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TEICHMÜLLER HARMONIC MAP FLOW INTO

NONPOSITIVELY CURVED TARGETS

Melanie Rupflin & Peter M. Topping

Abstract

The Teichmüller harmonic map flow deforms both a map from
an oriented closed surface M into an arbitrary closed Riemann-
ian manifold, and a constant curvature metric on M , so as to
reduce the energy of the map as quickly as possible [16]. The flow
then tries to converge to a branched minimal immersion when it
can [16, 18]. The only thing that can stop the flow is a finite-
time degeneration of the metric on M where one or more collars
are pinched. In this paper we show that finite-time degeneration
cannot happen in the case that the target has nonpositive sec-
tional curvature, and indeed more generally in the case that the
target supports no bubbles. In particular, when combined with
[16, 18, 9], this shows that the flow will decompose an arbitrary
such map into a collection of branched minimal immersions.

1. Introduction

Given a smooth oriented closed surface M := Mγ of genus γ ≥ 2 and
a smooth closed Riemannian manifold N = (N,G) of any dimension,
we can imagine taking a gradient flow of the harmonic map energy

E(u, g) :=
1

2

ˆ
M
|du|2gdvg,

simultaneously for both u : M → N a map and g a hyperbolic (constant
Gauss curvature −1) metric on M . More precisely, given a fixed para-
meter η > 0, the Teichmüller harmonic map flow, introduced in [16], is
the flow defined by

(1.1)
∂u

∂t
= τg(u);

∂g

∂t
=

η2

4
Re(Pg(Φ(u, g))),

where τg(u) represents the tension field of u (i.e., tr∇du), Pg represents
the L2-orthogonal projection from the space of quadratic differentials on
(M,g) onto the space of holomorphic quadratic differentials, and Φ(u, g)
represents the Hopf differential – see [16] for further information and
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a description of the genus γ ≤ 1 cases. The flow decreases the energy
according to

(1.2)
dE

dt
= −

ˆ
M

[
|τg(u)|2 +

(η
4

)2 |Re(Pg(Φ(u, g)))|2
]
dvg.

Given any initial data (u0, g0) ∈ H1(M,N)×M−1, withM−1 the set
of smooth hyperbolic metrics on M , we know [17] that a (weak) solution
of (1.1) exists on a maximal interval [0, T ), smooth except possibly
at finitely many times, and that T < ∞ only if the flow of metrics
degenerates in moduli space as t ↗ T , that is if the length �(g(t)) of
the shortest closed geodesic in (M,g(t)) converges to zero as t ↗ T .
In the case that T = ∞, a description of the asymptotics of the flow
was given in [18, 9] (following on from [16]). Loosely speaking, it was
shown that the surface (M,g(t)) can degenerate into finitely many lower
genus surfaces, with the map u(t) subconverging (modulo bubbling)
to branched minimal immersions (or constant maps) on each of these
components.

That theory immediately begs the question of whether the flow exists
for all time (and thus enjoys this asymptotic convergence to minimal
surfaces) or whether on the contrary, �(g(t)) can decay to zero in finite
time, in which case a ‘collar’ in the surface (M,g(t)) must pinch in finite
time (see, e.g., [16]).

In this paper we show that in the case that the target (N,G) has
nonpositive curvature, the Teichmüller harmonic map flow is very well
behaved, with a smooth solution existing for all time, given arbitrary
initial data, and no bubbling occurring at infinite time. In fact, we prove
this under the hypothesis that there does not exist any nonconstant
harmonic map from S2 to (N,G), i.e., (N,G) does not support any
bubbles, which is a more general result as we recall in Section 2. The
flow then directly decomposes an arbitrary map into a collection of
branched minimal immersions.

The theory of the classical harmonic map flow originated in the sem-
inal paper of Eells and Sampson [4] in which the hypothesis of nonpos-
itive curvature was also present. The essential idea in the classical case
is that this hypothesis gives an upper bound on the energy density that
is uniform in space and time. That is no longer true in our situation.
The main challenge in our work is to prevent the degeneration of col-
lars (which makes no sense in the classical case) and the techniques we
develop here are far removed from [4]. Our main result could be stated
as:

Theorem 1.1. Suppose M , (N,G) and M−1 are as above, with
(N,G) having nonpositive sectional curvature, or more generally not
supporting any bubbles. Given any initial data (u0, g0) ∈ C∞(M,N) ×
M−1, there exists a smooth solution (u(t), g(t)) to (1.1), for t ∈ [0,∞).
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The proof of Theorem 1.1 will be somewhat involved, but at the
coarsest level, it will turn out that the rate of collapse of a collar will
be controlled by a weighted energy

Î =
1

2

ˆ
M

|du|2(x)
[injg(x)]

2
dvg(x)

(where injg(x) is the injectivity radius of (M,g) at x) and a key part

of this work will revolve around obtaining an upper bound for Î over
finite time intervals. Of course, the objective is to prevent energy from
gathering on thin collars where the injectivity radius is small. Our
argument to deal with this involves an analysis that is reminiscent of
the theory of neck analysis for almost harmonic maps [14, 10, 24],
except our estimates must deal with the case where the energy on the
collar is not small, and where the tension field can be large. We are
also unable to use Hopf differential estimates to relate angular energy
with radial energy on the collar, forcing us to deviate substantially from
existing techniques.

Coupling our result with the asymptotic description of the flow from
[18], and using the hypothesis for the target once more, we will prove:

Theorem 1.2. In the situation of Theorem 1.1, there exist a sequence
of times tn → ∞, an integer 0 ≤ k ≤ 3(γ − 1) and a hyperbolic punc-
tured surface (Σ, h, c) with 2k punctures (i.e., a closed Riemann surface

(Σ̂, ĉ), possibly disconnected, that has been punctured 2k times and then
equipped with a compatible complete hyperbolic metric h) such that the
following hold:

1) The surfaces (M,g(tn), c(tn)) converge to the surface (Σ, h, c) by

collapsing k simple closed geodesics σj
n in the sense of Proposition

A.3; in particular, there is a sequence of diffeomorphisms fn : Σ→
M \ ∪k

j=1σ
j
n such that

f∗ng(tn)→ h and f∗nc(tn)→ c smoothly locally,

where c(t) denotes the complex structure of (M,g(t)).
2) The maps f∗nu(tn) := u(tn) ◦ fn converge to a limit u∞ strongly in

W 2,2
loc (Σ).

3) The limit u∞ : Σ → N extends to a smooth branched minimal
immersion (or constant map) on each component of the compact-

ification (Σ̂, ĉ) of (Σ, c) obtained by filling in each of the 2k punc-
tures.

Remark 1.3. We do not claim that the image of u∞ must be con-
nected. Indeed, as we show in [9] with T. Huxol, the images of collapsing
collars in (M,g(tn)) can be mapped close to nontrivial curves connect-
ing the individual components of the image of u∞. On the other hand,
there can be no loss of energy on degenerating collars, see [9].
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Remark 1.4. In the light of the results above, it is interesting to
compare the Teichmüller harmonic map flow with the mean curvature
flow, which is also designed to flow to minimal maps. That flow can also
be viewed as a flow of a pair (u, g), where u is an immersion that again
satisfies the harmonic map flow, but the metric g is set to equal the
induced metric u∗G at each moment, forcing it always to be conformal.
Our main theorem 1.1 says that by imposing a curvature condition on
the target, all singularities for the Teichmüller harmonic map flow can
be eradicated at finite time. One cannot hope for a similar result for
mean curvature flow.

Although it does not require the main innovations of this paper, when
the target is negatively curved and the initial map u0 is incompressible,
a particularly clean conclusion follows using the work in [16], including
[16, Remark 3.4] (see also Schoen–Yau [22] and Sacks–Uhlenbeck [21]).

Corollary 1.5. Suppose (M,g0) is an oriented closed hyperbolic sur-
face and (N,G) is a closed manifold with nonpositive sectional curva-
ture. Suppose, moreover, that u0 : M → N is any smooth incompress-
ible map. Then there exists a hyperbolic metric ḡ on M and a smooth
branched minimal immersion ū : (M, ḡ)→ (N,G) homotopic to u0.

Indeed, there exist a global smooth solution (u, g) of (1.1) for all t ≥ 0,
with (u0, g0) as initial data, together with sequences of times tn → ∞
and diffeomorphisms fn : M →M isotopic to the identity such that

1) f∗n[g(tn)]→ ḡ smoothly, and
2) u(tn) ◦ fn → ū in W 2,2(M,N), and, in particular, in C0(M,N).

Remark 1.6. As we will discuss elsewhere, in contrast to the the-
ory of harmonic maps (Hartman [7]) there can exist multiple branched
minimal immersions within the same homotopy class of maps (even with
disjoint image) even when the curvature of the target is strictly negative.
In this case, the corresponding domain metrics must represent different
points in Teichmüller space.

Remark 1.7. Although we state our results for closed target mani-
folds, the proof extends to somewhat more general situations that are
important for applications we have in mind. For example, if N is non-
compact but supports a proper convex function (which will imply the
no-bubbles hypothesis [6]) then the theory extends, with the image of
the flow remaining within a compact region of N . Moreover, the theory
extends to the case that u is a section of certain twisted bundles, cf.
Donaldson [3].

The assumption of nonexistence of bubbles will be used in two main
ways in the proof of Theorem 1.1. Using well-understood principles (e.g.,
[20, 23, 2] etc.) it prevents the energy of an almost-harmonic map from
being too concentrated in isolated regions, which in turn allows us to
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make dramatically improved estimates in our collar analysis and proves
that bubbling singularities cannot occur in the flow. An unconventional
feature of our work is that the hypothesis of nonexistence of bubbles
will also allow us ultimately to control the weighted energy Î mentioned
earlier. One can show that the rate of change of Î can be controlled
in terms of Î2, but this is not enough to prevent finite time blow-up.
Instead, we manage to control the evolution of Î in terms of the product
of Î with only the ‘angular’ part of the weighted energy and this latter
quantity can be controlled effectively under the hypothesis that the
target admits no bubbles.

A substantial part of the paper is devoted not so much to the flow
(1.1) but to the study of more general curves of hyperbolic metrics,
and (as a result) to the study of holomorphic quadratic differentials
and the corresponding projection operator Pg. Some of this may be
of independent interest; for example whereas Pg is bounded from L2

to L2 by definition, Proposition 4.10, asserts the useful fact that Pg is
bounded from L1 to L1 independent of how degenerate the underlying
metric g is.

This paper is organised as follows. In Section 2 we prove a formula
for d�

dt as we move g in a general direction Re(Pg(Ψ)) (Lemmata 2.2
and 2.3) and assemble the proof of our main Theorem 1.1 based on
growth estimates for the weighted energy (Lemma 2.4). In Section 3 we
control the angular energy on collars, the main result being Lemma 3.1.
In Section 4 we develop our understanding of holomorphic quadratic
differentials in order to prove the formula for d�

dt given in Lemma 2.2.
In Section 5 we establish that the full weighted energy can grow at
most exponentially fast (Lemma 2.4), the key result being Lemma 5.1,
and hence will remain bounded over finite time intervals, as required in
Section 2.

Acknowledgements. We thank Scott Wolpert, Sumio Yamada and
Mike Wolf for discussions concerning the existing theory of
Weil–Petersson geometry. The second author was supported by EP-
SRC grant number EP/K00865X/1.

2. Ruling out collar degeneration

In this section, we assemble the proof of Theorem 1.1, giving a global
smooth solution of our flow. The first point to verify is that, as is well-
known and claimed in the introduction, the nonexistence of bubbles in
the target is a more general hypothesis than the nonpositivity of its
curvature.

Lemma 2.1. If (N,G) is a complete Riemannian manifold of non-
positive sectional curvature, then every harmonic map S2 → (N,G) is
a constant map.
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Proof. By lifting to the universal cover, we may assume that (N,G)
is simply connected. The squared distance function d2(x0, ·) to any
fixed point x0 ∈ N is a strictly convex function because of the nonposi-
tive curvature [1], and any harmonic map from any closed Riemannian
manifold into any Riemannian manifold supporting a convex function is
necessarily constant because the composition of the map and the convex
function must be subharmonic [6]. q.e.d.

The starting point of the proof of Theorem 1.1 is the weak solution
constructed in [17], that exists until such a time T that the length of
the shortest closed geodesic converges to zero. As is well understood
from [23, 17], the only obstruction to a weak solution being smooth is
the development of singularities at which one can perform a standard
rescaling procedure to extract a bubble, i.e., a nonconstant harmonic
map from S2 to the target (N,G) (cf. [18] and [23]). However, no such
bubble exists in our situation by hypothesis.

Therefore, in the context of Theorem 1.1, it remains to show that the
length of the shortest closed geodesic has a positive lower bound over
arbitrary finite time intervals.

2.1. Basics of Teichmüller theory. Fix an oriented closed surface
M of genus γ ≥ 2, and consider the space M−1 of metrics g on M of
constant Gauss curvature −1. It is well understood (see for example [18]
and Lemma A.1) that (M,g) decomposes into a thick part consisting of
all points at which the injectivity radius is at least arsinh(1), and a
finite collection of disjoint collar regions Cj for 1 ≤ j ≤ k. Each collar
region has at its centre a simple closed geodesic σj of length �j. (See
Lemma A.1.)

Tangent vectors in M−1 at g can be decomposed into the sum of a
Lie derivative term LXg (corresponding to a change in parametrisation
of the same metric) and a term of the form Re(Θ), where Θ lies in
the (3γ − 3)-dimensional complex vector space H(M,g) of holomorphic
quadratic differentials (see, e.g., [25]). Ultimately this allows us to
view a smooth path in Teichmüller space as a smooth family g(t) of

metrics inM−1 for which
∂g
∂t = Re(Θ(t)) for some smooth family Θ(t) ∈

H(M,g(t)), and it is these horizontal curves that we study below. In
the next section we will need to understand how the lengths �j of the
geodesics σj evolve as g(t) evolves in this way.

2.2. Proof of the main theorem ruling out collar degeneration.

Our basic set-up for Theorem 1.1 is that we have a one-parameter family
of metrics g(t) evolving under the equation ∂g

∂t = Re(Pg(Ψ(t))), with

Ψ(t) = η2

4 Φ(u, g), and we need to control the evolution of the length
of the shortest closed geodesic in order to prevent it from decreasing
to zero in finite time, which would correspond to the degeneration of a
collar. Our basic result in this direction is the following lemma, which
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may be of independent interest. We write QL2(M,g) for the infinite
dimensional space of measurable quadratic differentials on (M,g) with
finite L2 norm. To fix normalisations, take an arbitrary local complex
coordinate z = x+ iy and write g = ρ2(dx2+ dy2), so Ψ = ψ(dx+ idy)2

for some locally defined complex valued L2 function ψ. We are then
normalising so that

‖Φ‖2L2(M,g) =

ˆ
M
|ψ|2|dz2|2dvg = 4

ˆ
M

ρ−2|ψ|2dx ∧ dy.

In the lemma, we consider only the complex coordinate z := s + iθ,
where (s, θ) are cylindrical coordinates on the collar (see Lemma A.1)
and the corresponding dz2 = (ds+ idθ)2.

Lemma 2.2. Given an oriented closed surface M of genus γ ≥ 2,
there exists C <∞ depending only on γ such that the following is true.
Suppose g(t) is a smooth one-parameter family of metrics in M−1 for t
in a neighbourhood of 0 such that at t = 0, we have

∂g

∂t
= Re(Pg(Ψ)) for some Ψ ∈ QL2(M,g(0)),

and we have a collar C in (M,g(0)) around a simple closed geodesic of
length � < 2 arsinh(1). Then

d�

dt
∼ − �2

16π3
Re〈Ψ, dz2〉L2(C,g),

at t = 0, in the sense that∣∣∣∣d�dt + �2

16π3
Re〈Ψ, dz2〉L2(C,g)

∣∣∣∣ ≤ C�2‖Ψ‖L1(M,g).

Note that the content of this lemma revolves around the fact that Ψ
need not be holomorphic but rather can be any element of QL2(M,g).
One could get a feel for Lemma 2.2 by using it to reprove the incom-
pleteness of Teichmüller space, in which case we take Ψ to be dz2 on the
collar and zero elsewhere, and the error term is a factor of �2 smaller
than the leading term for d�

dt (see Section 4.4). Formulae for the first
and even second derivatives of � of a quite different flavour to ours can
be found in [5, 26] and the references therein.

Lemma 2.2 will be proved in Section 4, based on an analysis of the
space of holomorphic quadratic differentials. We use it now in the special
case of the Teichmüller harmonic map flow, to prove:

Lemma 2.3. Let (u, g) be a smooth solution of the Teichmüller har-
monic map flow (1.1) defined on a surface of genus at least two and on
a time interval [0, T ). Given a collar C in (M,g) at time t, with central
geodesic σ of length � < 2 arsinh(1) we have

(2.1)

∣∣∣∣ ddt log(�) + η2

16π3
· �
ˆ
C
(|us|2 − |uθ|2)ρ−2dsdθ

∣∣∣∣ ≤ C�η2E0,
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where E0 is an upper bound for the energy and C <∞ depends only on
the genus γ. In particular, the evolution of � is controlled in terms of a
weighted energy

I :=

ˆ
C
e(u, g)ρ−2dvg,

where e(u, g) = 1
2(|us|2 + |uθ|2)ρ−2 is the energy density and ρ is the

conformal factor defined in Lemma A.1, in the sense that∣∣∣∣ ddt log �
∣∣∣∣ ≤ C�

[
I + E0

]
,

with C depending only on γ and the coupling constant η.

Proof. Under Teichmüller harmonic map flow, the metric g evolves
according to

∂g

∂t
=

η2

4
Re(Pg(Φ(u, g))),

where Φ(u, g) = (|us|2 − |uθ|2 − 2i〈us, uθ〉)dz2 on the collar. Therefore,
in the language of Lemma 2.2, we have

Re〈Ψ, dz2〉L2(C,g) =
η2

4

ˆ
C
(|us|2 − |uθ|2)|dz2|2ρ2dsdθ

= η2
ˆ
C
(|us|2 − |uθ|2)ρ−2dsdθ,

by (A.12). Note also that ‖Φ‖L1 ≤ 4E0, so

‖Ψ‖L1(M,g) ≤ η2E0.

Therefore, Lemma 2.2 implies that

(2.2) − d

dt
log � ∼ η2

16π3
· �
ˆ
C
(|us|2 − |uθ|2)ρ−2dsdθ,

up to an error that is bounded by (2.1) for C depending only on the
genus γ. q.e.d.

We see from Lemma 2.3 that we could deduce that �(g(t)) does
not decrease to zero in finite time if we could prove that �I remains
bounded over arbitrary compact time intervals. In fact, we will prove
the stronger statement that I itself remains bounded. This will imply
that the smooth solution of the Teichmüller harmonic map flow dis-
cussed above must exist for all time, which will complete the proof of
Theorem 1.1.

Lemma 2.4. Suppose M , (N,G) andM−1 are as above, with (N,G)
supporting no bubbles. Then for any E0 > 0 there exists a constant
C <∞ such that the following holds true. Let (u, g) be any solution of
the Teichmüller harmonic map flow (1.1), defined on an interval [0, T ),
with initial energy E(u(0), g(0)) ≤ E0. Then for any time t ∈ [0, T )
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such that (M,g(t)) contains a collar C with central geodesic of length
� < 2 arsinh(1), we can estimate the weighted energy defined above by

I :=

ˆ
C
e(u, g)ρ−2dvg ≤ CeCt(1 + (injg(0)M)−2),

where injg M := infx∈M injg(x).

We remark that at each point of such a collar the injectivity radius
injg(p) and the conformal factor ρ(p) are of comparable size, see (A.8)
and (A.9), so bounding I on each such collar is indeed equivalent to

bounding the global weighted energy Î briefly mentioned before.
We will prove Lemma 2.4 in Section 5, but before that, in Section

3 we will derive estimates on a weighted angular energy alone – see
Lemma 3.1. This is ironic given that a careful reading of (2.1) shows
that large angular energy appears to help prevent degeneration of the
neck. However, the proof of Lemma 2.4 will bootstrap angular energy
estimates to full energy estimates. One might expect this to follow using
the Hopf differential Φ(u, g), which in some sense measures the difference
between angular energy and full energy. However, although estimates
on the Hopf differential do follow from the flow equations, the obvious
ones are not strong enough for our purposes, and so instead we use a
dynamic argument in the proof of Lemma 2.4. That part is based on a
precise understanding of the evolution of the metric, and, in particular,
the weight ρ−2, on a collar, as well as the smallness of the angular
energy, which in turn crucially uses the assumption of nonexistence of
bubbles.

2.3. Asymptotics. In this section, we make the final observations re-
quired to prove Theorem 1.2. Theorem 1.1 already gives global smooth
existence for the Teichmüller harmonic map flow, and [18, Theorem
1.1] and [16, Theorem 1.4] describe the decomposition of the flow into
branched minimal immersions with the required level of convergence ex-
cept at a finite set S of points in M at which bubbling occurs; but S
must be empty by the no-bubbles hypothesis on (N,G).

Note that while [18, Theorem 1.1] and [16, Theorem 1.4] only state

convergence of f∗nu(tn) in each W 1,p
loc , p <∞, in the proof the sequences

are chosen so that ‖τg(u)(tn)‖L2 → 0, which, when combined with the
convergence of the metrics and the local W 1,p convergence away from S,
implies that Δh(f

∗
nu(tn)−u∞) converges to zero (strongly) in L2

loc(Σ\S),
thus giving the desired local H2 convergence.

3. Controlling the angular energy

Our goal in this section is to control a weighted angular energy that
is similar to the weighted energy I from Lemma 2.3, but only considers
θ derivatives. More precisely, we prove the following key lemma.
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Lemma 3.1. For any E0 < ∞ and closed Riemannian manifold
N not supporting any bubbles, there exists C < ∞ such that for any
� ∈ (0, 2 arsinh(1)) and map u : (C(�), g) → N from a hyperbolic collar,
with energy E(u) ≤ E0, the angular energy is controlled according to

I(θ) :=

ˆ
C(�)

ρ−2|uθ|2dθds ≤ C(1 + ‖τg(u)‖2L2(C(�),g)).

Of course, without the weighting coefficient ρ−2 (with ρ from Lemma
A.1) the left-hand side would be the normal angular energy, and would
thus be bounded. When additionally the tension can be controlled, we
will show that the angular energy decays exponentially along the collar,
and this decay dominates the growth of ρ−2 towards the centre of the
collar.

We will give the proof of Lemma 3.1 towards the end of Section 3.2
once we have developed some preliminary theory.

3.1. Controlling the concentration of energy. In this section, we
elaborate on the well-known principles that regions of concentrated en-
ergy in almost harmonic maps (i.e., maps with small tension field) can
be blown up to yield bubbles, and that concentrated energy poses the
only obstruction to getting higher order estimates. (Recall from the in-
troduction that a bubble is a nonconstant harmonic map from S2 to N .)
See (for example) Corollary 3.5 for a consequence of these principles.

Given s ∈ R and Λ ∈ (0,∞), we define the cylinder CΛ(s) to be
(s−Λ, s+Λ)×S1. By default, this will be equipped with the standard
cylindrical metric ds2 + dθ2, in which case we drop references to the
metric, for example abbreviating the tension by τ(u) or simply τ . The
metric is only made explicit in the case that we equip the cylinder with
(part of) a hyperbolic collar metric g.

Lemma 3.2. Given a closed Riemannian manifold N not supporting
any bubbles, and constants ε1 > 0 and E0 < ∞, there exist Λ̃ ∈ (1,∞)
and K < ∞ such that the following holds. Given any smooth map
u : CΛ̃(0)→ N with total energy E(u;CΛ̃(0)) ≤ E0, we have that

E(u;Br0(p)) < ε1 for all p ∈ {0} × S1,

for all r0 ≤ (1 +K‖τ(u)‖L2(C
Λ̃
(0)))

−1.

We stress that all quantities in the lemma above are computed with
respect to the flat metric ds2 + dθ2, despite the fact that we will often
apply it to cylinders on which we have a hyperbolic metric.

Proof. We proceed by contradiction: if the lemma were false, then
there would exist ε1 > 0, E0 ∈ (0,∞) and (after rotating the cylinder)
a point p ∈ {0} × S1, and a sequence of smooth maps ui : Ci(0) → N
with E(u;Ci(0)) ≤ E0, such that

(3.1) E(ui;Bri(p)) ≥ ε1,
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for ri = (1+ i‖τ(ui)‖L2(Ci(0)))
−1 ∈ (0, 1]. First we consider the case that

after passing to a subsequence we can arrange that ‖τ(ui)‖L2(Ci(0)) →
0. In this case, we can perform a standard bubbling analysis to the
sequence ui in order to extract a bubble. More precisely, we can pass
to a subsequence and extract a local weak W 1,2-limit u∞ : (−∞,∞)×
S1 → N , which is harmonic, and by the Sacks–Uhlenbeck removable
singularity theorem [20] we can add two points at infinity in the cylinder
(−∞,∞)×S1 and extend u∞ to a harmonic map S2 �→ N . Since there
exist no bubbles by hypothesis, u∞ must be a constant map. But then
the bubbling theory, combined with (3.1) tells us that we can blow up
the maps ui about an appropriate sequence of points pi ∈ Bri(p) and

extract a nonconstant harmonic limit ũ∞ : R2 → N in W 2,2
loc (R

2, N),
which can be extended (by adding a point at infinity) to a nonconstant
harmonic map S2 �→ N , i.e., a bubble, which by hypothesis cannot exist.
We have arrived at a contradiction in the case that the tension decays
to zero (for a subsequence).

The remaining case is that ‖τ(ui)‖L2(Ci(0)) is bounded below by some
positive constant, uniformly in i, which forces ri → 0. In this case, we
blow up each map ui by a factor ri, and end up with a sequence of maps
ũi on fatter and fatter cylinders, so that E(ũi, B1) ≥ ε1 for each i, and
so that

‖τ(ũi)‖L2 = ri‖τ(ui)‖L2(Ci(0)) =
1− ri

i
→ 0,

as i → ∞. A similar bubbling argument to before allows us to extract
a bubble, giving a contradiction in this case too. q.e.d.

We will combine the lemma above with the following standard reg-
ularity estimate in which Br represents the disk of radius r > 0 in the
flat plane.

Lemma 3.3 (cf. [16, Lemma 3.3]). Given a closed target N , there
exists ε0 > 0 and C < ∞ such that for any r > 0, and smooth map
u : Br → N with E(u;Br) ≤ ε0, we haveˆ

Br/2

|∇2u|2 + |∇u|4 ≤ C

(
E(u;Br)

r2
+ ‖τ(u)‖2L2(Br)

)
.

Note that the estimate for ‖∇2u‖2L2 is the standard one. The estimate

for ‖∇u‖4L4 follows by applying Sobolev to |∇u|2 to yield

ˆ
Br/2

|∇u|4 ≤ CE(u;Br/2)

[ˆ
Br/2

|∇2u|2 + r−2E(u;Br/2)

]
,

and bounding the first E(u;Br/2) by ε0.
The combination of Lemma 3.3 and Lemma 3.2 will yield:

Corollary 3.4. For any E0 < ∞, and closed Riemannian manifold
N not supporting any bubbles, there exist Λ ∈ (2,∞) and C < ∞ such



146 M. RUPFLIN & P. M. TOPPING

that the following holds. Given any smooth map u : CΛ(0) → N with
total energy E(u;CΛ(0)) ≤ E0, we have thatˆ

C1(0)
|∇2u|2 + |∇u|4 ≤ C

(
E(u;C2(0)) + ‖τ(u)‖2L2(CΛ(0))

)
.

Proof. For our given target N , let ε1 be the ε0 from Lemma 3.3 and
feed ε1 into Lemma 3.2 together with our E0, to obtain, in particular,
the constants Λ̃ and K. We set Λ := Λ̃ + 1. For u as in the corollary,
we then define r0 = (1 + K‖τ(u)‖L2(CΛ(0)))

−1 so that we will be able
to apply Lemma 3.2 on cylinders CΛ̃(s) for s ∈ [−1, 1]. We now cover
C1(0) by balls Br0/2(pi) of radius r0/2, with pi ∈ C1(0); moreover, we

can achieve this with no more than Cr−20 balls, and so that each point in
C2(0) is covered no more than C times by the balls Br0(pi), for universal
C. Adding the estimates from Lemma 3.3 for each of these balls, we
obtain
(3.2)̂

C1(0)
|∇2u|2 + |∇u|4 ≤

∑
i

ˆ
Br0/2

(pi)
|∇2u|2 + |∇u|4

≤ C
∑
i

(
E(u;Br0(pi))

r20
+ ‖τ(u)‖2L2(Br0 (pi))

)
≤ C

(
E(u;C2(0))

r20
+ ‖τ(u)‖2L2(C2(0))

)
.

Using the formula above for r0, we deduceˆ
C1(0)

|∇2u|2 + |∇u|4 ≤CE(u;C2(0))(1 +K‖τ(u)‖L2(CΛ(0)))
2

+ C‖τ(u)‖2L2(C2(0))
,

and hence

(3.3)

ˆ
C1(0)

|∇2u|2 + |∇u|4 ≤ C
(
E(u;C2(0)) + ‖τ(u)‖2L2(CΛ(0))

)
,

as desired, since C is allowed to depend on E0. q.e.d.

Although we will need the corollary above in the given form, we will
also be able to simplify its conclusion using the following:

Corollary 3.5. For any E0 < ∞, ε2 > 0, and closed Riemannian
manifold N not supporting any bubbles, there exist Λ ∈ (3,∞) and C <
∞ such that the following holds. Given any smooth map u : CΛ(0)→ N
with total energy E(u;CΛ(0)) ≤ E0, we have that

E(u;C2(0)) ≤ ε2 + C‖τ(u)‖2L2(CΛ(0))
,

and ˆ
C1(0)

|∇2u|2 + |∇u|4 ≤ ε2 +C‖τ(u)‖2L2(CΛ(0))
.
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Proof. First, we pick C0 <∞ large enough so that for any r ∈ (0, 1],
the cylinder C2(0) can be covered by C0r

−2 balls in (−∞,∞) × S1 of
radii r, and with centres in C2(0). We may then define ε1 := ε2

2C0
, and

appeal to Lemma 3.2 to obtain Λ̃ andK. We fix Λ := Λ̃+2, and consider
a map u : CΛ(0) → N . By setting r0 := (1 +K‖τ(u)‖L2(CΛ(0)))

−1, we

are then able to cover C2(0) by C0r0
−2 balls Br0(pi) ⊂ (−∞,∞) × S1

with pi ∈ C2(0), and we may apply Lemma 3.2 for each i to obtain
bounds E(u;Br0(pi)) < ε1. Summing these estimates yields

(3.4)

E(u;C2(0)) ≤
∑
i

E(u;Br0(pi)) < C0r0
−2ε1

= C0(1 +K‖τ(u)‖L2(CΛ(0)))
2 ε2
2C0

≤ ε2 +C‖τ(u)‖2L2(CΛ(0))
,

which is the first part of the corollary. By combining what we have
proved with Corollary 3.4, allowing Λ (and C) to increase and ε2 to
decrease as necessary, we deduce the second part of the corollary. q.e.d.

3.2. Estimates on the angular energy. In this section, we prove
Lemma 3.1, telling us that the weighted angular energy is controlled in
terms of the tension field.

As usual, we will be implicitly using the collar lemma A.1 and its
notation. In particular, given a hyperbolic collar (C(�), g), and writing
C = (−X(�),X(�)) × S1, we let Xδ = Xδ(�) be the number given in
(A.11) for which the δ-thin part of the collar is described (in collar
coordinates) by (−Xδ,Xδ)× S1.

The main ingredient is the following result, which forces the angular
energy on unit-length chunks of our long cylinder to decay exponentially
as we move in from the ends of the cylinder, at least when the tension
field is suitably small.

Proposition 3.6. Let N be a closed target that supports no bubbles.
Then given any E0 < ∞ there exist numbers C < ∞, Λ < ∞ and
δ ∈ (0, arsinh(1)) such that for any � ∈ (0, 2 arsinh(1)), any map u from
the hyperbolic collar (C(�), g) to N with total energy E(u; C(�)) ≤ E0,
and any s0 ∈ (−Xδ(�),Xδ(�)) we have CΛ(s0) ⊂ C(�) and
ˆ s0+

1

2

s0−
1

2

ˆ
S1

|uθ|2dθds ≤C · e−(X(�)−|s0|)

+ C ·
ˆ Xδ(�)

−Xδ(�)
e−|s−s0|ρ2(s) · ‖τg(u)‖2L2(CΛ(s),g)

ds.

In the situation that u is a map with small tension and small energy,
there is some history of results that show exponential decay of energy
along cylinders, starting with Hadamard’s three circle theorem, and
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including [14, 10, 24]. The key to such results is typically to derive a
second order differential inequality for the angular energy over circles
{s}×S1 and then apply the maximum principle. Our present situation
is more complicated because we don’t make any a priori assumptions of
smallness of energy or tension, which prevents us from deriving angular
energy estimates on such circles. Instead, we derive a second order
‘delay’ differential inequality for an angular energy averaged over short
lengths of cylinder, defined by:

Θ(s0) :=

ˆ X(�)

−X(�)

ˆ
S1

ϕ4(s− s0)|uθ(s, θ)|2dθds,

where ϕ ∈ C∞0 ((−1, 1), [0, 1]) is a cut-off function with ϕ ≡ 1 on [−1
2 ,

1
2 ],

and |s0| ≤ X(�)− 1.

Lemma 3.7. Let N be a closed target that supports no bubbles.
Then given any E0 < ∞ there exist numbers δ ∈ (0, arsinh(1)), C1 ∈
[0,∞) and Λ < ∞ such that for any � ∈ (0, 2 arsinh(1)), any map
u : (C(�), g) → N with total energy E(u; C(�)) ≤ E0, and any s ∈
(−Xδ(�),Xδ(�)), we have CΛ(s) ⊂ C(�), and the differential inequality
(3.5)

Θ′′(s)− 3

2
Θ(s)+

1

8

[
Θ(s− 1

2
) +Θ(s+

1

2
)

]
≥ −C1ρ

2(s)‖τg(u)‖2L2(CΛ(s),g)

is satisfied for the angular energy function Θ associated with u.

Accepting this lemma for the moment, we can give the:

Proof of Proposition 3.6. For the given target N and energy upper
bound E0, let δ > 0, C1 and Λ be as in Lemma 3.7. We fix arbitrary
� ∈ (0, 2 arsinh(1)), although if � ≥ 2δ we have (−Xδ,Xδ) = ∅, so there
is nothing to prove. (Recall that we sometimes abbreviate Xδ := Xδ(�).)

We then consider a map u : (C(�), g) → N whose total energy is
E(u; C(�)) ≤ E0. Let

L(f) = f ′′(s)− 3

2
f(s) +

1

8

[
f(s+

1

2
) + f(s− 1

2
)
]

be the operator describing the left-hand side of the differential inequality
(3.5) satisfied by the angular energy function Θ. We observe that while
L is not a classical differential operator, the usual comparison principle
for ODE still applies. More precisely, let f, f̃ ∈ C2([−Xδ ,Xδ]) be any
two functions such that

L(f) ≤ L(f̃) on (−Xδ +
1

2
,Xδ − 1

2
),

with

f ≥ f̃ on [−Xδ,−Xδ +
1

2
] ∪ [Xδ − 1

2
,Xδ].



TEICHMÜLLER HARMONIC MAP FLOW 149

Then f ≥ f̃ on all of [−Xδ,Xδ]; indeed, if f − f̃ were to achieve a
negative minimum at some s0 ∈ (−Xδ +

1
2 ,Xδ − 1

2 ), then

(f − f̃)′′(s0) ≤ 3

2
min(f − f̃)− 1

8

[
(f − f̃)(s0 +

1

2
) + (f − f̃)(s0 − 1

2
)
]

≤ (
3

2
− 1

4
)min(f − f̃) < 0

would lead to a contradiction.
In order to bound the angular energy function Θ, we compare it with

solutions of a slightly modified equation, namely of

(3.6) f ′′ − f = −C1 ·G on [−Xδ ,Xδ],

where G(s) := ρ2(s)‖τg(u)‖2L2(CΛ(s),g)
is the function on the right-hand

side of (3.5), modulo the constant −C1.
Recall that any solution of (3.6) can be described by

(3.7)

fA,B(s) :=A · es−Xδ +B · e−s−Xδ +
C1

2

ˆ Xδ

−Xδ

e−|s−q|G(q)dq, A,B ∈ R.

Because C1 ≥ 0, if A,B > 0 then the functions fA,B are positive and

1

8

(
fA,B(s+

1

2
) + fA,B(s− 1

2
)

)
≤ e

1

2

4
· fA,B(s) <

1

2
fA,B(s),

for any s ∈ [−Xδ +
1
2 ,Xδ − 1

2 ]. Consequently, L(fA,B) ≤ −C1G(s) ≤
L(Θ). Since we always have Θ(s) ≤ 2E0 for any s, we may apply the
comparison theorem with A,B = 2E0e, say, to conclude that

Θ(s) ≤ fA,B(s) = 2E0 · (es−Xδ+1 + e−s−Xδ+1) +
C1

2

ˆ Xδ

−Xδ

e−|s−q|G(q)dq.

Since X(�)−Xδ(�) ≤ C
δ is bounded independently of �, by Proposition

A.2, we thus obtain the claim of Proposition 3.6. q.e.d.

The proof above relied on Lemma 3.7, claiming a second order differ-
ential inequality for the locally smoothed angular energy Θ(s).

Proof of Lemma 3.7. Defining, for s ∈ (−X(�),X(�)),

ϑ(s) :=

ˆ
{s}×S1

|uθ|2,

where we drop the volume element dθ for brevity, we may compute

ϑ′(s) = 2

ˆ
{s}×S1

uθ · usθ,
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and

(3.8)

ϑ′′(s) = 2

ˆ
{s}×S1

|usθ|2 + uθ · ussθ

= 2

ˆ
{s}×S1

|usθ|2 − uθθ · uss.

Meanwhile, the tension τ of u with respect to the flat cylindrical metric
is given in terms of the second fundamental form A(·) of the target
(N,G) ↪→ R

N0 by

τ = uss + uθθ +A(u)(us, us) +A(u)(uθ, uθ),

and thus

ϑ′′(s) = 2

ˆ
{s}×S1

|usθ|2+|uθθ|2−uθθ·τ+uθθ·[A(u)(us, us)+A(u)(uθ, uθ)].

We develop the penultimate term using integration by parts:∣∣∣∣ˆ uθθ · [A(u)(us, us)]
∣∣∣∣ = ∣∣∣∣ˆ uθ · [A(u)(us, us)]θ

∣∣∣∣
≤CN

ˆ
|uθ|2|us|2 + |usθ||us||uθ|,

and then apply Young’s inequality to estimate

(3.9)

ϑ′′(s) ≥(2− 1

4
)

ˆ
{s}×S1

|usθ|2 + |uθθ|2 − C

ˆ
{s}×S1

|τ |2

− CN

ˆ
{s}×S1

|uθ|2|us|2 + |uθ|4.

Let us now assume that s0 is not too close to the ends of the cylinder,
more precisely that |s0| ≤ X(�) − 1, so that we can change variables
(s̃ = s− s0) and write

Θ(s0) :=

ˆ
ϕ4(s̃)ϑ(s̃+ s0)ds̃.

Differentiating twice and using (3.9), we find that

(3.10)

Θ′′(s0) =

ˆ
ϕ4(s̃)ϑ′′(s̃+ s0)ds̃ =

ˆ
ϕ4(s− s0)ϑ

′′(s)ds

≥
ˆ

ϕ4(s− s0)
(
(2− 1

4)(|usθ|2 + |uθθ|2)− C|τ |2) dθds
− CN

ˆ
ϕ4(s− s0)

(|uθ|2|us|2 + |uθ|4) dθds.
Considering now s0 to be fixed, we set ϕ̃(s) := ϕ(s − s0). Allowing C
to depend on N , we can then write
(3.11)

Θ′′(s0)≥
ˆ

ϕ̃4

(
(2− 1

4
)(|usθ|2 + |uθθ|2)−C

(|τ |2 + |uθ|2|us|2 + |uθ|4)),
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where we now start dropping the volume element dsdθ.
In order to control the final term, we use the Sobolev inequality over

the entire collar to find that
(3.12)ˆ

ϕ̃4|uθ|4 = ‖ϕ̃2|uθ|2‖2L2

≤ C‖ϕ̃2|uθ|2‖2W 1,1

≤ C

(ˆ
ϕ̃2|uθ|2

)2

+ C

(ˆ
ϕ̃2(|usθ|+ |uθθ|)|uθ|

)2

+ C

(ˆ
ϕ̃|uθ|2

)2

≤ C

[(ˆ
sptϕ̃

|uθ|2
)2

+

(ˆ
sptϕ̃

|uθ|2
)(ˆ

ϕ̃4(|usθ|2 + |uθθ|2)
)]

.

In order to control the right-hand side in terms of Θ, we require some
extra powers of ϕ̃ in the integrands. We achieve this by observing that
if s is within the support of ϕ̃, then we have s ∈ [s0 − 1, s0 + 1], and
hence

(3.13) 1 ≤ ϕ̃4(s − 1

2
) + ϕ̃4(s+

1

2
).

Therefore, assuming now that |s0| ≤ X(�)−3/2 (to prevent the integrals
falling off the end of C(�)) we have

(3.14)

ˆ
sptϕ̃

|uθ|2 ≤ Θ(s0 − 1

2
) + Θ(s0 +

1

2
).

Applied to only one factor of
´
sptϕ̃ |uθ|2 in (3.12), one consequence of

this estimate is

(3.15)

ˆ
ϕ̃4|uθ|4 ≤C

(
Θ(s0 − 1

2
) + Θ(s0 +

1

2
)

)
·
[
E(u;C1(s0)) +

ˆ
C1(s0)

(|usθ|2 + |uθθ|2)
]
.

Hence by Corollary 3.5, for arbitrary ε2 (to be picked later) there exists
Λε2 <∞ such that if |s0| ≤ X(�)− Λε2 , then
(3.16)ˆ

ϕ̃4|uθ|4 ≤ Cε2

(
Θ(s0 − 1

2
) + Θ(s0 +

1

2
)

)
+Cε2‖τ(u)‖2L2(CΛε2

(s0))
,

where C is not allowed to depend on ε2, but Cε2 is. The estimate above
will be used to control the final term in (3.11). We now wish to control
the penultimate term, and thus estimate, using again (3.12), but now
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applying (3.14) to all factors of
´
sptϕ̃ |uθ|2

(3.17)ˆ
ϕ̃4|uθ|2|us|2 ≤

(ˆ
ϕ̃4|uθ|4

) 1

2

(ˆ
ϕ̃4|us|4

) 1

2

≤ C
(
Θ(s0 − 1

2) + Θ(s0 +
1
2)
)(ˆ

ϕ̃4|us|4
) 1

2

+ C
(
Θ(s0 − 1

2) + Θ(s0 +
1
2)
) 1

2

(ˆ
ϕ̃4|us|4

) 1

2

·
(ˆ

ϕ̃4(|usθ|2 + |uθθ|2)
) 1

2

≤ C
(
Θ(s0 − 1

2) + Θ(s0 +
1
2)
) [(ˆ

ϕ̃4|us|4
) 1

2

+

(ˆ
ϕ̃4|us|4

)]

+
1

4

ˆ
ϕ̃4(|usθ|2 + |uθθ|2).

To control the part in square brackets, we use Young’s inequality to
estimate (ˆ

ϕ̃4|us|4
) 1

2

≤ √ε2 +
1√
ε2

ˆ
ϕ̃4|us|4

(with the same value of ε2 as above, still to be chosen) and then use
Corollary 3.5 to control

ˆ
ϕ̃4|us|4 ≤

ˆ
C1(s0)

|us|4 ≤ ε2 + Cε2‖τ(u)‖2L2(CΛε2
(s0))

,

Λε2 as before, and we again require |s0| ≤ X(�)−Λε2 so that CΛε2
(s0) ⊂

C(�). Therefore, (3.17) becomes
(3.18)ˆ

ϕ̃4|uθ|2|us|2

≤ C
(
Θ(s0 − 1

2) + Θ(s0 +
1
2)
) [√

ε2 + Cε2‖τ(u)‖2L2(CΛε2
(s0))

]
+

1

4

ˆ
ϕ̃4(|usθ|2 + |uθθ|2)

≤ C
√
ε2

(
Θ(s0 − 1

2) + Θ(s0 +
1
2)
)
+ Cε2‖τ(u)‖2L2(CΛε2

(s0))

+
1

4

ˆ
ϕ̃4(|usθ|2 + |uθθ|2),

where Cε2 is allowed to depend on both E0 and ε2 but again, C does not
depend on ε2. Combining (3.11) with our estimates (3.16) and (3.18),
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and choosing ε2 > 0 sufficiently small, gives us
(3.19)

Θ′′(s0) +
1

8

(
Θ(s0 − 1

2
) + Θ(s0 +

1

2
)

)
≥
ˆ

ϕ̃4

(
(2− 1

2
)(|usθ|2 + |uθθ|2)

)
− C‖τ(u)‖2L2(CΛε2

(s0))
,

and by Wirtinger’s inequality (i.e., the Poincaré inequality in one di-
mension) ˆ

{s}×S1

|uθθ|2dθ ≥
ˆ
{s}×S1

|uθ|2dθ,

and so
(3.20)

Θ′′(s0)+
3

2
Θ(s0)+

1

8

(
Θ(s0 − 1

2
) + Θ(s0 +

1

2
)

)
≥ −C‖τ(u)‖2L2(CΛε2

(s0))
.

Now that ε2, and hence Λ = Λε2 has been fixed, we choose δ > 0
sufficiently small so that whenever s0 ∈ (−Xδ ,Xδ) we automatically
have |s0| ≤ X(�) − Λ. Note that unless � > 0 is small enough, the
claim will be vacuous because the collar C(�) will contain no points of
injectivity radius less than δ. Also, for s ∈ CΛ(s0), we have

ρ(s) ≤ Cρ(s0),

thanks to (A.7), so that switching from the tension τ(u) computed with
respect to the flat metric to τg(u) computed with respect to g gives

‖τ(u)‖2L2(CΛ(s0))
= ‖ρ τg(u)‖2L2(CΛ(s0),g)

≤ ρ(s0)
2‖τg(u)‖2L2(CΛ(s0),g)

,

g the hyperbolic metric on the collar, from which we conclude the
lemma. q.e.d.

Equipped with Proposition 3.6, we are finally in a position to prove
the main estimate for the weighted angular energy.

Proof of Lemma 3.1. For the given, N , E0 and map u, apply Propo-
sition 3.6 to give C, Λ and δ such that

ˆ s0+
1

2

s0−
1

2

ˆ
S1

|uθ|2dθds ≤C · e−(X(�)−|s0|)

+ C ·
ˆ Xδ

−Xδ

e−|s−s0|ρ2(s) · ‖τg(u)‖2L2(CΛ(s),g)
ds,

for all s0 ∈ (−Xδ,Xδ). Multiplying by ρ−2(s0) and integrating, we find
that
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(3.21)ˆ Xδ

−Xδ

ˆ
S1

ρ−2(s)|uθ|2(s, θ)dθds

≤ C

ˆ Xδ

−Xδ

ρ−2(s0)

ˆ s0+1/2

s0−1/2

ˆ
S1

|uθ|2(s, θ)dθ ds ds0

≤ C

ˆ Xδ

−Xδ

ρ−2(s0)e
−(X(�)−|s0|)ds0

+ C

ˆ Xδ

−Xδ

ˆ Xδ

−Xδ

e−|s−s0|ρ−2(s0)ρ
2(s)‖τg(u)‖2L2(CΛ(s),g)

ds ds0,

where we have appealed to (A.7) to see that for s ∈ (s0− 1
2 , s0 +

1
2), we

have ρ−2(s) ≤ Cρ−2(s0), or equivalently ρ(s0) ≤ Cρ(s).

Claim. For any q ∈ [−X(�),X(�)], the function f(s) := ρ−2(s) ·
e−2|s−q|/3 for s ∈ [−X(�),X(�)] is maximised when s = q. That is,

(3.22) ρ−2(s)e−2|s−q|/3 ≤ ρ−2(q).

To see the claim, take logarithms, and differentiate, estimating using
(A.6) that for s < q we have (log f)′ ≥ − 2

π + 2
3 > 0, whereas for s > q

we have (log f)′ ≤ + 2
π − 2

3 < 0 as required.
Now, the first of the final two terms on the right-hand side of (3.21)

is bounded, independently of �, since by the claim we have

ρ−2(s0)e
−(X(�)−|s0|) ≤ ρ−2(X(�))e−(X(�)−|s0 |)/3 ≤ π2e−(X(�)−|s0|)/3

for � ∈ (0, 2 arsinh(1)) by (A.4).
To handle the final term on the right-hand side of (3.21), we can

apply the claim again to find that
ˆ Xδ

−Xδ

e−|s−s0|ρ−2(s0)ds0

≤ ρ−2(s)

ˆ Xδ

−Xδ

e−|s−s0|/3ds0 ≤ Cρ−2(s),

and hence we can improve (3.21) to
(3.23)ˆ Xδ

−Xδ

ˆ
S1

ρ−2(s)|uθ|2(s, θ)dθds ≤ C + C

ˆ Xδ

−Xδ

‖τg(u)‖2L2(CΛ(s),g)
ds

≤ C
(
1 + ‖τg(u)‖2L2(C(�),g)

)
,

because CΛ(s) ⊂ C(�) for all s ∈ (−Xδ,Xδ).
To complete the proof, note that on the δ-thick part of the collar,

described by {(s, θ) : |s| ∈ [Xδ ,X(�))}, the weight function is bounded
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by ρ−2 ≤ ρ−2(Xδ) ≤ π2δ−2, compare (A.8), so we may estimate(ˆ −Xδ

−X(�)
+

ˆ X(�)

Xδ

)ˆ
S1

ρ−2(s)|uθ|2(s, θ)dθds ≤ 2π2δ−2E(u),

in terms of the total energy E(u) ≤ E0.
Combining this with (3.23) completes the proof. q.e.d.

4. Paths in Teichmüller space

Our goal, in this section, is to prove Lemma 2.2. The main issue is
to understand in detail the structure of the space of holomorphic qua-
dratic differentials as the underlying metric degenerates by pinching one
or more collars. Our treatment follows on from our work in [18, 19],
emphasising the geometric analysis of the subject, and is particularly
adapted to get refined estimates that help us understand the projection
Pg. However, the general area of Weil–Petersson geometry has been
considered by many authors, and our work makes connection with pre-
vious work as we describe below, even if we work independently of it.
Example background references include Masur [11], Yamada [31, 32],
Wolpert [28, 29, 30] and the references therein. See also the recent
work of Mazzeo and Swoboda [12].

As we explain below, a central part of our theory will be to make a
decomposition of the space of holomorphic quadratic differentials on a
surface, viewed as the tangent space to Teichmüller space, correspond-
ing to a collection of geodesics having small lengths �i. In addition to
the kernel of {∂�i} we effectively take the dual basis to {∂�i} on the
orthogonal complement, as described in Remark 4.8. The refined Lp

estimates on this basis that we require in our applications are given in
Lemma 4.5.

4.1. Structure of the space of holomorphic quadratic differen-

tials. We will need to understand the properties of holomorphic qua-
dratic differentials on oriented closed hyperbolic surfaces, in particular,
in regions where the injectivity radius injg(p) is small. One fundamental
fact of hyperbolic surface theory, cf. [8], Proposition IV.4.2, is that for
any 0 < δ < arsinh(1), the δ-thin part of the surface, consisting of all
points at which the injectivity radius is less than δ, is given by a fi-
nite union of disjoint hyperbolic cylinders of finite length around closed
geodesics, which are explicitly described by the Collar lemma A.1 of
Keen–Randol. (Recall that these closed geodesics have length �, which
we assume always to be less than 2 arsinh(1).) Away from these collars,
and more generally on the subset δ-thick(M,g) of points p with injectiv-
ity radius injg(p) ≥ δ, where δ > 0, holomorphic quadratic differentials
are well controlled. The most basic estimate, following from standard
estimates for holomorphic functions on disks, is that for Φ ∈ H(M,g),
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p ∈ [1,∞) and δ > 0, we have

(4.1) ‖Φ‖L∞(δ-thick(M,g)) ≤ Cδ‖Φ‖Lp(M,g),

with Cδ depending only on δ, cf. Lemma A.8 in [18]. While this estimate
is sufficient for most of the paper, it is useful at times to observe that
indeed

(4.2) ‖Φ‖L∞(δ-thick(M,g)) ≤ Cδ‖Φ‖Lp( δ
2
-thick(M,g)),

for any 0 < δ < arsinh(1), still with a constant Cδ depending only on δ.
The Fourier decomposition of holomorphic quadratic differentials Φ

on each hyperbolic collar (C, g)

(4.3) Φ =

( ∞∑
n=−∞

bne
ns einθ

)
· dz2, bn ∈ C,

where dz = ds + idθ as before, gives an L2(C, g)-orthogonal decom-
position of each such Φ into its principal part b0dz

2 = b0(Φ)dz
2 =

b0(Φ, C)dz2 and its collar decay part ω⊥(Φ, C) := Φ − b0(Φ)dz
2 which,

by [18, Lemma 2.2], satisfies the key estimate

(4.4) ‖ω⊥(Φ, C)‖L∞(δ-thin(C,g)) ≤ Cδ−2e−
π
δ ‖ω⊥(Φ, C)‖L2(δ0-thick(C,g)),

for some universal constants C < ∞ and δ0 ∈ (0, arsinh(1)), and any
δ ∈ (0, δ0], cf. [30, section 3]. (Here we are writing δ-thin(C, g) :=
C ∩ δ-thin(M,g), and similarly for δ-thick.)

On the other hand, when Φ ∈ H(M,g) we can also control the right-
hand side of (4.4), and even the L∞ norm, as follows. Since we have
made an orthogonal decomposition of Φ, we know that 〈Φ, dz2〉L2(C,g) =

b0(Φ)‖dz2‖2L2(C), and hence

|b0(Φ, C)| ≤
‖Φ‖L1(C)‖dz2‖L∞(C)

‖dz2‖2
L2(C)

≤ C�‖Φ‖L1(C),

for universal C, by (A.12).
Consequently, noting that, by (A.12) and (A.8), ‖dz2‖L∞(δ0-thick(C,g)) ≤

2π2δ−20 is bounded above independently of � ∈ (0, 2 arsinh(1)), and re-
calling (4.1), we have by the triangle inequality

(4.5)

‖ω⊥(Φ, C)‖L∞(δ0-thick(C,g)) ≤‖Φ‖L∞(δ0-thick(C,g))

+ ‖b0(Φ)dz2‖L∞(δ0-thick(C,g))

≤C‖Φ‖L1(M,g),

for universal C <∞. Using the fact that collars have uniformly bounded
area as � ↓ 0 (see [18, Lemma A.5]), the norm on the right-hand side of
(4.4) is controlled by the left-hand side of (4.5), and we find that

(4.6) ‖ω⊥(Φ, C)‖L∞(δ-thin(C,g)) ≤ Cδ−2e−
π
δ ‖Φ‖L1(M,g),
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for universal C < ∞, and any δ ∈ (0, δ0]. Thus, deep within a col-
lar, only the principal part of a holomorphic quadratic differential is
significant.

In the special case that δ = δ0, estimate (4.6) can be added to (4.5)
to give a bound on the whole collar of

(4.7) ‖ω⊥(Φ, C)‖L∞(C,g) ≤ C‖Φ‖L1(M,g),

for a universal constant C <∞.
Remark that the above estimates could also be derived based on the

observation that ω⊥ and b0dz
2 are orthogonal also on subcylinders of

the collar, in particular, on the δ0-thick-part. Indeed, combined with
(4.4) and (4.2) this gives the slight improvement of (4.6) that

(4.8) ‖ω⊥(Φ, C)‖L∞(δ-thin(C,g)) ≤ Cδ−2e−
π
δ ‖Φ‖

L1(
δ0
2
-thick(M,g))

,

still with universal C and any δ ∈ (0, δ0], which will be needed in the
proof of Lemma 4.5 later on.

Following [18], given an oriented closed hyperbolic surface (M,g) on
which we identify k collars C1, . . . , Ck, we can then define the subspace

(4.9) W := {Θ ∈ H(M,g) : b0(Θ, Cj)dz2 = 0 for every j ∈ {1 . . . k} },
of all holomorphic quadratic differentials with principal part equal to
zero on each of the k collars.

Remark 4.1. When we return to viewing the space of holomorphic
quadratic differentials H(M,g) on (M,g) as tangent vectors in M−1

at g, via the isomorphism Φ �→ Re(Φ), the subspace W will have a
simple geometric interpretation (albeit one that we will not require in
any argument below). Indeed, if the lengths of the geodesics at the
centre of the collars C1, . . . , Ck are given as �1, . . . , �k near to g inM−1,
then W will represent the kernel of (∂�1, . . . , ∂�k) within H(M,g). Note
that here we view H as a real vector space with a complex structure J ,
and write ∂�j := (d�j−iJd�j)/2, acting onH within its complexification.
Thus, an element v ∈ H lies in the kernel of ∂�j precisely if both v and
Jv lie in the kernel of d�j . See also Remarks 4.12 and 4.8.

The following lemma is part of [18, Lemma 2.4], cf. [11].

Lemma 4.2 (Decomposition of H(M,gn): Definition of Wn). Given
an oriented closed surface M of genus γ ≥ 2, there exists a univer-
sal constant C such that the following is true. Suppose gn is a se-
quence of hyperbolic metrics on M , and apply the differential geometric
Deligne–Mumford compactness Proposition A.3 in order to pass to a

subsequence and obtain precisely k ≥ 0 collars Cjn degenerating. After
omitting finitely many terms, the subspace
(4.10)

Wn :=
{
Θ ∈ H(M,gn) : b0(Θ, Cjn)dz2 = 0 for every j ∈ {1 . . . k}}
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of holomorphic quadratic differentials that have vanishing principal part

on every collar Cjn, j ∈ {1 . . . k}, is of (complex) dimension 3(γ−1)−k,
and elements w ∈ Wn decay rapidly along the collars in the sense that
for sufficiently small δ > 0 (so that the δ-thin part of (M,gn) lies within

∪k
j=1Cjn for every n) independent of n, we have

(4.11) ‖w‖L∞(δ-thin(M,gn)) ≤ C · δ−2e−π/δ‖w‖L2(M,gn).

Furthermore, the spaces Wn converge to H(Σ, h), the space of inte-
grable holomorphic quadratic differentials on the typically noncompact
limit surface (Σ, h) from Proposition A.3, in the sense that for every
w ∈ H(Σ, h) there exists a sequence wn ∈Wn with
(4.12)
f∗nwn → w smoothly locally on Σ and ‖w‖L2(Σ,h) = lim

n→∞
‖wn‖L2(M,gn).

Note that (4.11) also follows from (4.6), albeit with a constant C
now depending on the genus. Note also that a combination of (4.11)
and (4.1) tells us that we can also control

(4.13) ‖w‖L∞(M,gn) ≤ C · ‖w‖L2(M,gn),

for all w ∈Wn, or, via (4.6), alternatively with the L1 norm on the right-

hand side (with C depending only on inf{injgn(x) : x ∈M\∪k
j=1Cjn, n ∈

N}, i.e., with C independent of n).

Corollary 4.3. In the setting of Lemma 4.2, there exists a constant
C <∞ such that for any n and any Ψ ∈ QL2(M,gn), we have

(4.14) ‖PWn
gn (Ψ)‖L∞(M,gn) ≤ C‖Ψ‖L1(M,gn).

Proof. Estimate (4.13) implies

‖PWn
gn (Ψ)‖L∞(M,gn) ≤ C‖PWn

gn (Ψ)‖L2(M,gn).

On the other hand, by definition,

‖PWn
gn (Ψ)‖2L2(M,gn)

= 〈Ψ, PWn
gn (Ψ)〉 ≤ ‖Ψ‖L1(M,gn)‖PWn

gn (Ψ)‖L∞(M,gn).

Combining these two estimates gives the result. q.e.d.

Before we discuss the structure of the L2-orthogonal complementW⊥
n ,

we briefly discuss the size of both the principal and the collar decay part
of holomorphic quadratic differentials on the δ-thick part of a collar, for
fixed δ ∈ (0, arsinh(1)). Since we have made an orthogonal decompo-
sition we know that for any Φ ∈ H(M,g) and any collar C = C(�) in
(M,g), we have

(4.15)

|b0(Φ, C)| ≤ ‖dz2‖−1L2(C,g)
‖Φ‖L2(M,g)

=

(
32π5

�3
− 16π4

3
+O(�2)

)−1/2
‖Φ‖L2(M,g),
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by (A.12). Since |dz2| = 2ρ−2 is bounded above (and below) on
δ-thick(C, g) independently of � – see (A.8) and (A.9) – this means,
in particular, that for any L2-unit element Φ ∈ H(M,g) we have

(4.16) |b0(Φ, C)dz2| ≤ C�3/2

on the δ-thick part of the collar, where C depends only on δ.
Meanwhile, on this thick part of C(�) the collar decay part of a unit

element can be of order 1, i.e., huge compared with the principal part.
The following lemma guarantees that such a difference in size does

not occur for elements of the orthogonal complement of Wn; we obtain a
basis of W⊥

n with each element concentrated on one of the degenerating
collars and there having principal part almost as large as it can be
according to (4.15), and with the remaining collar decay part now only
of order O(�3/2), i.e., of the same order as the principal part on the thick
part of the surface.

Lemma 4.4 (Decomposition of H(M,gn): Decomposition of W⊥
n ).

Suppose we are in the setting of Lemma 4.2, and have identified the
subspace Wn of complex dimension 3(γ−1)−k. Then there exist a con-
stant C ∈ (0,∞), and for all δ > 0 a further constant Cδ ∈ (0,∞), such

that for sufficiently large n we can find an L2-orthonormal basis {Ωj
n},

1 ≤ j ≤ k of the L2-orthogonal complement W⊥
n of Wn in H(M,gn),

with one element concentrated on each collar Cjn in the sense that for
each j ∈ {1, . . . , k},
(4.17) ‖Ωj

n‖L∞(M\Cjn,gn)
≤ C(�jn)

3/2,

with the principal parts on the other collars Cin controlled by the stronger
bounds

(4.18) |b0(Ωj
n, Cin)| ≤ C(�jn)

3/2(�in)
3, i �= j.

On the one collar Cjn where Ωj
n concentrates it is essentially given as a

constant multiple of dz2 in the sense that
(4.19)

‖Ωj
n − βj

ndz
2‖

L∞(Cjn,gn)
≤ C(�jn)

3/2 where

∣∣∣∣ (�jn)3/2

(32π5)1/2
− βj

n

∣∣∣∣ ≤ C(�jn)
9/2,

for βj
ndz2 = b0(Ω

j
n, Cjn)dz2 the principal part on Cjn and �jn the length of

the central geodesic in (Cjn, gn). Moreover, for each j ∈ {1, . . . , k}, we
have

(4.20) ‖Ωj
n‖L1(M,gn) ≤ C(�jn)

1/2,

(4.21) ‖Ωj
n‖L∞(M,gn) ≤ C(�jn)

−1/2,

and

(4.22) ‖Ωj
n‖L∞(δ-thick(M,gn)) ≤ Cδ(�

j
n)

3/2.
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This lemma will be derived from the following lemma which is an
improvement of [19, Lemma 2.6 and Corollary 2.7] and which gives an
explicit definition of basis elements concentrating on collars, but does
not guarantee orthogonality

Lemma 4.5. Suppose we are in the setting of Lemma 4.2, and have
identified the subspace Wn of complex dimension 3(γ − 1) − k. Then
there exist a constant C ∈ (0,∞), and for all δ > 0 a further constant
Cδ ∈ (0,∞), such that for sufficiently large n, the L2-unit holomorphic

quadratic differentials Ω̃1
n, . . . , Ω̃

k
n ∈W⊥

n characterised by

(4.23) b0(Ω̃
j
n, Cin) = 0 for every i �= j while b0(Ω̃

j
n, Cjn) > 0

concentrate on the respective collars C1n, . . . , Ckn in the sense that for each
j ∈ {1, . . . , k}, we have

(4.24) ‖Ω̃j
n‖L∞(M\Cjn,gn)

≤ C(�jn)
3/2,

while on this collar Ω̃j
n is essentially given as a constant multiple of dz2

in the sense that

(4.25) ‖Ω̃j
n − β̃j

ndz
2‖

L∞(Cjn,gn)
≤ C(�jn)

3/2,

for the principal part β̃j
ndz2 = b0(Ω̃

j
n, Cjn)dz2 of Ω̃j

n satisfying

(4.26) 1− C(�jn)
3 ≤ β̃j

n‖dz2‖L2(Cjn,gn)
≤ 1.

Moreover, the elements Ω̃j
n are almost orthogonal,

(4.27) 〈Ω̃j
n, Ω̃

i
n〉L2(M,g) ≤ C(�jn)

3/2(�in)
3/2, i �= j,

and for each j ∈ {1, . . . , k}, we have

(4.28) ‖Ω̃j
n‖L1(M,gn) ≤ C(�jn)

1/2,

(4.29) ‖Ω̃j
n‖L∞(M,gn) ≤ C(�jn)

−1/2,

and

(4.30) ‖Ω̃j
n‖L1(δ-thick(M,gn)) ≤ Cδ(�

j
n)

3/2.

Remark 4.6. Note that by virtue of (A.12) and (4.26), the constants

β̃j
n are constrained by

(4.31)

∣∣∣∣β̃j
n −

(�jn)3/2

(32π5)1/2

∣∣∣∣ ≤ C(�jn)
9/2,

in particular,

(4.32)

∥∥∥∥∥Ω̃j
n −

(�jn)3/2

(32π5)1/2
dz2

∥∥∥∥∥
L∞(Cjn,gn)

≤ C(�jn)
3/2.
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Remark 4.7. With more effort, the dependencies of the constants
C, Cδ in Lemma 4.5 can be dramatically improved, although we do
not require such refinements in this paper. For example, by working
directly, one can show that the constants in (4.28) and (4.29) can be
chosen to be universal (cf. [19]). Improved dependencies in Lemma 4.5
then yield improved dependencies in Lemma 4.4.

Remark 4.8. For n so large that the collars have been almost pinched,

the basis {Ωj
n} of W⊥

n will be very similar to the basis {Ω̃j
n}. A fur-

ther similar basis in this limit, see Wolpert [29], can be given in terms

of the scaled Weil–Petersson gradients {−
√

π

2�jn
∇�jn}. In contrast, our

basis {Ω̃j
n} can be viewed as the dual basis to {∂�jn}, with each element

scaled to unit length. Here ∂�jn = (d�jn − iJd�jn)/2 is like in Remark
4.1 except that we restrict it to the complement W⊥

n of the kernel of
(∂�1n, .., ∂�

k
n) within H(M,gn). One should also compare with the work

of Masur [11].

Remark 4.9. Although we will not need them, we remark that based
on (4.25) and (4.24) we get refinements of (4.24) and (4.25) at the central
geodesics of a collar. That is, for i �= j, we have

(4.33) ‖Ω̃j
n‖L∞(σi

n,gn)
≤ C(�jn)

3/2

(
(�in)

−2e
− 2π

�in

)
,

and for each i,

(4.34) ‖Ω̃i
n − β̃i

ndz
2‖L∞(σi

n,gn)
≤ C(�in)

−1/2e
− 2π

�in .

Proof of Lemma 4.5. As Lemma 4.2 has told us, after having omitted
finitely many terms, the subspace W⊥

n has dimension k, and we may as
well assume that k ≥ 1, otherwise the lemma that we are proving is
vacuous. Therefore, for each fixed j ∈ {1, . . . , k}, there is a unique

element Ω̃j
n of W⊥

n with ‖Ω̃j
n‖L2(M,gn) = 1 satisfying (4.23). The key

step in the proof of Lemma 4.5 is to show that claim (4.30) holds true
for this basis of W⊥

n . Assume instead that there exists a number δ̄ > 0
such that after passing to a subsequence

(4.35) Λn := (�jn)
−3/2‖Ω̃j

n‖L1(δ̄-thick(M,gn)) →∞ as n→∞,

for some 1 ≤ j ≤ n, say for j = 1.
We now choose a sequence δn ∈ (0, δ̄] with δn → 0 so that still

(4.36) Λn · δn →∞ as n→∞,

and set

(4.37) λn := ‖Ω̃1
n‖L1(δn-thick(M,gn)) ≥ Λn(�

1
n)

3/2.

We then consider the normalised sequence

Ω̂n := (λn)
−1 · Ω̃1

n,
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so

(4.38) ‖Ω̂n‖L1(δn-thick(M,gn)) = 1,

and prove the following two claims which obviously contradict each
other:

Claim 1 (Not everything disappears down the collar). There exists
a number δ > 0 such that for all n sufficiently large

(4.39) ‖Ω̂n‖L1(δ-thick(M,gn)) ≥
1

2
.

Claim 2 (Everything disappears down the collar). After passing to
a subsequence and pulling back by the diffeomorphisms fi : Σ → M \
∪k
j=1σ

j
i given by Proposition A.3, we have

(4.40) f∗nΩ̂n → 0 smoothly locally on Σ,

which implies

lim
n→∞

‖Ω̂n‖L1(δ-thick(M,gn)) = 0 for every δ > 0.

Proof of Claim 1. Recall that for sufficiently small δ > 0, the δ-thin
part of (M,gn) is given as a union of disjoint subsets of the degenerating
collars Cin. In view of the normalisation (4.38), we thus need to show
that (after possibly reducing δ > 0)

(4.41)

k∑
i=1

‖Ω̂n‖L1

(
δ-thin(Cin)\δn-thin(C

i
n)
) ≤ 1

2
,

for all n sufficiently large. By definition, the principal part of Ω̃1
n, and

thus of Ω̂n, on Cin vanishes for all i �= 1, so that (4.8) applies, resulting
for n large in an estimate of

(4.42)

‖Ω̂n‖L1(δ-thin(Cin)\δn-thin(C
i
n))
≤ C‖Ω̂n‖L∞(δ-thin(Cin))

≤ Cδ−2e−π/δ‖Ω̂n‖L1(
δ0
2
-thick(M,gn))

≤ 1

4k
‖Ω̂n‖L1(δn-thick(M,gn)) =

1

4k
provided δ > 0 is initially chosen small enough. The same estimate is

of course valid also for the collar decay part ω⊥(Ω̂n, C1n).
In order to prove (4.41) it thus remains to control the contribution

of the principal part to the L1 norm on δ-thin(C1n) \ δn-thin(C1n). Here
we crucially use the assumption (4.35) which means that the principal

part of Ω̃1
n is small compared to Ω̃1

n on the δ̄-thick part of the surface.
More precisely, by the a priori bound (4.16) valid for all elements of H,
we know that

‖b0(Ω̃1
n, C1n)dz2‖L1(δ̄-thick(C1n))

‖Ω̃1
n‖L1(δ̄-thick(M,gn))

≤ Cδ̄(�
1
n)

3/2

Λn(�1n)
3/2

→ 0 as n→∞.
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The relation (4.36) now guarantees that this property is preserved for
our sequence δn → 0: Indeed, by Proposition A.2 and (A.12), we have

‖dz2‖L1(δn-thick(C1n))
= 8π(X(�1n)−Xδn(�

1
n)) ≤ Cδ−1n ,

and combining this estimate with (4.15), (4.36) and (4.37) yields
(4.43)

‖b0(Ω̃1
n, C1n)dz2‖L1(δn-thick(C1n))

‖Ω̃1
n‖L1(δn-thick(M,gn))

=
|b0(Ω̃1

n, C1n)|.‖dz2‖L1(δn-thick(C1n))

λn

≤ C(�1n)
3/2

λnδn
≤ C

Λnδn
→ 0,

as n → ∞. But the left-hand side is precisely the L1 norm of the

principal part of the normalised Ω̂n on δn-thick(C1n), so that

‖Ω̂n‖L1(δ-thin(Cin)\δn-thin(C
i
n))
→ 0

is certainly less than 1
4 for n large, completing the proof of (4.41), i.e.,

Claim 1. q.e.d.

Proof of Claim 2. Observe that while the L1-norms of Ω̂n are in gen-
eral unbounded, our normalisation (4.38) implies that for every δ > 0

lim sup
n→∞

‖Ω̂n‖L1(δ-thick(M,gn)) ≤ 1.

To begin with, we remark that such a bound turns out to be sufficient to

extract a subsequence in n so that f∗nΩ̂n converges smoothly locally to

a limit Ω̂∞ ∈ H(Σ, h), fn the diffeomorphisms of the Deligne–Mumford

compactness Proposition A.3; indeed, as f∗nΩ̂n are holomorphic with
respect to the complex structures f∗ncn → c their Ck norm on balls of a
given radius are bounded in terms of their L1 norms on slightly larger
balls, resulting in (uniform in n) bounds of

‖f∗nΩ̂n‖Ck(f∗

n(δ-thick(M,gn))) ≤ Ck,δ‖Ω̂n‖L1(δ/2-thick(M,gn)) ≤ Ck,δ,

for every δ > 0, k ∈ N. Combined with the theorem of Arzela–Ascoli,
this then allows us to extract a subsequence to give smooth local con-

vergence f∗nΩ̂n → Ω̂∞ to a holomorphic quadratic differential on Σ; for
details of this argument we refer to Section A.3 of [18], in particular, to
Lemma A.9 and its proof. Since additionally
(4.44)

‖Ω̂∞‖L1(δ-thick(Σ,h)) = lim
n→∞

‖Ω̂n‖L1(δ-thick(M,gn)) ≤ 1 for any δ > 0,

see [18, Lemma A.7], Ω̂∞ is indeed an element of H(Σ, h), the space
of all holomorphic quadratic differentials on the noncompact limit sur-
face with finite L1(Σ, h) norm, or by [18, Lemma A.11] equivalently,
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with finite L2(Σ, h)-norm. As we claim that Ω̂∞ is identically zero we,
therefore, need to prove that

(4.45) 〈w, Ω̂∞〉L2(Σ,h) = 0 for every w ∈ H(Σ, h).

Given w ∈ H(Σ, h) we let wn ∈Wn be an approximating sequence as

in (4.12) and use that, by definition, Ω̂n is an element of W⊥
n so that

for any δ > 0
(4.46)

|〈w, Ω̂∞〉L2(Σ,h)| ≤ |〈w, Ω̂∞〉L2(δ-thick(Σ,h))|+ |〈w, Ω̂∞〉L2(δ-thin(Σ,h))|
≤ | lim

n→∞
〈wn, Ω̂n〉L2(δ-thick(M,gn))|

+ ‖w‖L2(δ-thin(Σ,h)) · ‖Ω̂∞‖L2(δ-thin(Σ,h))

= | lim
n→∞

〈wn, Ω̂n〉L2(δ-thin(M,gn))|+R(δ),

where we observe that R(δ) = ‖w‖L2(δ-thin(Σ,h)) · ‖Ω̂∞‖L2(δ-thin(Σ,h)) → 0

as δ → 0 since both w and Ω̂∞ have finite L2(Σ, h) norm.
On the other hand, we recall that for δ > 0 sufficiently small, the

δ-thin part of (M,gn) is given as the union of the δ-thin parts of the
degenerating collars Cin, and stress once more that the collar decay part
of any holomorphic quadratic differential is L2-orthogonal to dz2 on
arbitrary subcylinders of the collars. Since the principal part of wn on
all degenerating collars Cin is zero, the inner product in (4.46) is given

only in terms of the collar decay parts of Ω̂n so, by (4.8) and (4.11), for

n sufficiently large (so that δn < δ0
2 )

(4.47)

|〈wn, Ω̂n〉L2(δ-thin(M,gn))|

≤
k∑

i=1

‖wn‖L2(δ-thin(Cin))
‖ω⊥(Ω̂n, Cin)‖L2(δ-thin(Cin))

≤ C
(
δ−2e−

π
δ
)2‖wn‖L2(M,gn)‖Ω̂n‖L1(

δ0
2
-thick(M,gn))

≤ C
(
δ−2e−

π
δ
)2
.

Combined with (4.46) we thus find that

|〈w, Ω̂∞〉L2(Σ,h)| ≤ R(δ) + Cδ−4e−2π/δ → 0 as δ → 0,

so that the limit Ω̂∞ obtained above must be zero, proving not only
(4.40), but at the same time, by (4.44), also the claimed L1-bounds.

q.e.d.

This completes the proof of the key estimate (4.30).
As for the remaining parts, (4.24) follows from (4.30), (4.2) and (4.8),

if we choose δ ∈ (0, δ0] to be sufficiently small so that the δ-thin part of

(M,gn) is contained within ∪k
j=1Cjn for sufficiently large n.
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Estimate (4.25) follows from (4.8), (4.30) and (4.31).
To establish (4.26), we compute

(4.48)

1 = ‖Ω̃j
n‖2L2(M,gn)

= ‖Ω̃j
n‖2L2(M\Cjn,gn)

+ ‖Ω̃j
n‖2L2(Cjn,gn)

= ‖Ω̃j
n‖2L2(M\Cjn,gn)

+ ‖β̃j
ndz

2‖2
L2(Cjn,gn)

+ ‖Ω̃j
n − β̃j

ndz
2‖2

L2(Cjn,gn)
.

This implies the second inequality of (4.26), but also, when combined
with (4.24) and (4.25), it gives

1− ‖β̃j
ndz

2‖2
L2(Cjn,gn)

≤ C(�jn)
3.

To show (4.27) we use the orthogonality of the principal and collar

decay parts as well as that b0(Ω̃
i
n, Cjn) = 0 for i �= j to see that the inner

product depends only on terms that are small according to (4.25) and
(4.24), namely

(4.49)

〈Ω̃i
n, Ω̃

j
n〉L2(M,gn) = 〈Ω̃i

n − β̃i
ndz

2, Ω̃j
n〉L2(Cin,gn)

+ 〈Ω̃i
n, Ω̃

j
n − β̃j

ndz
2〉

L2(Cjn,gn)

+ 〈Ω̃i
n, Ω̃

j
n〉L2(M\(Cjn∪Cin),gn)

,

which implies (4.27).
Finally, both (4.28) and (4.29) follow from (4.24), (4.25), (4.31) and

(A.12). q.e.d.

Proof of Lemma 4.4. The orthonormal bases {Ωj
n} will arise as slight

adjustments of the unit vectors {Ω̃j
n} from Lemma 4.5. To simplify

notations, we fix n and drop the subscript n. By the estimate (4.27) we

can adjust {Ω̃j} to an orthonormal basis {Ωj} inductively using Gram–

Schmidt, setting Ω1 = Ω̃1 and

Ωj :=

[
Ω̃j −

j−1∑
i=1

〈Ω̃j ,Ωi〉Ωi

]
λ−1j ,

for j = 2, . . . , k, where λj := ‖Ω̃j −∑j−1
i=1 〈Ω̃j ,Ωi〉Ωi‖L2(M,g). Based on

(4.27) we may then prove by induction that for j = 2, . . . , k, we may
write

(4.50) Ωj = Ω̃jλ−1j +

j−1∑
i=1

cjiΩ̃
i,

with

(4.51)

|cji| ≤ C(�j�i)3/2 if k ≥ j > i ≥ 1,

1− λ2
j =

j−1∑
i=1

(〈Ω̃j ,Ωi〉)2 ≤ C(�j)3
j−1∑
i=1

(�i)3 if j ∈ {2, . . . , k}.
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Because of (4.50) and (4.51), we see that (4.17), (4.18), (4.19), (4.20),
(4.21) and (4.22) hold for the orthonormal basis {Ωj} because of the
analogous statements we proved for Lemma 4.5. For example, to prove
(4.17), we estimate

(4.52)

‖Ωj‖L∞(M\Cj ,g) = ‖Ω̃jλ−1j +

j−1∑
i=1

cjiΩ̃
i‖L∞(M\Cj ,g)

≤ C‖Ω̃j‖L∞(M\Cj ,g) +

j−1∑
i=1

|cji|.‖Ω̃i‖L∞(M\Cj ,g)

≤ C(�j)3/2 + C

j−1∑
i=1

(�j�i)3/2(�i)−1/2

≤ C(�j)3/2,

while (4.18) follows immediately from (4.50), (4.51), (4.31) and the def-

inition of Ω̃i. To prove (4.19) we use (4.51) first to obtain the bound on

the principal part βjdz2 = λ−1j β̃jdz2∣∣∣∣βj − (�j)3/2

(32π5)1/2

∣∣∣∣ ≤ ∣∣∣∣β̃j − (�j)3/2

(32π5)1/2

∣∣∣∣+ |β̃j |.|λ−1j − 1| ≤ C(�j)9/2,

from (4.31), and then to derive the bound on the collar decay part
(4.53)

‖Ωj − βjdz2‖L∞(Cj ,g)≤‖λ−1j

(
Ω̃j − β̃jdz2

)
‖L∞(Cj ,g)

+

j−1∑
i=1

|cji|.‖Ω̃i‖L∞(Cj ,g)

≤C(�j)3/2 +C(�j)3/2
∑

(�i)3/2(�i)3/2≤C(�j)3/2,

from the corresponding bound (4.25) on Ω̃j as well as from (4.24).
To prove (4.20) we use (4.50), (4.51) and (4.28). Recalling how we

proved (4.29), we see that (4.21) follows immediately (for example) from
(4.17), (4.19) and (A.12), while (4.22) follows from (4.30) combined with
(4.50) and (4.51). q.e.d.

4.2. Projection of general quadratic differentials onto H. Based
on the properties of holomorphic quadratic differentials derived in the
previous section we can now prove:

Proposition 4.10. Given an oriented closed surface M of genus
γ ≥ 2, equipped with a hyperbolic metric g, there exists C <∞ depend-
ing only on γ such that the projection Pg(Ψ) of an arbitrary quadratic
differential Ψ ∈ QL2(M,g) onto the space of holomorphic quadratic dif-
ferentials satisfies

(4.54) ‖Pg(Ψ)‖L1(M,g) ≤ C‖Ψ‖L1(M,g).
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Moreover, on any collar C = C(�) in (M,g) with � < 2 arsinh(1), we
have

(4.55) Pg(Ψ) ∼ �3

32π5
〈Ψ, dz2〉L2(C,g)dz

2,

in the sense that the principal part b0dz
2 := b0(Pg(Ψ), C)dz2 of Pg(Ψ)

on C satisfies

(4.56)

∣∣∣∣b0 − �3

32π5
〈Ψ, dz2〉L2(C)

∣∣∣∣ ≤ C · �3‖Ψ‖L1(M,g),

while the remaining part decays rapidly along the collar, satisfying

(4.57) ‖Pg(Ψ)− b0dz
2‖L∞(δ-thin(C,g)) ≤ Cδ−2e−π/δ‖Ψ‖L1(M,g),

for every δ ∈ (0, arsinh(cosh(�/2))).

The upper bound for δ in (4.57) could be taken to be any fixed num-
ber. The upper bound we chose is the injectivity radius at the ends of
C – see (A.3).

Proof. Suppose, contrary to the proposition, that (4.54) is false. Then
there exists an oriented closed surface M , a sequence of metrics gn ∈
M−1, and a sequence of elements Ψn ∈ QL2(M,gn) such that

(4.58) ‖Pgn(Ψn)‖L1(M,gn) > n‖Ψn‖L1(M,gn).

Lemmata 4.2 and 4.4 give us a subsequence and a decomposition
H(M,gn) = Wn ⊕W⊥

n and allow us to write

(4.59) Pgn(Ψn) := wn +
k∑

i=1

〈Ψn,Ω
i
n〉Ωi

n,

where wn = PWn
gn (Ψn) ∈ Wn. Corollary 4.3 and the fact that by the

Gauss–Bonnet theorem the area of (M,gn) is independent of n gives

(4.60) ‖wn‖L1(M,gn) ≤ C‖wn‖L∞(M,gn) ≤ C‖Ψn‖L1(M,gn).

On the other hand, (4.20) and (4.21) of Lemma 4.4 allow us to estimate
(4.61)
‖〈Ωi

n,Ψn〉Ωi
n‖L1(M,gn) ≤ ‖Ψn‖L1‖Ωi

n‖L∞‖Ωi
n‖L1 ≤ C‖Ψn‖L1(M,gn).

Combining, we find that

‖Pgn(Ψn)‖L1(M,gn) ≤ C‖Ψn‖L1(M,gn),

which contradicts (4.58) and establishes (4.54).
Next we turn to proving (4.56) and (4.57), but with the latter initially

only required for δ ∈ (0, δ0], where δ0 is as in (4.4). Now in order to argue
by contradiction, we suppose instead that there exist an oriented closed
surface M of genus γ ≥ 2, a sequence of metrics gn ∈ M−1, a sequence
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of elements Ψn ∈ QL2(M,gn) and a sequence of collars Cn = C(�n) in
(M,gn) with �n < 2 arsinh(1), such that at least one of the estimates

(4.62) |b0(Pgn(Ψn), Cn)− �3n
32π5

〈Ψn, dz
2〉L2(Cn)| ≤ n · �3n‖Ψn‖L1(M,gn),

or
(4.63)

‖ω⊥(Pgn(Ψn), Cn)‖L∞(δ-thin(Cn)) ≤ n‖Ψn‖L1(M,gn) · δ−2e−
π
δ ,∀δ ∈ (0, δ0]

is violated for each n. We will show that in fact, both are satisfied,
for a subsequence, even with the coefficients n replaced with a large
constant C.

As above, we appeal to Lemmata 4.2 and 4.4 to give a subsequence
and a decomposition as in (4.59), with k (possibly zero) degenerating
collars identified. By passing to a further subsequence, we may further
assume that either �n → 0 or �n has a positive lower bound, uniform
in n.

Let us deal first with the harder case that �n → 0, in which case
we may assume that Cn corresponds to the first of the k degenerating
collars, with corresponding basis element Ω1

n ∈W⊥
n . The essential idea

is that out of the k + 1 terms in the decomposition (4.59), only the Ω1
n

term will contribute substantially to the restriction of Pgn(Ψn) to the
thin part of the collar Cn.

Let us consider wn first. Since it has vanishing principal part on each
degenerating collar, i.e., wn = ω⊥(wn), we can apply (4.6) and estimate
as in (4.60) to give
(4.64)

‖wn‖L∞(δ-thin(Cn)) = ‖ω⊥(wn)‖L∞(δ-thin(Cn)) ≤ Cδ−2e−π/δ‖wn‖L1(M)

≤ Cδ−2e−π/δ‖Ψn‖L1(M) for all δ ∈ (0, δ0],

with C independent of n. Here and in the following all norms are
computed with respect to gn and we abbreviate b0(·) = b0(·, Cn) and
ω⊥(·) = ω⊥(·, Cn).

To analyse 〈Ψn,Ω
i
n〉Ωi

n we first use (4.21) to bound

(4.65) |〈Ψn,Ω
i
n〉L2(M)| ≤ C · (�in)−1/2‖Ψn‖L1(M).

Recall that the collars (Cin)ki=1 are disjoint, so using (4.17) and the or-
thogonality of principal and collar decay part on subcollars, we obtain
that for i �= 1

‖ω⊥(Ωi
n)‖L2(δ0-thick(Cn)) ≤ ‖Ωi

n‖L2(δ0-thick(Cn)) ≤ ‖Ωi
n‖L2(M\Cin)

≤ C(�in)
3

2

(with δ0 still that from (4.4)) which, combined with (4.4) and (4.65),
gives that for every i �= 1 and δ ∈ (0, δ0]

(4.66) ‖ω⊥(〈Ψn,Ω
i
n〉Ωi

n)‖L∞(δ-thin(Cn)) ≤ C�inδ
−2e−π/δ‖Ψn‖L1(M),
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again with C independent of n. On the other hand, for i = 1, a combi-
nation of (4.4) and (4.19) allows us to estimate

‖ω⊥(Ω1
n)‖L∞(δ-thin(Cn)) ≤ Cδ−2e−π/δ‖ω⊥(Ω1

n)‖L2(δ0-thick(Cn))

≤ Cδ−2e−π/δ‖ω⊥(Ω1
n)‖L∞(δ0-thick(Cn))

≤ Cδ−2e−π/δ�3/2n ,

for δ ∈ (0, δ0]. We can combine this with (4.65) to find that the collar
decay part is small:

‖ω⊥(〈Ψn,Ω
1
n〉Ω1

n)‖L∞(δ-thin(Cn))≤C�nδ
−2e−π/δ‖Ψn‖L1(M), ∀δ ∈ (0, δ0],

C independent of n, which in view of (4.64) and (4.66) means that (4.63)
is fulfilled for all n sufficiently large.

We then note that estimate (4.18) implies that also the contribution
of the Ωi

n to the principal part of Pgn(Ψn) on Cn is small if i �= 1, namely
using once more (4.65), we get

(4.67) |b0(〈Ψn,Ω
i
n〉Ωi

n)| ≤ C�in(�n)
3‖Ψn‖L1(M) ≤ C(�n)

3‖Ψn‖L1(M).

To evaluate the principal part of the dominating term 〈Ψn,Ω
1
n〉Ω1

n,
we first use (4.17) and (4.19) from Lemma 4.4, and abbreviate α :=

1/(32π5)1/2 to estimate

(4.68)

∣∣∣∣〈Ψn,Ω
1
n〉L2(M) − α�3/2n 〈Ψn, dz

2〉L2(Cn)

∣∣∣∣
≤ |〈Ψn,Ω

1
n〉L2(M\Cn)|+

∣∣∣∣〈Ψn,Ω
1
n − b0(Ω

1
n)dz

2〉L2(Cn)

∣∣∣∣
+ |b0(Ω1

n)− α�3/2n | · |〈Ψn, dz
2〉L2(Cn)|

≤ C�3/2n ‖Ψn‖L1(M),

using (A.12).
Combined with (4.19) and (4.65), estimate (4.68) implies that

(4.69)
|b0(〈Ψn,Ω

1
n〉Ω1

n)− α2�3n〈Ψn, dz
2〉L2(Cn)|

≤
∣∣∣〈Ψn,Ω

1
n〉(b0(Ω1

n)− α�3/2n )
∣∣∣

+
∣∣∣α�3/2n 〈Ψn,Ω

1
n〉 − α2�3n〈Ψn, dz

2〉L2(Cn)

∣∣∣
≤ C�−1/2n ‖Ψn‖L1(M)�

9/2
n + α�3/2n C�3/2n ‖Ψ‖L1(M)

≤ C�3n‖Ψn‖L1(M).

Since any other contribution to the principal part of PgnΨn is bounded
by (4.67) this implies that also (4.62) is fulfilled for all sufficiently large
n, leading to a contradiction to our assumption in the case �n → 0.

Next we need to deal with the easier case that �n has a positive lower
bound, independent of n, and thus the injectivity radius on (Cn, gn) has
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a positive lower bound. In this case, when we decompose Pgn(Ψn) as
in (4.59), the collar Cn will be disjoint from the k degenerating collars.
We can argue just as above in order to establish (4.64) for ω⊥(wn) and
(4.66), but this time the latter holds also for i = 1. In this simpler case,
those two estimates are already enough to establish (4.63) for sufficiently
large n, by arguing as above.

In this case that �n (and thus the injectivity radius on Cn) has a
positive lower bound, establishing (4.62) is simply a matter of estimating
the two terms on the left-hand side individually – it is not just the
difference that is controlled. To estimate b0 := b0(Pgn(Ψn), Cn), we note
that

‖b0dz2‖L2(Cn) ≤ ‖Pgn(Ψn)‖L2(Cn) ≤ C‖Pgn(Ψn)‖L1(M) ≤ C‖Ψn‖L1(M),

by (4.1) and the first part (4.54) of the proposition. But it is easy to see
that ‖dz2‖L2(Cn) has a uniform lower bound – for example, by Cauchy–
Schwarz, it can be controlled from below in terms of the (bounded) area
of (Cn, gn) and

‖dz2‖L1(Cn) = 8πX(�n) ≥ 2π3

arsinh(1)

(see (A.1) and (A.12)). Therefore, we have

(4.70) |b0| ≤ C‖b0dz2‖L2(Cn) ≤ C‖Ψn‖L1(M).

Meanwhile we can directly estimate the other term of (4.62) by∣∣∣∣ �3n
32π5

〈Ψn, dz
2〉L2(Cn)

∣∣∣∣ ≤ C�3n‖Ψn‖L1(M)‖dz2‖L∞(Cn),

and by (A.12) (and the boundedness of �n) we deduce∣∣∣∣ �3n
32π5

〈Ψn, dz
2〉L2(Cn)

∣∣∣∣ ≤ C‖Ψn‖L1(M).

Combining with (4.70), and keeping in mind the uniform positive lower
bound for �n, we deduce that (4.62) holds for sufficiently large n.

At this point, we have succeeded in proving (4.56) and (4.57), but
with the latter only required for δ ∈ (0, δ0]. To establish the same
claim for the full range δ ∈ (0, arsinh(cosh(�/2))), it suffices to observe
additionally that by (4.5) and by (4.54)

‖Pg(Ψ)− b0dz
2‖L∞(δ0-thick(C,g)) ≤ C‖Pg(Ψ)‖L1(M,g) ≤ C‖Ψ‖L1(M,g).

q.e.d.

4.3. Proof of the general formula for d�
dt , Lemma 2.2. We can

now prove Lemma 2.2 based on the formula for the projection derived
in the previous section.

In keeping with Lemma 2.2, throughout this section we assume that
M is an oriented closed surface of genus γ ≥ 2 and g(t) is a smooth
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one-parameter family of metrics inM−1 such that ∂tg|t=0 = Re(Pg(Ψ))
for some Ψ ∈ QL2(M,g(0)), and we assume that (M,g(0)) contains a
collar C around a simple closed geodesic σ of length � < 2 arsinh(1).

Remark 4.11. As t varies near 0, the locally minimising geodesic
σ will vary as a one-parameter family of simple closed geodesics σ(t)
of length �(t) with respect to g(t). This family will be continuous with
respect to (say) the C1 topology. As one would expect, given that σ is
a geodesic, we claim that

d

dt

∣∣∣∣
t=0

�(t) =
d

dt

∣∣∣∣
t=0

Lg(t)(σ).

To see this, note that for each s, the function

t �→ Lg(t)(σ(s))

is smooth, and lies above the function t �→ �(t) := Lg(t)(σ(t)) (with
equality at t = s) because σ(t) minimises the length in (M,g(t)) over
all nearby simple closed curves. But by the continuity of σ(t) in C1, we
see that

s �→ d

dt

∣∣∣∣
t=s

Lg(t)(σ(s))

is continuous, which is enough to conclude.

Proof of Lemma 2.2. At t = 0, writing gθθ = g
(

∂
∂θ ,

∂
∂θ

)
, we have

� =

ˆ
σ
g
1/2
θθ dθ = 2πg

1/2
θθ ,

i.e., gθθ =
(

�
2π

)2
. By Remark 4.11, we have at t = 0

(4.71)
d�

dt
=

d

dt
Lg(t)(σ)

=

ˆ
σ

(
1

2
[gθθ]

−1/2 ∂gθθ
∂t

)
dθ =

π

�

ˆ
σ

∂gθθ
∂t

dθ

=
π

�

ˆ
σ
Re(Pg(Ψ))

(
∂
∂θ ,

∂
∂θ

)
dθ

=
π

�

ˆ
σ
Re(b0(Pg(Ψ))dz2)

(
∂
∂θ ,

∂
∂θ

)
+Re(ω⊥(Pg(Ψ)))

(
∂
∂θ ,

∂
∂θ

)
dθ

= −2π2

�
Re(b0(Pg(Ψ))),

where we split Pg(Ψ) = b0(Pg(Ψ))dz2 + ω⊥(Pg(Ψ)) into its principal
part and its collar decay part, and notice that the latter integrates to
zero by (4.3).

Proposition 4.10 tells us that∣∣∣∣Re(b0(Pg(Ψ)))− �3

32π5
Re〈Ψ, dz2〉L2(C)

∣∣∣∣ ≤ C�3‖Ψ‖L1 ,
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so indeed, by (4.71),∣∣∣∣d�dt + �2

16π3
Re〈Ψ, dz2〉L2(C)

∣∣∣∣ ≤ C(�−1�3)‖Ψ‖L1 ≤ C�2‖Ψ‖L1 .

q.e.d.

Remark 4.12. From the proof we immediately see (as is already
well-known, e.g., [29, Theorem 3.3]) that for holomorphic quadratic
differentials Ψ, we have

(4.72)
d�

dt
= −2π2

�
Re(b0(Ψ)).

4.4. Incompleteness of Teichmüller space. In order to illustrate
the use of Lemma 2.2, we show the well-known fact (e.g., Wolpert [27])
that Teichmüller space equipped with the Weil–Petersson metric is in-
complete. Indeed, if we pick a metric g on any oriented closed surface M
of genus at least 2, with a collar C having � < 2 arsinh(1), then we may
deform it as in Lemma 2.2 taking Ψ to be dz2 on C and zero elsewhere.
In this case, the distance s(t) travelled through Teichmüller space is,
by definition (with one choice of normalisation of the Weil–Petersson
metric)

ds

dt
=

1

4
‖Pg(Ψ)‖L2(M) ≤

1

4
‖Ψ‖L2(M) =

1

4
‖dz2‖L2(C)

=

(
2π5

�3

) 1

2

(1 +O(�3)),

as a result of (A.12). Meanwhile, by Lemma 2.2, we have∣∣∣∣d�dt + �2

16π3
‖dz2‖2L2(C)

∣∣∣∣ ≤ C�2‖dz2‖L1(C),

and hence, by (A.12) ∣∣∣∣d�dt + 2π2

�

∣∣∣∣ ≤ C�.

Combining these facts, we find that

d�1/2

ds
≤ −

(
1

2π

)1/2

+O(�2),

and thus we can pinch a collar by moving a distance no more than
(2π�)1/2 + O(�5/2) in Teichmüller space. We do not claim this to be
optimal in any way; already our results would allow us to show a stronger
upper bound of (2π�)1/2+O(�7/2), but indeed it was proven by Wolpert

in [29] that �
1

2 is convex and, consequently, this distance is bounded from

above by (2π�)1/2 itself, with a lower bound of dist ≥ (2π�)1/2+O(�5/2)
established in the same paper.
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Remark that combining the (essentially explicit) upper bound (4.15)
on the principal part of any unit holomorphic quadratic differential with
(4.72) allows us to improve this lower bound to an estimate of the form

(4.73) dist ≥ (2π�)1/2
(
1− 1

84π
�3 +O(�5)

)
.

In the more general case that a collection {σi}i∈J of geodesics pinches,
i.e., in which one considers the distance to the part (or stratum) of the
boundary characterised by � :=

∑
i∈J �i = 0, the lower bound in the

estimate (2π�)1/2 + O(�5/2) ≤ dist ≤ (2π�)1/2 proven in [29] can be
improved to (4.73) by a similar argument, using additionally that the
degenerating collars are disjoint.

5. Controlling the weighted energy I

In this section, we finally prove the estimate on the full weighted
energy

I =

ˆ
C
e(u, g)ρ−2dvg,

that we claimed in Lemma 2.4. Let (u, g) be any solution of the Te-
ichmüller harmonic map flow (1.1) defined on an interval [0, T ) and let
t0 ∈ [0, T ) be such that (M,g(t0)) contains a collar Ct0 around a simple
closed geodesic σ(t0) of length �(t0) < 2 arsinh(1). As in Section 4.3,
for t close to t0, this geodesic will vary continuously through a family of
simple closed geodesics σ(t) in (M,g(t)), each of which is at the centre
of a collar Ct. Every closed subset of Ct0 will also be contained in Ct for
t sufficiently close to t0.

We may thus consider the evolution of the associated weighted ener-
gies I, or rather of a smoothed-out version of I given by

(5.1) I = I(u(t), g(t)) =
ˆ
Ct

e(u(t), g(t))ρ−2(t)ϕ2(ρ(t))dvg(t),

ϕ ∈ C∞0 ([0, 2δ), [0, 1]) a cut-off function with ϕ ≡ 1 on [0, δ] and |ϕ′| ≤
2/δ, where we require δ > 0 small enough such that 2δ ≤ ρ(X(�)) for all
� ∈ (0, 2 arsinh(1)). Indeed, by (A.4), we can fix δ = 1

2π , which relieves
any dependencies of constants on δ. Note that I and I are related in
the sense that

(5.2) 0 ≤ I − I ≤ δ−2E0,

where E0 is an upper bound on the total energy.
The main step in the proof of Lemma 2.4 is to show

Lemma 5.1. Let (u, g) be a solution of (1.1) on an oriented closed
surface M of genus at least 2, for t ∈ [0, T ), into a target N that supports
no bubbles. Then at any time t ∈ [0, T ) at which (M,g(t)) contains a
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collar C = C(�) with � < 2 arsinh(1), the corresponding weighted energy
I defined by (5.1) satisfies

(5.3)

∣∣∣∣ ddt log(1 + I)
∣∣∣∣ ≤ C

(
1 + ‖τg(u)‖2L2(M,g)

)
,

for a constant C depending only on M , N , η and an upper bound E0

on the initial energy.

Accepting this lemma for the moment, we can finally give the:

Proof of Lemma 2.4. Given (u, g) as in Lemma 2.4 and a time t0 ∈
[0, T ) such that (M,g(t0)) contains a collar around a geodesic σ(t0) of
length Lg(t0)(σ(t0)) < 2 arsinh(1) we let tmin ≥ 0 be the minimal num-
ber such that there is a continuous family of simple closed geodesics
(σ(t))t∈[tmin ,t0] in (M,g(t)), as in Section 4.3, with Lg(t)(σ(t)) <
2 arsinh(1) for all t ∈ (tmin, t0].

If tmin = 0, we can initially bound the weighted energy I in terms of
E(u(0), g(0)) ≤ E0 and �0 = Lg(0)(σ(0)) ≥ 2 injg(0) M as

I(0) ≤ (
sup
C

ρ−2
) ˆ
C
e(u, g)dvg

∣∣∣∣
t=0

≤
(
2π

�0

)2

E(u(0), g(0))

≤ C · (injg(0)M)−2,

with C = C(E0). Since the space–time integral of the squared tension is
bounded by the initial energy, by (1.2), integration of (5.3) from t = 0
to t0 gives the desired estimate

(5.4)
I(t0) ≤ exp

[
C

ˆ t0

0

(
1 + ‖τg(u)‖2L2(M,g)

)
dt

]
· (I(0) + 1)

≤ eC(t0+1) · (1 + (injg(0)M)−2),

first for I, and then, by (5.2), also for the original weighted energy I.
On the other hand, if tmin > 0 then Lg(tmin)(σ(tmin)) = 2 arsinh(1)

and thus I(tmin) ≤ CE0 so integration of (5.3) from tmin to t0 again
proves Lemma 2.4. q.e.d.

We now turn to the proof of Lemma 5.1. To begin with, we derive a
formula for the evolution of the conformal factor ρ along certain curves
of hyperbolic metrics. We recall, by (A.2), that the conformal factor ρ
on a collar C = C(�(t)) ⊂ (M,g(t)) can be characterised in a coordinate-
free way as

(5.5) ρ(p, t) =
�(t)

2π sinh(�(t)/2)
· sinh

(
injg(t)(p)

)
.

Lemma 5.2. Let (g(t))t∈[0,T ) be a smooth curve of hyperbolic metrics
on an oriented closed surface M such that

∂tg = Re(Pg(Ψ(t))) for some Ψ(t) ∈ QL2(M,g(t)),
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and assume that at some time t0 ∈ [0, T ), the surface (M,g(t0)) contains
a collar C around a geodesic of length � < 2 arsinh(1). Then ρ(p, t) =
ρ(�(t), injg(t)(p)) evolves according to

(5.6) |∂t(ρ2)(p) +Re(b0)| ≤ C · e−1/ρ(p)‖Ψ‖L1(M,g) for all p ∈ C,
at time t0, where b0dz

2 = b0(Pg(Ψ), C)dz2 is the principal part on C,
and C <∞ depends only on the genus of M .

Proof. In the lemma, the metric g0 := g(t0) is being deformed in the
direction ∂tg = Re(b0dz

2) + Re(ω⊥), where ω⊥ = ω⊥(Pg0(Ψ(t0)), C).
Heuristically, it is the first of these terms that is dominant. Indeed, if
we consider an alternative, smooth symmetric flow of hyperbolic metrics
ĝ(t) on C for t near t0, with ĝ(t0) = g0 and ∂tĝ = Re(b0dz

2) (one could
write down such a flow explicitly) then the corresponding conformal
factor ρ̂ could be written at q = (s0, θ0) ∈ C independently of the time-t
collar coordinates as

Lĝ(t)({s0} × S1) = 2πρ̂(q, t),

because of the symmetry of the deformation. In particular, we would
have at t = t0 that

(5.7)

∂t(ρ̂
2)(q) = 2ρ(s0) · 1

2π

d

dt
Lĝ(t)({s0} × S1)

=
ρ(s0)

2π

ˆ
{s0}×S1

(
(g0)θθ

)−1/2
∂tĝθθdθ

= −Re(b0).

Another way of computing the derivative of the conformal factor ρ̂, or
indeed ρ, is via (5.5). Writing F (x) = x

2π sinh(x/2) so that ρ(q, t) =

F (�(t)) sinh(injg(t)(q)), we compute at t = t0

∂tρ(q) = F ′(�)
d�

dt
sinh(injg0(q)) + F (�) cosh(injg0(q))∂t(injg(t)(q)).

In order to compute ∂t(injg(t)(q)), we note that ι := injg0(q) can be

realised as half the length of a unit speed geodesic σ : [0, 2ι] → Cι
mapping the end points to q and wrapping once around the collar, where
Cι := {p ∈ C : injg0(p) ≤ ι} is the closure of ι-thin(C, g0) when this
thin part is nonempty. More generally, for t close to t0,

injg(t)(q) =
1

2
Lg(t)(σ(t)),

for an appropriate continuous family of geodesics σ(t) in (M,g(t)) with
σ(t0) = σ and with fixed end points. Adapting the argument of Remark
4.11 gives

∂t injg(t)(q) =
1

2
∂tLg(t)(σ).
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But we can compute

∂tLg(t)(σ) =
1

2

ˆ 2ι

0
∂tg(σ̇, σ̇),

and so assembling what we have seen, we get at t = t0 that

(5.8)

∂tρ
2(q) = 2ρ(q)F ′(�)

d�

dt
sinh(injg0(q))

+
1

2
ρ(q)F (�) cosh(injg0(q))

ˆ 2ι

0
∂tg(σ̇, σ̇).

This formula equally well applies to the flow ĝ(t), and so noting that
d�
dt =

d�̂
dt at t = t0 (because the collar decay part ω⊥ does not contribute

to d�
dt ) we obtain from (5.7) that

(5.9)

−Re(b0) = 2ρ(q)F ′(�)
d�

dt
sinh(injg0(q))

+
1

2
ρ(q)F (�) cosh(injg0(q))

ˆ 2ι

0
Re(b0dz

2)(σ̇, σ̇).

This allows us to simplify (5.8) when applied to g(t), to

(5.10) ∂tρ
2(q) = −Re(b0)+

1

2
ρ(q)F (�) cosh(injg0(q))

ˆ 2ι

0
Re(ω⊥)(σ̇, σ̇),

and, in particular, by (4.57) of Proposition 4.10, we find that

(5.11)

∣∣∂tρ2(q) +Re(b0)
∣∣ ≤ Cρ(q)ι‖ω⊥‖L∞(Cι)

≤ Cρ(q)ι−1e−π/ι‖Ψ‖L1(M,g0)

≤ Ce−1/ρ(q)‖Ψ‖L1(M,g0),

as desired, because x �→ x−1e−π/x is increasing for x ∈ (0, π), and
ι ≤ πρ(q) by (A.8). q.e.d.

To apply this lemma to solutions of the Teichmüller harmonic map
flow we observe:

Remark 5.3. It is a consequence of Proposition 4.10, (A.12) and
the definition Φ(u, g) = (|us|2−|uθ|2−2i〈us, uθ〉)dz2, that the principal
part b0dz

2 of η2

4 Pg(Φ(u, g)) on a collar is given by the weighted integrals

(5.12)

Re(b0) =
�3

32π5
η2
ˆ
C
(|us|2 − |uθ|2)ρ−4dvg + r1,

Im(b0) = − �3

16π5
η2
ˆ
C
〈us, uθ〉ρ−4dvg + r2,

with error terms r1, r2 bounded by

|r1|+ |r2| ≤ C�3 · ‖Φ‖L1 ≤ C�3E0,
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C depending only on γ and η. In particular,

(5.13) |Re(b0)| ≤ C�3
ˆ
C
e(u, g)ρ−2ϕdvg + C�3 ≤ C�3(I + 1),

while

(5.14) |Im(b0)| ≤ C�3
(
(I(θ)I)1/2 + 1

)
,

contains the weighted angular energy I(θ) controlled by Lemma 3.1 (C
now also depending on E0).

We can now finally estimate the evolution of weighted energy I de-
fined in (5.1).

Proof of Lemma 5.1. Let (u, g) be a solution of (1.1) as in Lemma
5.1. The first equation of (1.1) can be written as

∂tu−Δgu = Ag(u)(∇u,∇u) ⊥ TuN,

which can then be multiplied by ρ−2ϕ2∂tu ∈ TuN (where ϕ and its
derivative will always be evaluated at ρ(p, t)) and integrated over the
collar to obtain

(5.15)

0 =

ˆ [|∂tu|2 − ∂tuΔgu
]
ρ−2ϕ2dvg

=

ˆ
|∂tu|2ρ−2ϕ2dvg +

ˆ
〈du, d(∂tuρ−2ϕ2)〉gdvg

=

ˆ
|∂tu|2ρ−2ϕ2dvg +

ˆ
〈du, ∂tdu〉gρ−2ϕ2dvg

+

ˆ
〈du, d(ρ−2)〉g∂tuϕ2dvg +

ˆ
〈du, d(ϕ2 ◦ ρ)〉∂tuρ−2dvg.

Thus

(5.16)

ˆ
|∂tu|2ρ−2ϕ2dvg +

d

dt
I(u(t), g(t))

≤ d

dε

∣∣∣∣
ε=0

I(u(t), g(t + ε))−
ˆ
〈du, d(ρ−2)〉g∂tuϕ2dvg

− 2

ˆ
ϕϕ′〈du, dρ〉g∂tuρ−2dvg,

where I(u, g) is given by (5.1). As |dρ|g = ρ−1|ρ′| ≤ ρ, see (A.5), we
can estimate

−2
ˆ

ϕϕ′〈du, dρ〉g∂tuρ−2dvg ≤ C

ˆ
|du|g|∂tu|ρ−1ϕdvg

≤ 1
2

ˆ
|∂tu|2ρ−2ϕ2dvg + CE(u, g),
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as well as

(5.17)

−
ˆ
〈du, d(ρ−2)〉g∂tuϕ2dvg ≤ 2

ˆ
|du|g|∂tu|ρ−2ϕ2dvg

≤ 1
2

ˆ
|∂tu|2ρ−2ϕ2dvg + CI.

As the energy is uniformly bounded, (5.16) thus reduces to

(5.18)
d

dt
I(u(t), g(t)) ≤ d

dε

∣∣∣∣
ε=0

I(u(t), g(t + ε)) + C(I + 1).

To estimate the first term on the right-hand side, we rewrite it in
collar coordinates (s, θ) of (Ct, g(t)), t fixed, and use that ∂tg is trace-
free (which fixes the volume form) and that gsθ = 0 at time t, to get
(5.19)

d

dε

∣∣∣∣
ε=0

I(u(t), g(t + ε))

=
1

2

ˆ
∂t
(
gssρ−2

)|us|2ϕ2dvg +

ˆ
∂t
(
gsθ

)〈us, uθ〉ρ−2ϕ2dvg

+
1

2

ˆ
∂t
(
gθθρ−2

)|uθ|2ϕ2dvg +

ˆ
|du|2gρ−2∂t(ϕ ◦ ρ)ϕdvg

=: T1 + T2 + T3 + T4.

We remark that the two integrals in

T1 =
1

2

ˆ
∂t
(
gss

)
ρ−2|us|2ϕ2dvg +

1

2

ˆ
∂t
(
ρ−2

)
gss|us|2ϕ2dvg

can be of order � · I2 and thus could not be controlled separately. Based
on the precise estimates on the evolution of ρ derived in Lemma 5.2
we shall, however, see that, up to an exponentially decaying error, the
two integrands agree, but appear with opposite signs, and thus cancel.
Indeed, writing ∂tg = Re(b0dz

2)+Re(ω⊥) as usual as the sum of its prin-
cipal and its collar decay parts and recalling that ∂t(g

ss) = −ρ−4∂tgss,
we may use Lemma 5.2, to obtain

(5.20)

|gss∂t
(
ρ−2) + ρ−2∂t(g

ss)| = | − ρ−6∂t(ρ
2)− ρ−6∂tgss|

= ρ−6|∂t(ρ2) +Re(b0) +Re(ω⊥)ss|
≤ Cρ−6e−1/ρ‖Φ(u, g)‖L1 + ρ−4|ω⊥|g.

As ω⊥ is controlled by (4.57) and as ‖Φ(u, g)‖L1 ≤ CE(u, g) ≤ C, we
can thus estimate
(5.21)

|gss∂t
(
ρ−2) + ρ−2∂t(g

ss)| ≤ Cρ−6e−1/ρ + Cρ−4 injg(p)
−2e−π/ injg(p)

≤ Cρ−6e−1/ρ,
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where the last inequality is a consequence of injg(p) ≤ πρ (see (A.8))

and the fact that x �→ x−2e−π/x is monotone near zero and ρ is bounded
from above. Consequently,

(5.22) T1 ≤ C

ˆ
ρ−6e−1/ρ|us|2ϕ2dvg ≤ CE(u, g) ≤ C.

To obtain a bound on T2 we use that ∂t(g
sθ) = −ρ−4∂tgsθ = ρ−4(Im(b0)−

(Re(ω⊥))sθ), with Im(b0) satisfying (5.14) and ω⊥ bounded by (4.57),
and estimate
(5.23)

T2 ≤ |Im(b0)| · (sup
C

ρ−2)

ˆ
|us| · |uθ|ρ−4ϕ2dvg

+ C

ˆ
|us| · |uθ|ρ−4 injg(p)−2e−π/ injg(p)ϕ2dvg

≤ C�−2|Im(b0)| · (I(θ)I)1/2 + C

ˆ
|du|2g injg(p)−4e−π/ injg(p)dvg

≤ C�
(
I(θ)I + (I(θ)I)1/2)+CE(u, g)

≤ C�I(θ)I + C,

where we used πρ ≥ injg(p) in the second estimate and Young’s inequal-
ity in the last. Similarly, combining Lemma 5.2 with (4.57) and (5.13),
we can estimate

|∂t(gθθρ−2)| = |ρ−6Re(b0)− ρ−6(Re(ω⊥))θθ − ρ−6∂t(ρ
2)|

≤ 2ρ−6|Re(b0)|+ Cρ−4 injg(p)
−2e−π/ injg(p)

+ Cρ−6e−1/ρ‖Φ(u, g)‖L1

≤ C�ρ−4(I + 1) +Cρ−2
(
injg(p)

−4e−π/ injg(p) + ρ−4e−1/ρ
)

≤ C�ρ−4(I + 1) +Cρ−2,

and, consequently, noting that I(θ) ≤ 2I ≤ 2I + C by (5.2), we have

(5.24) T3 ≤ C�(I + 1)I(θ) + CE(u, g) ≤ C�(I(θ) + 1)I + C.

Finally, we recall that ρ ≥ δ on the support of ϕ′ ◦ ρ and estimate

(5.25)
T4 =

1

2

ˆ
|du|2gρ−3ϕϕ′∂t(ρ2)dvg ≤ CE(u, g) · sup

C
|∂t(ρ2)|

≤ C · |Re(b0)|+ C ≤ C�3(I + 1) + C ≤ C,

where we applied Lemma 5.2 in the second, (5.13) in the third and

I ≤ (
2π
�

)2
E(u, g) ≤ C�−2 in the last step.

Inserting (5.22)–(5.25) into (5.19) and combining the resulting esti-
mate with (5.18) thus implies

(5.26)
d

dt
I ≤ C(�I(θ) + 1)I + C,
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which, combined with the angular energy estimate of Lemma 3.1, yields
the desired bound of

d

dt
I ≤ C(1 + ‖τg(u)‖2L2) · (1 + I).

This very last estimate is the only place we use the no bubble assump-
tion. q.e.d.

Appendix A.

We will need the following ‘Collar lemma’ throughout the paper.

Lemma A.1 (Keen–Randol [15]). Let (M,g) be a closed oriented
hyperbolic surface and let σ be a simple closed geodesic of length �. Then
there is a neighbourhood around σ, a so-called collar, which is isometric
to the cylinder

C(�) := (−X(�),X(�)) × S1

equipped with the metric ρ2(s)(ds2 + dθ2) where

ρ(s) =
�

2π cos( �s
2π )

and X(�) =
2π

�

(
π

2
− arctan

(
sinh

(
�

2

)))
.

The geodesic σ then corresponds to the circle {(0, θ) | θ ∈ S1} ⊂ C(�).
In this version of the collar lemma, the intrinsic distance w between

the two ends of the collar is related to � via

sinh
�

2
sinh

w

2
= 1,

which is sharp. In order to simplify the discussion of dependency of
constants, and ensure that different collars do not intersect, we will
only talk about collars with 0 < � < 2 arsinh(1) (cf. [18, Appendix
A.2]). As X(�) is decreasing in �, we then have

(A.1) X(�) >
π2

4 arsinh(1)
for 0 < � < 2 arsinh(1).

We recall (cf. [18, Lemma A.5]) that the injectivity radius is given
by the formula

(A.2) sinh(inj(s, θ)) · cos
(
�s

2π

)
= sinh

(
�

2

)
.

Note that at the ends of the collar we have

ρ(X(�)) = ρ(−X(�)) =
�

2π tanh �
2

∼ 1

π
for small � > 0,

and

(A.3) inj(±X(�), θ) = arsinh(cosh(
�

2
)) ∼ arsinh(1) for small � > 0.
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Within the collar, for s ∈ (−X(�),X(�)), we have

(A.4) ρ(s) ≤ ρ(X(�)) =
�

2π tanh �
2

∈
(
1

π
,

√
2 arsinh(1)

π

)
,

for � ∈ (0, 2 arsinh(1)). Moreover, we can compute

(A.5)
d

ds
log ρ(s) =

�

2π
tan

�s

2π
, so

∣∣∣∣ dds log ρ(s)
∣∣∣∣ ≤ ρ(s),

and hence for s ∈ (−X(�),X(�)) and � ∈ (0, 2 arsinh(1)) we have

(A.6)

∣∣∣∣ dds log ρ(s)
∣∣∣∣ ≤ �

2π sinh �
2

≤ 1

π
.

One consequence that we shall use several times is that for any Λ > 0
there exists C ∈ (0,∞) such that for any � ∈ (0, 2 arsinh(1)) and s0 ∈
(−X(�)+Λ,X(�)−Λ) (i.e., so that CΛ(s0) := (s0−Λ, s0+Λ)×S1 ⊂ C(�))
if such s0 exists, we have

(A.7)
1

C
ρ(s0) ≤ ρ(s) ≤ Cρ(s0),

for all s ∈ CΛ(s0).
Because Lg({s0} × S1) = 2πρ(s0) we can always bound

(A.8) injg(p0) ≤ πρ(p0).

Conversely, (A.2) implies that

ρ(p0) =
�

2π sinh( �2 )
· sinh(injg(p0)) ≤

1

π
sinh(injg(p0))

≤ 1

π
cosh(injg(X(�), θ)) injg(p0),

which, once combined with (A.3), implies that also the reverse inequality

(A.9) ρ(p0) ≤ C · injg(p0)
is valid with a universal constant, e.g., with C = 1, on collars C(�),
0 < � < 2 arsinh(1).

For δ ∈ (0, arsinh(1)), the δ-thin part of a collar is given by the
subcylinder

(A.10) (−Xδ(�),Xδ(�))× S1 ⊆ C(�),
where

(A.11) Xδ(�) =
2π

�

(
π

2
− arcsin

(
sinh( �2 )

sinh δ

))
,

for δ ≥ �/2, respectively, zero for smaller values of δ.



182 M. RUPFLIN & P. M. TOPPING

Proposition A.2. There exists universal C ∈ (0,∞) such that for
every δ ∈ (0, arsinh(1)) and 0 < � ≤ 2δ, we have

π

δ
− C ≤ X(�)−Xδ(�) ≤ π2

2δ
.

Proof. By definition of X(�) and Xδ(�), we have

X(�)−Xδ(�) =
2π

�

[
arcsin

(
sinh( �2)

sinh δ

)
− arctan

(
sinh

(
�

2

))]
.

Using convexity of arcsin : [0, 1] → [0, π2 ], we compute the required
upper bound

X(�) −Xδ(�) ≤ 2π

�
arcsin

(
sinh( �2 )

sinh δ

)
≤ 2π

�

π

2

sinh( �2 )

sinh δ
≤ π2

�

�
2

δ
=

π2

2δ
.

On the other hand, by estimating arcsin θ ≥ θ and arctan θ ≤ θ for
θ ∈ [0, 1], we have

X(�)−Xδ(�) ≥ 2π

�

[
sinh( �2 )

sinh δ
− sinh

(
�

2

)]
≥ π

[
1

sinh δ
− 1

]
.

By estimating sinh δ ≤ δ+Cδ3 for δ ∈ (0, arsinh(1)) and some universal
C, we have (sinh δ)−1 ≥ 1

δ (1−Cδ2) for some possibly different C, which
completes the lower bound. q.e.d.

We will use several times that working with respect to the hyperbolic
metric, on a collar C as above,
(A.12)

|dz2| = 2ρ−2; ‖dz2‖L1(C) = 8πX(�);

‖dz2‖L∞(C) =
8π2

�2
; ‖dz2‖2L2(C) =

32π5

�3
− 16π4

3
+O(�2),

as a short computation verifies.
To analyse sequences of degenerating hyperbolic surfaces we make re-

peated use of the differential geometric version of the Deligne–Mumford
compactness theorem.

Proposition A.3 (cf. [8, Chapter IV]). Let (M,gi, ci) be a sequence
of closed hyperbolic Riemann surfaces of genus γ ≥ 2. Then, after
selection of a subsequence, (M,gi, ci) converges to a complete hyperbolic
punctured Riemann surface (Σ, h, c), where Σ is obtained from M by
removing a collection E = {σj , j = 1, ..., k} of k ∈ {0, . . . , 3(γ − 1)}
pairwise disjoint, homotopically nontrivial, simple closed curves on M
and the convergence is as follows:

For each i there exists a collection Ei = {σj
i , j = 1, ..., k} of pairwise

disjoint simple closed geodesics on (M,gi, ci) of length �(σj
i ) =: �ji →

0 as i → ∞, and an orientation preserving diffeomorphism Fi : M →
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M mapping σj onto σj
i , such that the restriction fi = Fi|Σ : Σ →

M \ ∪k
j=1σ

j
i satisfies

(fi)
∗gi → h and (fi)

∗ci → c in C∞loc on Σ.
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