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RATIONAL CURVES ON GENERAL TYPE
HYPERSURFACES

Eric Riedl & David Yang

Abstract

We develop a technique that allows us to prove results about
subvarieties of general type hypersurfaces. As an application, we
use a result of Clemens and Ran to prove that a very general
hypersurface of degree 3n+1

2 ≤ d ≤ 2n− 3 in Pn contain lines but
no other rational curves.

1. Introduction

It is often useful for understanding the geometry of a variety to un-
derstand the rational curves on it. As a basic first question, we may
ask: what are the dimensions of these spaces of rational curves? In
particular, we would like to understand when there exist rational curves
of a given cohomology class. We work over C throughout, although
we observe that one of the techniques in this paper has been useful in
obtaining results [13] in characteristic p.

Hypersurfaces are a natural first case for these sorts of questions,
and much work has been done investigating the dimensions of spaces of
rational curves on hypersurfaces. Given a hypersurface X, let Re(X)
be the space of integral, geometrically rational curves of degree e on X.
There is a natural conjecture, made in special cases by several different
people, for the dimension of Re(X) for X very general. The dimension of
Re(Pn) is (e+1)(n+1)−4, and it is naively ed+1 conditions for a degree
e rational curve to lie on a given hypersurface of degree d. Thus, we
would expect the dimension of Re(X) to be (e+1)(n+1)−4−(ed+1) =
e(n− d+ 1) + n− 4.

Conjecture 1.1. The dimension of Re(X) is e(n− d+ 1) + n− 4 if
(n, d) 6= (3, 4).

To interpret Conjecture 1.1 when d is large, we adopt the convention
that a variety has negative dimension when it is empty.

In the Fano range, there is the work of Harris-Roth-Starr and
Beheshti-Kumar [7, 1], as well as our previous paper [14]. In the Calabi-
Yau range, there is the work on the Clemens Conjecture [10, 8, 9, 4, 5]
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and the work of many different people on K3 surfaces, see [11] for more
details. The statement of Conjecture 1.1 excludes the case n = 3,
d = 4 because very general K3 surfaces are all known to contain ra-
tional curves, even though e(n− d+ 1) + n− 4 = −1 < 0.

Here, we will consider the general type range, where d > n+1. Claire
Voisin [17] has conjectured the following, which follows from Conjecture
1.1:

Conjecture 1.2. (Voisin) The degrees of rational curves on a very
general hypersurface of general type are bounded.

There has been quite a bit of previous work towards this conjecture.
Clemens [3] proved bounds on the degree and genus of curves lying in
very general hypersurfaces. Generalizing Clemens’ results to higher-
dimensional subvarieties, Ein [6] proved that if d ≥ 2n− k and 1 ≤ k ≤
n − 3 then a k-dimensional subvariety of a very general hypersurface
must have a resolution of singularities with effective canonical bundle.
If the inequality is strict, he proves that the canonical bundle must in
fact be big. Voisin [15, 16] improves his bound by 1, i.e., she proves
the same result for d ≥ 2n − 1 − k, with 1 ≤ k ≤ n − 3 as before. In
the special case of curves, this proves that a very general hypersurface
of degree d ≥ 2n− 2 in Pn, n ≥ 4, contains no rational curves.

Pacienza [12] proved that for n ≥ 5 and d ≥ 2n − 3, the dimension
of the space of rational curves on a very general hypersurface in Pn

is the expected dimension. Clemens and Ran build on Voisin’s and
Pacienza’s work and prove that in a hypersurface of high enough degree,
all subvarieties without effective canonical bundle are contained in the
locus swept out by lines (see Theorem 2.2 for a precise statement). This
statement is particularly interesting in light of the Lang Conjecture,
which predicts that these hypersurfaces will not have dense spaces of
rational curves. To our knowledge, this work was the best result on
the spaces of rational curves on very general type hypersurfaces. For
instance, Voisin reposes the question in [19].

We improve on Pacienza’s result.

Theorem 1.3. Let X ⊂ Pn be a general hypersurface of degree d,
with 3n+1

2 ≤ d ≤ 2n − 3. Then X contains lines but no other rational
curves.

Our technique also yields a technique for proving that hypersurfaces
of large degree contain no varieties in a given family. For instance,
we prove that if a very general hypersurface of degree d in P2n−d−k is
not swept out by k-dimensional varieties in a particular family, then a
very general hypersurface of degree d in Pn contains no varieties in that
family.

Theorem 1.4. Suppose that a very general complete intersection of
degree (d1, · · · , dc) in P2m−c−k is not rationally swept out by varieties in
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the family Y → B with Yb k-dimensional. Then a very general complete
intersection of degree (d1, · · · , dc) in Pm contains no varieties from the
family Y → B.

Combined with a result of Voisin, we can show that very general hy-
persurfaces of high degree contain no subvarieties of a particular family,
and we can get an effective bound on how high a degree is required.

We prove these results via a downward induction. The idea is to use
a simple proposition about Grassmannians to transport results about
not being swept out by certain subvarieties in high dimensional pro-
jective space to results about containing no such subvarieties in lower
dimensional projective spaces. The technique also allows us to recover
a slightly weaker version of Ein’s and Voisin’s results on subvarieties
of very general hypersurfaces, as well as to prove that given a family
of varieties and a dimension n, there is a degree d0 such that a very
general degree d ≥ d0 hypersurface in Pn contains no subvarieties from
that family.

Acknowledgments. We would like to acknowledge many helpful con-
versations with Joe Harris, Matthew Woolf, Jason Starr, Roya Beheshti,
and Lawrence Ein. The first author was partially supported by NSF
grant DGE1144152.

2. Proofs

The proof of Theorem 1.3 has three main ingredients. The first is a
result of Clemens and Ran.

Theorem 2.1. ([2]) Let X be a very general hypersurface of degree

d in Pn and let k be an integer. Let d ≥ n, d(d+1)
2 ≥ 3n− 1− k and let

f : Y → Y0 be a desingularization of an irreducible subvariety of dimen-
sion k. Let t = max(0,−d+n+ 1 + bn−k2 c). Then either h0(ωY (t)) 6= 0
or Y0 is contained in the subvariety of X swept out by lines.

If we take the special case where Y is a rational curve, then we can
see that for t = 0, h0(ωY (t)) = 0. Thus, Y0 must be contained in the
subvariety swept out by lines, provided d ≥ 3n+1

2 .

Corollary 2.2. Let X ⊂ Pn be a very general degree d hypersurface.

Then if d(d+1)
2 ≥ 3n − 2 and d ≥ 3n+1

2 , then any rational curve in X
is contained in the union of the lines on X. In fact, for n ≥ 3 and
d ≥ 3n+1

2 then any rational curve in X is contained in the union of the
lines of X.

Proof. Note that if n ≥ 3 and d ≥ 3n+1
2 , then

d(d+ 1)

2
≥ (3n+ 1)(3n+ 3)

8
=

1

8
(9n2 + 12n+ 3) ≥ n2 ≥ 3n− 2

since n ≥ 3. q.e.d.
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The second ingredient is a new result about the Fano scheme of lines
on X.

Theorem 2.3. If X ⊂ Pn is very general and n ≤ d2+3d+6
6 , then

F1(X) contains no rational curves.

Note that if d ≥ 3n+1
2 , then d2+3d+6

6 ≥ 9n2+24n+31
24 ≥ n. Our final

ingredient is a known result about reducible conics.

Lemma 2.4. If X ⊂ Pn is general and d ≥ 3n
2 − 1, then X contains

no reducible conics.

Using these three results, the Main Theorem follows easily.

Proof of Theorem 1.3. Let Y ⊂ X be the subvariety of X swept out
by lines. Let U → F1(X) be the universal line on X. Note that U is
smooth, since X is very general. Since there are no reducible conics in
X, the natural map U → X is bijective on closed points. We claim any
map from P1 → Y lifts to a map from P1 → U . To see this, note that
the result is clear unless the image of the P1 lies in the singular locus
of Y . By repeatedly restricting the map U → Y , we can obtain a map
P1 → U . But by Theorem 2.2, any rational curve in X has to lie in Y
and hence lift to U . If it is not a line, it will not be contracted by the
map U → F1(X), and so we will get rational curves in F1(X). However,
this contradicts Theorem 2.3. q.e.d.

Remark. In fact, as Ein pointed out to us, for d ≥ 3n
2 −1 and X ⊂ Pn

general, the natural map U → X is an embedding. To see this, note
that a general hypersurface in this degree range will contain only lines `
with balanced normal bundle N`/X = O(−1)d−n+1⊕O2n−d−3 (since hy-
persurfaces in this degree range contain no planar double lines). Thus,
for a line of this form, the natural map on tangent spaces T`F1(X) →
(N`/X)p is injective, which means that the natural map on tangent
spaces Tp,`U → Tp(X) is also injective, which means that the map
U → X is an embedding.

Note that the proof of Theorem 1.3 shows that the bounds in Corol-
lary 2.2 are very close to sharp, since our proof shows that there will be
no rational curves contained in the subvariety of X swept out by lines
for d ≥ 3n

2 − 1. However, we can see that for d = 3n
2 − 1, X will contain

conics.
To see this, note that the dimension of Re(X) is at least e(n − d +

1) + n − 4, and so for e = 2, d = 3n
2 − 1, R2(X) has dimension at

least 0 if it is nonempty. To see that it is nonempty note that the
space of hypersurfaces containing a given smooth conic is irreducible of
the expected dimension, and so the incidence-correspondence of smooth
conics in a hypersurface is irreducible of the expected dimension. Re(X)
is then non-empty if we can exhibit a single smooth conic C in a single



RATIONAL CURVES ON GENERAL TYPE HYPERSURFACES 397

hypersurface X with H0(NC/X) = 0, which can be done by explicit
computation.

Thus it remains to prove Theorem 2.3 and Lemma 2.4. Lemma 2.4
is substantially easier, and is well-known. We provide a short proof for
completeness.

Proof of Lemma 2.4. Observe that the space of reducible conics in Pn

has dimension 2n− 2 + 1 +n− 1 = 3n− 2. Since each reducible conic is
projectively equivalent, it is 2d+1 conditions for a degree d hypersurface
to contain a particular reducible conic. Thus, if the space of degree d
hypersurfaces in Pn has dimension N , the incidence correspondence

I = {([C], [X])| C ⊂ X is a reducible conic}

has dimension 3n−2 +N − (2d+ 1) = N + 3n−2d−3. Let π : I → PN

be the natural projection map. The space I cannot dominate the space
of hypersurfaces when 3n− 2d− 3 ≤ −1, or when d ≥ 3n

2 − 1. q.e.d.

The proof of Theorem 2.3 relies on the following result about Grass-
mannians, which is of independent interest. Roughly speaking, it says
that if you have a family of m-planes in Pn, then the family of (m+ 1)-
planes containing at least one of them has smaller codimension in the
Grassmannian.

Proposition 2.5. Let m ≤ n. Let B ⊂ G(m,n) be irreducible of
codimension at least ε ≥ 1. Let C ⊂ G(m − 1, n) be a nonempty sub-
variety satisfying the following condition: ∀[c] ∈ C, if [b] ∈ G(m,n)
has c ⊂ b, then [b] ∈ B. Then it follows that the codimension of C in
G(m− 1, n) is at least ε+ 1.

To see that Proposition 2.5 is sharp, note that the dimension of the
space of lines through a given point has dimension n−1 and codimension
2(n− 1)− (n− 1) = n− 1, while the space of 2-planes through a given
point has dimension 2(n−2) and codimension 3(n−2)−2(n−2) = n−2.

Note that the statement of Proposition 2.5 also holds for families of
planes containing a fixed linear space, as can be seen by identifying
the space of m-planes containing a fixed k-plane Λ with the space of
(m− k − 1)-planes in a linear space complementary to Λ.

The proof makes use of the following elementary Lemma.

Lemma 2.6. Suppose B ⊂ G(m,n) and C ⊂ G(m − 1, n) are non-
empty subvarieties satisfying the following two conditions:

1) ∀[c] ∈ C, if [b] ∈ G(m,n) has c ⊂ b, then [b] ∈ B.
2) ∀[b] ∈ B, if [c] ∈ G(m− 1, n) has c ⊂ b, then [c] ∈ C.

Then B = G(m,n) and C = G(m− 1, n).

Proof of Lemma 2.6. Let [Λ] ∈ B, and let [Φ] ∈ G(m,n). We will show
[Φ] ∈ B. Let k = m − dim(Λ ∩ Φ). Then there exists a sequence of m
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planes Λ = Λ0,Λ1, · · · ,Λk = Φ such that dim(Λi ∩ Λi+1) = m − 1. By
Condition 2, if Λi ∈ B, then [Λi ∩ Λi+1] ∈ C and, hence, by Condition
1, [Λi+1] ∈ B. Since [Λ0] = [Λ] was in B by assumption, we see that
[Φ] ∈ B. This shows B = G(m,n), and it follows that C = G(m− 1, n).

q.e.d.

Proof of Proposition 2.5. We show that dimC ≤ m(n −m + 1) − (ε +
1). Consider the incidence correspondence I = {([b], [c])| [c] ∈ C, [b] ∈
G(m,n), c ⊂ b}. Note that if ([b], [c]) ∈ I, then necessarily [b] ∈ B. Let
πB : I → B, πC : I → C be the projection maps. The generic fiber of
πB has dimension at most m−1, since if all the fibers had dimension m,
both Conditions 1 and 2 of Lemma 2.6 would be satisfied, contradicting
ε ≥ 1. Thus, dim I ≤ dimB+m− 1 ≤ (m+ 1)(n−m) +m− 1− ε. By
the Condition on C, we see that the fibers of πC have dimension n−m,
so dim I = dimC + n−m. Putting the two relations together gives

dimC + n−m = dim I ≤ (m+ 1)(n−m) +m− 1− ε
or that dimC is at most

(m+1)(n−m)−(n−m)−ε = m(n−m)+m−1−ε = m(n−m+1)−(ε+1).

The result follows. q.e.d.

Using Proposition 2.5, we can prove Theorem 2.3.

Proof of Theorem 2.3. First we find pairs (n, d) for which F1(X) is not
Fano. Let U be the incidence correspondence {([`], [X])|` ⊂ X} ⊂
G(1, n) × PN . Note that U is smooth because it is a projective bun-
dle over G(1, n). Thus by Sard’s theorem, for X general F1(X) is the
smooth expected-dimensional vanishing locus of a section of the vector
bundle Symd(S∗). Recall that c(S∗) = 1+σ1+σ1,1. We use the splitting

principle to work out c1(Symd(S∗)). Suppose c(S∗) = (1 + α)(1 + β).

Then c(Symd(S∗)) =
∑d

k=0(1+α)k(1+β)d−k. Counting the coefficients
of α in the products, we see that

c1(Symd(S∗)) =

d∑
k=0

kσ1 =
d(d+ 1)

2
σ1.

The canonical bundle of G(1, n) is −(n + 1)σ1. Thus, the canonical

bundle of F1(X) is (−n− 1 + d(d+1)
2 )σ1. This will be effective if

−n− 1 +
d(d+ 1)

2
≥ 0

or

n ≤ d(d+ 1)

2
− 1.

Let m = d(d+1)
2 − 1. Consider

Rn,d = {([`], [X])|` ⊂ X ⊂ Pn, ∃ rational curve in F1(X) through [`]},
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which is a subset of G(1, n)×PN . Note that Rn,d is a possibly countable
union of irreducible varieties. We claim that Rn,d is of codimension at
least 2n−d−3 in U for an appropriate range of d, which will prove that
a very general hypersurface X ⊂ Pn has no rational curves in its Fano
scheme.

Let ([`0], [X0]) ∈ Rn,d. We find a family F ⊂ U with ([`0], [X0]) ∈
F ⊂ {([`], [X])|` ⊂ X} such that F ∩ Rn,d ⊂ F is of codimension at
least 2n− d− 3 in F . Let Y ′ ⊂ Pm be a general hypersurface of degree
d, and `′ ⊂ Y ′ a very general line in Y . Note that there are no rational
curves in F1(Y

′) through [`′] since F1(Y
′) is smooth and general type.

Let Y ⊂ PM (for some large M) be a hypersurface containing a line `′0
such that (`0, X) is a n-plane section of (`′0, Y ) and (`′, Y ′) is an m-plane
section of (`′0, Y ).

Let Zr ⊂ Hom(Pr,PM ) be the set of parameterized r-planes in PM

containing `′0, and let Z ′r ⊂ Zr be the set of parameterized r-planes
containing ` such that the corresponding linear section of Y has no
rational curve through [`′0] in its Fano scheme. We let F be the image
of Zn in the space of pairs ([`], [X]). Then F ∩Rn,d will be the image of
Z ′n in the space of hypersurfaces of degree d in Pn. It suffices to show
that Z ′n is of codimension at least 2n− d− 3 in Zn. We see that Z ′m is
of codimension at least one in Zm. By Proposition 2.5, we see that Z ′n
is of codimension at least m − n + 1 in Zn. Thus, our result will hold
for

m− n+ 1 ≥ 2n− d− 3

or

3n ≤ m+ d+ 4

or equivalently

n ≤ m+ d

3
+ 1 =

d2 + 3d+ 6

6
. q.e.d.

Remark. We should mention that as Ein pointed out to us, Theorem
2.3 can also be proven using techniques similar to those in [6] and [12].
We omit the details of a complete proof along these lines, but in broad
outlines, the technique is to show that for A the universal line on a
hypersurface, the bundle TA|F1(X)(1) is globally generated, for X very
general. This means that

∧2n−d−4TA|F1(X)(2n− d− 4)

∼= ΩN+1
A |F1(X)

(
−d(d+ 1)

2
+ n+ 1 + 2n− d− 4

)
is globally generated. Thus, ΩN+1

A |F1(X) will be globally generated for

−d(d+ 1)

2
+ n+ 1 + 2n− d− 4 ≤ 0
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or

3n ≤ d2 + d+ 2d+ 6

2
=
d2 + 3d+ 6

2
or

n ≤ d2 + 3d+ 6

6
which is the bound we get by our technique.

As far as we are aware, this technique, while yielding a similar bound,
is different in nature from our technique involving Grassmannians, even
though we can recover Ein’s results using the Grassmannian technique,
and this global generation technique can recover these results about the
Grassmannian.

The techniques here can be used to prove that a very general hy-
persurface of sufficiently high degree contains no copies of a class of
subvarieties, provided that the very general hypersurface of this degree
and larger dimension is not swept out by these subvarieties. When com-
bined with a result of Voisin [18], this can be a useful way to prove that
given any class of varieties and fixed dimension of hypersurface, there
exists a degree large enough so that a very general hypersurface contains
no varieties in that class. Recall the definition of rationally swept out.

Definition 2.7. We say a variety X is rationally swept out by va-
rieties in the family S → B if there is a map Z → B such that the
pullback SZ admits a dominant, generically finite rational map to X.

Theorem 2.8. Suppose that a very general complete intersection of
degree (d1, · · · , dc) in P2m−c−k is not rationally swept out by varieties in
the family Y → B with Yb k-dimensional. Then a very general complete
intersection of degree (d1, · · · , dc) in Pm contains no varieties from the
family Y → B.

Proof. Consider the components of the incidence correspondence Γn

defined as

{(p, [X])|p ∈ X ⊂ Pn, p lies on a subvariety swept out by varieties ofY }.
We see that this incidence correspondence will have countably many
irreducible components. We show that Γm will have codimension at
least m+ 1− c− k in the incidence correspondence

Im = {(p, [X])| p ∈ X ⊂ Pm}.
This will suffice to show that the projection map from Γm to the space
PN of all hypersurfaces in Pm is not dominant.

We use the same technique as in the proof of Theorem 2.3. Let
(p,X0) ∈ Γm be a general point of a component of Γm, let (p,X1) ∈
I2m−k−c be very general and let (p,X2) ∈ Γ3m−k−c a pair such that X0

and X1 are m-plane sections of X2 by a parameterized m-plane through
p. Let S ⊂ Im be the closure of the space of pairs (p,X) that are
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parameterized m-plane sections of X2 by a plane through p. Then by
Proposition 2.5 we see that the closure of S ∩Γm ⊂ S is of codimension
at least 2m − c − k − m + 1 = m + 1 − c − k around (p,X0). This
concludes the proof. q.e.d.

This allows us to recover the results of Ein [6].

Corollary 2.9. A very general complete intersection of degree
(d1, · · · , dc) in Pn will contain no varieties that do not admit a reso-
lution with effective canonical bundle if

∑c
i=1 di ≥ 2n− k− c+ 1. If the

inequality is strict, then every subvariety will be general type.

Proof. Note that if a family of varieties sweeps out a Calabi-Yau
complete intersection, then a general element of the family must have
effective canonical bundle. Taking

∑c
i=1 di − 1 = 2n − c − k from the

corollary, we get our result if
∑c

i=1 di ≥ 2n− k − c+ 1.
Using the fact that a family sweeping out a general type complete

intersection must be general type and noting that complete intersections
of degree (d1, · · · , dc) with d =

∑
di in Pd−2 are general type we obtain

the second part of the statement. q.e.d.

Using the following theorem of Voisin [18], we may deduce another
corollary.

Theorem 2.10 (Voisin [18]). Let n and S → B be given, and suppose
the dimension of the fibers of S → B is r. Let b = dimB. Then if

rd ≥ 2n+ b− r and
(⌊r

2

⌋
+ 1
)
d ≥ 2n− 1 + b− r,

the very general degree d hypersurface in Pn is not rationally swept by
varieties in the family S → B.

Observe that the first equality is implied by the second for r > 1.
Using Theorem 2.10 and Theorem 2.8, we obtain the following.

Corollary 2.11. Let n and S → B be given, with r the dimension
of the fibers of S → B, and b = dimB. Then if

rd ≥ 4n− 3r − 2 + b and
(⌊r

2
+ 1
⌋)
d ≥ 4n− 3r − 3 + b,

a very general degree d hypersurface in Pn admits no generically finite
maps from a fiber of S → B.

Proof. We apply Theorem 2.8 and Theorem 2.10. By Theorem 2.10,
a very general point of X ⊂ Pn does not lie on the image of a fiber
of S → B under a generically finite map when rd ≥ 2n + b − r and(⌊

r
2

⌋
+ 1
)
d ≥ 2n − 1 + b − r. Thus, by Theorem 2.8, a general degree

d hypersurface in Pm will not admit any generically finite maps from a
fiber of S → B when 2m−1−r ≤ n for some n satisfying the inequalities
from Theorem 2.10. The result follows. q.e.d.
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