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ON THE EXTREMAL REGULAR DIRECTED GRAPHS
WITHOUT COMMUTATIVE DIAGRAMS AND THEIR

APPLICATIONS IN CODING THEORY AND CRYPTOGRAPHY

V. A. USTIMENKO

Abstract. We use term regular directed graph (r. d. g.) for the graph of

irreflexive binary relation with the constant number outputs (or inputs) for
each vertex. The paper is devoted to studies of maximal size ER(d, v) of r. d.

g. of order v without commutative diagrams formed by two directed passes

of length < d with the common starting and ending points. We introduce the
upper bound for ER(d, v), which is one of the analogs of well known Even

Circuit Theorem by P. Erdös’. The Erdös’ theorem establish the upper bound

on maximal size of simple graphs without cycles of length 2n. It is known to
be sharp for the cases n = 2, 3and5 only. The situation with the upper bound

for Ed(v) is different: we prove that it is sharp for each d ≥ 2. We introduce
the girth of directed graph and establish tight upper and lower bounds on the

order of directed cages, i.e. directed regular graphs of given girth and minimal

order. The studies of regular directed graphs of large size (or small order)
without small commutative diagrams, especially algebraic explicit construc-

tions of them, are motivated by their applications to the design of turbo codes

in Coding Theory and cryptographical algorithms. We introduce several new
algebraic constructions of directed extremal graphs based on biregular gener-

alized polygons, family of directed graphs of large girth with fixed degree.

1. Introduction

According to Bourbaki the graph (or directed graph) is the pair V (vertex set)
and subset Φ in the Cartesian product V ×V (see [24] for more general definitions).
We refer to element v ∈ V as vertex (state in automata theory).

We use term arc (or arrow as in automata theory) for the element (a, b) ∈ Φ.
We refer to (a, b) ∈ Φ as arc (arrow) from a to b, Element a and b are starting
and ending vertex of the arc (a, b). We say that (a, b) is output of vertex a and b
is input of b. As it follows from above definition graph has no multiple arcs. The
cardinalities of V and Φ are the order and size of the graph, respectively.

Graph is simple if Φ is symmetric and anti-reflexive relation. The information
about simple graph can be given by edge i. e. set of kind {a, b}, where (a, b) is an
arc. Graphically simple graph has no loops and multiple edges. In case of simple
graph term size used for the number of edges within the graph.

The classical extremal graph theory studies extremal properties of simple graphs.
Let F be family of graphs none of which is isomorphic to a subgraph of the graph
Γ. In this case we say that Γ is F -free. Let P be certain graph theoretical property.

Key words and phrases. directed cages, directed graphs of large girth, directed small world
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By exP (v, F ) we denote the greatest number of edges of F -free graph on v-vertices,
which satisfies property P . If P is just a property to be simple graph we omit index
P and write ex(v, F ). The missing definitions in extremal graph theory the reader
can find in [3].

This theory contains several important results on ex(v, F ), where F is a finite
collection of cycles of different length [3], [25]. The following statement had been
formulated by P. Erdös’.

Let Cn denote the cycle of length n. Then

ex(v, C2k) ≤ Cv1+1/k (1.1)

where C is independent positive constant. For the proof of this result and its
generalizations see [5], [8]. In [7] the upper bound

ex(v, C3, C4, . . . , C2k, C2k+1) ≤ (1/2)1+1/kv1+1/k + O(V ) (1.2)

had been established for all integers k ≥ 1.
Both bounds are known to be sharp for k = 2, 3, 5 in other cases the question on

the sharpness is open (see [3], [1] and further references).
The girth of the simple graph is the minimal length of its cycle. So the above

bound is the restriction on the size of the graph on v vertices of girth ≥ n. Graphs
of high girth, i.e. graphs which size is close to the above upper bounds can be used
in Networking and Operation Research (see [3]) and Cryptography.

The generalizations (or analogs) of classical extremal graph theory on directed
graphs require certain restrictions on inputs or outputs of the graph. Really, the
graph DKv: P ∪ L = V , P ∩ L = ∅, |V | = v, Φ = P × L of order O(v2) has no
directed cycles or commutative diagrams.

In [38] the above results on maximal size of the graphs generalized on the case
of balanced graphs, when for each vertex a ∈ V cardinalities of id(v) = {x ∈
V |(a, x) ∈ φ} and od(v) = {x ∈ V |(x, a) ∈ φ} are same. We refer to numbers id(v)
and od(v) as input degree and output degree of vertex v in the graph, respectively.

Let Γ be directed graph. The pass between vertices a and b is the sequence
a = x0 → x1 → . . . xs = b of length s, where xi, i = 0, 1, . . . , s are distinct vertices.
We refer to he minimal s among all passes between a and b as output distance
odist(a, b). we assume odist(a, b) = ∞ in case of absence of passes from a to b.

We say that the pair of passes a = x0 → x1 → · · · → xs = b, s ≥ 1 and
a = y0 → y1 → · · · → yt = b, t ≥ 1 form an (s, t)- commutative diagram Os,t if
xi 6= yj for 0 < i < s, 0 < j < t. Without loss of generality we assume s ≥ t
and refer to the number s as the rank of Os,t. The directed cycle with s arrows we
denote as O′

s,0. We will count directed cycles as commutative diagram.
The minimal parameter s = max(s, t) of the commutative diagram Os,t with

s + t ≥ 3 in the binary relation graph Γ we call the girth indicator of the Γ and
denote it as gi(Γ). It can be infinity as in case of DKv.

Notice that directed graph does not contain diagrams O1,1, because there are no
multiple edges.

We assume that the girth g(Γ) of directed graph Γ with the girth indicator d+1
is 2d + 1 if it contains commutative diagram Od+1,d. If there are no such diagrams
we assume that g(Γ) is 2d + 2.

In the case of symmetric irreflexive relations it agrees with the standard definition
of the girth of simple graph i.e the length of its minimal cycle.
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Let F be a list of directed graphs and P be some graph theoretical property.
By ExP (v, F ) we denote the greatest number of arrows of F -free directed graph on
v vertices satisfying to property P (graph without subgraphs isomorphic to graph
from F ).

Let EP = EP (d, v) = ExP (v,Os,t, s + t ≥ 3|2 ≤ s ≤ d) be the maximal size
(number of arrows) of the balanced binary relation graphs with the girth indicator
> d.

The main result of [38] is the following statement. If B be the property to be
the balanced directed graph, then

v1+1/d −O(v) ≤ EB(d, v) ≤ v1+1/d + O(v) (1.3)

Notice, that the size of symmetric irreflexive relation is the double of the size
of corresponding simple graph. because undirected edge of the simple graph corre-
sponds to two arrows (arcs) of O2,0.

If P is the property to be a graph of symmetric irreflexive relation then

ExP (v,Os,t, s + t ≥ 3|2 ≤ s ≤ d) = 2ex(v, C3, . . . , C2d−1, C2d),

because undirected edge of the simple graph corresponds to two arrows of O2,0. So
equality (1, 3) implies the following inequality

ex(v, C3, C4, . . . , C2k) ≤ (1/2)v1+1/k + O(V ) (1.4)

we evaluate the maximal size of the directed graph of order v with the girth indicator
> d which does not contain commutative diagrams Od+1,d, as well. The inequality
(1.2) is the corollary from such evaluation.

We can see that studies of extremal properties of balanced graphs with the
high girth indicator and studies of ex(v, C3, . . . , Cn) are far from being equivalent.
Really, the sharpness of the Erdös’ bound (1.1) and bounds (1.2) and (1.4) up to
magnitude for k = 8 and k ≥ 12 are old open questions (see [1], [3]) .

The regularity R of graph (V,Φ) means that either for each vertex a ∈ V sets
{x|(v, x) ∈ Φ} are same or for each a ∈ V set {x|(x, v) ∈ Φ} are same. We will
prove that substitution of property R instead of B leads to correct inequality:

v1+1/d −O(v) ≤ ER(d, v) ≤ v1+1/d + O(v) (1.5)

The family of directed graphs Gi, i = 1, . . . with average output degree ki and
order is the family of large girth if the girth indicator of Gi is ≥ logki

(v). It agrees
well with the standard definition for the simple graphs. In case of balanced or
regular graphs of large girth their size is close to the upper bounds (1. 3) and (1.
5). The following directions of applied data security are motivations of studies of
extremal properties of regular or balanced graphs of large girth.

1.1. LDPS and Turbo Codes and graphs of large girth. Low-density parity-
check (LDPC) codes were originally introduced in his doctoral thesis by Gallager
in 1961 [11]. Since the discovery of Turbo codes in 1993 by Berrou, Glavieux,
and Thitimajshima [4], and the rediscovery of LDPC codes by Mackay and Neal in
1995 [21], there has been renewed interest in Turbo codes and LDPC codes, because
their error rate performance approaches asymptotically the Shannon limit. Much
research is devoted to characterizing the performance of LDPC codes and designing
codes that have good performance. Commonly, a graph, the Tanner graph ( see [26]
and further references), is associated with the code and an important parameter
affecting the performance of the code is the girth of its Tanner graph. In [23], [12],
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[13] authors consider the design of structured regular LDPC codes whose Tanner
graphs have large girth. The regularity and structure of LDPC codes utilize memory
more efficiently and simplify the implementation of LDPC coders. The Tanner
graph is a special type of graph, a bipartite graph, where the nodes divide into
two disjoint classes with edges only between nodes in the two different classes. The
impotence of the studies of undirected regular bipartite graphs with large girth for
the design of turbo codes is discussed in [23].

Large girth speeds the convergence of iterative decoding and improves the per-
formance of LDPC codes, at least in the high SNR range, by slowing down the on
setting of the error floor. Large size of such graphs implies fast convergence.

1.2. Cryptography. The cryptographical properties of infinite families of simple
graphs of large girth with the special coloring of vertices during the last 10 years
(see [31],[34], [33], [35] and further references). Such families can be used for the
development of cryptographical algorithms (on symmetric or public key modes).
Only few families of simple graphs of large unbounded girth and arbitrarily large
degree are known.

Paper [35], [38] is devoted to the more general theory of directed graphs of large
girth and their cryptographical applications. It contains new explicit algebraic
constructions of infinite families of such graphs. It is shown that they can be used
for the implementation of secure and very fast symmetric encryption algorithms.
The symbolic computations technique allow us to create a public key mode for the
encryption scheme based on algebraic graphs. The information on the implementa-
tions if such algorithms can be found in [30],[34], [15], [29] ( case of simple graphs)
and [35], [37], [16]. Last two papers compare speed of the graph based algorithms
with the speed of RC4 and DES.

2. On the upper bounds for size of the regular graphs the with high
girth indicator

Let Γ be the graph of irreflexive binary relation Φ on the vertex set V and the
following property R holds:

for each vertex v ∈ V the input degrees id(v) = |{x|(x, v) ∈ Φ}| = k or od(v) =
|{x|(v, x) ∈ Φ}| = k for some positive number k ≥ 2.

As it follows from property B for balanced graph Φ the cardinality {(x, y, z)|(x, y) ∈
Φand(y, z) ∈ Φ} is D =

∑
v∈V

(kv
2). So the number of random walk with two arrows

from random vertex v is D/v. Any random walk in this graph can be viewed as
the branching process with

√
(D/v) branches from each node.

The bound EB(d, v) ≤ v1+1/d + O(v) is based on the studies of such branching
process corresponding to the passes of length ≤ d of the rooted tree. The definitions
of such branching process, expectation operator and the confidence interval the
reader can find in the book [14] by Karlin and Taylor.

In our case of regular graphs we can use straightforward combinatorial counting.

Theorem 1.
ER(d, v) ≤ v1+1/d + O(v) (2.1)

ExR(v,Od+1,d, Os,t|3 ≤ s ≤ d) ≤ (1/2)1/dv1+1/d + O(v) (2.2)
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Proof. Let Γ = Γi, i = 1, . . . , v be the family of regular graphs corresponding to
irreflexive binary relations φ = φi with the girth indicator i which is > d and
maximal possible number of edges on v = vi vertices. Without loss of generality
we may assume od(v) = k for each vertex of Γ. Let us chose the vertex x0 and
consider the totality Vr of all vertices from Γ, such that r = odist(xo, v) ≤ d. We
can use the branching process in counting of vr = |Vr|: graph has no loops, so v1 is
k. One link of the vertex x ∈ V2 may correspond to diagram O2,0 so v2 ≥ k(k− 1).
Induction on i we are getting vi = k(K − 1)i−1 for i = 1, . . . , d.

We have (k − 1)d ≤ k(k − 1)d ≤ vd ≤ v. Thus, (k − 1)d ≤ v , (k − 1) ≤ v1/d

E(Γ) = v × (k ≤ v × (v1/d + 1) = v1+1/d + v. So we proved (2.1).
Let us assume now that graphs Γi, i = 1, . . . do not contain commutative di-

agrams Od+1,d. Let us consider the arc v1 → v2 in the graph Γ and two rooted
trees T1 and T2 with roots v1 and v2, respectively. Let Pi be the sets of vertices
at the distance d and from the vertex vi, i = 1, 2 The absence of commutative dia-
grams listed in the theorem insure that |P1∩P2| = 0 and |P1∪P2| = (k−1)d. Thus
2(q−1)d ≤ v. So for the size of the graph E(Γ) is ≤ v×((v/2)d +1) = (1/2)dvd +v.

�

3. On the sharpness of the bound

The diameter is the minimal length d of the shortest directed pass a = x0 →
x1 → x2 · · · → xd between two vertices a and b of the directed graph. We will
say that graph is k-regular, if each vertex of G has exactly k outputs. Let F be
the infinite family of ki regular graphs Gi of order vi and diameter di. We say,
that F is a family of small world graphs if di ≤ Clogki

(vi), i = 1, . . . for some
independent on i constant C. The definition of small world graphs and related
explicit constructions the reader can find in [3]. For the studies of simple small
world graphs without small cycles see [10].

Let M be a finite set, m = |M | ≥ 2. We define Mk, m ≥ k + 2 as the totality
of tuples (x1, x2, . . . xk) ∈ Mk, such that xi 6= xj for each pair (i, j) ∈ M2. Let
us consider the binary relation φ = φk(m) on Mk consisting of all pairs of tuples
((x1, . . . , xm) , (y1, . . . , ym)), such that yi = xi+1 for i = 1, . . . , k − 1 and ym 6= xi

for each i ∈ {1, . . . , k}. The corresponding directed graph Γ = Γi(m) has order
m(m− 1) . . . (m− k + 1), each vertex has m− k input and output arrows.

Proposition 2. The girth indicator and diameter of the graph Γk(m) is k + 1 and
2k, respectively. The girth of the graph is 2d + 1

Proof. Let us consider the Os,t, 0 ≤ t ≤ s ≤ k, s ≥ 1 of the graph Γk(m) with the
starting point a = (a1, a2, . . . , ak). Let ax = (a2, a3, . . . , ak, x) be the neighbor of ã
within the pass Px of the diagram of length s. Notice that x is different from ai,
i = 1, 2, . . . , k. Let P be other pass of the diagram. If length t of P is zero, we
assume that P consist of one vertex a. The first component of ending point w of
the Px equals to x. But the first component of each vertex for each vertex of the
pass P is either element of {a1, a2, . . . , ak} (case t < s or element y, y 6= x (case
t = s). But w has to be the vertex of P as well. So we are getting a contradiction.
Thus, we proved that the girth indicator of the graph is > k.

Notice that w = (x, x1, . . . , xk−1), where x 6= ai, i = 1, . . . , k, xi 6= aj , J =
i+1, i+2, . . . , k, j = 1, . . . , k− 1. We can add vertex (x1, x2, . . . , xk1 , xk), consider
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the following specialization of variables xi = ai for i = 1, 2, . . . , k and obtain the
diagram O′

0,k+1. So the girth indicator of the graph is k + 1.
Let us consider the pass of length 2k starting from a and going throw w and

(x1, x2, . . . , xk) as above. It contains the following tuples:

(x2, . . . , xk, y1), (x3, . . . , xk, y1, y2), . . . (xk, y1, . . . , yk−1).

The only requirement on distinct elements Xk, Y1, . . . , yk is xk nex and x can be
arbitrarily element from the complement of {a1, . . . , ak}. If m ≥ k + 2, then arbi-
trary point of Mk can be reached from a via the pass as above and diameter of the
graph is bounded by 2k. It is clear that there is no pass of length 2k − 1 between
a and element of kind (Z1, . . . , zk−1, ak). So diam(Γk(m)) = 2m.

�

Corollary 3. Let F be the family of graphs Γm(k), m = k + 2, k + 3, . . . . Then it
is a family of directed small world graphs, the size of the members of this family is
on the bound (2.1) of theorem 1.

Really, Γm(k) has degree m − k, order v = m(m − 1) . . . (m − k + 1). So
logm−k(v) is some constant > k. So diameter of graphs from the family is bounded
by 2 logm−k(v). The size of Γm(k) is v(m−k). We have (m)k ≥ V . So E(Γm(k)) ≥
v[(v1/k)− k] = v1+1/k − kv.

Let us consider the bipartite analog Γ′ = Γ′k(m) of the graph Γ = Γk(m) Let
M be a finite set, m = |M | ≥ 2. Let P (point set) and L (line set) are two copies
of the vertex set Mk, m ≥ k + 2 of the graph Γ. We will use the brackets and
parenthesis for the tuples from P and L, respectively.

LetΓ′ = Γ′k(m) be the graph of binary relation on P ∪L consisting of all pairs of
tuples ((x1, . . . , xm), [y1, . . . , ym) or (x1, . . . , xm, (y1, . . . , ym)), such that yi = xi+1

for i = 1, . . . , k−1 and ym 6= xi for each i ∈ {1, . . . , k}. The corresponding directed
graph Γ′ = Γ′k(m) has order 2m(m−1) . . . (m−k+1), each vertex has m−k input
and output arrows.

Proposition 4. The girth indicator and diameter of the graph Γ′k(m) is k +1 and
2k + 1, respectively. The graph does not contain commutative diagram Ok+1,k.The
girth of the graph is 2d + 2.

Proof. The graph does not contain Ok+1,k because of the ending point of the dia-
gram can not be point and line at same time.The evaluation of the girth indicator
and diameter can be done similarly to the evaluation in the proof of proposition
1. �

Corollary 5. Let F ′ be the family of graphs Γ′m(k), m = k + 2, k + 3, . . . . Then it
is a family of directed small world graphs, the size of the members of this family is
on the bound (2.2) of theorem 1.

Really, Γ′m(k) has degree m−k and order v = 2m(m−1) . . . (m−k+1). We have
(m−k)K ≤ m(m−1) . . . (m−k+1). So k ≤ logm−k(m(m−1) . . . (m−k+1)). Thus
2k+1 < 3k ≤ 3logm−k(m(m−1) . . . (m−k+1)) < 3log2m(m−1) . . . (m−k+1) =
3logm−k(v)

The size of Γ′m(k) is v(m− k). We have (m)k ≥ m(m− 1) . . . (m− k + 1) = v/2.
So m > (1/2)kv1/k. Thus E(Γ′m(k)) ≥ v((1/2)1/kv1/k)− k] = (1/2)1/kv1+1/k − kv.
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4. On the directed graphs without commutative diagrams of rank
< d of minimal order

Recall that (k, g)-cage is a simple graph of degree k, girth g of minimal order
v(k, g). The following objects are analogies of classical cages.

Definition 6. We refer to the directed graph with the girth g, output degree k and
minimal order u(k, g) as directed (k, g)-cage.

As it follows from the definition of directed (k, g)-cage

Theorem 7. The following hold:

(k + d)(k + d− 1) . . . k ≥ u(2k + 1, d) ≥ 1 + k(k − 1) + . . . k(k − 1)d−1,

2[(k + d)(k + d− 1) . . . k] ≥ u(2k + 2, d) ≥ (1 + (k − 1) + . . . (k − 1)d) + (k − 1)d

Proof. Let Γ be directed graph with k-outputs for each vertex and girth indicator
d, then the branching process Branch starting with the chosen vertex a gives s =
1 + k + k(k − 1) + . . . k(k − 1)d different vertices. So we prove (i).

Let b satisfies to a → b. We can consider K − 1 output arcs (a, x) from a, which
are different from (a, b). The branching process starting from each element x b gives
at least (K−1)+ . . . (k−1)d−1 passes of length ≤ d−1. This way we are getting set
T of elements of distance (d− 1) from a. Let us consider arcs of kind (b, y), y 6= a.
The branching process from y gives us (q − 1) + (q − 1)d−1 at distance d− 2 from
y. Together with b we have 1+ (q− 1)+ . . . (q− 1)d−1 elements at distance ≤ d− 1
from b. This set has empty intersection with T because of absence of commutative
diagrams Od+1,d. So we have at least (1+ (k− 1)+ . . . (k− 1)d)+ (k− 1)d different
vertices of the graph.

�

Proposition 8. Let Γ be directed cage with the output degree ≥ 3 of order v and
girth indicator d.

(i) If its girth is 2d + 1, then the size E of the graph satisfies to the following
inequality

v1+1/d − kv ≤ E ≤ v1+1/d + v

(ii) if its girth is 2d + 2, then the size E of the graph satisfies to the following
inequality

(1/2)1/dv1+1/d − kv ≤ E ≤ (1/2)1/dv1+1/d + v

Let P be some property of directed regular graphs and uP (k, g) be the minimal
order of graph with the output degree K and the girth indicator g. It is clear that
UP (k, g) ≥ U(k, g). So v(m, g) ≥ u(m, g), in particular. The following statement
follows immediately from the above inequalities.

Corollary 9. Let s be the property to be simple graph. Then

a) v(k, 2d + 1) = uS(k, 2d + 1) ≥ u(k, 2d + 1) ≥ 1 + k + k(k − 1) + · · ·+ k(k − 1)d−1,

b) v(k, 2d + 2) = us(k, 2d + 2) ≥ U(k, 2d + 2) ≥ (1 + (k − 1) + · · ·+ (k − 1)d) + (k − 1)d

The above lower bound for g = 2d + 2 can be improved by Tutte inequality
v(k, 2d + 2 ≥ 2(1 + (k− 1) + . . . (k− 1)d) (see [BCN]). The Tutte’s lover bound for
v(k, 2d+2) is same with (b). The upper and lower bound for U(k, g) are quite tight,
both of them are given by polynomial expression in variable k of kind kd + f(k),
where d = [(q − 1)/2] and degf(x) ≤ d − 1. The situation with the known upper
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bound on the order of cages is different, such bound is quite far from the lower one
(see [18]).

Cages of odd girth with the order on the Tutte’s bound are known as Moore
graphs. There are only finite examples of Moore graphs. Well known finite gener-
alized m-gons are examples of cages of even girth (see next section of the paper).

From the existence of the k-regular Moore graph of girth 2d + 1 (2d + 2) follows
U(k, d) = v(k, 2d + 1) = 1 + k(k − 1) + . . . k(k − 1)d−1 (u(k, d) = v(k, 2d + 1) =
2(1 + (k − 1) + . . . (k − 1)d), respectively.

There is a finite number of Moore graphs of order v of odd girth. Some infinite
families of Moore graphs of even girth are known (see [6] or next section).

Proposition 10. Let A be the property to be the graph of antisymmetric relation
Φ i.e. (a, b) ∈ Φ implies that (b.a) is not in Φ. Then

(i) (k + d)(k + d− 1) . . . k ≥ uA(2k + 1, d) ≥ 1 + k + k2 + . . . kd−1,
(ii) 2[(k+d)(k+d−1) . . . k] ≥ uA(2k+2, d) ≥ [1+k+k2+. . . kd−1]+(k−1)kd−1.

The bounds (i) and (ii) are valid for balanced antisymmetric regular graphs.

5. Algebraic explicit constructions of extremal regular directed
graphs with the fixed girth indicator

We shall use term of algebraic graph for the of graph Γ(K) of binary relation Φ,
such that the vertex set V (Γ) = V (K) is an algebraic variety over commutative ring
K of dimension≥ 1 and for each vertex v ∈ V the neighborhoods In(v) = {x|(x, v) ∈
V } and Ou(v) = {x|(v, x) ∈ V } are algebraic varieties over K of dimension ≥ 1 as
well (see [2] for the case of simple graphs).

We shall use term the family of directed graphs of large girth for the family of
regular graphs Γi with output degree ki and order vi such that their girth indicator
di = gi(Γi) are ≥ c logki

(vi), where c is the independent on i constant. So the size
of such graphs is quite close to the bound (2.1) or (2.2).

We say that Γi form a family of asymptotical directed cages of odd (even) girth
if vi = kidi + o(kidi) ( vi = 2kidi + o(kidi) . It is clear that asymptotical cages of
even or odd girth are families of graphs of large girth.

In this section we consider examples of families of algebraic graphs of large girth
with fixed girth indicator, asymptotical directed cages of odd and even girth, in
particular.

E. Moore [11] used term tactical configuration of order (s, t) for biregular bipartite
simple graphs with bidegrees s + 1 and r + 1. It corresponds to incidence structure
with the point set P , line set L and symmetric incidence relation I. Its size can be
computed as |P |(s + 1) or |L|(t + 1).

Let F = {(p, l)|p ∈ P, l ∈ L, pIl} be the totality of flags for the tactical config-
uration with partition sets P (point set) and L (line set) and incidence relation I.
We define the following irreflexive binary relation φ on the set F :

((l1, p1), (l2, p2)) ∈ φ if and only if p1Il2, p1 6= p2 and l1 6= l2. Let F (I) be
the binary relation graph corresponding to φ. The order of F (I) is |P |(s + 1) (or
|L|(t + 1) We refer to it as directed flag graph of I.

Lemma 11. Let (P,L, I) be a tactical configuration with bidegrees s + 1 and t + 1
of girth g ≥ 4k. Then the girth indicator of directed graph F (I) with the output an
input degree st is > k.
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Let (P,L, I) be the incidence structure corresponding to regular tactical config-
uration of order t.

Let F1 = {(l, p)|l ∈ L, p ∈ P, lIp} and F2 = {[l, p]|l ∈ L, p ∈ P, lIp} be two copies
of the totality of flags for (P,L, I). Brackets and parenthesis allow us to distinguish
elements from F1 and F2. Let DF (I) be the directed graph (double directed flag
graph) on the disjoint union of F1 with F2 defined by following rules:

(l1, p1) → [l2, p2] if and only if p1 = p2 and l1 6= l2,
[l2, p2] → (l1, p1) if and only if l1 = l2 and p1 6= p2.

Lemma 12. Let (P,L, I) be a regular tactical configuration of degrees s of girth
g ≥ 2m. Then the girth indicator of double directed graph DF (I) with the output
an input degree s is > m.

Generalized m-gons GPm(r, s) of order (r, s) were defined by J. Tits in 1959 (see
[15], [16] and survey [14]) as tactical configurations of order (s, t) of girth 2m and
diameter m. According to well known Feit - Higman theorem a finite generalized
m-gon of order (s, t) has m ∈ {3, 4, 6, 8, 12} unless s = t = 1.

The known examples of generalized m-gons of bidegrees ≥ 3 and m ∈ {3, 4, 6, 8}
include rank 2 incidence graphs of finite simple groups of Lie type (see [4]). The
regular incidence structures are I1,1(3, q) for m = 3 (groups A2(q)), I1,1(4, q), m = 4
(groups B2(q)) and I1,1(6, q), m = 6 (group G2(q)). In all such cases s = t = q,
where q is prime power.

The biregular but not regular generalized m-gons have parameters s = qα, t =
qβ , where q is a prime power. The list is below: relation I2,1(4, q), s = q2, t = q, q
is arbitrary large prime power for m = 4; I3,2(6, q), s = q3, t = q2, where q = 32k+1,
k > 1 for m = 6; I2,1(8, q), s = q2, t = q, q = 22k+1 for m = 8. For each triple
of parameters (m, s, t) listed above there is an edge transitive generalized m-gon of
order (s, t) related to certain finite rank 2 simple group of Lie type. in case of m = 3
(projective planes. in particular) and m+4 (generalized quadragons) some infinite
families of graphs without edge transitive automorphism group are known. The
following two lemmas can be obtained immediately from the axioms of generalized
polygon.

Lemma 13. Let (P,L, I) be the generalized 2k-gon of order (r, s). Then
|P | =

∑
t=0,k−1

(rtst + rt+1st), |L| =
∑

t=0,k−1

(strt + st+1rs).

Lemma 14. Let (P,L, I) be regular generalized m-gon of degree q +1. Then |P | =
|L| = 1 + q + · · ·+ qm−1.

Corollary 15. For each m = 3, 4, 6 and prime p the family Fm(q), q = pn, n =
1, . . . of edge transitive polygons is an algebraic family over Fp of cades of girth 2m
of degree q + 1 with the order on the Tutte’s lower bound.

Let (P,L, I) be generalized m-gon of order (s, t), s ≥ 2, t ≥ 2 and e = {(p, l},
(p ∈ P , l ∈ L, pIl) be chosen edge of this simple graph.

Let Se = Sche(I) be the restriction of incidence relation I onto P ′ ∪ L′ where
P ′ (L′) is the totality of points (lines) at maximal distance from p (l, respectively).
It can be shown that (P ′, L′, Se) is a tactical configuration of degree (s− 1, t− 1).
Let us refer to (P ′, L′, Se) as Schubert graph. If the generalized polygon is edge-
transitive its Schubert graph is unique up to isomorphism. In this case Schubert
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graph corresponds to the restriction of incidence relation onto the union of two
”largest large Schubert cells”, i. e. orbits of standard Borel subgroups of highest
dimension.

Proposition 16. For each Sm(p) m = 3, 4, 6 and prime p the family of Schubert
graphs Sm(p) of regular generalized m-gons Fm(q) is algebraic over Fp family of
asymptotical cages of even girth with the order 2qm−1 and degree q.

The extremal properties of finite generalized polygons, their Schubert graphs
and some of their induced subgraphs have been considered in [32].

Remark. The girth of Sm(q) is 2m for ”sufficiently large” parameter q.
Let (P,L, I) be a regular tactical configuration of order (t, t). The double con-

figuration I ′ = DT (I) is the incidence graph of the following incidence structure
(P ′, L′, I ′) : P ′ = F (I) = {(p, l)|p ∈ P, l ∈ L, pIl}, L′ = P ∪ L, f = (p, l)Ix, x ∈ L′

if p = x or l = x. It is clear that the order of tactical configuration I ′ is (1, t). If
(P,L, I) is a generalized m-gon, then (P ′, L′, I ′) is a generalized 2m-gon.

Proposition 17. (i) If the girth of regular tactical configuration (P,L, I) of degree
s + 1 is 2t, then the girth of DT (I) is 4t. The order of DT (I) is (s, 1).

(ii) Let (P,L, I) be regular generalized m-gon, then DT (I) is generalized 2m-
gom.

Corollary 18. The configurations DT (I) = I2(m, q) for known regular m-gons,
m = 3, 4, 6 of degree q + 1, q is a prime power, are generalized 2m-gons of order
(1, q).

Theorem 19. (i) Let Is.t(m, q), m ≥ 4 be the incidence relation of one of the
known edge transitive m-gons defined over the field Fq, q = pn, p is prime number.

Then for each tuple (m, s, t, p) the family of directed flag-graphs Fn(m, s, t, p)
for generalized m-gon of order (qs, qt is an algebraic over Fp family of asymptotic
cages of odd girth. The girth indicator of each graph from the family is m/2 + 1
and the girth is m + 1 (5, 7, 9).

(ii) Let Ss.t(m, q), m ≥ 4 be the Schuberst graph of the incidence relation
Is.t(m, q) of one of the known edge transitive m-gons defined over the field Fq,
q = pn, p is prime number.

Then for each tuple (m, s, t, p) the family of directed flag-graphs SFn(m, s, t, p)
for Ss.t(m, q) is an algebraic over Fp family of asymptotic cages of odd girth. The
girth indicator of each graph from the family is m/2 + 1 and the girth is m + 1.

(iii) Let I1.1(m, q) be the incidence relation of one of the known edge transitive
regular m-gons defined over the field Fq, q = pn, p is prime number. Then for each
pair (m, p) the family DF (m, p) of double flag graphs DF (m, i) = DF (I1.1(m, pi)),
i = 1, . . . is an algebraic over Fp family of directed asymptotic cages of even girth.
The girth indicator of each DF (m, s) is m + 1 and the girth is 2m + 2 (8, 10.14).

(4i) Let I2(m, q) be the incidence relation of double tactical configuration of
regular generalized m gon defined over Fq, q = pn, p is prime. Then for each
pair (m, p) the family F (m, p) of directed flag-graphs Fn(m, p) , n = 1, . . . is an
algebraic over Fp family of directed graphs of large girth. The girth indicator of
each graph is m + 1 and girth is 2m + 1 (7, 9, 13).

Regular finite generalized polygons have been used in works of R. Tanner on
Coding Theory. The applications of biregular generalized polygons and their Schu-
bert graphs to Cryptography the reader can find in [33]. Paper [37] devoted to
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cryptographical algorithms based on nonsymmetric directed asymptotical cages as
above.

6. On the constructions of families of nonsymmetric directed graphs
of large girth with fixed degree

The concept of family of simple graphs of large girth of fixed degree had been
introduced by P. Erdös’ in the late 50th.

The first explicit examples of families of simple graphs with large girth of arbi-
trary large degree were given by Margulis. The constructions were Cayley graphs
Xp,q of group SL2(Zq) with respect to special sets of q + 1 generators, p and q are
primes congruent to 1 mod4. The family of Xp,q is not a family of algebraic graphs
because the neighborhood of each vertex is not an algebraic variety over Fq. For
each p, graphs Xp,q, where q is running via appropriate primes, form a family of
small world graph of unbounded diameter (see [19],[20]).

The fist family of connected algebraic simple graphs over Fq of large girth and
arbitrarily large degree had been constructed in [17]. These graphs CD(k, q), k
is an integer ≥ 2 and q is odd prime power had been constructed as connected
component of graphs D(k, q) defined earlier. For each q graphs CD(k, q), k ≥ 2
form a family of large girth with γ = 4/3logq−1q.

Two new examples of families of simple algebraic graphs of large girth and ar-
bitrary large degree the reader can find in [36]. Papers [34], [30], [15], [29] devoted
to software packages of cryptographical algorithms based on simple graphs.

For each commutative ring the infinite family of directed graphs of large girth
with fixed degree has been constructed in [34]. The cryptographical algorithms
based on such directed graphs the reader can find in [34], [36]. Paper [15] devoted to
implementations of graph based fast stream ciphers corresponding to antisymmetric
relations.
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