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ISOPARAMETRIC HYPERSURFACES WITH FOUR
PRINCIPAL CURVATURES, IV

Quo-Shin Chi

Abstract

We prove that an isoparametric hypersurface with four princi-
pal curvatures and multiplicity pair (7, 8) is either the one con-
structed by Ozeki and Takeuchi, or one of the two constructed by
Ferus, Karcher, and Münzner. This completes the classification of
isoparametric hypersurfaces in spheres that É. Cartan initiated in
the late 1930s.

1. Introduction

The class of isoparametric hypersurfaces with four principal curva-
tures and multiplicity pair (7, 8) in S31 is the only one that has re-
mained unclassified [1], [3], [5], [14], [25], [26]. The subtlety of a pos-
sible classification suggests itself when one looks into the three existing
examples that are all inhomogeneous, where the octonion algebra is in
full force to interplay with the underlying geometric structure, in con-
trast to the three other anomalous classes of respective multiplicity pairs
(3, 4), (4, 5), and (6, 9), where one category (out of at most two) of each
class is homogeneous that carries more manageable structural data for
the classification [1], [3], [5].

From an algebraic point of view, a classification must begin with clas-
sifying the orthogonal multiplications of type [7, 8, 15], i.e., classifying
those bilinear maps

F : R7 × R8 → R15

satisfying |F (x, y)| = |F (x)||F (y)|, or more conveniently for our setup,
classifying the following quadratic composition formula of type [7, 8, 15]

(x21 + · · ·+ x27)(y
2
1 + · · ·+ y28) = z21 + · · ·+ z215,

where z1, · · · , z15 are bilinear in x1, · · · , x7 and y1, · · · , y8, as can be
seen by a glance at the first two identities in (2.3) below. Indeed, the
composition formula is equivalent to the Hurwitz matrix equations

FaF
tr
b + FbF

tr
a = 2δabI8, 1 ≤ a, b ≤ 7,
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where

Fa :=
(
Aa

√
2Ba

)
for Aa of size 8-by-8 and Ba of sixe 8-by-7. With Fa in place one next
solves the same problem for another set of seven matrices

Ga :=
(
Atra

√
2Ca

)
for some Ca of size 8-by-7. Then Aa, Ba, Ca are candidates to form the
shape operator Sa, in the normal a-direction, of the shape operator of
the focal manifold M+ of the isoparametric hypersurface of the smaller
codimension (= 8) in the sphere S31, given by

S0 =

Id 0 0
0 −Id 0
0 0 0

 , Sa =

 0 Aa Ba
Atra 0 Ca
Btr
a Ctra 0

 , 1 ≤ a ≤ 7.

The possible choices of Aa, Ba, Ca are further restricted because they
must verify that the eigenvalues of Sn are 0 and ±1 in all normal direc-
tions n so that (Sn)3 = Sn. Algebraically, this says

(
7∑

a=0

caSa)
3 = (

7∑
a=0

c2a)(
7∑

a=0

caSa), ∀c0 · · · , c7 ∈ R,

that an isoparametric hypersurface with four principal curvatures and
multiplicity pair (7, 8) enjoys, which simplifies to those equations in (2.3)
below, plus a few more not listed (see [28, II, p. 45]). This accounts
for the possible second fundamental form of the focal manifold and con-
stitutes the first three of the ten defining identities of an isoparametric
hypersurface [28, I, p. 523]. One must then pin down the third fun-
damental form of the focal manifold that is convoluted with the second
fundamental form in the seven remaining identities.

For instance, one can take Ba = Ca = 0 in all Fa and Ga, which
is equivalent to Condition A of Ozeki and Takeuchi [28, I] to the ef-
fect that there is a point p ∈ M+ at which the shape operators in all
normal directions share the same kernel. Then Aa arise from the left
or right multiplication of the octonion algebra. Since the two octonion
multiplications are inequivalent, it results in two distinct second funda-
mental forms and three distinct third fundamental forms that give rise
to the three inhomogeneous examples in the case when the multiplicity
pair is (7, 8). This is the approach taken in [4] to give a different proof
of a result in [13] that states that the existence of a point of Condi-
tion A implies that the isoparametric hypersurface is one of the three
inhomogeneous ones.

In general, however, there is no known classification of the above
quadratic composition formula.

Algebraic geometry comes to the rescue. In this paper, we shall
refer to our fairly detailed survey articles [6], [7] and the references
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therein for all the background material that we employed in [1], [3], [5]
without dwelling much on it, unless necessarily, except to remark that
the unified theme in the classification is the notion of normal varieties
and Serre’s criterion for verifying the normality of a variety, in terms of
a subtle codimension 2 test on the generating functions of the ideal of
the variety. Its technical side we developed in [1], [3], [5] enabled us to
harness the components p0, · · · , pm+ of the second fundamental form of
the focal manifold M+ of the smaller codimension 1+m+ in the sphere,
to gain a good global control over the codimension 2 estimate on the
variety carved out by p0, · · · , pm+ . In fact, an essential step is to study
the singular locus S of the (complex) linear system of cones Cλ

c0p0 + · · ·+ cm+pm+ = 0

as λ := [c0 : · · · : cm+ ] sweeps out CPm+ . The codimension 2 esti-
mate gets sharper when we understand better how p0, · · · , pm+ cut the
singular locus Sλ of the cone Cλ, remarking that S = ∪λSλ.

In [1], [3], [5], we were able to classify all isoparametric hypersurfaces
with four principal curvatures, except for the case when the principal
multiplicity pair is (m+,m−) = (7, 8), essentially by exploring the cut
between p0 = p2 = 0 and Sλ, remarking that, by symmetry, p0 =
0 and p1 = 0 produce the same cut into Sλ. Intersection of more
varieties needs to be considered for a global codimension 2 estimate
in the case when the multiplicity pair is (7, 8), which, however, gets
untamed without an effective cutting strategy.

To overcome this obstacle, we introduce in this paper (see Section 3)
a notion called r-nullity, which generalizes Condition A that is 0-null
of Ozeki and Takeuchi, remarking that Condition A is important in
the classification of the anomalous cases when the multiplicity pair is
(m+,m−) = (3, 4), (4, 5), or (6, 9).

In fact, for Serre’s codimension 2 test it suffices to consider only those
Sλ for which λ = [c0 : · · · : cm+ ] live in the complex hyperquadric

c20 + · · ·+ c2m+
= 0,

so that each λ is a 2-plane spanned by an (oriented) orthonormal pair
(n0, n1) of a normal basis n0, n1, · · · , nm+ with the corresponding com-
ponents p0, p1, · · · , pm+ [5]. Let r be the number

r := m+ − dim(kernel(Sn0) ∩ kernel(Sn1)).

We say a normal basis element nl, l ≥ 2, is r-null if pl is identically zero
when it is restricted to Sλ. We say the normal basis n0, n1, · · · , nm+ is
r-null if nl is r-null for all l ≥ 2.

As we shall see, a normal basis being r-null is the worst case scenario
one can encounter in the codimension 2 estimate, since the intersection
between each pl = 0, l ≥ 2, and Sλ is trivial, and hence contributes
nothing to the codimension 2 estimate.
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At a first glance, this algebro-geometric definition of r-nullity seems
to lack of differential-geometric content. However, we show in Section 3
(see Lemma 3.1) that r-nullity is equivalent to that all the upper left
(m−−r)-by-(m+−r) blocks of Ba and Ca vanish for 1 ≤ a ≤ m+, so that
in particular r-nullity holds if the generic rank of linear combinations
of B1, · · · , Bm+ is r. It is clear now that Condition A is equivalent to
that the normal basis is 0-null.

We may assume the isoparametric hypersurface M with multiplic-
ity pair (m+,m−) = (7, 8) is not the one constructed by Ozeki and
Takeuchi [28, I]. Then we can conclude in Sections 5 and 6 (Lemma 5.3
and Proposition 6.1), after a long technical preparation of placing con-
straints on 1-, 2-, and 3-nullity in Section 4 (with the help of certain
codimension 2 estimates given in Appendix I) that the focal manifold
M+ is generically 4-null when we are away from points of Condition A.
This enables us to prove in Section 6 the following

Reduction Lemma. Let M be an isoparametric hypersurface with
multiplicities (m+,m−) = (7, 8) not constructed by Ozeki and Takeuchi.
Given any point p ∈ M with its unit normal n and any vector v at
p tangent to a curvature surface (which is a sphere) of dimension 7,
there is a 16-dimensional Euclidean space passing through p, n and v
such that it cuts M in a homogeneous isoparametric hypersurface
with multiplicity pair (m+,m−) = (3, 4).

The key ingredient in establishing the reduction lemma is to look back
and forth at the “mirror” points [4] of a point (x, n) on the unit normal
bundle of M+ and M−, where M− is the other focal manifold with larger
codimension 1 +m− in the sphere. Here, by the mirror point (x#, n#)
of (x, n) on the unit normal bundle of M+, and the mirror point (x∗, n∗)
of (x, n) on the unit normal bundle of M−, we mean they are the points

(x#, n#) := (n, x), (x∗, n∗) := ((x+ n)/
√

2, (x− n)/
√

2).

Suffices it to say that the shape operators Sn, Sn# , and Sn∗ are inter-
locked (see (6.1), (6.2), (6.4)), so that generic 4-nullity at both x and
x# enables us to read off many zero blocks of Sn, Sn# , and Sn∗ , which,
when viewed at x∗, fits exactly in the quaternionic framework in [4]. In-
deed, we have (see (6.5), all counterpart quantities at x∗ will be denoted
with an extra superscript *)

A∗α =

(
0 0
0 ·

)
, B∗α =

(
· 0
0 ·

)
, C∗α =

(
· 0
0 ·

)
, 1 ≤ α ≤ 4;

A∗α =

(
0 ·
· ·

)
, B∗α =

(
0 ·
· ·

)
, C∗α =

(
0 ·
· ·

)
, 5 ≤ α ≤ 8,

where the lower right blocks are all of size 4-by-4, from which the above
reduction lemma follows by investigating how the upper left blocks in-
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teract with the remaining blocks through the third fundamental form
of M−.

We are half way home. To determine the remaining blocks of S∗n, it
is more convenient to convert the data to M+, where now (see (7.1))

Aa =

(
za 0
0 wa

)
, Ba =

(
0 0
0 ca

)
, Ca =

(
0 0
0 fa

)
, 1 ≤ a ≤ 3,

Aa =

(
0 βa
γa δa

)
, Ba =

(
0 da
ba ca

)
, Ca =

(
0 ga
ba fa

)
, 4 ≤ a ≤ 7.

An important observation to make is that (
√

2ca, wa), 1 ≤ a ≤ 3, gener-
ate a quadratic composition formula of type [3, 4, 8]. In [8], the moduli
space of orthogonal multiplications of type [3, 4, p], p ≤ 12, is studied;
when it is incorporated with the data conversion between x and x#, we
are finally able to specify decisive characteristics of the ba, ca, fa, da, ga
blocks, to be presented in Section 7. The driving force for all this to
happen is the crucial step that shows the ba matrices, 4 ≤ a ≤ 7, are
generically of rank ≤ 2, so that when we consider the linear combination

b(x) := x1b4 + · · ·+ x4b7

over the polynomial ring R[x1, · · · , x4], it perfectly fits in the Koszul
complex [15, p. 423] to let us arrive at the important conclusion that
all ba, 1 ≤ a ≤ 7, have a common zero column (see Lemma 7.1, Corol-
lary 7.2, and Corollary 7.3). We phrase it in the following context.

Two Universal Properties. If the isoparametric hypersurface with
multiplicity pair (m+,m−) = (7, 8) is not the one constructed by Ozeki
and Takeuchi, then at each point of M+ the intersection of kernels of
shape operators in all normal directions, or equivalently, of kernels of
all Ba, 1 ≤ a ≤ 7, is at least 1-dimensional, and moreover, it is 1-
dimensional at a generic point. Furthermore, the intersection of kernels
of all Btr

a , 1 ≤ a ≤ 7, is generically 2-dimensional. The statement also
holds for Ca, 1 ≤ a ≤ 7.

These two properties, pivotal for the classification in this paper, can
be seen to hold true for the two isoparametric hypersurfaces constructed
by Ferus, Karcher and Münzner through straightforward calculations in
Section 2.2 to be given as motivation for subsequent development.

Without plunging into technical details, we point out that, with the
characteristic features of Aa, Ba, Ca, 1 ≤ a ≤ 7, pinpointed, we shall be
able to demonstrate in Section 7 that we can come up with a Clifford
frame over M− (see (7.20)) in which the second universal property
above plays a vital role. In essence, a Clifford frame [1], [2] gives rise to
an 8-dimensional sphere worth of intrinsic isometries of M− which can
be extended to ambient Spin(9) isometries, and hence the hypersurface
is one of the two constructed by Ferus, Karcher, and Münzner, if it is
not the one constructed by Ozeki and Takeuchi.
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It is noteworthy that in recent years there has been much effort to in-
vestigate isoparametric foliations on Riemannian manifolds other than
the standard spheres, such as exotic spheres [19], [30], compact man-
ifolds of positive scalar curvature [31], complex and quaternionic pro-
jective spaces [10], [11], Damek–Ricci spaces [9], and more generally
singular foliations on Riemannian manifolds [17], [18] (and the refer-
ences therein). Moreover, since isoparametric hypersurfaces form an
ideal testing ground to furnish examples and counterexamples, the Yau
conjecture on the first eigenvalues of minimal submanifolds in spheres
has been mostly established on such hypersurfaces and their focal man-
ifolds [32], [33], metrics of positive constant scalar curvature have been
constructed on products of Riemannian manifolds [20], many more sta-
ble and unstable examples of Lagrangian submanifolds as Gauss images
of such (homogeneous) hypersurfaces in the complex hyperquadrics have
been given [22], [23], and, recently, Hamiltonian non-displaceability of
the Gauss images of isoparametric hypersurfaces has been studied [21].
(The references are by no means exhaustive.) It is hoped that the
completed classification of isoparametric hypersurfaces would spur even
more advances far beyond the standard sphere.

2. The basics

2.1. Second fundamental form of a focal manifold. Let M be an
isoparametric hypersurface with four principal curvatures in the sphere.
Let F be its Cartan–Münzner polynomial of degree g that satisfies [27, I]

(2.1) |∇F |2(x) = g2|x|2g−2, (∆F )(x) = (m− −m+)g2|x|g−2/2,
and let f be the restriction of F to the sphere.

To fix notation, we make the convention that its two focal manifolds
are M+ := f−1(1) and M− := f−1(−1) with respective codimensions

m+ +1 ≤ m−+1 in the ambient sphere S2(m++m−)+1 by changing F to
−F if necessary. The principal curvatures of the shape operator Sn of
M+ (respectively, M−) with respect to any unit normal n are 0, 1 and
−1, whose multiplicities are, respectively, m+,m− and m− (respectively,
m−,m+ and m+).

On the unit normal sphere bundle UN+ of M+, let (x, n0) ∈ UN+ be
points in a small open set; here x ∈M+ and n0 is normal to the tangents
of M+ at x. We define a smooth orthonormal frame na, ep, eα, eµ, where
1 ≤ a, p ≤ m+ and 1 ≤ α, µ ≤ m−, in such a way that na are tangent to
the unit normal sphere at n0, and ep, eα and eµ, respectively, are basis
vectors of the eigenspaces E0, E+ and E− of the shape operator Sn0 .
The symmetric matrices Sa := Sna relative to E+, E− and E0 are

(2.2) S0 =

Id 0 0
0 −Id 0
0 0 0

 , Sa =

 0 Aa Ba
Atra 0 Ca
Btr
a Ctra 0
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for 1 ≤ a ≤ m+, where Aa : E− → E+, Ba : E0 → E+ and Ca : E0 →
E−.

Given the second fundamental form S(X,Y ), the third fundamental
form of M+ is the symmetric tensor

q(X,Y, Z) := (∇⊥XS)(Y,Z)/3,

where ∇⊥ is the normal connection. Write

pa(X,Y ) := 〈S(X,Y ), na〉, qa(X,Y, Z) = 〈q(X,Y, Z), na〉
for 0 ≤ a ≤ m+. The Cartan–Münzner polynomial F is related to pa
and qa by the expansion formula of Ozeki and Takeuchi [28, I, p. 523]

F (tx+ y + w) = t4 + (2|y|2 − 6|w|2)t2 + 8(

m+∑
i=0

piwi)t

+ |y|4 − 6|y|2|w|2 + |w|4 − 2

m+∑
i=0

p2i − 8

m+∑
i=0

qiwi

+ 2

m+∑
i,j=0

〈∇pi,∇pj〉wiwj ,

where w :=
∑m+

i=0wini, y is tangential to M+ at x, pi := pi(y, y) and
qi := qi(y, y, y). Note that our definition of qi differs from that of Ozeki
and Takeuchi by a sign. It follows that the second and third fundamen-
tal forms at a single point of M+ (or M−) determine the isoparametric
family, where the two forms are related by ten rather convoluted equa-
tions of Ozeki and Takeuchi [28, I, p. 530], of which the first three is a
rephrase of the fact that the shape operator Sn in any normal direction
n satisfies (Sn)3 = Sn, which implies the following identities, among
others [28, II, p. 45]:

(2.3a) AiA
tr
j +AjA

tr
i + 2(BiB

tr
j +BjB

tr
i ) = 2δijId;

(2.3b) Atri Aj +Atrj Ai + 2(CiC
tr
j + CjC

tr
i ) = 2δijId;

(2.3c) AiCjB
tr
j +BiC

tr
j A

tr
j +AjCiB

tr
j is skew-symmetric;

(2.3d) CjB
tr
j Ai +Atrj BiC

tr
j + CiB

tr
j Aj is skew-symmetric;

(2.3e) Btr
j AiCj + Ctrj A

tr
j Bi +Btr

j AjCi is skew-symmetric;

(2.3f) Btr
j Bi +Btr

i Bj = Ctrj Ci + Ctri Cj ;

(2.3g)
(AiA

tr
i +BiB

tr
i )Bj +Bj(B

tr
i Bi + Ctri Ci) +BiB

tr
j Bi+

AjA
tr
i Bi +AiA

tr
j Bi +BiC

tr
i Cj +BiC

tr
j Ci = Bj ;

(2.3h) Ctri A
tr
i Bi +Btr

i AiCi = 0.
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Lemma 49 [1, p. 64] ensures that we can assume

(2.4) B1 = C1 =

(
0 0
0 σ

)
,

where σ is a nonsingular diagonal matrix of size r-by-r with r the rank
of B1, and A1 is of the form

(2.5) A1 =

(
I 0
0 ∆

)
,

where ∆ = diag(∆1,∆2,∆3, · · · ) is of size r-by-r, in which ∆1 = 0 and
∆i, i ≥ 2, are nonzero skew-symmetric matrices expressed in the block
form ∆i = diag(Θi,Θi,Θi, · · · ) with Θi a 2-by-2 matrix of the form(

0 fi
−fi 0

)
for some 0 < fi < 1, where the block of σ corresponding to ∆1 = 0 is
I/
√

2.

Definition 2.1. We call a normal basis n0, n1, n2, · · · , nm+ (or sim-
ply the pair (n0, n1)) normalized with spectral data (σ,∆) if S0 and
Sa, 1 ≤ a ≤ m+, are given in (2.2) satisfying (2.4) and (2.5).

Remark 2.1. The geometric meaning of the rank r of B1 is that
m+ − r is the dimension of the intersection of the kernels of the two
shape operators S0 and S1.

Corollary 2.1. Let (m+,m−) = (7, 8). Let an integer 0 ≤ r ≤ 7 be
the rank of B1 of size 8-by-7, which is normalized as in (2.4).

(1): Assume r > 0. The first 8−r rows of Ba and Ca are zero for at
most one index a between 2 and 7 when r = 2, and at most three
indexes a when r = 4. No other r are possible.

(2): Assume r = 0. Away from points of Condition A on M+, if B2

(vs. C2) is of rank 2, then no index a between 3 and 7 can make
the first six rows of Ba (vs. Ca) zero. Moreover, if B2 (vs. C2) is
of rank 4, then at most two indexes a between 3 and 7 can make
the first four rows of Ba (vs. Ca) zero.

Proof. To prove the first statement, let A1 and B1 = C1 be normal-
ized. Assume without loss of generality that the first 8 − r rows of Ba
and Ca are zero. Write

(2.6) Aa =

(
αa βa
γa δa

)
, Ba =

(
0 0
ba ca

)
, Ca =

(
0 0
ea fa

)
for 2 ≤ a ≤ 7, where δa, ca, fa are of size r-by-r.

(2.3a) applied to Ai and j = 1 gives

αi = −αtri , γtri = βi∆,
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while (2.3c) gives

βiσ
2 = 0,

so that βi = γi = 0.
Suppose there are k indexes i1, · · · , ik between 2 and 7 satisfying (2.6).

Then it follows from (2.3a) applied to Ai, Aj , 2 ≤ i, j, that

(2.7) αisαit + αitαis = −2δstI.

Meanwhile, αi1 , · · · , αik are linearly independent; or else a suitable lin-
ear combination of them will make, say, αi1 = 0 after a basis change,
which contradicts (2.7). Therefore, the k (8 − r)-by-(8 − r) matrices
αi1 , · · · , αik make R8−r into a Clifford Ck-module, so that dim(Ck) di-
vides 8 − r. We conclude by the classification table of Ck that k = 1,
i.e., there is only one index a between 2 and 7 when r = 2 because
only dim(C1) = 2 divides 6 = 8 − r. Likewise, k ≤ 3 when r = 4, i.e.,
there are at most three indexes a between 2 and 7 when r = 4 because
dim(C3) = 4 divides 4 = 8− r while dim(C4) = 8. This proves item (1).

When r = 0, one of the pairs (B2, C2), · · · , (B7, C7) is nonzero, say
(B2, C2) 6= 0, for lack of Condition A. We may swap n1 and n2 so that

the old n2 is now the new n
′
1 with the new r′ 6= 0, while the old n1 is

now the new n
′
2 with the new B2′ = C2′ = 0. We apply item (1) to this

new indexing to conclude that there is at most one index a′ between 2′

and 7′ for which the first six rows of Ba′ and Ca′ are zero when r′ = 2,
namely, a′ = 2 itself. That is, in terms of the old indexing, no a between
3 and 7 can make the first 6 rows of Ba and Ca zero when the old B2 is
of rank 2.

Meanwhile, the same argument applies to the new indexing to give
at most three indexes a′ ≥ 2 to make the first four rows of Ba′ and Ca′
zero when r′ = 4, namely, a′ = 2 and two other indexes. That is, in
terms of the old indexing, at most two indexes a between 3 and 7 can
make the first four rows of Ba and Ca zero when the old B2 is of rank
4. This proves the second statement. q.e.d.

2.2. A motivational calculation. Let ρ1, · · · , ρ7 be a representation
of the (anti-symmetric) Clifford algebra C7 on R16. Set

P0 : (c, d) 7→ (c,−d),

P1 : (c, d) 7→ (d, c),

P1+i : (c, d) 7→ (ρi(d),−ρi(c)), 1 ≤ i ≤ 7,

over R32 = R16⊕R16. P0, P1, · · · , P8 form a representation of the (sym-
metric) Clifford algebra C ′9 on R32.

Following our convention, we denote by M− the focal manifold in
each of the two examples constructed by Ferus, Karcher, and Mn̈zner
on which the Clifford action acts. It is well known [16] that M− can be
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realized as the Clifford–Stiefel manifold. Namely,

M− = {(ζ, η) ∈ S31 ⊂ R16 × R16 :

|ζ| = |η| = 1/
√

2, ζ ⊥ η, ρi(ζ) ⊥ η, i = 1, · · · , 7}.

At (ζ, η) ∈M−, the normal space is

N∗ = span(ε0 := P0((ζ, η)), · · · , ε8 := P8((ζ, η))).

E∗0 , the 0-eigenspace of the shape operator S∗0 := S∗ε0 , is

E∗0 = span(ε9 := P1P0((ζ, η)), · · · , ε16 := P8P0((ζ, η))).

E∗±, the ±1-eigenspaces of S∗0 , are

E∗± := {X : P0(X) = ∓X,X ⊥ N∗}.

Since E∗+ (respectively, E∗−) consists of vectors of the form (0, d) ∈ R32

(respectively, (f, 0) ∈ R32), we obtain

E∗+ = {(0, d) : d ⊥ ζ, d ⊥ η, d ⊥ ρi(ζ),∀i},
E∗− = {(f, 0) : f ⊥ ζ, f ⊥ η, f ⊥ ρi(η),∀i}.

The shape operator S∗α at (ζ, η) ∈M− in the normal direction εa ∈ N∗
is

S∗α(X,Y ) = −〈Pα(X), Y 〉, 0 ≤ α ≤ 8.

For illustrating purpose, let us look at the representation

ρi : O⊕O→ O⊕O, ρi : (x, y) 7→ (xei, yei), 1 ≤ i ≤ 7,

where

(e0, e1, · · · , e7) := (1, i, j, k, ε, εi, εj, εk)

are the standard basis elements of the octonion algebra O.
Let us choose

ζ = (e0, e1)/2, η = (e3, e4)/2.

We calculate to see

E∗+ = {((0, 0), (u, v)) : u = e1v, v ⊥ e2},
E∗− = {((x, y), (0, 0)) : x = e3(e2y), y ⊥ e1}.

Therefore, the 7-by-7 A∗α-block of S∗α reads

A∗α =
(
S∗α(Xa, Yp)

)
=
(
−〈Pα(Xa), Yp〉

)
, 0 ≤ α ≤ 8,

whereXa, Yp are orthonormal basis elements in E∗+ and E∗−, respectively,
which can be chosen to be, respectively,

((0, 0), (e1eb, eb))/
√

2, b 6= 2, ((e3(e2eq), eq), (0, 0))/
√

2, q 6= 1,

arranged, in order, to be Xa, 1 ≤ a ≤ 7, and Yp, 1 ≤ p ≤ 7.
As said in the introduction, this calculation is conducted at (x∗, n∗0) :=

((ζ, η), ε0) on the unit normal bundle of M−, and we can convert it to
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its mirror point (x, n0) on the unit normal bundle of M+, so that in fact
the data A∗α are converted to the seven 8-by-7 matrices

Ba :=
(
S∗α(Xa, Yp)

)
, 1 ≤ a ≤ 7,

where Ba is the B-block of the shape operator Sa, given in (2.2), at
x ∈ M+ in the normal direction na := Xa, 1 ≤ a ≤ 7. (See (6.1), (6.4)
for the conversion formulae.) The upshot is the following:

B1 =


0 0 0 0
0 0 0 0
0 0 I 0
0 0 0 I

 , B2 =


0 0 0 0
0 0 0 0
0 0 J 0
0 0 0 −J

 , B3 = 0,

B4 =


0 0 L 0
0 0 0 0
0 0 0 0
0 I 0 0

 , B5 =


0 0 K 0
0 0 0 0
0 0 0 0
0 −J 0 0

 ,

B6 =


0 0 0 I
0 0 0 0
0 −L 0 0
0 0 0 0

 , B7 =


0 0 0 J
0 0 0 0
0 −K 0 0
0 0 0 0

 ,

where

I :=

(
1 0
0 1

)
, J :=

(
0 1
−1 0

)
, K =

(
0 1
1 0

)
, L :=

(
1 0
0 −1

)
.

Here, each row is of size 2, and the first column is of size 1 and the
remaining columns are of size 2.

Note that x is not of Condition A, and all Ba have a common zero
column and all Btr

a have two common zero columns. This is the content
mentioned in the two universal properties in the introduction. We shall
see in the next section that the basis associated with B1, · · · , B7 is 4-
null, a notion briefly introduced in the introduction. This example shall
be our prototype to keep in mind.

3. r-nullity

3.1. The layout. To fix notation and for the reader’s convenience, let
us first summarize the layout in [3], [5] of the crucial codimension 2
estimate in the case when the principal multiplicity pair of the isopara-
metric hypersurface is not (7, 8). We then point out the insufficiency of
this approach and the need for a notion more general than Condition
A of Ozeki and Takeuchi, when the principal multiplicity pair of the
isoparametric hypersurface is (m+,m−) = (7, 8).

Recall that on M+ we denote by S0, · · · , Sm+ the shape operators in
the normal directions n0, · · · , nm+ , and by p0, · · · , pm+ the correspond-
ing components of the second fundamental form.
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We agree that C2m−+m+ consists of points (u, v, w) with coordinates
uα, vµ and wp, where 1 ≤ α, µ ≤ m− and 1 ≤ p ≤ m+. For 0 ≤ k ≤ m+,
let

Vk := {(u, v, w) ∈ C2m−+m+ : p0(u, v, w) = · · · = pk(u, v, w) = 0}
be the variety carved out by p0, · · · , pk. We want to estimate the di-
mension of the subvariety Jk of C2m−+m+ , where

Jk := {(u, v, w) ∈ C2m−+m+ : rank of Jacobian of p0, · · · , pk < k + 1}.
p0, · · · , pk give rise to a linear system of cones Cλ in C2m−+m+ defined

by

c0p0 + · · ·+ ckpk = 0

with

λ := [c0 : · · · : ck] ∈ CP k.
The singular subvariety of Cλ is

(3.1) Sλ := {(u, v, w) ∈ C2m−+m+ : (c0S0+· · ·+ckSk)·(u, v, w)tr = 0}.
We have

Jk =
⋃

λ∈CPk
Sλ.

Set

Jk := Vk ∩Jk =
⋃

λ∈CPk
(Vk ∩Sλ).

Jk is where the Jacobian of p0, · · · , pk fails to be of rank k + 1 on the
variety Vk.

We wish to establish the codimension 2 estimate

(3.2) dim(Jk) ≤ dim(Vk)− 2,

for all k ≤ m+−1, to verify that p0, p1, · · · , pm+ form a regular sequence.
We first estimate the dimension of Sλ. We established in [5] that it

suffices to consider those λ sitting in the hyperquadric

(3.3) Qk−1 := {[c0 : · · · : ck] ∈ CP k : c20 + · · ·+ c2k = 0}.
Recall the following [5, Remark 2, p. 484].

Convention 3.1. For each λ = [c0 : · · · : ck] ∈ Qk−1, we choose ñ0
and ñ1 as follows. Decompose n := c0n0 + · · · + cknk into its real and
imaginary parts n = α +

√
−1β. Define ñ0 and ñ1 by performing the

Gram–Schmidt process on α and β. Then normalize the shape operators
Sñ0 , Sñ1 as in (2.4) and (2.5), which results in a 2-frame (ñ0, ñ1) that
varies smoothly with λ. Note that λ can be interpreted as the oriented
real 2-plane spanned by n0̃ and n1̃.

We denote the rank of the matrixB1̃ associated with Sñ1 by rλ. Recall
from Remark 2.1 that m+ − rλ is the dimension of the intersection of
the kernel spaces of Sñ0 and Sñ1 .
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When it is necessary, we will extend ñ0 and ñ1 to an orthonormal
basis ñ0, ñ1, · · · , ñm+ with the corresponding shape operators S0̃ :=
Sñ0 , S1̃ := Sñ1 , · · · , Sm̃+ := Sñm+

and components p0̃, p1̃, · · · , pm̃+ of

the second fundamental form.

The convention facilitates the dimension estimate for Sλ. Indeed,
the defining equation of Sλ can now be written as

(3.4) (S1̃ − ιλS0̃) · (x, y, z)
tr = 0

after a basis change for some complex number ιλ. We decompose x, y, z
into x = (x1, x2), y = (y1, y2), z = (z1, z2) with x2, y2, z2 ∈ Crλ . We
have

x1 = −ιλy1, y1 = ιλx1,

−∆x2 + σz2 = −ιλy2, ∆y2 + σz2 = ιλx2,

∆(x2 + y2) = 0.

(3.5)

It follows from the first pair of equations in (3.5) that either x1 = y1 = 0,
or both are nonzero with ιλ = ±

√
−1. In both cases, by the second pair

of equations in (3.5), we have

(3.6) (∆2− ι2λI)x2 = (∆− ιλI)σz2, (∆2− ι2λI)y2 = −(∆− ιλI)σz2,

which together with the third equation in (3.5) imply that x2 = −y2,
and so z2 can be solved in terms of x2 by the second pair of equations
in (3.5). (Note that conversely x2 = −y2 can be solved in terms of z2
when ιλ 6= ±fi

√
−1 for all i and any real 0 < fi < 1, so that z can be

chosen to be a free variable.) Thus either x1 = y1 = 0, in which case

dim(Sλ) = m+,

or both x1 and y1 are nonzero, in which case y1 = ±
√
−1x1, where x1 is

a free variable, x2 and y2 depend linearly on z2 and z is a free variable.
Hence,

(3.7) dim(Sλ) = m+ +m− − rλ.

Since eventually we must estimate the dimension of⋃
λ∈Qk−1

(Vk ∩Sλ),

the essential part of Jk for the codimension 2 test, we introduced the
first cut of Vk into Sλ by

(3.8) 0 = p0̃ =
∑
α

(xα)2 −
∑
µ

(yµ)2.

We substitute y1 = ±
√
−1x1 and x2 and y2 in terms of z2 into p0̃ = 0

to deduce

0 = (x1)
2 + · · ·+ (xm−−rλ)2;
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hence p0̃ = 0 cuts Sλ to reduce the dimension by 1, i.e., by (3.7),

(3.9) dim(Vk ∩Sλ) ≤ m+ +m− − rλ − 1.

Consider the incidence space

(3.10) Ik := {(x, λ) ∈ C2m−+m+ ×Qk−1 : x ∈ Sλ ∩ Vk}.
Let π1 and π2 be the restriction to Ik of the standard projections from
C2m−+m+ ×Qk−1 onto the first and second factors. We see

π1(Ik) =
⋃

λ∈Qk−1

(Vk ∩Sλ).

Moreover, if we stratify Qk−1 into locally closed sets (i.e., Zariski open
sets in their respective closures)

(3.11) Lj := {λ ∈ Qk−1 : rλ = j},
then

Wj := π1π
−1
2 (Lj)

stratify ⋃
λ∈Qk−1

(Vk ∩Sλ).

We thus obtain, by (3.9),

(3.12)
dim(Wj) ≤ dim(π−12 (Lj)) ≤ max

λ∈Lj
(dim(Vk ∩Sλ)) + dim(Lj)

≤ (m+ +m− − 1− j) + dim(Lj).
On the other hand, since Vk is cut out by k + 1 equations, we have

(3.13) dim(Vk) ≥ m+ + 2m− − k − 1.

Therefore, the a priori codimension 2 estimate holds true over Lj when

(3.14) m− ≥ 2k + 1− j − cj ,
where

(3.15) cj := the codimension of Lj in Qk−1.

3.2. r-nullity. Note that we only utilized cutting Sλ by p0̃ = 0 to
derive the coarse upper bound in (3.9) and lower bound in (3.14). The
lower bound is too rough to be effective when the multiplicity pair is
(7, 8). A better upper or lower bound will be achieved if we can obtain
further nontrivial cuts into Sλ by other pã = 0, a ≥ 1.

As a matter of fact, p1̃ = 0 results in the same cut on Sλ as p0̃ = 0.
This follows by the symmetry of (3.4) so that we can switch the roles
of S0̃ and S1̃. Therefore, nontrivial new cuts can only be obtained by
pã = 0 for a ≥ 2.

On the other hand, the worst case scenario is that pã annihilate Sλ for
all a ≥ 2, in which case no more cuts other than p0̃ = 0 can be introduced
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and (3.14) is the best possible lower bound. We categorize this worst
case in the following definition in the language of (3.5) and (3.6).

Definition 3.1. Given a normal basis n0, · · · , nm+ at a point of
M+ with the usual Ai, Bi, Ci, 1 ≤ i ≤ m+, and the normalization
as in (2.2), (2.4) and (2.5) with r the rank of both B1 and C1, let
p0, · · · , pm+ be the associated components of the second fundamental
form.

Let Cm− ' CE+, Cm− ' CE− and Cm+ ' CE0 be parametrized by
x, y and z respectively, where E+, E− and E0 are the eigenspaces of S0
with eigenvalues 1,−1 and 0, respectively. Let x := (x1, x2), y := (y1, y2)
and z := (z1, z2) with x2, y2, z2 ∈ Cr.

We say a normal basis element nl, l ≥ 2, is r-null if pl is identically
zero when we restrict it to the linear constraints

(3.16) y1 = ιx1, y2 = −x2, z2 = σ−1(∆ + ιI)x2, ι = ±
√
−1.

We say the normal basis, always understood to be with the normal-
ization (2.2), (2.4) and (2.5), is r-null if all its basis elements nl, l ≥ 2,
are r-null.

Lemma 3.1. Conditions as given in the above definition, a normal
basis element nl is r-null if and only if the upper left (m−−r)-by-(m+−r)
block of Bl and Cl of Sl are zero.

Proof. Suppose nl is r-null. Then pl restricted to the linear constraint
in the definition is

(3.17) pl =

m−−r,m+−r∑
α=1,p=1

(Slαp + ιT lαp)xαzp + other terms,

where
Slαp := 〈S(Xα, Zp), nl〉, T lαp := 〈S(Yα, Zp), nl〉

for some orthonormal basis Xα, Yα, Zp of E+, E−, E0, respectively.
Therefore,

(3.18) Slαp = T lαp = 0

for 1 ≤ α ≤ m− − r and 1 ≤ p ≤ m+ − r.
Conversely, suppose (3.18) is true, from which we first derive some

identities. Let A1, B1, C1 be normalized as in (2.4) and (2.5). Write

Al :=

(
α β
γ δ

)
, Bl :=

(
0 d
b c

)
, Cl :=

(
0 g
e f

)
,

where δ, c, f are of size r-by-r. (2.3c) applied to i = l and j = 1, with
the property

σ∆ = ∆σ,

gives

(3.19a) β − dσ−1∆ + gσ−1 = 0,



240 Q.-S. CHI

while (2.3d) gives

(3.19b) dσ−1 + γtr + gσ−1∆ = 0.

Meanwhile, (2.3f) arrives at

(3.19c) b = e, ctrσ + σc = f trσ + σf.

In particular, writing
h := c− f,

we obtain

(3.19d) σh+ htrσ = 0.

Now, we can rewrite (3.19d) as

σ(hσ−1 + σ−1htr)σ = 0,

from which we see

(3.19e) hσ−1 + σ−1htr = 0.

Next, (2.3e) asserts

(3.19f) σ(δ + δtr)σ − σ∆h+ htrσ∆ = 0,

or equivalently,

δ + δtr −∆hσ−1 + σ−1htr∆ = 0,

or if we employ (3.19e), which is hσ−1 = −σ−1htr, we can rewrite it as

(3.19g) δ + δtr − hσ−1∆ + σ−1∆htr = 0.

In general,
pl/2 = xtrAly + xtrBlz + ytrClz;

setting x = x1 + x2, y = y1 + y2, z = z1 + z2, and employing (3.16), we
can rewrite it in terms of the independent variables x1, x2 and z1 as

(3.20)

pl/2

= xtr1 (−β + τγtr + dσ−1(∆ + τI) + τgσ−1(∆ + τI))x2

+ xtr2 (b− e)z1 + xtr2 (−δ − δtr + (c− f)σ−1(∆ + τI)

+ ((c− f)σ−1(∆ + τI))tr)x2/2

= xtr1 ((−β + dσ−1∆− gσ−1) + τ(dσ−1 + γtr + gσ−1∆))x2

+ xtr2 (b− e)z1 + xtr2 ((−(δ + δtr) + hσ−1∆− σ−1∆htr)
+ τ(hσ−1 + σ−1htr))x2/2

= 0

by (3.19a), (3.19b), (3.19c), (3.19e), (3.19g). q.e.d.

Corollary 3.1. Condition A of Ozeki and Takeuchi is equivalent to
that all normal bases are 0-null at a point of Condition A.

Proof. The statement follows immediately from Lemma 3.1. q.e.d.
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Remark 3.1. The calculation in Section 2.2 shows that there the
normal basis associated with the displayed B1, · · · , B7 is 4-null.

Corollary 3.2. Let (m+,m−) = (7, 8). Let λ ∈ Q6 be given in (3.3)
with S0̃ and S1̃ normalized as in Convention 3.1 and (2.4) and (2.5).
Suppose

r := sup
λ∈Q6

rλ.

Then the upper left (m−− r)-by-(m+− r) corner of Bl̃ and Cl̃ of Sl̃ are
zero, 2 ≤ l ≤ 7, for all λ ∈ Q6. That is, the basis elements ñl, l ≥ 2,
are r-null.

Proof. Pick a generic λ0 ∈ Q6 at which rλ0 = r. Without loss of gen-
erality, at λ0, the 2-plane spanned by the frame (ñ0, ñ1), let us consider
ñ2 with S0̃ and S1̃ normalized as usual by (2.4) and (2.5). Set

B2̃ =

(
a d
b c

)
, C2̃ =

(
h g
e f

)
,

where c and f are of size r-by-r. We show a = h = 0.
Let e1, · · · , e8 be the standard (column) basis vectors of R8. Consider

the 8-by-7 B(θ) := cos(θ)B1̃ + sin(θ)B2̃. We have

B(θ) =

(
sin(θ)a sin(θ)d
sin(θ)b cos(θ)σ + sin(θ)c

)
.

For a generic choice of θ, the last r columns of B(θ) are linearly inde-
pendent, as is so for those of σ at θ = 0, which span the column space
V θ of B(θ) of dimension r. Note that, dividing out by sin(θ), each of
the first 7− r column vectors of B2̃ belongs to V θ. Letting θ approach
zero, we see these 7− r vectors also belong to V 0, which is spanned by
e9−r, · · · , e8. It follows that a = 0. Likewise, h = 0. This shows that
the statement is true for all generic λ ∈ Q6. Hence, it is true for all
λ ∈ Q6 by passing to the limit. q.e.d.

Remark 3.2. The arguments in Corollary 3.2 can be strengthened
as follows. Notation as in Corollary 3.2, suppose λ(θ), 0 ≤ θ ≤ 1, is an
analytic curve in Q6 with λ spanned by an oriented frame (ñ0, ñ(θ)),
where ñ(θ) ⊥ ñ0 with ñ(0) = ñ1. Denote by B(θ) the B-block of the
shape operator Sñ(θ) and suppose B(0) is normalized as in (2.4) with
rank r.

Assume the rank of B(θ) = r for generic θ. Then generic B(θ) has
the property that the last r columns are independent as is the case for
B(0). Let us denote the matrix of the first 7− r columns of B(θ) by(

a(θ)
b(θ)

)
,

where a(θ) is of size (8− r)-by-(7− r).
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Suppose a(θ) 6= 0. It is well-known in analytic curve theory that we
can choose the Frenet frame ñ2, · · · , ñ7 such that

(3.21) ñ(θ) = c1(θ)ñ1 + · · ·+ c7(θ)ñ7

for some analytic functions c1, · · · , c7, where

c1(0) = 1, cl(θ) = θkldl(θ), dl(0) 6= 0, k2 < · · · < k7, l ≥ 2,

where ñ2 is tangent to ñ(θ) with contact order k2 at θ = 0.
Dividing through by θk2 , it follows that each column of(

a(θ)
b(θ)

)
/θk2

lives in the vector space V θ that converges to V 0 spanned by e9−r, · · · ,
e8, as θ approaches zero. This implies that ñ2 is r-null as in the preced-
ing corollary. Note that the rank of the matrix

(3.22) B(θ) := c1(θ)Bñ1 + c2(θ)Bñ2

is = r generically.
For simplicity of exposition, we assume r = 2 now, though it is true

for any r. Dividing through by c1(θ), we may assume c1(θ) = 1 in (3.22),
as far as the rank of B(θ) is concerned. Then the matrix B(θ), of rank
2, takes the form

B(θ) =


0 0 0 0 0 a1 b1
· · · · · · ·
0 0 0 0 0 a6 b6
c1 c2 c3 c4 c5 1 + α β
d1 d2 d3 d4 d5 γ 1 + δ

 ,

where all the variables a, b, c, d, α, β, γ, δ are Taylor series with initial
terms of the form θk2 about θ = 0. We leave it as a simple observation
to see that if either the lower left or the upper right block of the matrix
is of rank 2, then the other is zero; thus Bñ2 , being B(θ) with the two
diagonal 1s removed, is of rank ≤ 2. Otherwise, the upper and lower
blocks are both of rank ≤ 1, in which case we may assume ai = bi = cj =
dj = 0 for 1 ≤ i ≤ 5, 1 ≤ j ≤ 4, via row and column reductions. Then

with c5, d5, a6, b6, α and β all essentially being constant multiples of θk2 ,
it is readily seen that the 3-by-3 lower right diagonal determinant being
zero (because B(θ) is of rank 2) implies that the 3-by-3 determinant
without the two diagonal 1s vanishes as well, i.e., that Bñ2 is again of
rank ≤ 2. (For instance, we may divide by θk2 and let θ go to infinity.)
Consequently, the analytic

(3.23) cos(θ)Bñ1 + sin(θ)Bñ2

is of rank 2 for generic θ.
As an application, let C be an irreducible component of L2 (see (3.11)

for definition) containing a point λ spanned by ñ0 and ñ1, for which
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rλ = 2. Let S6 be the standard unit sphere in ñ⊥0 , the Euclidean space
spanned by ñ1, · · · , ñ7, and let C0 be the connected component of the
(real) variety

C0 := {ñ ∈ S6 ⊂ ñ⊥0 : oriented 2-plane spanned by (ñ0, ñ) ∈ C}
containing ñ1. The circle

γ(θ) := cos(θ)ñ1 + sin(θ)ñ2

spans the so-called tangent cone T of C0 at ñ1 in S6, as ñ2 by our
construction above are tangents to all possible analytic curves through
ñ1 in C0. By (3.23), for a generic ñ on T , the 2-plane spanned by (ñ0, ñ)
belongs to L2.

Note, in particular, that when ñ1 is a generic smooth point on C0,
the tangent cone T ⊂ L2 is just the standard unit sphere in the linear
space spanned by ñ1 and the tangent space of C0 at ñ1.

r-nullity turns out to be crucial for understanding the structure of
an isoparametric hypersurface when its multiplicity pair is (7, 8). As an
immediate application, let us sharpen the lower bound in (3.14).

Lemma 3.2. Let (m+,m−) = (7, 8). Fix λ0 in an irreducible com-
ponent C of Lj. Let λ0 be spanned by the frame (ñ0, ñ1) and extend
it to the normal basis ñ0, ñ1, ñ2, · · · , ñ7, with S0̃ and S1̃ normalized as
in Convention 3.1, (2.4), and (2.5). Suppose no normal basis elements
ñ2, · · · , ñ7 are j-null. Then over C we have

(3.24) m− ≥ 2k − j − cj ,
where cj is the codimension of C in Qk−1 (see (3.15)).

Proof. rλ = j for each λ ∈ Lj by definition. By (3.8) and (3.16),
p0̃ = 0 cuts Sλ0 in the variety

{(X1, X2, Y1, Y2, Z1, Z2)},
where

X1 = (x1, · · · , x8−j), X2 = (x9−j , · · · , x8),
Z1 = (z1, · · · , z7−j), Z2 = (z8−j , · · · , z7),

satisfy (j is r in (3.16))

(3.25)

8−j∑
α=1

x2α = 0,

X1 = ±
√
−1Y1, X2 = −Y2, and Z2 depends linearly on X2 (and vice

versa). Since no bases are j-null, we may assume some pl̃, l ≥ 2, does
not annihilate Sλ0 , so that Lemma 3.1 implies that in the expression
(see (3.17))

(3.26) pl =

8−j,7−j∑
α=1,p=1

(Slαp +±
√
−1T lαp)xαzp + other terms,
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the displayed sum is nontrivial. (3.25) and (3.26) imply that p0̃ = pl̃ = 0
cuts down one more dimension in Sλ0 , which remains true for a generic
λ ∈ C, so that the lower bound in (3.14) is reduced further by 1 to
yield (3.24) for a generic λ.

On the other hand, since those nongeneric λ ∈ C constitute a subva-
riety of codimension at least 1, the lower bound in (3.24) still holds true
over this subvariety. q.e.d.

4. Constraints on 1, 2, 3-nullity

Lemma 4.1. Let (m+,m−) = (7, 8). Away from points of Condition
A on M+, no element of a normal basis can be 1-null.

Proof. Suppose nj is 1-null for some j ≥ 2. Set (Bj , Cj) to be of the
form

(4.1) Bj =

(
0 dj
bj cj

)
, Cj =

(
0 gj
ej fj

)
,

for some real numbers cj and fj . We show dj = gj = cj = fj = 0.
Indeed, with

(4.2) Aj =

(
αj βj
γj δj

)
, A1 =

(
I 0
0 0

)
, B1 = C1 =

(
0 0

0 1/
√

2

)
,

one derives (we suppress the index for notational ease) that c = f =
δ = 0, and

β = −
√

2g, γ = −
√

2dtr, αγtr = αβ = 0, |d| = |g|,
ααtr + ββtr + 2ddtr = I, b = e, |γ|2 + 2|b|2 = 1.

(4.3)

Indeed, (3.19a) through (3.19f) let us obtain the first, second, and sixth
of the equations, together with c = f and δ = 0, while from (3.19e)
there follows c = f = 0. On the other hand, (2.3a) results in αγtr = 0,
the fifth, and the seventh of the equations. A symmetric argument
invoking (2.3b) replaces γtr, d, b by β, g, e, respectively. Lastly, (2.3f)
implies the fourth equation.

Suppose d 6= 0. By a basis change we may assume

d = (t, 0, 0, · · · , 0)tr

for some positive number t. The skew-symmetry of α and the second
and third identities of (4.3) ensure that the first row and column of α
are zero.

If the first entry of g is zero, by a basis change we may assume

g = (0, s, 0, 0, · · · , 0)

for some positive s, so that the third identity implies that the first
two rows and columns of α are zero. Ignoring these trivial rows and
columns of α, we see that the remainder of it, denoted α̃ of size 5 by 5,
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is skew-symmetric, orthogonal and satisfies

α̃2 = −Id.
That is, R5 is acted on by α̃ as a Clifford C1-module, so that 5 is
divisible by 2, a contradiction. Therefore, the first entry of g is not
zero. In particular, the fifth identity implies that all the other entries
of g are zero. Meanwhile, the first, fourth and fifth identities derive
|d| = 1/2 = t, so that

γ = (−
√

2/2, 0, 0, · · · , 0), β = ±γ, d = ±g, |b| = 1/2.

But now (2.3h) for i = j gives

(4.4) btr(dtrg + gtrd) = 0.

Consequently, we obtain d = g = 0, which is contradictory.
With d = g = c = f = 0, Bj is of rank r = 1 in the form as in (2.6),

which is impossible by item (1) of Corollary 2.1 since r = 1. q.e.d.

Lemma 4.2. Let (m+,m−) = (7, 8). Away from points of Condition
A on M+, notation is as in (4.1) and (4.2) with the spectral data change
that now

A1 =

(
I 0
0 ∆

)
, B1 = C1 =

(
0 0
0 σ

)
, σ = sId, ∆ =

(
0 t
−t 0

)
with t =

√
1− 2s2.

(1): If a normalized basis n0, n1, · · · , n7 is such that the generic rank
of the linear combinations of B2, · · · , B7 ≥ 5, then it cannot be 2-
null.

(2): If the basis elements n2, n3, n4 are 2-null, and generic linear
combinations of B1, B2, B3, B4 are of rank ≤ 2, then rλ ≤ 2 for
any λ in the 3-quadric of oriented 2-planes of R5 linearly spanned
by n0, · · · , n4.

Proof. To prove item(1), let n0, n1, · · · , n7 be a 2-null basis. Let
n = a2n2 + · · ·+ a7n7 be a unit normal vector. Then

Bn :=
7∑
j=2

ajBj =

(
0

∑7
j=2 ajdj∑7

j=2 ajbj
∑7

j=2 ajcj

)
:=

(
0 dn
bn cn

)
.

It follows that the rank of Bn is ≤ 4 by a dimension count, a contradic-
tion.

To prove item (2), supposing first that

(I) all b1, · · · , b4 are zero.

We employ Remark 2.1 to calculate rλ.
Since B1, · · · , B4 and C1, · · · , C4 are of the form

Bi :=

(
0 di
0 ci

)
, Ci =

(
0 gi
0 fi

)
,
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where ci, fi are of size r-by-r (r = 2; we are doing a general argument),
a linear combination of Sc := c0S0 + · · ·+ c4S4 assumes the form

(4.5) Sc :=

c0I Ac Bc
Atrc −c0I Cc
Btr
c Ctrc 0

 ,

where Ac, Bc, Cc are the linear combinations of Ai, Bi, Ci with coeffi-
cients ci, 1 ≤ i ≤ 4. It follows that the vector

R8 ⊕ R8 ⊕ R7 3

0
0
z

 , z =

(
u
0

)
,

where u is of size (m+ − r)-by-1, belongs to the kernel of Sc for all
c. Therefore, the kernels of any two Sc and Sc′ intersect in a space of
dimension at least m+ − r, so that by Remark 2.1

rλ ≤ m+ − (m+ − r) = r,

where λ is the 2-plane spanned by the two vectors

c0n0 + · · ·+ c4n4, c′0n0 + · · ·+ c′4n4.

Consequently, generic rλ for λ ∈ Q3 is r, where Q3 is the set of oriented
2-planes in the Euclidean space spanned by n0, · · · , n4.

Otherwise, we may assume

(II) b2 is nonzero.

(2.3f) for i = 1, j ≥ 2 gives

bj = ej , cj − fj = −(cj − fj)tr.

Meanwhile, the same identity for i = j ≥ 2 derives

(4.6) btrj (cj − fj) = 0, dtrj dj + ctrj cj = gtrj gj + f trj fj .

Since c2 − f2 is 2-by-2 and skew-symmetric, it follows by (4.6) that
c2 = f2. Since a generic linear combination of b2, b3, b4 can be renamed
to be b2, it furthermore follows that

cj = fj , 2 ≤ j ≤ 4,

and so by the second identity of (4.6), we obtain

(4.7) dtrj dj = gtrj gj , 2 ≤ j ≤ 4.

Now, (2.3e) for i ≥ 2, j = 1 asserts

σδiσ − σ∆(ci − fi) is skew-symmetric,

so that σδiσ is skew-symmetric as ci = fi. Thus we deduce

δi =

(
0 ai
−ai 0

)
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for some number ai. This imposes one linear constraint. Hence we may
assume δ2 = 0 in the linear span of B2, B3, B4. (Note that with this
frame change b2 need not be nonzero anymore.)

Next, (2.3a) and (2.3b) for i ≥ 2, j = 1 result in

(4.8) δtri ∆−∆δi = −2s(fi + f tri ) = −2s(ci + ctri ) = −δi∆ + ∆δtri .

It follows that

(4.9) ci = fi =

(
0 pi
−pi 0

)
, 2 ≤ i ≤ 3,

for some numbers pi, which imposes another linear constraint. We may
therefore assume

(4.10) c2 = f2 = δ2 = 0

in the span of B2, B3, B4. With (4.10), (2.3a) and (2.3b) for i = j = 2
give

α2α
tr
2 + β2β

tr
2 + 2d2d

tr
2 = Id, αtr2 α2 + γtr2 γ2 + 2g2g

tr
2 = Id,

γ2γ
tr
2 + 2b2b

tr
2 = Id, βtr2 β2 + 2b2b

tr
2 = Id,

(4.11)
α2γ

tr
2 = 0, αtr2 β2 = 0,

α2 = −αtr2 ,

where we remark that the last identity comes from setting i = 2, j = 1
in (2.3a).

(IIa) d2 cannot be of rank 2.

Suppose d2 is of rank 2. Then b2 = 0; or else B2 written as in (4.1)
would be of rank 3 by row reduction. Now, since generic linear combi-
nation of b2, b3, b4 is nonzero, we may assume b3 6= 0. It follows that

cos(θ)B2 + sin(θ)B3 =

(
0 cos(θ)d2 + sin(θ)d3

sin(θ)b3 sin(θ)c3

)
is of rank at least 3 for a small angle θ, because d2 is of rank 2 and
b3 is of rank at least 1. Therefore, the generic linear combination of
B2, B3, B4 is of rank ≥ 3, a contradiction. We next observe that

(IIb) d2 cannot be of rank 0.

This is because otherwise from (4.7) we obtain

d2 = g2 = 0.

Now (3.19a) and (3.19b) are just

(4.12) βj = (dj∆− gj)σ−1, γtrj = −(dj + gj∆)σ−1, j ≥ 2;

in particular,

β2 = γ2 = 0.
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With (4.11), we arrive at

A2 =

(
α2 0
0 0

)
, B2 =

(
0 0
b2 0

)
, α2α

tr
2 = Id, b2b

tr
2 = Id.

Now, (2.3a) and (2.3b) for i = 2, j = 3, 4 give

α2αj = −αjα2, α2βj = 0, α2γ
tr
j = 0, j = 3, 4,

from which there follows βj = γtrj = 0, so that (4.12) implies dj = gj =

0, j = 3, 4, and so (2.3a) and (2.3b) derive

αiαj = −αjαi, α2
i = −Id, 2 ≤ i 6= j ≤ 4.

However, this says α2, α3, α4 induce a Clifford C3-action on R6, so that
4 divides 6, a contradiction. Therefore,

(IIc) d2 must be of rank 1.

Observe that

(IIc1) α2 cannot be of rank 6; otherwise, the fifth and sixth
identities of (4.11) force β2 = γ2 = 0 and so (4.12) gives d2 = g2 = 0,
which is impossible.

Being skew-symmetric, α2 must then be of even rank ≤ 4. We may
thus write

(4.13) α2 =

(
α 0
0 0

)
, β2 =

(
0
β

)
, γ2 =

(
0 γ

)
,

where α is of rank 0, 2, 4. β is of size 6-by-2, 4-by-2, 2-by-2, and γ is of
size 2-by-6, 3-by-4, 2-by-2, respectively.

(IIc2) α cannot be of rank 0. Suppose the contrary. β and γtr

are both of size 6-by-2. In particular, d2 and g2 are of the same form as
β2 and γ2, respectively. The first identity of (4.11) gives

β2β
tr
2 = I − 2d2d

tr
2 .

Since the 6-by-6 d2d
tr
2 is of rank at most 2 (because d2 is of size 6-by-2),

it has eigenvalue 0 counted at least four times, so that I − 2d2d
tr
2 has

eigenvalue 1 counted at least 4 times and so its rank is at least 4, which
contradicts the fact that β2β

tr
2 is of rank at most 2 (because β2 is of size

6-by-2).

(IIc3) α cannot be of rank 2. Suppose the contrary. We remark
that in general any Aj and Bj can be brought to the normalized form
of A1 and B1 as in (2.4) and (2.5). That is, with an appropriate basis
change we have

(4.14) Bj =

(
0 0
0 σj

)
, Aj =

(
I 0
0 ∆j

)
,

where σj is diagonal and the nonzero part of ∆j is skew-symmetric in
the same form as σ and ∆ in (2.4) and (2.5). In particular, suppose σj
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is of size 3-by-3, then ∆j∆
tr
j has a zero eigenvalue so that one of the

eigenvalues of σj is 1/
√

2.
Now, as a consequence of (4.13) and (4.12), we obtain

d2 =

(
0
d

)
, g2 =

(
0
g

)
,

where β, γtr, d and g are all of size 4-by-2. The first two identities
of (4.11) give

(4.15) ββtr + 2ddtr = Id, γtrγ + 2ggtr = Id,

from which it follows that the 4-by-4 ββtr, being of rank ≤ 2, has
eigenvalue 0 counted at least twice, so that ddtr has eigenvalue 1/

√
2

counted at least twice. That is, the 2-by-2 dtrd has eigenvalue 1/
√

2
counted exactly twice, so that d2 is of rank 2. But d2 is of rank 1, a
contradiction. So now,

(IIc4) α must be of rank 4.
We may assume

(4.16) d =

(
p 0
0 0

)
, g =

(
u v
w z

)
.

It is important to remark that d can be put in the above diagonal
form without changing the values of the normalized A1 and B1 in (2.4)
and (2.5). In fact, we can first perform a row operation to bring d to
an upper triangular form without changing σ in B1 = C1. Now due to
the fact that σ = sI, we can then perform a row operation to bring d to
the diagonal form. By doing so, we do have to conduct a row operation
also on the rows of σ to let σ continue to be sI.

We employ (4.7) to conclude that

v = z = 0, u2 + w2 = p2.

Moreover, (4.12) gives

(4.17) β = s−1
(
−u pt
−w 0

)
, γtr = s−1

(
−p −tu
0 −tw

)
.

Substituting them into (4.15) we obtain

(4.18) u = 0, w2 = p2 = s2.

We leave it as a simple exercise to conclude the following

Sublemma 4.1. c2 = c3 = c4 = 0. Moreover, either

bi =

(
0 0 0 0 wi
0 0 0 0 zi

)
, di =


0 0
0 0
0 0
yi −xi
0 0

 ,
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where wi =

√
(1−t2)
s xi and, moreover, zi =

√
(1−t2)
s yi if xi 6= 0, for all

2 ≤ i ≤ 4, or

bi =

(
0 0 0 0 0
ti1 ti2 ti3 ti4 ti5

)
, di =


ui1 0
ui2 0
ui3 0
ui4 0
ui5 0


for all 2 ≤ i ≤ 4.

Proof. (sketch) We know c2 = 0 by (4.10). By the third identity
of (4.11), (4.16), (4.17), and (4.18), we obtain

b2 =

(
0 0

0
√

(1− t2)/2)

)
, d2 =

0 0
p 0
0 0

 , t 6= 1 as s 6= 0,

with an appropriate column operation on b2 (note that b2 is of size 2-
by-5 and d2 of size 6-by-2). The sublemma follows by the fact that any
linear combination of B1, · · · , B4 is of rank ≤ 2 and so all its 3-by-3
minors are zero while invoking (4.9). q.e.d.

To finish the proof of the lemma, we shall find the intersection of the
kernel spaces of two neighboring Sc and Sc′ given in (4.5) for generic
choices of c and c′. Let (x, y, z)tr, x, y ∈ R8, z ∈ R7, be in the kernel
space of Sc, which amounts to the following

(4.19) c0x+Acy+Bcz = 0, Atrc x−c0y+Ccz = 0, Btr
c x+Ctrc y = 0.

Since the choice of c is generic, Bc is of rank 2, so that we can change
frame in which (2.4) and (2.5) hold for Bc with

Bc = Cc =

(
0 0
0 σc

)
, Ac =

(
I 0
0 ∆c

)
.

The point is that then the third identity of (4.19) implies that if we
decompose x, y, z, relative to the new frame, into

x = (X1, X2), y = (Y1, Y2), z = (Z1, Z2), X2, Y2, Z2 ∈ R2,

then X2 = −Y2 in the space Vc perpendicular to the kernel of Btr
c (Vc

is the image of Bc). Meanwhile, the first and second identities result in

Z2 = −c0X2 + ∆cX2, X1 = Y1 = 0,

so that the kernel of Sc is parametrized by Z1 in the kernel of Bc and
X2 in the image of Bc (= Vc), which is 7-dimensional.

In both cases of the above sublemma, the two generic c and c′ in-
troduce a 1-dimensional reduction to the 5-dimensional kernel of Bc,
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whereas the image of Bc (= Vc) retains a common space for the kernels
of Sc and Sc′ . In fact, in the former case,

kernel (Btr
c ) = R5 ⊕ Lc ⊂ R5 ⊕ R3,

where Lc is a line. Therefore, Vc is a 2-plane perpendicular to Lc in R3,
so that Vc and Vc′ intersect in a line in R3. In the latter case, Vc ∩ Vc′
is the last (8th) coordinate line of x.

In any event, the kernels of Sc and Sc′ intersect in a space of dimension
5, 4 dimensions from the intersection of the kernels of Bc and Bc′ and
1 dimension from Vc ∩ Vc′ . Thus, generically rλ = 7− 5 = 2. q.e.d.

Lemma 4.3. Let (m+,m−) = (7, 8). Away from points of Condition
A on M+, let n0, · · · , n7 be a normal basis such that the frame (n0, n1)
is normalized with the given spectral data (σ,∆) as in (2.4) and (2.5).
Assume σ is of size 3-by-3 and the generic rank of linear combinations
of B1, · · · , B7 is ≥ 5.

(1): If σ 6= I/
√

2, then the normal basis cannot be 3-null.
(2): Suppose n2, n3, n4 are 3-null, and moreover, suppose the spectral

data of all linear combinations of B1 through B4 are (σ,∆) =
(I/
√

2, 0). Then b2 = b3 = b4 = 0 if all linear combinations of
B1 through B4 are of rank ≤ 3. In particular, under the same
condition, rλ ≤ 3 for any λ in the 3-quadric of oriented 2-planes
of R5 linearly spanned by n0, · · ·n4.

Proof. First note that the 3-by-3 matrices σ in B1 = C1 and ∆ in A1

are now

σ :=

(
1/
√

2 0
0 sId

)
, s 6= 0;

∆ :=

(
0 0
0 tJ

)
, J :=

(
0 1
−1 0

)
, t =

√
1− 2s2,

with Aj , Bj , Cj and the associated notation given in (4.1), (4.2). Since
σ is of size 3-by-3, the skew-symmetric ∆ must have a zero eigenvalue,
which accounts for the eigenvalue 1/

√
2 for σ.

Item (1).

t 6= 0 in this case. Suppose the normal basis n0, n1, n2, · · · , n7 is
3-null.

By (3.19c), we have

(4.20) bj = ej , σ(cj − fj) = −(cj − fj)trσ, 2 ≤ j ≤ 7.

The second identity of (4.20) gives

(4.21) cj − fj =

(
0 v

−vtr/s
√

2 w

)
,
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where w is 2-by-2 skew-symmetric. On the other hand, (2.3f) for i =
j ≥ 2 results in

(4.22) btrj (cj − fj) = 0, dtrj dj + ctrj cj = gtrj gj + f trj fj .

Since the b-matrices are of rank at least 2 generically for the generic Bn
matrices to be of rank ≥ 5, we see from (4.21) and (4.22) that the c− f
matrices are zero generically and hence are zero identically, so that now

(4.23) cj = fj , 2 ≤ j ≤ 7;

with h = 0 and σ diagonal in (3.19f), there now follows

(4.24) δj is skew-symmetric, 2 ≤ j ≤ 7.

Meanwhile, the (2, 2)-block of (2.3g) asserts

(−∆2 + σ2)cj + 2cjσ
2 + σctrj σ + σ2cj + σctrj σ = cj ,

which comes down to

cjσ = −σctrj , 2 ≤ j ≤ 7,

which gives that cj is of the form

cj =

(
0 cj1

−ctrj1/s
√

2 cj2

)
, cj2 = −ctrj2, 2 ≤ j ≤ 7,

where cj2 is 2-by-2.
Since the matrix form of cj , 2 ≤ j ≤ 7, imposes three linear con-

straints, we may thus assume without loss of generality that

(4.25) c2 = f2 = 0.

(2.3b) for i = 2, j = 1 then derives

δtr2 ∆−∆δ2 = −2(f2 + f tr2 )σ = 0,

from which there follows, on account of (4.24) and t 6= 0,

(4.26) δ2 = 0;

in particular, (4.11) holds true again.
Now the second identity of (4.22) and (4.23) imply

(4.27) dtr2 d2 = gtr2 g2,

and moreover (2.3h) gives

btr2 (βtr2 d2 + γ2g2) = 0,

which, when incorporated with (4.27) and (4.12), arrives at

(4.28) btr2 σ
−1(dtr2 g2 + gtr2 d2) = 0.

Now, since the 5-by-5 α2 is skew-symmetric, its rank is either 0, 2, or
4, so that β2 and γ2 being in the kernel of α2 imply that we can assume

α2 =

(
α 0
0 0

)
, β2 =

(
0
β

)
, γ2 =

(
0 γ

)
,
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where α is of rank 0, 2, or 4 of the same square size, β is of size 5-by-3,
3-by-3, or 1-by-3, and γ is of size 3-by-5, 3-by-3, or 3-by-1, respectively.

(I) α cannot be zero.

Assume α = 0. Now, since

B2B
tr
2 =

(
b2b

tr
2 0

0 d2d
tr
2

)
is of rank at most 6 (because both b2 and d2 are of rank at most 3), we
see

A2A
tr
2 =

(
β2β

tr
2 0

0 γ2γ
tr
2

)
has eigenvalue 1 counted at least twice, which implies by the third and
fourth identities of (4.11) that b2b

tr
2 has eigenvalue 0 counted at least

once so that, in particular, b2b
tr
2 is of rank at most 2 and hence B2B

tr
2

is of rank at most 5 and so in fact A2A
tr
2 has eigenvalue 1 counted at

least three times. Thus, either β2β
tr
2 or γ2γ

tr
2 has eigenvalue 1 counted

at least twice, so that b2b
tr
2 has eigenvalue 0 counted at least twice and

so b2 is of rank at most 1 and Btr
2 B2 is of rank at most 4. This forces

A2A
tr
2 to have eigenvalue 1 counted at least four times; we conclude, by

(4.29) γ2γ
tr
2 = βtr2 β2,

a consequence of the third and fourth identities of (4.11), that each of
βtr2 β2 and γ2γ

tr
2 has some eigenvalue 1− 2ε2, ε ≤ 1/2, counted once and

eigenvalue 1 counted twice, whereas dtr2 d2 (and gtr2 g2) has the eigenvalue
ε2 counted once and eigenvalue 1/2 counted twice and b2b

tr
2 is of rank at

most 1 with eigenvalue ε2 counted once and eigenvalue 0 counted twice.
By performing a row operation without changing A1, B1, C1, we may

assume the 5-by-3 d2 is of the form

(4.30) d2 =

(
d
0

)
.

Write the 5-by-3 β2 as

β2 =

(
θ
µ

)
,

where θ is of size 3-by-3. The first identity of (4.11), with α2 = 0, gives

(4.31) θµtr = 0, µµtr = I.

Meanwhile, by (4.12)

(4.32) g2 =

(
d∆− θσ
−µσ

)
, γtr2 =

(
−dσ−1(I −∆tr∆) + θ∆

µ∆

)
.

To facilitate the following calculations, let us observe that θ is at most
1-dimensional by (4.31), so that by performing row operations we may
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assume

(4.33) θ =

θ11 θ12 θ13
0 0 0
0 0 0

 , d =

d11 d12 d13
d21 d22 d23
0 d32 d33

 .

Set
|θ|2 := θ211 + θ212 + θ213.

Suppose |θ|2 6= 0. Then (4.31) implies that

M :=

θ11/|θ| θ12/|θ| θ13/|θ|
u11 u12 u13
u21 u22 u23


is an orthogonal matrix, where

µ :=

(
u11 u12 u13
u21 u22 u23

)
.

In particular, by the fact that all columns of M are mutually orthogonal
unit vectors, we conclude that

(4.34) βtr2 β2 = Id+ (1− 1

|θ|2
)

θ11θ12
θ13

(θ11 θ12 θ13
)
.

We record from (4.32) the following identity

(4.35)
γ2γ

tr
2 = (−dσ−1(I −∆tr∆) + θ∆)tr(−dσ−1(I −∆tr∆) + θ∆)

+ (µ∆)tr(µ∆),

whose right hand side calculates, if we write

M :=

−√2d11 −2sd12 − θ13t −2sd13 + θ12t

−
√

2d21 −2sd22 −2sd23
0 −2sd32 −2sd33

 ,

the equation

(4.36) γ2γ
tr
2 = M trM +

(
0 −u13t u12t
0 −u23t u22t

)tr (
0 −u13t u12t
0 −u23t u22t

)
.

Equating (4.34) and (4.36), we find in the (2, 2)-, (3, 3)-, (1, 2)-, (1, 3)-,
and (2, 3)-entries that there are terms linear in t, which are, respectively,

4std12θ13, 4std13θ12, d11θ13t, d11θ12t, −2std12θ12 + 2std13θ13.

All other terms are quadratic in t, so that changing t to −t we obtain

(4.37) d12θ13 = d13θ12 = d11θ12 = d11θ13 = −d12θ12 + d13θ13 = 0.

As a consequence, θ12 = θ13 = 0 if d11 6= 0, for which we have

(4.38) θ∆ = 0.

Otherwise, d11 = 0. If d12 6= 0, then d13 = 0, or else once more θ12 =
θ13 = 0. But then the last identity of (4.37) implies that again θ12 =
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θ13 = 0. In any event, we conclude that θ12 = θ13 = 0 so that (4.38) is
true, unless

d11 = d12 = d13 = 0,

in which case the identity

2ddtr + θθtr = Id

returns

(4.39) |θ|2 = 1, ddtr =

0 0 0
0 1/2 0
0 0 1/2

 .

By (4.34) we have

(4.40) γ2γ
tr
2 = βtr2 β2 = Id,

so that (4.35) now calculates the (1, 1)-entry to yield

d21 = ±1/
√

2.

Meanwhile, the (1, 2)- and (1, 3)-entries result in

d22 = d23 = 0.

Use (4.40) to calculate the (2, 3)-entry of γ2γ
tr
2 to obtain

−(θ12θ13 + u12u13 + u22u23)t
2 + 4s2d32d33 = 0,

so that

d32d33 = 0

since the matrix M above with |θ| = 1 is orthogonal.
Suppose d33 = 0. Then the (3, 3)-entry gives

(θ212 + u212 + u222)t
2 = 1,

so that t2 = 1 since M with |θ| = 1 is orthogonal, which contradicts
s > 0.

Suppose d32 = 0. The (2, 2)-entry gives

(θ213 + u213 + u223)t
2 = 1,

which again contradicts s > 0.
In conclusion, (4.38) holds true when θ 6= 0, while it is trivially true

if θ = 0. As a consequence, we conclude

(4.41) µ =
(
0 U

)
, UU tr = I, θ =

(
τ 0

)
,

where U is of size 2-by-2 and τ is of size 3-by-1, when we invoke the
second identity of (4.31); moreover, with (4.41) in hands we can now
assume

(4.42) d21 = d32 = 0

in d by performing row operations without affecting (4.41).
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Now that θ∆ = 0, from which γ2 is simplified to facilitate the calcu-
lation of (4.35) to derive, by (4.29),

(I+∆2)trσ−1dtrdσ−1(I+∆2)+∆trµtrµ∆ = θtrθ+µtrµ = diag(|τ |2, 1, 1)

whose right hand side gives the eigenvalues of βtr2 β2, which, as we men-
tioned above, are 1 counted twice and |τ |2 = 1 − 2ε2; when we in-
voke (4.41), the equality simplifies to

(4.43) dtrd =

(1− 2ε2)/2 0 0
0 1/2 0
0 0 1/2

 .

Therefore, since the eigenvalues of dtr2 d2 are ε2 counted once and 1/2
counted twice, it implies

ε2 = (1− 2ε2)/2, so ε2 = 1/4.

On the other hand, dtrd can be calculated by (4.33) and (4.42) to obtain

d12 = d13 = d23 = 0, d211 = 1/4, d222 = d233 = 1/2.

The fourth identity of (4.11) now gives

b2b
tr
2 = (I − βtr2 β2)/2 =

ε2 0 0
0 0 0
0 0 0

 , ε2 = 1/4,

while in (4.28)

dtr2 g2+gtr2 d2 =

 −√2pτ1 −qτ2/
√

2 −rτ3/
√

2

−qτ2/
√

2 0 (q2 − r2)t
−rτ3/

√
2 (q2 − r2)t 0

 , τ = (τ1.τ2, τ3)
tr.

In particular, (4.28) forces τ = 0, which is a contradiction as |τ |2 =
1− 2ε2 = 1/2.

(II) α cannot be of rank 2.

Assume α is of rank 2 so that β and γ are both of size 3-by-3; by (4.12)
d2 and g2 are of the same form as β2 and γ2, respectively. Write

(4.44) d2 =

(
0
X

)
, g2 =

(
0
Y

)
,

where X and Y are made up of 3-by-1 column vectors X1, X2, X3 and
Y1, Y2, Y3, respectively.

(IIa) If d2 is of rank 3, then (4.27) implies that there is a 3-by-3
orthogonal matrix T such that

TXi = Yi, 1 ≤ i ≤ 3.

(IIa1) If b2 is of rank 3, (4.28) gives

Xi · TXj = −Xj · TXi, 1 ≤ i, j ≤ 3,
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where · denotes the standard inner product. Consequently, T is skew-
symmetric and orthogonal. This is impossible as det(T ) = 0 now.

(IIa2) If b2 is of rank ≤ 2, then b2b
tr
2 has an eigenvalue 0, so

that by the fourth identity of (4.11) βtr2 β2 has an eigenvalue 1. By the
first identity of (4.11), this forces XXtr to have an eigenvalue 0, so that
d2 is not of rank 3, a contradiction.

(IIb) If d2 is of rank ≤ 2, then note that since the lower right 2-by-
2 block of σ is a multiple of the identity matrix, we can perform column
operations between the last two columns of X without changing A1, B1

and C1, though we cannot perform column operations to interchange
the first and the remaining two columns if we want to retain the values
of A1, B1 and C1, for reason that s 6= 1/

√
2.

By performing a row operation without changing A1, B1, C1, we may
assume the 3-by-3 X takes the form

(4.45) X =

(
d
0

)
, d =

(
x y z
0 w u

)
,

where X and Y are given in (4.44). For notational consistence, we set

β2 =

(
0
β

)
, β =

(
θ
µ

)
, γ2 =

(
0 γ

)
, Y = g,

where β, Y are of size 3-by-3 and θ is of size 2-by-3.
We have two cases to consider, where when x = 0 we may perform

row and column operations to assume y 6= 0 and w = 0.

(IIb1) When x is nonzero, we change our notation from (4.45)
to denote d by

d =

(
d11 d12 d13
0 d22 d23

)
,

for more notational consistence; we will return to the notation in (4.45)
later. Write
(4.46)

θ :=

(
θ11 θ12 θ13
θ21 θ22 θ23

)
, µ :=

(
u11 u12 u13

)
, θµtr = 0, µµtr = 1.

The right hand side of (4.35), if we write

T :=

(
−
√

2d11 −2sd12 − θ13t −2sd13 + θ12t
0 −2sd22 − θ23t −2sd23 + θ22t

)
,

now reads

(4.47) γ2γ
tr
2 = T trT +

(
0 −u13t u12t

)tr (
0 −u13t u12t

)
.

Similar to the arguments leading to (4.37), we derive by (4.47) the
constraints

(4.48)
d11θ12 = d11θ13 = 0, d12θ13 + d22θ23 = 0, d13θ12 + d23θ22 = 0,

− d12θ12 + d13θ13 − d22θ22 + d23θ23 = 0.
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Suppose d11 6= 0. We first treat the case when θ 6= 0. Then

θ12 = θ13 = 0, θ =

(
θ11 0 0
θ21 θ22 θ23

)
.

If either d22 6= 0 or d23 6= 0, then θ22 = θ23 = 0, from which there follows
that µ and θ are of the form

(4.49) µ = (0, 0, 1), θ =

(
p q 0
r l 0

)
,

by the third identity in (4.46) since θ 6= 0. We may now assume

d22 = d23 = 0.

So now since the only nonzero row of d is the first one,

d2 =

(
0
X

)
, X =

(
d
0

)
is also of rank 1. There follows that g2 is of rank 1 by (4.27). Meanwhile,
the third identity in (4.46) implies

θ11u11 = 0, µ =
(
u11 u12 u13

)
,

so that
u11 = 0

if θ11 6= 0, which gives again the condition (4.49). This is because it
says that the first component of the vector µ is zero, and since |µ| = 1
by the last identity in (4.46), we may perform column operations on the
last two columns to assume that in fact

µ =
(
0 0 1

)
,

and hence the third identity in (4.46) gives

θ =

(
θ11 θ12 0
θ21 θ22 0

)
,

giving (4.49). Therefore, we may now assume

θ11 = 0.

Hence both d and θ can have only one nonzero row; explicitly

d =

(
d11 d12 d13
0 0 0

)
, θ =

(
0 0 0
θ21 θ22 θ23

)
.

In particular, (4.32) calculates, in the notation of (4.44),

g2 =

(
0
Y

)
, Y =

(
d∆− θσ
−µσ

)
=

 0 −d13t d12t

−θ21/
√

2 −sθ22 −sθ23
−µ11/

√
2 −sµ12 −sµ13

 ,

which is of rank 1, since g2 and d2 are of the same rank by (4.27) and

d2 =

(
0
X

)
, X =

(
d
0

)
,
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where X, of size 3-by-3, is of rank 1; thus, µ11 = 0 if either d12 6= 0 or
d13 6= 0, which gives us the condition (4.49) as explained above. As a
result, we may now assume

(4.50) d12 = d13 = 0.

Now with

d =

(
d11 0 0
0 0 0

)
,

(4.27) asserts

Y trY = dtrd =

d211 0 0
0 0 0
0 0 0

 ,

from which the (2, 2)- and (3, 3)-entry of Y trY give

s2(θ222 + u212) = 0, s2(θ223 + µ213) = 0,

that is

θ22 = θ23 = u12 = u13 = 0.

Now that

θ =

(
0 0 0
θ21 0 0

)
,

the third identity in (4.46) implies

θ21µ11 = 0,

or, equivalently,

µ11 = 0

since we assume θ 6= 0 so that the only nonzero component θ21 6= 0; this
is the condition (4.49) again.

Continue to assume d11 6= 0. Let us handle the situation when θ = 0,
for which

β2 =

(
0
β

)
, β =

(
θ
µ

)
=

 0 0 0
0 0 0
u11 u12 u13


is of rank 1, so that γtr2 will be of rank 1 by (4.27). Now by (4.32),

γtr2 =

(
0
γtr

)
,

γtr =

(
−dσ−1(Id−∆tr∆) + θ∆

µ∆

)
=

−√2d11 −2sd12 −2sd13
0 −2sd22 −2sd23
0 −u13t u12t

 ,

whose rank being 1 implies

d22 = d23 = u12 = u13 = 0
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since d11 6= 0. But then

β =

(
θ
µ

)
=

 0 0 0
0 0 0
±1 0 0

 , d =

(
d11 d12 d13
0 0 0

)
,

which contradicts
2XXtr + ββtr = Id,

an identity extracted from the lower 3-by-3 block of the first identity
of (4.11).

In conclusion, the condition (4.49) holds true if d11 6= 0.
Next, we consider the situation when d11 = 0 (already d21 = 0).

Since the first column of d is zero, by row and column operations we
my assume

d12 6= 0, d22 = 0.

Now observe that with d11 = d21 = 0, the first column and row of γ2γ
tr
2

given in (4.47) are zero. On the other hand, βtrβ must have the same
property by (4.29) since

βtrβ = γγtr;

it follows by computing its (1, 1)-entry, where

β =

(
θ
µ

)
=

θ11 θ12 θ13
θ21 θ22 θ23
u11 u12 u13

 ,

that
θ211 + θ221 + u211 = 0,

so that
u11 = θ11 = θ21 = 0;

returning to the notation in (4.45), this reads x = w = 0, where (4.49)
remains true with p = r = 0.

With these remarks out of the way, (4.32) gives

g =

−p/√2 −zt− sq yt

−r/
√

2 −ut− sl wt
0 0 −s

 , γtr =

−√2x −2sy −2sz + tq
0 −2sw −2su+ tl
0 −t 0

 .

We calculate to see

βtrβ =

p2 + r2 pq + rl 0
pq + rl q2 + l2 0

0 0 1

 ,

γγtr =
2x2 · ·

2
√

2sxy 4s2y2 + 4s2w2 + t2 ·
−
√

2x(−2sz + tq) −2sy(−2sz + tq)− (−2sz + tq)2+
2sw(−2su+ tl) (−2su+ tl)2

 ,
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where we dot certain entries to indicate that the matrix is symmetric.
By (4.29), if x 6= 0,

−2sz+ tq = 0, −2sw(−2su+ tl) = 0, (−2su+ tl)2 = 1, so w = 0;

on the other hand, if x = w = 0 and y 6= 0, we obtain

−2sy(−2sz + tq) = 0, (−2su+ tl)2 = 1, so − 2sz + tq = 0.

In any event,

(4.51) − 2sz + tq = 0, (−2su+ tl)2 = 1, w = 0.

With these refined data, we observe that the (2, 2) entry of γtrγ is 1,
and thus we can employ the second identity of (4.11) to conclude that
the (2, 2)-entry of ggtr is zero, i.e.,

(4.52) r = 0, −tu− sl = 0.

(IIb2) In the case when x is zero, we compare the (2, 3) entries
of (4.7) to conclude

yz = (−zt− sq)ty, so z = −zt2 − stq
which, when incorporated with (4.51), arrives at

z = −zt2 − stq = −zt2 − 2s2z = −(t2 + 2s2)z = −z, so z = q = 0.

But then the (2, 2) entry of (4.7) gives

y2 = (zt+ sq)2 = 0,

a contradiction.

(IIb3) Therefore, x 6= 0 is the only possibility, where w =
r = 0 as verified above. We now have the simplified data

(4.53)

d =

(
x y z
0 0 u

)
, g =

−p/√2 −zt− sq yt
0 0 0
0 0 −s

 ,

β =

p q 0
0 l 0
0 0 1

 , γtr =

−√2x −2sy 0
0 0 ±1
0 −t 0

 .

Accordingly, (4.29) simplifies to

2x2 = p2, pq = 2
√

2sxy, q2 + l2 = 4s2y2 + t2.

Since x 6= 0, we incorporate (4.51) and (4.52) to solve these equations
to obtain

(4.54) p = ±
√

2x, q = ±2sy, z = ±ty, l2 = t2,

where the first three equalities share the same sign. We then employ
the last equality of (4.54) and the second equality of (4.52) to see

l = ±t, u = ∓s,
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which means that l and u must differ by a sign. However, since l appears
in the second column and u appears in the third, we can certainly change
the sign of the basis vector to change the sign of one of l and u without
affecting the other, while keeping the values of A1, B1 and C1, to arrange
that l and u have the same sign. This is a contradiction.

(III) α cannot be of rank 4.

Suppose α is of rank 4. Then β and γtr are 1-by-3. It follows by (4.12)
that X and Y are 1-by-3. Write

X := (a, b, c), β := (p, q, r),

where X is given in (4.44). Then (4.12) gives, as above,

Y = (−p/
√

2,−tc− sq, tb− sr),

γtr = (−
√

2a, (t2 − 1)b/s− tr, (t2 − 1)c/s+ tq).

Meanwhile, XtrX = Y trY and βtrβ = γγtr derive as above

a = ±(−p/
√

2), b = ±(−tc− sq), c = ±(tb− sr),

p = ±(−
√

2a), q = ±((t2 − 1)b/s− tr), r = ±((t2 − 1)c/s+ tq),

where the three equations in each of the two triples share the same
sign. It follows that, by solving the linear system with the unknowns
a, b, c, p, q, r, we obtain

(4.55) b = c = q = r = 0,

since s 6= 1/
√

2. Then, by the third identity of (4.11) we obtain

2b2b
tr
2 =

1− 2a2 0 0
0 1 0
0 0 1

 ,

so that we see from the (1, 1)-entry of (4.28) that

(1− 2a2)a2 = 0.

If a = 0, then X = Y = 0, or rather d2 = g2 = 0, so that by (4.12)
β2 = γ2 = 0, which contradicts the first identity of (4.11). Hence,
2a2 = 1. But then the first identity of (4.11) results in

1 = p2 + q2 + r2 + 2a2 + 2b2 + 2c2 = p2 + 2a2 = p2 + 1;

we conclude that p = 0, or rather β = 0, so that γ = 0 by βtrβ = γγtr,
and so (4.12) gives d2 = g2 = 0, a contradiction again. We are done
with item (1).

Item (2).

We assume that a generic linear combination of B1 through B4 is of
rank 3. Then the linear combination

B(θ) := cos(θ)B1 + sin(θ)B2 =

(
0 sin(θ)d2

sin(θ)b2 cos(θ)I + sin(θ)c2

)
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is of rank 3 for a generic θ, with (B1, C1) and (B2, C2) given in (2.4)
and (4.1), where now

σ = I/
√

2, ∆ = 0;

in particular, (2.3a), (2.3b), and (2.3e) for i = 2, j = 1 assert
(4.56)

c2 = −(c2)
tr, f2 = −(f2)

tr, δ2 = −(δ2)
tr, γtr2 = −

√
2d2, β2 = −

√
2g2.

The kernel of the 8-by-7 B(θ) is of dimension 4 for a generic θ. Setting
(x, y)tr for a kernel vector of B(θ), where x is of size 1-by-4 and y is of
size 1-by-3, we solve to see

sin(θ)d2y = 0, sin(θ)b2x+ (cos(θ)I/
√

2 + sin(θ)c2)y = 0,

from which we derive

d2(cos(θ)I/
√

2 + sin(θ)c2)
−1b2x = 0, ∀x.

It follows that

0 = d2(cos(θ)I/
√

2 + sin(θ)c2)
−1b2 =

√
2

cos(θ)

∞∑
k=0

(−1)kd2(c2)
kb2z

k,

where we set z =
√

2 tan(θ), for a generic small θ, which is equivalent
to

(4.57) d2(c2)
kb2 = 0, k = 0, 1, 2, 3, · · ·

Likewise, by considering C2 we obtain

(4.58) g2(f2)
kb2 = 0, k = 0, 1, 2, 3, · · ·

(I) The case when d2 is of rank 3.

Performing a row reduction on the matrix B2, we can eliminate c2
without changing b2. It follows that b2 = 0 because B2 is of rank 3.
But since a generic linear combination of d2, d3, d4 is also of rank 3, we
see a generic linear combination, and hence all linear combinations of
b2, b3, b4 are zero. We are done.

We may now assume that all linear combinations of d2, d3, d4 (like-
wise, of g2, g3, g4) are of rank at most 2.

(II) The case when generic linear combination of d2, d3, d4 is of
rank = 2.

Assume d2 is of rank 2.

(IIa) If c2 is nonzero, performing row and column operations, with-
out changing B1, C1, and A1, we may assume

c2 = zJ, J :=

0 0 0
0 0 1
0 −1 0

 , z 6= 0;
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this is possible because the spectral data (σ,∆) = (I/
√

2, 0) now. We
then perform a column operation on the last two columns without chang-
ing A1, B1, C1 and c2, so that we may assume

(4.59) d2 =


p q 0
0 r u
0 0 0
0 0 0
0 0 0

 , b2 =

b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34,

 ,

from which (4.57) for k = 0, 1 with z 6= 0 results in

pb11 + qb21 = 0, rb21 + ub31 = 0, qb31 = 0, −ub21 + rb31 = 0.

Generically, we may always assume p 6= 0 (by performing row and col-
umn operations if necessary). We solve to see that b2 = 0 by the fact
that one of r and u is nonzero for d2 to have rank 2. Since the choice
of n2 is generic, this says that b2 = b3 = b4 = 0 if generic combinations
of c2, c3, c4 are not zero. We are done.

(IIb) So now we may assume

c2 = c3 = c4 = 0, and likewise f2 = f3 = f4 = 0,

and a generic combination of b2, b3, b4 is nonzero, which we may assume
is b2, without loss of generality.

The rank of g2 is also 2, because (2.3f) for i = j = 2 reads

(4.60) dtr2 d2 = gtr2 g2,

knowing that c2 = f2 = 0.
Setting k = 0 in (4.57) and (4.58), we see that the column space of

b2 is identical with the 1-dimensional kernel space of d2 and of g2. We
may thus assume b2 is spanned by (0, 0, 1)tr and assume
(4.61)

d2 =


p q 0
0 r 0
0 0 0
0 0 0
0 0 0

 , b2 =

0 0 0 0
0 0 0 0
a 0 0 0

 , δ2 =

 0 x y
−x 0 w
−y −w 0

 .

(2.3a) applied to i = j = 2 gives

(4.62) γ2γ
tr
2 + δ2δ

tr
2 + 2b2b

tr
2 = I;

with the fourth identity of (4.56) one compares the (1, 3), (2, 3), and
(3, 3)-entries to ensure

xy = xw = 0, 2a2 + y2 + w2 = 1.

(IIb0) If x is nonzero, then y = w = 0 and a2 = 1/2, from which
we see the nonzero 2-by-2 block d of d2 satisfies

dtrd = (1− x2)I/2, so q = 0, p2 = r2 = (1− x2)/2,
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incorporating the fourth identity of (4.56) and (4.62). However, since
the spectral data, which are (σ,∆) = (I/

√
2, 0) by assumption, of B2

are the nonzero eigenvalues of dtr2 d2 and b2b
tr
2 in view of the fact that

we can now derive

B2B
tr
2 =

(
d2d

tr
2 0

0 b2b
tr
2

)
,

we therefore conclude that (1−x2)/2 = 1/2, i.e., x = 0, a contradiction.
We thus conclude that

(IIb1) x must be zero.

(IIb11) If either y or w is nonzero, we observe first that with
c2 = 0, (2.3a) for i = j = 2 implies

(4.63) α2γ
tr
2 = −β2δtr2 ,

which says, by reading the third columns on both sides while invoking
the fourth and fifth identities of (4.56), that the first two columns of g2
are linearly dependent with coefficients y and w, whereas (4.60) asserts
that the third column of g2 is zero. This forces g2 to be of rank ≤ 1, a
contradiction. Consequently, it must be that

(IIb12) x = y = w = 0 so that δ2 = 0.

Now that c2 = f2 = δ2 = 0, observe further that since the spectral
data is (σ,∆) = (I/

√
2, 0), the general identity (4.35) asserts that

γγtr = 2dtrd.

If the ranks of α and d2 are 2, since β is also of rank 2 by (4.29), we see
that

A2A
tr
2 =

ααtr 0 0
0 ββtr 0
0 0 γγtr


gives that A2 is of rank 6, so that the spectral data could not be (σ,∆) =
(I/
√

2, 0) because it would force the rank of A2 to be 8 − 3 = 5. This
case does not occur.

On the other hand, the same proof as in item (1), III, in the case
when the rank of α is 4 gets us all the way through to the linear system
above (4.55), where our spectral data is now (σ,∆) = (I/

√
2, 0). It is

easily checked that

(4.64) ββtr = γtrγ = 1, XXtr = Y Y tr = 1.

Now, Atr2 A2 is of rank 6 with eigenvalue 1 counted six times, four times
from α and once each from β and γ, and 0 counted twice, so that B2B

tr
2

is of rank 2 with eigenvalue 1/2 counted twice. This again contradicts
our spectral data assumption (σ,∆) = (I/

√
2, 0). This case does not

occur either.
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(III) Generic linear combination of d2, d3, d4 cannot be of rank
< 2.

We first assume d2 is the generic choice of rank 1. We may also
assume that b2 is the generic choice such that b2 6= 0; otherwise, generic
linear combination of b2, b3, b4 being zero implies that b2 = b3 = b4 = 0,
and we are done. We know by a symmetric reasoning that g2 has rank
≤ 1.

(IIIa) Assume c2 is nonzero. Notation as in (4.59), we remark
that the setup in the preceding case is still valid with

r = u = 0

now. We manipulate essentially the same to yield that if q 6= 0, then
b31 = 0 and pb11 + qb21 = 0, so that b2 is of rank 1 as b2 6= 0. But then
the matrix

B2 =

(
0 d2
b2 c2

)
will be of rank 4, where the last row of c2 (that of b2 is 0) annihilates
q and r of d2 in a row operation; this is a contradiction. Hence, q = 0,
from which it follows that b1j = 0, i.e., the first row of b2 is zero. Observe
now we have

d2c2 = 0, c2 = zJ,

so that we calculate

B2B
tr
2 =

(
d2d

tr
2 d2c

tr
2

c2d
tr
2 c2c

tr
2 + b2b

tr
2

)
=

(
d2d

tr
2 0

0 c2c
tr
2 + b2b

tr
2

)
;

therefore, the spectral data dictates that we have

c2c
tr
2 + b2b

tr
2 =

(
0 0
0 z2I

)
+

(
0 0
0 bbtr

)
, b2 :=

(
0
b

)
, p2 = 1/2,

where I of size 2-by-2, and b of size 2-by-3 satisfies

(4.65) z2I + bbtr = I/2.

Hence, the identity

γ2γ
tr
2 + δ2δ

tr
2 + 2(b2b

tr
2 + c2c

tr
2 ) = I,

obtained by (2.3a) for i = j = 2, translates into

γ2γ
tr
2 + δ2δ

tr
2 =

1 0 0
0 0 0
0 0 0

 .

As a consequence, δ2δ
tr
2 = 0 because p2 = 1/2 and γ2 = −

√
2d2. That

is,
δ2 = 0;

with this (2.3a) now gives

α2γ
tr
2 = −d2ctr2 = 0,
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which implies that the first column (and hence the first row) of α2 = 0.
Incorporating this into p2 = 1/2 and

(4.66) α2α
tr
2 + 2g2g

tr
2 + 2d2d

tr
2 = I

obtained by (2.3a), we conclude that the first column and row of g2g
tr
2

are zero. That is, the first row of g2 is zero; moreover, comparing the
(1.1)-entries and knowing p2 = 1, we see that the first column and row
of α2 are zero since it is skew-symmetric. Thus we can perform column
and row operations, respecting A1, B1, C1, d2 and c2, such that

g2 =


0 0 0
θ ε 0
0 0 0
0 0 0
0 0 0

 .

Now, since

(4.67) 2gtr2 g2 + 2b2b
tr
2 + 2f2f

tr
2 = I

obtained by (2.3b) for i = j = 2 with δ2 = 0, we find that the (1, 3)-
and (2, 3)-entries of f2f

tr
2 are zero. That is,

eg = eh = 0, f2 :=

 0 e l
−e 0 h
−l −h 0

 .

If e 6= 0, then l = h = 0, so that inserting the first equality of (4.65)
into (4.67) to compare the (3, 3)-entries we obtain z = 0, a contradiction
to c2 6= 0. Thus e = 0. We derive, by (2.3b) for i = j = 2,

αtr2 g2 = −
√

2g2f
tr
2 ,

where the (2, 3)-entry of the right hand side is a linear combination of
the (2, 1)- and (2, 2)-entries of g2 with coefficients l and h and all other
entries are zero, whereas the (2, 3)-entry of the left hand side is zero. It
follows that

g2f
tr
2 = 0 = αtr2 g2,

from which we conclude that the second, in addition to the first, column
and row of α2 are zero. Thus, (2.3b) derives

ααtr = I, α2 =

(
0 0
0 α

)
,

because both d2d
tr
2 and g2g

tr
2 are nontrivial only at the upper left 2-by-2

block, where α is of size 3-by-3 and skew-symmetric, which is absurd.
As a result,

(IIIb) c2 must be zero.

Now that c2 = 0, we employ (2.3f), which gives

dtr2 d2 = gtr2 g2 + f tr2 f2,
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to observe that g2 cannot be of rank 0, or else the left hand side is of rank
1 whereas the right hand side is of rank either 0 or 2. That is, g2 must be
of rank 1 as well, so that exactly the same parallel argument, replacing
d2 by g2, establishes f2 = 0. With now c2 = f2 = δ2 = 0, the same
arguments in the paragraph containing (4.64) results in a contradiction.
This case does not occur.

Lastly, it is impossible that both d2 = g2 = 0; for otherwise β2 =
γ2 = 0. (2.3a) then asserts that the 5-by-5 skew-symmetric α2 satisfies
α2α

tr
2 = I, which is absurd. q.e.d.

5. M+ is generically 4-null

Lemma 5.1. Let (m+,m−) = (7, 8). Away from points of Condition
A on M+, suppose

sup
λ∈Q6

rλ ≥ 5.

Then there is a choice of p0, · · · , p5 for the codimension 2 estimate (3.14)
to go through. In particular, V0, · · · , V5 are irreducible and p0, · · · , p6
form a regular sequence.

Proof. Recall the a priori codimension 2 estimate (3.14), which is

(5.1) 8 = m− ≥ 2k + 1− j − cj ,
where Lj and cj are defined in (3.11) and (3.15). It verifies that the codi-
mension 2 estimate goes through for k ≤ 3 and any choice of p0, · · · , p3.

For k = 4, the estimate goes through for j ≥ 1. However, since M+

away from points of Condition A is not 0-null, item (2) of Corollary 2.1
implies that for k = 4, L0 is of codimension at least 1 in Q3 (i.e.,
c0 ≥ 1), because by the corollary there must be a λ ∈ Q3 for which
rλ 6= 0; therefore, the codimension 2 estimate goes through, for any
choice of p0 · · · p4. In particular, V0, · · · , V4 are irreducible and any
choice of p0, · · · , p5 form a regular sequence.

For k = 5, we pick p0, · · · , p5 such that

(5.2) sup
λ∈Q4

rλ ≥ 5.

Note that (5.1), which is now

(5.3) 8 ≥ 11− j − cj ,
implies that the codimension 2 estimate automatically goes through for
j ≥ 3.

In general, for j ≤ 4, Lj ⊂ Q4 is not generic by (5.2), so that cj ≥ 1.
Hence, (5.3) also takes care of the codimension 2 estimate for j = 2.
Moreover, since by Lemma 4.1, M+ is not j-null for j = 1, the refined
codimension 2 estimate (3.24), which is

(5.4) 8 = m− ≥ 2k − j − cj ,
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is satisfied for j = 1, k = 5 and cj ≥ 1; so, the codimension 2 estimate
goes through for j = 1 as well.

For j = 0, (5.4) is ineffective as its right hand side is 9 with cj = 1;
we need to cut down one more dimension from its right hand side. That
is, more fundamentally we must effectively cut Sλ, λ ∈ L0, for generic
λ ∈ L0.

Note, however, notation as in Convention 3.1, since rλ = 0 for λ ∈ L0,
we have B1̃ = C1̃ = 0 and A1̃ = Id in (2.5) for S1̃. It follows that p0̃ = 0
cuts Sλ in the variety

(5.5) {(x,±
√
−1x, z) :

8∑
α=1

(xα)2 = 0}.

We may assume (B2̃, C2̃) of S2̃ is nonzero away from points of Condition
A. Since z is a free variable in (5.5), p2̃ = 0 cuts Sλ to result in the
equation with nontrivial z-terms:

0 = p2̃ =

8,7∑
α=1,p=1

(S2
αp ±

√
−1T 2

αp)xαzp.(5.6)

Hence by Lemma I.1 in Appendix I, p2̃ = 0 introduces a nontrivial cut
into Sλ to reduce the dimension estimate by 1, and more importantly
the variety F2 cut out by p0̃ = p2̃ = 0 in (5.5) and (5.6) is irreducible.
Indeed, we have seen before that this gives (5.4).

To cut one more dimension, we remark that one of the pairs (B3̃, C3̃),
(B4̃, C4̃), and (B5̃, C5̃) is nonzero, to be in accordance with item (2) of
Corollary 2.1. Hence we may assume none of them are zero by a generic
rotation of the basis elements n3̃, n4̃, n5̃; note that, with this, the variety
Fi cut out by p0̃ = pĩ = 0, 3 ≤ i ≤ 5, is also irreducible for the same
reason as F2.

When F2 and Fj are distinct for some j = 3, 4, 5, F2 ∩Fj is of one
dimension lower, i.e., p0̃ = p2̃ = pj̃ = 0 cuts down one more dimension

in Sλ by Lemma I.1 in Appendix I, so that the right hand side of (5.4)
is dropped by 1 and so the codimension 2 estimate goes through.

We must then rule out the possibility that Fk, 2 ≤ k ≤ 5, are all
identical, or equivalently, that pj̃ , j = 3, 4, 5, restricted to Sλ are all
constant multiples of p2̃. That is,

(5.7) Siαp ±
√
−1T iαp = ci(S

2
αp ±

√
−1T 2

αp),

for some nonzero complex numbers ci, 3 ≤ i ≤ 5.
Write

ci = ai +
√
−1bi
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for some real numbers ai, bi. Then we obtain

(5.8)

S3
αp = a3S

2
αp − b3T 2

αp, T 3
αp = b3S

2
αp + a3T

2
αp,

S4
αp = a4S

2
αp − b4T 2

αp, T 4
αp = b4S

2
αp + a4T

2
αp,

S5
αp = a5S

2
αp − b5T 2

αp, T 5
αp = b5S

2
αp + a5T

2
αp.

Choose a nonzero solution (x, y, z), x2 + y2 + z2 = 1, to

(5.9) a3x+ a4y + a5z = 0, b3x+ b4y + b5z = 0.

Then it is easily seen that

(5.10) xS3
αp + yS4

αp + zS5
αp = 0. xT 3

αp + yT 4
αp + zT 5

αp = 0.

That is, the shape operator Sn := xS3̃ + yS4̃ + zS5̃ has the property
that its B and C blocks are identically zero. So we may now assume
the B and C blocks of S5̃ are zero.

We may now ignore the above a5 and b5 in (5.9). Any nonzero solution
(x, y) that solves the second equation of (5.9) implies that there is a
real number c, namely, c = a3x + a4y, such that the B and C blocks
of Sn := xS3̃ + yS4̃ are c times of B2̃ and C2̃, respectively. But then

Sn′ , where n′ = (n2̃ − cn)/
√

1 + c2, has the property that the B and C
blocks of Sn′ are zero. This means that we can now assume that the
B and C blocks of S4̃ are zero, with possible new S2̃ and S3̃ out of the
Gram–Schmidt process. It follows that neither (B2̃, C2̃) nor (B3̃, C3̃)
are zero to not to violate item (2) of Corollary 2.1.

We are now led to the conclusion that if an irreducible component C
of L0 is such that the codimension 2 estimate is not true for all λ ∈ C,
then each λ ∈ C is contained in one and only one quadric Q2 ⊂ C, which
is the set of 2-planes in the 4-dimensional Euclidean space spanned
by ñ0, ñ1, ñ4, ñ5 given in the preceding two paragraphs, where λ is the
2-plane spanned by ñ0, ñ1; in fact, this 4-dimensional linear space is
characterized by that the shape operators Sn of all unit n in it share
a common kernel (the Condition A for them). However, since C is of
dimension 3 (recall cj = 1 in (5.4) with j = 0), any two Q2 in C in Q4

will intersect in at least 2 + 2 − 3 = 1 dimensional worth of points by
a dimension count. It follows that for λ 6= λ′ in C belonging to their
respective quadrics Q2 6= Q′2, there is a third τ ∈ C which lies in both
Q2 and Q′2, so that τ is contained in the join of these two quadrics; in
other words, if τ is spanned by the orthonormal pair N0 and N1, then
there are more than two orthonormal Nj , j ≥ 2, in the join for which
BNj is identically zero, which contradicts item (2) of Corollary 2.1. The
contradiction implies that the codimension 2 estimate is true for at least
one, and hence, for generic λ ∈ C. q.e.d.

Under the assumption of Lemma 5.1, we further assume that the
isoparametric hypersurface is not the one constructed by Ozeki and
Takeuchi. Then by Lemma 5.1, away from points of Condition A on
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M+, p0, · · · , p5 form a regular sequence and p0 = · · · = p5 = 0 carves
out an irreducible variety V5. It follows that p0, · · · , p6 form a regular
sequence for any choice of p6 [3, Corollary 1, p. 6]. By (5.2), we also
have

sup
λ∈Q5

rλ ≥ 5.

We know the codimension 2 estimate (5.4) can no longer go through for
k = 6; or else p0, · · · , p7 would be a regular sequence and the isoparamet-
ric hypersurface would be the one constructed by Ozeki and Takeuchi [3,
Proposition 4, p. 11]. Let us understand how and where the codimen-
sion 2 estimate fails in this case.

For k = 6, when (m+,m−) = (7, 8), we record that the a priori
codimension 2 estimate (5.1) is now

(5.11) 8 = m− ≥ 13− j − cj .

CASE I. So clearly the codimension 2 estimate holds when j ≥ 4 since
cj ≥ 1 for j ≤ 4.

CASE II. For j = 3, the codimension 2 estimate goes through as well
as long as cj ≥ 2. So in the following we assume cj = 1. We claim that
the condition in Lemma 4.3, which is that the generic rank of the linear
combinations of B1, · · · , B7 is ≥ 5, is satisfied so that Lemma 3.2 allows
us to employ the refined codimension 2 estimate (5.4), which is now,

(5.12) 8 = m− ≥ 12− j − cj ,
to conclude that the codimension 2 estimate goes through with j = 3
and cj = 1, as follows.

Lemma 5.2. Let C be an irreducible component of Lj. Suppose C is
of codimension 1 in Q5 (i.e., cj = 1). Then there is a λ ∈ C, which is
the 2-plane spanned by ñ0, ñ1, such that there is an ñ2 perpendicular to
ñ0, ñ1 for which B2̃ is of rank at least 5.

Proof. Let S6 be the unit sphere in the linear space spanned by
n0, · · · , n6. Consider the incidence space

I = {(ñ, λ) ∈ S6 × C : ñ ⊥ ñ0, ñ1; λ = span(ñ0, ñ1)}
with the projection π1 and π2 onto the first and second factors, respec-
tively. I is (real) 12-dimensional because for each λ = span(ñ0, ñ1), the
set π−12 (λ) is the unit 4-sphere in the span of ñ2, · · · , ñ6 perpendicular
to ñ0, ñ1.

We show that π1 is surjective. For each ñ in the image of π1, the set
π−11 (ñ) consists of all (ñ, λ), λ = span(ñ0, ñ1) ∈ C, such that ñ ⊥ ñ0, ñ1;
therefore, π−11 (ñ) is the intersection of C and the variety G ' Q4 of
oriented 2-planes in ñ⊥ ' R6 with ñ in the span of n0, · · · , n6 and so
π−11 (ñ) = G ∩ C is (complex) 3-dimensional. As a result, π1(I) is (real)
6-dimensional contained in S6 and so π1 is surjective.
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We can now pick a generic ñ ∈ S6 whose associated G ∩ C recovers
ñ0, ñ1 and designate this ñ to be ñ2. Then B2̃ of Sñ2 assumes generic
rank ≥ 5. q.e.d.

In view of the preceding lemma, if there is a λ ∈ L3 whose spectral
data satisfy the condition in item (1) of Lemma 4.3, then the codimen-
sion 2 estimate goes through since the normal basis cannot be 3-null.

Otherwise, the spectral data of all λ ∈ L3 satisfy the condition in item
(2) of Lemma 4.3. Now, pick a generic point λ ∈ C spanned by n0̃, n1̃.
Let S0̃ and S1̃ be normalized as in (2.4) and (2.5) and extend them to
S0̃ · · · , S6̃. Consider the S5 ⊂ Q5 given by [1 : λ1 : · · · : λ6], where

λ1, · · · , λ6 are purely imaginary. Note that λ = [1 :
√
−1 : 0 : · · · : 0] in

S5 ∩ C. Now,

(5.13) dim(S5 ∩ C) ≥ 5 + 8− 10 = 3,

where 10 is the real dimension of Q5.
This dimension estimate implies that the closure Λ of the irreducible

component of S5 ∩ C containing λ coincides with the unit 3-sphere of
the span of ñ1, ñ4, ñ5, ñ6. This is because by the concluding paragraph
of Remark 3.2, the closure of the irreducible component of S5 ∩ C con-
taining ñ1 is a sphere whose generic ñ is 3-null. Thus, (5.13) implies
that there are at least three such independent ñ, so that there are ex-
actly three such independent ñ, namely, ñ4, ñ5, ñ6 for ñ1, ñ4, ñ5, ñ6 to
bound a 3-sphere, because ñ2 is not 3-null since otherwise by item (2)
of Lemma 4.3 the rank of B2̃ would be 3, contradicting its being ≥ 5 as
said in Lemma 5.2, and, consequently, ñ3 is not 3-null either by virtue
of (5.7). But then item (2) of Lemma 4.3 implies that all linear combi-
nations of B4̃, B5̃, and B6̃ are of the form in (4.1) with the b-block zero.
It follows by item (2) of Lemma 4.3 that a generic point of the quadric
Q3, defined to be the set of 2-planes in the span of ñ0, ñ1, ñ4, ñ5, ñ6, is
contained in C, and moreover, this Q3 is the unique 3-quadric containing
λ in the closure of C (because Λ = S3).

But then, we can take a generic combination of B2̃, · · · , B6̃, which
is of rank 5, and call it B2′ with normal direction n′2. We then go
through the same argument as above to conclude that we can come
up with normal vectors n′4, n

′
5, n
′
6 such that ñ0, ñ1, n

′
4, n
′
5, n
′
6 generate

a Q′3 contained in the closure of C different from the above Q3, both
containing λ. This contradicts the uniqueness of such Q3.

CASE III. For j = 2, Lemma 5.2 enforces item (1) of Lemma 4.2, so
that Lemma 3.2 allows us to warrant the validity of (5.12), where the
right hand side is ≤ 8; with cj ≥ 2 the codimension 2 estimate holds.
Henceforth, we assume cj = 1 and so C ⊂ Q5 given in Lemma 5.2 is
of (complex) dimension 4. The right hand side of (5.12) is 9; we need
to cut down one more dimension for the codimension 2 estimate to go
through. We spell out more details.
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For λ ∈ L2, p0̃ = p1̃ = 0 cuts Sλ in the variety (see Lemma 3.2)

{(X1, X2, Y1, Y2, Z1, Z2)},
where X1 = (x1, · · · , x6) satisfies

(5.14)
6∑

α=1

x2α = 0,

X1 = ±
√
−1Y1, X2 = −Y2 and Z2 depends linearly on X2. Moreover,

for 2 ≤ l ≤ 6,

(5.15) pl∗ =

6,5∑
α=1,p=1

(Slαp +±
√
−1T lαp)xαzp + other terms.

We may assume the displayed sum is nontrivial for l = 2 since 2-nullity
is impossible by item (1) of Lemma 4.2. (5.14) and (5.15) imply that
p0̃ = p2̃ = 0 cuts down one more dimension in Sλ to carve out an
irreducible variety F2 by Lemma I.3 in Appendix I, so that the lower
bound in (5.12), which is now 9, is achieved.

To cut down one more dimension to reach 8 on the right hand side
of (5.12), observe that if Fj , the irreducible variety of Sλ cut out by
p0̃ = pj̃ = 0, 3 ≤ j ≤ 6, is distinct from F2, then one more dimension cut
can be achieved by Lemma I.3 in Appendix I, so that the codimension
2 estimate holds.

So now, we must rule out the case that all Fj , 3 ≤ j ≤ 6, are identical
with F2. Suppose they were all identical. It would then follow by
a similar argument as in (5.7) through (5.10) in Lemma 5.1 that the
displayed part of p4̃, p5̃, p6̃ in (5.15) are all zero. We could then employ
the same arguments immediately following Lemma 5.2 as for j = 3, with
obvious modifications while invoking item (2) of Lemma 4.2, to reach a
contradiction. Thus, generic λ ∈ C satisfies the codimension 2 estimate.

CASE IV. For j = 1, Lemma 4.1 allows us to apply Lemma 3.2 to
obtain (5.12), whose right hand side is 10 obtained by setting p0̃ = p2̃ =
0 as usual.

Now, not all pj̃ , j ≥ 3 are multiples of p2̃ when restricted to Sλ; for

otherwise, we can argue exactly as in (5.8), (5.9) and (5.10) to obtain
p6̃ = 0 when restricted to Sλ so that the basis element ñ6 is 1-null,
which is impossible by Lemma 4.1. So we may assume p2̃ and p3̃ are
linearly independent when restricted to Sλ. Then employing the same
arguments one more time we can conclude that we may assume p2̃, p3̃, p4̃
are linearly independent when restricted to Sλ. Lemma I.2 in Appendix
I then enables us to further cut down 2 more dimensions from the right
hand side of (5.12), so that the codimension 2 estimate holds.

CASE V. Lastly, for j = 0, no bases being 0-null lets us utilize (5.12)
whose right hand side is 11. We may assume p2̃, p3̃, p4̃ (understood to be
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restricted to Sλ in the following) are independent to be in accordance
with item (2) of Corollary 2.1. For otherwise, a nontrivial linear com-
bination of each of the triples (ñ2, ñ3, ñ4), (ñ2, ñ3, ñ5), and (ñ2, ñ3, ñ6)
would result in three independent normal directions n′1, n

′
2, n
′
3 for which

the B and C blocks of the corresponding shape operators Sn′1 , Sn′2 , Sn′3
are zero to violate Corollary 2.1. Lemma I.1 in Appendix I implies that
p3 = p4 = 0 now cuts down two more dimensions from the right hand
side of (5.12), so that the codimension 2 estimate goes through when
dim(C) ≤ 3 (i.e., cj ≥ 2, j = 0). We assume henceforth that dim(C) = 4.
If p5̃ and p6̃ (understood to be restricted to Sλ in the following) are both
dependent on p2̃, p3̃, p4̃, then as before after a basis change we may as-
sume p5̃ and p6̃ are zero. However, this implies that, as in the ending
arguments in Lemma 5.1, through λ there is a unique Q2 in the irre-
ducible component C of L0 where λ belongs. Since dim(C) = 4, we see
as before that any two such quadrics have nonempty intersection in C, a
contradiction. Hence, we may assume that p2̃, · · · , p5̃ are linearly inde-
pendent. Lemma I.1 in Appendix I implies that p3̃ = p4̃ = p5̃ = 0 now
cuts down three more dimensions from the right hand side of (5.12).
That is, the codimension 2 estimate goes through.

It follows that the codimension 2 estimate holds for k = 6 if the
generic rank of rλ ≥ 5 for λ ∈ Q5; the isoparametric hypersurface is
thus the one constructed by Ozeki and Takeuchi. This is impossible.
So, we conclude the following.

Lemma 5.3. Let (m+,m−) = (7, 8). Suppose the isoparametric hy-
persurface is not the one constructed by Ozeki and Takeuchi. Away
from points of Condition A on M+, given an orthonormal pair (n0, n1)
of normal vectors of M+, let Sn0 and Sn1 be normalized as in (2.2), (2.4)
and (2.5). Then the rank of the B1 (and C1) of Sn1 is ≤ 4 for any choice
of n0.

Note that by Corollary 3.2, a generic normal basis is respectively
4-null, 3-null, or 2-null if the generic rank is 4, 3, or 2.

We will in fact establish that the generic rank is 4 in the next section
in Proposition 6.1.

6. Mirror points

Let x0 ∈M+ and let n0, na, a = 1, · · · ,m+, be a normal basis of M+

at x0. Set

x#0 := n0, n#0 := x0.

Of fundamental importance is that x#0 is also a point on M+ with the

normal space Rn#0 ⊕ E0, where E0 is the 0-eigenspace of the shape op-
erator Sn0 at x0, whose basis vectors are denoted by ep, p = 1, · · · ,m+.

The 0-eigenspace of the shape operator S
n#
0

at x#0 is spanned by na, a =
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1, · · · ,m+. Moreover, Sn0 at x0 and S
n#
0

at x#0 share the same (+1)−
and (−1)-eigenspaces E+ and E−, whose basis vectors are denoted by
eα and eµ, 1 ≤ α, µ ≤ m−, respectively.

Accordingly, recall that at x0 ∈ M+, subject to the eigenspace de-
composition of Sn0 , we let

Saαµ := 〈S(eα, eµ), na〉, Saαp := 〈S(eα, ep), na〉, Saµp := 〈S(eµ, ep), na〉,

where S is the 2nd fundamental form at x0. In a parallel fashion, at

x#0 ∈M+, subject to the eigenspace decomposition of S
n#
0

, we let

Spαµ := 〈S#(eα, eµ), ep〉, Spαa := 〈S#(eα, na), ep〉, Spµa := 〈S#(eµ, na), ep〉,

where S# is the second fundamental form at x#0 , with the property [5,
(1), (2), p. 472]

Spαa = Saαp, Spµa = −Saµp.

Note that in general Spαµ 6= Saαµ when a and p are equal in value in
their respective ranges [5, (3), p. 473], which is the reason why the
classification of isoparametric hypersurfaces can be entangling.

Referring to (2.2), where

(6.1) Aa :=
(
Saαµ

)
, Ba :=

(
Saαp
)
, Ca :=

(
Saµp
)
.

Let the counterpart matrices at x#0 and their blocks be denoted by the
same notation with an additional #. Then, for p = 1, · · · ,m+,

(6.2) A#
p :=

(
Spαµ

)
, B#

p =
(
Saαp
)
, C#

p = −
(
Saµp
)
.

We call x#0 the “mirror point” of x0 on M+.
Similarly, set

(6.3) x∗0 := (x0 + n0)/
√

2, n∗0 := (x0 − n0)/
√

2.

x∗0 is a point on M− and n∗0 is normal to M− at x∗0. The normal space
to M− at x∗0 is Rn∗0 ⊕E+. Furthermore, the (+1)-eigenspace E∗+ of the
shape operator Sn∗0 is spanned by n1, · · · , nm+ , the (−1)-eigenspace E∗−
of Sn∗0 is E0, and the 0-eigenspace E∗0 of Sn∗0 is E−.

Referring to (2.2), let the counterpart matrices at x∗0 and their blocks
be denoted by the same notation with an additional *. Then, for α =
1, · · · ,m−,

(6.4) A∗α = −
√

2
(
Saαp
)
, B∗α = −1/

√
2
(
Saαµ

)
, C∗α = −1/

√
2
(
Spαµ

)
.

(Likewise, there are counterpart matrices when we replace α by µ at the
points (x∗0)

# ∈M−.)
We call x∗0 the “mirror point” of x0 on M−. See [4, p. 144], [5, p.

474] for more details.
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Proposition 6.1. Notation as above, we may assume

A∗α =

(
0 0
0 ·

)
, B∗α =

(
· 0
0 ·

)
, C∗α =

(
· 0
0 ·

)
, 1 ≤ α ≤ 4;

A∗α =

(
0 ·
· ·

)
, B∗α =

(
0 ·
· ·

)
, C∗α =

(
0 ·
· ·

)
, 5 ≤ α ≤ 8.

(6.5)

In particular, Lemma 5.3 can be improved to 4-nullity.

Proof. By Lemma 5.3, a generic choice of x and x# can only be r-null

for 1 ≤ r ≤ 4, so that the upper left (8− r)-by-(7− r) block of B#
p and

C#
p are zero for 1 ≤ p ≤ 7. That is,

(6.6) Saαp = Saµp = 0, 1 ≤ α, µ ≤ 8− r, 1 ≤ a ≤ 7− r, ∀p = 1, · · · , 7.
In other words,

(6.7) Ba =

(
0 0
ba ca

)
, 1 ≤ a ≤ 7− r,

for some ba, ca, where the columns are indexed by p and the upper left
block is of size (8− r)-by-(7− r). (Likewise, Ca are of the same form.)

We normalize A1 and B1 as in (2.4) and (2.5). The proof of Corol-
lary 2.1 implies that

(6.8) Aa =

(
za 0
0 ·

)
, 2 ≤ a ≤ 7− r,

where the upper left block is of size (8− r)-by-(8− r) with

(6.9) za = −ztra , zazb + zbza = −2δabI, 2 ≤ a, b ≤ 7− r.
That is, we have a Clifford C6−r-module R8−r for 1 ≤ r ≤ 4; this
is possible only when r = 4. In particular, generic points of M+ are
4-null.

With r = 4 in place, note that, by (6.1) and (6.4), (6.8) is equivalent
to

B∗α =

(
hα 0
kα ·

)
, α ≤ 4; B∗α =

(
0 ·
· ·

)
, 5 ≤ α ≤ 8

for some hα, kα. Now the 4-nullity at x is

(6.10) Ba =

(
0 ·
· ·

)
, ∀a = 1, · · · , 7.

That is,

(6.11) Saαp = 0, 1 ≤ α ≤ 4, 1 ≤ p ≤ 3, ∀a = 1, · · · , 7.
Putting (6.6) and (6.11) together, we obtain

A∗α =

(
0 0
0 ·

)
, 1 ≤ α ≤ 4.

That the upper left corner of A∗α is zero for α ≥ 5 is equivalent to
that the lower left block of Ba in (6.7) is zero for 1 ≤ a ≤ 3. To show
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the latter, item (1) of Corollary 2.1 implies that there is a matrix Bj ,
for some j ≥ 4, of the form

(6.12) Bj =

(
0 d
b c

)
, d4×3 6= 0.

Consider

E := uB1+vB2+wBj =

(
0 wd

vβ + wb uσ + vγ + wc

)
, u2+v2+w2 = 1,

where we set β := b2 and γ := c2 to suppress the index 2 for B2 in (6.7).
E is of rank at most 4, and is of rank 4 for u close to 1, so that the
solution to the equation(

0 wd
vβ + wb uσ + vγ + wc

)(
x
y

)
= 0,

is of dimension 3 for u close to 1. This amounts to

wdy = 0, (vβ + wb)x+ (uσ + vγ + wc)y = 0.

Since uσ+ vγ+wc is invertible for u close to 1, we can solve y in terms
the 3-dimensional x and insert it into dy = 0 (for small w 6= 0) to yield

d(uσ + vγ + wc)−1(vβ + wb) = 0,

whose Taylor expansion reads
(6.13)
d(I− (v′σ−1γ+w′σ−1c) + (v′σ−1γ+w′σ−1c)2−· · · )σ−1(v′β+w′b) = 0,

where v′ = v/u and w′ = w/u, from which we can extract

(6.14) dσ−1β = 0.

That is, the column space of σ−1β is in the kernel of d. We thus conclude
that

(6.15) the column space of σ−1β ⊂ ∩7j=1 kernel(dj),

where

Bj :=

(
0 dj
bj cj

)
.

We claim that ∩7j=1 kernel(dj) is of dimension at most 1. To this
end, suppose the intersection is of dimension l. Reparametrizing, we
may assume the first l columns of dj are zero for all j = 1, · · · , 7, which
amounts to

Saαp = 0, 1 ≤ α ≤ 4, 4 ≤ p ≤ 3 + l, ∀a = 1, · · · , 7.

This is equivalent to

B#
p =

(
0 0
· ·

)
, p = 4, · · · , 3 + l,
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where the 0 rows are of size 4-by-7. On the other hand, (6.10) is equiv-
alent to

B#
p =

(
0 0
· ·

)
, p = 1, 2, 3.

Therefore, normalizing B#
1 as in (2.4), we have that the top four rows

of Bj , 2 ≤ j ≤ 3 + l, are zero. But then Corollary 2.1 implies that l ≤ 1,
because only Clifford C2, when l = 0, and Clifford C3, when l = 1, can
act on R4. This proves the claim.

When l = 0, we have β = 0 by (6.15), i.e., the lower left block of Ba
in (6.7) is zero for 1 ≤ a ≤ 3. This is indeed true, as follows.

Sublemma 6.1. l = 0 generically over M+.

Proof. Suppose that generically l = 1 over M+. This is equivalent to
saying, by considering generic x and x#, that there is an index a ≥ 4,
say, a = 4, and an index p ≥ 4, say, p = 4, such that

Sa=4
αp = Saα p=4 = 0, 1 ≤ α ≤ 4, ∀a, p = 1, · · · , 7.

That is, for each α ≤ 4, the first four columns and rows of the 7-by-7
matrix A∗α in (6.5) are zero, i.e.,

(6.16) A∗α =

(
0 0
0 δα

)
, 1 ≤ α ≤ 4,

where δα is of size 3-by-3.
Note that in (6.9) we may assume that z1, z2 and z3 are respectively

the matrix representation of the quaternionic multiplication of the basis
elements i, j and k on the left of H; in doing so we do not assume z1 = I
so that the representation will be notationally more consistent, and it
will not affect the subsequent arguments. Accordingly, we have

z1 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , z2 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 ,

z3 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 ,

according to which

h1 =

0 −1 0 0
0 0 −1 0
0 0 0 −1

 /
√

2, h2 =

1 0 0 0
0 0 0 1
0 0 −1 0

 /
√

2,

h3 =

0 0 0 −1
1 0 0 0
0 1 0 0

 /
√

2, h4 =

0 0 1 0
0 −1 0 0
1 0 0 0

 /
√

2.
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Moreover, we have (in B∗α)

hαk
tr
α = 0, hαh

tr
α = I/2, α ≤ 4,

by (2.3a) when we set i = j = α, where hα is of size 3-by-4 and kα is
of size 4-by-4, from which we read off that the only possibly nonzero
column of kα is the αth one, i.e.,

kα =
(
εαjlδlα

)
, 1 ≤ α, j, l ≤ 4,

for some εαjl ∈ R. Now (2.3a) applied to 1 ≤ α 6= β ≤ 4 gives

hαk
tr
β + hβk

tr
α = 0,

which implies the four possibly nonzero columns are all identical, i.e.,

(6.17) ε1j1 = ε2j2 = ε3j3 = ε4j4, 1 ≤ j ≤ 4.

By performing a coordinate change on the a-indexes, 4 ≤ a ≤ 7, index-
ing the rows of B∗a, we may assume only the first components of these
four columns are possibly nonzero, i.e.,

(6.18) ε1j1 = ε2j2 = ε3j3 = ε4j4 = 0, 2 ≤ j ≤ 4.

The same holds for C∗α, α ≤ 4, as well by changing the p-indexes, 4 ≤
p ≤ 8. In fact, (2.3f) implies that we may further assume the nonzero
entries of these columns for both B∗α and C∗α are identical.

Now, (2.3a) with i = j = α ≤ 4, we derive

(6.19) B∗α(B∗α)tr =

(
I/2 0
0 Dα

)
, Dα =

(
1/2 0
0 eα

)
,

where eα is of size 3-by-3, in light of (6.16). Thus we may rearrange
indexes (see [1, Lemma 49, p. 64]) to assume

(6.20) A∗α =

(
0 0
0 δα

)
, B∗1 = C∗1 =

(
0 I/

√
2 0

0 0
√
D

)
, α ≤ 4,

where
√
D is diagonal of the form

(6.21)
√
D = diag(1/

√
2, 1/
√

2, b, b),

given the spectral data (σ,∆) since δα is of size 3-by-3, where I is 3-by-3.

Suppose
√
D is nonsingular. δ1 is skew-symmetric as it is part of

∆. But then because nonsingularity of D is a generic condition, it
follows that each linear combination of δα, α ≤ 4, is skew-symmetric of
size 3-by-3 when suitably normalized, which implies that generic linear
combinations of δα are of rank 2, from which we see, for a generic point
c := (c1, · · · , c4) ∈ S3,

δc := c1δ1 + · · ·+ c4δ4,

that there is a unique c′ on S2 which is the eigen direction of δc with
eigenvalue 0.
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Without loss of generality, let us assume the map

F : S3 → S2, c→ c′

is surjective (more precisely, the domain and target spaces of F are
projective spaces, though this does not create a problem); if F is not
surjective the preimage will be of even larger dimension to our advan-
tage. Then the closure C of the preimage F−1(c′) is a 1-dimensional
circle, because for c ∈ F−1(c′), the plane perpendicular to c′, which is
an eigenspace of δc(δc)

tr, is fixed, from which we conclude that there
is a unique point c0 on C for which δc0 = 0, because the spectral data
stipulate that all δc for c ∈ F−1(c′) be of the same form as δ4 below.
This means that we have an S2 worth of δc0 , one for each c′, which are
identically zero, so that we may assume

δ1 = δ2 = δ3 = 0, δ4 =

0 0 0
0 0 τ
0 −τ 0


for some 0 < τ ≤ 1/

√
2. But then this implies that the first five columns

and rows of Aα, α ≤ 4, are zero, which contradicts l ≤ 1.
On the other hand, suppose generic Dα is singular, then

Dα ∼ diag(1/2, 1/2, 1/2, 0), or diag(1/2, 1/2, 0, 0).

If it is the former case, then δc has a 2-dimensional eigenspace with
eigenvalue 0. Let us denote by c′ the direction that is perpendicular to
the 2-dimensional 0-eigenspace of δc; the spectral data stipulate that δc
be of the form

δc =

0 0 0
0 0 0
0 0 x

 , x2 = 1.

We are done by the same reasoning as in the nonsingular case. If it is
the latter, then ec, whose components are given in the second matrix
in (6.19), serves the role of δc in the former case, from which we conclude
that there are ec = 0, contradicting the given nonzero spectral data.

In conclusion, l = 0 generically. q.e.d.

As a consequence of the sublemma, the lower left block of Ba = 0
in (6.7) for 1 ≤ a ≤ 3, or equivalently, the upper left corner of A∗α = 0
for α ≥ 5, for a generic choice of x and x#.

We will show in Lemma 6.1 below that the lower left blocks of B∗α
(and C∗α), α ≤ 4, are zero through the next two sublemmas. q.e.d.

Remark 6.1. Intrinsically, in the preceding corollary, let N∗ ' H ⊂
E+ be the kernel of Btr

1 , let V ∗0 ' H ⊂ E∗− be the kernel of Ctr1 , let
V ∗− ' Im(H) ⊂ E∗− be the kernel of B1, and let V ∗+ ' Im(H) ⊂ E∗+
be the kernel of B#

1 . Then these four spaces parametrize the upper left
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blocks of the matrices in the corollary, where N∗ is parametrized by
1 ≤ α ≤ 4, V ∗0 by 1 ≤ µ ≤ 4, V ∗+ by 1 ≤ a ≤ 3, and V ∗− by 1 ≤ p ≤ 3.

Sublemma 6.2. Notation as in the preceding remark, let

(6.22) V := V ∗+ ⊕ V ∗− ⊕ V ∗0 ⊂ E∗+ ⊕ E∗− ⊕ E∗0 := E.

Let p∗j |V and q∗j |V , 0 ≤ j ≤ m− = 8 be the components of the second
and third fundamental forms of M− at x∗ evaluated on V , where the
indexes 1 ≤ j ≤ 4 range through N∗, and as always j = 0 indexes the
components corresponding to n∗0. Then we have

p∗j |V = 0, j ≥ 5,

q∗j |V = 0, 0 ≤ j ≤ 4.
(6.23)

Proof. The first identity follows from the vanishing of the upper left
blocks of the last three matrices in the statement of Corollary 6.1.

The second follows from the normal covariant derivative of the second
fundamental form S∗ at x∗ ∈M−

(6.24)
∑
k

(S∗)bij;k ω
k = d(S∗)bij −

∑
t

(S∗)btj θ
t
i −
∑
t

(S∗)bit θ
t
j ,

where (S∗)bij;k are the components of q∗b , we assume the normal connec-

tion is zero at the point of calculation, and ωj and θji are the coframe
and connection forms.

We indicate one calculation for illustration. Let indexes i, j ≤ 3 and
k ≤ 4 denote respectively those for E∗+, E

∗
− and E∗0 . Then for 1 ≤ b ≤ 4,

the right hand side of (6.24) is zero by the vanishing blocks of the first
matrix in (6.5), knowing that (S∗)buv = 0 whenever u and v index the
same eigenspace and that θki and θkj vanish on E∗0 (see [1, (4.18), p. 14]

for how to calculate θji in general).
On the other hand, the cubic polynomial

(6.25) q∗0|V =
∑

p≤4,i,j≤3
(S∗)pij zp xi yj = 0,

where p indexes the corresponding normal directions at (x∗)#, the mir-
ror point of x∗ on M−, and i, j ≤ 3 index the E∗+ and E∗−, respectively.
The vanishing of the identity follows from that of the upper left block
of the first matrix in (6.5) when we replace α by µ. q.e.d.

Sublemma 6.3. Let 1, i, j,k be the standard basis in H. Write

v = x⊕ y ⊕ z

respecting the direct sum of V in (6.22), and write

p∗ := p∗1|V 1 + p∗2|V i + p∗3|V j + p∗4|V k.
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Then

(6.26) p∗(v, v) = −
√

2(xz + y ◦ z),
where y ◦ z = yz or zy (quaternion multiplication).

Proof. This follows from (6.9) and the corresponding identity for the

matrix A#
p , 1 ≤ p ≤ 3. See [4, Remark 1, p. 140, and Proposition 1, p.

146] for more details. q.e.d.

Lemma 6.1. q∗j |V = 0,∀j. In particular, the lower left blocks of B∗α
and C∗α, α ≤ 4, in (6.5) are zero, as said in the end of the proof of
Proposition 6.1.

Proof. By the identity [28, (3-8), p. 530]

16(
8∑

a=0

(q∗a)
2) = 16G(

∑
i

u2i )− 〈∇G,∇G〉,

where G :=
∑8

a=0(p
∗
a)

2 and ui parametrize the tangential directions
at x∗. (In [28, (2.1), p. 518], the notation < G,G >:= 〈∇G,∇G〉
is used instead.) A straightforward calculation by the first identity
in (6.23), (6.17), and (6.18) gives

(6.27)

16(
8∑

a=0

(q∗a|V )2) = 16G|V (|x|2 + |y|2 + |z|2)− 〈∇(G|V ),∇(G|V )〉

− 4c2(
4∑

a=1

p∗a|V za)2,

where x, y, z are given in the preceding corollary, c = (S∗)a5a, 1 ≤ a ≤ 4,
and the factor 4 comes from the contribution of the (5, a)-entries, which
are equal in value, of both B∗α and C∗α, α ≤ 4, in (6.5) (see also (6.17)
and (6.18)).

In (6.26), if

(6.28) p∗(v, v) = −
√

2(xz + zy),

then the sum of the first two terms on the right hand side of (6.27) van-
ishes, because it is exactly equal to the normed square of the third fun-
damental form of the homogeneous isoparametric hypersurface with
multiplicity pair (3, 4), which is zero. But then (6.27) implies that c = 0
and q∗a|V = 0 for all 0 ≤ a ≤ 8.

Sublemma 6.4. In (6.26), it is impossible that

(6.29) p∗(v, v) = −
√

2(xz + yz).

Proof. Assume the contrary. Then the sum of the first two terms on
the right hand side of (6.27) is

|xy − yx|2|z|2,
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since it is the normed square of the third fundamental form of the in-
homogeneous isoparametric hypersurface with multiplicity pair (3, 4).
Setting x = y in (6.29), we obtain once more that c = 0, because
p∗(v, v) = −2

√
2xz makes the last term on the right hand side of (6.27)

nonzero if c 6= 0, which is impossible.
In particular, the lower left blocks of B∗α and C∗α, α ≤ 4, in (6.5) are

zero.
Now that

16(
8∑

a=0

(q∗a|V )2) = |xy − yx|2|z|2

in the latter case, we see by the second identity of (6.23) that

(6.30) 16(
8∑

a=5

(q∗a|V )2) = |xy − yx|2|z|2.

We will derive a contradiction. First, observe that (6.30) implies that
q∗a|V , a ≥ 5, are all multilinear in x, y, z and in fact after a coordinate
change of z we may assume

(6.31) q∗5|V 1 + q∗6|V i + q∗7|V j + q∗8|V k = (xy − yx)z.

This is because setting x = y in (6.30), we see each q∗a|V , a ≥ 5, is
skew-symmetric in x and y and linear in z, so that q∗a|V are of the form

q∗a|V = (x2y3 − x3y2)
∑
b

ca1bzb + (x3y1 − x1y3)
∑
b

ca2bzb

+ (x1y2 − x2y1)
∑
b

ca3bzb,

for 1 ≤ b ≤ 4, 5 ≤ a ≤ 8, where

xy − yx = (x2y3 − x3y2)i + (x3y1 − x1y3)j + (x1y2 − x2y1)k.
The right hand side of (6.30) then asserts that the three 4-by-4 matrices(
caib
)
, 1 ≤ i ≤ 3, 1 ≤ a, b ≤ 4, form a Clifford system, and hence there

follows (6.31). So now

(6.32)
q∗a = 〈(xy − yx)z, fa〉+
terms that involve at least one variable beyond those of x, y, z,

for a ≥ 5, where
(f5, f6, f7, f8) := (1, i, j,k),

while for a ≥ 5,

p∗a has no terms with only variables of x, y, z,

by the first identity in (6.23). Meanwhile, by the block form of B∗α, α ≤
4, in (6.5) we see

p∗a consists of terms with only variables of x, z (or y, z) and of terms

with only variables beyond those of x, y, z,
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for 1 ≤ a ≤ 4. Therefore, from the identity [28, (3-7), p. 529]

(6.33)

8∑
a=0

p∗aq
∗
a = 0,

we deduce, when we set

(e1, e2, e3, e4) := (1, i, j,k)

and substitute (6.32), that

(6.34)

8∑
a=5

〈(ebec − eceb)ep, fa〉Sab,c′ = 0,

where we set x = eb, y = ec, z = ep, 2 ≤ b, c ≤ 4, 1 ≤ p ≤ 4, and c′ ≥ 5,
and

(
Sabc′
)

represents the upper right block of A∗a, a ≥ 5, in (6.5). Here,
we also make use of the fact that for 1 ≤ i ≤ 4, q∗i has no terms involving
both variables of x and y, while q∗0 has no terms involving both x and z
(or y and z), together with a third variable beyond x, y, z in either case,
so that it is not a possibility to cancel the left hand side of (6.34) by
the first five terms in (6.33); this follows from (6.24), (6.25) without the
restriction to V , and the matrix types in (6.5). Consequently, we derive

Sab,c′ = 0, a, c′ ≥ 5, b ≤ 4,

and likewise,
Sab′,c = 0, a, b′ ≥ 5, c ≤ 4;

that is, the only possibly nonzero blocks of A∗α, α ≥ 5, in (6.5) are at
the lower right corner.

A∗α =

(
0 0
0 wα

)
, α ≥ 5.

But then (6.24) establishes that

q∗a|V = 0, a ≥ 5.

This is a contradiction to (6.32). q.e.d.

Hence, we conclude by the sublemma that only (6.28) is valid, and
thus q∗a|V = 0 for all 0 ≤ a ≤ 8. q.e.d.

Corollary 6.1. Let M be an isoparametric hypersurface with multi-
plicity pair (m+,m−) = (7, 8) not constructed by Ozeki and Takeuchi.
Given any point p ∈ M with its unit normal n and any vector v at p
tangent to a curvature surface (which is a sphere) of dimension 7, there
is a 16-dimensional Euclidean space passing through p, n and v such that
it cuts M in a homogeneous isoparametric hypersurface Z with multi-
plicity pair (m+,m−) = (3, 4) in the 15-dimensional sphere.

Proof. Notation as above, the 16-dimensional Euclidean space is just
Rx∗⊕Rn∗⊕V , where x∗ and n∗ are given in (6.3) and V is given in (6.22),



ISOPARAMETRIC HYPERSURFACE 285

whose existence is generically established in Proposition 6.1, where p
and n span the same plane as x∗ and n∗0, or as x and n0, and v is the
vector n1 in the normal basis n0, n1, · · · , n7 at the focal point x with the
normalization given in (2.4) and (2.5). The homogeneity of the resulting
manifold Z follows from Lemma 6.1. Taking limit, the existence of the
16-dimensional Euclidean space is established everywhere. q.e.d.

The preceding corollary points to that the isoparametric hypersurface
should be one of the two constructed by Ferus, Karcher, and Münzner.
We will prove in the next section that this is indeed the case.

7. The hypersurface is one constructed by Ferus, Karcher,
and Münzner

When both x and x# are generic in M+ with the chosen 4-nullity
bases as specified in Remark 6.1, it is more convenient to consider the
conversion of (6.5) from x∗ to x to obtain
(7.1)

Aa =

(
za 0
0 wa

)
, Ba =

(
0 0
0 ca

)
, Ca =

(
0 0
0 fa

)
, 1 ≤ a ≤ 3,

Aa =

(
0 βa
γa δa

)
, Ba =

(
0 da
ba ca

)
, Ca =

(
0 ga
ba fa

)
, 4 ≤ a ≤ 7.

Observe that the matrices
(√

2ca wa
)
, 1 ≤ a ≤ 3, form a Clifford

multiplication of type [3, 4, 8].

(7.2) F : R3 × R4 → R8, F (ua, vα) = the αth row of
(√

2ca wa
)
.

This is the starting point of our remaining task to pinpoint the char-
acteristic features of the undetermined blocks of the matrices in (7.1).
In [8], we have classified the orthogonal multiplications of type [3, 4, 8],
which we will apply to understand (7.1).

Lemma 7.1. Given four 4-by-3 matrices bi, 4 ≤ i ≤ 7, consider the
linear combinations

b(x) := x1b4 + · · ·+ x4b7.

Suppose the first column of b(x) is

x =
(
x1 x2 x3 x4

)tr
(more generally, suppose the four components of the first column are
linearly independent linear polynomials), and suppose generic b(x) is of
rank = 2. Then we may assume, e.g., the third columns of bi, 4 ≤ i ≤ 7,
are zero after a simultaneous column operation, i.e., the three column
vectors of bi are subject to the same linear constraint for all 4 ≤ i ≤ 7.

Proof. This follows from the fact that the Koszul complex

0 −→ R
x∧−→ Λ1R4 x∧−→ Λ2R4 x∧−→ Λ3R4 x∧−→ Λ4R4 → 0,
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where R := R[x1, x2, x3, x4] is the polynomial ring in four variables and
x∧ means taking the wedge product against x, is a free resolution. The
assumption that b(x) is generically of rank 2 means that the wedge
product of second column v2 and third column v3 of b(x) lives in the
kernel of

−→ Λ2R4 x∧−→ Λ3R4, v2 ∧ v3 7→ x ∧ (v2 ∧ v3) = 0,

so that either v2 ∧ v3 = 0, in which case they differ by a constant
multiple, or v2 ∧ v3 = x ∧ w for some w ∈ R4, so that we may assume
the first two columns of b(x) are both x up to a constant multiple.
q.e.d.

Remark 7.1. When the generic rank of b(x) is 1, it is clear that
two column vectors of b(x) are constant multiples of the remaining one
because all entries are linear.

Lemma 7.2. Assume the isoparametric hypersurface is not of the
type constructed by Ozeki and Takeuchi. Away from points of Condition
A in M+, let (n0, n1) be 4-null with the decomposition in (6.5) (expressed
over M− with the conversion to the corresponding data over M+ by
(6.1), (6.2), (6.4)). Then for 4 ≤ a ≤ 7 over M+, the generic linear
combination of the 4-by-3 matrices ba in

Ba =

(
0 da
ba ca

)
is of rank ≤ 2, so that by Lemma 7.1 we may assume ba, 4 ≤ a ≤ 7,
share a common zero column. As a consequence, the spectral data (σ,∆)
is such that σ = s Id for some s > 0.

Proof. At generic x and x# in M+ with 4-nullity, ba cannot be all zero
for 4 ≤ a ≤ 7 at x. Otherwise, translated to the data at x# by (6.1)

and (6.2) (see the following NOTE), the matrices B#
p , 1 ≤ p ≤ 3, which

are of the form

(7.3) B#
p =

(
0 0

0 c#p

)
,

would be such that c#p = 0, 1 ≤ p ≤ 3, which contradicts the 4-nullity

of B#
1 .

NOTE: When viewed at x# the first columns of b4, · · · , b7 are, respec-

tively, the first, second, third, and fourth columns of c#1 , i.e.,

c#1 =


σ1 0 0 0
0 σ1 0 0
0 0 σ2 0
0 0 0 σ2

 ,
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in (7.3). Similarly, the second (vs. third) columns of b4, · · · , b7 are the

respective columns of c#2 (vs. c#3 ).

Returning to the proof, suppose, e.g., b4 is of rank 3. Since

(7.4) d4σ
−1b4 = 0,

which holds by an analysis similar to the one following (6.13), d4 is
perpendicular to the 3-dimensional column space of σ−1b4. Hence by
row operations without changing the spectral data in the normalized
B1, we may assume the only nonzero row of d4 is the first one.

We claim that c4 = f4. To prove the claim, observe that we have

σ(c4 − f4) = −(c4 − f4)trσ, btr4 (c4 − f4) = 0,

which are (3.19d) and the first equation of (4.6), which together with
the fact that b4 is of rank 3 force c4 − f4 = 0. It follows that

dtr4 d4 = gtr4 g4

by the second equation of (4.6), so that g4 is of the same rank as d4,
which is ≤ 1. Now the formula A4A

tr
4 + 2B4B

tr
4 = I gives

β4β
tr
4 + 2d4d

tr
4 = Id,

where as usual

A4 =

(
0 β4
γ4 δ4

)
,

so that β4β
tr
4 = I − 2d4d

tr
4 is diagonal of rank at least 3 since the only

nonzero row of d4 is the first one. But then the identity

g4σ
−1 = d4σ

−1∆− β4,
which is (3.19a), gives that g4 is of rank at least 3. This is a contradic-
tion.

It follows that the generic rank of linear combination

b(x) := x1b4 + · · ·+ x4b7

is ≤ 2, so that by Lemma 7.1 we may assume a fixed column of b4, · · · , b7
is identically zero. Note that the condition in Lemma 7.1 that the four
components of the first column of b(x) are linearly independent linear

polynomials is satisfied by a look at c#1 in the above NOTE. Therefore,

when viewed at x#, we conclude by Lemma 7.1 that one of the c#p , is

identically zero; we may assume c#3 = 0.
It follows from [8, Proposition 1, Proposition 2, Corollary 2, Remark

3] that

(7.5) σ1 = σ2 := ε, so, c#1 = ε Id.

Indeed, in the terminology of [8], our orthogonal multiplication lives
in the “grand moduli” (see the following remark) of the moduli space
of orthogonal multiplications of type [3, 4, 8], in which σ1 = σ2; it is
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a consequence, following the notation of [8], that µ = −ν for which
σ21 = 1− µ2 and σ22 = 1− ν2, where µ and ν are certain inner products
associated with the orthogonal multiplication; see the following remark
for the precise definition of µ and ν.

Swapping x# and x by a symmetric argument, we conclude that
c1 = s Id for some s > 0. q.e.d.

Remark 7.2. We spell out in some details the essentials in [8] for
easier reading. Let F : R3 × R4 → R8 be an orthogonal multiplication,
where R3 is spanned by an orthonormal basis ui, 1 ≤ i ≤ 3, and R4 is
spanned by an orthonormal basis vj , 1 ≤ j ≤ 4. Set

ui ◦ vj := F (ui, vj), Fij,kl := 〈ui ◦ vj , uk ◦ vl〉,

where 〈·, ·〉 denotes the inner product of R8. Then F being orthogonal
implies that

(7.6)

Fij,kl = Fkl,ij , ∀i, j, k, l,
Fij,il = Fli,ji = 0, j 6= l,

Fij,kl = −Fil,kj , i 6= k,

Fij,kl = −Fkj,il, j 6= l,

from which there follows that

[ij, kl] := Fik,jl

is skew-symmetric in (i, j) and (k, l) (see [8, (1), (2)]). In other words,
we can define the matrix

C : ∧2(R4)→ ∧2(R3), C :=
(
[ij, kl]

)
.

Since ∧2(R4) ' ∧2(R3) ⊕ ∧2(R3), we may assume, after a coordinate
change of R4, that the 3-by-6 matrix C is of the form C =

(
A B

)
,

where A and B are of size 3-by-3 and A is diagonal and B is upper
triangular. This sets up certain constraints on Fij,kl (see [8, (12), (13)]),

(7.7)
F31,12 = F33,14 = 0, F31,22 = F33,24 = 0, F31,23 = F34,22 = 0,

F11,23 + F14,22 = F11,24 + F12,23 = F31,14 + F32,13 = 0.

With the constraints we can introduce an appropriate orthonormal basis
η1, · · · , η8 (denoted by u1, · · · , u8 in [8]) relative to which, if we set

Fa := the matrix whose bth row is ua ◦ vb,

we have

Fa :=
(
ca wa

)
, 1 ≤ a ≤ 3,

where ca and wa are of size 4-by-4, and, moreover,

c3 = 0, w3 = Id,
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whereas

c1 :=


σ1 0 0 0
0 σ2 0 0
0 0 σ2 0
0 0 0 σ1

 , w1 =


0 0 0 −µ
0 0 −ν 0
0 ν 0 0
µ 0 0 0

 ,

where

µ = F24,31, ν = F23,32, σ1 =
√

1− µ2, σ2 =
√

1− ν2,
and
c2 =

−βµ/σ1 (F11,22 − αν)/σ2 F11,23/σ2 F11,24/σ1
(F12,21 − µγ)/σ1 βν/σ2 F12,23/σ2 F12,24/σ1

F13,21/σ1 F13,22/σ2 βν/σ2 (F13,24 − αµ)/σ1
F14,21/σ1 F14,22/σ2 (F14,23 − γν)/σ2 −βµ/σ1

,
while

w2 =


0 0 −α −β
0 0 β −γ
α −β 0 0
β γ 0 0

 , α := F31,13, β := F31,14, γ := F32,14.

(see [8, (15), (16)]).
The moduli space of orthogonal multiplications of type [3, 4, 8], under

the domain and range equivalence, is thus parametrized by the Fij,kl in
the above data of Fa, 1 ≤ a ≤ 3.

The grand moduli of the moduli space of orthogonal multiplications
of type [3, 4, 8] is where α = γ and µ = −ν, in which case, on the one
hand,

(7.8) σ1 = σ2 := s, so, c1 = s Id,

which is exactly (7.5) at x#, and, on the other hand, (7.6) and (7.7)
applied to c2 implies that

c2 = −βµ
s
Id+M,

in the case s > 0, where M is skew-symmetric ( see [8, Remark 1]). The
Hurwitz condition

c2c
tr
2 + w2w

tr
2 = Id

is reduced to

MM tr = θ2 Id, θ =

√
1− β2µ2

s2
− α2, s =

√
1− µ2.

Therefore, with a coordinate change we may assume

(7.9) c2 = a Id+ b

(
I 0
0 ±I

)
, I =

(
0 −1
1 0

)
for some a and b.
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In the isoparametric situation, the range equivalence of an orthogo-
nal multiplication is under the more rigid SO(4) ⊕ SO(4) equivalence,
because (7.1) stipulates how the orthogonal multiplication is defined
in (7.2), in which case the conclusions in [8, Proposition 1, Proposition
2, Corollary 2, Remark 3] ensure that b 6= 0 in (7.9).

Remark 7.3. We summarize before we proceed further. When both
x and x# are generic inM+ with the chosen 4-nullity bases as specified in
Remark 6.1, we have (7.1) where, interchanging x and x# by symmetry,
we may assume, by (7.8) and (7.9), that

c#1 = ε I, c#3 = 0

for some ε > 0.
Moreover, the third columns of the four 4-by-3 matrices b4, · · · , b7

at x are zero in accordance with c#3 = 0. By (7.9) applied at x#, the

matrix c#2 is of the form

(7.10) c#2 = a Id+ b

(
I 0
0 ±I

)
, I =

(
0 −1
1 0

)
, b 6= 0,

for some a and b; with c#1 = ε Id and c#3 = 0, the three matrices can be
converted, by NOTE in Lemma 7.2, to the data

b4 =


ε a 0
0 b 0
0 0 0
0 0 0

 , b5 =


0 −b 0
ε a 0
0 0 0
0 0 0

 ,

(7.11)

b6 =


0 0 0
0 0 0
ε a 0
0 ±b 0

 , b7 =


0 0 0
0 0 0
0 ∓b 0
ε a 0


at x, whose linear combinations are of generic rank 2.

In particular, a glance at Ba, 1 ≤ a ≤ 7, in (7.1) shows that their
third columns are all zero, or equivalently, that there is a common kernel
vector for all the shape operators Sn for all n.

Lemma 7.3. Let (m+,m−) = (7, 8). Assume the isoparametric hy-
persurface is not the one constructed by Ozeki and Takeuchi. Then at
each point of M+ the intersections of the kernels of all the shape oper-
ators is nontrivial, which is generically of dimension 1.

Proof. Lemma 7.2 and Remark 7.3 establish the existence of such
a common eigenvector for generic points of M+, and so the existence
is true everywhere by taking limit. Generically the dimension of this
common eigenspace must be 1-dimensional because generic linear com-
binations of b4, · · · , b7 is of rank 2 as said in Remark 7.3. q.e.d.
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Remark 7.4. The preceding lemma gives us a clear geometric pic-
ture. Namely, when the isoparametric hypersurface with multiplicities
(m+,m−) = (7, 8) is not the one constructed by Ozeki and Takeuchi,
consider the quadric Q6 of oriented 2-planes in the normal space at a
generic point x ∈ M+. We know a generic element (n0, n1) in Q6 is 4-
null, or equivalently, the intersection V of the kernels of Sn0 and Sn1 is
3-dimensional. By the preceding lemma, there is a nonzero unit vector
v ∈ V common to all kernels of the shape operators at x. We choose
an orthonormal basis e1, e2, e3 = v spanning V . When viewed at the
mirror point x# = n0 ∈ M+, e1, e2, e3 are converted to three normal

basis vectors of which the three matrices c#1 , c
#
2 , c

#
3 given in (7.1) are of

the form c#1 = ε Id, c#3 = 0, and c#2 is given in (7.10).
By a symmetric reasoning, all this holds true as well at x when both

x and x# are generic.

Lemma 7.4. A generic linear combination

d(x) := x1d4 + · · ·+ x4d7

of d4, · · · , d7 is of rank ≤ 2. In particular, we may assume the last two
rows of d(x) are zero.

Proof. b(x) is of generic rank 2 by the preceding lemma, which is
explicitly given in (7.11). On the other hand, similar to (7.4), we have

(7.12) d(x)b(x) = 0

(and similarly g(x)b(x) = 0), knowing now σ = s Id, so that each row
ri(x), 1 ≤ i ≤ 4, of d(x) annihilates b(x). Hence, it must be that

ri(x) =
(
x1 x2 x3 x4

)
Mi,

where Mi is a skew-symmetric constant matrix, because the first column
of b(x) is

(
x1 x2 x3 x4

)
, which is a regular sequence [3, (5), p. 7], [6,

p. 93]. On the other hand, the same sort of relation must hold true for
the second column of b(x) as well. That is,

ri(x) =
(
x1 x2 x3 x4

)
Γ(Γ−1Mi),

where Γ−1Mi is skew-symmetric,

Γ :=


a b 0 0
−b a 0 0
0 0 a ±b
0 0 ∓b a

 ,

and
(
x1 x2 x3 x4

)
Γ is the second column of b(x) transposed in light

of (7.11). It follows that

Mi =

(
0 U
−U tr 0

)
, U :=

(
u v
−v u

)
.
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Therefore, all four rows of d(x) are linearly spanned by the two vectors

(7.13)

(
−x3 −x4 x1 x2

)
,(

−x4 x3 −x2 x1
)
.

q.e.d.

Lemma 7.5. With the condition that the last two rows of d(x) are
zero, we may assume the first two rows of g(x) are zero.

Proof. We know σ = sI by Lemma 7.2 and

∆ =

(
τJ 0
0 τJ

)
, J =

(
0 1
−1 0

)
, τ =

√
1− 2s2

for some s. By (7.1) and the fact that

A(x)A(x)tr + 2B(x)B(x)tr = I,

where A(x) = x1A4 + · · · + x4A7 and likewise for B(x), it follows by
comparing the upper left block of the involved matrices that we obtain

(7.14) β(x)βtr(x) + 2d(x)d(x)tr = I.

We employ

(7.15) β(x) = s−1(d(x)∆− g(x)),

which is (3.19a), to derive

s2β(x)β(x)tr

= (d(x)∆− g(x))(d(x)∆− g(x))tr

= τ2d(x)d(x)tr + g(x)g(x)tr − (d(x)∆g(x)tr − g(x)∆d(x)tr),

so that with τ2 = 1− 2s2 and (7.14) we obtain

s2I = d(x)d(x)tr + g(x)g(x)tr − (d(x)∆g(x)tr − g(x)∆d(x)tr),

where the lower right 2-by-2 blocks of all the matrices on the right,
except for g(x)g(x)tr, are zero because the last two rows of d(x) are
zero. Therefore, the lower right 2-by-2 block of g(x)g(x)tr is s2I, which
means that the last two rows of g(x) are linearly independent. We can
accordingly do row reductions to annihilate the first two rows of g(x)
by the last two while performing the same row reduction on d(x) to not
to change the spectral data, where in fact d(x) is not affected by the
row reduction since its last two rows are zero. q.e.d.

Lemma 7.6. The spectra data are (σ,∆) = (1/
√

2I, 0).

Proof. Employing that d(x) and g(x) are of the form

d(x) =

(
d1(x) d2(x)

0 0

)
, g(x) =

(
0 0

g1(x) g2(x)

)
,
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by the preceding lemma, we employ (7.14) and (7.15) to arrive at

d1(x)d1(x)tr + d2(x)d2(x)tr = g1(x)g1(x)tr + g2(x)g2(x)tr = s2I,

τ(d1(x)Jg1(x)tr + d2(x)Jg2(x)tr) = 0, x21 + · · ·x24 = 1.

However, since d1(x) are in terms of x3, x4 and d2(x) are in terms of
x1, x2, and likewise for g1(x) and g2(x), there must hold, by homogeniz-
ing,

(7.16)
d1(x)d1(x)tr = s2(x23 + x24), d2(x)d2(x)tr = s2(x21 + x22),

τd1(x)Jg1(x)tr = 0 = τd2(x)Jg2(x)tr.

That is,

(7.17) d1 = sU

(
−x3 −x4
x4 −x3

)
, d2 = sU

(
x1 x2
−x2 x1

)
for some 2-by-2 orthogonal matrix U ; by the same token,

(7.18) g1 = sW

(
−x3 −x4
x4 −x3

)
, g2 = sW

(
x1 x2
−x2 x1

)
with W orthogonal, which we substitute into the third equality of (7.16)
to derive

0 = τU

(
0 x23 + x24

−(x23 + x24) 0

)
W tr.

This is possible only when τ = 0, i.e., when the spectral data (σ,∆) =
(I/
√

2, 0). q.e.d.

Corollary 7.1. Notation as in (7.1), we have ca = fa, 1 ≤ a ≤ 7,
and hence δa, 1 ≤ a ≤ 7, are skew-symmetric.

Proof. Let us first handle the case when 4 ≤ a ≤ 7. We know ca− fa
is skew-symmetric by (3.19d) because the spectral data are (σ,∆) =
(I/
√

2, 0) now. Moreover,

(ca − fa)trba = 0

by (4.6). Hence linear combinations of ca − fa, 4 ≤ a ≤ 7, i.e.,

h(x) := x1(c4 − f4) + · · ·+ x4(c7 − f7),
satisfies

h(x)b(x) = 0

and so the first row of h(x) is a linear combination of the vectors
in (7.13). However, since h(x) is skew-symmetric, the first component
of the first row of h(x) is zero. Consequently, the entire first row of
h(x) is, and similarly, all rows of h(x) are zero. That is, ca = fa for all
4 ≤ a ≤ 7.

For 1 ≤ a ≤ 3, the first columns of b4, · · · , b7 at x are placed in order

to form the first matrix c#1 and f#1 at x#, the second columns to form

c#2 and f#2 , the third to form c#3 and f#3 , and vice versa. It follows that
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ca = fa, 1 ≤ a ≤ 3, because they are both generated by aligning the

columns of b#4 , · · · , b
#
7 .

That δa is skew-symmetric follows from (3.19f) and ∆ = 0. Lastly,

dtra da = gtra ga

follows from the second identity in (4.6). q.e.d.

We are in a position to prove the classification theorem.

Theorem 7.1. Let (m+,m−) = (7, 8). Assume the isoparametric
hypersurface is not the one constructed by Ozeki and Takeuchi. Then
the hypersurface is one of the two constructed by Ferus, Karcher, and
Münzner.

Proof. Referring to (6.5), we will show there is a Clifford frame [1,
(8.1)–(8.4), p. 28] on the unit normal bundle of M−.

Recall the tangent bundle T of the unit bundle UN of M− naturally
splits into the vertical part V and the horizontal part H, and H further
splits into three subspaces which, at (x∗, n∗) ∈ UN sitting over x∗ ∈M−,
are the horizontal lift of the three eigenspaces of the shape operator Sn∗
at x∗ with eigenvalues 0, 1,−1, respectively, i.e.,

T = V ⊕ E∗0 ⊕ E∗+ ⊕ E∗−,
where the basis elements of V, E∗0 , E∗+, E∗− are indexed by subscripts
α, µ, a, p, where 1 ≤ α, µ ≤ 8, 1 ≤ a, p ≤ 7, so that a typical one is
denoted, respectively, by eα, eµ, ea, ep in the corresponding range with
dual frame ωα, ωµ, ωa, ωp and connection forms θij with i, j ranging over
all possible indexes; for a specific index in a range, we will denote it by,
e.g., eα=5, θ

a=6
µ=5, etc. Write

(7.19) θij =
∑
k

F ijkω
k.

We know [1, (2.9), p. 9] F ijk = 0 whenever exactly two indexes fall in
the same α, µ, a, or p range.

A Clifford frame is one on T that satisfies

(7.20)

A∗α = A∗µ,

(a, µ) entry of B∗α = −(a, α) entry of B∗µ,

(p, µ) entry of C∗α = −(p, α) entry of C∗µ,

θij − θi
′
j′ =

∑
k

Lijk(ω
k + ωk

′
)

for some smooth functions Lijk, where i, j, k are in the α index range and

i′, j′, k′ are in the µ index range with the same respective index values
(i.e., i indicates α = i and i′ indicates µ = i, etc.)

It was shown in [1] that a Clifford frame characterizes an isoparamet-
ric hypersurface constructed by Ozeki–Takeuchi and Ferus–Karcher–
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Münzner. Moreover, it is shown in [2] that a Clifford frame is the same
as a distribution D over T given by

D = F ⊕ E∗+ ⊕ E∗−,
where F ⊂ V ⊕ E∗0 is the graph of an orthogonal bundle map

Q : E∗0 → V,
where we define

(7.21) eα=j := −Q(eµ=j), 1 ≤ j ≤ 8,

to set up an orthonormal basis for V corresponding to a given one in
E∗0 .

Furthermore, in [2] it was shown that the first three equations in (7.20)
mean that the distribution D is involutive and each of its leaves induces
an isometry of M− that extends, by the last equation of (7.20) which
means that the forms on its left hand side annihilate the distribution D,
to an ambient isometry so that the isoparametric hypersurface is one of
the two constructed by Ferus, Karcher, and Münzner.

Converted to the language of the unit bundle of M+ at (x, n) instead,
where the shape operator Sn has the eigenspaces E0, E+, E−, the first
three equations of (7.20) say, in view of (6.1), (6.2), (6.4), (6.5), that
there is an orthogonal map Q that identifies the jth basis vector eµ=j ∈
E− with −eα=j ∈ E+ so that

(7.22)

Ba = Ca, ∀a,
Aa is skew-symmetric, ∀a,

A#
a is skew-symmetric, ∀a.

The first item of (7.22) is true. Indeed (7.17) and (7.18) mean that
if we perform orthogonal row operations by U and W we may assume

d1(x) = g1(x), d2(x) = g2(x).

That is, if we define the bundle map Q that swaps the first (last) two
µ-rows of g(x) in Ca with the last (first) two α-rows of d(x) in Ba and
leaves all remaining four rows of Ba and Ca unchanged, then Ba = Ca
via the identification Q (i.e., we may assume da = ga via Q).

It suffices to establish the second item of (7.22). Now δa is skew-
symmetric by Corollary 7.1. za, 1 ≤ a ≤ 3 are skew-symmetric since
za, 1 ≤ a ≤ 3, generate the Clifford algebra C3 by (7.1), while the upper
left blocks of Aa, 4 ≤ a ≤ 7 are zero. The nature of Q does not change
the skew-symmetry of these blocks.

Next, with da = ga via Q in place, we derive from (3.19a) and (3.19b)
(with ∆ = 0) that we have βa = γtra . However, we can now change the
sign of the last four α-rows of Aa without affecting the skew-symmetry
of δa and the property da = ga, ca = fa, so that now

βa = −γtra , 1 ≤ a ≤ 7.
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That is, Aa is now skew-symmetric for all 1 ≤ a ≤ 7 with this modified
Q.

It remains to establish the last item of (7.20), knowing that the first
three equations are true via Q. By [3, Lemma 2, p. 11], the last item
holds true if either α = i or α = j indexes a basis vector in the image
of the linear map

(7.23) H : E∗+ ⊕ E∗− → E∗0 , (ea, ep) 7→
∑
α

Saαpeα,

which is easily seen to be the direct sum of all eα=l for l 6= 3, 4 (i.e., the
3rd and 4th rows of Ba are zero for all 1 ≤ a ≤ 7). Thus, it suffices to
show that the last item of (7.20) is valid for i = 3, j = 4 in the α-range.

The left hand side of the last equation in (7.20) annihilates the vectors
in E∗+⊕E∗− ⊂ D because they are horizontal, so that, as said below (7.19),

θ34 and θ3
′

4′ annihilate them since exactly 3 and 4 (respectively, 3′ and 4′)
are in the same α (respectively, µ) range. (It is understood that by 3
we mean α = 3 and by 3′ we mean µ = 3, etc.)

We show the left hand side of the last equation in (7.20) annihilates
F ⊂ D as well. For

v := el′ − el ∈ F ,
we calculate

(7.24) θ34(v) = −θ34(el), θ3
′

4′ (v) = θ3
′

4′ (el′)

again by what is said below (7.19).
Since the calculation is pointwise, we first look at the geometry before

we proceed. For x ∈ M+ and n in the unit normal sphere to M+ at x,
the map

(7.25) f : (x, n) 7→ (x∗, n∗) = ((x+ n)/
√

2, (x− n)/
√

2)

sets up a diffeomorphism between the normal bundles of M+ and M−.
Fix a point (x0, n0) in the unit normal bundle of M+, consider the two
sets

S+ := {(x, n) : x+ n = x0 + n0}, S− := {(x, n) : x− n = x0 − n0}.
S± are two 8-dimensional spheres. Indeed, taking derivative of x±n = c
with c a constant, we have dx ± dn = 0, which means that a typical
tangent space to S± is the eigenspace E± at (x, n), respectively.

The diffeomorphism f maps S+ to a sphere whose tangent space at
(x∗0, n

∗
0) is V, so that it is the fiber of the unit normal bundle of M−

over x∗0, and f maps S− to a sphere whose tangent space at (x∗0, n
∗
0) is

the horizontal E∗0 . Thus to calculate the quantities in (7.24), it suffices
to observe that (7.23) gives us the information

dim(
7⋂

a=1

kernel(Btr
a )) = 2.



ISOPARAMETRIC HYPERSURFACE 297

This translates to S+ to say that the tangent space to S+ at (x, n) is
identified with E+ of the second fundamental form Sn, in which there
naturally sits a 2-dimensional plane that is the intersection of all kernels
of the Btr

m-block of Sm with m perpendicular to n at x, which form a
2-plane bundle P+ over S+. By the same token there is a 2-plane bundle
P− over S− which comes from the intersection of all kernels of the Ctrm-
block of Sm with m perpendicular to n at x. Now, the above fact that
after swapping rows we may assume da = ga, 1 ≤ a ≤ 7, means that
once we set up the coordinate system of the ambient Euclidean space
by the eigenspace decomposition

Rx⊕ Rn⊕ E0 ⊕ E+ ⊕ E−
of the shape operator Sn at x for (x, n) ∈ S+, where the third and fourth
rows of Ba are zero for all 1 ≤ a ≤ 7, we may assume, after swapping
the third and fourth rows with the first and second, that P+ and P− are
parametrized identically in the coordinates. That is, in the coordinates
we can parametrize S+ and S− via an isometry ι in which P+ is brought
to P−. As a consequence, via the diffeomorphism f in (7.25), a local
basis (e3, e4) spanning P+ is converted to one on the image sphere whose
tangent space at (x∗0, n

∗
0) is V, and local basis (e′3, e

′
4) spanning P− is

converted to one on the image sphere whose tangent space at (x∗0, n
∗
0) is

E∗0 . Thus through the isometry ι we see that

θ34 = 〈de3, e4〉 = 〈de′3, e′4〉 = θ3
′

4′ ,

which gives (7.24), remarking that there the extra sign is a result of the
sign convention in our identification map Q in (7.21), whose choice is
in agreement with that of an isoparametric hypersurface constructed by
Ferus, Karcher, and Münzner.

The four equations in (7.20) are satisfied. Thus the isoparamet-
ric hypersurface is one of the two constructed by Ferus, Karcher, and
Münzner, if it is not the one constructed by Ozeki and Takeuchi. q.e.d.

Appendix I

We give certain codimension 2 estimates needed for imposing con-
straints on 1-, 2-, and 3-nullity in Section 4.

Lemma I.1. Consider C15 = C8 ⊕ C7 parametrized by (x, z). Con-
sider the homogeneous equations of degree 2

f0 :=

8∑
α=1

(xα)2 = 0, fi :=

8,7∑
α=1,p=1

θiαpxαzp = 0, i = 1, 2, 3.

Let Zk be the variety carved out by 0 = f0 = · · · = fk, 0 ≤ k ≤ 3.
Suppose f1, f2, f3 are linearly independent. Then Zk, 0 ≤ k ≤ 3, are
irreducible of codimension k + 1. For an f4 of homogeneous degree 2
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linearly independent from f0, f1, f2, f3, we have that f0, f1, f2, f3, f4 form
a regular sequence and so they carve out a subvariety of codimension 5.

Proof. The singular set of f0 consists of points of the form (0, z).
Hence the codimension 2 estimate goes through for Z0. Set

R0 :=

(
I 0
0 0

)
, Rk :=

(
0 θk
θtrk 0

)
, k = 1, 2, 3,

where the identity matrix is of size 8-by-8 and θk is the 8-by-7 matrix
whose entries are θkαp. As in (3.1), we estimate the dimension of the
kernel of

S := c0R0 + · · ·+ ckRk

with [c0; · · · : ck] ∈ CP k, k = 1, 2, 3. For simplicity, we may assume
c0 = 1. Then

S :=

(
I Θk :=

∑k
l=1 clθl

(Θk)
tr 0

)
,

whose kernel elements (x, z)tr satisfies

x+ Θkz = 0, (Θk)
trx = 0.

From this we see that

(Θk)
trΘkz = 0,

so that the dimension of z is at most 6 for a generic choice of [c0 : · · · : ck]
(respectively, 7 for a nongeneric choice) because the independence of
p1, p2, p3 dictates that Θk is nonzero for such a generic choice. Therefore,
the fact that x = −Θkz implies that the kernel dimension is at most 6
for a generic parameter [c0 : · · · : ck] of dimension k. Hence the total
dimension is at most 6 + k (respectively, 7 + (k − 1) = 6 + k). On the
other hand, dim(Zk)− 2 ≥ (15− k− 1)− 2 = 12− k. Therefore, similar
arguments leading to (3.12) ensure that the codimension 2 estimate goes
through for Zk, 1 ≤ k ≤ 3. q.e.d.

Lemma I.2. Consider C14 ' C7 ⊕ C7 parametrized by (x, z), and
consider the homogeneous equations of degree 2

f0 :=
7∑

α=1

(xα)2 = 0, fi :=

7,7∑
α=1,p=1

θiαpxαzp + z7zp terms = 0

for i = 1, 2. Let Zk be the variety carved out by 0 = f0 = · · · = fk, 0 ≤
k ≤ 2. Suppose

∑7,6
α=1,p=1 θ

i
αpxαzp, i = 1, 2, are linearly independent.

Then Zk, 0 ≤ k ≤ 2, are irreducible of codimension k + 1. For an f3 of
homogeneous degree 2 linearly independent from f0, f1, f2, we have that
f0, f1, f2, f3 form a regular sequence and so they carve out a subvariety
of codimension 4.
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Proof. The singular set of f0 consists of points of the form (0, z).
Hence the codimension 2 estimate goes through for Z0. Set

R0 :=

(
I 0
0 0

)
, Rk :=

(
0 θk
θtrk τk

)
, k = 1, 2,

where I is 7-by-7, the 7-by-7 θk is defined similarly as in the preceding
lemma, and τk is a 7 by 7 symmetric matrix whose only nonzero row
and column are the last one corresponding to the coefficients of the z7zp
terms of fk. Again we estimate the dimension of the kernel of

S := c0R0 + · · ·+ ckRk

with [c0; · · · : ck] ∈ CP k, k = 1, 2, 3. For simplicity, we may assume
c0 = 1. Then

S :=

(
I Θk :=

∑k
l=1 clθl

(Θk)
tr Πk :=

∑
l clτl

)
,

whose kernel elements (x, z)tr satisfies

x+ Θkz = 0, (Θk)
trx+ Πkz = 0.

From this we see that

((Θk)
trΘk + Πk)z = 0,

so that the dimension of z is at most 6 for a generic choice of [c0 : · · · : ck]
(respectively, 7 for a nongeneric choice) because the independence of∑7,6

α=1,p=1 θ
i
αpxαzp, i = 1, 2, dictates that the upper left 6-by-6 block of

(Θk)
trΘk is nonzero for such a generic choice. Therefore, the fact that

x = −Θkz implies that the kernel dimension is at most 6 for a generic
parameter [c0 : · · · : ck] of dimension k. Hence the total dimension is
at most 6 + k (respectively, 7 + (k − 1) = 6 + k). On the other hand,
dim(Zk)− 2 ≥ (14− k − 1)− 2 = 11− k. Therefore, the codimension 2
estimate goes through for Zk, 0 ≤ k ≤ 2. q.e.d.

Lemma I.3. By the same token, if over C13 = C6⊕C7 we are given

f0 :=
6∑

α=1

(xα)2 = 0,

fi :=

6,7∑
α=1,p=1

θiαpxαzp + z6zp terms + z7zp terms = 0,

1 ≤ i ≤ 2. Let Zk be the variety carved out by 0 = f0 = · · · = fk, 0 ≤ k ≤
2. Suppose

∑6,5
α=1,p=1 θ

i
αpxαzp, i = 1, 2, are linearly independent, then

the codimension 2 estimate goes through for k ≤ 2, and so Zk, k ≤ 2,
are irreducible of codimension k + 1. For an f3 of homogeneous degree
2 linearly independent from f0, f1, f2, we have that f0, f1, f2, f3 form a
regular sequence and so they carve out a subvariety of codimension 4.
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