollary 3.4]. �

Having thus established degree bounds for Hermite and Popov forms, we may
use them to limit our search space. The correctness of this statement is proven
below in theorem 21. But we �rst need to introduce a few notations and de�nitions
which are necessary for the formulation of the algorithm.

For any set S ⊆ R1×n we denote the set of elements of degree at most d > 0
in S by S6d = {v ∈ S | deg v 6 d}. Let M be in Hermite or Popov form. We
write the set of all those monomials which are not reducible by M as B. By [5,
Proposition 5.6.3] B = {m | m ∈ B} is a K-basis of R1×n/R1×mM where the
bar denotes residue classes modulo M . We would like to emphasise here that B
depends on the monomial ordering in respect to which M is a Gröbner basis. For
any u ∈ R1×n we will write the coordinate vector of u in R1×n/R1×mM with
respect to B as uB.

The factor module R1×n/R1×mM is not only a vector space but also a left R-
module. Hence, the multiplication by ∂ induces a map of R1×n/R1×mM into itself
that we will call ∂ . It has the properties that

∂(v + w) = ∂v + ∂w and ∂(av) = σ(a)∂v + ϑ(a)v.

for all v and w ∈ R1×n and a ∈ K. Such a map is called pseudo-linear in [15].
Fix a degree bound. We will consider the truncated basis B6d. Let π be the

projection of R1×n/R1×mM onto the K-span 〈B6d〉 of the truncated basis. We

introduce the truncated ∂-multiplication τ = π◦(∂ )|〈B6d〉 as a map of 〈B6d〉. (The
composition with π lets us ignore products which are not in 〈B6d〉 any more.)

Let v = πv ∈ 〈B6d〉. Then τ(aπ(v)) = π ◦ (∂ )(aπ(v)) = σ(a)
(
π ◦ (∂ )

)
(πv) +

ϑ(a)π2(v) = σ(a)τ(π(v)) + ϑ(a)π(v) since π2 = π. Thus, τ is also a pseudo-linear
map. By [15, Section 2] we may construct a matrix T ∈ K |B6d|×|B6d| such that

τ(u)B6d
= σ(uB6d

)T + ϑ(uB6d
)

where σ and ϑ are applied to vectors component-wise. The truncated multiplication
matrix T is called a τ -connection in [7].

Remark 18. Computing T is actually quite easy. If for m ∈ B6d also ∂m ∈ B6d,
then the row corresponding to m in T is a unit vector. If otherwise ∂m /∈ B6d,
then there are two possibilities. Either ∂m ∈ B or ∂m is divisible by a row in M .
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In the �rst case the row of m in T will just be zero. In the second case, there is a
leading monomial n of a row Mi,• of M and α > 0 such that ∂αn = ∂m. Since m is
irreducible, we may conclude that α = 0, that is, that n = ∂m. Thus, the remainder
is n −Mi,• ∈ B6d which is irreducible since M is a reduced Gröbner basis. The

corresponding row in T is then just (n−Mi,•)B6d
. The coordinates may hence be

plainly read o� from the coe�cients in Mi,•.

In example 7 we already established the correspondence between the pivot indices
and the leading monomials in M . This allows us to write down B6d quite easily as

B6d =
{
∂αej

∣∣∣ j = ji ∈ J ∧ α < rdegiM
}
∪
{
∂αej

∣∣∣j /∈ J ∧ α 6 d}
where J = {j1, . . . , jm} is the set of all pivot indices. We may compute the coordi-
nates of the residue classes of the unit vectors e1, . . . , en in the same way as the we
computed T . From them we can compute the residue class of any ∂αek ∈ B6d just
by using T .

We are now ready to state the algorithm. Although the only admissible or-
derings we have considered are the position over term and the term over position
ordering, the algorithm would also work for other orderings. We denote lists (that
is, ordered sets) by enclosing their elements in square brackets, that is, we write
L = [L1, . . . , Lk]. If ` is an element, then ` : L denote the list with its �rst element
being ` and then the elements of L following in order, that is, ` : L = [`, L1, . . . , Lk].

Algorithm 19 (FGLM with degree bound).

Input: A reduced Gröbner basis M ∈ Rm×n with respect to the admissible
ordering <1 and an admissible ordering <2 as well as a degree bound d for
the reduced Gröbner basis with respect to <2.

Output: The reduced Gröbner basis with respect to <2.
Procedure:

(1) Let B1 be the truncated basis with respect to <1 and d, and let T be
the corresponding multiplication matrix.

(2) Initialise C ← [ ], B2 ← [ ] and G2 ← ∅.
Upon termination, G2 will be the reduced Gröbner basis, B2 will be
the truncated basis with respect to <2 and d, and C will contain the
coordinate vectors of the elements of B2 with respect to B1.

(3) If there are monomials of degree less or equal to d that are not divisible
by G2, then:
(a) Choose the smallest such monomial m with respect to <2 and

compute its coordinate vector w = mB1
using T .

(b) If w : C is K-linear independent, then set C ← w : C and
B2 ← m : B2.

(c) Else there are aj ∈ K such that w =
∑
j ajCj . Set G2 ←

G2 ∪ {m−
∑
j aj(B2)j}.

(d) Go to step 3.
(4) Else stop and return G2 as a matrix with the rows sorted with respect

to <2.

Remark 20. If <2=<pot, then the sequence of monomials that are chosen in
step 3a can be computed as follows. Set j ← n and start with m← ej = en which
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is the smallest element. If in step 3b w does not depend on C, then set µ ← ∂µ,
w ← σ(w)T + ϑ(w) and go to step 3b. Else, set j ← j − 1 and continue with the
next m being ej . The sorting in step 4 can be omitted if G2 is maintained as a list
with new elements added in front.

If <2=<top, then we maintain a list M of monomials which initially is just
[en, . . . , e1] and a corresponding list of coordinate vectorsW . We iterate over (m, w)
in the zipped list (M,W ). If in step 3b we �nd a linear dependence, then we
remove (m, w) from (M,W ). Once we are through the list, if M 6= [ ] we set
M ← [∂m | m ∈ M] and W ← [σ(w)T + ϑ(w) | w ∈ W ] and continue. Also here,
the sorting in step 4 is not necessary if G2 is a list with the elements added at the
end.

Theorem 21. Algorithm 19 is correct and terminates.

Proof. The iteration considers only monomials up to certain degree. Since there
are only �nitely many of them, the algorithm clearly terminates.

It remains to prove the correctness. We will use the notations from the algo-
rithm. First, we note that the elements in C are always linearly independent by
construction. Since they are just the B1-coordinate vectors of the elements in B2�
and since the coordinate map is K-linear�also B2 is linear independent modulo
R1×mM .

Moreover, we claim that the elements of G2 are in R1×mM . Let in step 3c
g = m −

∑
j aj(B2)j . Let r = g − uM be the remainder of g by division with M

where u ∈ R1×m contains the coe�cients from theorem 8. We have r = g − uM =
g = w−

∑
j ajCj = 0. Since r is irreducible, this implies r = 0, that is, g ∈ R1×mM .

Let LM(G2) = {∂αm | m ∈ G2 and α > 0}. We claim that B2 ∩ LM(G2) = ∅.
This holds in step 2 and cannot be destroyed if we add elements to B2 in step 3b.
In step 3c, if an element is added to G2 it is bigger than all elements in B2 with
respect to <2 since we iterate over all monomials in order. Using the de�nition of
admissible orderings in [5, De�ntion 2], we see that it cannot divide any monomial
in B2. Since we consider all monomials of degree at most d, we obtain

M6d := {m monomial | degm 6 d} = LM(G2)6d ∪̇ B2.

Let G̃ be the Gröbner basis of R1×mM with respect to <2 and let B̃ ⊆ M6d

denote the corresponding truncated basis. Since G2 ⊆ R1×mM , we must have
B̃ ⊆ B2. We claim that lmonom(g) ∈ LM(G2) for any g ∈ G̃. By our degree
bound, we know that lmonom(g) ∈ M6d. Assume lmonom(g) was in B2. This
meant that we could reduce an element of B2 contradicting the linear independence
of B2 modulo R1×mM . Thus LM(G̃) ⊆ LM(G2). Hence, by de�nition 9, G2 must
be a Gröbner basis.

By construction, the leading monomials of G2 are monic and do not divide each
other. Further more, since for each g ∈ G2 we have g − lmonom(g) ∈ 〈B2〉, we see
that g is irreducible by G2 \ {g}. Thus, G2 is the unique reduced Gröbner basis of
R1×mM with respect to <2. �

Corollary 22 (Main theorem). Because of the degree bound in the lemmata 16
and 17, we may use algorithm 19 to convert Hermite forms into Popov form and
vice versa.
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Proof. Let H ∈ Rm×n be in Hermite form and assume P ∈ Rs×n is the output of
algorithm 19. Then P is in Popov form and using Gröbner basis division we may
compute A ∈ Rm×s such that H = AP . Since also H is a Gröbner basis we can
�nd B ∈ Rs×m such that BH = P . Now, since H and P have linearly independent
rows by remark 5, we conclude AB = 1m and BA = 1s. By [16, p. 32] (applicable
since by [10, Theorem 5.8] Ore polynomials can be embedded in skew �elds) this
implies m = s and hence A = B−1 ∈ GL(R, s). Thus, P really is the Popov form
of H. Analogously, also for a Popov form as input we receive the corresponding
Hermite form. �

Finally, we would like to reason about the complexity of algorithm 19. We will
consider only the conversion from Popov to Hermite form. In the steps 1 and 2
there is not much to do, since the computation of T involves just the copying of
the coe�cients of M by remark 18. The real work is done in step 3. Here, we
have to compute all the candidates for leading monomials and their coordinate
vectors, and we have to check sets of monomials for linear dependence. Let d =
degM . The degree bound is md in this case. The number of monomials generated
(and also the size of B1) does thus not exceed O(nmd). To generate a monomial
we either look it up from a list containing the unit vectors and their coordinates
(as can be precomputed analogously to T ) or by remark 20 we compute it as a
product with ∂ and the previous monomial. In the later case to compute the
coordinates we needO(mnd) applications of σ and ϑ andO((mnd)2) multiplications
and additions in K for the multiplication by T . The most expensive step is to
solve the O(nmd) variables system in step 3b which needs O((nmd)3) operations
in K by [17, Bemerkung 2.19 (2)]. Since B2 contains only (di�erent) monomials,
computation of m−

∑
j aj(B2)j is again just copying coe�cients.

The estimate becomes tighter ifM is a square matrix. Then, the degree bound is
never needed because there will be a pivot in every row ofM . Hence, R1×n/R1×mM
is �nite. This corresponds to the case of zero-dimensional ideals in the theory of
commutative polynomials. We need to consider at most O(md) monomials. This
bound can even be lowered using the index of M which is indM =

∑
i rdegiM as

introduced in [12]. This yields a total complexity of O((indM)4).

Remark 23 (Complexity). For the conversion of a Hermite form in M ∈ Rm×n
into Popov form one needs O((mnd)4) operations in K where d = degM . If M is
square, then O((indM)4) 6 O((md)4) operations are su�cient.

6. Conclusion

In this paper we have extended the result of [18] that Hermite and Popov forms
are Gröbner bases to a general Ore polynomial setting. We adapted the classical
FGLM algorithm for this case and used it to convert matrices from Hermite form
into Popov form and vice versa. The complexity of this is polynomial and not to
far away from other approaches as for example [24]. The version presented here is
slightly more general though as it works with arbitrary Ore polynomials.
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