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PRINCIPALLY SUPPLEMENTED MODULES

UMMAHAN ACAR AND ABDULLAH HARMANCI

Abstract. In this paper, principally supplemented modules are defined as
generalizations of lifting, principally lifting and supplemented modules. Sev-

eral properties of these modules are proved. New characterizations of princi-

pally semiperfect rings are obtained using principally supplemented modules.

1. Introduction

Throughout this paper R denotes a ring with unity. Modules are unital right
R−modules. Let M be a module and N , K be submodules of M . We call K a
supplement of N in M if M = K + N and K ∩ N is small in K. A module M is
called supplemented if every submodule of M has a supplement in M . A module
M is called lifting if, for all N ≤M , there exists a decomposition M = A⊕B such
that A ≤ N and N ∩B is small in M . Supplemented and lifting modules have been
discussed by several authors(see [7], [8], [9], [13] ) and these modules are useful in
characterizing semiperfect rings(see [1]).

In this paper, principally supplemented modules are discovered as analogous of
lifting and supplemented modules, and used to characterize principally semiperfect
rings introduced in chapter 3 and discussed in [6].

Let M be a module and N a submodule module M . N is called a small(or
superfluous) submodule if whenever M =N + X, we have M = X. A projective
module P is called a projective cover of a module M if there exists an epimorphism
f : P −→M with Ker(f) small in P , and a ring is called semiperfect if every simple
R-module has a projective cover. For more detailed discussion on small submodules,
semiperfect rings, we refer to [1].

In this paper, a module M is defined to be principally supplemented if for all
cyclic submodule N of M , there exists a submodule X of M such that M = N +X
with N ∩X is small X, and a module M is called principally lifting if, for all cyclic
submodule N of M , there exists a decomposition M = A⊕B such that A ≤ N and
N ∩B is small in M . Principally lifting modules are considered as generalizations
of lifting modules in [9].

In section 2, various properties of principally supplemented modules are obtained
and in section 3 we study some applications our results. One of our main results
can be stated as follows:
Let M be a projective module. Then M is principally semiperfect if and only if
M is principally supplemented. Also we prove for a projective module M with
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Rad(M) small in M , M is principally supplemented if and only if M/Rad(M) is
principally semisimple.

In what follows, by Z, Q, Zn and Z/Zn we denote, respectively, integers, rational
numbers, the ring of integers modulo n and the Z-module of integers modulo n.
For unexplained concepts and notations, we refer the reader to [1, 11].

2. Small Submodules and Supplements

Let M be module. A submodule N of M is called a small(or superfluous)
submodule if, whenever M = N +X, we have M = X. Small submodule is named
superfluous submodule in [1]. We begin by stating the next lemma which is contained
in context[1, 11].

Lemma 1. Let M be a module. Then we have the following.

(1). If K is small in M and f : M → N is a homomorphism, then f(K) is
small in N . In particular, if K is small in M ⊆ N , then K is small in N .

(2). Let K1 ⊆M1 ⊆M , K2 ⊆M2 ⊆M and M = M1 ⊕M2. Then K1 ⊕K2 is
small in M1 ⊕M2 if and only if K1 is small in M1 and K2is small in M2.

(3). Let N , K be submodules of M with K is small in M and N ≤ K. Then N
is also small in M .

Lemma 2. Let N and L be submodules of M . Then the following are equivalent:
(1). M = N + L and N ∩ L is small in L.
(2). M = N + L and for any proper submodule K of L, M 6= N +K.

Proof. (1) ⇒ (2) Let N and K be submodules of M with M = N + K. Then
L = (L ∩N) +K. Since L ∩N is small in L, L = K.
(2)⇒ (1) If L = (N ∩ L) +K where K ≤ L, then M = N + L = N +K. By (2),
K = L. So N ∩ L is small in L. �

Lemma 3. If M
f→ M ′ is a homomorphism and N is a supplement in M with

Ker(f) ≤ N , then f(N) is a supplement in f(M).

Proof. Let M = N + K with N ∩ K small in K. Then f(M) = f(N + K) =
f(N) + f(K). Since Ker(f) ≤ N , we have f(N) ∩ f(K) = f(N ∩K). By Lemma
1 and being f(N ∩K) small in f(M), f(N) is a supplement of f(K) in f(M). �

Lemma 4. Let M be an R-module and K; L; N be submodules of M . Then;
(1) If K is a supplement of N in M and T is small in M then K is a supplement
of N + T in M .

(2) If M
f→ M ′ is an epimorphism with small kernel and L is a supplement of K

in M , then the submodule f(L) of M ′ is a supplement of f(K) in M ′.

Proof. (1) Let K be a supplement of N in M . Then M = N + K and N ∩K is
small in K. Then M = N + K + T . Let K = K ∩ (N + T ) + L for some L ≤ K.
Then M = N + L+ T = N + L since T is small in M . Then K = K ∩N + L. It
implies K = L sine K ∩N is small in K.
(2) Let L be a supplement of K in M . Then L is a supplement of K +Ker(f) by
(1). By Lemma 3, f(L) = f(L + Kerf) is also a supplement of f(K) in M ′. �

Note that the converse statement of Lemma 4 (2) need not be true in general.

For if Z π→ Z/2Z denotes the canonical epimorphism, then the zero submodule (0)
of Z/2Z is small in Z/2Z but π−1(0) = 2Z is not small in Z.
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A module M is distributive if for all submodules K, L, and N , N ∩ (K + L) =
N ∩K +N ∩L or N + (K ∩L) = (N +K)∩ (N +L). Lemma 5 may be very well
known and obvious but we prove it for the sake of easy reference.

Lemma 5. Let M = M1 ⊕M2 = K + N and K ≤ M1. If M is distributive and
K ∩N is small in N , then K ∩N is small in M1 ∩N .

Proof. Let M1∩N = (K ∩N)+L. Since M is distributive, N = M1∩N ⊕M2∩N .
We have M = K + N = K + M1 ∩ N + M2 ∩ N = K + L + (M2 ∩ N) and
N = K ∩N +L+ (M2 ∩N). Since K ∩N is small in N , N = L⊕ (M2 ∩N). This
and N = (N ∩M1)⊕ (N ∩M2) and L ≤M1 ∩N imply L = M1 ∩N . Hence K ∩N
is small in M1 ∩N . �

3. Principally Supplemented Modules

In a semiregular module M , every cyclic submodule mR has a direct summand
P such that M = P ⊕K, P is projective module and (mR) ∩K is small in K[12,
Theorem B.51]. In this note we introduce principally supplemented modules which
generalizing semiregular modules, principally lifting modules, also supplemented
modules.

Definition 6. Let N be a cyclic submodule of M . A submodule L is called a
principally supplement of N in M if N and L satisfy the conditions in Lemma 2
and the module M is called principally supplemented if every cyclic submodule of
M has a principally supplement in M .

Clearly, every supplemented module and every lifting module, therefore every
principally lifting module is principally supplemented. There are principally sup-
plemented modules but neither supplemented nor principally lifting.

Examples 7. (1). The Z-module Q of rational numbers has no maximal submod-
ules. Every cyclic submodule of Q is small, therefore Q is principally supplemented
Z-module. But Q is not supplemented.
(2). Consider the Z-module M = Q⊕ (Z/Z2). We prove M is principally supple-
mented module but not supplemented. Let (u, v) ∈M . We first prove that (u, v)Z
has a supplement in M . We divide the proof in some cases :
Case (i) u = 1 and v = 1. It is rutin to show that M = (1, 1)Z + (Q ⊕ (0)) and
(1, 1)Z ∩ (Q⊕ (0)) = (1, 0)Z is small in (Q⊕ (0)).
Case (ii) u = 1 and v = 0. Then (u, v)Z = (1, 0)Z is small in Q⊕ (0)).
Case (iii) u = 0 and v = 1. Then (u, v)Z = (1, 0)Z is direct summand of M .
Case (iv) u 6= 1, 0 and v = 1. Let (x, y) ∈M . We prove (x, y) ∈ (u, 1)Z+(Q⊕(0)).
For if y = 1, then (x, y) = (x, 1) = (u, 1) + (x− u, 0) ∈ (u, 1)Z + (Q⊕ (0)).
Assume that y = 0. Then (x, y) = (x, 0) = (u, 1)0 + (x, 0) ∈ (u, 1)Z + (Q ⊕ (0)).
Hence (x, y) ∈ (u, 1)Z+ (Q⊕ (0)) and so M = (u, 1)Z+ (Q⊕ (0)). Since ((u, 1)Z)∩
(Q⊕ (0)) = (2u, 0)Z and (2u, 0)Z is small in Q⊕ (0). It follows that, in either cases,
(u, v)Z has a supplement in M and M is principally supplemented Z-module.
If M were supplemented Z-module, its direct summand Q would be a supplemented
Z-module. A contradiction. So M is not supplemented.
(3). Consider the Z-modules M1 = Z/Z2 and M2 = Z/Z8. It is clear that M1

and M2 are principally supplemented. Let M = M1 ⊕M2. Then M is a princi-
pally supplemented module Z-module but not principally lifting. Let N1 = (1, 2)Z,
N2 = (1, 1)Z, N3 = (0, 2)Z, N4 = (0, 4)Z, N5 = (1, 4)Z, M1 and M2 are proper
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cyclic submodules of M . M = M1⊕M2 = N2⊕N5 and N3, N4 are small submod-
ules of M . M = N1 +N2 and N1 ∩N2 = N4 small in N2. Hence M is principally
supplemented module. Since M = N1 + N2, N1 is not small in M and it is not
a direct summand of M and does not contain any nonzero direct summand of M .
Hence M is not principally lifting.

Let M be a module. A submodule N is called fully invariant if for each endo-
morphism f of M , f(N) ≤ N . Let S = End(MR), the ring of R-endomorphisms of
M . Then M is a left S-, right R-bimodule and a principal submodule N of the right
R-module M is fully invariant if and only if N is a sub-bimodule of M . Clearly
0 and M are fully invariant submodules of M . The right R-module M is called
a duo module provided every submodule of M is fully invariant. For the readers’
convenience we state and prove Lemma 8 which is proved in [14].

Lemma 8. Let a module M =
⊕

i∈IMi be a direct sum of submodules Mi (i ∈ I)
and let N be a fully invariant submodule of M . Then N =

⊕
i∈I(N ∩Mi).

Proof. For each j ∈ I, let pj : M → Mj denote the canonical projection and let
ij : Mj → M denote inclusion. Then ijpj is an endomorphism of M and hence
ijpj(N) ⊆ N for each j ∈ I. It follows that N ⊆

⊕
j∈I ijpj(N) ⊆

⊕
j∈I(N∩Mj) ⊆

N , so that N =
⊕

j∈I(N ∩Mj). �

It is easily proved that finite direct sum of supplemented modules is again sup-
plemented. But this is not the case for principally supplemented modules. But it
is the case for some classes of modules.

Theorem 9. Let M = M1 ⊕M2 be a decomposition of M with M1 and M2 prin-
cipally supplemented modules. If M is a duo module, then M is principally supple-
mented.

Proof. Let M = M1 ⊕M2 be a duo module and mR be a submodule of M . By
Lemma 8, mR = ((mR)∩M1)⊕ ((mR)∩M2). Let m = m1 +m2 where m1 ∈M1,
m2 ∈ M2. Then m1R = (mR) ∩M1 and m2R = (mR) ∩M2. Since (mR) ∩M1

and (mR) ∩M2 are principal submodules of M1 and M2 respectively, there exist
A1 ≤M1 such that M1 = m1R+A1, (m1R)∩A1 is small in A1 and A2 ≤M2 such
that M2 = (m2R) +A2 and (m2R)∩A2 is small A2. Then M = (m1R) + (m2R) +
A1 +A2 = (mR) +A1 +A2. We prove (mR) ∩ (A1 +A2) is small in A1 +A2.

(mR) ∩ (A1 +A2) = ((mR) ∩M1 + (mR) ∩M2) ∩ (A1 +A2)

≤ (A1 ∩ (((mR) ∩M1) +M2)) + (A2 ∩ (((mR) ∩M2) +M1))

≤ ((mR) ∩M1) ∩ (A1 +M2) + ((mR) ∩M2) ∩ (A2 +M1).

On the other hand
((mR)∩M1)∩ (A1 +M2) = (m1R)∩ (A1 +M2) ≤ A1 ∩ ((m1R) +M2) ≤ (m1R)∩
(A1 +M2) implies (m1R) ∩ (A1 +M2) = A1 ∩ ((m1R) +M2) = (m1R) ∩A1.
Similarly (m2R)∩(A2+M1) = A2∩((m2R)+M1) = (m2R)∩A2. Since (m1R)∩A1

and (m2R) ∩A2 are small in A1 and A2 respectively, by Lemma 1 (2)
(m1R)∩A1+(m2R)∩A2 is small in A1+A2. Again by Lemma 1 (3) (mR)∩(A1+A2)
is small in A1 +A2. �

Theorem 10. Let M be a principally supplemented duo module. Then every direct
summand of M is a principally supplemented module.
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Proof. Let M = M1 ⊕M2 and m ∈ M1. There exists A a submodule such that
M = mR + A and (mR) ∩ A is small A. Then M1 = mR + (M1 ∩ A). By Lemma
8, A = (A ∩M1)⊕ (A ∩M2). We prove that (mR) ∩ (A ∩M1) is small in A ∩M1.
Let T be a submodule of A ∩M1 with A ∩M1 = (mR) ∩ (A ∩M1) + T . Then
A = (mR)∩ (A∩M1)+T +(A∩M2) = ((mR)∩A)+T +(A∩M2). Since (mR)∩A
is small in A, A = T ⊕ (A∩M2). It follows that T = A∩M1 that is what we have
to prove. �

Theorem 11. Let M be a principally supplemented distributive module. Then
every direct summand of M is a principally supplemented module.

Proof. Let M = M1 ⊕M2 and m ∈ M1. There exists a submodule A of M such
that M = mR + A and (mR) ∩ A is small in A. Then M1 = (mR) + (M1 ∩ A).
By Lemma 5, (mR) ∩A is small in M1 ∩A. �

For a module M , let Rad(M) denote the radical of M . A module M is said to
be a principally semisimple if every cyclic submodule is a direct summand of M .
Every semisimple module is principally semisimple. Every principally semisimple
module is principally supplemented.

Lemma 12. Let M be a principally supplemented distributive module. Then M/
Rad(M) is a principally semisimple module.

Proof. Let m ∈ M . There exists a submodule M1 such that M = mR + M1 and
(mR)∩M1 is small in M1. Then M/ Rad(M) = [(mR+Rad(M))/Rad(M)]+[(M1+
Rad(M))/Rad(M)]. Now we prove that (mR+ Rad(M))∩(M1+Rad(M)) =Rad(M).
The distributivity of M implies (mR+ Rad(M))∩ (M1+Rad(M)) = (mR)∩M1 +
RadM . Since (mR)∩M1 is small in M1, therefore small in M , (mR)∩M1 ≤ RadM.
Hence M/ Rad(M) = [(mR+Rad(M))/Rad(M)]⊕ [(M1 +Rad(M))/Rad(M)] and
so every principal submodule of M/Rad(M) is a direct summand. �

Theorem 13 may be proved easily by making use of Lemma 12 for distributive
modules. But we prove it in another way in general.

Theorem 13. Let M be a principally supplemented module. Then M = M1⊕M2,
where M1 is semisimple module and M2 is a module with Rad(M2) small in M2.

Proof. By Zorn’s Lemma we may find a submoduleM1 ofM such thatRad(M)⊕M1

is small in M . We prove M1 is semisimple. Let m ∈ M1. Since M is principally
supplemented, there exists a submodule A of M such that M = mR + A and
(mR) ∩ A is small in A. Then (mR) ∩ A = 0. Let K be a maximal submodule of
mR. If K is unique maximal submodule in mR, then it is small, therefore small
in mR and so in M . This is not possible since (mR) ∩ Rad(M) = 0. Hence there
exists x ∈ mR such that mR = K + xR. We claim that K ∩ (xR) = 0. Otherwise
let 0 6= x1 ∈ K∩(xR). By hypothesis there exists C1 such that M = x1R+C1 with
(x1R)∩C1 is small in M . So M = x1R⊕C1 since (x1R)∩C1 ≤ K ∩Rad(M) = 0.
Hence mR = x1R ⊕ ((mR) ∩ C1) and K = x1R ⊕ (K ∩ C1). If K ∩ C1 is nonzero,
let 0 6= x2 ∈ K ∩ C1. By hypothesis there exists C2 such that M = x2R+ C2 with
(x2R)∩C2 is small in M . So M = x2R⊕C2 since (x2R)∩C2 ≤ K ∩Rad(M) = 0.
Then K∩C1 = (x2R)⊕ (K∩C1∩C2). Hence mR = x1R⊕x2R⊕ ((mR)∩C1∩C2)
and K = x1R ⊕ x2R ⊕ (K ∩ C1 ∩ C2). If K ∩ C1 ∩ C2 is nonzero, similarly there
exists 0 6= x3 ∈ K ∩ C1 ∩ C2 and C3 ≤ M such that M = x3R ⊕ C3. Then
mR = x1R ⊕ x2R ⊕ x3R ⊕ ((mR) ∩ C1 ∩ C2 ∩ C3) and K = x1R ⊕ x2R ⊕ x3R ⊕
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(K ∩ C1 ∩ C2 ∩ C3). This process must terminate at a finite step, say t. At this
step mR = x1R⊕ x2R⊕ x3R⊕ ...⊕ xtR and so mR = K since at tth step we must
have K ∩C1 ∩C2 ∩ ...∩Ct ≤ (mR)∩C1 ∩C2 ∩ ...∩Ct = 0. This is a contradiction.
There exists x ∈ mR such that mR = K⊕(xR). Then xR is simple module. Hence
every cyclic submodule of M1 contains a simple submodule. As in the proof of [1,
Lemma 9.2], we may prove M1 is semisimple. �

Principally lifting modules and principally hollow modules are defined and in-
vestigated in [9]. A module M is called principally lifting if for all m ∈ M , M has
a decomposition M = N ⊕S with N ≤ mR and (mR)∩S is small in S, while M is
said to be principally hollow if every proper cyclic submodule of M is small in M .

Lemma 14. Let M be an indecomposable module. Consider following conditions :

(1) M is a principally lifting module.
(2) M is a principally hollow module.
(3) M is a principally supplemented module.

Then (1)⇔(2) and (2)⇒ (3).

Proof. (1)⇒(2) Let m ∈ M . By (1) there exists a submodule A of mR such that
M = A⊕B and (mR)∩B is small in B. By hypothesis A = 0 or A = M . If A = 0
then mR is small in M . Otherwise mR = M . Let K be a maximal submodule
of M . Let k ∈ K. Then kR is small in M ; for there exists a submodule C of kR
such that M = C ⊕D and (kR) ∩D is small in D. By hypothesis C must be zero
since K is maximal. Every cyclic submodule of K is small. Let x ∈ M \K. Then
M = K+xR. Let X be a direct summand of M with X ≤ xR with M = X⊕Y for
some Y ≤M and (xR)∩Y small in Y . Again by hypothesis X is zero or X = M . If
X is zero then xR is small in M and so K = M . A contradiction. Assume X = M
then xR = M and so K is small in M . Thus every cyclic submodule of M is small
in M .

(2)⇔(1) Let m ∈ M . Then mR is small in M . In this case we take A = 0 and
B = M to show that M = A⊕B, A ≤ mR and (mR) ∩B is small in B.

(2)⇔(3) Let m ∈ M . By (2) each cyclic submodule is hollow. Then M =
(mR) +M and (mR) ∩M is small in M . So M is a principally supplemented. �

Note that Lemma 14 (3)⇒ (2) does not hold in general. There exists an inde-
composable principally supplemented module but not principally hollow.

Example 15. Let F be a field and x and y commuting indeterminates over F .
Consider the polynomial ring R = F [x, y], the ideals I1 = (x2) and I2 = (y2) of R,
and the ring S = R/(x2, y2). Let M = xS + yS. Then M is an indecomposable
S-module, principally supplemented but not principally hollow.

A module M is called refinable if for any submodule U , V of M with M = U+V
there is a direct summand U ′ of M such that U ′ ⊆ U and M = U ′+V (See namely
[?]).

Let M be a module. M is called a weakly principally supplemented module if for
each m ∈ M there exists a submodule A such that M = mR + A and (mR) ∩ A
is small in M . Every weakly supplemented module is weakly principally supple-
mented. The module M is called a ⊕-principally supplemented if for each m ∈ M
there exists a direct summand A of M such that M = mR + A and (mR) ∩ A
is small in A. ⊕-supplemented modules are studied in[4]. Every ⊕-supplemented
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module is ⊕-principally supplemented and it is evident that every ⊕-principally
supplemented is weakly principally supplemented. In a subsequent paper the au-
thors investigates the interconnections between principally supplemented modules,
weakly principally supplemented modules and ⊕-principally supplemented modules
in detail. Recall that a module M is said to have the summand sum property if
the sum of any two direct summands of M is again a direct summand of M . The
summand sum property was studied by J. L. Garcia [2], who characterized modules
with the summand sum property.

Theorem 16. Let M be a refinable module. Consider following conditions
(1) M is principally lifting.
(2) M is principally ⊕-supplemented.
(3) M is principally supplemented.
(4) M is principally weak supplemented.
Then (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (2).
If M has the summand sum property then (4) ⇒ (1).

Proof. By definitions (1) ⇒ (2) ⇒ (3) ⇒ (4) always hold.
(4) ⇒ (2) Let M be a principally weak supplemented module and m ∈ M . By

(4) there exists a submodule A of M such that M = mR + A and (mR) ∩ A is
small in M . By hypothesis there exists a direct summand U of M with U ≤ A and
M = mR + U = U ′ ⊕ U for some submodule U ′ of M . We claim that (mR) ∩ U
is small in U . For if (mR) ∩ U + L = U for some submodule L of U , then M =
U ′ + ((mR) ∩ U) + L = U ′ ⊕ L as (mR) ∩ U is small in M . Hence L = U . Hence
M is principally ⊕-supplemented.

(4) ⇒ (1) Assume that M has the summand sum property and let m ∈ M . By
(4) there exists a submodule A such that M = mR+A and (mR)∩A is small in M .
By hypothesis there exists a direct summand U1 of M such that U1 is contained in
A and M = mR+U1 = U ′1⊕U1. Since U1 is direct summand and (mR)∩A is small
in M , (mR)∩U1 is small in U1. Again by hypothesis there exists a direct summand
U2 of M such that U2 is contained in mR and M = U2 + U1 = U2 ⊕ U ′2. By the
summand sum property U2 ∩U1 is a direct summand of M , M = (U2 ∩U1)⊕K for
some submodule K of M . Then U1 = (U2∩U1)⊕ (K∩U1) and M = U2⊕ (K∩U1).
It is evident that (mR) ∩ (K ∩ U1) is small in K ∩ U1 since (mR) ∩ (K ∩ U1) ≤
(mR)∩U1 ≤ U1 and (mR)∩U1 is small in U1, (mR)∩ (K ∩U1) is small in U1 and
so small in K ∩ U1 as K ∩ U1 is direct summand of M . �

4. Applications

In this section, we introduce and study some properties of principally semiperfect
modules. A projective module P is called a projective cover of a module M if
there exists an epimorphism f : P −→ M with Kerf is small in P , and a ring is
called perfect (or semiperfect) if every R-module (or every simple R-module) has
a projective cover. For more detailed discussion on small submodules, perfect and
semiperfect rings. A module M is called principally semiperfect if every factor
module of M by a cyclic submodule has a projective cover. A ring R is called
principally semiperfect in case the right R-module R is principally semiperfect.
Every semiperfect module is principally semiperfect.

Theorem 17. Let M be a projective module. Then following conditions are equiv-
alent.
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(1) M is principally semiperfect.
(2) M is principally supplemented.

Proof. (1)⇒ (2) Let m ∈ M . By (1) M/mR has a projective cover P
f→ M/mR.

There exists P
g→ M such that f = πg, where M

π→ M/mR is the natural epi-
morphism. Let m ∈ M . There exists x ∈ P such that π(m) = f(x) since f is
epimorphism. So π(m) = f(x) = π(g(x)) and then m − g(x) ∈ Ker(π) = mR.
Hence M = g(P )+mR. We prove g(P )∩ (mR) is small in g(P ). It suffices to show
that g(P ) ∩ (mR) = g(Ker(f) since Ker(f) is small in P and any homomorphic
image of small modules is small under epimorphic maps. Let x ∈ Ker(f). Then
πg(x) = f(x) = 0. So g(x) ∈ Ker(π) = mR. Hence g(Ker(f) ≤ g(P ) ∩ (mR).
Let mr ∈ g(P ) ∩ (mR) and g(x) = mr for some x ∈ P . Then f(x) = π(g(x)) =
π(mr) = 0. Hence x ∈ Ker(f) and so g(P ) ∩ (mR) ≤ g(Ker(f). It follows that
g(P ) ∩ (mR) = g(Ker(f) and g(P ) is a complement of mR.

(2)⇒ (1) Let m ∈M . By (2) there exists a submodule A such that M = mR+A

such that (mR) ∩ A is small in A. Let M
f→ M/(mR) defined by f(y) = a where

y = mr + a with mr ∈ mR, a ∈ A, and M
π→ M/(mR) the natural epimorphism.

There exists M
g→ M such that fg = π. Then M = g(M) + (mR) ∩ A. Hence

M = g(M) ∼= M/Ker(g). Since M is projective M =Ker(f)⊕B and B is projective.
Let (fg)B denote the restriction of fg on B. Then Ker(fg)B = (mR) ∩ A and so

B
(fg)B→ M/(mR) is a projective cover of M . �

Let R be a module. R is called semiregular ring if every cyclicly presented R-
module has a projective cover. We give a complete proof to Theorem 18 for the
convenience of the reader.

Theorem 18. Let R be a ring. The following conditions are equivalent :

(1) R is principally semiperfect.
(2) R is principally lifting.
(3) R is semiregular.
(4) R is principally supplemented.

Proof. (1) ⇒ (2) Let x ∈ R. By (1) R/xR has a projective cover P
f→ R/xR so

that Ker(f) is small in P . Let R
π→ R/xR be the natural epimorphism. Then there

exists a map g such that f = πg. Then R = g(P )+xR and g(P )∩(xR) = g(Ker(f))
is small in g(P ) since homomorphic images of small submodules are small.

(2) ⇒ (3) Assume that R is principally lifting. Let x ∈ R. Then there exists a
direct summand right ideal A of R such that R = A⊕B and (xR) ∩B is small in
B. Then xR = A⊕ (xR) ∩ B and (xR) ∩ B is δ-small in M . By [?, Theorem 3.5]
R is semiregular.

(3) ⇒ (4) Assume that R is semiregular. Let x ∈ R and π : R→ R/xR natural
epimorphism. By hypothesis R/xR has a projective cover f : P → R/xR. There
exists g : P → R such that f = πg. Then R = g(P ) + xR) and g(P ) ∩ (xR) is
small in g(P ) since g(P ) ∩ (xR) = g(Ker(f) and Ker(f) is small in P . Hence R is
principally supplemented.

(4) ⇒ (1) Clear from Theorem 17. �
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Example 19. Let R =

{[
x y
0 z

]
| x, y, z ∈ Z4

}
denote the ring of upper trian-

gular matrices over integers. It is easy to check that principal right ideals of R are
either small in R or direct summands of R. Hence R is principally supplemented
right R-module. Let e12 denote the matrix unit having 1 at (1, 2) and zero else-
where. Let I = e12R. Then I is small right ideal and Jacobson radical J(R) of R is
equal to I. Hence R/J(R) is not semisimple. Therefore R is not semiperfect ring.

Theorem 20. Let M be a projective module with Rad(M) is small in M . Consider
following conditions :

(1) M is principally supplemented.
(2) M/Rad(M) is principally semisimple.

Then (1)⇒ (2). If M is refinable module then (2)⇒ (1).

Proof. (1)⇒ (2) Since P is a principally supplemented module, P/Rad(P ) is prin-
cipally semisimple by Lemma 12. (2)⇒ (1) Let mR be any cyclic submodule of P .
By (2) There exists a submodule U of P such that

P/ Rad(P ) = [((mR)+Rad(P ))/Rad(P )]⊕ [U/ Rad(P )].

Then P = (mR) + U and ((mR)+Rad(P )) ∩ U = (mR) ∩ U+ Rad(P )] = Rad(P ).
Since P = (mR) + U , being M refinable there exists a direct summand A of M
such that A ≤ U and M = (mR) + U = (mR) +A = B ⊕A. (mR) ∩ U is small in
M so it is small in U since U is direct summand. this completes the proof. �
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