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PRINCIPALLY SUPPLEMENTED MODULES

UMMAHAN ACAR AND ABDULLAH HARMANCI

ABSTRACT. In this paper, principally supplemented modules are defined as
generalizations of lifting, principally lifting and supplemented modules. Sev-
eral properties of these modules are proved. New characterizations of princi-
pally semiperfect rings are obtained using principally supplemented modules.

1. INTRODUCTION

Throughout this paper R denotes a ring with unity. Modules are unital right
R—modules. Let M be a module and N, K be submodules of M. We call K a
supplement of N in M if M = K + N and K NN is small in K. A module M is
called supplemented if every submodule of M has a supplement in M. A module
M is called lifting if, for all N < M, there exists a decomposition M = A& B such
that A < N and NN B is small in M. Supplemented and lifting modules have been
discussed by several authors(see [7], [8], [9], [13] ) and these modules are useful in
characterizing semiperfect rings(see [1]).

In this paper, principally supplemented modules are discovered as analogous of
lifting and supplemented modules, and used to characterize principally semiperfect
rings introduced in chapter 3 and discussed in [6].

Let M be a module and N a submodule module M. N is called a small(or
superfluous) submodule if whenever M =N + X, we have M = X. A projective
module P is called a projective cover of a module M if there exists an epimorphism
f: P — M with Ker(f) small in P, and a ring is called semiperfect if every simple
R-module has a projective cover. For more detailed discussion on small submodules,
semiperfect rings, we refer to [1].

In this paper, a module M is defined to be principally supplemented if for all
cyclic submodule N of M, there exists a submodule X of M such that M = N+ X
with NN X is small X, and a module M is called principally lifting if, for all cyclic
submodule N of M, there exists a decomposition M = A& B such that A < N and
N N B is small in M. Principally lifting modules are considered as generalizations
of lifting modules in [9].

In section 2, various properties of principally supplemented modules are obtained
and in section 3 we study some applications our results. One of our main results
can be stated as follows:

Let M be a projective module. Then M is principally semiperfect if and only if
M is principally supplemented. Also we prove for a projective module M with

2000 Mathematics Subject Classification. 16L30; 16E50.
Key words and phrases. principally lifting module, principally supplemented module.

(©2008 Aulona Press (Albanian J. Math.)
79



80 UMMAHAN ACAR AND ABDULLAH HARMANCI

Rad(M) small in M, M is principally supplemented if and only if M/Rad(M) is
principally semisimple.

In what follows, by Z, Q, Z,, and Z/Zn we denote, respectively, integers, rational
numbers, the ring of integers modulo n and the Z-module of integers modulo n.
For unexplained concepts and notations, we refer the reader to [1, 11].

2. SMALL SUBMODULES AND SUPPLEMENTS

Let M be module. A submodule N of M is called a small(or superfluous)
submodule if, whenever M = N + X, we have M = X. Small submodule is named
superfluous submodule in [1]. We begin by stating the next lemma which is contained
in context[1, 11].

Lemma 1. Let M be a module. Then we have the following.

(1). If K is small in M and f : M — N is a homomorphism, then f(K) is
small in N. In particular, if K is small in M C N, then K is small in N.

(2) LetK1 g M1 g M, KQ Q MQ Q M and M = Ml@MQ. Then Kl@KQ 8
small in My @& Mo if and only if K1 is small in My and Kyis small in Ms.

(3). Let N, K be submodules of M with K is small in M and N < K. Then N
18 also small in M.

Lemma 2. Let N and L be submodules of M. Then the following are equivalent:
(1). M=N+L and NN L is small in L.
(2). M = N+ L and for any proper submodule K of L, M # N + K.

Proof. (1) = (2) Let N and K be submodules of M with M = N + K. Then
L=(LNN)+K. Since LN N issmallin L, L = K.

2)= 1) IL=(NNL)+ K where K < L, then M = N+ L =N + K. By (2),
K =1L.So NNLissmallin L. O

Lemma 3. If M i) M’ is a homomorphism and N is a supplement in M with
Ker(f) < N, then f(N) is a supplement in f(M).

Proof. Let M = N + K with NN K small in K. Then f(M) = f(N+ K) =
f(N)+ f(K). Since Ker(f) < N, we have f(N)N f(K) = f(NNK). By Lemma
1 and being f(N N K) small in f(M), f(N) is a supplement of f(K) in f(M). O

Lemma 4. Let M be an R-module and K; L; N be submodules of M. Then;
(1) If K is a supplement of N in M and T is small in M then K is a supplement
of N+ T in M.

(2) If M B M is an epimorphism with small kernel and L is a supplement of K
in M, then the submodule f(L) of M’ is a supplement of f(K) in M'.

Proof. (1) Let K be a supplement of N in M. Then M = N + K and NN K is
small in K. Then M = N+ K+ T. Let K = KN(N+T)+ L for some L < K.
Then M = N+ L+T =N + Lsince T is small in M. Then K = KNN+ L. It
implies K = L sine K N N is small in K.

(2) Let L be a supplement of K in M. Then L is a supplement of K + Ker(f) by
(1). By Lemma 3, f(L) = f(L + Kerf) is also a supplement of f(K) in M’. O

Note that the converse statement of Lemma 4 (2) need not be true in general.

For if Z ™ 7Z,/27 denotes the canonical epimorphism, then the zero submodule (0)
of Z/2Z is small in Z/2Z but 7=1(0) = 2Z is not small in Z.



PRINCIPALLY SUPPLEMENTED MODULES 81

A module M is distributive if for all submodules K, L, and N, NN (K + L) =
NNK+NNLor N+ (KNL)=(N+K)N(N+L). Lemma 5 may be very well
known and obvious but we prove it for the sake of easy reference.

Lemma 5. Let M = My & My = K+ N and K < M. If M s distributive and
K NN is small in N, then K NN is small in M1 N N.

Proof. Let MiNN = (KNN)+ L. Since M is distributive, N = My NN @® MsNN.
We have M = K+ N = K+ M NN+ MNN = K+ L+ (MyNN) and
N=KNN+L+ (M2NN). Since KNN issmall in N, N =L@ (My;NN). This
and N =(NNM;)®(NNMy)and L < M;NN imply L = M; N N. Hence KNN
is small in M; N N. O

3. PRINCIPALLY SUPPLEMENTED MODULES

In a semiregular module M, every cyclic submodule mR has a direct summand
P such that M = P @ K, P is projective module and (mR) N K is small in K[12,
Theorem B.51]. In this note we introduce principally supplemented modules which
generalizing semiregular modules, principally lifting modules, also supplemented
modules.

Definition 6. Let N be a cyclic submodule of M. A submodule L is called a
principally supplement of N in M if N and L satisfy the conditions in Lemma 2
and the module M is called principally supplemented if every cyclic submodule of
M has a principally supplement in M.

Clearly, every supplemented module and every lifting module, therefore every
principally lifting module is principally supplemented. There are principally sup-
plemented modules but neither supplemented nor principally lifting.

Examples 7. (1). The Z-module Q of rational numbers has no maximal submod-
ules. Every cyclic submodule of Q is small, therefore Q is principally supplemented
Z-module. But Q is not supplemented.

(2). Consider the Z-module M = Q @ (Z/Z2). We prove M is principally supple-
mented module but not supplemented. Let (u,v) € M. We first prove that (u,7)Z
has a supplement in M. We divide the proof in some cases :

Case (i) v =1 and v = 1. It is rutin to show that M = (1,1)Z + (Q & (0)) and
(1,1)ZN(Q® (0)) = (1,0)Z is small in (Q & (0)).

Case (ii) v =1 and v = 0. Then (u,?7)Z = (1,0)Z is small in Q & (0)).

Case (iii) v = 0 and v = 1. Then (u,?)Z = (1,0)Z is direct summand of M.
Case (iv) u # 1,0 and v = 1. Let (z,7) € M. We prove (z,7) € (u,1)Z+(Q&(0)).
For if y =1, then (z,7) = (2,1) = (u, 1) + (z — u,0) € (u,1)Z + (Q & (0)).
Assume that 7 = 0. Then (z,7) = (z,0) = (u,1)0 + (2,0) € (u,1)Z + (Q ® (0)).
Hence (z,7) € (u,1)Z+ (Q® (0)) and so M = (u,1)Z+ (Q® (0)). Since ((u,1)Z)N
(Q®(0)) = (2u,0)Z and (2u,0)Z is small in Q& (0). It follows that, in either cases,
(u,7)Z has a supplement in M and M is principally supplemented Z-module.

If M were supplemented Z-module, its direct summand Q would be a supplemented
Z-module. A contradiction. So M is not supplemented.

(3). Consider the Z-modules My = Z/Z2 and My = Z/7Z8. 1t is clear that M;
and M, are principally supplemented. Let M = M; & M5. Then M is a princi-
pally supplemented module Z-module but not principally lifting. Let Ny = (1,2)Z,
Ny = (1,1)Z, N3 = (0,2)Z, Ny = (0,4)Z, N5 = (1,4)Z, M, and My are proper
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cyclic submodules of M. M = M; & My = Ny & N5 and N3, Ny are small submod-
ules of M. M = N; + Ny and N; N Ny = N4 small in Ny. Hence M is principally
supplemented module. Since M = Nj + N3, Nj is not small in M and it is not
a direct summand of M and does not contain any nonzero direct summand of M.
Hence M is not principally lifting.

Let M be a module. A submodule N is called fully invariant if for each endo-
morphism f of M, f(N) < N. Let S = End(Mg), the ring of R-endomorphisms of
M. Then M is aleft S-, right R-bimodule and a principal submodule N of the right
R-module M is fully invariant if and only if N is a sub-bimodule of M. Clearly
0 and M are fully invariant submodules of M. The right R-module M is called
a duo module provided every submodule of M is fully invariant. For the readers’
convenience we state and prove Lemma 8 which is proved in [14].

Lemma 8. Let a module M = @,;
and let N be a fully invariant submodule of M. Then N = &P

M; be a direct sum of submodules M; (i € I)
iEI(N N Mz)

Proof. For each j € I, let p; : M — M, denote the canonical projection and let
i;j : M; — M denote inclusion. Then ¢;p; is an endomorphism of M and hence
ijpj(N) € N for each j € I. It follows that N C @, i;p;(N) C @, (NNM;) C
N, so that N =, (N N Mj). O

It is easily proved that finite direct sum of supplemented modules is again sup-
plemented. But this is not the case for principally supplemented modules. But it
is the case for some classes of modules.

Theorem 9. Let M = My & My be a decomposition of M with My and Ms prin-
cipally supplemented modules. If M is a duo module, then M is principally supple-
mented.

Proof. Let M = M; & My be a duo module and mR be a submodule of M. By
Lemma 8, mR = ((mR) N M;) @ ((mR) N Mz). Let m = my + mo where m; € My,
mg € My. Then miR = (mR) N M; and meR = (mR) N M. Since (mR) N M;
and (mR) N My are principal submodules of M; and M; respectively, there exist
Ay < My such that My = myR+ Ay, (miR)N Ay is small in A; and A < Mj such
that My = (maR) + Ay and (mgR) N Ag is small Ay. Then M = (m1R) + (moR) +
A; + Ay = (mR) + Ay + As. We prove (mR) N (A1 + Ag) is small in A; + As.

(mR) n (Al + AQ) = ((mR) N M; + (mR) n Mz) n (Al + AQ)
(A1 N (((mR) N My) + Ma)) + (A2 N ((mR) N Ma) + M)

<
< ((mR)NM;)N (A + Ma) + ((mR) N My) N (A + My).

On the other hand

((’/TLR) n Ml) N (A1 + MQ) = (mlR) N (Al + Mg) < AN ((mlR) + Mg) < (mlR) N
(A1 + Mg) implies (mlR) N (A1 + Mg) = A1 N ((mlR) + MQ) = (mlR) N Al.
Similarly (meR)N(A2+ M) = AoN((maR)+M;) = (maR)NAs. Since (mi1R)NA,
and (msR) N Ay are small in A; and As respectively, by Lemma 1 (2)
(m1R)NA1+(maR)NAsg is small in A;+As. Again by Lemma 1 (3) (mR)N(A;+Az2)
is small in A7 + As. O

Theorem 10. Let M be a principally supplemented duo module. Then every direct
summand of M is a principally supplemented module.
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Proof. Let M = My, & My and m € M;. There exists A a submodule such that
M =mR+ A and (mR) N A is small A. Then M; = mR + (M; N A). By Lemma
8, A= (ANM;)® (AN M;y). We prove that (mR) N (AN M) is small in AN M.
Let T be a submodule of AN M; with ANM; = (mR)N (AN M;)+T. Then
A= (mR)N(ANM)+T+(ANM) = ((mR)NA)+T+(ANMy). Since (mR)NA
issmall in A, A =T @ (AN My). It follows that T'= AN M; that is what we have
to prove. ([

Theorem 11. Let M be a principally supplemented distributive module. Then
every direct summand of M is a principally supplemented module.

Proof. Let M = My & My and m € M;. There exists a submodule A of M such
that M = mR + A and (mR) N A is small in A. Then M; = (mR) + (M; N A).
By Lemma 5, (mR) N A is small in M; N A. O

For a module M, let Rad(M) denote the radical of M. A module M is said to
be a principally semisimple if every cyclic submodule is a direct summand of M.
Every semisimple module is principally semisimple. Every principally semisimple
module is principally supplemented.

Lemma 12. Let M be a principally supplemented distributive module. Then M/
Rad(M) is a principally semisimple module.

Proof. Let m € M. There exists a submodule M; such that M = mR + M; and
(mR)NM; is small in M;. Then M/ Rad(M) = [(mR+Rad(M))/Rad(M)]+[(M1+
Rad(M))/Rad(M)]. Now we prove that (mR+ Rad(M))N(M1+Rad(M)) =Rad(M).
The distributivity of M implies (mR+ Rad(M)) N (M;+Rad(M)) = (mR) N M7 +
RadM. Since (mR)NM; is small in My, therefore small in M, (mR)NM; < RadM.
Hence M/ Rad(M) = [(mR+Rad(M))/Rad(M)] @ [(M; +Rad(M))/Rad(M)] and
so every principal submodule of M/Rad(M) is a direct summand. O

Theorem 13 may be proved easily by making use of Lemma 12 for distributive
modules. But we prove it in another way in general.

Theorem 13. Let M be a principally supplemented module. Then M = My ® M,
where My is semisimple module and My is a module with Rad(Ms) small in M.

Proof. By Zorn’s Lemma we may find a submodule M; of M such that Rad(M )®M;
is small in M. We prove M is semisimple. Let m € M;. Since M is principally
supplemented, there exists a submodule A of M such that M = mR + A and
(mR) N A is small in A. Then (mR) N A = 0. Let K be a maximal submodule of
mR. If K is unique maximal submodule in mR, then it is small, therefore small
in mR and so in M. This is not possible since (mR) N Rad(M) = 0. Hence there
exists ¢ € mR such that mR = K 4+ 2R. We claim that K N (zR) = 0. Otherwise
let 0 # 21 € KN (xzR). By hypothesis there exists Cy such that M = 21 R+ C with
(x1R)NCy is small in M. So M = 21 R® C; since (x1R)NCy < KN Rad(M) = 0.
Hence mR =21R® (mR)NCy) and K = z1R® (K NCy). If KN} is nonzero,
let 0 # x5 € K N C;. By hypothesis there exists Cy such that M = xR + Cy with
(x2R)NCy is small in M. So M = 29R ® Cs since (x2R)NCy < K N Rad(M) = 0.
Then KﬂCl = (I‘QR) D (KﬂCl ﬂCQ). Hence mR = le@l'gR@ ((mR) ﬂCl ﬂCg)
and K = x1R® 2o R® (KN CyNCy). If KN CpNCCy is nonzero, similarly there
exists 0 # 23 € KNC; NCs and C3 < M such that M = z3R @ C3. Then
mR=21R® a1 RP 3R P ((mR) NCiNCyN Cg) and K =21 R® 2o R® 23R &
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(KNCyNCyNnC3). This process must terminate at a finite step, say ¢t. At this
step mR=11R®2oRP 23R P ... ® xR and so mR = K since at t" step we must
have KNC1NCyN...NCy < (mR)NC1NCyN...NCy = 0. This is a contradiction.
There exists © € mR such that mR = K @ (zR). Then zR is simple module. Hence
every cyclic submodule of M; contains a simple submodule. As in the proof of [1,
Lemma 9.2], we may prove M; is semisimple. O

Principally lifting modules and principally hollow modules are defined and in-
vestigated in [9]. A module M is called principally lifting if for all m € M, M has
a decomposition M = N @ S with N < mR and (mR)N.S is small in S, while M is
said to be principally hollow if every proper cyclic submodule of M is small in M.

Lemma 14. Let M be an indecomposable module. Consider following conditions :
(1) M is a principally lifting module.
(2) M is a principally hollow module.

(3) M is a principally supplemented module.

Then (1)<(2) and (2)= (3).

Proof. (1)=(2) Let m € M. By (1) there exists a submodule A of mR such that
M = A® B and (mR)N B is small in B. By hypothesis A=0or A=M.If A=0
then mR is small in M. Otherwise mR = M. Let K be a maximal submodule
of M. Let k € K. Then kR is small in M; for there exists a submodule C' of kR
such that M = C @ D and (kR) N D is small in D. By hypothesis C' must be zero
since K is maximal. Every cyclic submodule of K is small. Let € M \ K. Then
M = K+zR. Let X be a direct summand of M with X < zR with M = X @Y for
some Y < M and (zR)NY small in Y. Again by hypothesis X is zero or X = M. If
X is zero then zR is small in M and so K = M. A contradiction. Assume X = M
then xR = M and so K is small in M. Thus every cyclic submodule of M is small
in M.

(2)<(1) Let m € M. Then mR is small in M. In this case we take A = 0 and
B = M to show that M = A® B, A < mR and (mR)N B is small in B.

(2)<(3) Let m € M. By (2) each cyclic submodule is hollow. Then M =
(mR) + M and (mR)N M is small in M. So M is a principally supplemented. [

Note that Lemma 14 (3)= (2) does not hold in general. There exists an inde-
composable principally supplemented module but not principally hollow.

Example 15. Let F be a field and x and y commuting indeterminates over F'.
Consider the polynomial ring R = F[z,y], the ideals I; = (2?) and I = (y?) of R,
and the ring S = R/(2?,y%). Let M = TS +5S. Then M is an indecomposable
S-module, principally supplemented but not principally hollow.

A module M is called refinable if for any submodule U, V of M with M =U+V
there is a direct summand U’ of M such that U’ C U and M = U’ + V (See namely
7).

Let M be a module. M is called a weakly principally supplemented module if for
each m € M there exists a submodule A such that M = mR + A and (mR) N A
is small in M. Every weakly supplemented module is weakly principally supple-
mented. The module M is called a ®-principally supplemented if for each m € M
there exists a direct summand A of M such that M = mR+ A and (mR)N A
is small in A. @®-supplemented modules are studied in[4]. Every @®-supplemented
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module is @-principally supplemented and it is evident that every é-principally
supplemented is weakly principally supplemented. In a subsequent paper the au-
thors investigates the interconnections between principally supplemented modules,
weakly principally supplemented modules and @-principally supplemented modules
in detail. Recall that a module M is said to have the summand sum property if
the sum of any two direct summands of M is again a direct summand of M. The
summand sum property was studied by J. L. Garcia [2], who characterized modules
with the summand sum property.

Theorem 16. Let M be a refinable module. Consider following conditions
(1) M is principally lifting.

(2) M is principally ®-supplemented.

(3) M is principally supplemented.

(4) M is principally weak supplemented.

Then (1) = (2) = (3) = (4) = (2).

If M has the summand sum property then (4) = (1).

Proof. By definitions (1) = (2) = (3) = (4) always hold.

(4) = (2) Let M be a principally weak supplemented module and m € M. By
(4) there exists a submodule A of M such that M = mR + A and (mR) N A is
small in M. By hypothesis there exists a direct summand U of M with U < A and
M =mR+U =U'®U for some submodule U’ of M. We claim that (mR) N U
is small in U. For if (mR) N U + L = U for some submodule L of U, then M =
U+ (mR)NU)+L=U"®Las (mR)NU is small in M. Hence L = U. Hence
M is principally @-supplemented.

(4) = (1) Assume that M has the summand sum property and let m € M. By
(4) there exists a submodule A such that M = mR+ A and (mR)N A is small in M.
By hypothesis there exists a direct summand U; of M such that U; is contained in
Aand M =mR+U; = U{®U;. Since U; is direct summand and (mR)N A is small
in M, (mR)NU; is small in U;. Again by hypothesis there exists a direct summand
Us of M such that Us is contained in mR and M = Uy + Uy = Us @ Uj. By the
summand sum property Us N U is a direct summand of M, M = (UsNU;) @ K for
some submodule K of M. Then Uy = (UsNU;)® (KNUy) and M = Us & (KNUy).
It is evident that (mR) N (K NU;) is small in K NU; since (mR) N (K NU;p) <
(mR)NU; < Uy and (mR)NUy is small in Uy, (mR) N (K NUy) is small in U; and
so small in K NU; as K NU; is direct summand of M. O

4. APPLICATIONS

In this section, we introduce and study some properties of principally semiperfect
modules. A projective module P is called a projective cover of a module M if
there exists an epimorphism f : P — M with Kerf is small in P, and a ring is
called perfect (or semiperfect) if every R-module (or every simple R-module) has
a projective cover. For more detailed discussion on small submodules, perfect and
semiperfect rings. A module M is called principally semiperfect if every factor
module of M by a cyclic submodule has a projective cover. A ring R is called
principally semiperfect in case the right R-module R is principally semiperfect.
Every semiperfect module is principally semiperfect.

Theorem 17. Let M be a projective module. Then following conditions are equiv-
alent.
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(1) M is principally semiperfect.
(2) M is principally supplemented.

Proof. (1)= (2) Let m € M. By (1) M/mR has a projective cover P EN M/mR.
There exists P % M such that f = mg, where M = M/mR is the natural epi-
morphism. Let m € M. There exists « € P such that w(m) = f(z) since f is
epimorphism. So 7(m) = f(z) = n(g(x)) and then m — g(z) € Ker(n) = mR.
Hence M = g(P)+ mR. We prove g(P)N(mR) is small in g(P). It suffices to show
that g(P) N (mR) = g(Ker(f) since Ker(f) is small in P and any homomorphic
image of small modules is small under epimorphic maps. Let € Ker(f). Then
wg(x) = f(x) = 0. So g(z) € Ker(mr) = mR. Hence g(Ker(f) < g(P) N (mR).
Let mr € g(P) N (mR) and g(x) = mr for some & € P. Then f(z) = n(g(z)) =
m(mr) = 0. Hence x € Ker(f) and so g(P) N (mR) < g(Ker(f). It follows that
g(P)N (mR) = g(Ker(f) and g(P) is a complement of mR.

(2)= (1) Let m € M. By (2) there exists a submodule A such that M = mR+ A

such that (mR) N A is small in A. Let M ER M/(mR) defined by f(y) = a where
y = mr + a with mr € mR, a € A, and M = M/(mR) the natural epimorphism.
There exists M < M such that fg = m. Then M = g(M) + (mR) N A. Hence
M = g(M) = M/Ker(g). Since M is projective M =Ker(f)® B and B is projective.
Let (fg)p denote the restriction of fg on B. Then Ker(fg)p = (mR) N A and so

B e M/(mR) is a projective cover of M. O

Let R be a module. R is called semiregular ring if every cyclicly presented R-
module has a projective cover. We give a complete proof to Theorem 18 for the
convenience of the reader.

Theorem 18. Let R be a ring. The following conditions are equivalent :

(1) R is principally semiperfect.
(2) R is principally lifting.

(3) R is semiregular.

(4) R is principally supplemented.

Proof. (1) = (2) Let x € R. By (1) R/xzR has a projective cover P g, R/xR so
that Ker(f) is small in P. Let R = R/2R be the natural epimorphism. Then there
exists a map g such that f = wg. Then R = g(P)+zR and g(P)N(zR) = g(Ker(f))
is small in g(P) since homomorphic images of small submodules are small.

(2) = (3) Assume that R is principally lifting. Let € R. Then there exists a
direct summand right ideal A of R such that R = A @ B and (zR) N B is small in
B. Then zR = A® (zR) N B and (zR) N B is §-small in M. By [?, Theorem 3.5]
R is semiregular.

(3) = (4) Assume that R is semiregular. Let x € R and 7 : R — R/xzR natural
epimorphism. By hypothesis R/xR has a projective cover f : P — R/xR. There
exists g : P — R such that f = mg. Then R = ¢g(P)+ zR) and ¢g(P) N (zR) is
small in g(P) since g(P) N (zR) = g(Ker(f) and Ker(f) is small in P. Hence R is
principally supplemented.

(4) = (1) Clear from Theorem 17. O
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Example 19. Let R = { { ﬁ Z } | z,y,z € Zy p denote the ring of upper trian-

gular matrices over integers. It is easy to check that principal right ideals of R are
either small in R or direct summands of R. Hence R is principally supplemented
right R-module. Let e denote the matrix unit having 1 at (1,2) and zero else-
where. Let I = ejaR. Then [ is small right ideal and Jacobson radical J(R) of R is
equal to I. Hence R/J(R) is not semisimple. Therefore R is not semiperfect ring.

Theorem 20. Let M be a projective module with Rad(M) is small in M. Consider
following conditions :

(1) M is principally supplemented.
(2) M/Rad(M) is principally semisimple.

Then (1)= (2). If M is refinable module then (2)= (1).

Proof. (1)= (2) Since P is a principally supplemented module, P/Rad(P) is prin-
cipally semisimple by Lemma 12. (2)= (1) Let mR be any cyclic submodule of P.
By (2) There exists a submodule U of P such that

P/ Rad(P) = [((mR)+Rad(P))/Rad(P)] & [U/ Rad(P)].

Then P = (mR) 4+ U and ((mR)+Rad(P))NU = (mR) NU+ Rad(P)] = Rad(P).
Since P = (mR) + U, being M refinable there exists a direct summand A of M
such that A <U and M = (mR)+U = (mR)+ A=B® A. (mR)NU is small in
M so it is small in U since U is direct summand. this completes the proof. (|
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