REGULAR LIFTING OF COVERS OVER AMPLE FIELDS

D. HARAN AND M. JARDEN

ABSTRACT. Let K be an ample field, G a finite group, and L a finite Galois extension of K such that $\operatorname{Gal}(L/K)$ is isomorphic to a subgroup of G. We prove that K(x) has a Galois extension F which is regular over L such that $\operatorname{Gal}(F/K(x)) \cong G$ and F has a K-place φ such that $\varphi(x) \in K$ and $\varphi(F) = L \cup \{\infty\}$.

1. Introduction

Colliot-Thélène [CoT00] uses the technique of Kollár, Miyaoka, and Mori to prove the following result.

Theorem A: Let K be an ample field of characteristic 0, x a transcendental element over K, and G a finite group. Then there is a Galois extension F of K(x) with Galois group G, regular over K.

Here K is said to be **ample** if every absolutely irreducible curve defined over K with a K-rational simple point has infinitely many K-rational simple points.

In fact, Colliot-Thélène proves a stronger version, still under the assumption that K is ample and char(K) = 0:

Theorem B: Given a Galois extension L/K with Galois group Γ which is a subgroup of G, there exist a Galois extension F of K(x) with $\operatorname{Gal}(F/K(x)) \cong G$ and a place φ that fixes the elements of K and the residue field extension of F/K(x) under φ is L/K.

Case $\Gamma = G$ of Theorem B means that K has the arithmetic lifting property of Beckmann and Black [Bla99].

Since the results of Kollár, Miyaoka, and Mori are valid only in characteristic 0, Colliot-Thélène's proof works only in this case. Nonetheless, Theorem A holds in arbitrary characteristic ([Har87, Corollary 2.4] for complete fields, [Pop96, Main Theorem A]; see also [Liu95] and [HaV96]). Theorem B can be deduced for arbitrary characteristic from Théorème 1.1 of [MoB01]. The proof of that paper uses methods of formal patching.

Here we use algebraic patching to prove Theorem B for arbitrary characteristic. In fact, the main ingredient of the proof is almost contained in [HaJ98]. Therefore

Both authors were partially supported by the Minkowski Center for Geometry at Tel Aviv University and the Mathematical Sciences Research Institute, Berkeley.

this note can be considered a sequel to [HaJ98]; a large portion of it recalls the situation and facts considered there.

The idea (displayed in our Lemma 3.1) to use the embedding problem $G \ltimes G \to G$ in order to obtain the arithmetic lifting property has been used in [Pop99]; we are grateful to F. Pop for making his note available to us.

2. Embedding problems and decomposition groups

Let K/K_0 be a finite Galois extension with Galois group Γ . Let x be a transcendental element over K. Put $E_0 = K_0(x)$. Suppose that Γ acts (from the right) on a finite group G; let $\Gamma \ltimes G$ be the corresponding semidirect product and $\pi \colon \Gamma \ltimes G \to \Gamma$ the canonical projection. We call

(1)
$$\pi: \Gamma \ltimes G \to \Gamma = \operatorname{Gal}(K/K_0)$$

a finite constant split embedding problem. A solution of (1) is a Galois extension F of E_0 such that $K \subseteq F$, $\operatorname{Gal}(F/E_0) = \Gamma \ltimes G$, and π is the restriction map $\operatorname{res}_K : \operatorname{Gal}(F/E_0) \to \operatorname{Gal}(K/K_0)$.

In [HaJ98, Theorem 6.4] we reprove the following result of F. Pop [Pop96]:

Proposition 2.1. Let K_0 be an ample field. Then each finite constant split embedding problem (1) has a solution F such that F has a K-rational place φ such that $\varphi(x) \in K_0 \cup \{\infty\}$ (in particular, F/K is regular).

In this section we show that the proof of Proposition 5.2 in [HaJ98] yields a stronger assertion.

We denote the residue field of a place φ of a field F by \bar{F}_{φ} .

Lemma 2.2. Let F be a solution of (1). Put $F_0 = F^{\Gamma}$. Let $\varphi \colon F \to \widetilde{K_0} \cup \{\infty\}$ be a K-place with $\varphi(x) \in K_0 \cup \{\infty\}$. Assume that φ is unramified in F/E_0 and let D_{φ} be its decomposition group in F/E_0 . Then $K \subseteq \overline{F_{\varphi}}$ and the following assertions are equivalent:

- (a) $K = \bar{F}_{\varphi}$ and $\Gamma = D_{\varphi}$;
- (b) $D_{\varphi} \subseteq \Gamma$;
- (c) $K_0 = \bar{F}_{0,\varphi}$;
- (d) $K = \bar{F}_{\varphi}$ and $\varphi(f^{\gamma}) = \varphi(f)^{\gamma}$ for each $\gamma \in \Gamma$ and $f \in F$ with $\varphi(f) \neq \infty$.

Proof. Since $K \subseteq F$, we have $K = \bar{K}_{\varphi} \subset \bar{F}_{\varphi}$. Since the inertia group of φ in F/E_0 is trivial, we have an isomorphism $\theta \colon D_{\varphi} \to \operatorname{Gal}(\bar{F}_{\varphi}/K_0)$ given by

(2)
$$\varphi(f^{\gamma}) = \varphi(f)^{\theta(\gamma)}, \qquad \gamma \in D_{\varphi}, \ f \in F, \ \varphi(f) \neq \infty.$$

Hence, $|D_{\varphi}| = [\bar{F}_{\varphi} : K_0] \ge [K : K_0] = |\Gamma|$. This gives (a) \Leftrightarrow (b).

Since φ is unramified over E_0 , the decomposition field $F^{D_{\varphi}}$ is the largest intermediate field of F/E_0 mapped by φ into $K_0 \cup \{\infty\}$, and hence (b) \Leftrightarrow (c).

Clearly (d) \Rightarrow (c). If $\bar{F}_{\varphi} = K$, then $f^{\gamma} = \varphi(f^{\gamma}) = \varphi(f)^{\theta(\gamma)} = f^{\theta(\gamma)}$ for all $f \in K$ and $\gamma \in D_{\varphi}$ (by (2)). Hence, $\theta(\gamma) = \gamma$ for all $\gamma \in D_{\varphi}$. Applying (2) once more, we have $\varphi(f^{\gamma}) = \varphi(f)^{\theta(\gamma)} = \varphi(f)^{\gamma}$ for each $f \in F$ with $\varphi(f) \neq \infty$ and $\gamma \in D_{\varphi}$. Consequently, (a) \Rightarrow (d).

Remark 2.3. Let K_0 be an ample field and F a solution of (1). Suppose F has a K-rational place φ unramified over E_0 such that $\varphi(x) \in K_0 \cup \{\infty\}$ and Γ is the decomposition group of φ in F/E_0 . Then F has infinitely many such places.

Proof. Indeed, put $F_0 = F^{\Gamma}$. Recall that F_0 is regular over K_0 . By Lemma 2.2,

- (a) the assumption is that there is a K_0 -place $\varphi \colon F_0 \to K_0$ unramified over $K_0(x)$, and
- (b) we have to show that there are infinitely many such places. But (a) \Rightarrow (b) is a property of an ample field.

Proposition 2.4. Let K_0 be an ample field. Then each finite constant split embedding problem (1) has a solution F with a K-rational place φ of F unramified over E_0 such that $\varphi(x) \in K_0 \cup \{\infty\}$ and Γ is the decomposition group of φ in F/E_0 .

Proof. Put $E = K(x) = KK_0(x)$.

Part A: As in the proof of [HaJ98, Theorem 6.4], we first assume that K_0 is complete with respect to a non-trivial discrete ultrametric absolute value $|\cdot|$, with infinite residue field and K/K_0 is unramified.

In this case [HaJ98, Proposition 5.2] proves Proposition 2.1. Claim C of that proof shows that, for every $b \in K_0$ with |b| > 1, $x \to b$ extends to a K-homomorphism $\varphi_b \colon R \to K$, where R is the principal ideal ring $K\{\frac{1}{x-c_i} \mid i \in I\}$ and the c_i 's are properly chosen elements of K. From there it extends to a K-place $\varphi_b \colon Q \to K \cup \{\infty\}$ of the $Q = \operatorname{Quot}(R)$. Furthermore, [HaJ98, Lemma 1.3(b)] gives an E-embedding $\lambda \colon F \to Q$. The compositum $\varphi = \varphi_b \circ \lambda$ is a K-rational place of F. Excluding finitely many b's we may assume that φ is unramified over E_0 . To verify that φ satisfies condition (d) of Lemma 2.2, we first recall the relevant facts from [HaJ98].

(a) [HaJ98, Proposition 5.2, Construction B] The group $\Gamma = \operatorname{Gal}(K/K_0)$ lifts isomorphically to $\operatorname{Gal}(E/E_0)$. By the choice of the c_i we have $\left(\frac{1}{x-c_i}\right)^{\gamma} = \frac{1}{x-c_i^{\gamma}}$, for each $\gamma \in \Gamma$. It follows that Γ continuously acts on R in the following way

$$\left(a_{0} + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in} \left(\frac{1}{x - c_{i}}\right)^{n}\right)^{\gamma} = a_{0}^{\gamma} + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in}^{\gamma} \left(\frac{1}{x - c_{i}^{\gamma}}\right)^{n}.$$

This action induces an action of Γ on Q.

(b) [HaJ98, (7) on p. 334] The above mentioned action of Γ on Q defines an action of Γ on the Q-algebra

$$N = \operatorname{Ind}_{1}^{G} Q = \left\{ \sum_{\theta \in G} a_{\theta} \theta \mid a_{\theta} \in Q \right\}$$

in the following way:

$$\left(\sum_{\theta \in C} a_{\theta} \theta\right)^{\gamma} = \sum_{\theta \in C} a_{\theta}^{\gamma} \theta^{\gamma} \qquad a_{\theta} \in Q, \ \gamma \in \Gamma.$$

Furthermore, the field F is a subring of N [HaJ98, p. 332] and Γ acts on it by restriction from N [HaJ98, Proof of Proposition 1.5, Part A].

(c) The embedding $\lambda: F \to Q$ is the restriction to F of the projection

$$\sum_{\theta \in G} a_{\theta} \theta \mapsto a_1$$

from $N = \operatorname{Ind}_1^G Q$ onto Q [HaV96, Proposition 3.4].

(d) The place $\varphi_b: Q \to K \cup \{\infty\}$ is induced from the evaluation homomorphism $\varphi_b: R \to K$ given by [HaJ98, Remark 3.5]

$$\varphi_b \left(a_0 + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in} \left(\frac{1}{x - c_i} \right)^n \right) = a_0 + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in} \left(\frac{1}{b - c_i} \right)^n.$$

In order to prove condition (d) of Lemma 2.2 it suffices to show that both λ and φ_b are Γ -equivariant.

Let $f = \sum_{\theta \in G} a_{\theta} \theta \in F \subseteq N$. Then, by (b) and (c),

$$\lambda(f^{\gamma}) = \lambda \left(\sum_{\theta \in G} a_{\theta}^{\gamma} \theta^{\gamma} \right) = a_{1}^{\gamma} = \left(\lambda \left(\sum_{\theta \in G} a_{\theta} \theta \right) \right)^{\gamma} = \lambda(f)^{\gamma}.$$

Furthermore, let $r = a_0 + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in} \left(\frac{1}{x - c_i}\right)^n \in R$. By (a) and (d),

$$\varphi_b(r^{\gamma}) = \varphi_b \left(a_0^{\gamma} + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in}^{\gamma} \left(\frac{1}{x - c_i^{\gamma}} \right)^n \right) = a_0^{\gamma} + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in}^{\gamma} \left(\frac{1}{b - c_i^{\gamma}} \right)^n$$
$$= \left(a_0 + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in} \left(\frac{1}{b - c_i} \right)^n \right)^{\gamma} = \varphi_b(r)^{\gamma}.$$

Thus φ_b is Γ -equivariant.

Part B: K_0 is an arbitrary ample field. As in the proof of [HaJ98, Theorem 6.4] let $\hat{K}_0 = K_0((t))$ be the field of formal power series in t over K_0 . Then $\hat{K} = K\hat{K}_0$ is an unramified extension of \hat{K}_0 with Galois group Γ and infinite residue field.

By Part A, $\hat{K}_0(x)$ has a Galois extension \hat{F} which contains $\hat{K}(x)$, such that $\operatorname{Gal}(\hat{F}/\hat{K}_0(x)) = \Gamma \ltimes G$ and the restriction map $\operatorname{Gal}(\hat{F}/\hat{K}_0(x)) \to \operatorname{Gal}(K/K_0)$ is the projection $\pi \colon \Gamma \ltimes G \to \Gamma$. Furthermore, there is $b \in \hat{K}_0$ such that the place $x \to b$ of $\hat{K}_0(x)$ extends to an unramified \hat{K} -place $\hat{\varphi} \colon \hat{F} \to \hat{K} \cup \{\infty\}$ and $\hat{\varphi}(\hat{F}^{\Gamma}) = \hat{K}_0$. Put m = |G|.

Use the Weak Approximation to find $y \in \hat{F}^{\Gamma}$ mapped by the m distinct extensions of $x \to b$ to \hat{F}^{Γ} into m distinct elements of the separable closure of \hat{K}_0 ; then $\hat{F}^{\Gamma} = \hat{K}_0(x,y)$.

Thus there exist polynomials $f \in \hat{K}_0[X, Z]$, $g \in \hat{K}_0[X, Y]$, elements $z \in \hat{F}$, $y \in \hat{F}^{\Gamma}$, and elements $b, c \in \hat{K}_0$, such that the following conditions hold:

- (3a) $\hat{F} = \hat{K}_0(x, z)$, $f(x, Z) = \operatorname{irr}(z, \hat{K}_0(x))$; we identify $\operatorname{Gal}(f(x, Z), \hat{K}_0(x))$ with $\operatorname{Gal}(\hat{F}/\hat{K}_0(x))$;
- (3b) $\hat{F}^{\Gamma} = \hat{K}_0(x, y)$, whence $\hat{F} = \hat{K}(x, y)$, and $g(x, Y) = irr(y, \hat{K}_0(x))$; therefore g(X, Y) is absolutely irreducible;
 - (3c) $\operatorname{discr}(g(b, Y)) \neq 0$ and g(b, c) = 0.

All of these objects depend on only finitely many parameters from \hat{K}_0 . Hence, there are $u_1, \ldots, u_n \in \hat{K}_0$ such that the following conditions hold:

- (4a) $F = K_0(\mathbf{u}, x, z)$ is a Galois over $K_0(\mathbf{u}, x)$, the coefficients of f(X, Z) lie in $K_0[\mathbf{u}], f(x, Z) = \operatorname{irr}(z, K_0(\mathbf{u}, x))$, and $\operatorname{Gal}(f(x, Z), K_0(\mathbf{u}, x)) = \operatorname{Gal}(f(x, Z), \hat{K}_0(x))$;
- (4b) the coefficients of g lie in $K[\mathbf{u}]$; hence $g(x,Y) = \operatorname{irr}(y, K_0(\mathbf{u}, x))$; furthermore, $K_0(\mathbf{u}, x, y) = F^{\Gamma}$;
 - (4c) $b, c \in K_0[\mathbf{u}], \operatorname{discr}(g(b, Y)) \neq 0, \text{ and } g(b, c) = 0.$

Since \hat{K}_0 has a K-rational place, namely, $x \to 0$, the field \hat{K}_0 and therefore also $K_0(\mathbf{u})$ are regular extensions of K_0 . Thus, \mathbf{u} generates an absolutely irreducible variety $U = \operatorname{Spec}(K_0[\mathbf{u}])$ defined over K_0 . By Bertini-Noether [FrJ05, Proposition 9.4.3], the variety U has a nonempty Zariski open subset U' such that for each $\mathbf{u}' \in U'$ the K_0 -specialization $\mathbf{u} \to \mathbf{u}'$ extends to a K-homomorphism $V': K[\mathbf{u}, x, z, y] \to K[\mathbf{u}', x, z', y']$ such that the following conditions hold:

- (5a) f'(x, z') = 0, the discriminant of f'(x, Z) is not zero, and $F' = K_0(\mathbf{u}', x, z')$ is the splitting field of f'(x, Z) over $K_0(\mathbf{u}', x)$; in particular $F'/K_0(\mathbf{u}', x)$ is Galois;
- (5b) g'(X,Y) is absolutely irreducible and g'(x,y') = 0; so $g'(x,Y) = irr(y',K(\mathbf{u}',x))$; furthermore, $K_0(\mathbf{u}',x,y') = (F')^{\Gamma}$;
 - (5c) $b', c' \in K_0[\mathbf{u}']$ and $\operatorname{discr}(g'(b', Y)) \neq 0$ and g'(b', c') = 0.

By assumption, K_0 is ample, so K_0 is existentially closed in \hat{K}_0 [Pop96, Prop. 1.1]. Since $\mathbf{u} \in U(\hat{K}_0)$, there is a $\mathbf{u}' \in U(K_0)$. Now repeat the end of the proof of [HaJ98, Lemma 6.2] (from "By (5a), the homomorphism...") to conclude that F' is a solution of (1).

Condition (5c) ensures that the place $x \to b'$ of $K_0(x)$ is unramified in $(F')^{\Gamma}$, hence in F', and extends to a K_0 -rational place of $(F')^{\Gamma}$. This ends the proof by Lemma 2.2.

3. Lifting property over ample fields

Consider a subgroup Γ of a finite group G, let Γ act on G by the conjugation in G

$$g^{\gamma} = \gamma^{-1}g\gamma$$
.

and consider the semidirect product $\Gamma \ltimes G$. To fix notation,

$$\Gamma \ltimes G = \{ (\gamma, g) \mid \gamma \in \Gamma, g \in G \}$$

and the multiplication on $\Gamma \ltimes G$ is defined by

$$(\gamma_1, g_1)(\gamma_2, g_2) = (\gamma_1 \gamma_2, g_1^{\gamma_2} g_2).$$

Notice the isomorphism $\Gamma \ltimes G \cong \Gamma \times G$ given by $(\gamma, g) \mapsto (\gamma, \gamma g)$ and the epimorphism $\rho \colon \Gamma \ltimes G \to G$ given by $(\gamma, g) \mapsto \gamma g$. Let $N = \text{Ker}(\rho)$.

Lemma 3.1. Let K_0 be a field, K a Galois extension of K_0 with Galois group Γ , and x a transcendental element over K_0 . Assume that (1) has a solution \hat{F} with a K-rational place $\hat{\varphi}$ of \hat{F} unramified over $K_0(x)$ such that $\hat{\varphi}(x) \in K_0 \cup \{\infty\}$ and Γ is the decomposition group of $\hat{\varphi}$ in $\hat{F}/K_0(x)$. Let $F = \hat{F}^N$ and let φ be the restriction of $\hat{\varphi}$ to F. Then

- (6a) F is a Galois extension of $K_0(x)$ and $Gal(F/K_0(x)) \cong G$;
- (6b) F/K_0 is a regular extension;
- (6c) φ represents a prime divisor \mathfrak{p} of F/K_0 with decomposition group Γ in $F/K_0(x)$ and residue field K.

Proof. By assumption, \hat{F} is a Galois extension of $K_0(x)$ containing K, with Galois group $\Gamma \ltimes G$ such that the restriction $\operatorname{Gal}(\hat{F}/K_0(x)) \to \operatorname{Gal}(K/K_0)$ is the projection $\Gamma \ltimes G \to \Gamma$, and \hat{F}/K is regular. Furthermore, $\hat{\varphi} \colon \hat{F} \to K$ is a K-place unramified over $K_0(x)$, with decomposition group $\Delta = \{(\gamma, 1) \mid \gamma \in \Gamma\} \cong \Gamma$ in $\hat{F}/K_0(x)$ and residue field extension K/K_0 . In particular, \hat{F} is regular over K.

From the definition of F we get (6a) and $\rho(\Delta) = \Gamma \leq G$ is the decomposition group of the restriction $\varphi \colon F \to K$ of $\hat{\varphi}$ to F. Since $|\Delta| = [K \colon K_0]$, the residue field of φ is K. Since $\Gamma \ltimes G = NG$, the fields $F = \hat{F}^N$ and $K(x) = \hat{F}^G$ are linearly disjoint over $K_0(x)$. In addition, $FK = \hat{F}$ and \hat{F}/K is regular. Therefore, F is regular over K_0 .

Lemma 3.1 together with Proposition 2.4 and Remark 2.3 yield the following result:

Theorem 3.2. Let K_0 be an ample field, G a finite group, Γ a subgroup, K a Galois extension of K_0 with Galois group Γ , and x a transcendental element over K_0 . Then there is a field F that satisfies (6a), (6b) and

(6d) there are infinitely many prime divisors \mathfrak{p} of F/K_0 with decomposition group Γ in $F/K_0(x)$ and residue field K.

Remark 3.3. In case of $\Gamma = G$, Theorem 3.2 says that an ample field K_0 has the so-called **arithmetic lifting property** of Beckmann-Black [Bla99].

Remark 3.4. In the special case where K is a PAC field, it possible to refine Theorem 3.2. In this case if F is an arbitrary Galois extension of K(x) regular over K and L/K is a Galois extension with Galois group isomorphic to a subgroup of Gal(F/K(x)), there exists a place φ of F such that the residue field extension of F/K(x) under φ is L [Deb99, Remark 3.3]. This stronger property of PAC fields does not hold for an arbitrary ample field K [CoT00, Appendix].

References

[BLa99] E.V. Black, Deformations of dihedral 2-group extensions of fields, Transactions of the AMS 351 (1999), 3229–3241.

[CoT00] J.-L. Colliot-Thélène, Rational connectedness and Galois cover of the projective line, Annals of Mathematics 151 (2000), 359-373.

[Deb99] P. Dèbes, Galois Covers with Prescribed Fibers: The Beckmann-Black Problem, Ann. Scuola Norm. Sup. Pisa 28 (1999), 273–286.

[FrJ05] M. D. Fried and M. Jarden, Field Arithmetic, Second Edition, revised and enlarged by Moshe Jarden, Ergebnisse der Mathematik (3) 11, Springer, Heidelberg, 2005.

[Har87] . Harbater, Galois coverings of the arithmetic line, in: Lecture Notes in Mathematics 1240, 165–195, Springer-Verlag 1987.

[HaJ98] D. Haran and M. Jarden, Regular split embedding problems over complete valued fields, Forum Mathematicum 10 (1998), 329–351.

[HaV96] D. Haran and H. Völklein, Galois groups over complete valued fields, Israel Journal of Mathematics, 93 (1996), 9–27.

[Liu95] Q. Liu, Tout groupe fini est un groupe de Galois sur $\mathbb{Q}_p(T)$, d'après Harbater, Contemporary Mathematics 186 (1995), 261–265.

[MoB01] L. Moret-Bailly, Construction de revêtements de courbes pointées, Journal of Algebra 240 (2001), 505–534.

[Pop96] F. Pop, Embedding problems over large fields, Annals of Mathematics 144 (1996), 1–34. [Pop99] F. Pop, On the BB theory, an unpublished note, 2 pages.

Dan Haran School of Mathematics, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel

Email: haran@math.tau.ac.il

Moshe Jarden School of Mathematics, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel

Email: jarden@math.tau.ac.il