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REGULAR LIFTING OF COVERS OVER AMPLE FIELDS

D. HARAN AND M. JARDEN

Abstract. Let K be an ample field, G a finite group, and L a finite Galois

extension of K such that Gal(L/K) is isomorphic to a subgroup of G. We

prove that K(x) has a Galois extension F which is regular over L such that
Gal(F/K(x)) ∼= G and F has a K-place ϕ such that ϕ(x) ∈ K and ϕ(F ) =

L ∪ {∞}.

1. Introduction

Colliot-Thélène [CoT00] uses the technique of Kollár, Miyaoka, and Mori to
prove the following result.

Theorem A: Let K be an ample field of characteristic 0, x a transcendental el-
ement over K, and G a finite group. Then there is a Galois extension F of K(x)
with Galois group G, regular over K.

Here K is said to be ample if every absolutely irreducible curve defined over K
with a K-rational simple point has infinitely many K-rational simple points.

In fact, Colliot-Thélène proves a stronger version, still under the assumption
that K is ample and char(K) = 0:

Theorem B: Given a Galois extension L/K with Galois group Γ which is a sub-
group of G, there exist a Galois extension F of K(x) with Gal(F/K(x)) ∼= G and
a place ϕ that fixes the elements of K and the residue field extension of F/K(x)
under ϕ is L/K.

Case Γ = G of Theorem B means that K has the arithmetic lifting property of
Beckmann and Black [Bla99].

Since the results of Kollár, Miyaoka, and Mori are valid only in characteristic 0,
Colliot-Thélène’s proof works only in this case. Nonetheless, Theorem A holds
in arbitrary characteristic ([Har87, Corollary 2.4] for complete fields, [Pop96, Main
Theorem A]; see also [Liu95] and [HaV96]). Theorem B can be deduced for arbitrary
characteristic from Théorème 1.1 of [MoB01]. The proof of that paper uses methods
of formal patching.

Here we use algebraic patching to prove Theorem B for arbitrary characteristic.
In fact, the main ingredient of the proof is almost contained in [HaJ98]. Therefore
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this note can be considered a sequel to [HaJ98]; a large portion of it recalls the
situation and facts considered there.

The idea (displayed in our Lemma 3.1) to use the embedding problem GnG→ G
in order to obtain the arithmetic lifting property has been used in [Pop99]; we are
grateful to F. Pop for making his note available to us.

2. Embedding problems and decomposition groups

Let K/K0 be a finite Galois extension with Galois group Γ. Let x be a transcen-
dental element over K. Put E0 = K0(x). Suppose that Γ acts (from the right) on a
finite group G; let ΓnG be the corresponding semidirect product and π: ΓnG→ Γ
the canonical projection. We call

(1) π: Γ nG→ Γ = Gal(K/K0)

a finite constant split embedding problem. A solution of (1) is a Galois
extension F of E0 such that K ⊆ F , Gal(F/E0) = Γ nG, and π is the restriction
map resK : Gal(F/E0)→ Gal(K/K0).

In [HaJ98, Theorem 6.4] we reprove the following result of F. Pop [Pop96]:

Proposition 2.1. Let K0 be an ample field. Then each finite constant split em-
bedding problem (1) has a solution F such that F has a K-rational place ϕ such
that ϕ(x) ∈ K0 ∪ {∞} (in particular, F/K is regular).

In this section we show that the proof of Proposition 5.2 in [HaJ98] yields a
stronger assertion.

We denote the residue field of a place ϕ of a field F by F̄ϕ.

Lemma 2.2. Let F be a solution of (1). Put F0 = FΓ. Let ϕ: F → K̃0∪{∞} be a
K-place with ϕ(x) ∈ K0 ∪ {∞}. Assume that ϕ is unramified in F/E0 and let Dϕ

be its decomposition group in F/E0. Then K ⊆ F̄ϕ and the following assertions are
equivalent:

(a) K = F̄ϕ and Γ = Dϕ;
(b) Dϕ ⊆ Γ;
(c) K0 = F̄0,ϕ;
(d) K = F̄ϕ and ϕ(fγ) = ϕ(f)γ for each γ ∈ Γ and f ∈ F with ϕ(f) 6=∞.

Proof. Since K ⊆ F , we have K = K̄ϕ ⊂ F̄ϕ. Since the inertia group of ϕ in F/E0

is trivial, we have an isomorphism θ: Dϕ → Gal(F̄ϕ/K0) given by

(2) ϕ(fγ) = ϕ(f)θ(γ), γ ∈ Dϕ, f ∈ F, ϕ(f) 6=∞.
Hence, |Dϕ| = [F̄ϕ : K0] ≥ [K : K0] = |Γ|. This gives (a) ⇔ (b).

Since ϕ is unramified over E0, the decomposition field FDϕ is the largest inter-
mediate field of F/E0 mapped by ϕ into K0 ∪ {∞}, and hence (b) ⇔ (c).

Clearly (d)⇒ (c). If F̄ϕ = K, then fγ = ϕ(fγ) = ϕ(f)θ(γ) = fθ(γ) for all f ∈ K
and γ ∈ Dϕ (by (2)). Hence, θ(γ) = γ for all γ ∈ Dϕ. Applying (2) once more,
we have ϕ(fγ) = ϕ(f)θ(γ) = ϕ(f)γ for each f ∈ F with ϕ(f) 6= ∞ and γ ∈ Dϕ.
Consequently, (a) ⇒ (d).

�

Remark 2.3. Let K0 be an ample field and F a solution of (1). Suppose F has
a K-rational place ϕ unramified over E0 such that ϕ(x) ∈ K0 ∪ {∞} and Γ is the
decomposition group of ϕ in F/E0. Then F has infinitely many such places.



REGULAR LIFTING OF COVERS OVER AMPLE FIELDS 181

Proof. Indeed, put F0 = FΓ. Recall that F0 is regular over K0. By Lemma 2.2,
(a) the assumption is that there is a K0-place ϕ: F0 → K0 unramified over

K0(x), and
(b) we have to show that there are infinitely many such places.

But (a) ⇒ (b) is a property of an ample field.
�

Proposition 2.4. Let K0 be an ample field. Then each finite constant split embed-
ding problem (1) has a solution F with a K-rational place ϕ of F unramified over
E0 such that ϕ(x) ∈ K0 ∪ {∞} and Γ is the decomposition group of ϕ in F/E0.

Proof. Put E = K(x) = KK0(x).

Part A: As in the proof of [HaJ98, Theorem 6.4], we first assume that K0 is
complete with respect to a non-trivial discrete ultrametric absolute value | |, with
infinite residue field and K/K0 is unramified.

In this case [HaJ98, Proposition 5.2] proves Proposition 2.1. Claim C of that
proof shows that, for every b ∈ K0 with |b| > 1, x→ b extends to aK-homomorphism
ϕb: R → K, where R is the principal ideal ring K{ 1

x−ci | i ∈ I} and the ci’s are
properly chosen elements of K. From there it extends to a K-place ϕb: Q →
K ∪ {∞} of the Q = Quot(R). Furthermore, [HaJ98, Lemma 1.3(b)] gives an E-
embedding λ: F → Q. The compositum ϕ = ϕb ◦ λ is a K-rational place of F .
Excluding finitely many b’s we may assume that ϕ is unramified over E0. To verify
that ϕ satisfies condition (d) of Lemma 2.2, we first recall the relevant facts from
[HaJ98].

(a) [HaJ98, Proposition 5.2, Construction B] The group Γ = Gal(K/K0) lifts
isomorphically to Gal(E/E0). By the choice of the ci we have

(
1

x−ci

)γ = 1
x−cγi

, for
each γ ∈ Γ. It follows that Γ continuously acts on R in the following way(

a0 +
∑
i∈I

∞∑
n=1

ain
( 1
x− ci

)n)γ = aγ0 +
∑
i∈I

∞∑
n=1

aγin
( 1
x− cγi

)n
.

This action induces an action of Γ on Q.

(b) [HaJ98, (7) on p. 334] The above mentioned action of Γ on Q defines an
action of Γ on the Q-algebra

N = IndG1 Q =
{∑
θ∈G

aθθ | aθ ∈ Q
}

in the following way:(∑
θ∈G

aθθ
)γ

=
∑
θ∈G

aγθθ
γ aθ ∈ Q, γ ∈ Γ.

Furthermore, the field F is a subring of N [HaJ98, p. 332] and Γ acts on it by
restriction from N [HaJ98, Proof of Proposition 1.5, Part A].

(c) The embedding λ: F → Q is the restriction to F of the projection∑
θ∈G

aθθ 7→ a1
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from N = IndG1 Q onto Q [HaV96, Proposition 3.4].

(d) The place ϕb: Q→ K ∪ {∞} is induced from the evaluation homomorphism
ϕb: R→ K given by [HaJ98, Remark 3.5]

ϕb

(
a0 +

∑
i∈I

∞∑
n=1

ain
( 1
x− ci

)n) = a0 +
∑
i∈I

∞∑
n=1

ain
( 1
b− ci

)n
.

In order to prove condition (d) of Lemma 2.2 it suffices to show that both λ and
ϕb are Γ-equivariant.

Let f =
∑
θ∈G aθθ ∈ F ⊆ N . Then, by (b) and (c),

λ(fγ) = λ
(∑
θ∈G

aγθθ
γ
)

= aγ1 =
(
λ
(∑
θ∈G

aθθ
))γ

= λ(f)γ .

Furthermore, let r = a0 +
∑
i∈I
∑∞
n=1 ain

(
1

x−ci

)n ∈ R. By (a) and (d),

ϕb(rγ) = ϕb

(
aγ0 +

∑
i∈I

∞∑
n=1

aγin
( 1
x− cγi

)n) = aγ0 +
∑
i∈I

∞∑
n=1

aγin
( 1
b− cγi

)n
=
(
a0 +

∑
i∈I

∞∑
n=1

ain
( 1
b− ci

)n)γ = ϕb(r)γ .

Thus ϕb is Γ-equivariant.

Part B: K0 is an arbitrary ample field. As in the proof of [HaJ98, Theorem 6.4]
let K̂0 = K0((t)) be the field of formal power series in t over K0. Then K̂ = KK̂0

is an unramified extension of K̂0 with Galois group Γ and infinite residue field.
By Part A, K̂0(x) has a Galois extension F̂ which contains K̂(x), such that

Gal(F̂ /K̂0(x)) = Γ n G and the restriction map Gal(F̂ /K̂0(x)) → Gal(K/K0) is
the projection π: ΓnG→ Γ. Furthermore, there is b ∈ K̂0 such that the place x→ b
of K̂0(x) extends to an unramified K̂-place ϕ̂: F̂ → K̂ ∪ {∞} and ϕ̂(F̂Γ) = K̂0.
Put m = |G|.

Use the Weak Approximation to find y ∈ F̂Γ mapped by the m distinct exten-
sions of x→ b to F̂Γ into m distinct elements of the separable closure of K̂0; then
F̂Γ = K̂0(x, y).

Thus there exist polynomials f ∈ K̂0[X,Z], g ∈ K̂0[X,Y ], elements z ∈ F̂ ,
y ∈ F̂Γ, and elements b, c ∈ K̂0, such that the following conditions hold:

(3a) F̂ = K̂0(x, z), f(x, Z) = irr(z, K̂0(x)); we identify Gal(f(x, Z), K̂0(x)) with
Gal(F̂ /K̂0(x));

(3b) F̂Γ = K̂0(x, y), whence F̂ = K̂(x, y), and g(x, Y ) = irr(y, K̂0(x)); therefore
g(X,Y ) is absolutely irreducible;

(3c) discr(g(b, Y )) 6= 0 and g(b, c) = 0.
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All of these objects depend on only finitely many parameters from K̂0. Hence,
there are u1, . . . , un ∈ K̂0 such that the following conditions hold:

(4a) F = K0(u, x, z) is a Galois over K0(u, x), the coefficients of f(X,Z) lie in
K0[u], f(x, Z) = irr(z,K0(u, x)), and Gal(f(x, Z),K0(u, x)) = Gal(f(x, Z), K̂0(x));

(4b) the coefficients of g lie in K[u]; hence g(x, Y ) = irr(y,K0(u, x)); further-
more, K0(u, x, y) = FΓ;

(4c) b, c ∈ K0[u], discr(g(b, Y )) 6= 0, and g(b, c) = 0.

Since K̂0 has a K-rational place, namely, x → 0, the field K̂0 and therefore
also K0(u) are regular extensions of K0. Thus, u generates an absolutely irre-
ducible variety U = Spec(K0[u]) defined over K0. By Bertini-Noether [FrJ05,
Proposition 9.4.3], the variety U has a nonempty Zariski open subset U ′ such that
for each u′ ∈ U ′ the K0-specialization u → u′ extends to a K-homomorphism
′: K[u, x, z, y]→ K[u′, x, z′, y′] such that the following conditions hold:

(5a) f ′(x, z′) = 0, the discriminant of f ′(x, Z) is not zero, and F ′ = K0(u′, x, z′)
is the splitting field of f ′(x, Z) over K0(u′, x); in particular F ′/K0(u′, x) is Galois;

(5b) g′(X,Y ) is absolutely irreducible and g′(x, y′) = 0; so g′(x, Y ) = irr(y′,K(u′, x));
furthermore, K0(u′, x, y′) = (F ′)Γ;

(5c) b′, c′ ∈ K0[u′] and discr(g′(b′, Y )) 6= 0 and g′(b′, c′) = 0.

By assumption, K0 is ample, soK0 is existentially closed in K̂0 [Pop96, Prop. 1.1].
Since u ∈ U(K̂0), there is a u′ ∈ U(K0). Now repeat the end of the proof of [HaJ98,
Lemma 6.2] (from “By (5a), the homomorphism. . .”) to conclude that F ′ is a solu-
tion of (1).

F ′
qqq

F
mmmmmm F̂

ttt

(F ′)Γ FΓ F̂Γ

K(x)
qqq

K(u, x)
nn

K̂(x)
uu

K K(u) K̂

K0(x)
rrr

K0(u, x)
oo

K̂0(x)
uu

K0 K0(u) K̂0

Condition (5c) ensures that the place x → b′ of K0(x) is unramified in (F ′)Γ,
hence in F ′, and extends to a K0-rational place of (F ′)Γ. This ends the proof by
Lemma 2.2.

�
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3. Lifting property over ample fields

Consider a subgroup Γ of a finite group G, let Γ act on G by the conjugation in
G

gγ = γ−1gγ.

and consider the semidirect product Γ nG. To fix notation,

Γ nG = {(γ, g) | γ ∈ Γ, g ∈ G}
and the multiplication on Γ nG is defined by

(γ1, g1)(γ2, g2) = (γ1γ2, g
γ2
1 g2).

Notice the isomorphism Γ nG ∼= Γ×G given by (γ, g) 7→ (γ, γg) and the epimor-
phism ρ: Γ nG→ G given by (γ, g) 7→ γg. Let N = Ker(ρ).

Lemma 3.1. Let K0 be a field, K a Galois extension of K0 with Galois group Γ,
and x a transcendental element over K0. Assume that (1) has a solution F̂ with a
K-rational place ϕ̂ of F̂ unramified over K0(x) such that ϕ̂(x) ∈ K0∪{∞} and Γ is
the decomposition group of ϕ̂ in F̂ /K0(x). Let F = F̂N and let ϕ be the restriction
of ϕ̂ to F . Then

(6a) F is a Galois extension of K0(x) and Gal(F/K0(x)) ∼= G;

(6b) F/K0 is a regular extension;

(6c) ϕ represents a prime divisor p of F/K0 with decomposition group Γ in
F/K0(x) and residue field K.

Proof. By assumption, F̂ is a Galois extension of K0(x) containing K, with Galois
group ΓnG such that the restriction Gal(F̂ /K0(x))→ Gal(K/K0) is the projection
Γ nG→ Γ, and F̂ /K is regular. Furthermore, ϕ̂: F̂ → K is a K-place unramified
over K0(x), with decomposition group ∆ = {(γ, 1) | γ ∈ Γ} ∼= Γ in F̂ /K0(x) and
residue field extension K/K0. In particular, F̂ is regular over K.

From the definition of F we get (6a) and ρ(∆) = Γ ≤ G is the decomposition
group of the restriction ϕ: F → K of ϕ̂ to F . Since |∆| = [K : K0], the residue
field of ϕ is K. Since Γ nG = NG, the fields F = F̂N and K(x) = F̂G are linearly
disjoint over K0(x). In addition, FK = F̂ and F̂ /K is regular. Therefore, F is
regular over K0. �

Lemma 3.1 together with Proposition 2.4 and Remark 2.3 yield the following
result:

Theorem 3.2. Let K0 be an ample field, G a finite group, Γ a subgroup, K a
Galois extension of K0 with Galois group Γ, and x a transcendental element over
K0. Then there is a field F that satisfies (6a), (6b) and

(6d) there are infinitely many prime divisors p of F/K0 with decomposition group
Γ in F/K0(x) and residue field K.

Remark 3.3. In case of Γ = G, Theorem 3.2 says that an ample field K0 has the
so-called arithmetic lifting property of Beckmann-Black [Bla99].
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Remark 3.4. In the special case where K is a PAC field, it possible to refine
Theorem 3.2. In this case if F is an arbitrary Galois extension of K(x) regular
over K and L/K is a Galois extension with Galois group isomorphic to a subgroup
of Gal(F/K(x)), there exists a place ϕ of F such that the residue field extension of
F/K(x) under ϕ is L [Deb99, Remark 3.3]. This stronger property of PAC fields
does not hold for an arbitrary ample field K [CoT00, Appendix].
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[Deb99] P. Dèbes, Galois Covers with Prescribed Fibers: The Beckmann-Black Problem, Ann.

Scuola Norm. Sup. Pisa 28 (1999), 273–286.
[FrJ05] M. D. Fried and M. Jarden, Field Arithmetic, Second Edition, revised and enlarged by

Moshe Jarden, Ergebnisse der Mathematik (3) 11, Springer, Heidelberg, 2005.
[Har87] . Harbater, Galois coverings of the arithmetic line, in: Lecture Notes in Mathematics

1240, 165–195, Springer-Verlag 1987.

[HaJ98] D. Haran and M. Jarden, Regular split embedding problems over complete valued fields,
Forum Mathematicum 10 (1998), 329–351 .

[HaV96] D. Haran and H. Völklein, Galois groups over complete valued fields, Israel Journal of

Mathematics, 93 (1996), 9–27.
[Liu95] Q. Liu, Tout groupe fini est un groupe de Galois sur Qp(T ), d’après Harbater, Contem-

porary Mathematics 186 (1995), 261–265.

[MoB01] L. Moret-Bailly, Construction de revêtements de courbes pointées, Journal of Algebra
240 (2001), 505–534.

[Pop96] F. Pop, Embedding problems over large fields, Annals of Mathematics 144 (1996), 1–34.

[Pop99] F. Pop, On the BB theory, an unpublished note, 2 pages.

Dan Haran
School of Mathematics,
Tel Aviv University,
Ramat Aviv, Tel Aviv 69978,
Israel
Email: haran@math.tau.ac.il

Moshe Jarden
School of Mathematics,
Tel Aviv University,
Ramat Aviv, Tel Aviv 69978,
Israel
Email: jarden@math.tau.ac.il


