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THE CRITERIA OF RIESZ, HARDY-LITTLEWOOD ET AL. FOR

THE RIEMANN HYPOTHESIS REVISITED USING SIMILAR

FUNCTIONS

STEFANO BELTRAMINELLI AND DANILO MERLINI

Abstract. The original criteria of Riesz and of Hardy-Littlewood concerning
the truth of the Riemann Hypothesis (RH) are revisited and further investi-
gated in light of the recent formulations and results of Maslanka and of Baez-
Duarte concerning a representation of the Riemann Zeta function. Then we
introduce a general set of similar functions with the emergence of Poisson-like
distributions and we present some numerical experiments which indicate that
the RH may barely be true.

1. Introduction

It is well known that there are many di�erent criteria for the truth of the Riemann
Hypothesis (RH). Some of these are not directly related to the important high level
computations and developments concerning the non trivial zeros of the Riemann
Zeta function. In fact, at the beginning of the century M. Riesz, and later G.H.
Hardy and J.E. Littlewood (among other important results in number theory) found
a criterion of �classical type� for the truth of the RH. The above criteria are related
to some series involving values of the Zeta function outside the critical strip, i.e.
at integers arguments of the Zeta function [8, 10], and in a numerical context, very
accurate calculations are needed toward a �possible kind of veri�cation� of the RH.

In the literature important remarks have been given by leading mathematicians
(see for example, those cited in [4]). We may think that such criteria may have a
limited interest since, with them, one should work outside the critical strip. It is,
in fact, true that in dealing with the above criteria one needs the use of arguments
of the Zeta function outside the critical strip, and problems of interchange of sum-
mations are present. As an example, in the above criteria, if one uses the formula
established by the authors, one should give a meaning to an integration over the
real line, which exists only for �nite intervals. In order to obtain �nite numerical
results which give �satisfactory� values to the functions supposed to be equal to
the reciprocal of the Zeta function outside and inside the critical strip, the inte-
gration should be carried out using a special sequence of upper limit of integration
extending to in�nity [7].

But lately, there have been new developments and rigorous results in connection
with this kind of problem: �rst a �regularization� of the representations of the
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Zeta function (a pioneering work by Maslanka [9]), followed (in particular) by a
new rigorous discrete formulation with theorems concerning the above criteria (the
works of Baez-Duarte [1, 2, 3, 4]).

In light of these new approaches, we thought that some of the above criteria
deserved still more study, at least in the direction of some numerical experiments.
Thus, we introduce additional functions containing two parameters, in order to
have further con�dence in the numerical results of the experiments.

The content of this work is as follows: in Section 2 we de�ne a general set
of functions with two parameters α and β in the spirit of Riesz and of Hardy-
Littlewood and then obtain the discrete �representation� of the reciprocal of the
Zeta function of our set by means of the two parameter Pochammer's polynomials
with their coe�cients. For the reader the discussion of the conditions are then
given in Appendix A and in Appendix B (they follow strictly the ingenious method
of Baez-Duarte for the Riesz case α = β = 2). In Section 3 we then obtain
in some �limit�, a Poisson distribution for the coe�cients ck of the Pochammer's
polynomials; this is useful in the context of the numerical experiments. These are
presented in Section 4 where many various limiting cases are treated. In the case
of increasing values of the parameter β, the experiments indicate that the Poisson
distribution becomes more and more exact and the sequence ck becomes a constant
which can be evaluated.

We may argue that in the context of the range of validity of the experiments we
present the RH may barely be true.

2. The model

We now consider a set of functions with two parameters (α > 1, β > 0) to obtain
1

ζ(s) . These are simply an extension of these two cases: the �rst (with α = β = 2)
introduced and studied by Riesz [10], the second one (where α = 1 and β = 2) by
Hardy-Littlewood [8].

Let µ(n) be the Möbius function of argument n, where:

µ(n) =


1, if n = 1
(−1)k

, if n is a product of k distinct primes
0, if n contains a square

Let s = σ+it be a complex variable. For R(s) > ρ = 1 one has 1
ζ(s) =

∞∑
n=1

µ(n)
ns .

Following the original idea of Riesz and Hardy-Littlewood, we now introduce the
two-parameters family of functions given by:

(1) ϕ(s;α, β) :=
1

Γ(− s−α
β )

∫ ∞
0

∞∑
n=1

µ(n)
nα

e−
x

nβ x−( s−α
β +1)dx

so that expanding the right-hand side in powers of x, we obtain:

ϕ(s;α, β) =
1

Γ(− s−α
β )

∫ ∞
0

∞∑
n=1

µ(n)
nα

∞∑
k=0

(−1)k
xk

k!nβk
x−( s−α

β +1)dx

=
1

Γ(− s−α
β )

∫ ∞
0

ψ(x;α, β)x−( s−α
β +1)dx
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where

(2) ψ(x;α, β) =
∞∑

k=0

(−1)k
xk

k!
1

ζ(α+ βk)

The function ψ(x;α, β) was introduced by Riesz (case ψ(x; 2, 2)) and by Hardy-
Littlewood (case ψ(x; 1, 2)).

If ψ(x;α, β) ∼ A

x
α−ρ

β
−ε

for some ε and for large x, then

|ϕ(s;α, β)| ≤

∣∣∣∣∣ 1
Γ(− s−α

β )

∣∣∣∣∣
∫ ∞

0

A

x
α−ρ

β +
R(s)−α

β +1−ε
dx ≤

∣∣∣∣∣ 1
Γ(− s−α

β )

∣∣∣∣∣
∫ ∞

0

A

x1+
R(s)−ρ

β −ε
dx

would exist and would eventually be given by 1
ζ(s) with ζ(s) 6= 0 if we choose

R(s) > ρ+ βε.
Let ρ = 1

2 . For α = β = 2 we have:

ψ(x; 2, 2) ∼ A

x3/4−ε

and for α = 1, β = 2:

ψ(x; 1, 2) ∼ A

x1/4−ε

On the other hand expanding (1) in a similar way, we have that:

ϕ(s;α, β) =
1

Γ(− s−α
β )

∫ ∞
0

∞∑
n=1

µ(n)
nα

ex(1− 1
nβ )e−xx−( s−α

β +1)dx

=
1

Γ(− s−α
β )

∞∑
k=0

∞∑
n=1

µ(n)
nα

(
1− 1

nβ

)k ∫ ∞
0

1
k!
xk− s−α

β −1e−xdx

=
1

Γ(− s−α
β )

∞∑
k=0

∞∑
n=1

µ(n)
nα

(
1− 1

nβ

)k 1
k!

Γ(k − s− α

β
)

=
1

Γ(− s−α
β )

∞∑
k=0

ck

k∏
r=1

(
1−

s−α
β + 1

r

)
Γ(−s− α

β
)

Thus:

(3) ϕ(s;α, β) =
∞∑

k=0

ckPk(
s− α

β
+ 1)

where Pk(x) :=
k∏

r=1
(1− x

r ) are the Pochhammer polynomials and the sequences:

(4) ck(α, β) :=
∞∑

n=1

µ(n)
nα

(
1− 1

nβ

)k

were already studied by Baez-Duarte [2, 3] in the special case α = β = 2. For
another sequence appearing in an expansion of ζ, still for α = β = 2 see the work
of Maslanka [9].

Let R(s) > ρ+ ε (ε > 0 and ρ ∈ [1,∞[). From a theorem of Baez-Duarte [2, 3],
which says that |Pk(s)| ≤ A · k−R(s) where A is a constant depending on |s|, for
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large values of k we have that:

(5) |ϕ(s;α, β)| ≤
∞

A
∑

k=0

|ck| k−( ρ+ε−α
β +1)

In Appendix A we show that if α > 1 and β > 0 the following holds uncondi-
tionally:

qk �
1

k
α−1

β

where

qk =
∞∑

n=1

1
nα

(
1− 1

nβ

)k

Then we obtain:

|ϕ(s;α, β)| ≤
∞∑

k=0

1

k
α−1

β

· A

k
ρ+ε−α

β +1
≤
∞∑

k=0

A

k
ρ+ε−1

β +1
≤ A

∞∑
k=0

1
k1+ ε

β
<∞

From this it follows that we can interchange integration and summation in the
earlier calculations of ϕ and thus for R(s) > 1 we obtain (6) below, i.e. a represen-

tation of [ζ(s)]−1
:

(6) ϕ(s;α, β) =
1
ζ(s)

=
∞∑

k=0

ckPk(
s− α

β
+ 1), R(s) > 1

Now for R(s) > ρ + ε (ε > 0 and ρ ∈ [ 12 ,∞[), still from the theorem of Baez-
Duarte [2, 3] i.e. that ∣∣∣∣Pk(

s− α

β
+ 1)

∣∣∣∣ ≤ A

k
R(s)−α

β +1

and assuming:

|ck| �
B

k
1
β (α−ρ−ε)

then the above series given by (3) converges uniformely. In fact for R(s) > ρ + ε
we have:

|ϕ(s;α, β)| ≤
∞∑

k=0

B

k
1
β (α−ρ−ε)

A

k
R(s)−α

β +1
=
∞∑

k=0

C

k1+ 1
β (R(s)−ρ−ε)

Following Baez-Duarte the series ϕ(s;α, β) extends analytically 1
ζ(s) to the half

plane R(s) > ρ = 1
2 .

We have thus obtained for our family of sequences with parameters α, β that
a necessary and su�cient condition for ζ(s) 6= 0 in the half plane R(s) > ρ (ρ ∈
[ 12 ,∞[) is given by:

(7) |ck(α, β)| ≤ const

k
1
β (α−ρ−ε)

∀ε > 0,∀α > 1,∀β > 0

The necessity of the condition (7) is proved in Appendix B.

Remark 1. Instead of using the Möbius function µ in ck, one may use (for the
numerical computations) the formula involving values of the Zeta function:
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ck =
∞∑

n=1

µ(n)
nα

(
1− 1

nβ

)k

=
∞∑

n=1

µ(n)
nα

k∑
j=0

(−1)j

(
k

j

)
1
nβj

=
k∑

j=0

(−1)j

(
k

j

)
1

ζ(α+ βj)

(8)

Remark 2. From the bound above it follows not only theoretically but also in
the context of a numerical analysis that it will be equally di�cult to treat the case
ρ ∈ [ 12 , 1], for example ρ = 3

4 , as will be the case ρ = 1
2 + ε with ε small. Below in

Section 4 we will also treat the case α = 7
2 .

Remark 3. The condition for the truth of the RH using Riesz and Hardy-Littlewood
functions ψ(x) is essentially the same as the one using the discrete function ck with
k ∈ N. In a previous work [7] independent of the present one (which essentially
uses the Baez-Duarte idea and theorems) some numerical results were obtained for
ψ(x) in the case of the Hardy-Littlewood function (α = 1, β = 2) by integration
in the x-space. The discrete version using the function ck of the discrete variable
k [2, 3, 9] has advantages in the numerical computations which will be presented
below. Before this we present another way to control the sequence ck in a numerical
context.

3. Poisson like distribution

We still consider the sequence ck given by:

ck =
∞∑

n=1

µ(n)
nα

(
1− 1

nβ

)k

Then,

ck =
∞∑

n=1

µ(n)
nα

ek ln(1− 1
nβ )

=
∞∑

n=1

µ(n)
nα

e−
k

nβ ek(ln(1− 1
nβ )+ 1

nβ )

=
∞∑

n=1

µ(n)
nα

e−
k

nβ e∆(k,n,β)

Notice that ∆ < 0. For β large we set ∆ = 0 to obtain the following approximation:

ck ∼=
∞∑

n=1

µ(n)
nα

e−
k

nβ

With this approximation we see that ck becomes equal to ψ(x = k) of (2) as may
easily be checked. Moreover:

ck ∼=
∞∑

n=1

µ(n)
nα

ek(1− 1
nβ )e−k =

∞∑
n=1

µ(n)
nα

∞∑
p=0

kp

p!

(
1− 1

nβ

)p

e−k
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Thus:

(9) ck ∼=
∞∑

p=0

cp
kp

p!
e−k

We are in the presence of a Poisson distribution for the cp: in this way, in our
numerical computations, we may control in a �more satisfactory� way the values of
ck. The approximation for ck by means of the Poisson distribution for the ck we
found, will be more satisfactory with increasing values of β and for large values of
k. We may also use the approximation given by (9) in which the upper limit of
summation will be given by N instead of ∞, i.e. for large k,

(10) ck ∼=
N∑

p=0

cp
kp

p!
e−k

4. Numerical experiments

4.1. The case α = 7
2 and β = 4. This is a case of interest since the behaviour of

the ck at large values of k is expected to be the same as the case α = β = 2 [2, 3,
10]. In fact from (7) we ask that for R(s) > 1

2 :

(11) |ck(7/2, 4)| ≤ C

k
7/2−1/2−ε

4

∼ k
ε
4

k
3
4
∼ |ck(2, 2)|

4 5 6 7
log k

-6

-5

-4

-3

-2

log   ck ¤

Figure 1. Plot of log |ck| = C− 3
4 log k together with the straight

line of slope− 3
4 .

As a �rst illustration of the behaviour of ck (even if k is small) we give in the

Figures 1, 2 and 3 the plot respectively of log |ck|, log(|ck log k|) and log(|ck(log k)2|)
as a function of log k for k up to 1000 together with the straight line with slope − 3

4



THE CRITERIA OF RIESZ, HARDY-LITTLEWOOD ET AL. 23

which is tangent to the curves at some point. The ck were computed calculating
(4) until n = 10000.

4 5 6 7
log k

-5

-4

-3

-2

-1

log H ck ¤ log kL

Figure 2. Plot of log(|ck| log k) = C − 3
4 log k together with the

tangent straight line of slope − 3
4 .

4 5 6 7
log k

-3

-2

-1

1

log H ck ¤ Hlog kL2L

Figure 3. Plot of log(|ck|(log k)2) = C− 3
4 log k together with the

tangent straight line of slope − 3
4 .
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This experiment indicates that ck, for k up to 1000, may decay more fast than
C

(log k)2k
3
4
as announced by Baez-Duarte in [2] for the case α = β = 2, i.e. more fast

then the bound (11) if the RH is true (see the necessary condition in Appendix B),
this of course in the above range of k. For bigger values of k see the Footnote and
[3].

4.2. The case α = 7
2 with β → ∞. Let α = 7

2 be �xed, from (8) as β increases
we get:

lim
β→∞

ck = lim
β→∞

k∑
j=0

(−1)j(k
j

)
1

ζ(7/2+βj) =
(
k
0

)
1

ζ(7/2) − 1 + 1 +
k∑

j=1

(
k
j

)
(−1)j

= 1
ζ(7/2) − 1 +

k∑
j=0

(
k
j

)
(−1)j

Thus:

(12) lim
β→∞

ck =
1

ζ(7/2)
− 1 ∼= −0.112479 ∀k ∈ N

20 40 60 80 100
k

-0.11

-0.09

-0.08

-0.07

ck

Figure 4. Plot of ck for α = 7/2 and β = 4, 5, 6, 7, 20 (from top to bottom).

Our numerical experiments convalidate these results. We calculated the �rst 100
ck for β = 4, 5, 6, 7, 20. For β = 20 we get already a convergence to the theoretical
limit (12), see Figure 4. So, this in�nite β limit obtained by the numerical calcula-
tions for low values of k (up to 100) indicates that RH may barely be true (see (7)
as β →∞).

4.3. The Poisson distribution. To demonstrate the goodness of the approxima-
tion's formula (10) we computed the ck until k = 1000 for the case α = 7

2 , β = 4
(using (4)). Then using these already computed ck we calculated also the �rst 500
ck of (10). We plotted these two curves together. In Figure 5 we see that from
k ∼= 40 the Poisson approximation is essentially the same as the real sequence.
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20 40 60 80
k

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

ck

Figure 5. Plot of ck for α = 7
2 , β = 4 (black) vs. the Poisson

approximation (red).

4.4. The case α = 1
2 . In this case (α < 1!) we cannot employ the argument of

Appendix A, but we have for R(s)− ε ≥ ρ = 1
2 and assuming |ck| increases with β:

∣∣∣∣ϕ(s;
1
2
, β)
∣∣∣∣ < ∞∑

k=0

k−( ε
β +1) |ck(1/2, β)| ≤

∞∑
k=0

k−( ε
β +1) |ck(1/2,∞)|
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From Subsection 4.2 we know that |ck(1/2,∞)| = | 1
ζ(1/2) − 1| ∼= 1.68477, thus

for any �nite β, ϕ(s; 1/2, β) is also �nite under the assumption that sup
β
|ck(1/2, β)|

is bounded by |ck(1/2,∞| ∼= 1.68477.
We remember that the great mathematician of the beginning of the century, J.F.

Littlewood, has shown on the RH that the series

∞∑
n=1

µ(n)
n

1
2+ε

ε > 0

converges, even if with the Pochhammer's approach is not possible to have absolute
convergence. We can verify the numerical bound of this series which should be
smaller (or equal) than our predicted bound A ∼= 1.68477 (Figure 6).

In the strong coupling limit we observe, with the help of our numerical results,
the phenomena of a kind of �annihilation of the wave� in a macroscopic region of
increasing width with β (α should be understood as α = 1

2+).

5 10 15 20
log HkL

-1.5

-1.25

-1

-0.75

-0.5

-0.25

ck

Figure 6. Plot of ck for α = 1
2 , β = 4, 10, 24, 50 from top to

bottom (data obtained with n = 106 in (4)).

4.5. Some cases with the same decay as the Hardy-Littlewood one. We
present some cases which should give the same behaviour as the original Hardy-
Littlewood case (α = 1, β = 2), then:

α =
β

4
+

1
2

For all the cases we present (β = 6, 8, 10), the ck seem to decay as k−
1
4 up to

k = 500 million (see Figure 7).
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5 10 15 20
log HkL

-0.5

-0.4

-0.3

-0.2

-0.1

ck

Figure 7. Plot of ck if α = β
4 + 1

2 for β = 6, 8, 10 [black curves

from the bottom to the top] and the reference function −k− 1
4 [red

curve] (data obtained with n = 106 in (4)).

5. Conclusions

In this work we have revisited the original criteria of Riesz and of Hardy-
Littlewood for the Riemann Hypothesis in light of recent pioneering works con-
cerning the possible representations of the Riemann Zeta function by means of the
Pochhammer's polynomials. The discrete representation in the case α = β = 2 is
due to Baez-Duarte. In order to carry out our numerical experiments related to the
criteria, we have �rst extended the analytical formulation to a more general class of
sequences containing two parameters α and β; using a theorem of Baez-Duarte we
have speci�ed a su�cient and necessary condition for the truth of the RH for our
general class of sequences i.e. for the decay of the coe�cients ck as a power law of k.
Moreover in doing this we have found the emergence of a Poisson-like distribution
for the ck which should be exact in the large β limit. Numerical experiments have
been carried out for various cases for low values of k.

(1) For α = 7
2 and β = 4 we have presented intensive calculation using the

Möbius function up to n = 10000 and for k up to some hundreds. For
this case, the power law decay k−

3
4 is the same as that appearing in the

original work of Riesz (α = β = 2) and also investigated numerically by
Baez-Duarte. The experiments con�rm the correctness of the power law
within the range of the values of n and of k we were able to treat here. For
large values of k see Footnote.

(2) For α and β such that the ck should all give the power law decay k−
1
4 at

large values of k to ensure the truth of the RH, i.e those where α = β
4 + 1

2 ,
we have presented experiments for some values of β which indicates this
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power law decay. All sequences ck have plots lying above a �xed curve of
equation y = Ak−

1
4 for some �xed constant A independent of β, in the

range of k we have considered.
(3) Finally we have considered some experiments in the large β limit which

indicate that the plots of ck become more and more �at, well approximated
by the mean value of the Poisson-type distribution we have found. As β
becomes large and large the ck approaches in absolut value a constant, for
all k, indicating that in this sense the RH may barely be true.

This work will be expanded with numerical experiments for bigger values of k
[5] and in the search of other new representations of the Riemann Zeta function,
di�erent of the one considered here [6]. Moreover there is the aim that the new
criteria will be useful in the context of additional numerical experiments. These
works will be presented in a near future.

Appendix A

We follow strictly the lines of calculations of Baez-Duarte [2, 3] to show that the

representation (6) for [ζ(s)]−1
is unconditionally valid for R(s) > ρ = 1, α > 1 and

β > 0. We consider the quantity:

qk =
∞∑

n=1

1
nα

(
1− 1

nβ

)k

Using the Euler-MacLaurin series (restricting ourselves to the main contribution),
we have that:

qk ∼=
∫ ∞

1

1
xα

(
1− 1

xβ

)k

dx

Then with the variable change y = 1
xβ we obtain:

qk ∼=
1
β

∫ 1

0

y
α−1

β −1(1− y)
k+1−1

dy

= B(
α− 1
β

, k + 1)

where

B(λ, µ) =
∫ 1

0

xλ−1(1− x)
µ−1

dx =
Γ(λ)Γ(µ)
Γ(λ+ µ)

is the Beta function.
Thus for k large, we have

qk ∼=
1
β

Γ(
α− 1
β

)C
k

k
α−1

β +1
∼=

1

k
α−1

β

Appendix B

Still following Baez-Duarte [2, 3] and here for the family of sequences with pa-
rameters α and β, we now show the necessity of the condition (7), assuming the
RH to be true in the semin�nite strip R(s) > ρ = 1

2 .

We set M(x) =
∑

n≤x

µ(n), then we obtain ∀ε > 0:

M(x) ≤ xρ+ε
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Summation by parts gives for the main contribution:

|ck| =

∣∣∣∣∣
∫ ∞

1

M(x)
d

dx

(
1
xα

(
1− 1

xβ

)k
)
dx

∣∣∣∣∣
With the variable change y = 1

x , using M( 1
y ) � y−ρ−ε for y ↓ 0 (RH) we have:

|ck| � α

∫ 1

0

yα−ρ−ε−1(1− yβ)
k
dy + βk

∫ 1

0

yα+β−ρ−ε−1(1− yβ)
k−1

dy

and �nally with yβ = z we obtain

|ck| �
α

β

∫ 1

0

z
α−ρ−ε

β −1(1− z)
k+1−1

dz + k

∫ 1

0

z
α−ρ−ε+β

β −1(1− z)
k−1

dz

which for large k is given by:

|ck| �
α

β

Γ(α−ρ−ε
β )

k
α−ρ−ε

β

+
Γ(α−ρ−ε+β

β )

k
α−ρ−ε+β

β +1
<

C

k
α−ρ−ε

β

10 20 30 40
log HkL

-1.5

-1.25

-1

-0.75

-0.5

-0.25

ck

Figure 8. Plot of ck for α = 1
2 , β = 24 (data obtained with

n = 106 in (4)).

Footnote

Our calculations have been carried out only to values of k not exceeding k = 1000
except for the Subsections 4.4 and 4.5. It is our pleasure to thank Prof. Luis Baez-
Duarte for sending us, after the �rst draft of this paper, a copy of two recent
published works by the author (in particular [3]), now added to our references. The
paper contains the plot of the results of advanced numerical experiments up to
k = 100000 by Krzystof Maslanka for the Riesz case, which clearly indicate that ck
becomes of oscillatory type with a wavelength related in �rst approximation to the
�rst zero of the Riemann Zeta function.
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We also thank Prof. Luis Baez-Duarte for sending us a picture of more numerical
results, also concerning the Riesz case, by Marek Wolf, where values of k extend up
to k = 200000 and con�rming the oscillatory character of the sequence ck, as well.
Now a re�nement of these results is published in arXiv [11].

We are currently performing an extension of our calculations, using the Poisson-
Möbius formula considered in this work, for various cases, with the aim of obtaining
satisfactory numerical results up to some billions for k and these will be presented
in a forthcoming note. For the case α = 1

2+, β = 24, the plot of ck up to k = e40 ∼=
2.3 · 1017 is already given in Fig. 8 without comments, see only the emergence of
plateau up to log(k) = 40.
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