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DISCRETE SERIES REPRESENTATIONS OF p-ADIC GROUPS
ASSOCIATED TO SYMMETRIC SPACES

JEFFREY HAKIM

1. Introduction

The purpose of this paper is study the natural symmetric space analogues of
various notions related to discrete series representations of a p-adic group such as
Schur’s orthogonality relations and formal degrees.

We study representations of the group G = G(F ) of F -rational points of a
connected, reductive F -group G, where F is a finite extension of a field Qp of
p-adic numbers for some odd prime p.

The representations of interest are associated to a symmetric space H\G, where
H = H(F ) and H is the group of fixed points of some F -automorphism θ of G of
order two.

To be more precise, we are interested in irreducible admissible complex represen-
tations (π, V ) of G that are H-distinguished in the sense that there exists a nonzero
linear form λ̃ : V → C that is H-fixed or, in other words,

〈π(h)v, λ̃〉 = 〈v, λ̃〉,

for all h ∈ H and v ∈ V . From now on, assume that such a representation (π, V )
has been fixed. Note that H-distinction1 implies that the restriction of the central
quasi-character of π to ZH is trivial.

The latter linear forms, together with 0, comprise the space HomH(π, 1) and
Frobenius Reciprocity maps this space isomorphically onto the space

HomG(π,C∞(H\G)),

where C∞(H\G) is the space of smooth complex-valued functions on H\G viewed
as a G-module with respect to right translations by G. So π is H-distinguished
precisely when it has a G-invariant embedding in C∞(H\G). In this sense, the
H-distinguished representations are precisely the representations that contribute
to the harmonic analysis on H\G.

For convenience, we will make some simplifying assumptions that are generally
satisfied in applications. Let (π̃, Ṽ ) be the contragredient of (π, V ). We assume that
HomH(π̃, 1), in addition to HomH(π, 1), is nonzero and, furthermore, we assume
that both of the latter spaces are finite-dimensional.

Let Z be the center of G and let ZH = Z∩H and let Z = Z(F ) and ZH = ZH(F ).
We fix a Haar measure on H/ZH for use in our integrations over the latter quotient.

1At the suggestion of Hervé Jacquet, we refer to the property of being H-distinguished as

“H-distinction,” rather than “H-distinguishedness.”
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Recall that (π, V ) is said to be a discrete series representation if its central quasi-
character is unitary and the absolute value of every matrix coefficient of π lies in
L2(G/Z).

Definition. If the restriction to H of every matrix coefficient of π lies in
L1(H/ZH) then π is said to be θ-discrete. We now give a symmetric space ana-
logue of this notion.

When π is θ-discrete, we may define the pairing

〈v, ṽ〉θ =
∫
H/ZH

〈π(h)v, ṽ〉 dh

for v ∈ V and ṽ ∈ Ṽ . To appreciate the above terminology, one should consider the
so-called “group case.” In this case, G = G1×G1, for some connected reductive F -
group G1 and let θ(g1, g2) = (g2, g1). Then if (π, V ) is H-distinguished it must have
the form (π1 × π̃1, V1 ⊗ Ṽ1). The contragredient of (π, V ) is then (π̃1 × π1, Ṽ1 ⊗ V1)
and the invariant pairing on V × Ṽ is just

〈v ⊗ ṽ, ũ⊗ u〉 = 〈v, ũ〉 〈u, ṽ〉.

Thus

〈v ⊗ ṽ, ũ⊗ u〉θ =
∫
G1/Z(G1)

〈π1(g)v, ũ〉 〈u, π̃1(g)ṽ〉 dg,

where Z(G1) is the center of G1. These integrals occur in Schur’s orthogonality
relations when π1 is a discrete series representation.

Definition. If π is θ-discrete and v ∈ V and ṽ ∈ Ṽ then the function fθv⊗ṽ ∈
C∞(H\G) defined by

fθv⊗ṽ(g) = 〈π(g)v, ṽ〉θ
is called a θ-matrix coefficient of π.

Definition. If π is θ-discrete and every θ-matrix coefficient of π is supported in
a compact subset of ZH\G then we say that π is θ-supercuspidal.

Definition. (Kato and Takano [KT]) If the function

fθ
v⊗λ̃(g) = 〈π(g)v, λ̃〉

is supported in a compact subset of ZH\G, for all v ∈ V and all λ̃ ∈ HomH(π, 1)
then we say that π is H-relatively cuspidal.

If π is θ-discrete and ṽ ∈ Ṽ then there is an associated invariant linear form
λ̃ṽ ∈ Hom(π, 1) by

〈v, λ̃ṽ〉 = 〈v, ṽ〉θ.
The following lemma follows easily from the latter fact:

Lemma. If π is supercuspidal or H-relatively cuspidal then it is θ-supercuspidal.



SERIES REPRESENTATIONS OF p-ADIC GROUPS 215

2. Formal degrees and orthogonality relations

If π is a discrete series representation then the Schur orthogonality relations hold
and they say that there exists a nonzero constant d(π) (depending on the choice of
a Haar measure on G/Z) such that∫

G/Z

〈π(g)v, ũ〉 〈u, π̃(g)ṽ〉 dg = d(π)−1〈v, ṽ〉 〈u, ũ〉,

for all u, v ∈ V and ũ, ṽ ∈ Ṽ . The constant d(π) is called the formal degree of π
(with respect to the given measure on G/Z).

It is well known that if π is a supercuspidal representation that is compactly
induced from an irreducible representation ρ of an open compact-mod-center sub-
group K of G then d(π) is quotient of the degree of ρ and the measure of the image
of K in G/Z. One can find a proof of this fact in [M1]. We generalize both the
statement of this result and the proof later in this paper.

2.1. The multiplicity one case. In this section, we consider symmetric space
generalizations of the formal degree and Schur’s orthogonality relations. We make
the simplifying assumption that the spaces HomH(π̃, 1) and HomH(π, 1) have di-
mension one and we fix nonzero linear forms λ ∈ HomH(π̃, 1) and λ̃ ∈ HomH(π, 1).

Let ω denote the central character of the discrete series representation (π, V ).
Let C∞(G,ω) denote the space of smooth complex-valued functions f on G such
that

f(zg) = ω(z)−1f(g),
for all z ∈ Z and g ∈ G. For such f , we may define a vector π(f)λ ∈ V by the
relation

〈π(f)λ, ṽ〉 =
∫
G/Z

f(g) 〈λ, π̃(g)−1ṽ〉 dg,

for all ṽ ∈ Ṽ . We also define

Θλ⊗λ̃(f) = 〈π(f)λ, λ̃〉.

This is a linear functional on C∞(G,ω) and it is a generalized matrix coefficient
distribution. (In fact, it is a distribution on the `-sheaf C∞(G,ω), in the sense of
[BZ].) If we take the test function f to be a matrix coefficient

fṽ⊗v(g) = 〈v, π̃(g)ṽ〉
of π̃ then we have the following extension of Schur’s orthogonality relations:

Lemma. ([H]) Θλ⊗λ̃(fṽ,v) = d(π)−1〈λ, ṽ〉 〈v, λ̃〉.

Proof. Fix a compact open subgroup K of G that fixes v and ṽ. Let eK be
the convolution idempotent associated to K. Let λK = π(eK)λ ∈ V and λ̃K =
π̃(eK)λ̃ ∈ Ṽ . Then

Θλ⊗λ̃(fṽ,v) =
∫
G/Z

〈π(g)λK , λ̃K〉 〈v, π̃(g)ṽ〉 dg

= d(π)−1〈λK , ṽ〉 〈v, λ̃K〉
= d(π)−1〈λ, ṽ〉 〈v, λ̃〉.

�
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Proposition. There exists a unique nonzero constant dθ(π) (depending on the
choice of measure on H/ZH used to define 〈 , 〉θ and on the choices of λ and λ̃)
such that

〈v, ṽ〉θ = dθ(π)−1〈v, λ̃〉 〈λ, ṽ〉
for all θ-discrete representations (π, V ) and all v ∈ V and ṽ ∈ Ṽ .

Proof. Consider 〈v, ṽ〉θ as ṽ is fixed and v varies. This defines an element of
HomH(π, 1) and hence a multiple of λ̃. Thus there exists a complex number γ(ṽ)
such that 〈v, ṽ〉θ = γ(ṽ) 〈v, λ̃〉. Now consider γ(ṽ) as ṽ varies. This must be a
multiple of λ. Therefore, there must be a constant c such that

〈v, ṽ〉θ = c 〈v, λ̃〉 〈λ, ṽ〉.

Now choose v and ṽ so that 〈v, λ̃〉 and 〈λ, ṽ〉 are nonzero. From the previous lemma,
we have

Θλ⊗λ̃(fṽ,v) = d(π)−1〈v, λ̃〉 〈λ, ṽ〉
and thus Θλ⊗λ̃(fṽ,v) is nonzero. This implies that∫

H/ZH

fṽ,v(hg) dh

is not identically zero for all g ∈ G. But the latter integral is just 〈v, π̃(g)ṽ〉. This
shows that the pairing 〈 , 〉θ is not identically zero. It follows that c is nonzero.
Taking dθ(π) = c−1 completes the proof. �

2.2. The group case. Consider the group G × G with the involution θ(a, b) =
(b, a). Fix an irreducible, smooth representation π of G and let Π = π × π̃ and
Π̃ = π̃ × π. Let λ : Ṽ × V → C and λ̃ : V × Ṽ → C be the obvious canonical
pairings. Then

〈u⊗ ũ, ṽ ⊗ v〉θ =
∫
G/Z

〈π(x)u, ṽ〉 〈v, π̃(x)ũ〉 dx∗.

In addition,

〈u⊗ ũ, λ̃〉 = 〈u, ũ〉,
〈λ, ṽ ⊗ v〉 = 〈v, ṽ〉.

Therefore,
dθ(π × π̃) = d(π).

2.3. The finite multiplicity case. Suppose that HomH(π̃, 1) has finite dimension
n1 and is spanned by elements λ1, . . . , λn1 . Suppose that HomH(π, 1) has finite
dimension n2 and is spanned by elements λ̃1, . . . , λ̃n2 . For fixed ṽ ∈ Ṽ , 〈v, ṽ〉θ
defines an element of HomH(π, 1) and thus there exist numbers cj(ṽ) such that

〈v, ṽ〉θ =
n2∑
j=1

cj(ṽ)〈v, λ̃j〉.

On the other hand, for each j, it is easy to see that cj ∈ HomH(π̃, 1) and so there
exist numbers Dθ(π)ij such that

cj(ṽ) =
n1∑
i=1

Dθ(π)ij〈λi, ṽ〉.
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Hence we have

〈v, ṽ〉θ =
n1∑
i=1

n2∑
j=1

Dθ(π)ij〈λi, ṽ〉〈v, λ̃j〉.

2.4. Induced supercuspidal representations. Let K be a θ-stable subgroup of
G that contains Z and is such that the quotient K/Z is compact. Let KH = K∩H.
Let (ρ,W ) be an irreducible (finite-dimensional) complex representation of K with
unitary central character and let (ρ̃, W̃ ) denote the contragredient.

The representations (π, V ) and (π̃, Ṽ ) obtained by compactly-supported induc-
tion from (ρ,W ) and (ρ̃, W̃ ) are irreducible supercuspidal representations. We use
the standard pairing 〈 , 〉 on W × W̃ and use this to define an invariant pairing on
V × Ṽ as follows:

〈v, ṽ〉 =
∑

Kg∈K\G

〈v(g), ṽ(g)〉.

Let {ei} and {ẽj} be bases of the spaces of KH -fixed vectors in W and W̃ ,
respectively. Define

〈w, w̃〉θ =
∫
KH/ZH

〈ρ(h)w, w̃〉 dh,

where we choose the Haar measure on KH/ZH so that KH/ZH has volume one.
Given w ∈W and w̃ ∈ W̃ , there exist unique coefficients wi and w̃j such that∫

KH/ZH

ρ(h)w dh =
∑
i

wiei,

∫
KH/ZH

ρ̃(h)w̃ dh =
∑
j

w̃jej .

We have
〈w, w̃〉θ =

∑
i,j

wiw̃jDθ(ρ)ij ,

where
Dθ(ρ)ij = 〈ei, ẽj〉.

Given w ∈W , there is an associated element vw ∈ V that is defined by vw(k) =
ρ(k)w, for all k ∈ K, and vw|(G −K) ≡ 0. This is a K-equivariant embedding of
ρ in π. By Frobenius reciprocity, ρ occurs in π with multiplicity one.

Similarly, we associate to w̃ ∈ W̃ an element ṽw̃ ∈ Ṽ . The map (w, w̃) 7→ (vw, ṽw̃)
is an isometric embedding in the sense that 〈w, w̃〉 = 〈vw, ṽw̃〉. We now compute
〈vw, ṽw̃〉θ. We use the measure on H/ZH given by the integral formula∫

H/ZH

f(h) dh =
∑

h∈KH\H

∫
KH/ZH

f(kh) dk.

We have

〈vw, ṽw̃〉θ =
∑

h∈KH\H

∫
KH/ZH

〈π(kh)vw, ṽw̃〉 dk

=
∫
KH/ZH

〈π(k)vw, ṽw̃〉 dk

=
∫
KH/ZH

〈ρ(k)w, w̃〉 dk

= 〈w, w̃〉θ.
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Therefore, in the notation of the previous section,∑
i,j

vi ṽj Dθ(π)ij =
∑
ij

wi w̃j Dθ(ρ)ij ,

where vi = 〈vw, λ̃j〉 and ṽj = 〈λi, ṽw̃〉.
To proceed further, we now exploit the fact that all of representations are nec-

essarily unitarizable. More precisely, we let W be the set W together with its
additive structure, but with scalar multiplication defined by c · w = c̄w. Letting
ρ̄(k) = ρ(k), we obtain a representation (ρ̄,W ) of K. Let ( , ) be an invariant
non-degenerate hermitian form on W that realizes ρ as a unitary representation.
Then v 7→ ṽ = ( , v) defines an isomorphism of (ρ̄,W ) with (ρ̃, W̃ ).

We take {ei} to be an orthonormal basis of the space of KH -fixed vectors in W .
Then {ẽi} is a dual basis of the KH -fixed vectors in W̃ . In particular, the spaces
of KH -fixed vectors in W and W̃ have the same dimension. The matrix Dθ(ρ) is
now an identity matrix. The only invariant of the matrix is its rank (which is its
trace) and taking w = e1 + · · ·+ er we have

〈w, w̃〉θ = trace(Dθ(ρ)) = r = dimWKH ,

where WKH is the space of KH -fixed vectors in W .
Now each basis element ei gives an element ẽi ∈ W̃ and this yields an element

ṽẽi ∈ Ṽ . We now define λ̃i ∈ HomH(π, 1) by

〈v, λ̃i〉 = 〈v, ṽẽi〉θ.

This linear form must be nonzero since

〈vei , λ̃i〉 = 〈vei , ṽẽi〉θ = 〈ei, ẽi〉θ = 1.

Define invariant linear forms λj similarly on Ṽ . Suppose that the latter linear
forms span the H-invariant linear forms in V and Ṽ . Then if i, j ∈ {1, . . . , r} then

Dθ(π)ij = 〈vej , ṽẽi〉θ = δij .

The space V is a space of functions on G. It has a natural decomposition

V =
⊕

KgH∈K\G/H

VKgH ,

where VKgH is the space of functions in V that have support contained in the
double coset KgH. Let V ∗ be the space of linear forms on V and let (V ∗)H be the
subspace of H-fixed linear forms. Defining V ∗KgH and (V ∗KgH)H similarly, we have

(V ∗)H =
⊕

KgH∈K\G/H

(V ∗KgH)H .

We may view the elements of (V ∗KH)H as the primary elements of (V ∗)H . It is
easy to see that the H- invariant linear forms λ̃i constructed above from elements
of W̃ are primary elements, in the latter sense, and, in fact, all primary elements
are obtained in this manner. Indeed, this follows from the fact that (V ∗KgH)H ∼=
W̃K∩gHg−1

. (See [HMa1] and [HMa2].) For examples of non-primary invariant
linear forms see [HM].
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Proposition. Let (π, V ) be an H-distinguished supercuspidal representation that
is induced from an open compact-mod-center θ-stable subgroup K. Then every H-
invariant linear form λ̃ on V has the form λ̃ṽ for some ṽ ∈ Ṽ . Therefore, π must
be H-relatively cuspidal.

Proof. We may as well assume π has a unitary central character, since there
is no harm in replacing π by a twist by a quasi-character. Next, we may as well
assume that λ̃ is supported in a single double coset KgH. Then λ is associated
to some element w̃ ∈ W̃K∩gHg−1

. Define ṽ by ṽ(kg) = ρ̃(k)w̃, for all k ∈ K and
ṽ|(G −Kg) ≡ 0. Then λ̃ṽ is the element of (V ∗KgH)H associated to w̃. Our claim
follows. �

3. Orbital integrals

3.1. The Harish-Chandra/Rader/Silberger formula. Fix an elliptic Cartan
subgroup Γ of G, that is, a Cartan subgroup such that Γ/Z is compact. Suppose f
is a smooth function on G with compact-mod-center support. Define

Ff (γ) = |D(γ)|1/2
∫
G/Z

f(gγg−1) dg,

for γ ∈ Γ′ = Γ ∩G′. Then Ff is a smooth function on Γ′.
We now recall the derivation of the supercuspidal case of an integral formula

proved by Harish-Chandra [HC] and generalized by Rader and Silberger [RS].
Assume π is irreducible supercuspidal and γ ∈ Γ′ and f(g) = 〈π(g)v, ṽ〉.

∫
G/Z

f(gγg−1) dg =
∫
G/Z

〈π(gγg−1)v, ṽ〉 dg

=
∫
G/Z

∑
i

〈π(gγg−1)v, π̃(gγ)ẽi〉 〈π(gγ)ei, ṽ〉 dg

=
∫
G/Z

∑
i

〈π(g−1)v, ẽi〉 〈π(γ)ei, π̃(g−1)ṽ〉 dg

=
∑
i

∫
G/Z

〈π(g−1)v, ẽi〉 〈π(γ)ei, π̃(g−1)ṽ〉 dg

=
∑
i

∫
G/Z

〈π(g)v, ẽi〉 〈π(γ)ei, π̃(g)ṽ〉 dg

= d(π)−1〈v, ṽ〉
∑
i

〈π(γ)ei, ẽi〉

= d(π)−1〈v, ṽ〉 Θπ(γ),

where Θπ is the character of π.
It follows that if π is irreducible supercuspidal then

Ff (γ) = d(π)−1f(1) |D(γ)|1/2 Θπ(γ)

for all γ ∈ Γ′ and all f in the vector space A(π) spanned by the matrix coefficients
of π. This formula is an instance of the classic principle of duality between orbital
integrals and characters.
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3.2. The symmetric space generalization. The group H × H acts on G by
(h1, h2) · g = h1gh

−1
2 . Let (H × H)g be the isotropy group of g. Then, given a

function f defined at least on HgH, one can consider the integral∫
(H×H)/(H×H)g

f(h1gh
−1
2 ) d(h1, h2),

assuming that it is possible to choose a nonzero invariant measure for the integra-
tion. For example, if f(g) = 〈π(g)v, ṽ〉 and g = 1 then the orbital integral is just
〈v, ṽ〉.

We assume that γ is an element of G such that (H × H)γ is compact modulo
ZH × ZH . This is the case, for example, if γ is θ-elliptic-regular in the sense that
γθ(γ)−1 is elliptic regular.

Let (π, V ) be a θ-discrete representation and assume that HomH (̃,1) and HomH(π, 1)
are 1-dimensional and are spanned by nonzero elements λ and λ̃, respectively. Let
Θ be the smooth function on the θ-regular set that represents the distribution Θλ,λ̃.
(See [RR] for more details on this terminology.)

Let
f(g) = 〈π(g)v, ṽ〉

be a matrix coefficient for π. The un-normalized orbital integral of f at a θ-elliptic-
regular element γ is

Φf (γ) =
∫

(H/ZH)2
f(h1γh2) dh1 dh2.

Proposition. Φf (γ) = d−2
θ (π) 〈λ, ṽ〉 〈v, λ̃〉 Θ(γ).

Proof. We have

Φf (γ) =
∫

(H/ZH)2
〈π(h1γh2)v, ṽ〉 dh1 dh2

=
∫
H/ZH

〈π(γh)v, ṽ〉θ dh

= d−1
θ (π) 〈λ, ṽ〉

∫
Gθ/Zθ

〈π(γh)v, λ̃〉 dh.

We now invoke the key lemma of Rader and Rallis [RR] in their proof of smoothness
on the θ-regular set of spherical characters. It says that we can choose a compact
open subgroup KH of H such that∫

KH

π(kγ−1)λ̃ dk

lies in Ṽ . Call this vector ṽγ . Then∫
H/ZH

〈π(γh)v, λ̃〉 dh =
∫
H/ZH

〈π(h)v, ṽγ〉 dh

= 〈v, ṽγ〉θ
= d−1

θ (π) 〈v, λ̃〉 〈λ, ṽγ〉
= d−1

θ (π) 〈v, λ̃〉 Θ(γ).

Therefore, we obtain the desired formula. �
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