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Abstract. Any communication assumes a preliminary agreement between
the parties involved. In our paper we address the question: what can we get

when there is no agreement between the parties in the framework of classical

communication quantum channels. We admit the concept of mixed coding and
starting from it derive an idealized communication scheme based on continuous

coding.

1. Classical communication through quantum channel

For the sake of self-consistency, we start from the conventional scheme of classical
communication through quantum channel. Its basic ingredients are:

• Coding. It contains
– A set of input states associated with the symbols of input alphabet
– For each input state its a priori probability πj is given

• Transmission. It is described by a superoperator: an affine mapping from
the state space of the input of the channel ti that of the output.
• Receiving a signal. It is described by applying appropriate measurement

on the set of output states, so that:
– A measurement is a resolution of unit
– When a signal is received, we judge which was the input state
– For each input state j we calculate the probabilities pM (k | j) of taking

the decision that the observed symbol was k (for every k)
– The task in conventional framework is to find an optimal procedure

to decide which was the input state
When the input coding and the output measurements are fixed, the probability

to take the right decision then reads:
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(1) PM =
∑
j

πjpM (j | j)

This kinds of tasks are typical for communication theory and mathematical sta-
tistics. Finding the maximum of PM is called identification of signals based on the
criterion of maximal likelihood. Given an input coding, the task is, varying the
output measurement M , to find such one that the probability PM defined in (1)
becomes maximal.

In standard framework we are given an input ensemble, that is, a collection of
input states ψj with given probabilities πj . For the input ensemble, its average
density matrix ρ is calculated:

(2) ρ =
∑
j

πjψj

What is crucial in this scheme is that the efficiency of the channel (1) primarily
depends on the input ensemble rather than on its average density matrix (see, e.g.
optimal coding schemes by Schumacher and Westmoreland [1])
What is peculiar for our framework. In our framework we suppose that only the
average density matrix (2) of the input ensemble is known, while the ensemble
itself is not given for us. For quantum mechanical systems there are (infinitely)
many ensembles having the same average density.

In other words, we only know the channel as a physical system. Any commu-
nication assumes a preliminary agreement between the parties dealing with input
and output of the channel. In our paper we address the question: what can we get
when there is no agreement between the parties.

That means, we are given the state space of the input but we do not know the
a priori probabilities of input states and the result of measurements reduces to
specifying the average output density matrix.

The problems of this kind have a long history lasting from Laplace to Boltzmann;
their are solved on the basis of the principle of maximal entropy.

2. From Laplace principle to maximal entropy

It was Laplace who introduced the principle of insufficient reason: if there is no
reason to prefer one outcome w.r.t. another one, all outcomes are treated equally
probable (provided they are mutually exclusive and collectively exhaustive). Its
direct consequence was the formula of classical probability [2]:

(3) p =
Favorables
Possibles

According to Laplace, if we are given an unknown distribution and we need to
estimate it, we assume it to be uniform.

But what should we do if we have an additional information about the distribu-
tion? Can we still use the Laplace principle?

Let us illustrate it on a classical example. Suppose we play with die whose
properties are not known. If we are asked what is the probability of a face to
appear, we intuitively (but in fact according to Laplace) answer 1/6.
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Let N identical dice are rolled and the mean value M of the number of points
appeared is known. First suppose it turned out to be 3.5. This is an additional
information about the dice, and how it affects our estimation? In this particular
case we see that result is compatible with the initial hypothesis:

M = 1 · 1
6

+ 2 · 1
6

+ 3 · 1
6

+ 4 · 1
6

+ 5 · 1
6

+ 6 · 1
6

= 3.5

Now take another kind of ‘biased’ dice such that the appropriate average value
turns out to be, say, 4. In this case the hypothesis of the equality of all faces
is no longer compatible with initial hypothesis and the Laplace principle is not
applicable, at least in its direct form.

Among this we have n1 times face 1,. . . , n6 times face 6. The values n1, . . . , n6

satisfy the equations

n1 + · · ·+ n6 = N

and
1 · n1 + · · ·+ 6 · n6 = M ·N

When we try to solve this system with respect to n1, . . . n6, we get many solu-
tions. Although, each particular solution occurs with its frequency:

W (n1, . . . , n6) =
N !

n1! · · ·n6!
We are finding the solution n1, . . . , n6, which has greatest probability to occur,
therefore we maximize the value of the frequency W (n1, . . . n6). As it is known
(see, e.g. [3]):

(4) logW ∼ N ·
(
−n1

N
log

n1

N
− · · · − n6

N
log

n6

N

)
And the maximum is attained at

(5) nk ∼ N · e
−βk

Z

where the normalizing factor Z is

(6) Z =
∑
k

e−βk

Although the knowledge of the mean value is an additional information, the
Laplace principle still works and this particular mean value gives no preference to
any state, therefore the null hypothesis (the uniform distribution pj = 1

6 ) should
not be rejected.
Biased die. Now let us consider what happens when the average is 4. In this case
the Laplace principle should be developed: namely, the distribution should have
maximal entropy H = −

∑
pj log pj . In our particular case this gives the following

answer:

(7) pj =
e−βj

Z

where Z =
∑
j e
−βj and β is calculated from the given average value (in our case,

4)
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∑
j

j · pj = 4

This principle extends the Laplace principle to the notion of maximal entropy
[4].

Why the idea to maximize the entropy H is a development of Laplace idea of
symmetry and non-preference? For any given average value we consider all possible
distributions which yield this average value. Then the take such distributions which
are typical, that is, which mostly occur in all possible configurations. The preference
is given to what occur with maximal number of combinations. The statistical weight

W =
N !∏
j nj

where N is the total number of trials and nj is number of occurrence of j-th face.

The main message of this section is the following. We provide a completely
classical example where we have no knowledge about the input state (distribution)
but we need to tell something about it. A principle is suggested to choose a concrete
distribution on the basis of a given small amount of knowledge.

In the case of quantum systems these distributions will be of a particular kind
— continuous ensembles.

3. Continuous ensembles

The set of all self-adjoint operators in H = Cn has a natural structure of a real
space R2n, in which the set of all density matrices is a hypersurface, which is the
zero surface T = 0 of the affine functional T = TrX− 1.

Let H = Cn be an n-dimensional Hermitian space, let ρ be a density matrix in
H. We would like to represent the state whose density operator is ρ by an ensemble
of pure states. We would like this ensemble to be continuous with the probability
density expressed by a function µ(φ) where φ ranges over all unit vectors in H.
Technical remark. Pure states form a projective space rather than the unit sphere
in H. On the other hand, one may integrate over any probabilistic space. Usually
distributions of pure states over the spectrum of observables are studied, sometimes
probability distributions on the projective spaces are considered [5]. In this paper
for technical reasons I prefer to represent ensembles of pure states by measures on
unit vectors in H. We use the Umegaki measure on CBn— the uniform measure
with respect to the action of U(n) normalized so that

∫
CBn

dψ = 1.
Effective definition. The density operator of a continuous ensemble associated with
the measure µ(φ) on the set CBn of unit vectors in H is calculated as the following
(matrix) integral

(8) ρ =
∫

φ∈CBn

µ(φ) |φ〉〈φ| dψ

where |φ〉〈φ| is the projector onto the vector 〈φ| and dψ is the above mentioned
normalized measure on CBn:
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(9)
∫

φ∈CBn

dψ = 1

Effectively, the operator integral ρ in (8) can be calculated by its matrix elements.
In any fixed basis {|ei〉} in H, each its matrix element ρij = 〈ei| ρ |ej〉 is the
following numerical integral:

(10) ρij = 〈ei| ρ |ej〉 =
∫

φ∈CBn

µ(φ) 〈ei| φ〉 〈φ| ej〉 dψ

The task of likelihood-based recognition of the initial input coding is solved by
introducing a special sort of continuous ensembles: so-called Lazy ensembles [6].

4. Lazy ensembles

Potentially we consider all possible input states, and the result we will find in
terms of a distribution on the set of all input states. Our task is to guess (to mostly
possible extent) what was the distribution of input states.
Definition of Kullback–Leibler distance. We quantify the state preparation efforts
by the difference between the entropy of uniform distribution (that is, our null
hypothesis) and the entropy of the ensemble1 in question. The only obstacle may
occur is to define this entropy, let us dwell on it in more detail.

The entropy of a finite distribution {pi} is given by Shannon formula

S({pi}) = −
∑

pi ln pi

This expression diverges for any continuous distribution: we approximate a contin-
uous distribution µ(x) by a discrete one {pi}, calculate its Shannon entropy, but
it tends to infinity as we refine the partition. However, we are always interested in
the difference between the entropy of the uniform distribution and the distribution
µ(x) rather then the entropy itself. At each approximation step we calculate this
difference, and the appropriate limit always exists. To show it (see, e.g. [8] for de-
tails), make a partition of the probability space by N sets ∆i having equal uniform
measure. Then the difference EN between the entropies read:

EN = lnN −
(
−
∑

pi ln pi
)

where pi =
∫

∆i
p(x)dx. The limit expression limN→∞EN is the differential entropy

(11) S(µ) =
∫
µ(x) lnµ(x)dx

Remarkably, this is equal to Kullback-Leibler distance [3]

S(µ‖µ0) =
∫
µ(x) ln

µ(x)
µ0(x)

dx

between the distribution µ(x) and the uniform distribution µ0(x) with constant
density, normalize the counting measure dx on the probability space so that µ0 = 1.

1We are speaking here of mixing entropy [7] of the ensemble rather than about von Neumann
entropy of its density matrix.
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This distance is the average likelihood ratio, on which the choice of statistical
hypothesis is based. Then, in order to minimize the Type I error we have to choose
a hypothesis with the smallest average likelihood ratio.
Maximizing the entropy. The problem reduces to the following. For given density
matrix ρ find a continuous ensemble µ having minimal differential entropy (11):

(12) S(µ) → min,
∫
|ψ〉〈ψ| µ(ψ) dψ = ρ

where dψ is the unitary invariant measure on pure states normalized to integrate
to unity. When there is no constraints in (12), the answer is straightforward—the
minimum (equal to zero) is attained on uniform distribution. To solve the problem
with constraints, we use the Lagrange multiples method. The appropriate Lagrange
function reads:

L(µ) = S(µ) − Tr Λ
(∫
|ψ〉〈ψ| µ(ψ) dψ − ρ

)
where the Lagrange multiple Λ is a matrix since the constraints in (12) are of matrix
character. Substituting the expression (11) for S(µ) and making the derivative of
L over µ zero, we get

(13) µ(ψ) =
e−TrB|ψ〉〈ψ|

Z (B)
where B is the optimal value of the Lagrange multiple Λ which we derive from the
constraint (12) and the normalizing multiple

(14) Z(B) =
∫

e−TrB|ψ〉〈ψ| dψ

is the partition function for (13). Substituting he resulting density (13) to the
expression (11) for differential entropy we get

(15) S = TrBρ − ln Z

5. Conclusions

It follows directly from the Holevo bound formula that the classical communica-
tion capacity of a quantum channel increases when pure states are used for input
coding. In the meantime the idea to represent the input ensemble by minimal num-
ber of input states, that is, to make them orthogonal, does not in general increase
the efficiency of the channel, some coding schemes are essentially based on non-
orthogonal states [1]. The usage in statistics of non-orthogonal, overfilled bases of
pure states, that is, using the randomization, may sometimes bring some gain in
identifying the state of the system. This is an essentially quantum phenomenon as
in the classical case randomization only produce problems in state identification.

In this contribution we are dealing with the extreme case of overfilled systems
of pure states, namely, in a finite-dimensional space we consider bases of infinitely
many, continuously many pure states. The research along this lines was first carried
out in [9], where the so-called ‘Scrooge’ ensembles were introduced as bringing
minimal amount of information about the preparation procedure. These ensembles
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turn out to be continuous. The closest analogy to them in quantum coding are
mixed sources [10]

The relevance of continuous ensembles is also justified when we take into account
the fact that even we use discrete ensembles of pure states, in reality, when we are
preparing them, we can not completely avoid noises produced by the measurement
apparata, that is, the distribution of really prepared pure states again turns out to
be continuous. We use continuous ensembles for the purpose of building statistical
inferences according to the standard schemes of re-estimation of hypotheses, which
looks as follows. We have a null hypothesis, then we acquire some information
about the system, and then we pass to a new, concurring hypothesis choosing it in
such a way that it should be closest to the null hypothesis. This new hypothesis is
put forward according to the concept of maximal likelihood.

The concept of maximal likelihood technically reduces to maximization of the
logarithm of the probability of the distribution. The appropriate opposite value is a
well-known L.J.Savage entropy, or Kullback-Leibler distance between distributions.

In other words, we use the acquired information about the system with a maximal
precaution in order to minimize the Type II error.

In our case the null hypothesis is that all pure states are equiprobable. In this
case Kullback-Leibler distance between the new ensemble and the null hypothesis
is equal to the differential entropy of the new ensemble. The source of additional
information is the average density matrix of the input ensemble.

Optimal ensembles that we obtain are exponential distributions of pure staes,
which average to a density matrix ρ. These distribution have a striking similarity
with the Gibbs ensembles, which form the basis of statistical physics.

The matrix parameter B here plays a rôle similar to that of the temperature in
thermodynamics. Under appropriate normalization the value

TrBρ
Will be equal to the differential entropy of the ensemble. So, we may treat this

parameter as the differential entropy of the density matrix.
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