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A PRIORI ESTIMATES OF TODA SYSTEMS, I:
THE LIE ALGEBRAS OF A,,B,,C, AND G

CHANG-SHOU LIN, WEN YANG & XUEXIU ZHONG

Abstract

It is well-known that the PDE (Partial Differential Equation)
system arising from the infinitesimal Pliicker formulas is a partic-
ular case of the Toda system of A,, type. In this paper, we prove
an a priori estimate of solutions of the Toda systems associated
with the simple Lie algebras A,,, B,,, C,, and Gs. Previous results
in this direction have been done only for the case of Lie algebras
of rank two. Our result for n > 3 is new. The proof of this fun-
damental theorem is to combine techniques from PDE and the
monodromy theory. One of the key steps is to calculate the local
mass of a sequence of blowup solutions near each blowup point.
At each blowup point, a sequence of bubbling steps (via scaling)
are performed, and the local mass of the present step could be
computed from the previous step. We find out that this transfor-
mation of the local mass of each step is related to the action of
an element in the Weyl group of the Lie algebra. The correspon-
dence of the Pohozaev identity and the Weyl group could reduce
the complicated calculation of the local mass into a simpler one.

1. Introduction

Let (M, g) be a compact Riemann surface, and A, be the Beltrami-
Laplacian, and u = (ug,- - ,u,) be smooth functions on M which sat-
isfies

n
(L1) Agui+ Y kije" =47 Y agidp, + Fi, i € I={1,2,- ,n},
7j=1 PLtES

where oy ; > —1, 0, stands for the Dirac measure at p € M, S is a finite
set of M and Fi,--- ,F, are smooth functions on M. Here (k;j) is the
Cartan matrix of a simple Lie algebra.

Let

(1:2) pr=an Y i+ S [
=1 M

pt€S
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where v, ; = Z;‘L:1 kijozt7j and (k"),x, is the inverse of (Kij)nxn. Our
main theorem is the following a priori estimate:

Theorem 1.1. Suppose that (ki;) is the Cartan matriz of one of the
simple Lie algebras Ay, B, Cy, and Ga, oy ; € N and p; ¢ 47N for any
i € I. Then for any compact subset I C M \ S, there exists a constant
C > 0 such that for any solution of (1.1) there holds

(1.3) luj(z)] < C, Vz e K, i € I.

Equation (1.1) is closely related to the classical infinitesimal Pliicker
formula. Let f be an holomorphic curve from a simply connected do-
main D of C into CP". Lift locally f to C"*! and denote the lift by
v(z) = [vo(z),v1(z), - ,vn(2)]. The k-th associated curve of f is de-
fined by fi : D — G(k,n +1) C CP(A*C"*!) and

fi(2) = (W) AV () A vt
where vU) is the j-th derivative of v with respect to z. Let
Ap(2) = v(2) A--- AvED(2),

and the well-known infinitesimal Pliicker formula (see [18]) gives,

0 [Ak—1 ([ A4 ()12

(14) 5zl MG = == o5

fork=1,2,--- ,n,

where we define the norm || - |2 = (-,-) by the Fubini-Study metric
in CP(AC™1) and put [|Ag(2)||> = 1. We observe that (1.4) holds
only for |[Ax(z)]| > 0, i.e., all the unramificated points z. Let us set
IAn+1(2)|| = 1 by normalization (analytical extended at the ramificated
points) and define Uy, by

Up(z) = —log ||[Ak(2)||?> + k(n — k +1)log?2, 1 <k <mn,

then, from (1.4) we have

02 1 - . .

(15) mUZ—FZeXP jzlkljU] =01in D, 'LEI,
where

2 -1 0 0

-1 2 -1 0
(1.6) K = (kij)nxn = :

0 -1 2 -1

0 o -1 2

is the Cartan matrix of the simple Lie algebra si(n + 1,C).
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Set
(1.7) U; :Zkij‘Uj,
J=1

(1.5) can be written as

82

(1.8) o

—u; + - Zk‘we i =01in D.

The equation (1.8) can be globally defined on any compact Riemann
surface (M, g) if f is an holomorphic curve from M into CP". Locally,
we could introduce the complex structure z and let the metric g =
e?¥(@)|dz|?, where 1 (x) satisfies

AY(z) + Koe*¥ =0,

where A is the Laplacian with respect to the flat metric and Ky is the
Gaussian curvature with respect to the metric g. Then globally, the
equation (1.8) can be rewritten as

(19) gul‘i‘zszeJ_KO:é‘:ﬂ-Zatl Dt 1€ 7
ptES

where S is a set of all the ramificated points and «;;, @ € I is the
ramification index at the singular point p;. This is the system (1.1)
with F; = Ko, ¢ € I and K = (kij)nxn is the matrix (1.6).

The system (1.1) has been extensively studied in many disciplines of
mathematics and physics. For example, when n = 1, (1.1) is reduced
to a single equation, it is related to the Nirenberg problem of finding
the prescribed Gaussian curvature if S = (), and the existence of the
same curvature metric of problem (1.1) with conic singularities if S # 0.
While in physics, the Toda system is a well-known integrable system and
closely related to the W-algebra in conformal field theory, see [1, 17|
and references therein.

Integrating the equation (1.1), we can rewrite it as the following form

n
hje%i
(1.10) Agui+>  kijp;( f b, M = > 4mayi(0p,—1) on M,
7=1 ptES

with p; given by (1.2), and
ws € (M) = {f e Hl(M)/ fav, — 0} el
M
In this paper, we would like to consider (1.10) with positive C! functions

hi, ap; > =1, p; € RT and the matrix K is the Cartan matrix of the
Lie algebras of A,, B,, and C,,, where the Cartan matrices for B,, and
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C,, respectively are

(1.11)
2 -1 0 0 2 -1 0 0
-1 2 -1 0 -1 2 -1 0
o -~ -1 2 =2 o -~ -1 2 -1
o -~ 0 -1 2 o --- 0 -2 2
Given a4 ;, we define
(112) Hti = O + 1>0.
For a given pq,- - , pin, in section 3 we will introduce the set of the local
mass o = (01, -+ ,0p)

D,y pn) = {0' | oy = 2Zaz‘jﬂj for A = [aj;] given by (3.6)}.
J

By Theorem 3.2, we will see any entry a;; of A is a nonnegative integer.
For example if the Lie algebra is sl(3), then

F(/Jlla M?) = {(Oa 0)7 (2M17 0)7 (2/-1/17 2/-1/1 + 2#2)7 (07 2”2)7

(201 + 2p2, 2p12), (201 + 22, 21 + 2#2)}7
and if the Lie algebra is sl(4), then

D(p, iz 1) = { (0,0, 0), (2411,0,0), (0, 2412, ). 0,0, 2p13),
(201 + 242, 22, 0), (2111, 2011 + 2412, 0),

(2p1 + 2p2, 21 + 2112, 0), (211, 0, 213),

(0,242 + 23, 2u3), (0, 22, 22 + 2413),

(0,2p2 + 2u3, 2u2 + 2u3),

(201, 201 + 2412, 201 + 242 + 2p13),

(2u1 + 2p2, 2112, 202 + 243),

(21, 201 + 2p2 + 2p3, 23),

(201 + 2p2 + 213, 2112 + 213, 2113),

(2p1 + 2p2, 201 + 2p2, 201 + 2p2 + 2u3),

(21, 201 + 2p2 + 213, 201 + 2p2 + 23),

(2p1 + 2p2, 201 + 4pz 4 2p3, 22 + 2u3),

(2p1 + 2p2 + 23, 21 + 22 + 23, 213),

(2p1 + 2p2 + 23, 22 + 213, 22 + 213),

(201 + 2p2, 201 + 4p2 + 2p3, 201 + 2p2 + 2p3),
(201 + 2p2 + 2p3, 201 + 4Apz + 2p3, 202 + 2p3),
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(2p1 + 2p2 + 2p3, 2p1 + 2p2 + 23, 21 + 2p2 + 2p3),
(2p1 + 2p2 + 23, 21 + Apz + 23, 21 + 22 + 2#3)}-
We introduce the critical parameter set I'; of (1.3) by

Fz‘ = {271' Z Ot +4m™m ’ (Ut,h v 7Ut,n) S F(,um, CE) 7,U/t,n)7
PtER

RcS,mez}.

Our main theorem in this paper is the following a priori estimate for
the system (1.10), which contains Theorem 1.1 as a particular case.

Theorem 1.2. Suppose that p; € T'; for any i € I. Then for any
compact set K C M\ S, there exists a constant C > 0 such that for any
solution u of (1.10) in HY(M),

(1.13) u(z)| < C, Vo € K.

If o ; € N then we will see 0; € 2NU {0} for any tuple (oy,--- ,0,) €
D(p1,-- ,pn). Then Theorem 1.1 is a special case of the following
corollary.

Corollary 1.3. Suppose that a;; € N for any i € I and p; € S. If
pi & 4nN, then the a priori estimate (1.13) holds for any solution of
(1.10) in HY(M).

In the past decades, there are a lot of works concerning the a priori
estimate of the equation (1.10). In particular, for n = 1, the study of a
priori estimate began with the work of Brezis-Merle [8] and Theorem 1.2
was proved by Li [23] for the case without singularities, and Bartolucci
and Tarantello [2] with singular sources. While for the case n = 2, the
problem becomes very difficult. In [21], the a priori estimate was first
derived when (1.10) has no singular sources, and recently through a
series of works by Lin-Wei-Zhang [28], Lin-Zhang [29], Lin-Wei-Yang-
Zhang [27], a slightly weak version of Theorem 1.2 was obtained for
the case of rank two simple Lie algebra. For n > 3, Theorem 1.2 is
completely new.

To establish the a priori estimate, the most important issue is to
understand the blow up phenomena of (1.10). A point p is called a
blow up point if, along a subsequence, a sequence of solutions {uk =
(uk, - uk)} satisfies

max max uf = maxuf(py) = +00, pp — P
i B(p)o) ¢

The set of all the blow up points is called the blow up set.

Our proof of Theorem 1.2 is based on two results. The first one is

Theorem 1.4. Suppose that u* = (uf,---  uF) is a sequence of

r'n

blowup solutions of (1.10) and B is the blow up set of u*. Then at
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least one component uf of uF satisfies
uf(z) — log/ hieuﬁdVg — —oo for x ¢ BUS.
M

The second and harder part of the proof of Theorem 1.2 is to deter-
mine the local mass at each blow up point of u*, which is defined as
follows. Suppose that ¢ is a blow up point of u*, we define

k
1 Di fB(q’T) hfe“i dz

1.14 i(q) = —1i li
(1.14) 7i(9) 27 P20 kst oo [og B uf dp

where B(q,r) is the ball centered at ¢ with radius . The main issue is
how to calculate o;(g). Of course the local mass o; can also be defined

for a sequence of local solutions. Let u¥ = (uf,---,uF) be a sequence
of local solutions of
n
(1.15) Aub + 3 kyhke's = dmadg in B(0,1), i€ 1,
j=1

where o; > —1 and B(0,1) is the unit ball in R?. Throughout this
paper, we assume hf are smooth functions satisfying

(1.16) hi(0) =1, = <hy <C, [|h}llc3Boa) < C in B(0,1), i € 1.

Ql =

For solutions u* = (uf,--- ,uF) of (1.15) we assume:

(4) : 0 is the only blow up point of u* in B(0, 1),
(1.17) (i4) « [uf (x) — uf(y)| < C, Va,y on dB(0,1), i € I,
(i) : [poq) hEe™ <C, i€l

For this sequence of blowup solutions we define the local mass by

(1.18) o; = lim lim 1/ hkevt el
B(0,r)

r—0 k—o00 27

It is proved in [28] that (o1, - ,0,) always satisfies the Pohozaev iden-
tity (P.I. in short):

n n—1 n
(1.19) ZUZQ _Zaiai"‘l ZQZ,U,Z'JZ‘,
=1 =1 =1

where p; = a; + 1.

Theorem 1.5. Suppose that o;, i € I are the local masses of a
sequence of blowup local solutions of (1.15) such that the assumption
(1.17) holds. Then there exists (61, ,6yn) € I'(p1, -+, tn) Such that

o =6;+2m;, m; €72, 1 € 1.

Our proof of Theorem 1.5 succeeds in combining two important fea-
tures about (1.10): PDE and the integrable system. The PDE part
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is the bubbling analysis for selecting a finite set of blow up points
{0,2% --- 2k} (if 0 is not singular point, then 0 can be deleted from
this set) and balls B(z¥,1¥). We have to analyze the behavior of u* in
these tiny balls by the scaling. The analysis shows that at each step of
blowup in B(x¥,1¥), only part of the re-scaling system will converge to
a new system which can be decomposed into a decoupled A ,-type Toda
system. Part of this bubbling analysis has been carried out in [27, 28].
To carry out the analysis [27, 28], the authors in [27, 28] introduces the
notions of slow decay and fast decay. After [27, 28], in order to com-
plete the analysis, we have to prove that the fast decay does not increase
the mass. For n = 2, it was proved in [27]. The original method in [27]
can not be extended to the case n > 3. In any case, this important step
is proved in section 5. Then it remains two questions, the first question
is how to determine those total mass of the new A, -type Toda system
from the previous step. One of the main discovery in this paper is that
the mass transformation from the one to the new one is related to the
Weyl group of the Lie algebra A, . Indeed this holds true also for B,
and C,,. The second question is how to calculate the total mass outside
the union of these balls B(x¥,1¥). The computation of mass for this
part seems not trivial at all from the analytic viewpoint. Indeed, this is
where the integrability of the Toda system (1.9) comes to play an impor-
tant role in our proof. See the main results in section 3. We remark that

at the moment, we succeed only for Lie algebras A,, B,, C,, and Gs.

We say (aq,- - , ) satisfies Q-condition if aq, - - - , o, are Q-linearly
independent. Theorem 1.5 has a sharper form if a« = (aq, -, ap)
satisfies the Q-condition.

Theorem 1.6. Suppose that (ay,--- ,ap) satisfies the Q-condition
and u* = (u¥, - uk) is a sequence of blowup solutions to (1.15). If
o = (o1, -+ ,0,) is the local mass of u*, then & € T(py, -+ , pin). Fur-

thermore, the Harnack-type inequality holds:
(1.20) uf(z) + 2log |z| < C for x € B(0,1).

By Theorem 1.6, if oy = (a1, ,ary) satisfies the Q-condition
for any p; € S, then Theorem 1.2 can be strengthened. For o, =
(041, ,0tpn), We set

F;r = {27r Z opi+dmm | oy € D(pe1, -+ s pen), RCS, me NU{O}},
ptER
then the following result holds:
Theorem 1.7. If oy satisfy the Q-condition for any pr € S and

pi & T for all i € I, then the a priori estimate (1.13) holds for any
solution u of (1.10) in HY(M).
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We conjecture that F;r is the true critical parameter set for the system
(1.10). But so far we could prove it is true for generic oy only.

Before we end this introduction, let us state some existence result
from the a priori estimate obtained in this paper. The a priori bound
of Theorem 1.2 could allow us to define the Leray-Schauder degree for
equation (1.10). For equation (1.10) with p = (p1,--- , pn), we denote
the degree by d,.

Theorem 1.8. Suppose that oy ;,1 € I are non-negative integers for
any py € S and x(M) < 0. Let p; & 47N for some i € I and p; € (0,4m)
for j € I\ {i}. Then the topological degree of the equation (1.10) is
non-zero.

The counting degree formulas under the assumption of Theorem 1.8
could be obtained from the previous works on the mean field equation
10, 12].

Recently, Battaglia [5] considered the general Liouville system (1.10)
with oy 4,7 € I are non-negative integers for any p; € S and K =
(kij), 4,7 € I is symmetric, positive definite matrix with non-positive
entries outside the diagonal (i.e., k;; < 0 for any i # j). Assume
the a priori bound holds and x(M) < 0, he has shown the existence
result of (1.10), see [5, Corollary 1.3]. Through the following simple
transformation:

2 -1 0 0 P1 2 -1 0 0 P1
-1 2 -1 --- 0 02 -1 2 -1 --- 0 02
o -~ -1 2 =2 Pr—1 o -~ -1 2 -1 Pr—1
o --- 0 -1 2 Pn o --- 0 -1 1 2pn,
and
2 -1 0 0 P1 2 -1 0 0 P1
-1 2 -1 --- 0 02 -1 2 -1 --- 0 02
o --- -1 2 -1 Pr—1 o --- -1 2 =2 Pr—1
0o -~ 0 -2 2 Pn o -~ 0 -2 4 $Pn

we can write B,, and C,, Toda systems into a symmetric form. To-
gether with [5, Corollary 1.3], we get the following existence theorem
for A,,B, and C,, Toda systems.

Theorem 1.9. Suppose that x(M) < 0. Let p; ¢ I'; for any i €
I. Then the equation (1.10) with K = A,, always admits a solution.
Similar results hold for K = B,, or C,.

The organization of this article is as follows. In section 2 we establish
the global mass for the entire solutions of the A, type Toda system
with many singular sources defined in R?. This kind of result plays
important roles in our bubbling analysis. In [26], it has been proved
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that any solution u is associated with a (n + 1)-th order ODE in com-
plex form. Our method is to apply the monodromy of this ODE to
establish a formula of global mass. The aim of section 3 is to study the
Pohozaev identity of all the possible solutions. As discussed above, we
shall also explore the relation between the Pohozaev identity and the
Weyl group. Then in section 4 we review some results of the bubbling
analysis, which have been proved in the previous work [28]. In section
5 we present two crucial lemmas, which play the key role in the proof of
main results. Then in section 6 and section 7 we discuss the local mass
on each bubbling disk centered at 0 and not at 0 respectively, thereby
we prove all the results of A,, type Toda system. In the last section, we
provide all the counterpart results for B,, and C,, Toda system.

2. Total mass for Toda system

In this section, we shall consider the SU(n + 1) Toda system,

o) Auj + 370 kijets = Zi\il 4ray i0p, in R2
2.1
fRQGUi < +OO7 1= 1727'” , 1,

where pq,---,pn are distinct points in R? and o > —1, V1 <1<
n, 1 <t < N. We recall the Cartan matrix is given by (1.6). For any
solution u = (uy,- - ,uy), we let

1
2.2 o; = — eder, 1<i<n
( ) ! 27 R2 - =
and o = (01, -+ ,0,) be the total mass of the solution u. In this section

we shall determine the total mass of u.

To investigate this problem, we shall regard (2.1) as an integrable
system, that is, for any solution u = (uy,- - ,uy) there is an associated
(n + 1)-th order Fuchsian differential equation:

n—1
(2.3) L(y) = y"(2) + Y W;i(2)y?(2) =0 in C,
j=0
whose singular points exactly are p;, t =1,---,N. Here Wj(z) are the

so-called W-invariants and meromorphic functions defined on C, see
[26]. For a Fuchsian ODE, the most important data is the monodromy
transformation M. Fix a base point 29 € C, 29 ¢ {p1, -+ ,pn}, and
a basis v(z) = (19(2),- -+ ,vn(2)) of solutions for (2.3). Let [; (starting
and ending at zp) be a loop cycling around p; once, 1 < ¢ < N and
(1;)*v denote the analytic continuation of v along [;. Then there exists
a matrix M; such that

(2.4) (1) (v(2))" = (v(2))' M.
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The matrix M; is called the monodromy transformation. Without loss
of generality, one may arrange the index i such that

(2.5) Mo Mpy - My =141
The fundamental theorem about the Toda system is,

Theorem 2.A ([26]). Let u(z) be a solution of (2.1) and (2.3) be
the associated ODE. Then there is a basis (v, -+ ,vn(2)) of solutions
to (2.3) such that

e = Ju(z)%,
where Uy = Y70 kYu;.

Let B¢; be the local exponents of equation (2.3) at p;, 1 <t < N,
then

(2.6) Bio = —ai, Bri=Bri1+ i, 1<i<n,

where af = Z?:l ki atj, 1 <i<n. To compute the local exponent at
oo, we have

Lemma 2.1. Suppose that the solution u satisfies

(2.7) u;i(z) = =200 log || + O(1) at oco.

Then the local exponent at oo is

(2.8) A A

/BOO,O = _aéov /Boo,j = _a‘éjl + Oééo - j7 1 SJ Sn_la Boo,n = 0420—7%

where aly, = Y5 K asj, 1 <i<n.

Proof. By [26], the ODE (2.3) is written as
(2.9)
L= (az - Un,z (82 + Un,z - Un—l,z) T (82 + UQ,Z - Ul,z)(az + Ul,z)
n—1
=Pt 4+ w0,
j=0

where U;(z) = 3% | kYuj, 1 < i < n. The exponents at z = oo can

be computed by applying the transformation w = % and the relation
0, = —w?d,,. Let
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and the linearized operator L is transformed to

L= (—1)""w?(d, — 9% _y; )+ w?(By + O +Viw)
— w w n,w w w 1w
(2.10) n-l
= (1)@ + Y W0l
§=0

It is not difficult to see that at point w = 0, the lim,,_qw™ ™17 Wj only

depends on the terms of Wj containing the % and their derivatives.
Thus the terms f/i’w can be neglected when we compute the local expo-
nents of L at w = 0. As a consequence, the exponents of L at co are
the exponents at w = 0 of the equation

n 2 1
_1)n 1! 28w_aoo 2811) Qoo = Too,1 2811) Qo iL:O
()" w0 — =) w0 + S22, 4 Sk =,

which is the same as
(_1)n+1wn+1 (’U)aw _ O/olo +n) . (’U)aw +a§o — O[éo + ]_)(waw —|—a(1)o)i)/ =0.

Therefore the exponents are
1

2 1 n n—1 n
—s,, —5, fay, — 1, —ab 4o —(n—1), al —n,

o0 (e 9]

which is exactly (2.8). q.e.d.

In this section, the main result is to use the monodromy theory to
calculate the mass (2.2) of the solution u to (2.1).

Theorem 2.2. Suppose that uw = (u1,- - ,uy) is a solution of (2.1)
and ap; € NU{0}, 2 <t < N, 1 < i < n. Then there exists a
permutation map f on Iy ={0,1,--- ,n} such that

1 i—1 [f(5) J

% euiIQZ OéLl—ZOéLl +2N;, 1 €1,
R? =0 \ =1 =1

where N; € Z, 1 <1 <n.

Proof. Following the approach introduced by Chen-Li [13, 14] for
Liouville equations (based on potential analysis), we could get that any
solution u = (uq,- - ,uy,) of (2.1) has the following asymptotic behavior
at infinity:

(2.11) ui(2) = —2000,ilog |z] + O(1), oo >1, i=1,---,n,

and the total mass for u; satisfies

1 no [ X
(2.12) g; = % , e“dx = Zkﬂ] (22(1[’1' =+ 2aoo,j> , 1 = 17 e m,
R X
Jj=1 =1

where (k%),x, is the inverse of K.
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Let (2.3) be the associated ODE of the solution u(z) and M; be the
monodromy transformation at p;, t =1,---, N,00. Then we have

(2.13) MMy -+ My =Ty

The local exponents of L at p; are given in (2.6) provided 1 < ¢ < N, and
by (2.8) provided ¢t = oo. In addition, by Theorem 2.A, My is unitary.
Hence the monodromy at each p;, 1 <t < N and oo are the following

e2miBt,0 0 . 0
0 eQWiﬁt,l . 0
(2.14) M;=C , , , _ C/l1<t<N,
oo .
and
e2ﬂ'i/8<>o,0 0 Ce 0
0 2mifoo,1 . 0 .
(2.15) Moo - COO . . . . Co_o 9
6 0 P ezﬂi'ﬁoo,n

where C; and Cy, are constant invertible matrices. By the assumption
ar; e NU{0}, 2<t< N, 1<i<n,

we have My = e2™Pu0], 1 2 <t <n. Set Z = Zi\;z Bto. Then (2.13)
yields

(2.16) My = e MEML
Therefore, we can find a permutation map f on Iy such that,
(2.17) Boo,j + E+ By +mj =0, j € I,

where m; € Z,0 < j <n. By (2.6) and (2.8), (2.12) can be rewritten as
(2.18)

1 n N N
e =3 (S s ) = Yoo
i—1

=1 =1 =1
N i—1 i—
:—Z (Be =€) = ) _(Bocg + 1)
t=1 (=0 =0
N N
=— Z Bre = Brsw) +Z (Z/Bt,ﬂ ZBt,e) + mi
(=0 \1=2 =2
i—1 N /¢
:—Z Bre—Brswy) — Zzat,j+mi,2
=0 (=0 1=2 j=1
i1

=— Z(ﬁu = B1,fe)) +mi3,
=0
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where m; 1, mi2,m;3 € Z, 1 <i <n. Using (2.18), we finally get

1 i—1 [ f(5) J
(2.19) = et = Z Zau - Zau + N, 1€ 1.
R? =0 \ =1 =1
Combining with equation (2.1), we prove the conclusion. q.e.d.

A direct consequence of Theorem 2.2 is the following result:

Corollary 2.3. Suppose that u = (uy,--- ,uy) is a solution of (2.1)
and az; € NU{0}. Let o = (01, ,04) be the total mass of u. Then
oi, © € I, are positive even integers.

3. The Pohozaev identity and Weyl group
3.1. Definition of I'(pt). We recall the Pohozaev identity (P.I. in short)

n n—1 n
(3.1) ZO‘?—ZUZ'O};JA :2Z,Uiai-
=1 =1 i=1

It has been known that the P.I. plays an important role for studying the
bubbling behavior of solutions of the mean field equation. For example,
see [2, 3, 9, 10, 11, 12] and the references therein. The purpose of
this section is to derive all possible values of the local mass for a local
solution w of (1.15).

In this section, pq,---,u, are considered as independent variables
and the P.I. is seen as a polynomial with degree 2 and coefficients in
Clp1, -+, pn). For (pa1,--+, pin), the set T'(p1, -+, py) (I'(w) in short)
is defined as the minimal set satisfying the following conditions:

(1) (07 T 70) € F(H’) and

(i) if & € T'(p), then R0 € I'(pu), i € I, where

n
(3.2) 9%2'0':((71,--' ,2Mi_zkij0j+(7i,"' ,Un).
Jj=1

It is not difficult to see that for each element o € T'(u), o; is a poly-
nomial of uq,--- , p, of degree 1. Indeed, we have o; = 22?21 aijfhy,
where a;; € Z. Set A = [a;].

We first prove each element in I'(u) satisfies the P.I.

Proposition 3.1. For each element o € I'(u), we have o satisfies
the P.1.

Proof. For any i, (3.1) can be written as

(3.3) 0 — (2u; — Z kijoj)o; + Z of — Z 010141 — 2 Z oy =0,

i I#i l€I; I#i
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where I; = I\ {i — 1,4,n}, which shows o; is a root of the quadratic
equation

(3.4) 2% —(2u; — Z kijoj)x + Z 012 — Z 010141 — 2 Z oy = 0.

i 1#i lel; 1£i
Thus the other root of (3.4) is 2ui—2#i kijoj—o; = 2/%-—2?21 kijoj+
o;. Then R;o satisfies (3.3) which is equivalent to P.I. q.e.d.

Remark. We shall prove all the entries of A are non-negative inte-
gers. On the other hand, we set
(3.5)

n
In(p) = {a | o satisfies the P.I., o; = QZaijﬂja a;j € NU {0}}
j=1
In proposition 3.4 we will show that the two sets I'(u) and T’y () are
exactly the same.

Next, we state the main result in this section,

Theorem 3.2. For each element o € I'(u), there ezists a permuta-
tion map f on Iy = I U{0} such that o; is expressed by

1—1 1) J
(3.6) 01—22 Zm Zm ,iel
7=0 \I=1

Furthermore the correspondence o — f is bijective from T'(u) onto the
permutation group Spy1 of Iy. Consequently

ID(p)] = (n+ 1)

Proof. First, we note that when f is the identity map of Iy, equation
(3.6) gives 0, = 0, and o = (0,---,0) € I'(u). For some element
o € I'(n). Suppose that (3.6) holds for some permutation map f.
According to the definition of R,,o, we have

Z <Zl DY “l) , Afiel\{m},

(3.7) (Rmo)i = . | |
25 1(2;‘%— Lom)

+2zj(”f wi— 20 it =m.

Let g be g(i) = f(i), i € I\ {m —1,m} and g( —1) = f(m), g(m) =
f(m —1). Then by using g, we have

i—1 [g(5)

(3.8) mal—2z Z“l Z“l ciel

On the other hand, (3. ) also shows that if a permutation f yields
an element in I'(p) by (3.8), then f o s, also yields another element of
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I'(p), where s, is the simple permutation only by exchange of m — 1
and m. Since the permutation group is generated by all the simple
permutations s,,, we conclude that any permutation f always gives an
element in I'(p) via (3.6). Now it remains to prove different permutation
map f gives different o.

Suppose that there are two permutations f, g give the same element
oecl'(p),ie

i—-1 [ f(5) i-1 [9(j)
(3.9) Z Zm Zuz = Z Zuz Zul ,iel
j=0 \ =1 =1 j=0 \ =1 =1
If i = 1, then we have Zl L= l 1 w1, so f(0) = g(0). By induction

on i, it is not difficult to see f(i) = g(i), Vi € I by (3.9).
Since f — o is bijective, we have

IT(p)| = |{f | f is a permutation map on Ip}| = (n+ 1)
q.e.d.

Corollary 3.3. For any element o € I'(u), let A be the correspond-
ing matriz. Then all the entries in A are non-negative integers.

Proof. Since we have already seen that all the entries a;; are integers,
then it suffices to show a;; > 0. For the i-th component o;, we rearrange
f@0),---, f(i — 1) such that

f(0) < f(1) <--- < f(i — 1) without changing the value of o;.

Therefore [ < f(1),0 <1 <i—1. Thus it is easy to see that by (3.6),
all the coefficients of y;, j € I for o; are non-negative. q.e.d.

Proposition 3.4. Let I'n(p) be defined in (3.5). Then

() =T(p).
Proof. From Corollary 3.3 it is easy to see that I'(u) C 'y (). Hence
it suffices to prove the other direction. For any o = (01, ,0,) €

I'n(p), in the proof of Proposition 3.1, we already proved that R;o also
satisfies the P.I. We claim:

(3.10) If o e FN([,L), then R0 € FN(;L), Vi e l.
Let 0, = 237, ajjpj, i € I, where a;; € NU{0}. The claim (3.10) is

equivalent to show

(3.11) by = 05 — Zk‘ijaﬂ +ay >0, Vel
j=1
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Since o satisfies the P.1., substituting the expression o; = 2 Z;L:1 @jjfbj
into the P.I., and comparing the coefficients of ,ulQ, we get

n n—1
(3.12) Za?l — Z ajlajy10 = ay, L € 1.
Jj=1 Jj=1

Similarly, for JR;0 we have
(3.13)

Yooah+bi— > auajeg — (aicig + aipa)biy = au, L€,
jen{i} Jje\{ii—1}
where
aj;=0if j<0orj>n+1, Viel,
and

. Joay, ifl %1,
MW= by, i 1=
From (3.12) and (3.13), we can view a;, b;; | # i as the solutions of the

following quadratic equation
(3.14)

2 —(aisitai e+ Y ai— Y ajajpg—ag =0, 1€ I\{i},
JeI{i} jen{ii—1}
and a;, by; as the solutions of the following quadratic equation
(3.15) z? - (az;l’l + a1+ 1).’5 + Z a?i - Z ajiQj41, = 0.
Jjen{i} Jje\{ii—1}
At first, we prove that b; > 0. Note
1
2 2
Z aj; — | Z jitji14 = 2 Z (aji —ajy1,4)” >0,
Jjen{i} JeN{ii—1} Jel\{iyi—1}

which together with the equation (3.15) yields b; > 0. It remains to
show b;; > 0 for | # i. By (3.14), we see by > 0 if

(316) Z a?l — Z A 1ai41,0 — Q > 0.
jen{i} jen{ii—1}

Set ¢jy = aj, j € 1\ {i} and ¢;; = 0. Then we have

2
dYooah— D auaji—a

Je{i} jel\{ii—1}
n n—1
(3.17) - ZC?Z - Z CjiCj+1,0 — Cul
Jj=1 7j=1
1 -1 "
- 5 Z(le - cj+1,l)2 —q | + Z(le — Cj+1,l)2 -y ,

j=0 7=l
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where co; = ¢ 41,; = 0. Since ¢j; € NU {0}, it is easy to see
-1

n
(3.18) Z(Cﬂ — Cj+1,l>2 —cy > 0 and Z(Cﬂ — Cj+1,l)2 - > 0.
§=0 j=l
As a consequence, (3.16) holds and we get b; > 0 for [ # . Thus the
claim (3.10) is proved, and R;o € T'n(p).
Next we define a partial order < in I'y(u), we say

o1 2oy provided (o1); < (o2);, i€ 1.
It is easy to see that we have

either R0 <o or o =Ko, Viel.
For any o € I'y (), we set

(3.19) I'o :{i)%il---?)%imo- ]mENU{O}}.
It is easy to see that for any 01,09 € 'y (), we have either
(320) F0'1 = F0'2 or F0'1 M F0'2 = @

Next we shall prove that 0 = (0,---,0) € I'g for any o € I'n(p).
An element & € I'g is minimal if & < & for some & € I'g, then
6 = 0. It is not difficult to see that I'g has a local minimal element
gy — (O’l,o, s ,Umo), i.e.,

oy X R;oq, Viel

As a consequence, we have

n
2u; — Zkijcrj,() >0,1€l.
j=1
On the other hand, since o satisfies the P.I., we get

n n n
(3.21) 0 S Z(Z,ui — Z k‘l'jO'j,g)O'i,o = —22,&@'0@'70 § 0.
=1 j=1 =1

Then o;90 = 0, Vi € I. Hence 0 € I'g. By (3.20), we obtain I'g =
L(,... o) for o € T'y(p) and it implies
Iy(p) =T ().
q.e.d.

3.2. The Weyl group and T'(u). For any o € T'(), we can define
the matrix A. Then we set

(3.22) B=1, - KA.
In the next theorem we will see that the matrix B is related to the Weyl
group of the Lie algebra A,. It is known that the simple roots for the

Cartan subalgebra of sl(n+1) is e; —e;+1, i € I, wheree;, 1 <i<n+1
is the standard orthogonal basis in R"*! and (-, -) is the inner product of
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R+, Let V be the subspace spanned by simple roots. For 0 # o € V,
the orthogonal reflection S, is defined by

SuB) =229t gev.
(o, q)
The subgroup W generated by the reflections S, ., ,, @ € I is called

the Weyl group of the root system R. Using the basis e;11 — e;, W can
be embedded into GL(n,R).

Theorem 3.5. Let B be defined in (3.22), then we have the following
conclusions.

(a) The matriz B for any A € T'(u) is non-singular. Furthermore, let
f — Ay be the correspondence by Theorem 3.2 and By is given by
(3.22). Then f — By is an anti-homomorphism from the permu-
tation group Sp+1 to GL(n,Z). Consequently

{B | B is given by (3.22), A€ '(n)} is a group
denoted by B.
(b) The entries of any B in B consist only of {0, £1}.

(c) The group B is the Weyl group of the root system for the Lie
algebra A,,.

Proof. (a) We start the proof by showing B is invertible. Using the
P.I. we get
2

n n n—1 n n
Z Z Q5 g - Z Z Q5 g Z Q41,5 g
(3.23) i=1 \j=1 i=1 \j=1 j=1
= Z i Z Qg g )
i=1 j=1
which implies
(3.24) pAAp — p A RAp = p' Ap,
where ) )
o100 --- 0
o001 --- 0
R=1|: : : O
oo0¢0 --- 1
_O 00 --- O_

and g = (u1,- -, un)t. Since the equation (3.24) is independent of g,
we get

(3.25) %AtKA — A %A’f(R +RNA = %(A + A,

where A! denotes the transpose of A.
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On the other hand, we have by (3.22)
(3.26) A=K (I, — B) and A" = (I, - B)K .
Substituting (3.26) into (3.25), we get
(3.27) (I, - BHYK Y1, - B) = (I, - BHYK ! + K~ (I, — B))
which implies
(3.28) BK'B=K!
From the above equation, we deduce that B is non-singular.
Next we shall show the map f — By is an anti-isomorphism from

Sp1 to B. It is easy to see By = I, provided f is the identity map. By
Theorem 3.2 we get the map f — By is onto, now we will prove

Byor = ByB, for any permutation map f and g.

Since any permutation map f can be decomposed by some simple ones,
which alternates only one couple of neighbor points. Then it suffices to
show the anti-homomorphism holds with f is simple, i.e., f only change
the places of m — 1 and m for some m € I. Suppose g corresponds
to the element o = (o1, ,0,), then g o f corresponds to R,,o. We
assume o; = 2 2?21 agjjij, then the (7,7)-th entry of By and Bgoy can
be represented respectively in the following

(3.29) (Bg)(i,j) = (5,‘]‘ - Z kilalj
=1
and
(3.30)
52']‘ — Z?:l kilalj, ifeel \ {m + 1,m},
_ ) Oi = kimGjm — 3212, Kaay
(Bgof)(i,j) o +kim Z?:l kmlalj, ifi=m=%1,
L _5mj + Z?:l kmlalj, if i =m.
On the other hand, for the permutation map f we have
From (3.29) to (3.31) and straightforward computation we get
(3.32) Byof) i) = D _(Bp)anBg)y» 3 €1,
=1

which implies Byoy = ByB;. Therefore we proved the map f — By is
anti-homomorphism and consequently B is a group. Now it remains to
show the map is injective, i.e., the pre-image of I, is the identity map.
Suppose that there exists a permutation map f such that By = L,.



356 C.-S. LIN, W. YANG & X. ZHONG

Then A; = 0 and by Theorem 3.2 we have f is identity. Hence the map
f — By is anti-isomorphism.

(b) We have already known that the (4, j)-th entry of By is the co-
efficient of p; in Zlfz(ll) W — lf:(ifl) wi, 3 € I. Then it is easy to see
that the coefficient of py, ¢ € I in p; — %ZJ kijo; only takes the value
in {—1,0, 1}, therefore the second conclusion holds.

(c) We have already seen that the generators for the Weyl group of
the Lie algebra A,, are

(333) 881—627362—637 T 786n—6n+1 .
It is known that

€; — €i+1, if 4 ¢ {m,m + 1},
. i €m—1 — Em+1, ifi:m—l,
(3.34) Sem*em-kl(e’l eit1) = Emil — Em, if i = m,
em — em+2, ifi=m+1.
The corresponding matrix Me,, e, ; 1S
Oijs if j #m,

(3.35) [Mem*e'mjtl]ij = {

On the other hand, from the proof of (a) we get the generators of the
group B are By, where f is the simple map which only change the
places of m —1 and m for some m € I. The matrix By has already been
computed in (3.31). Combined with (3.35), we get

M., —e,.., = By.

As a consequence, the generators of the Weyl group of A,, and the group
B are the same. Therefore these two groups are the same. Hence we
finish all the proof. q.e.d.

5im — kim7 if ] =m.

3.3. For any o € I'(p), we set
1 .
(3.36) ﬂi:ﬁbifizkijaja 1€1.
J

Then we state the following result

Theorem 3.6. Assume o € I'(i), and let fi; be given in (3.36). For

any permutation map f on {0,1,--- ,n}, we set 6y = (0f1, - ,0fn)
by

i—1 (1) J
(337) O'fﬂ':O'i-i-QZ Zﬂl—Zﬂl

j=0 \ =1 =1

Then o¢ € T'().

Proof. Note that if f is an identity then oy = o. Hence it suffices
to prove that if f is any permutation such that o € I'(i) and g is the
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simple permutation, then o ., € I'(¢t). Let g be a simple permutation
which only alternates the places of £ — 1 and ¢ for some ¢ € I, then we
have

(3.38)
(fog)(U=1) = (), (fog)(£) = f(L=1), (fog)(z) = f(i), i € I\{{—1,(}.
According to the definition of o4, for ¢ # £ we have that

i—1 [ (fog)(4) J
O fogi = 03 + 2 Z Hm — U,
(3 39) 7=0 m=1 m=1
’ i—1 () J
=02} | D fom = ) fn | =g
7j=0 \'m=1 m=1

For i = ¢, we have
(3.40)

=1 [ (fog)(y)

J
Ufog,£:U€+22 Z ﬁm_z,am
m=1

i=0 \ m=1
=2 [ f(5) J f0) -1
=00+ 2) |\ D B D m | F2[ D Am = Y fim
j=0 \m=1 m=1 m=1 m=1
=0f4-1+t0fe41—0fp+ 200 —0p—1 — g1+ 20y

= 2y — Z kgjO’fJ' +0f0-
J
Thus 0 o = R0y, where Ry is given by (3.2), and then o roq € I'(p).
This proves Theorem 3.6. q.e.d.

An important consequence of Theorem 3.6 is the following proposi-
tion, which plays a crucial role in section 6 and section 7. Before we state
the result, let us introduce the notion of consecutive indices. We say
that J C I consists of consecutive indices if J = {i,i+1,--- ;i+m} C [
for some m > 0. We will see the concept of consecutive indices is needed
in the partial blow-up phenomena of solutions of Toda system.

Theorem 3.7. Assume o € I'(pu), n>2. Let J=J,U---UJ; C I,
where Jy, -+, J; are disjoint sets and Jp = {ig, -+ iy + |Je| — 1}, t =

1,--- .1 consists of the mazximal consecutive indices. We set fi; = u; —

%Z?:l kijdj, 1€l and

(3.41)

g,=o;foriel\J, 6,=0;+ Z kiz](Qﬂj + 2ﬂ2it+\Jt\fj71) for ¢ € Jy,
JjeJt

where (kzj)ljtlx‘Jt‘ is the inverse of (Kij)|z,|x|s|> ©J € Jt, t=1,--- L

Then o € T'(w).



358 C.-S. LIN, W. YANG & X. ZHONG

Proof. For convenience we write

(3.42) Gio = > _ k7 (205 + 2ii, ) 7-1-5)> 1 € Je.
JEJt

For the matrix (/@? )17¢|x|¢|» We have the following equality
kz] + ki,Zit+|Jt|flfj
= mln{z - it + 1,] - it + ]., ’Jt‘ + it - i, ‘Jt| +Zt —j}, Z,] € Jt.

As a consequence, we can rewrite (3.42) as

i—1 2it+|J|—2—j J
(343) ;0 = 2 Z Z n — Zﬂl , © € Jp.
j=i—1 =i, I=iy
Next we define a permutation map f;, t =1,---,l on J U {i; — 1} such
that
(344) ft(Z):22t+|Jt’—2—Z, ZGJtU{Zt—l}

and a permutation map f on Iy = I U {0} such that

i) = fi(i), if i e U (Jr U {ip — 1)),
Rt if i € Io\ (Ut (T U {i — 13)).

Then we can write 7; as

(3.45)

i-1 [ f() J
(3.46) Gi=0;+2 =Y |, i€l
j=0 \i=1 =1
By Theorem 3.6 we get & € I'() and it finishes the proof. q.e.d.

Theorem 3.6 and Theorem 3.7 play important roles for calculating
the new local mass at each step of performing partial bubbling, see
Proposition 6.1 and Lemma 6.3.

4. Bubbling Analysis for picking up “Bad points”

The main purpose of bubbling analysis for a local solution of equation
(1.15) is to pick up those “bad points”, {z¥, -, 2%} denoted by .
The set X, is characterized by the Harnack-type inequality:

(4.1) uf () + 2log dist(x, ¥y) < C, Vo € B(0,1), i€ I,

for some constant C'. The process for selecting those points has been
done in [28]. In this section, we shall review this process for the conve-
nience of readers. For the complete proof we refer to [28].

We construct Xj by induction. If (1.15) has no singularity at 0, we
start with X = (0. If (1.15) has a singularity, we start with 3, = {0}.
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Suppose that we have defined ¥, = {0,2%,--- 2% |} by induction,
then we consider the function

(4.2) max (uf(x) + 2log dist(z, Zk)) .

1<i<n, z€B;

If the above function is bounded from above by a constant independent
of k, then we stop the process and ¥y = {0,2%,--- ;2% |}. Otherwise
the maximum tends to infinity, let g5 be the point where (4.2) is achieved
and we set

di, = %dist(Qk,Ek)
and
SE(x) = uf(x) + 2log (dy — |x — q]) in Blqy,dy), i€ I
Let ig be the index and pg be the point such that

Sk = max max SF(z).
i (pk) 1<i<n 1€ Blanady) i ( )

Then we set .
b = 5 (di = [k = al)
and scale uf by
(4.3) vf(y) = ul (pr + e_%“i'co(pk)y) —uf (px) for [y| < Ry = 2V PR

It is not difficult to see that R, — oo and vf is bounded from above on
any fixed compact subset of R2. Thus by passing to a subsequence, vf
satisfies one of the following two alternatives:

(a) The sequence is fully bubbling: along a subsequence, (v}, -, vF)
converges in C7_(R?) to (v, ,v,) which satisfies
n
(4.4) Av; + Zaije”j =0inR? iel
j=1

(b) I =J1UJoU---UJ;UN, where Jy, Jo,--- ,J; and N are disjoint
sets, N # () and each J;, 1 < i < [ consists of consecutive indices.
For each ¢ € N, vf — —o0 over any fixed compact subsets of R2. The
components of v¥ = (v¥,---  v¥) corresponding to each J; (i = 1,--- 1)
converge in C2 (R?) to a SU(|J;| + 1) Toda system, where |J;| is the
number of indices in J;.

Therefore in either case, we could choose I}, — oo such that
(4.5) vF(y) + 2logly| < C for |y| <1f, iel

and

(4.6) / e’ dy = / e’ 4 o(1).
B(0,l}) R2
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1,k
After scaling back to u¥, we set I¥, = e 2" (p’“)lz. Let 2% be the point
where max;e; maxpg, 1k )uf is achieved and add %, in ;. We can
continue in this way until the Harnack inequality (4.1) holds.
The inequality (4.1) is a Harnack type inequality, which has the fol-
lowing important consequence.

Proposition 4.A ([28, Lemma 2.4]). Let u* satisfy (1.15) in B(x,
2ry) such that (1.17) holds and
uf(z) + 2log |z — xz¢| < C for x € B(xg, 1), 1 <i<n.
Then
(4.7)
1 |IL’1 — 370|

]uf(ml) — uf(mg)] < Cp for - < — < 2 and z1,x2 € B(xg, %),
2 ‘IL’Q —J,’o’

where Cy depends on C only.

Now let us introduce the notions of fast decay or slow decay in below

Definition 4.1. Suppose that u* satisfies the Harnack inequality
in B(xg,2rg) \ B(xk,%rk). Then we say that uf has fast decay on
0B (xy, ) if along a subsequence,

uf(z) + 2log |z — x| < =N, for = € dB(zy,71)

for some N, — oo and uf is said to have slow-decay if there is a constant
C independent of k£ and

uj(z) +2log |z — x| > —C,  for x € OB(xy, 1)

As we have seen in [27] and [28], the fast decay is the necessary
situation for applying Pohozaev identities. Based on the notation of fast
decay and slow decay, we summarize the above discussion of induction
process as the following.

Proposition 4.B. Let K = (kjj)nxn be the Cartan matriz (1.6),
hE satisfy (1.16) and u¥ = (u},--- ,uk) be a sequence of solutions to
(1.15). Then there exist a finite set ¥y, := {0,2%,--- 2%} (if 0 is not
singular point, then 0 can be deleted from Y) and positive numbers

%, 1k — 0 such that the following hold:

1) There exists C > 0 independent of k such that (4.1) holds.
2) At :c;?, let ufo(a:;“) = max; maxp,k lk)uf(x) — 400 as k — +0o0
3"

and set
_ Lk (g
(4.8) of (y) = wf (2§ + 770 )y) — uf (o)
then v* = (vk,--. vF) satisfies either (a) or (b). Furthermore
there is a sequence Rjy, such that u¥ has fast decay on aB(a;?, lf),

Lok (2R
where l;? = Rj e 2t (75),

3) B(af, )N B(af, 1) =0, i #j.
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We refer the readers to [28, Proposition 2.1] for the proof of this
proposition. Let zf € ¥y and 7/ = 3dist(af, 5y \ {2f}), then we can
derive from (4.7) that

(4.9) ui(z) = uly (r) + O(1), w € B(af,7),
where r = |z — z| and a’;k ; is the average of uf on OB(zf,7):
1
1
( ) uxf’l(r) 27r OB(zk,r) e
and O(1) is independent of r and k.

In the end of this section, we provide the following result which plays
a crucial role in the later argument.

Proposition 4.C. Let B = B(z*,ry). If 2% # 0, then we assume
0 ¢ B(x*, 2ry). Suppose that all the components of u* have fast decay
on OB. Then (01,09, ,0,) satisfies the P.I., where

1
o; = lim / hfe“?
k—o00 27 B(z* 1)

The proof of Proposition 4.C requires some delicate analysis, see [28,
Proposition 3.1].

5. Three technical lemmas

In this section, we will prove three crucial results which play the key
role in sections 6 and 7. We consider the following equation

n
(5.1) Aul(x) + Z k‘ijh?eu? = 4ra;0p in B(0,1), i € 1.
j=1
For Lemma 5.1, we assume

(i) The Harnack inequality

1
uf(z) 4+ 2log |z| < C, for ilk <l|z| <28, and i € I.

(ii) All components of u* have fast-decay on 9B(0, ;) and
lim lim of(B(0,7l;)) = lim oF(B(0,l)).
k—+o00

r—0k—+o00 k
For simplicity, we denote the limit of o¥(B(0,1;)) by 0.

Lemma 5.1. Let ; = a;+1. Assume (3) and (ii), then the following
conclusions hold.

(a) If the i-th component u¥ has slow-decay on OB(0, s;), then

n
2u; — Zk'@'jaj > 0.
j=1
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(b) At least one component of u* has fast decay on dB(0, sy,).

Proof. (a) At first, notice that the following scaling

vf(y) = uf(sky) +2logsy in By, i€,

gives

+ Zkzg j Sky evJ (y) = 47‘(‘0@50 in BQ,

where o; maybe zero. Let J be a (maximal) set of consecutive indices
such that u¥ has slow-decay on dB(0,s;), i € J. Then v;,i € J con-
verges to the solution of a SU(|J| + 1) Toda system v;, i € J, which
satisfies

(5.2) Av;(y) + Z kije" = 0in By \ {0}, 4
jeJ

The strength of the Dirac measure at 0 for (5.2) can be expressed by

81}2( ) v
£ ——==dS = lim lim (4wa; — Z/ o) kwhfe ady)

r—0 k—o0

lim
=0 JaB(0,r)

= 47‘(’052' — 27‘(’2]{}1']'0]'.
j=1

The existence of a solution v; to (5.2) implies a; — 3 > kijjo; > —1 and
then (a) is proved.

(b) Since all components have fast decay on dB(0, ), the o satisfies
the P.I. by Proposition 4.C. By a simple manipulation, the P.I. can be
written as

(5.3) Z oi( Z kijoj — 2u;) =2 Z 1iT;,

=1
which yields Z;L:1 kijo; — 2p; is positive for some i € I. By (a), we get
the i-th component u? have fast decay on 0B(0, sy). q.e.d.

The next result is about the fast-decay, which is a crucial step in the
bubbling analysis.

Lemma 5.2. Suppose that the Harnack-type inequality holds for r €
[%“, 2s1,] and all components of u¥ have fast decay on all v € [ly, sg], then

(5.4) o (B(0,s1)) = oF(B(0,11)) + o(1), i € I.

Proof. We prove it by contradiction. Suppose that this is not the
case, then there exists £ € I such that

(5.5) oy (B(0, sx)) > 0§ (B(0,1x)) + 01
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for some 1 > 0. Let
(5.6) 6; = lim oF(B(0,1})), i € 1.

k—+o0

We first claim that:

(5.7) if 2u; — Zkij&j # 0 for all ¢ € I, then (5.5) is impossible.
j=1

Suppose that this claim is not true, i.e. (5.5) holds under the assumption

n
2;” - Zkijé'j ?é 0 for all 4.

j=1

Let

1 . S

52 = m min Hliln |2,ul — Zl kijo-j‘a 51, 1
j:

and [}, € (Ik, sx) be such that
(5.8) max(of([k) — of“'(lk)) = 0o.
We set
(5.9) I= ie[‘ 2pi — Y kijo; <0y and J=1I\1.

Jj=1

The Harnack-type inequality (see Proposition 4.A) implies that uf(z) =
af(|z]) + O(1) for |z| € [31), 2s;]. Thus we have from (1.15) that

2u; — 5y kijo (7)

d
(5.10) E(ﬁf(r) +2logr) = . ;g < < sy,
where o¥(r) = 0¥ (B(0,7)),i € I.
From the definition of d9, we have
d ) - .
(5.11) %(af(r)—i—ﬂogr) < —72 for r € [ly, ly], i € I.

By integrating the above equation from I up to r < I}, we have
a¥(r) + 2logr < @F(ly) + 2log i, + 62 logl?k"7 iel,
that is for |z| =r,
et (@) < O(l)eﬂf(r) < e_Nklizr_(2+52), 1€ f,
where we used @¥ (1) + 2log I, < —Nj by the assumption of fast-decay.

Thus

k M [ 5 e~ M
/ et @ dg < 2me™ ’“llf/ r=(1402) g < o
I <|z| <l s 02

—0,i€el,
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as k — +o00. Hence

(5.12) of(ly) = o (ly) + o(1), i € I.
Since all the components have fast decay on 9B(0,l;) and 0B (0,1x),
we have both (61,---,6y) and limg oo (0¥ (Ix), - -+ , 0% (Ix)) satisfy the

Pohozaev identity, i.e.

n n—1 n
(5.13) Z&?—Z&iﬁprl :22/11'5'1',
=1 =1 =1

and
n n—1 n

(5.14) Z(&l + 51‘)2 — Z((ATI + 51‘)(6'1'-1-1 + 5i+1) = 22;@(5’,’ + 82‘),
=1 =1 =1

where g; = limg_, 4 o af(lNk) — 0. Using (5.13) and (5.14), we get

(5.15) 2612 — ZEiEi+1 + Z(Z k:ij&j — 2/,1,2‘)82‘ = 0(1),
ieJ ieJ ieJ J=1

where we used (5.12). By (5.8), we have max,_;e; = d2. Then we get

n
0= 2512 — Z €i€i41 + Z(Z kij&j — Q;Li)ei
(5.16) icJ =pi : ieJ J=1
< 715% — Iniin | Z k‘ijﬁj — 2,ul-|52 < 0,
j=1
a contradiction. Thus we have proved the claim (5.7).

Next, we will show (5.5) is impossible by induction on the number
N, of £ such that 2uy — Z?Zl kejo; = 0. We assume

(5.17) (5.5) is not true for N, = N,

where 0 < N < n. Next we will show (5.5) is also not true for N+1. We
prove it by contradiction. Suppose that (5.5) is true when N, = N + 1.
Decomposing

I=LUI,UlIs;,

where Iy := {i | 2p; — >0y kij6; < O}, Io o= {i | 203 — 377, kijoy > 0}
and I3 := {’L ’ 2u; — Z?:l kij&j = 0}, then ‘13‘ =N +1. Let

1. . —~.
53 = To0y, Win iel}llglb |20 — JZI kijcjl, 61,1,

and Iy, € (Ik, si) be such that
(5.18) max (o ¥ (I) — o¥ (1)) = 6.

)
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Then, by the same argument adopted above (see (5.12) and (5.15)) we
conclude that

(5.19) ¥ (lp) — of(ly) = 0(1), i € I,
and
n
(5.20) Z 522 — 2 €i€i+1 + E(Z k‘ijﬁj — 2#1')81' = 0(1),
1€loUlg 1€lUls i€ly j=1

where g; = limg_ 10 af(ik) — 6. If there is some ¢ € Iy such that
g > %3, then we find that

n
0= Z 612 — Z Ei€i+1 + Z(Z k?ija'j — 2#1’)51'
(5 21) i€loUl3 1€laUl3 icly j=1

1 n
< n5§ — ZIHZIH ‘ Zkl]&] — 2HZ|63 <0,
j=1

a contradiction. As a consequence,
03 = maxe; and &4 < 153, where 04 := maxe;.
i€ls 4 i€l
Let
Iy = {’L €ls, g = 63}
and we pick out the smallest index 79 € Iy, it is easy to see that

n
(5.22) 2,ui0 — Zkiojof(lk) <4 — 03 < 0.
j=1
On the other hand, we have for i € Iy U Iy, 2u; — Y0 kijaf(ik) # 0
still holds. Then on |z| = [, we have at most N components with

2pi — 3054 k:l-jaf(ik) = 0(1). In view of the assumption (5.17) with I
replaced by ik, we can get
(5.23) ¥ (B(0, s3)) = o¥(B(0,1;)) + 0(1), i € I.

On the other hand, we can easily get that
max (o (B(0, 51)) — oF (B(0,0))))

> max <J£€(B(O, Sk)) — 05(3(07 lk)))

— max (aF(B(0, k) — o (B(0,14)) )
= (51 — 63 + 0(1)7

which contradicts (5.23). Therefore, (5.5) is also not true for N, = N+1
and we finish the induction process. Thus, in any case we have shown
(5.5) can not hold and it proves the conclusion. q.e.d.
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Before stating the last result in this section, we make the following
preparation. Let the Harnack inequality hold for r € [%lk, 27i]. For a
sequence s < 73, we define
(5.24)

5i(B(x,s))
lim o (B(z*, s;)) if uf has fast decay on 0B(x¥, s1.),

k—+o0

lim lim oF(B(z*, rsy)) if u} has slow decay on 0B (2", s),
r—0 k—+oco
where (x, s) stands for the sequence of the pair {(z*, s;)}. When 2¥ = 0,
we simply denote 6;(B(x,s)) by &;(s).
The following lemma is very important in the bubbling analysis in
section 6 and section 7.

Lemma 5.3. Let 6;(s) be defined as above and ry, € [ly, 1] satisfies
the following conditions,
(1) u* has fast decay on 0B(0,7}),
(2) i € I, such that 6;(r) # 6;(7) (v and T stand for the sequence
{re} and {mc}).
Then there exists sy € (rg, i) such that
(i) sk/rr — 400, there is at least one component i such that uf has

slow decay on 0B(0, si),
(i1) 64(s) = 64(r), i € I (s stands for the sequence {si}).

Proof. Since u* has fast decay on 0B(0,ry), it is easy to see that
(61(r), -+ ,0n(r)) satisfies the P.I. We set § = max;(6;(7) — ;(r)) and
decompose

I=LUIUIs,
where I := {i | 2;@—2?21 kijoj(r) <0}, Iy == {i| 2,LLZ-—Z;L:1 kijoi(r) >
0} and 13 = {Z ‘ 2ui — Z?:l kij&j(r) = 0}. Let

1
(5.25) dp = mmm zer}llgl]g |20 — kaaj )|, 0,1}

and ko € (0,00) be a small positive number. We choose ¢ € [rg, %]
such that

(5.26) max(ck (€y,) — o¥(r)) = ko.
Lemma 5.2 implies that u* can not have fast decay on [rg,fx]. Thus

there is a sequence ¢ > s, > rj, such that some of u* has slow decay
on 0B(0, s). We claim

(5.27) &Z(S) = 5‘1(1‘) for all i € I.
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We prove it by contradiction. Suppose that (5.27) is not true, then
again Lemma 5.2 says that there exists a sequence r; < §; < s such
that

(i) some components of u* have slow decay on 9B(0, §),
(i) max;(6;(8)—6i(r)) € [5€0, 0] (where g9 = max;(65(s) —6;(r)) and
§ stands for the sequence {8}).

The next step is to re-scale uf by
(5.28) vF(y) = ulf (2 + s1y) + 21og 5.

Due to the slow decay assumption on §i, some components of vf con-
verges and it implies that there is a sequence of Ry — 400 such that

(iii) Rpér < si, u* has fast decay on 0B(0, Ry3;),
(iv) Set 0; = limg_, 1o 0¥ (B(0, R3y)), then o = (01, - -+ ,0,,) satisfies
the P.I.

Let e; = 0; — 64(r) and max; e; € [%50,50]. Because both 6;(r) and o;
satisfies the P.I., we have

(5.29) Z 512 — Z Ei€i+1 = Z(2Hi — Z kijﬁj(r))si.
i=1 i=1 =1 J=1

Note if i € I3, we have 2u; — > 1, kij6;(r) = 0. We claim
(530) g =0, fori e I; Ul.

Once (5.30) is established, the R.H.S. of (5.29) vanishes and we have

n n
E : 2 2 :

& — Ei€i+1 = 0.
i=1 i=1

But the Cartan matrix is positive definite, the above identity yields
g; =0, i € I, a contradiction, and the claim (5.27) holds.

So it remains to prove (5.30). We shall prove for ¢ € Iy and the proof
for ¢ € Iy is similar. First, we claim all the components with index in /s
are fast decay on 9B(0, §). Otherwise, we could get some ig € Io N J,
where J is the maximal set with consecutive indices such that v¥, i € J
converges to SU(|J| + 1) Toda system

v; 1 ¢ ~ : .
(5.31) A’UZ‘ + EZJ]?@'@ 7 = 471’(0&1' — 5 Zl(kijUj(S)))é() mn RQ, 1€ J,
J J=
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where a; — %Z?Zl(kzij&j (8)) > —1, i € J. From the above equation, it
is easy to see that

1
Uz}‘CO(ngkz) = 5’i0(§) + % /Rz evio + 0(1)
s 1 o
> 61y(8) + iy — 5 D (i 95(3)) + (1)
Jj=1

> 64,(8) + 200 + o(1),

and it contradicts (5.25) and (5.26). Therefore u¥, i € Iy are fast decay
on dB(0, §). For the components uf, i € I, using (1.15) and (5.25),
we have

(5.32)

d 2u; — S kiiok(r 5

—(@k(r) +2logr) = i = 2 Ry (1) > forr € [Tk, k), @ € Ia.
dr r r

Integrating the equation from r € [ry, §x| to Sk, we have

(5.33)

af(r) + 2logr < @¥(5;) + 2log 51 + o logAL for r € [rg, Sk, 1 € Ia.
8k

Together with the fact @¥(8)) + 2log &, — —oco as k — +o0, we get

k 2k (s . 1[5 .
/ e @ dy < 2ret (s’“)+2logskw/ 04 -0, i€ Iy,
re <]z <8 Sko Tk

Therefore
(5.34) (ATl(Ré) = OA'l(é) = 6i(r), 1 € I,
where RS stands for the sequence { Ri$;}. Thus, the claim (5.30) holds

and we finish the proof of the lemma. q.e.d.

6. Local masses on the bubbling disk centered at xf #£0
6.1. Let 2 € %5\ {0} and set
L.
mF = idlst(xf, i\ {25 ).

By Proposition 4.B, IF < 7F. In this subsection, we study the local be-
havior of u* in the ball B(z}, 7}). We recall that the Harnack inequality
holds for B(zf,7F) \ {zF}:
uf(z) + 2log |z — 2F| < C, Yz € B(aF,7}).
The local mass of the i-th component,
1
k

21 Jp@a

ko
hFevi | ic 1.
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Because zf # 0 and 0 ¢ B(zF, 7F), equation (1.15) becomes

n
(6.1) Aub + Z kijhfeu? =0 in B(zF, 7F).
j=1
Throughout this subsection, we fix ¢ and simplify our notation by
dropping the index t. Recall that all uf have fast decay on 9B (z*,¥).

This is the starting point of the whole analysis in this section. Since
a; = 0, we have u; = 1. Hence in this section, (p1,---,pu,) will be

(1,---,1).
For a sequence s < 7%, we recall &;(s) is defined by (5.24).

Proposition 6.1. Let u* = (uf, - uF) be the solutions of (6.1)
and 6;(T) be defined in (5.24), the following hold:

(1) At least one component u* has fast decay on OB(z*, %),
(2) (&1(7)7 T 76-71(7-)) € F(lv Ty 1)

Proof. Basically (1) has been proved in Lemma 5.1. To prove (2), we
divide our proofs into several steps.

Step 1. We prove that (61(1),---,6,(1)) € I'(1,--- , 1), where 1 stands
for the sequence {I*}. Recall that in Proposition 4.B, we set ufo (zF) =

max; uf (z¥) and let

1
(6.2) vk(y) = uf(:pk + eiﬁufo(xk)y) — ufo ({L‘k), 1e€1.

(2

After passing to a subsequence, we can find a set J C I such that
vF(y) — —oo over compact subsets of R? for i € I\ J, where J =
JiU---UJpand Ji, t =1,--- 1 are disjoint sets, each J; = {iy, -+ , i, +
|Jt] —1},1 <t < consists of the maximal consecutive indices. While
the components vF,i € J; converge in CZ_(R?) to a SU(|.J¢| + 1) Toda

system, i.e.,

(6.3) Avi+ > ke =0, i€ Jy, t=1,-+ L.
JEJ

Applying the classification [26, Theorem 1.1], we can get

ewdy =9 Z(k;j] + kt]t )’

(6.4) o
™ JR2 JETs

where j; = 2i;+|J¢|—j—1 and (k‘ij)|Jt|X‘Jt‘ is the inverse of (kij)|7,x ||
i,j€Jy, t=1,---,1. Since

vi(y) = —2a;log |y| + O(1) at oo for some a; > 1,

it is easy to see there is a sequence of Ry — +oo such that u* has fast
C1yk (gk
decay on 9B(0,1¥), I¥ = Rye 2t (),
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According to the choice of ¥, we have

65) o =5 [ =2 0, e g =100
R :
JEJ:

and
(6.6) ai()=0,1€1l\J

Now we could apply Theorem 3.7. Set p; = 1 and o; = 0 in (3.41).
Hence

(67) (&l(l)v"' a&n(l)) € F(lv"' ’1)'

Step 2. If 6;(7) = 64(1) for all ¢ € I, then Proposition 6.1 is proved.
Otherwise, there exists i € I such that 7;(7) # (1), then we can apply
Lemma 5.3 to find sj such that ¥ < s, < 7%, some uf has slow decay
on 0B(z¥, s;) and

a’z(s) = 6’1(1), el
where s stands for the sequence {sj}. Then we perform the same scaling
as Step 1. But there is some difference for the limiting equation (6.3).
For the sake of completeness, we sketch it below.

Let v¥(y) = uf (2% + spy) +21og sx. By a little abuse of notations, we
still use J to collect the indices such that uf , © € J has slow decay on
O0B(x*,s1,) and decompose J = J; U---UJ; and Jy,--- ,.J; are disjoint
sets, each J; = {is, -+ ,it + |Jt] — 1},1 < t < consists of the maximal
consecutive indices. Then vF — —oo in any compact set of R? for
i € I\ J and the components with indices i € J;, t =1,--- [ converge
to SU(|Jy] + 1) Toda system as k — 400, i.e.,

(6.8) Av; + Z ket = 47rz 1))do in R%, ieJ,
JEJ

where —31 > i1 kijo;(1) > —1, i € J. Hence there are sequences
N, Ny — +00 as k — +00 such that Njs, < 7% and satisfies

) fB(O,N;‘) eldy = [gae"dy +o(1), i€J,
(i) vF(y) +2logly| < —Nj for |y| = N}, i€ 1,
(iii) For i € I, scaling back to uF, we obtain u¥ has fast decay on

OB(z*, N} s).

Then by Theorem 3.7, we claim that (N} 'si) € I'(1,--- ,1). The proof

of this claim will be given in Lemma 6.3 at the end of this section.
Let sp1 = Njsg. If 6i(s1) = 64(7) for all i@ € I (s;j stands for
the sequence {sj ;}), then Proposition 6.1 is proved. If not, we could
repeat the arguments of Step 2 to find s, < s ; < s j4+1 such that



LOCAL MASS OF TODA SYSTEM 371

o(s;) € I'(1,---,1). Because [I'(1,---,1)| is finite, the gain for the
energy of each step has a lower bound

n

> (6i(sjr1) — Gils) > 0 > 0,

i=1
and then after j steps, we have 6;(7) = 6;(s;), i € I. q.e.d.

6.2. Local mass in a group that does not contain 0. In this sub-
section we shall group together some of the points xf € X, provided the
distance between these selected points is comparably smaller than the
distance to the other points in ¥ and 0. In other words, the subset S
of 3, should satisfy the following S-conditions:

(1) |S| > 2, and 0 ¢ S if equation (1.15) has singularity at 0.
(2) There is 2% € S such that for any two points z¥ ,:1;] es

dist(zF, %) < Cmaxdlst(wl, Fy=C d(S)

[REad ]

for some constant C' independent of k.
(3) The ratio dist(S, X \ S)/d(S) — oo as k — oc.

Suppose that S = {z},--- 2} } and let

k k
I"(S)=2 max dist (¥, zF).

Recall 7/ = 1dist(zf, Sy \ {zF}), by (2) above we have (¥(S) ~ 7F for
1<t<ty. Let

- %dist(S, S\ S),
and it is easy to see
T'IS€ > Ttk, for 1 <t <ty.
By Proposition 6.1, the local mass 6;(B(x¢,T¢)) = myi, ¢ € I satisfies
(mt,la R amt,n) c I‘(L cee 1)7

where (x¢, T¢) stands for the sequence of pair {(zF,7F)}. Furthermore,
Theorem 3.2 yields that m;; € 2N U {0}, i € I.

Proposition 6.2. The followings hold true:
(i) At least one component of u* has fast decay on 8B(xlf,7']§),
(ii) Let 0; = 6;(B(x1,Ts)), then o; € 2N U {0}.

Proof. There are two cases to consider. The first one is all the com-
ponents have fast decay on dB(z¥, 7F), which implies u* has fast decay
on OB(z%,1%(9)) and the local mass
(6.9)

of (B(ay, 1" Za (af, ) ZthmLo ) = 2M; + o(1),
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where M; € NU{0}. Let m;(S) = 6;(B(x1,7Ts)). Suppose that

where (x1,1(S)) stands for the sequence of pair {(z¥,1%(S))}. Then the
proposition is proved. If m;(S) > &;(B(x1,1(S))) for some 4, then we
could apply Lemma 5.3 and follow the same argument of Proposition
6.1 to prove Proposition 6.2.

The second case is that some components of u* have slow decay on
OB(x%, 7F), which implies that some components of the re-scaled solu-
tion

vi (y) = uf (2} + 7i'y) + 2log 71

converges to v;(y), where v;(y) satisfy

to
(6.10) Avi+ ) kige™ = 4w nyidy, in R, i€ J,
jeJ t=1
where ny; = —% Z?Zl kijm; € NU{0}. Then by Corollary 2.3, the
total mass of v; is 2m;, @ € J, where m; € N. From it, there is a sequence

of Ry, — 400 such that all the components of u* have the fast decay on
OB(x%, Ry,I*(S)) and the local mass

(6.11) oF(B(zk, RiI*(9))) = 2(202 me; + ;) +o(1), i € J,
t=1
and
(6.12) ¥ (B(ah, RLI%(9))) = 2§:mt,i+o(1), iel\J
t=1

Thus the gain of mass at each step is at least 2. If we repeat this process,
and Proposition 6.2 can be proved after finitely many steps. q.e.d.

We close this section by proving the lemma which is required at Step 2
of Proposition 6.1. In order to apply the lemma in general circumstance,
we state the assumption first.

Suppose that there is a subset J C I such that uf, i € J has slow
decay on OB(x*, s;). Let

vF(y) = ul (2 + spy) + 2log sp.
Then vF(y) — —oo for i € I\ J and v¥(y) converges to v;(y), i € J.
Decompose J = J; U---U Jj, and Jp,---,J; are disjoint sets, each
Jp = {ig, - i+ |Je| —1},1 <t < consists of the maximal consecutive
indices. For i € Jy, v;(y) satisfies

N
(6.13) Avi+ ) kijets = dmajdo +4m Y mady, i € Jy,
JEJ¢ =1



LOCAL MASS OF TODA SYSTEM 373

where 0 # ¢; € R?, mj € N and
1 n
(6.14) Oéz< :ai_izkijaj > —
j=1
where «; is given in (1.15). Set
; if jel\J,
(6.15) or =37 \
0j+ 5= Jpe €, ifjed
Then we have the following result.

Lemma 6.3. If there is 6 € I'(u) such that o; = 6; + 2n;, n; € Z,
then o} = 6} + 2n} with 6™ € I'(n) and n} € Z.

Proof. Let §; be a bijective map from Jy U {i; — 1} to itself, then by
Theorem 2.2 we can compute the total mass of v;, 7 € J;,

Fe(9)

J
% w—zz S o= af | +2n;

j=it—1 \l=i¢ l=1¢
fe(4)

i—1 J
=2 > D w =D u | 2N, i€,

J=t¢t—1 \ =iy l=1i¢

(6.16)

where
1 n
1y :04;4‘1:#@‘—527%1017 el
=1
and N;,N; € Z, i € J;. Since 0; = ; + 2n; for some n; € Z, then we
have pif = p; — 2 S, ka6, + 0y, i € I for some n; € Z, and (6.16) can
be rewritten as

1 i—1 fe(4) J

(6.17) o R26”1'=2 N> m-d | +2N;, i€,

J=it—1 \I=1¢ =14

with f; = p; — %Z?:l k; 61 and Nl €.
Next we define an extension g of fy on Iy = I U {0}:

W), ifielJ (L ufi—1}),
618) gy =4 0 . Uiz (10 i .})_
i, ifielp\ (U (St U{iz —1})).
Then we can represent o) as the following

(6.19)

22 Z“l Z“l +2nf =6 4+2n, nfel, icl,
Jj=

=0 =1
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where
i—-1 (9(j)
iy (S-S
7=0 \I=1
Using Theorem 3.6 and & € I'(u), we get 6% € I'(i). Thus we finish
the proof. q.e.d.

Remark 6.4. If m;; = 0 in (6.13) and o € I'(w), then the proof
together with [26, Theorem 1.1] and Theorem 3.7 shows o* € I'(p).

Denote the group S by S;. Based on the discussion of Proposition
6.2, we could continue to select a new group So such that S-condition
holds.

Let

7'52 = dlst(:vz,Zk \ Sy) for a5 € S,.

Then we can follow the arguments in Proposition 6.2 to obtain the same
result.

If equation (1.15) does not contain singularity, the final step is to
collect all xf into one single biggest group and the conclusions in Propo-
sition 6.2 hold. Then we get

(01, ,0n) = (2mq,--- ,2m,,) satisfies the P.I.
This proves Theorem 1.5 if (1.15) has no singularities.

If 0 is a singularity of (1.15) then we could decompose ¥ = {0}US;U
--US,,, where each S; is the maximal collection of a:f in the following
sense:

(i) 0 ¢ S; and there is ¥ € S; such that dist(x,y) < d(S;) =
maxwke g, dist(a, x ) for any z,y € S;. Furthermore, we have dist(z?
7F) < |2F| for all 2% € S,

(ii) dlSt($Z,CE]) > C max{|z¥|, ]wk\} for some constant C' > 0,

(iii) The local mass UZ(B(af;“, ;Tg )) € 2NU {0}, i e I.

i

7. Proof of Theorem 1.5, Theorem 1.6 and Theorem 1.7

In last section, we have decomposed
Ek:{O}USlu---USm.

Let ¥ be the point in S; as described at the end of last section. With-
out loss of generality, we assume the sets Si,---, S, are the ones with
Cl k| < \xk| < Clab| for 1 < j <ty and \:Bk\ > |2¥| for j > to.

Set 7, = 3 if m = 0 and 7, = |2§| if m > 0. Let 0; = 6;(7), then
(017"'50)EF()

Lemma 7.1. (o1, - ,04,) € I'(p).
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Proof. We select ry < 7, such that max;(c¥(B(0,7;))) = ¢ and
uF has fast decay on 9B(0,7;). We could use Lemma 5.3 to find
sequence of s such that u* has slow decay on 9B(0, s;) and 6;(s) =
If 7./sx < C or o; = 64(s), @ € I, then the claim is done, i.e., o
(0,---,0) € T'(p). If 7/s, — —+oo. By performing the standard re-
scaling at sy, there is a sequence Rj, — 400 as k — +oo such that «* has
fast decay and ;(Rs) € T'(n) (Rs stands for the sequence {Rysi}) by
remark 6.4. After that, we could repeat the process to find s j11 > sy ;
and obtain 6;(sj+1) € I'(). (sj+1 stands for the sequence {sy j11}) At
each step, the total gain of the local mass at each partial blow-up has a
lower bound, since |I'(w)] is finite, the process will stop after finite steps

and we have

(7‘1) (0'17"‘ 70”) = (&1(7)7"' 76'71(7-)) € F(H),

and at least one component of u* has fast decay on dB(0,7). q.e.d.

Q

a
0.

Now we want to give a proof of Theorem 1.6.

Proof of Theorem 1.6. Clearly, it suffices to prove m = 0. Suppose
m # 0 and we select S1,--- , Sy, as above. As Proposition 6.2, there are
two cases to consider.

The first one is all the components have fast decay on 9B(0, %Tk),
which implies u* has fast decay on dB(0,1f (S)), where

I (S) =4 max dist(0, 5;).

1<j<to

Using proposition 6.2, we have the local mass
(7.2)

to
. . . 1 . .
Gi(le(8)) = 64(7)+>_ 6:(B(xj, 2Ts;) = Gi(r)+mi, mi €22, i €1,
j=1
satisfies the P.I., where ltO(S) and (x;, %|TS |) stand for the sequence of
{lé€ (S)} and the pair {(z¥ 3, 2\7'5 |)} respectively. For the simplicity of

notations, we let o = ;(7) and 0; = 6i(l¢x(S)). By Lemma 7.1, we
have o* = (07, -+ ,07) € I'(n) and both o and o* satisfies P.I. Hence
(73) Z Zaz Uz+1 - ZZ/M 05

i=1
and

n n—1

(74) Y (07 +mi)® = > (0F +ma)(0fy +mit1) =2 (o] +my).

=1 =1 =1
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Thus we have,

n n—1 n—1 n n
(7.5) 2mior — Y oimip — Y miol o — Y 2mu + Y m?
. 104 ¢ MThi4-1 10541 il i
i=1 i=1 i=1 i=1 i=1

n—1
— E mi;mi4+1 = 0.
=1

Since (O-Ta e ,O';;) € F(/Lla e mun)v we set
n
0';‘:22(11']‘#]', 1el.
j=1

Then we can write (7.5) as

n n n—1 n
AN maaiipg — 20> (agmizipy + aigrgmig)
(7.6) i=1 ]:1 . i=1 j=1 )
=2 Zmiui + Zmimiﬂ — Zm?
i=1 i=1 i=1
Since aq, -, and 1 are Q-linearly independent, we have pq,--- , pin

and 1 are Q-linearly independent, which implies the coefficients of u;
must vanish. Equivalently we have

(7.7)
2a11 —ag; — 1 2a91 — a1y — a3y 2ap1 — Gp_1,1 mq
2a12 —aze  2az2 —ap —ag—1 .- 2ap2 — Gp_172 mo
2a1p, — a2q 2a0p — Q1n — A3 0 20pn — Ap_1p — 1| \My

=0.

We note the matrix on the left hand side of (7.7) is nothing but —B,
where B is introduced in (3.22) and is non-singular by Theorem 3.5.
Therefore m; = 0 and Theorem 1.6 is proved for this case.

If some components of u* have slow decay on dB(0, 73 ), then we could
perform the scaling:

k

vF(y) = ub (rpy) + 2log 3.

Hence there is J C I such that v¥(y) — —oc if i € I\ J and v¥(y)
converges to v; for i € J, where v; satisfies (6.13). Furthermore, there

is a sequence of Ry, — 400 as k — oo such that u* has fast decay on
dB(0, Rilf (S)). By Lemma 6.3,

N T k k %
oy = Im_h(BO. Rulh(S) = o} +2m,
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for some o* = (of,---,0}) € I'(n), and o = (01, -+ ,0,) satisfies the
P.I. Then applying the same calculation as above, we have a contradic-
tion. This completes the proof of Theorem 1.6. q.e.d.

Next, we prove the Theorem 1.5.

Proof of Theorem 1.5. Obviously if m = 0, then it was done by Lemma
7.1. So we assume m # 0, and we will group together S = S1U---U Sy,
and 7%(S) = dist(zf, 5\ S) > 1§ (S). As the proof of Theorem 1.6, the
first step is to find a sequence si: If (S) < s < 7%(S5) such that u* has
slow decay and the re-scaled v¥ at sj converges v; which satisfies (6.13)
for some i € J and goes to —oo for i € I\ J. We note that for some
situation, m;; = 0 for all ¢ # 0. In any case, Lemma 6.3 tells that the
new local mass limy_, oo (0¥ (Risg), -+ ,08(Rgsg)) € T'(p) + 2Z. We
could repeat this process and to find sy j 11 > sp ; such that 6(s;11) €
I'(pe) + 2Z and satisfies the P.I. Since all the local masses have an upper
bound, the solution o of P.I. such that o € I'(u) + 27Z is finite. Thus
the gain of local mass at each step has a lower bound, which implies
after finite steps, we reach the conclusion

o = (61(7(5)), - ,6a(T(9))) € I'(m) + 2Z,

where 7(S) stands for the sequence {7¥(S)}. This ends the process of
grouping {0} and Si,---,S;,. We could continue our grouping until
S, and Theorem 1.5 is proved. q.e.d.
Proof of Theorem 1.2, Theorem 1.4 and Theorem 1.7. Let (uf,---  uk)
be a sequence of blow up solutions of (1.10) with (p1, - - - , pn) replaced by
(p’f AR ,pffb). First, we prove Theorem 1.4. From the above discussion,
we get that at least one component of u* (say u¥) has the property that
u’f —log f M hleullc has fast decay on a small B near each blow up point
q, which gives u’f —log [ M hle“]f — —oo if x is neither in S, nor the blow
up point. Hence Theorem 1.4 is proved.

We can interpret Theorem 1.2 as that the mass distribution of u¥
is concentrated as k — 400, we get that limg_, p’f equals to the
summation of the local mass o1 at each blow up point ¢, which gives
p1 € I'y, contradiction arises. Thus, we finish the proof of Theorem 1.2.
Following the same argument we get Theorem 1.7. q.e.d.

8. The results on B, C and G; type Toda system

In this section we shall discuss the corresponding result for B, C and
G type Toda system. We divide this section into three subsections,
the first one is about the estimation on the total mass for the B, C
and G type Toda system, the second subsection is used for discussing
the relation between Pohozaev identity and the Weyl group of B, C and
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Go. In the last subsection we give the version of Corollary 1.3, Theorem
1.5 and Theorem 1.7 for B and C type Toda system.

It is well-known that the B,, C,, and Gy type Toda systems can
be deduced from As,, Ag, 1 and Ag type Toda systems respectively.
Precisely, we have the following results, see [30, Lemma 4.1 and Lemma
4.2] and [31, Example 3.4].

Lemma 8.A (B,, reduction). The u; for 1 <i <n satisfy (1.15) for
the B,, Toda system with parameters o; for 1 <i < n if and only if the
u; for 1 < i < 2n defined by

U = Unt1—; = Ui +0iplog2, 1<id<mn,
satisfy (1.15) for the Ag,, Toda system with parameters &; for 1 < i < 2n
defined by
(8.1) dz' = d2n+1—i = Oy, 1 S ) S n.

Lemma 8.B (C,, reduction). The u; for 1 <i <n satisfy (1.15) for
the C,, Toda system with parameters c; for 1 < i <mn if and only if the
w; for 1 <1< 2n —1 defined by

U; = Uop—i = u;, 1 <4< n,
satisfy (1.15) for the Ao,—1 Toda system with parameters &; for 1 <
1 < 2n—1 defined by
(82) (3[1 == dgn,i = Oy, 1 S ) S n.

Lemma 8.C (Gg reduction). The u; for 1 <i < 2 satisfy (1.15) for
the Go Toda system with parameters «; for 1 <1 < 2 if and only if the
u; for 1 <1 <6 defined by

Uy = Ug = u1, Uz = Us = Uz, Uz = Ug = u1 + log?2
satisfy (1.15) for the Ag Toda system with parameters &; for 1 <i <6
defined by
(8.3) a1 =03 =&y =g = a1 and g = a5 = Q.

We will see the following three groups play an important role in our
discussion.

(1) Let Sm,, be a subgroup of the permutation group for {0,1,--- ,2n}

such that any element f € Sg, satisfies
(8.4) f@)+ f(2n—1i)=2n, 0 <i<2n.
(2) Let Sc,, be a subgroup of the permutation group for {0,1,--- ,2n—
1} such that any element f € Sc,, satisfies
(8.5) f@AO+f@2n—-1—di)=2n-1,0<i<2n-1.

(3) Let S, be a subgroup of the permutation group for {0,1,--- ,6}

such that any element f € Sg, satisfies

(86)  f(i)+ f(6—i)=6, 0<i<6and f(1)+ f(2) = f(0)+3.
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8.1. Total mass for the B,, C, and G, Toda system. In this
subsection, we shall get the estimate on the total mass for the solution
of the B,, C,, and Gy (if K = Go, then n = 2) Toda system,

(8.7) Au; + Z?:l kije% = 4m Zi\il Ocm(spt in RQ,
’ Jpe ¥ < +o0,i€1,2--- 0

where (kij)nxn is the Cartan matrix for B,,, C,, or Ga, p1,--- ,pn are
distinct points in R2 and ap; >—1, 1<t <N, 1<i¢<n. Let
1 » )
o, = — e, 1 <1< n.
2w

We will study o = (01, -+, 04,) under the following case of (8.7), that is
when all oy ; are positive integers possibly except o, 1 <i < n. The
main result in this subsection is the following

Theorem 8.1. Suppose that uw = (uy,--- ,uy) is a solution of (8.7).

(1) If (kij)nxn = By, there exists a map f € S, such that
(8.8)

0,_{ Z (Zl S Zl 1041z)+2Nz, if1<i<n-1,
e . .
Z Zz f2n— J)+1011+Nn, ifi=mn,

where 6y ; is given by (8.1).
(2) If (kij)nxn = Cy, there exists a map f € Sc,, such that

6
(8.9) 01—22 Zall—Zall +2N;, 1<i<n,

7=0 \ =1

where Gy ; is given by (8.2).
(3) If (kij)nxn = Ga, there exists a map f € S, such that

i-1 [ f()

(8.10) _22 Za“—za“ +2N;, 1<i<2,

where oy ; is given by (8.3).

Proof. We only provide the proof for the B,, Toda system, the C,
and Gy cases can be argued similarly. By Lemma 8.A, we extend (8.7)
to the following As,, Toda system

iy f AR R R = oy i B
Ui(x) = —2000log|z| + O(1), i €1,2--- ,2n,

where (Kij)anxan is the Cartan matrix of Ag,,

(8.12) U; = Un41—; = U +0;log2, 1 <7 < n,

and

(8.13) Qi = 0 ont1—i, L<tESN, 1<i<n.
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We set 7; = % f]R? e 1< i<2n. Then

0i = Oopnt1—i = 0 + 0 n0n, 1 <0 < n.

Let
~ 2n—1 .
(8.14) L(y) =y + > a;y¥ =0in C,
§=0

be the corresponding ODE of the solution @ and the local exponents of
(8.14) at p; are B ;, defined by

(8.15) Bro = —A1s Bri = Bric1 +du; +1, 1 <i<2n.
The local exponents of (8.14) at oo are
(8.16) Boo,o = —Yoo,1, Boo,i = Boo,zel + Qs — 1, 1 <5 < 2n,

~ 2n 714 ~
where Yoo,1 = D 51 ka5

Let M; be the monodromy transformation at p;, t = 1,--- , N, 00.
Then we have
(8.17) Mo Mpy - My = lgpy1.

By our assumption, 62’”};@0 is the only eigenvalue of M;, 2 <t < N. In
addition, we can show ;o € Z. Indeed, it is known that

2n n
3 71~ P15 712n+1-j
Bro=—> kay; == (kY + k210,
=1 j=1

where we used (8.13). For the matrix (k%)g,,x2,, we have
EYU 4 gV =11 < j < 2n.

Consequently Bt,O € Z and My = o1, 2 <t < N. While the mon-
odromy at p; and co are the following

627”'31,0 0 - 0
B 0 627”'31,1 . 0 -
(8.18) My =Cy , , . , ot
0 O .. ezﬂiBI,Qn
and
e2mifoo.0 0 . 0
B 0 627FiBoo,1 . 0 B
(8.19) Moo = Coo _ _ ‘ . cl,
0 0 P 627”300,271

where Cy and Cy, are invertible matrices. By (8.15) and (8.16), we get
(8.20) 51,1 + Bl,Qnﬂ' = _(Boo,i + Boo,2nfi) = 2n.
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Using (8.17) and My = Isp41, 2 <t < N, we get

(8.21) My = M
Therefore, we can find a permutation map f on {0,1,--- ,2n} such that,
(8.22) Booj + B sy +mj =0, 0<j < 2n,

where m; € Z, 0 < j < 2n.
Next, we claim that there exists g € Sg,, (that depends on f) such
that B ; also can be written as

(8.23) Booj + Brg(y +m; =0, 0<j < 2n,
where m; € Z, 0 < j < 2n. For the f introduced in (8.22), we set
(8.24) Ap={i| f(@))+ f(2n—1i) =2n, 0 <i<n}.

If [Af| = n + 1, then there is noting to prove and we can choose g = f.
Suppose that the claim holds for [A¢| >, n+1 > 1> 0, and we shall
prove it holds also for [A¢| =1 —1. We choose t € {0,1,---,n} \ Ay.
According to the definition of Ay we get

(8.25) f@)+ f(2n —t) # 2n.

Let ¢’ be the index such that

(8.26) f(t)+ f(2n—t") =2n.

Then it is easy to see that ¢ ¢ A;. We define a new map f’ such that
f@&), ifi=t,

(8.27) f@)y=1< f@), ifi=t,
f@), ifié¢ {tt'},

and of course f’ is a permutation map. By (8.20), (8.22) and (8.26), we
have

Boo,t’ + Bl,f’(t’) = —2n-— Boo,?n—t/ + Bl,f(t)
(8.28) = —2n+ B1,f(2n—t') + Mop—¢ + Bl,f(t)
= Map—y/
and
(8.29) Boo,t + Bl,f’(t) = Boo,t + Bl,f(t’) = —my — Bl,f(t) —my — Boo,t’

=—my— My — Moy_y.
As a consequence of the above two equations and (8.22), we get
(8.30) Boo,j + Brpi(jy +1mj =0, where 1nj € Z, 0 < j < 2n.
On the other hand, it is easy to see that

Apl > [Afl+1=1

From the induction assumption we get the claim holds for |[Af| =1—1,
i.e., we can find g such that (8.23) holds. Thus, we finish the induction
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process and the claim is proved. Then we follow the proof in Theorem
2.2 and get that

(8.31)
1—1 ])

a,—QZ Zall—Zall +2NZ,1<z<n where f € Sg,,.
7=0 \I=1

Using f € SBn and after direct computation we have

2n—1
.y Zau—Zau =23 Zau—Zau :
7=0 \I=1 7=0 =1

which together with 6; = Ga,41-; gives Ni = Ngnﬂ,i. Therefore,

i—1 [ f(5) J
(832) oi=6i=2> (D an =) ay|+2N, 1<i<n-—1
j=0 \ i=1 =1

7 n—1 n
Gu=) G| =2y Y G

j=0 \ =1 =1 j=0 I=F(2n—j)+1

Consequently, we get the o, can be written as

1 n—1 n _
n=gtn =23 ), Ayt hn
J=01=f(2n—j)+1

Then we finish the proof. q.e.d.

When o, 1 <t < N, 1 <4 <n are integers, we get the following
corollary.

Corollary 8.2. Suppose that u = (uy,--- ,uy) s a solution of (8.7)
and ap; € NU{0}. Let o = (01, ,0p) be the local mass of w. Then
oi, 1 € I\{n}, are positive even integers, and oy, is even positive integer
for C,, and Go cases and only an integer for B,, case.

8.2. The Pohozaev identity and Weyl group for B,, C, and
Go. At first, we derive the Pohozaev identity for B,,, C,, and Gy from
Ao, Ao, 1 and Ag respectively,

(8.33)
n— n—2 n—1
B, : Z aZ-Q + 20,% — Z 0i0it1 — 2010, = 2 Z Wio; + 4pin oy,
= i=1 i=1

n—1 n—1

e
(8.34) C,: 2 Z O'Z»Q + 0721 -2 Z 0;0i41 =4 Z Wioi + 2pn 0y,

=1 i=1
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and
(8.35) Go : 30% — 30109 + J% = 6p101 + 2u209.

As A,, system, we define the corresponding set I'x (p) for B,,, C,
and Gg by the same way: Let (0,---,0) € I'k(w), the other elements
in this set are all generated from (0,---,0) by the principle:

if o € 'k (), then Ko € Tk (), Vi€ I,

where

R0 = (0'1,"- , 205 — Zkijaj + 04, ,O'n) S FK(N)
J

Regarding 'k (p) as a set of homogeneous polynomials of degree 1 in
C[p], we can represent each element o as:

n
o; = ZZaiijv 1el,
j=1
where a;; € ZU {0}, 4,5 € I and the matrix Ak = [a;;] is independent

of p.

Proposition 8.3. For each element o € Tk (), we have o satisfies
(8.33), (8.34) and (8.35) for K = B,,, C, and Ga respectively.

Proof. For the B,, case, we can write the equation (8.33) as

n—1 n—2 n—1
(8.36-n) ai—(QMn—Z k:njaj)an—FZ UJQ»—Z 0j0j41—2 Z pjo; =0,
i#n =1 =1 =1
or
(8.36-1) o — (2pi — Y kijoj)oi+1; =0, 1 <i<n—1,

J#i
where k;; is the Cartan matrix for B,, and 1I; stands for the remainder
terms in the equation (8.33). Since o; + (2u; — > ;4 kijo; +05) is equal
to the coefficients of o; in (8.36-i), we have R;o satisfies the P.I. if o
satisfies the P.I. So the conclusion holds for B,,. The C,, and Go cases
can be proved similarly and we omit the details. q.e.d.

Theorem 8.4. For each element o € I'p, (), there exists a permu-
tation map f € Sp,, such that o;, i € I admits the expression

(8 37) o = { 22;;%)< lfz(Jl)/]l_ {:1ﬁ1> ; ifl SiSn—l,
' L -1 _ .
2 Z?:o Z?:f(?n—j)-i—l i, if it =mn,

where fi; = fion+1—i = pi, 1 € 1.
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For each element o € I'c, (i), there exists a permutation map f €
Sc, such that o;, i € I admits the expression

i—1 [ f(5) J
(8.38) o =2 (Y iu-> ful|, i€l
7=0 =1 =1

where fi; = fign—; = pi, i € I.
For each element o € T'g,(p), there exists a permutation map f €
Sa, such that 1,09 admit the expression

J
(8.39) o; = 22 Zm Go— > MG, | i=12,
7=0 = =1

where [11,Gy = [13,Gy = P4,Gy = H6,Gy = M1 and [12,Gy = H5,Gy = H2-
Furthermore the correspondence o — f is bijective for each case and
consequently

U, (1) = [Tc, (p)] = 2"n! and [Tq,(p)| = 12.

Proof. We only provide the proof for K = B,,, the C,, and Gy cases
can be discussed similarly. We first extend the equation (1.15) to Ag, by

Lemma 8.A. Then we get the corresponding local masses (61, -+, F2y)
for the extended A,,, satisfies

1. 1. - - .
(8.40) o, = 500 = 50n+1 and o0; =G; = 0ont1-i, 1 € I\ {n}.
It is not difficult to see

g el(p),

where fi; = fion+1—; = pj, j € I. For any element of I'(f1), using
Theorem 3.2 we get there exists a permutation map f on {0,1,---,2n}

such that

(8.41) 01—22 Z“l Z”l . 1<i<on.
7=0 =1

From (8.40) and (8.41) we derive the following equality

2n—i [ f(5) J
(8.42) U m-> | =0icr
j=i \lI=1 I=1
which yields
f(2n—1) 2n—1

(8.43) Zer Z i = ZMJer,

From (8.42) and (8.43) we further obtain
(8.44) FG)+ f2n—i)=2n, i€ L.
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On the other hand, since f is a permutation map in {0,1,---,2n}, we
have

2n 2n

D fi) =) i=n2n+1),

=0 =0

which together with (8.44) gives
f@)+ f(2n —1i) =2n, i € TU{0}.

Thus f € Sg,,. Then we can represent the o; as

(5.45) { 250 (S0 A - Slof),  i1<i<n-1,
. o; = 1 N .

237000 200 fan—j)+1 Fus if i =n,
where f € Sg,,. Therefore we proved if o € I'g,, (i), then o; admits the
expression (8.45) with f € Sg, . It is not difficult to see that different
element in S, gives different o. In addition, we can follow a similar

argument of the proof for Theorem 3.2 to show the correspondence
o — f is bijective. As a consequence,

T, ()] = 2"nl.
This completes the proof. q.e.d.

For any o € I'k, we can define the corresponding matrix Ag. Then
we set

(8.46) Bk =1, - KAk.
Proposition 8.5. For each f in Sk we define the corresponding
matriz Bk ¢. Then
(a) The matriz Bk for any Ax is non-singular. Furthermore, for any
f €Sk, let f — Ax s be the correspondence by Theorem 8.4 and
Bk, is given in (8.46). Then f — Bk s is an anti-homomorphism
from Sk to GL(n,Z). Consequently
{Bk | Bk is given by (8.46), Ak € I'x(p)} is a group,

denoted by Byk.
(b) The group By is the Weyl group of the root system of the Lie
algebra K.

Proof. The idea of the proof follows from Proposition 3.5. To show
that Bk is invertible, we note that the equation (8.33)—(8.35) can be
rewritten into

(8.47) p' A Mg Arcpp = p' (D' Ak + A D p
where Mg = DI_<1K and

diag(1,1,---,1,3), if K =B,
(848) Dk = dlag(%v%v ’ 3%71)7 if K=GC,,
diag(3,2), it K= Go.
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Since the equation (8.47) is independent of p, we get
(8.49) Al Mg A = D' A + Al D'
On the other hand, K is invertible, we can rewrite Bx = I, — KAk as
(8.50) Ak =K 1T, — Bg) and Ak = (I, — Bi)(KH) ™.
Substituting (8.50) into (8.51), we get
(851) (I, — Bi) D M My My Dy (I, — Bx)

' = D My D! (I — Bx) + (In — Bi) Dy My Dy
which implies
(8.52) By Dy My ' Dy B = Dy My Dyt

Therefore Bk is invertible. Next we prove the left conclusion in (a), i.e.,
the map f — Bk y is an anti-isomorphism from Sk to Bk, K = B, C,,.
Compared with the proof of Theorem 3.5, the differences for the proof
of K = B, C,, are the choices of simple map f. When K = B,, we
pick f from the following;:

(8.53)
j+1, ifj=i2n—i—1,
fi))=937-1, ifj=i+1,2n—14, 0<i<n-2,
7, if jel\{i,i+1,2n—i—1,2n—i},
and
n+l, ifj=n—1,
(8.54) faoc1() =4 n—1, ifj=n+1,

Js if jel\{n—1,n+1}.

We call f;; 0 < i < n — 1 simple permutation. It is not difficult to
see that f; € Sg, and any element in Sg, can be decomposed by the
above simple maps. In addition, suppose that g € Sg,, corresponds to
the element

o = (Ul) e 7Un) € FBn(l’l’)v
then go f; corresponds to the following element R; 10, i € {0, -+ ,n—
1}.
While for K = C,,, the simple maps are the following ones,

(8.55)
j+1, ifj=i2n—i—2,

fi) =971, ifj=i+1,2n—i-1, 0<i<n—2,
7, if jel\{ii+1,2n—i—1,2n—i},
and
n, if j=n-—1,

(8.56) fam1()=¢ n—1, if j=mn,
J, if jel\{n—1,n+1}.
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Similarly, it is easy to see that f; € Sc¢, and any element in S¢, can
be decomposed by the simple permutations given in (8.55) and (8.56).
Furthermore, if g € S¢,, corresponds to the element

7Un) € Fcn(/.t),

then go f; corresponds to the following element R; 10, i € {0, ,n—

1.

In the end, if K = Go, the simple maps are the following two,

0':(0']_,"'

j+1, ifj=0,5,

6_j7 lf]:273747
and

41, ifj=1.4,

J, if j=0,3,6.

As the above two cases, we find that f; € Sg,, ¢ = 0,1 and any element
in S@, can be decomposed by these two simple permutations. If g € Sg,
corresponds to the element

o= (0-130-2) € FG2(“)7
then g o f; corresponds to the element R; 10, i € {0,1}.
Next we will show
By gor = Bx, 1Bk g
with f is the simple map given in (8.53)—(8.54), (8.55)—(8.56) and (8.57)—
(8.58) for K = B,,, K = C,, and K = Gy respectively. The left argu-
ment goes almost the same as Theorem 3.5 and we omit it.

(b) It is known that the generators of the Weyl group for B,, and C,,
are the following,

(859) B, : 561762, 8627637 R Sen_lfena Sen7
(8'60) Cn : Se1*62) 862763) Ty Sen_lfem 8267”
and

(861) GQZ 561_62, 8262_61_63.

We refer the readers to [20] for the details.

As Theorem 3.5, we can obtain that the corresponding matrix of
the generators given in (8.59) for B,, (8.60) for C,, and (8.61) for Go
are exactly the matrices Bg,, r, Bc,,; and Ba, s respectively, where f
is the corresponding simple map of B,,, C, or Gg, see (8.53)-(8.58).
Consequently, we get the conclusion (b). q.e.d.

Next, we shall establish the version of Theorem 3.6 for K = B,, or
K = C,,. (This result is used for doing the combination of the bubbling
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disks. However, for Gy case, we can avoid using it, see [27] for the
details. Therefore we only study the cases for B,, and C,.) Since
the proof is almost the same as Theorem 3.6, we will only give the
statements without proof.

Theorem 8.6. Assume o € I'x(p), and let
1 ,
_ izkijaj’ 1el
J

When K = B,,, for any f € S, we set
(8.62)
O_f'_{az+2z (Zloﬂl ;Oﬁl>7 if1<i<n-1,
’Z_ . .
on +235 2 S F(2n—j)+1 Hi; ifi=n,

where [ij = fiogn+1—j = fij, j € I. When K = C,,, for any f € Sc,, we
set

i—1 7
(8.63) —UZ—I—QZ Z“l i), i€l
=0

where ji; = fion—; = jij, j € I. Then

(071, ,01n) € Tk (p).
8.3. The main results on B and C type Toda system. Let u* =
(u¥,- -+ uk) be a sequence of solutions of the following equations

(8.64) Auk +ka k) = dra;d, in B(0,1), i € I,

where K = (kij)nxn denotes the Cartan matrix for B,, or C,,. As A,

system, we assume hY satisfies (1.16) and u* = (uf,--- ,uk) satisfies

(1.17). o

Let o; (defined in (1.18)) denotes the local mass for i-th component

of the blow up solutions u¥.

Theorem 8.7. Suppose that o;, i € I are local masses of a sequence
of blowup solutions of (8.64) such that the assumption (1.16) and (1.17)
hold. Then for K = B,,, o; can be written as

- (Z leljlu’]—'_Nln-l-l) ifl<i<n-—1,
' (Z] 1Nnjﬂj)+Nnn+1a if i =n,
where ]\72-,]- €Z, i€l and j € IU{n+ 1}, while for K = C,,, o; can be
written as
n
=200 Nijuj+ Nipi1), i=1,2,--- ,n,
j=1
where N;j € Z, i € I and j € TU {n +1}.
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Remark 8.1. By Theorem 8.7, if o, @ € I in (8.64) are non-negative
integers and K = B,,, we only get 0;, 1 <7 < n—1 are even non-negative
integers and o, is non-negative integer. However, using equation (8.33)
we can also derive that o, is even.

From the Theorem 8.7 and the above remark, we can obtain the
corresponding result of Corollary 1.3 for B and C type Toda system.

Suppose that u = (uy,- -, uy,) is the solutions of the following system
defined on M:
- h;e%i
(8.65) Agui + Z k‘ijpj( J 1) = Z 471'(17571'(5% — 1),

ol o
j=1 fM hje Jd% pe€ES
where K denotes the Cartan matrix for B, or C,, a;; > —1 is the

strength of the Dirac mass ¢,, and S is finite subset of M.

Theorem 8.8. Suppose that oy ; € NU{0} for anyi € I and p; € S.
Let K be B, or C,, h; be positive C* functions on M and K be a
compact subset of M\ S. If p; € 47N, i € I, there exists a constant
C(K,p1,--+ ,pn) such that for any solution u = (u1,--- ,u,) of (8.65)

lui(z)] <C, Yrxek, iel.

As A, Toda system, we can extend Theorem 8.8 if a = (a1, -+ , )
satisfies the Q-condition. For equation (8.65), let p; = o+ 1, i € 1
for the vortex point p; € S, and define
(8.66)

I‘Z’K = {27 (Xieroit +2n) | o € 'k (), R C S, ne NU{0}}.

Theorem 8.9. Let h;, i € I be positive C' functions on M, and
K be a compact set in M. For every point p; € S, if oy satisfy the
Q-condition for any py € S and p; ¢ F:K for v € I, then there exists
a constant C such that for any solution u = (uy,--- ,uy) of (8.65) in
H' (M),

lui(z)| < C, Veek, iel.
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