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ITERATIVE METHODS FOR GENERAL NONCONVEX
VARIATIONAL INEQUALITIES

MUHAMMAD ASLAM NOOR

Abstract. In this paper, we introduce and consider some new classes of vari-

ational inequalities and the Wiener-Hopf equations. Using the projection tech-
nique, we establish the equivalence between the general nonconvex variational

inequalities and the fixed point problems as well as the Wiener-Hopf equa-

tions. This alternative equivalent formulation is used to study the existence
of a solution of the general convex variational inequalities. This equivalence is

used to suggest and analyzed several projection iterative methods for solving

the general nonconvex variational inequalities. Convergence criteria of these
new iterative is also discussed under suitable conditions. Our method of proofs

is very simple as compared with other techniques.

1. Introduction

Variational inequalities theory, which was introduced in early sixties, has emerged
as an interesting and fascinating field of mathematical and engineering sciences. It
is tool of great power that can be applied to a wide variety of problems, which
arise in almost all branches of pure, applied, physical, regional and engineering
sciences. It have been shown that the variational inequalities provide the most
natural, direct, simple and efficient framework for the general treatment of wide
range of problems, see [1-35] and the references therein.

In recent years, variational inequalities have been generalized in several direc-
tions using novel and innovative techniques. Noor [25,26,28] has introduced and
considered some classes of variational inequalities in the setting of uniformly prox-
regular sets. It is known [6,7,33] that the uniformly prox-regular sets are nonconvex
and include the convex sets as special cases. Inspired and motivated by ongoing
research in this direction, we introduce and consider a new class of general non-
convex variational inequalities involving two (nonlinear) operators. This work is
continuation of our earlier work. Using the idea and technique of Noor [25,26,28],
we show that the projection technique can be extended for the general nonconvex
variational inequalities. We establish the equivalence between the general noncon-
vex variational inequalities and fixed point problems using essentially the projection
technique. This equivalent alternative formulation is used to discuss the existence
of a solution of the nonconvex variational inequalities, which is Theorem 3.1. We
use this alternative equivalent formulation to suggest and analyze an implicit type
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iterative methods for solving the nonconvex variational inequalities. In order to
implement this new implicit method, we use the predictor-corrector technique to
suggest a two-step method for solving the nonconvex variational inequalities, which
is Algorithm 3.4. We also consider the convergence (Theorem 3.2) of the new it-
erative method under some suitable conditions. We have also suggested three-step
iterative methods for solving nonconvex variational inequalities. Some special cases
are also discussed.

We also introduce and consider the problem of solving the nonlinear Wiener-Hopf
equations. Using essentially the projection technique, we establish the equivalence
between the general nonconvex variational inequalities and the Wiener-Hopf equa-
tions. This alternative equivalent formulation is more general and flexible than
the projection operator technique. This alternative equivalent formulation is used
to suggest and analyze a number of iterative methods for solving the nonconvex
variational inequalities. These iterative methods is the subject of Section 4. We
also consider the convergence criteria of the proposed iterative methods under some
suitable conditions. Several special cases are also discussed. Results obtained in
this paper can be viewed as refinement and improvement of the previously known
results for the variational inequalities and related optimization problems. We would
like to point out that our method of proofs is very simple as compared with other
techniques.

2. Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by
〈·, ·〉 and ‖.‖ respectively. Let K be a nonempty and convex set in H.

We, first of all, recall the following well-known concepts from nonlinear convex
analysis and nonsmooth analysis [7,33].
Definition 2.1. The proximal normal cone of K at u ∈ H is given by

NP
K(u) := {ξ ∈ H : u ∈ PK [u+ αξ]},

where α > 0 is a constant and

PK [u] = {u∗ ∈ K : dK(u) = ‖u− u∗‖}.
Here dK(.) is the usual distance function to the subset K, that is

dK(u) = inf
v∈K
‖v − u‖.

The proximal normal cone NP
K(u) has the following characterization.

Lemma 2.1. Let K be a nonempty, closed and convex subset in H. Then
ζ ∈ NP

K(u),
if and only if, there exists a constant α > 0 such that

〈ζ, v − u〉 ≤ α‖v − u‖2, ∀v ∈ K.
Definition 2.2. The Clarke normal cone, denoted by NC

K(u), is defined as

NC
K(u) = co[NP

K(u)],

where co means the closure of the convex hull. Clearly NP
K(u) ⊂ NC

K(u), but the
converse is not true. Note that NP

K(u) is always closed and convex, whereas NC
K(u)

is convex, but may not be closed (Ref. 24).
Poliquin et al. [33] and Clarke et al [7] have introduced and studied a new

class of nonconvex sets, which are called uniformly prox-regular sets. This class
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of uniformly prox-regular sets has played an important part in many nonconvex
applications such as optimization, dynamic systems and differential inclusions.
Definition 2.3. For a given r ∈ (0,∞], a subset Kr is said to be normalized
uniformly r-prox-regular if and only if every nonzero proximal normal to Kr can
be realized by an r-ball, that is, ∀u ∈ Kr and 0 6= ξ ∈ NP

Kr
(u), one has

〈(ξ)/‖ξ‖, v − u〉 ≤ (1/2r)‖v − u‖2, ∀v ∈ K.
It is clear that the class of normalized uniformly prox-regular sets is sufficiently
large to include the class of convex sets, p-convex sets, C1,1submanifolds (possibly
with boundary) of H, the images under a C1,1 diffeomorphism of convex sets and
many other nonconvex sets; see [7,33]. It is clear that if r = ∞, then uniformly
prox-regularity of Kr is equivalent to the convexity of K. It is known that if Kr is
a uniformly prox-regular set, then the proximal normal cone NP

Kr
(u) is closed as a

set-valued mapping. Thus, we have NP
Kr

(u) = NC
Kr

(u).
For a given nonlinear operator T, h, we consider the problem of finding u ∈ Kr

such that

〈ρTu+ u− h(u), h(v)− u〉 ≥ 0, ∀v ∈ H : h(v) ∈ Kr,(1)

which is called the general nonconvex variational inequality.
If h ≡ I, the identity operator, then problem (1) is equivalent to finding u ∈ Kr

such that

〈ρTu, v − u〉 ≥ 0, ∀v ∈ Kr,(2)

which is known as the nonconvex variational inequality, studied and introduced by
Noor [26].

We note that, if Kr ≡ K, the convex set in H, then problem (1) is equivalent to
finding u ∈ K such that

(3) 〈ρTu+ u− h(u), h(v)− u〉 ≥ 0, ∀v ∈ H : h(u) ∈ K.
Inequality of type (3) is called the general variational inequality, which was intro-
duced and studied by Noor [28].

If h(u) = u, then problem (1) is equivalent to finding u ∈ H : h(u) ∈ Kr such
that

〈T (h(u)), h(v)− h(u)〉 ≥ 0, ∀v ∈ H : h(v) ∈ Kr,(4)

which is also called the general nonconvex variational inequality.
If Kr ≡ K, the convex set in H, then problem (4) is equivalent to finding u ∈

H : h(u) ∈ K such that

〈T (h(u)), h(v)− h(u)〈≥ 0,∀v ∈ H;h(v) ∈ K,(5)

which was introduced and studied by Noor [12] in 1988. It has been shown that the
minimum of a differentiable nonconvex function can be characterized by the general
variational inequality (5). See also [19] for its applications in applied sciences.

If h ≡ I, the identity operator, then problem (5) is equivalent to finding u ∈ K
such that

〈Tu, v − u〉 ≥ 0, v ∈ K,(6)

which is known as the classical variational inequality, introduced and studied by
Stampacchia [35] in 1964. It turned out that a number of unrelated obstacle, free,
moving, unilateral and equilibrium problems arising in various branches of pure
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and applied sciences can be studied via variational inequalities, see [1-35] and the
references therein.

It is well-known that problem (6) is equivalent to finding u ∈ K such that

0 ∈ Tu+NK(u),(7)

where NK(u) denotes the normal cone of K at u in the sense of convex analysis.
Problem (7) is called the variational inclusion associated with variational inequality
(6).

Similarly, if Kr is a nonconvex (uniformly prox-regular) set, then problem (1) is
equivalent to finding u ∈ Kr such that

0 ∈ ρTu− h(u) + u+ ρNP
Kr

(u),(8)

where NP
Kr

(u) denotes the normal cone of Kr at u in the sense of nonconvex anal-
ysis. Problem (8) is called the nonconvex variational inclusion problem associated
with nonconvex variational inequality (1). This implies that the general nonconvex
variational inequality (1) is equivalent to finding a zero of the sum of two mono-
tone operators (8). This equivalent formulation plays a crucial and basic part in
this paper. We would like to point out this equivalent formulation allows us to
use the projection operator technique for solving the general nonconvex variational
inequality (1).

We now recall the well known proposition which summarizes some important
properties of the uniform prox-regular sets.
Lemma 2.2. Let K be a nonempty closed subset of H, r ∈ (0,∞] and set
Kr = {u ∈ H : d(u,K) < r}. If Kr is uniformly prox-regular, then
i. ∀u ∈ Kr, PKr

(u) 6= ∅.
ii. ∀r′ ∈ (0, r), PKr is Lipschitz continuous with constant r

r−r′ on Kr′ .

iii. The proximal normal cone is closed as a set-valued mapping.
We now consider the problem of solving the nonlinear Wiener-Hopf equations.

To be more precise, let QKr
= I−hPKr

, where PKr
is the projection operator, h is

the nonlinear operator and I is the identity operator. For given nonlinear operators
T, h, consider the problem of finding z ∈ H such that

TPKrz + ρ−1QKrz = 0.(9)

Equations of the type (9) are called the general nonconvex Wiener-Hopf equations.
Note that, if r =∞ and h =≡ I, the identity operator, then the nonlinear Wiener-
Hopf equations are exactly the same Wiener-Hopf equations associated with the
variational inequalities (6), which were introduced and studied by Shi [34]. This
shows that the original Wiener-Hopf equations are the special case of the nonlinear
Wiener-Hopf equations (9). The Wiener-Hopf equations technique has been used
to study and develop several iterative methods for solving variational inequalities
and related optimization problems, see [9-26].
Definition 2.4. An operator T : H → H is said to be:
(i) strongly monotone, if and only if, there exists a constant α > 0 such that

〈Tu− Tv, u− v〉 ≥ α||u− v||2, ∀u, v ∈ H.

(ii) Lipschitz continuous, if and only if, there exists a constant β > 0 such that

||Tu− Tv|| ≤ β||u− v||, ∀u, v ∈ H.
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3. Projection Methods

In this section, we establish the equivalence between the nonconvex variational
inequality (1) and the fixed point problem using the projection operator technique.
This alternative formulation is used to discuss the existence of a solution of the
problem (1) and to suggest some new iterative methods for solving the general
nonconvex variational inequality (1).
Lemma 3.1. u ∈ Kr is a solution of the general nonconvex variational inequality
(1) if and only if u ∈ Kr satisfies the relation

(10) u = PKr [h(u)− ρTu],

where PKr
is the projection of H onto the uniformly prox-regular set Kr.

Proof. Let u ∈ Kr be a solution of (1). Then, for a constant ρ > 0,

0 ∈ u+ ρNP
Kr

(u)− (h(u)− ρTu) = (I + ρNP
Kr

)(u)− (h(u)− ρTu)
⇐⇒

u = (I + ρNP
Kr

)−1[h(u)− ρTu] = PKr
[h(u)− ρTu],

where we have used the well-known fact that PKr ≡ (I +NP
Kr

)−1. �

Lemma 3.1 implies that the general nonconvex variational inequality (1) is equiv-
alent to the fixed point problem (10). This alternative equivalent formulation is
very useful from the numerical and theoretical point of views.

We rewrite the the relation (10) in the following form

F (u) = PKr
[h(u)− ρTu],(11)

which is used to study the existence of a solution of the general nonconvex varia-
tional inequality (1).

We now study those conditions under which the general nonconvex variational
inequality (1) has a solution and this is the main motivation of our next result.
Theorem 3.1. Let PKr

be the Lipschitz continuous operator with constant δ =
r

r−r′ . Let T, h be strongly monotone with constants α > 0, σ > 0 and Lipschitz
continuous with constants β > 0, δ > 0, respectively. If there exists a constant
ρ > 0 such that

|ρ− α

β2
| <

√
δ2α2 − β2(δ2 − (1− δk)2))

δβ2
,(12)

δα > β
√
δ2 − (1− δk)2, < δ(1 + k),

then there exists a solution of the problem (1).
Proof. From Lemma 3.1, it follows that problems (10) and (1) are equivalent.
Thus it is enough to show that the map F (u), defined by (11), has a fixed point.
For all u 6= v ∈ Kr, we have

||F (u)− F (v)|| = ‖PKr [h(u)− ρTu]− PKr [h(v)− ρTv]||
≤ δ‖h(u)− h(v)− ρ(Tu− Tv)‖
≤ δ {‖u− v − (h(u)− h(v)) + ‖u− v − ρ(Tu− Tv)‖} ,(13)

where we have used the fact that the operator PKr
is a Lipschitz continuous operator

with constant δ.
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Since the operator T is strongly monotone with constant α > 0 and Lipschitz
continuous with constant β > 0, it follows that

||u− v − ρ(Tu− Tv)||2 ≤ ||u− v||2 − 2ρ〈Tu− Tv, u− v〉+ ρ2||Tu− Tv||2

≤ (1− 2ρα+ ρ2β2)||u− v||2.(14)

In a similar way, we have

‖u− v − (h(u)− h(v))‖ ≤
√

1− 2σ + δ2‖u− v|,(15)

where σ > 0 is the strongly monotonicity constant and δ > 0 is the Lipschitz
continuity constant of the operator h respectively.

From (13), (14) and (15), we have

||F (u)− F (v)|| ≤ δ
{
k +

√
1− 2αρ+ β2ρ2)

}
||u− v||

= θ||u− v||,
where

θ = δ{
√

1− 2αρ+ β2ρ2 + k}(16)

k =
√

1− 2σ + δ2.(17)

From (12), it follows that θ < 1, which implies that the map F (u) defined by (11),
has a fixed point, which is the unique solution of (1). �

This fixed point formulation (10) is used to suggest the following iterative method
for solving the nonconvex variational inequality (1).

Algorithm 3.1. For a given u0 ∈ Kr, find the approximate solution un+1 by the
iterative scheme

un+1 = (1− αn)un + αn{PKr
[h(un)− ρTun]}, n = 0, 1, 2, . . . ,(18)

where αn ∈ [0, 1],∀n ≥ 0 is a constant. Algorithm 3.1 is also called the Mann
iteration process.

For αn = 1, Algorithm 3.1 collapse to:
Algorithm 3.2. For a given u0 ∈ Kr, find the approximate solution un+1 by the
iterative scheme

h(un+1) = PKr [h(un)− ρTun], n = 0, 1, 2, . . .

We again use the fixed formulation to suggest and analyze an iterative method
for solving the nonconvex variational inequalities (1) as:
Algorithm 3.3. For a given u0 ∈ Kr, find the approximate solution un+1 by the
iterative scheme

h(un+1) = PKr [h(un+1)− ρTun+1], n = 0, 1, 2, . . .

Algorithm 3.3 is an implicit type iterative method, which is difficult to implement.
To implement Algorithm 3.3, we use the predictor-corrector technique. Here we use
the Algorithm 3.1 as a predictor and Algorithm 3.3 as a corrector. Consequently,
we have the following iterative method
Algorithm 3.4. For a given u0 ∈ Kr, find the approximate solution un+1 by the
iterative schemes

yn = PKr
[h(un)− ρTun]

un+1 = PKr
[h(yn)− ρTyn], n = 0, 1, 2, . . .
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which is called the two-step or splitting type iterative method for solving the general
nonconvex variational inequalities (1). It is worth mentioning that Algorithm 3.4
can be suggested by using the updating the technique of the solution.

In this paper, we suggest and analyze the following two-step iterative method
for solving the general nonconvex variational inequalities (1).
Algorithm 3.5. For a given u0 ∈ Kr, find the approximate solution un+1 by the
iterative schemes

yn = (1− βn)un + βn{PKr [h(un)− ρTun]}
un+1 = (1− αn)un + αn{PKr [h(yn)− ρTyn]}, n = 0, 1, 2, . . . ,

where αn, βn ∈ [0, 1], ∀n ≥ 0.
Clearly for αn = βn = 1, Algorithm 3.5 reduces to Algorithm 3.4. It is worth

mentioning that, if r = ∞, then the nonconvex set Kr reduces to a convex set K.
Consequently Algorithms 3.1- 3.5 collapse to the following algorithms for solving
the classical variational inequalities (6). We would like to point that Algorithm 3.4
appears to be a new one for solving the variational inequalities (3)

We now consider the convergence analysis of Algorithm 3.1 and this is the main
motivation of our next result. In a similar way, one can consider the convergence
criteria of other Algorithms.
Theorem 3.2. Let PKr

be the Lipschitz continuous operator with constant δ =
r

r−r′ . Let the operators T, h : H −→ H be strongly monotone with constants α >
0, σ > 0 and Lipschitz continuous with constants with β > 0, δ > 0, respectively.
If (12) holds, αn,∈ [0, 1], ∀n ≥ 0 and

∑∞
n=0 αn = ∞, then the approximate

solution un obtained from Algorithm 3.1 converges to a solution u ∈ Kr satisfying
the nonconvex variational inequality (1).
Proof. Let u ∈ Kr be a solution of the nonconvex variational inequality (1). Then,
using Lemma 3.1, we have

u = (1− αn)u+ αn{PKr
[h(u)− ρTu]},(19)

where 0 ≤ αn ≤ 1 is a constant.
From (14)-(19) and using the Lipschitz continuity of the projection PKr with

constant δ, we have

||un+1 − u|| = ||(1− αn)(un − u) + αn{PKr
[h(un)− ρTun]− PKr

[h(u)− ρTu]}||
≤ (1− αn)‖un − u‖+ αn‖PKr

[h(un)− ρTun]− PKr
[h(u)− ρTu]‖

≤ (1− αn)‖un − u‖+ αnδ {‖un − u+ ρ(Tun − Tu)‖}
+αn‖un − u− (h(un)− h(u))‖

≤ (1− αn)‖un − u‖+ αnδ{k +
√

1− 2αρ+ β2ρ2}‖un − u‖
= [1− αn(1− θ)] ‖un − u‖

≤
n∏

i=0

[1− αi(1− θ)] ‖u0 − u‖,

where, using (12), we have

θ = δ
{
k + δ

√
1− 2ρα+ β2ρ2

}
< 1.
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Since
∑∞

n=0 αn diverges and 1−θ > 0, we have limn→∞ {
∏n

i=0[1− (1− θ)αi]} = 0.
Consequently the sequence {un} convergences strongly to u. This completes the
proof. �

4. Wiener-Hopf Equations Technique

In this section, we first establish the equivalence between the nonconvex varia-
tional inequality (1) and the Wiener-Hopf equations (9) using essentially the pro-
jection method. This equivalence is used to suggest and analyze some iterative
methods for solving the variational inclusions.

Using Lemma 3.1, we show that the general nonconvex variational inequality (1)
are equivalent to the Wiener-Hopf equations (9).
Lemma 4.1. The nonconvex variational inequality (1) has a solution u ∈ Kr if
and only if the Wiener-Hopf equations (9) have a solution z ∈ H, provided

u = PKr
z(20)

z = h(u)− ρTu,(21)

where ρ > 0 is a constant.
Proof. Let u ∈ Kr be a solution of (1). Then, from Lemma 3.1, we have

u = PKr
[h(u)− ρTu].(22)

Taking z = h(u)− ρTu in (22), we have

u = PKr
z.(23)

From (22) and (23), we have

z = h(u)− ρTu = hPKrz − ρTPKrz,

which shows that z ∈ H is a solution of the Wiener-Hopf equations (9). This
completes the proof. �

From Lemma 4.1, we conclude that the general nonconvex variational inequality
(1) and the Wiener-Hopf equations (9) are equivalent. This alternative formulation
plays an important and crucial part in suggesting and analyzing various iterative
methods for solving variational inequalities and related optimization problems. In
this paper, by suitable and appropriate rearrangement, we suggest a number of new
iterative methods for solving the general nonconvex variational inequality (1).
I. The Wiener-Hopf equations (9) can be written as

QKrz = −ρTPKrz,

which implies that, using(4.2)

z = hPKr
z − ρTPKr

z = h(u)− ρTu.

This fixed point formulation enables us to suggest the following iterative method
for solving the nonconvex variational inequality (1).
Algorithm 4.1. For a given z0 ∈ H, compute zn+1 by the iterative schemes

un = PKrzn(24)
zn+1 = (1− αn)zn + αn{h(un)− ρTun, } n = 0, 1, 2, .. . . . ,(25)

where 0 ≤ αn ≤ 1, for all n ≥ 0 and
∑∞

n=0 αn =∞.
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II. The Wiener-Hopf equations (9) may be written as

z = hPKr
z − ρTPKr

z + (1− ρ−1)QKr
z

= h(u)− ρTu+ (1− ρ−1)QKrz.

Using this fixed point formulation, we suggest the following iterative method.
Algorithm 4.2. For a given z0 ∈ H, compute zn+1 by the iterative schemes

un = PKrzn

zn+1 = (1− αn)zn + αn{h(un)− ρTun + (1− ρ−1)QKr
zn, } n = 0, 1, 2, . . . ,

where 0 ≤ αn ≤ 1, for all n ≥ 0 and
∑∞

n=0 αn =∞.
III. If the operator T is linear and T−1 exists, then the Wiener-Hopf equations (9)
can be written as

z = (I − ρ−1T−1)QKr
z,

which allows us to suggest the iterative method.
Algorithm 4.3. For a given z0 ∈ H, compute zn+1 by the iterative scheme

zn+1 = (1− αn)zn + αn{(I − ρ−1T−1)QKr
zn, } n = 0, 1, 2 . . . ,

where 0 ≤ αn ≤ 1, for all n ≥ 0 and
∑∞

n=0 αn =∞.
We would like to point out that one can obtain a number of iterative methods for

solving the general nonconvex variational inequality (1) for suitable and appropriate
choices of the operators T, h and the space H. This shows that iterative methods
suggested in this paper are more general and unifying ones.

We now study the convergence analysis of Algorithm 4.1. In a similar way, one
can analyze the convergence analysis of other iterative methods.
Theorem 4.1. Let the operators T,A satisfy all the assumptions of Theorem
3.1. If the condition (12) holds, αn ∈ [0, 1], ∀n ≥ 0, and

∑∞
n=0 αn = ∞, then

the approximate solution {zn} obtained from Algorithm 4.1 converges to a solution
z ∈ H satisfying the Wiener-Hopf equation (9) strongly.
Proof. Let u ∈ H be a solution of (1). Then, using Lemma 4.1, we have

z = (1− αn)z + αn{h(u)− ρTu},(26)

where 0 ≤ αn ≤ 1, and
∑∞

n=0 an =∞.
From(25), (26), (14) and (15), we have

‖zn+1 − z‖ ≤ (1− αn)‖zn − z‖+ αn‖h(un)− h(u)− ρ(Tun − Tu)‖

≤ (1− αn)‖zn − z‖+ αn

{
k +

√
1− 2ρα+ β2ρ2

}
‖un − u‖.(27)

Also from (24), (20) and the Lipschitz continuity of the projection operator PKr

with constant δ, we have

‖un − u‖ = ‖PKr
zn − PKr

z‖ ≤ δ‖zn − z‖.(28)

Combining (27), and (28), we have

‖zn+1 − z‖ ≤ (1− αn)‖zn − z‖+ αnθ‖zn − z‖.(29)
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From (12), we see that θ < 1 and consequently

‖zn+1 − z‖ ≤ (1− αn)‖zn − z‖+ αnθ‖zn − z‖
= [1− (1− θ)αn]‖zn − z‖

≤
n∏

i=0

[1− (1− θ)αi]‖z0 − z‖.

Since
∑∞

n=0 αn diverges and 1 − θ > 0, we have limn→∞
∏n

i=0[1 − (1 − θ)αi] = 0.
Consequently the sequence {zn} convergences strongly to z inH, the required result.
�
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