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Abstract. Families of simple graphs of high girth had been used for the de-
velopment of algorithms in Cryptography and Turbocoding. Recent results in

that directions show the interest of applied researchers to ”families of directed

graphs of high girth”, but the concept of the girth for the directed graphs is
not well established. We discuss one of the possible definition. It agrees well

with the classical definition in the case of simple graph and allows to create

the analog of Extremal graph theory for simple graphs without small cycles
for the class of balanced graphs i.e. directed graphs without multiple arrows

such that each vertex has same number of inputs and outputs. Finally we

discussed some explicit construction of simple and directed graphs which can
be applicable to Turbocoding and Cryptography.

1. Introduction

Various applications of graph theory to Coding Theory are hard to observe.
We just mention that the code is just subset in finite metric space defined via
distance regular graph (see [8], [7], [1]) and xpanding graphs (superconcentrators,
magnifyers) had been used for the design of important codes (see [14], [26], [20],
[19]).

Similar situation is in Cryptography: each computation can be defined in terms
of finite automaton, roughly directed graph with labels on arrows, various applica-
tions of automata theory to cryptography are very hrd to observe. We just mention
[38]( see also further references in this survey).

In this note we mentioned just some traditional applications of families of simple
graphs of large girth to construction of LDPS and Turbo Codes (see [25], last
chapter of [15], [29], [23], [12], [13]) and Cryptography (see surveys [33], [35], [37]).

Low-density parity-check (LDPC) codes were originally introduced in his doc-
toral thesis by Gallager in 1961 [11]. Since the discovery of Turbo codes in 1993
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by Berrou, Glavieux, and Thitimajshima [5], and the rediscovery of LDPC codes
by Mackay and Neal in 1995 [22], there has been renewed interest in Turbo codes
and LDPC codes, because their error rate performance approaches asymptotically
the Shannon limit. Much research is devoted to characterizing the performance of
LDPC codes and designing codes that have good performance. Commonly, a graph,
the Tanner graph ( see [29],[25] and further references), is associated with the code
and an important parameter affecting the performance of the code is the girth of its
Tanner graph. In [23], [12], [13] authors consider the design of structured regular
LDPC codes based on Tanner graphs of large girth. The regularity and structure
of LDPC codes utilize memory more efficiently and simplify the implementation
of LDPC coders. The Tanner graph is a special type of graph, a bipartite graph,
where the nodes divide into two disjoint classes with edges only between nodes in
the two different classes.

Large girth speeds the convergence of iterative decoding and improves the per-
formance of LDPC codes, at least in the high SNR range, by slowing down the
onsetting of the error floor. Large size of such graphs implies fast convergence.

On the web page of Professor Moura (see also [23]) one can find the following
text: ”Commonly, a graph, the Tanner graph, is associated with the code and an
important parameter affecting the performance of the code is the girth of its Tanner
graph. In our work, we consider the design of structured regular LDPC codes whose
Tanner graphs have large girth. The regularity and structure of LDPC codes utilize
memory more efficiently and simplify the implementation of LDPC coders. The
Tanner graph is a special type of graph, a bipartite graph, where the nodes divide
into two disjoint classes with edges only between nodes in the two different classes.
The problem we have been considering is a generic problem in graph theory, namely,
that of designing bipartite graphs with large girth. We actually have studied a more
special class of this generic problem, in particular, the design of undirected regular
bipartite graphs with large girth”.

So here we can see clearly two ideas:
(i) new families of bipartite simple graphs of large girth can be used as families

of Tanner’s graphs
(ii) for the constructions of LDPS codes and turbo codes we can use directed

graphs which are analogs of bipartite graphs of large girth.
In the cryptography shift to directed graphs of large girth is very natural because

of the finite automaton is directed graphs. Last results demonstrated that choice
of appropriate directed graphs lead to very fast graph based encryption algorithms
(see [35], [16]). The new algorithms are much faster than encryption schemes [30],
[31], [32] corresponding to simple graphs.

2. On the classical extremal graph theory for graphs without
prescribed cycles and its modification

According to Bourbaki the graph (or directed graph) is the pair V (vertex set)
and subset Φ in the Cartesian product V ×V (see [24] for more general definitions).
We refer to element v ∈ V as vertex (state in automata theory).

We use term arc (or arrow as in automata theory) for the element (a, b) ∈ Φ.
We refer to (a, b) ∈ Φ as arc (arrow) from a to b, Element a and b are starting and
ending vertex of the arc (a, b). We say that (a, b) is output of vertex a and b is
input of b. As it follows from above definition graph has no multiple arcs.
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The cardinalities of V and Φ are the order and size of the graph, respectively.
Graph is simple if Φ is symmetric and anti-reflexive relation. The information

about simple graph can be given by edge i. e. set of kind {a, b}, where (a, b) is an
arc. Graphically simple graph has no loops and multiple edges. In case of simple
graph term size is used for the number of edges within the graph.

The classical extremal graph theory studies extremal properties of simple graphs.
Let F be family of graphs none of which is isomorphic to a subgraph of the graph
Γ. In this case we say that Γ is F -free. Let P be certain graph theoretical property.
By exP (v, F ) we denote the greatest number of edges of F -free graph on v-vertices,
which satisfies property P . If P is just a property to be simple graph we omit index
P and write ex(v, F ). The missing definitions in extremal graph theory the reader
can find in [4].

This theory contains several important results on ex(v, F ), where F is a finite
collection of cycles of different length [4], [28]. The following statement had been
formulated by P. Erdös’.

Let Cn denote the cycle of length n. Then

ex(v, C2k) ≤ Cv1+1/k (1.1)

where C is independent positive constant.
For the proof of this result and its generalizations see [6], [10].
In [9] the upper bound

ex(v, C3, C4, . . . , C2k, C2k+1) ≤ (1/2)1+1/kv1+1/k +O(v) (1.2)

was established for all integers k ≥ 1.
Both bounds are known to be sharp for k = 2, 3, 5 in other cases the question on

the sharpness is open (see [4], [2] and further references).
The girth of the simple graph is the minimal length of its cycle. So the above

bound is the restriction on the size of the graph on v vertices of girth ≥ n. Graphs
of high girth, i.e. graphs which size is close to the above upper bounds can be used
in Networking and Operation Research (see [4]) and Cryptography.

The generalizations (or analogs) of classical extremal graph theory on directed
graphs require certain restrictions on inputs or outputs of the graph. Really, the
graph DKv of binary relation φ: P ∪ L = V , P ∩ L = ∅, |P | = |L|, |V | = v,
φ = P × L of order O(v2) has no directed cycles or commutative diagrams.

In [33], [37] the above results on maximal size of the graphs generalized on the
case of balanced graphs, when for each vertex a ∈ V cardinalities of id(v) = {x ∈
V |(a, x) ∈ φ} and od(v) = {x ∈ V |(x, a) ∈ φ} are same. We refer to numbers id(v)
and od(v) as input degree and output degree of vertex v in the graph, respectively.

Let Γ be directed graph. The pass between vertices a and b is the sequence
a = x0 → x1 → . . . xs = b of length s, where xi, i = 0, 1, . . . , s are distinct vertices.
We refer to the minimal s among all passes between a and b as output distance
odist(a, b). we assume odist(a, b) =∞ in case of absence of passes from a to b.

We say that the pair of passes a = x0 → x1 → · · · → xs = b, s ≥ 1 and
a = y0 → y1 → · · · → yt = b, t ≥ 1 form an (s, t)- commutative diagram Os,t if
xi 6= yj for 0 < i < s, 0 < j < t. Without loss of generality we assume that s ≥ t
and refer to the number s as the rank of Os,t. The directed cycle with s arrows we
denote as Os,0. We will count directed cycles as commutative diagram.
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The minimal parameter s = max(s, t) of the commutative diagram Os,t with
s + t ≥ 3 in the binary relation graph Γ we call the girth indicator of the Γ and
denote it as gi(Γ). It can be infinity as in case of DKv.

Notice that directed graph does not contain diagrams O1,1, because there are no
multiple edges.

We assume that the girth g(Γ) of directed graph Γ with the girth indicator d+ 1
is 2d+ 1 if it contains commutative diagram Od+1,d. If there are no such diagrams
we assume that g(Γ) is 2d+ 2.

In the case of symmetric irreflexive relations it agrees with the standard definition
of the girth of simple graph i.e the length of its minimal cycle.

Let F be a list of directed graphs and P be some graph-theoretical property.
By ExP (v, F ) we denote the greatest number of arrows of F -free directed graph on
v vertices satisfying to property P (graph without subgraphs isomorphic to graph
from F ).

Let EP = EP (d, v) = ExP (v,Os,t, s + t ≥ 3|2 ≤ s ≤ d) be the maximal size
(number of arrows) of the balanced binary relation graphs with the girth indicator
> d.

The main result of [37] is the following statement. If B is the property to be the
balanced directed graph, then

v1+1/d −O(v) ≤ EB(d, v) ≤ v1+1/d +O(v) (1.3)

Notice, that the size of symmetric irreflexive relation is the double of the size
of corresponding simple graph. because undirected edge of the simple graph corre-
sponds to two arrows (arcs) of O2,0.

If P is the property to be a graph of symmetric irreflexive relation then ExP (v,Os,t, s+
t ≥ 3|2 ≤ s ≤ d) = 2ex(v, C3, . . . , C2d−1, C2d) because undirected edge of the simple
graph corresponds to two arrows of O2,0. So equality (1, 3) implies the following
inequality

ex(v, C3, C4, . . . , C2k) ≤ (1/2)v1+1/k +O(V ) (1.4)

we evaluate the maximal size of the directed graph of order v with the girth indicator
> d which does not contain commutative diagrams Od+1,d, as well. The inequality
(1.2) is the corollary from such evaluation.

We can see that studies of extremal properties of balanced graphs with the
high girth indicator and studies of ex(v, C3, . . . , Cn) are far from being equivalent.
Really, the sharpness of the Erdös’ bound (1.1) and bounds (1.2) and (1.4) up to
magnitude for k = 8 and k ≥ 12 are old open problems (see [2], [4]) .

The regularity R of graph (V,Φ) means that either for each vertex a ∈ V sets
{x|(v, x) ∈ Φ} are same or for each a ∈ V set {x|(x, v) ∈ Φ} are same.

The family of directed graphs Gi, i = 1, . . . with average output degree ki

and order vi is the family of graphs of large girth if the girth indicator of Gi is
≥ c × logki

(vi). It agrees well with the standard definition for the simple graphs.
In case of balanced or regular graphs of large girth their size is close to the upper
bounds (1. 3) and (1. 5).

3. Explicit constructions of Tanner graphs

3.1. Some suggestions in case of simple graphs. The induced biregular bi-
partite subraphs of graphs D(n, q) (see [17] and further references) of order 2qn,
degree q and girth ≥ n+ 4 or their connected components CD(d, q)had been used
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by Guinnand and Lodge for the construction of turbocodes. The description of the
class of biregular subgraphs of the above graphas the reader can find in [18]. The
parameters of related codes are very close to the Shannon bound.

We notice that the family of graphs D(n, q) depending on two parameters n and
q = pm, where p is prime, is not the unique known family of graphs of unbounded
degree and arbitrarily large girth. For ”sufficiently large p” the exact girth is
computed in [27].

The first explicit examples of families of simple graphs with large girth of arbi-
trary large degree were given by Margulis. The constructions were Cayley graphs
Xp,q of group SL2(Zq) with respect to special sets of q+ 1 generators, p and q are
primes congruent to 1 mod4. The family of Xp,q is not a family of algebraic graphs
because the neighborhood of each vertex is not an algebraic variety over Fq. For
each p, graphs Xp,q, where q is running via appropriate primes, form a family of
small world graph of unbounded diameter (see [21],[19]).

Of course Cayley graph corresponding to finite group G and symmetrical set of
generators S ( s ∈ S leads to s−1 ∈ S is not a bipartite graph. But we can take it
bipartite analog - the graph of incidence structure I = I(G,S)for which the point
set P and line set L are two distinct copies of G and p ∈ P is incident to l ∈ L if
and only if ps = l in group G for some generator s ∈ S.

Let R be arbitrary subset of S containing at least 3 elements, GR be the group
generated by R ∪R−1 and GR < H < G.

We can consider the bipartite graph I ′ = I(H,R) with the partition sets P ′ =
P capH and L′ = L ∩ H such that p ∈ P ′ and l ∈ L′ are incident (pI ′l or lI ′p)
if and only if ps = l for some s ∈ R. Notice, that last condition is equivalent to
ls = p for some s ∈ R−1.

We set the Cayley graph corresponding to G,S is Xp,q. then g(I(H,R) is larger
than the girth of Xp,q. So I(H,R) can be used as Tanner graph.

Some other regular graphs of high girth the reader can find in [34].

3.2. Examples of directed bipartite graphs with large girth indicators.
Let Mk, m ≥ k+ 2 as the totality of tuples (x1, x2, . . . xk) ∈Mk, such that xi 6= xj

for each pair (i, j) ∈ M2. Let us consider the binary relation φ = φk(m) on Mk

consisting of all pairs of tuples ((x1, . . . , xm) , (y1, . . . , ym)), such that yi = xi+1 for
i = 1, . . . , k − 1 and ym 6= xi for each i ∈ {1, . . . , k}. The corresponding directed
graph Γ = Γi(m) has order m(m− 1) . . . (m− k + 1), each vertex has m− k input
and output arrows.

Proposition 1. The girth indicator and diameter of the graph Γk(m) is k+ 1 and
2k, respectively. The girth of the graph is 2d+ 1.

The reader can find the proof in [36].
Let us consider the bipartite version Γ′ = Γ′k(m) of the graph Γ = Γk(m). Let

M be a finite set, m = |M | ≥ 2. Let P (point set) and L (line set) are two copies
of the vertex set Mk, m ≥ k + 2 of the graph Γ. We will use the brackets and
parenthesis for the tuples from P and L, respectively.

LetΓ′ = Γ′k(m) be the graph of binary relation on P ∪L consisting of all pairs of
tuples ((x1, . . . , xm), [y1, . . . , ym) or (x1, . . . , xm, (y1, . . . , ym)), such that yi = xi+1

for i = 1, . . . , k−1 and ym 6= xi for each i ∈ {1, . . . , k}. The corresponding directed
graph Γ′ = Γ′k(m) has order 2m(m−1) . . . (m−k+1), each vertex has m−k input
and output arrows.
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Proposition 2. The girth indicator and diameter of the graph Γ′k(m) is k+ 1 and
2k + 1, respectively. The graph does not contain commutative diagram Ok+1,k.The
girth of the graph is 2d+ 2.

So one can use these directed bipartite regular graphs as directed Tanner graphs.

References

[1] E. Bannai, T. Ito, Algebraic Combinatorics 1: Association Schemes, Benjumin-Cummings

Lecture Notes, Ser. 58, London, 1984.
[2] C.T. Benson, Minimal regular graphs of girth eight and twelve, Canadien Journal of Math-

ematics, (18):1091- 1094, 1966.
[3] N. Biggs, Algebraic Graph Theory (2nd ed), Cambridge, University Press, 1993.

[4] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.

[5] C. Berrou, A. Glavieux and P. Thitimajshima, Near Shannon limit errorcorrecting coding
and decoding: turbocodes, ICC 1993, Geneva, Switzerland, pp. 10641070, May 1993.

[6] J.A. Bondy and M.Simonovits, Cycles of even length in graphs, J. Combin.Theory, Ser. B,

16 (1974) 87-105.
[7] A. Brower, A. Cohen, A. Nuemaier, Distance regular graphs, Springer, Berlin, 1989.

[8] Ph. Delsarte, An algebraic approach to the association schemes of coding theory, Phillips

Research Reports Suppl., 10 (1973).
[9] P. Erdös’, M. Simonovits, Compactness results in extremal graph theory, Combinatorica 2

(3), 1982, 275-288.

[10] W. Faudree, M. Simonovits, On a class of degenerate extremal graph problems, Combinatorica
3 (1), 1983, 83-93.

[11] R. G. Gallager, Lowdensity paritycheck codes, IRE Transactions on Information Theory, vol.
IT8, pp. 2128, Jan. 1962.

[12] P. Guinand and J. Lodge, ”Tanner Type Codes Arising from Large Girth Graphs”, Proceed-

ings of the 1997 Canadian Workshop on Information Theory (CWIT ’97), Toronto, Ontario,
Canada, pp. 5-7, June 3-6, 1997.

[13] P. Guinand and J. Lodge, Graph Theoretic Construction of Generalized Product Codes,

Proceedings of the 1997 IEEE International Symposium on Information Theory (ISIT ’97),
Ulm, Germany, p. 111, June 29-July 4, 1997.

[14] S. Hoory, N. linial and A. Widgerson, Expander graphs and their applications Bulletin (New

series) od the American Mathematical Society, volume 43, N4,2006, 439-561.
[15] W. C. Huffman and V. Pless, Fundamentals of Error Correcting Codes, Cambridge University

Press, 2003, 646 pp.

[16] J. Kotorowicz, V. A. Ustimenko, On the implementation of cryptoalgorithms based on alge-
braic graphs over some commutative rings, Condenced Matters Physics, Special Issue: Pro-
ceedings of the international conferences “Infinite particle systems, Complex systems theory
and its application”, Kazimerz Dolny, Poland, 2006, 11 (no. 2(54)) (2008) 347–360.

[17] F. Lazebnik, V. A. Ustimenko and A. J. Woldar, A New Series of Dense Graphs of High

Girth, Bull (New Series) of AMS, v.32, N1, (1995), 73-79.
[18] F. Lazebnik, V. A. Ustimenko and A. Woldar,New upper bound on the order of cages, Elec-

tronic Journal of Combinatorics, Volume 4 (1997), No. 2, Paper R13.

[19] A. Lubotsky, R. Philips, P. Sarnak, Ramanujan graphs, J. Comb. Theory., 115, N 2., (1989),
62-89.

[20] A Lubotsky, Discrete Groups, Expanding Graphs and Invariant Measures, Progres in Math.,
Birkhauser, 1994.

[21] G. A. Margulis, Explicit construction of graphs without short cycles and low density codes,

Combinatorica, 2, (1982), 71-78.

[22] D. J. C. MacKay and R. N. Neal, Good Codes based on very sparse matrices, In ”Cryptogra-
phy and Coding”, 5th IMA Conference, Lecture Notes in Computer Science, v. 1025, 1995,

pp. 110-111.
[23] Jose M. F. Moura, Jin Lu, and Haotian Zhang, Structured LDPC Codes with Large Girth,

IEEE Signal Processing Magazine, vol. 21:1, pp.42-55, January 2004. Included in Special

Issue on Iterative Signal Processing for Communications.
[24] R. Ore, Graph Theory, Wiley, London, 1971.



ON SOME APPLICATIONS OF GRAPHS TO CRYPTOGRAPHY AND TURBOCODING 255

[25] T. Richardson, R. Urbanke, Modern Coding Theory, Cambridge University Press, 2008, 592
pp.

[26] P. Sarnak, What is an expander?, Notices of AMS, 2004, 762-763. Linear Algebra and its

Applications Article in Press, Corrected
[27] T. Shaska, V. Ustimenko, On the homogeneous algebraic graphs of large girth and their

applications, Linear Algebra and its Applications Article in Press, 2008 (in press, available

on line).
[28] M. Simonovits Extremal Graph Theory, Selected Topics in Graph Theory 2 (L.W. Beineke

and R.J. Wilson, eds), Academic Press, London, 1983, 161-200.
[29] R. Michiel Tanner, A recursive approach to low density codes, IEEE Trans. on Info Th., IT,

27(5):533-547, Sept.1984.

[30] V. A. Ustimenko, Coordinatisation of regular tree and its quotients, in ”Voronoi’s impact
on modern science, eds P. Engel and H. Syta, book 2, National Acad. of Sci, Institute of

Matematics, 1998, 228p.

[31] V. Ustimenko, Graphs with Special Arcs and Cryptography, Acta Applicandae Mathematicae,
2002, vol. 74, N2, 117-153.

[32] V. Ustimenko, CRYPTIM: Graphs as tools for symmetric encryption, In Lecture Notes in

Comput. Sci., 2227, Springer, New York, 2001.
[33] V. Ustimenko, On the extremal graph theory for directed graphs and its cryptographical ap-

plications, In: T. Shaska, W. C. Huffman, D. Joener and V. Ustimenko, Advances in Coding

Theory and Cryptography, Series on Coding Theory and Cryptology, vol. 3, 181-200 (2007).
[34] V. A. Ustimenko, Linguistic Dynamical Systems, Graphs of Large Girth and Cryptography,

Journal of Mathematical Sciences, Springer, vol. 140, N3 (2007), pp 412-434.

[35] V. Ustimenko On the graph based cryptography and symbolic computations, Serdica journal
of computing, N1, 2007, 131-156.

[36] V. A. Ustimenko, On the extremal regular directed graphs without commutative diagrams and
their applications in coding theory and cryptography, Albanian. J. of Mathematics, Special

Issue ”Algebra and Computational Algebraic Geometry”, vol. 1, N4, 387-400, 2007.

[37] V. Ustimenko, On the cryptographical properties of extremal algebraic graphs, In Publisher:
IOS Press Title: Mathematics and Communications Editors: T. Shaska, E. Hasimaj, IOS

Press, 2008 (to appear).

[38] S. Wolfram, Cryptography with cellular automata , Lecture notes in computer sciences, 218
(1985) (Advances in cryptology-CRYPTO 85, Santa Barbara, California), 429 - 432.


