FULLY INVARIANT τ_M -LIFTING MODULES

Y. Talebi and T. Amoozegar

Department of Mathematics,
Faculty of Science,
University of Mazandaran, Babolsar, Iran
talebi@umz.ac.ir
t.amoozegar@umz.ac.ir

ABSTRACT. Let τ_M be any preradical for $\sigma[M]$ and N any module in $\sigma[M]$. A module N is called τ_M -lifting if for every submodule K of N, there is a decomposition $K = A \oplus B$, such that A is a direct summand of N and $B \subseteq \tau_M(N)$. We call N is (strongly) $FI-\tau_M$ -lifting if for every fully invariant submodule K of N, there is a decomposition $K = A \oplus B$, such that A is a (fully invariant) direct summand of N and $B \subseteq \tau_M(N)$. The class of $FI-\tau_M$ -lifting modules properly contains the class of τ_M -lifting modules and the class of strongly $FI-\tau_M$ -lifting modules. In this paper we investigate whether the class of (strongly) $FI-\tau_M$ -lifting modules are closed under particular class of submodules, direct summands and direct sums.

1. Introduction

Throughout this paper R will denote an arbitrary associative ring with identity and all modules will be unitary right R-modules. Let $M \in \text{Mod-}R$. By $\sigma[M]$ we mean the full subcategory of Mod-R whose objects are submodules of M-generated modules. For any module M, τ_M will denote a preradical in $\sigma[M]$. We say that A is a τ_M -coessential submodule of B in N if $B/A \subseteq \tau_M(N/A)$. Like in [2], a submodule $K \subseteq N$ is called τ_M -supplement (weak τ_M -supplement) provided there exists some $U \subseteq N$ such that U + K = N and $U \cap K \subseteq \tau_M(K)(U \cap K \subseteq \tau_M(N))$. M is called τ_M -supplemented (weakly τ_M -supplemented) if each of its submodules has a τ_M -supplement (weak τ_M -supplement) in M. M is called amply τ_M -supplemented, if for all submodules K and L of N with K + L = N, K contains a τ_M -supplement of L in N. A submodule A of N is said to be τ_M -coclosed in N if it has no proper τ_M -coessential submodule in N. According to [2] and [12], a module N is called τ_M -lifting if for every submodule K of N, there is a decomposition $K = A \oplus B$, such that A is a direct summand of N and $B \subseteq \tau_M(N)$. Recall that a submodule K of M is called fully invariant (denoted by $K \subseteq M$) if $\lambda(K) \subseteq K$ for all $\lambda \in End_R(M)$. We mainly study (strongly) FI- τ_M -lifting modules in $\sigma[M]$ in this paper. We call

N is (strongly) FI- τ_M -lifting if for every fully invariant submodule K of N, there

¹⁹⁹¹ Mathematics Subject Classification. 16D90, 16D99.

Key words and phrases. τ_M -Supplement submodules, τ_M -Lifting modules, FI- τ_M -lifting modules.

is a decomposition $K=A\oplus B$, such that A is a (fully invariant) direct summand of N and $B\subseteq \tau_M(N)$. In Section 1, we show that $\operatorname{FI-}\tau_M$ -lifting modules are closed under finite direct sums. We prove that if module R_R is $\operatorname{FI-}\tau_M$ -lifting then R/I has a projective τ_M -cover for every two sided ideal I of R. In Section 2, We show that a direct summand of a strongly $\operatorname{FI-}\tau_M$ -lifting module is strongly $\operatorname{FI-}\tau_M$ -lifting and that a finite direct sum of copies of a strongly $\operatorname{FI-}\tau_M$ -lifting module is strongly $\operatorname{FI-}\tau_M$ -lifting.

2. FI- τ_M -LIFTING MODULES

Lemma 2.1. Let X be a τ_M -supplement submodule of N and $K \subseteq X$. Then X/K is a τ_M -supplement submodule of N/K.

Proof. See [4, 10.12(3)].

Lemma 2.2. Let M be a module. Then:

- (1) Any sum or intersection of fully invariant submodules of M is again a fully invariant submodule of M (in fact the fully invariant submodules form a complete modular sublattice of the lattice of submodules of M).
- (2) If $X \subseteq Y \subseteq M$ such that Y is a fully invariant submodule of M and X is a fully invariant submodule of Y, then X is a fully invariant submodule of M.
- (3) If $M = \bigoplus_{i \in I} X_i$ and S is a fully invariant submodule of M, then $S = \bigoplus_{i \in I} \pi_i(S) = \bigoplus_{i \in I} (X_i \cap S)$, where π_i is the i-th projection homomorphism of M.
- (4) If $X \subseteq Y \subseteq M$ such that X is a fully invariant submodule of M and Y/X is a fully invariant submodule of M/X, then Y is a fully invariant submodule of M.

Proof. (1), (2), (3) See [3, Lemma 1.1]. (4) Let $f: M \to M$ be a homomorphism. Then $f(X) \subseteq X$. Now, consider the homomorphism $g: M/X \to M/X$ defined by $g(m+X) = f(m) + X, (m \in M)$. Then $g(Y/X) \subseteq Y/X$. Clearly, g(Y/X) = (f(Y) + X)/X. Therefore $f(Y) \subseteq Y$.

We note that if $M = \bigoplus_{i=1}^n M_i$ and N is a fully invariant submodule of M, then $N = \bigoplus_{i=1}^n (N \cap M_i)$ and $N \cap M_i$ is a fully invariant submodule of M_i .

Lemma 2.3. Let $N \in \sigma[M]$. The following are equivalent:

- (1) For every submodule K of N, there is a decomposition $K = A \oplus B$, such that A is a direct summand of N and $B \subseteq \tau_M(N)$;
- (2) For every submodule K of N, there is a direct summand A of N such that $A \subseteq K$ and $K/A \subseteq \tau_M(N/A)$;
- (3) For every submodule K of N, there is a decomposition $N = A \oplus B$ such that $A \subseteq K$ and $B \cap K \subseteq \tau_M(N)$.

Proof. See [12, Lemma 3.1]. \Box

A module $N \in \sigma[M]$ is called τ_M -lifting if it satisfies one of the equivalent conditions of Lemma 2.3.

Proposition 2.4. Let $N \in \sigma[M]$. The following are equivalent:

- (1) For every fully invariant submodule K of N, there is a decomposition $K = A \oplus B$, such that A is a direct summand of N and $B \subseteq \tau_M(N)$;
- (2) For every fully invariant submodule K of N, there is a direct summand A of N such that $A \subseteq K$ and $K/A \subseteq \tau_M(N/A)$.
- (3) For every fully invariant submodule K of N, there is a decomposition $N = A \oplus B$ such that $A \subseteq K$ and $B \cap K \subseteq \tau_M(N)$.

Proof. (1) \Rightarrow (2) Let K be a fully invariant submodule of N. By hypothesis, there exists a direct summand A of N and $B \subseteq \tau_M(N)$ such that $K = A \oplus B$. Now $N = A \oplus A'$ for some submodule A' of N. Consider the natural epimorphism $\pi: N \to N/A$. Then $\pi(B) = (B+A)/A = K/A \subseteq \tau_M(N/A)$. Therefore N is FI- τ_M -lifting module.

- $(2) \Rightarrow (3)$ By [12, Lemma 3.1].
- $(3) \Rightarrow (1)$ Let K be a fully invariant submodule of N. By hypothesis, there is a decomposition $N = A \oplus B$ such that $A \subseteq K$ and $B \cap K \subseteq \tau_M(N)$. Therefore $K = A \oplus (K \cap B)$, as required.

A module $N \in \sigma[M]$ is called τ_M -FI-lifting if it satisfies one of the equivalent conditions of Proposition 2.4.

Theorem 2.5. Let $N = \bigoplus_{i=1}^{n} N_i$ be a direct sum of τ_M -FI-lifting modules. Then N is τ_M -FI-lifting.

Proof. Let $K \subseteq N$. Then $K = \bigoplus_{i=1}^n (K \cap N_i)$ and $K \cap N_i$ is a fully invariant submodule of N_i . As each N_i is τ_M -FI-lifting we have $K \cap N_i = A_i \oplus B_i$ where A_i is a direct summand of N_i and $B_i \subseteq \tau_M(N_i)$. Put $A = \bigoplus_{i=1}^n A_i$ and $B = \bigoplus_{i=1}^n B_i$. Then $K = A \oplus B$ where A is a direct summand of N and $B = \bigoplus_{i=1}^n B_i \subseteq \bigoplus_{i=1}^n \tau_M(N_i) = \tau_M(\bigoplus_{i=1}^n N_i) = \tau_M(N)$.

Corollary 2.6. If N is a finite direct sum of τ_M -lifting modules, then N is τ_M -FI-lifting.

Let $N \in \sigma[M]$. We call an epimorphism $f: P \to N$ a projective τ_M -cover of N in $\sigma[M]$ if P is projective in $\sigma[M]$ and $Ker(f) \subseteq \tau_M(P)$.

Theorem 2.7. Let P be a projective module. If P is FI-lifting then P/A has a projective τ_M -cover for every fully invariant submodule A of P.

Proof. Suppose P is a projective FI-lifting module and A is a fully invariant submodule of P. Then $A = X \oplus S$ where X is a direct summand of P and $S \subseteq \tau_M(P)$. Suppose $P = X \oplus Y$. As $S \subseteq \tau_M(P)$, $(X + S)/X \subseteq (X + \tau_M(P))/X \subseteq \tau_M(P/X)$. Hence the natural map $f : P/X \to P/(X + S) = P/A$ is a projective τ_M -cover. \square

Corollary 2.8. Suppose R is a ring. If module R_R is FI- τ_M -lifting then R/I has a projective τ_M -cover for every two sided ideal I of R.

Proposition 2.9. Let N be a FI- τ_M -lifting module. Then every fully invariant submodule of $N/\tau_M(N)$ is a direct summand.

Proof. Let $K/\tau_M(N)$ be a fully invariant submodule of $N/\tau_M(N)$. Then K is fully invariant submodule by Lemma 2.2. By hypothesis, there is a decomposition $N = N_1 \oplus N_2$ such that $N_1 \subseteq K$ and $K \cap N_2 \subseteq \tau_M(N)$. Thus $N/\tau_M(N) = (K/\tau_M(N)) \oplus ((N_2 + \tau_M(N))/\tau_M(N))$, as required.

П

3. Strongly FI- τ_M -lifting Modules

In this section we define strongly $\text{FI-}\tau_M$ -lifting modules. This class of modules is properly contained in the class of $\text{FI-}\tau_M$ -lifting modules; but there is no containment relation between the class of strongly $\text{FI-}\tau_M$ -lifting modules and the class of lifting modules. We show that a direct summand of a strongly $\text{FI-}\tau_M$ -lifting module is strongly $\text{FI-}\tau_M$ -lifting and that a finite direct sum of copies of a strongly $\text{FI-}\tau_M$ -lifting module is strongly $\text{FI-}\tau_M$ -lifting.

As in Proposition 2.4 we can prove the following.

Proposition 3.1. Let $N \in \sigma[M]$. The following are equivalent:

- (1) For every fully invariant submodule K of N, there is a decomposition $K = A \oplus B$, such that A is a fully invariant direct summand of N and $B \subseteq \tau_M(N)$;
- (2) For every fully invariant submodule K of N, there is a fully invariant direct summand A of N such that $A \subseteq K$ and $K/A \subseteq \tau_M(N/A)$.

A module $N \in \sigma[M]$ is called *strongly FI-\tau_M-lifting* if it satisfies one of the equivalent conditions of Proposition 3.1.

Proposition 3.2. Let N be an FI- τ_M -lifting with $\tau_M(N) = 0$. Then every fully invariant submodule (in particular N) is strongly FI- τ_M -lifting module.

Proof. Let K be a fully invariant submodule of N. Suppose A is fully invariant in K. Then A is fully invariant in N also (see Lemma 2.2). As N is FI- τ_M -lifting, $A = B \oplus S$ where B is a direct summand of N and $S \subseteq \tau_M(N)$ (see Proposition 2.4). Since $\tau_M(N) = 0$, S = 0 and so A is a direct summand of N and hence of K. Thus K is strongly FI-lifting. \square

Theorem 3.3. A direct summand of a strongly FI- τ_M -lifting module is strongly FI- τ_M -lifting.

Proof. Let $N = X \oplus Y$ be a strongly FI- τ_M -lifting module. Assume that $S_1 \unlhd X$. Then there exists $S_2 \unlhd Y$ such that $S_1 \oplus S_2 \unlhd M$ [5, Lemma 1.11]. Since N is a strongly FI- τ_M -lifting, $S_1 \oplus S_2 = B \oplus S$ where $S \subseteq \tau_M(N)$ and B is a fully invariant direct summand of N. But $B \unlhd N$ implies that $B = (X \cap B) \oplus (Y \cap B)$ and $X \cap B$ is fully invariant in X. Also $X \cap B$ is a direct summand of N. We have $S_1 = \pi_X(B) + \pi_X(S) = (X \cap B) + \pi_X(S)$ where $\pi_X : N \to X$ is the projection along Y. As $S \subseteq \tau_M(N), \pi_X(S) \subseteq \tau_M(X)$. By Proposition 3.1, X is a strongly FI- τ_M -lifting module.

Proposition 3.4. Let $N = \bigoplus_{i=1}^{n} N_i$ and let $N_i \subseteq M$ for all $1 \le i \le n$. Then N is strongly FI- τ_M -lifting if and only if N_i is strongly FI- τ_M -lifting, for all $1 \le i \le n$.

Proof. If N is strongly FI- τ_M -lifting then each N_i is so, by Proposition 3.4.

Conversely, suppose $N = \bigoplus_{i=1}^n N_i$ where each N_i is strongly $\operatorname{FI-}\tau_M$ -lifting and fully invariant in N. Let $K \unlhd N$. Then $K = \bigoplus_{i=1}^n (K \cap N_i)$ and $(K \cap N_i) \unlhd N_i$, for all $1 \leq i \leq n$. As N_i is strongly $\operatorname{FI-}\tau_M$ -lifting, $K \cap N_i = B_i \oplus S_i$ where B_i is a fully invariant direct summand of N_i and $S_i \subseteq \tau_M(N_i)$ (see Proposition 3.1). Put $B = \bigoplus_{i=1}^n B_i$ and $S = \bigoplus_{i=1}^n S_i$. Then $K = B \oplus S$ where B is a direct summand of N and $S \subseteq \tau_M(N)$. As $B_i \unlhd N_i$ and $N_i \unlhd N$, $B_i \unlhd N$ for all $1 \leq i \leq n$. Hence $B \unlhd N$. Therefore N is strongly $\operatorname{FI-}\tau_M$ -lifting.

Theorem 3.5. Suppose K is a strongly FI- τ_M -lifting module and $N = \bigoplus_{i=1}^n N_i$ where each $N_i \simeq K$. Then N is a strongly FI- τ_M -lifting module.

Proof. There exist isomorphisms $f_i: N_1 \to N_i$ for $i=2,\cdots,n$. If A is a fully invariant submodule of N, then it is easy to see that $A=A_1 \oplus f_2(A_1) \oplus \cdots \oplus f_n(A_1)$ where $A_1=N_1 \cap A$.

As N_1 is strongly FI- τ_M -Lifting and A_1 is a fully invariant submodule of N_1 , we have $A_1 = L_1 \oplus S_1$ where L_1 is a fully invariant submodule of N_1 and $S_1 \subseteq \tau_M(M_1)$ (see Proposition 3.1). Put $L := L_1 \oplus f_2(L_1) \oplus \cdots \oplus f_n(L_1)$ and $S := S_1 \oplus f_2(S_1) \oplus \cdots \oplus f_n(S_1)$. Then $A = L \oplus S$, L is a fully invariant direct summand of N and $S \subseteq \tau_M(N)$. Hence N is strongly FI- τ_M -lifting.

From Proposition 3.3 and Theorem 3.5 we get the following.

Corollary 3.6. Suppose R is a ring and R_R is strongly FI- τ_M -lifting. Then any finitely generated projective R-module is strongly FI- τ_M -lifting.

Proposition 3.7. Let N be a strongly FI- τ_M -lifting module and X a fully invariant submodule of N. If X is indecomposable, then X is strongly FI- τ_M -lifting.

Proof. Let $K \subseteq X$ then $K \subseteq N$. Since N is strongly $\operatorname{FI-}\tau_M$ -lifting module, $K = B \oplus S$ where $S \subseteq \tau_M(N)$ and B is a fully invariant direct summand of N. Hence $N = B \oplus C$ for some submodule C of N. Since $X \subseteq N$, then $X = B \oplus (C \cap X)$. But X is indecomposable, therefore X = B and X is direct summand of N. By Theorem 3.3, X is strongly $\operatorname{FI-}\tau_M$ -lifting.

References

- F.W. Anderson, K.R. Fuller: Rings and Categories of Modules Springer-Verlog, New York, 1992.
- [2] K. Al-Takhman, C. Lomp and R. Wisbaure, τ-complemented and τ-supplemented modules, Algebra and Discrete Mathematics, 3(2006), 1-15.
- [3] G.F. Birkenmeier, B.J. Muller, S.T. Rizvi: Modules in which every fully invariant submodule is essential in a direct summand, Comm. Algebra, 30(2002), 1395-1415.
- [4] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer: Lifting Modules, Frontiers in Mathematics, Birkäuser Verlag, 2006.
- [5] S. T. Rizvi, S. R. Cosmin: Baer and Quasi-Baer Modules, Comm. Algebra, 32(2004), 103-123.
- [6] A. Facchini, L. Salce: Uniserial modules: Sums and isomorphism of subquotients, Comm Algebra, 18(1990), 499-517.
- [7] D. Keskin: On Lifting Modules, Comm. Algebra, 28(2000), 3427-3440.
- [8] C. Lomp: On Dual Goldie Dimension, Diplomarbeit (M.Sc. Thesis), University of Düsseldorf, Germany, 1996.
- [9] S.M. Mohamed, B. J. Muller: Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series 147, Cambridge, University Press, 1990.
- [10] Y. Talebi, N. Vanaja: The Torsion Theory Cogenerated by M-small Modules, Comm. Algebra, 30(2002), 1449-1460.
- [11] Y. Talebi, T. Amoozegar: Strongly FI-Lifting Modules, International Electronic J. of Algebra, 3(2008), 75-82.
- [12] R. Tribak and D. Keskin: On \overline{Z}_M -Semiperfect Modules, East-West. J. of Mathematicals, 8(2006), 193-203.
- [13] R. Wisbauer: Foundations of module and ring theory, Gordon and Breach, Reading, 1991.