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REGULAR LIFTING OF COVERS OVER AMPLE FIELDS

D. HARAN AND M. JARDEN

ABSTRACT. Let K be an ample field, G a finite group, and L a finite Galois
extension of K such that Gal(L/K) is isomorphic to a subgroup of G. We
prove that K(z) has a Galois extension F' which is regular over L such that
Gal(F/K(x)) = G and F has a K-place ¢ such that ¢(z) € K and ¢(F) =
L U {co}.

1. INTRODUCTION

Colliot-Thélene [CoT00] uses the technique of Kolldr, Miyaoka, and Mori to
prove the following result.

Theorem A: Let K be an ample field of characteristic 0, x a transcendental el-
ement over K, and G a finite group. Then there is a Galois extension F' of K(x)
with Galois group G, reqular over K.

Here K is said to be ample if every absolutely irreducible curve defined over K
with a K-rational simple point has infinitely many K-rational simple points.

In fact, Colliot-Thélene proves a stronger version, still under the assumption
that K is ample and char(K) = 0:

Theorem B: Given a Galois extension L/K with Galois group T' which is a sub-
group of G, there exist a Galois extension F' of K(z) with Gal(F/K(z)) 2 G and
a place ¢ that fizes the elements of K and the residue field extension of F/K(x)
under ¢ is L/K.

Case I' = G of Theorem B means that K has the arithmetic lifting property of
Beckmann and Black [Bla99].

Since the results of Kolldr, Miyaoka, and Mori are valid only in characteristic 0,
Colliot-Thélene’s proof works only in this case. Nonetheless, Theorem A holds
in arbitrary characteristic ([Har87, Corollary 2.4] for complete fields, [Pop96, Main
Theorem Al; see also [Liu95] and [HaV96]). Theorem B can be deduced for arbitrary
characteristic from Théoréme 1.1 of [MoB01]. The proof of that paper uses methods
of formal patching.

Here we use algebraic patching to prove Theorem B for arbitrary characteristic.
In fact, the main ingredient of the proof is almost contained in [HaJ98]. Therefore
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this note can be considered a sequel to [HaJ98|; a large portion of it recalls the
situation and facts considered there.

The idea (displayed in our Lemma 3.1) to use the embedding problem GxG — G
in order to obtain the arithmetic lifting property has been used in [Pop99]; we are
grateful to F. Pop for making his note available to us.

2. EMBEDDING PROBLEMS AND DECOMPOSITION GROUPS

Let K/Kj be a finite Galois extension with Galois group I'. Let x be a transcen-
dental element over K. Put Ey = Ky(x). Suppose that T" acts (from the right) on a
finite group G; let I' x G be the corresponding semidirect product and m: I'x G — T’
the canonical projection. We call

(1) mI'x G—T = Gal(K/Kp)

a finite constant split embedding problem. A solution of (1) is a Galois
extension F of Fy such that K C F, Gal(F/Ey) =T x G, and 7 is the restriction
map resg: Gal(F/Ey) — Gal(K/Ky).

In [HaJ98, Theorem 6.4] we reprove the following result of F. Pop [Pop96]:

Proposition 2.1. Let Ky be an ample field. Then each finite constant split em-
bedding problem (1) has a solution F such that F has a K-rational place ¢ such
that o(x) € Ko U {oo} (in particular, F/K is regular).

In this section we show that the proof of Proposition 5.2 in [HaJ98] yields a
stronger assertion. -
We denote the residue field of a place ¢ of a field F' by Fi,.

Lemma 2.2. Let F be a solution of (1). Put Fy = F'. Let p: F — Eu{m} be a
K -place with ¢(z) € KoU{oo}. Assume that ¢ is unramified in F/Eq and let D,
be its decomposition group in F/FEy. Then K C Fso and the following assertions are
equivalent:

(o) K=F, and T = D,;

(b) DCP g 1:‘;

(C) KO :_}r‘o,ip;

(d) K = F, and o(f7) = @(f)" for each v €T and f € F with ¢(f) # .

Proof. Since K C F', we have K = f(@ C Fw Since the inertia group of ¢ in F/Ey

is trivial, we have an isomorphism 6: D, — Gal(F,,/Kj) given by

(2) p(f) =)', v €Dy, fEF, o(f) # oo
Hence, |Dy,| = [F, : Ko] > [K : Ko] = |I'|. This gives (a) < (b).

Since ¢ is unramified over Ey, the decomposition field F'P+¢ is the largest inter-
mediate field of F//Ey mapped by ¢ into Ko U {oo}, and hence (b) < (c).

Clearly (d) = (c). If F,, = K, then f7 = () = ¢(£)?) = 00 for all f € K
and v € D, (by (2)). Hence, §(y) = v for all v € D,. Applying (2) once more,
we have o(f7) = ¢(f)?0) = p(f)7 for each f € F with ¢(f) # oo and v € D,,.
Consequently, (a) = (d).

(]

Remark 2.3. Let Ky be an ample field and F a solution of (1). Suppose F has
a K-rational place ¢ unramified over Eq such that o(x) € Ko U {00} and T is the
decomposition group of ¢ in F/Ey. Then F has infinitely many such places.
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Proof. Indeed, put Fy = F'. Recall that Fy is regular over Ky. By Lemma 2.2,
(a) the assumption is that there is a Ky-place ¢: Fy — Ky unramified over
Ky(x), and
(b) we have to show that there are infinitely many such places.
But (a) = (b) is a property of an ample field.
O

Proposition 2.4. Let K be an ample field. Then each finite constant split embed-
ding problem (1) has a solution F with a K -rational place p of F unramified over
Ey such that ¢(x) € Ko U {oo} and T is the decomposition group of ¢ in F/Ey.

Proof. Put E = K(z) = KKy(x).

Part A: As in the proof of [HaJ98, Theorem 6.4], we first assume that K is
complete with respect to a non-trivial discrete ultrametric absolute value ||, with
infinite residue field and K /K, is unramified.

In this case [HaJ98, Proposition 5.2] proves Proposition 2.1. Claim C of that
proof shows that, for every b € Ky with |b] > 1, x — b extends to a K-homomorphism
vp: R — K, where R is the principal ideal ring K{ xjci | i € I} and the ¢;’s are
properly chosen elements of K. From there it extends to a K-place ypp: @ —
K U {oo} of the @ = Quot(R). Furthermore, [HaJ98, Lemma 1.3(b)] gives an E-
embedding A\: ' — Q. The compositum ¢ = ¢, o A is a K-rational place of F.
Excluding finitely many b’s we may assume that ¢ is unramified over Ey. To verify

that ¢ satisfies condition (d) of Lemma 2.2, we first recall the relevant facts from
[HaJ9g].

(a) [HaJ98, Proposition 5.2, Construction B] The group I' = Gal(K/K)) lifts
isomorphically to Gal(E/Ep). By the choice of the ¢; we have (ﬁ)v =1 for

I*Ci

each v € I'. Tt follows that " continuously acts on R in the followiﬁg way

(ao—i—Ziain(IlCi)")“’ _ aa’—f—Ziazn(xlCz)n.

i€l n=1 i€l n=1

This action induces an action of I on Q.

(b) [HaJ98, (7) on p. 334] The above mentioned action of T' on @ defines an
action of I' on the @Q-algebra

N:Indez{Za,,m as eQ}
0cG
in the following way:
(Zage)AY:Zagm ag €Q, yeT.
0eG 0eG

Furthermore, the field F is a subring of N [HaJ98, p. 332] and T" acts on it by
restriction from N [HaJ98, Proof of Proposition 1.5, Part A].

(¢) The embedding \: F' — @ is the restriction to F' of the projection

Zagﬁ — a

0eG
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from N = IndQ onto Q [HaV96, Proposition 3.4].

(d) The place gp: Q@ — K U{oo} is induced from the evaluation homomorphism
vp: R — K given by [HaJ98, Remark 3.5]

o0+ X P )) =0+ Yl

iel n=1 iel n=1 Z

In order to prove condition (d) of Lemma 2.2 it suffices to show that both A and
wp are [-equivariant.
Let f =) ycqaol € FF'C N. Then, by (b) and (c),

(X ) =i = (S =207

0eG

Furthermore, let 7 =ag+ > ,c; Y07, am(w%ci)" € R. By (a) and (d),

() = o(a + 0Dl (=) =+ e

i€l n=1 i€l n=1

= (ao ‘Lz:iojain(blci)n>7 = pp(r)7.

i€l n=1

Thus ¢y is I'-equivariant.

Part B: K is an arbitrary ample field. As in the proof of [HaJ98, Theorem 6. 4]
let Ko = Ko((t)) be the field of formal power series in ¢ over Ko. Then K = KK,
is an unramified extension of Ko with Galois group I" and infinite residue field.

By Part A, Ko(x) has a Galois extension F which contains K(z), such that
Gal(F/Ko(z)) = T x G and the restriction map Gal(F'/Ko(x)) — Gal(K/Kj) is
the projection m: 'kG — I'. Furthermore, thereis b € Ky such that the placex — b
of Ko(z) extends to an unramified K-place ¢: F' — K U {oo} and ¢(FT) = K.
Put m = |G|.

Use the Weak Approximation to find y € FT mapped by the m distinct exten-
sions of z — b to F' into m distinct elements of the separable closure of IA(O; then
Fr = Ko(x Y)-

Thus there exist polynomials f € Ko[X,Z], g € Ko[X,Y], elements z € F,
Y € ET | and elements b, ¢ € Ky, such that the following conditions hold:

(3;}) lf’ = Ko(z,2), f(x,Z) = irr(z, Ko(x)); we identify Gal(f(x, Z), Ko(z)) with
Gal(F'/Ko(z));

(3b) ET = Ko(x,y), whence F' = K (z,y), and g(z,Y) = irr(y, Ko(x)); therefore
9(X,Y) is absolutely irreducible;

(3¢) discr(g(b,Y)) # 0 and g(b,c) = 0.



REGULAR LIFTING OF COVERS OVER AMPLE FIELDS 183

All of these objects depend on only finitely many parameters from K. Hence,
there are uq,...,u, € K such that the following conditions hold:

(4a) F = Ko(u,z, 2) is a Galois over Ky(u,z), the coefficients of f(X, Z) lie in
KO[UL f(xv Z) = irr(z,KO(u,ac)), and Gal(f('r7 Z)a KO(ua I)) = Gal(f(1‘7 Z)7K0(x))7

(4b) the coefficients of g lie in K[u]; hence g(z,Y) = irr(y, Ko(u, x)); further-
more, Ko(u,x,y) = F';

(4c) b, c € Kp[u], discr(g(b,Y)) # 0, and g(b,¢c) = 0.

Since K, has a K-rational place, namely, © — 0, the field K, and therefore
also Ko(u) are regular extensions of Ky. Thus, u generates an absolutely irre-
ducible variety U = Spec(Ky[u]) defined over Ky. By Bertini-Noether [FrJ05,
Proposition 9.4.3], the variety U has a nonempty Zariski open subset U’ such that
for each u' € U’ the Ky-specialization u — u’ extends to a K-homomorphism
" K[u,z, z,y] — K[u',z,2,y'] such that the following conditions hold:

(5a) f'(z,z") = 0, the discriminant of f'(x, Z) is not zero, and F’ = Ky(u/,z, 2’)
is the splitting field of f/(x, Z) over Ko(u', z); in particular F'/Ky(u’, z) is Galois;

(5b) ¢'(X,Y) is absolutely irreducible and ¢'(x,y’) = 0;s0 ¢'(z,Y) = irr(y/, K (u', ));
furthermore, Ko(u', z,y’) = (F')';

(5¢) V', ¢ € Ko[u'] and discr(g'(t/,Y)) # 0 and ¢'(b,¢’) = 0.

By assumption, Ko is ample, so K is existentially closed in K¢ [Pop96, Prop. 1.1].
Since u € U(K)), thereis a u’ € U(Kj). Now repeat the end of the proof of [HaJ98,
Lemma 6.2] (from “By (5a), the homomorphism. ..”) to conclude that F’ is a solu-
tion of (1).

F F F
s e
(F’)F FF/ N ‘
/K(@ — | — K(u,2) —|— K()
- e
K K |
Ko(z) — | — Ko(u,z) — | — Ko(x)
/ ~ R 7
K, Ko(u) Ky

Condition (5c) ensures that the place x — b of Ko(z) is unramified in (F')',
hence in F’, and extends to a Ky-rational place of (F/)''. This ends the proof by
Lemma 2.2.

[l
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3. LIFTING PROPERTY OVER AMPLE FIELDS

Consider a subgroup T of a finite group G, let I' act on G by the conjugation in
G
9 =797
and consider the semidirect product I" x G. To fix notation,

I'xG={(v,9) veT.g€G}
and the multiplication on I x G is defined by

(71,91) (72, 92) = (1172, 977 g2)-

Notice the isomorphism I' x G 2 T' x G given by (v, g) — (v,vg) and the epimor-
phism p: T' x G — G given by (v, g) — vg. Let N = Ker(p).

Lemma 3.1. Let Ky be a field, K a Galois extension of Ky with Galois group T,
and x a transcendental element over Ko. Assume that (1) has a solution F with a
K -rational place ¢ of F' unramified over Ko(z) such that $(z) € KoU{oo} and T is
the decomposition group of ¢ in F/Ko(x), Let F = EN and let o be the restriction
of o to F. Then

(6a) F is a Galois extension of Ko(x) and Gal(F/Ky(x)) = G;
(6b) F/ Ky is a regular extension;

(6¢) ¢ represents a prime divisor p of F/Ky with decomposition group T' in
F/Ky(x) and residue field K.

Proof. By assumption, F is a Galois extension of Ky(z) containing K, with Galois
group I'x @ such that the restriction Gal(F/Kg(x)) — Gal(K/Kj) is the projection
I'x G—T, and a /K is regular. Furthermore, ¢: FoKisaK -place unramified
over Ko(x), with decomposition group A = {(y,1)]| v € T} 2 T in F/Ky(z) and
residue field extension K/Kj. In particular, Fis regular over K.

From the definition of F' we get (6a) and p(A) =T' < G is the decomposition
group of the restriction ¢: FF — K of ¢ to F. Since |A| = [K : Kp), the residue
field of ¢ is K. Since I' x G = NG, the fields F = F'N and K (z) = F are linearly
disjoint over Ko(z). In addition, FK = F and F/K is regular. Therefore, F is
regular over Kj. [l

Lemma 3.1 together with Proposition 2.4 and Remark 2.3 yield the following
result:

Theorem 3.2. Let Ky be an ample field, G a finite group, I' a subgroup, K a
Galois extension of Ky with Galois group T, and = a transcendental element over
K. Then there is a field F that satisfies (6a), (6b) and

(6d) there are infinitely many prime divisors p of F'/ Ky with decomposition group
T in F/Ko(x) and residue field K.

Remark 3.3. In case of I' = G, Theorem 3.2 says that an ample field Ky has the
so-called arithmetic lifting property of Beckmann-Black [Bla99).
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Remark 3.4. In the special case where K is a PAC field, it possible to refine
Theorem 3.2. In this case if F' is an arbitrary Galois extension of K(x) regular
over K and L/K is a Galois extension with Galois group isomorphic to a subgroup
of Gal(F/K (z)), there exists a place ¢ of F such that the residue field extension of
F/K(x) under ¢ is L [Deb99, Remark 3.8]. This stronger property of PAC fields
does not hold for an arbitrary ample field K [CoT00, Appendiz].
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