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MIN–MAX FOR PHASE TRANSITIONS AND THE
EXISTENCE OF EMBEDDED MINIMAL

HYPERSURFACES

Marco A. M. Guaraco

Abstract

Strong parallels can be drawn between the theory of minimal
hypersurfaces and the theory of phase transitions. Borrowing ideas
from the former we extend recent results on the regularity of stable
phase transition interfaces [40] to the finite Morse index case. As
an application we present a PDE-based proof of the celebrated
theorem of Almgren–Pitts, on the existence of embedded minimal
hypersurfaces in compact manifolds. We compare our results with
other min–max theories; [30, 35].

1. Introduction

In [3], Allen–Cahn introduced the semilinear parabolic equation

∂tu−Δu+
W ′(u)
ε2

= 0,(1)

as a mathematical model for the evolution of phase transition phenomena,
the function W being a double-well potential with unique global minima
at ±1. A typical example of such a non-linearity is W (u) = 1

4(1− u2)2.
From a geometrical point of view solutions to Equation (1) have a

remarkable feature: roughly speaking, as ε → 0 the level sets of u
concentrate around a hypersurface (called the limit-interface) that is
evolving in time under the action of the mean curvature flow (see, for
example, [16, 24, 29]). This suggests that for the particular case of
stationary states of (1), i.e., solutions to the semilinear elliptic equation

−εΔu+
W ′(u)

ε
= 0,(2)

the limit-interface should be a stationary point of the mean curvature
flow, i.e., a minimal hypersurface.

Beginning with the works of L. Modica [25] and P. Sternberg [37],
this idea has been made precise in a variety of situations, and in the last
decades the bridge between the theory of phase transitions and minimal
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hypersurfaces has been exploited extensively in both directions. We refer
the reader to the surveys [27, 32, 39] and the references therein.

From a variational perspective solutions to Equation (2) in a bounded
open set U ⊂ Rn, are critical points of the energy functional

Eε(u) =

∫
U
ε
|∇u|2
2

+
W (u)

ε
,

and variational properties such as stability or finite Morse index of a
solution u are defined as usual, i.e., with respect to the bilinear form
corresponding to E′′

ε (u)(·, ·), the second derivative of the energy in
H1(U).

Of special interest to us are the combined works of Hutchinson–
Tonegawa [15], Tonegawa [38] and Tonegawa–Wickramasekera [40].
Roughly speaking, they showed the following (see 3.7)

Theorem ([15, 38, 40]). Let U be a bounded open set in Rn and
uk a sequence of solutions to (2) in U , with ε = εk → 0. Assume that
supU |uk| and Eεk(uk) are bounded sequences. Then, as εk → 0, the
level sets of uk accumulate around a stationary integral varifold. If, in
addition, the solutions are stable, then the limit-interface is a stable
minimal hypersurface, smooth and embedded outside a set of Hausdorff
dimension at most n− 8.

We extend the regularity statement to the case of solutions with finite
Morse index on compact manifolds. The idea that regularity of general
critical points can be obtained from the stable case, goes back to the
work of Pitts [30] on the min–max construction of minimal hypersurfaces.
We adapt these ideas (see the technical remark at the end of this section)
to the phase transition context to obtain (see 3.8)

Theorem A. Let M be a n-dimensional closed Riemannian manifold
and uk a sequence of solutions to (2) in M , with ε = εk → 0. Assume
that their Morse indices, supM |uk| and Eεk(uk) are bounded sequences.
Then, as εk → 0, its level sets accumulate around a minimal hypersurface,
smooth and embedded outside a set of Hausdorff dimension at most n−8.

There is a natural family of solutions to which one can try to apply
this result. In fact, since the constant functions ±1 are the only global
minimizers of the energy

Eε(u) =

∫
M

ε
|∇u|2
2

+
W (u)

ε
,

we can expect to obtain other critical points by min–max methods.
After checking a Palais–Smale condition, we use an extension of the
mountain-pass theorem (see [12], Chapter 10) to show the existence of
solutions uε with Morse index at most 1. After dividing by twice the

energy constant σ =
∫ 1
−1

√
W (s)/2ds, the energies cε = Eε(uε) of these
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solutions will converge, as ε→ 0, to the area of the limit-interface given
by Theorem A. More precisely, we prove (see 5.3)

Theorem B. In every n-dimensional closed Riemannian manifold
there exists a non-trivial integral varifold V such that

(i) ‖V ‖ = 1
2σ lim inf cε;

(ii) V is stationary in M ;
(iii) Hn−8+γ(sing(V )) = 0, for every γ > 0;
(iv) reg(V ) is an embedded minimal hypersurface.

As a Corollary we obtain the celebrated

Theorem (Almgren, Pitts, Schoen–Simon). Every n-dimensional
closed Riemannian manifold contains a minimal hypersurface, smooth
and embedded outside a set of Hausdorff dimension at most n− 8.

An important step in our construction is controlling the behavior
of the energies cε as ε → 0. In order to guarantee the existence of a
limit-interface these energies cannot explode or vanish. In this respect,
we prove the following upper bound (see Section 7)

Proposition C. Let {Σt}t∈[0,1] be a sweepout given by isotopic de-
formations of the level sets of a Morse function. Then

1

2σ
lim sup cε ≤ max

t∈[0,1]
Hn−1(Σt).

A similar result can be proven for sweepouts coming from Heegaard
splittings, with essentially the same proof.

We also obtain lower bounds for lim inf cε in two different ways. First,
a standard application of the Sobolev space analogue of the isoperimetric
inequality (that goes back to De Giorgi) gives a short proof of the fact
that energies of the solution do not vanish as ε → 0 (see Section 6).
This is important because it guarantees that the limit-interface is not
trivial. Second, a sharper lower bound is obtained by constructing
discrete sweepouts of currents, with arbitrarily small fineness and mass
controlled by the energies of mountain-pass solutions to (2). In what
follows Π represents the fundamental homotopy class of one-parameter
sweepouts containing those given by level sets of Morse functions. The
relevant definitions can be found in Section 8.

Proposition D. There is a non-trivial homotopy class Π (see Propo-
sition 8.19) such that

0 < L(Π) ≤ 1

2σ
lim inf cε.

In particular, if V is the limit-interface of Theorem B, and VAP is the
stationary varifold obtained after applying Almgren–Pitt’s min–max to
the class Π (Theorem 8.6), then

‖VAP ‖ ≤ ‖V ‖.



94 M. A. M. GUARACO

When n = 3, the upper bound from Proposition C implies that the
area of the limit-interface is no bigger than the area of the surface ob-
tained by Simon–Smith’s continuous refinement of the min–max methods
(presented by Colding–De Lellis in [4]). More precisely, we have

Corollary E. If n = 3 and Vcont is the minimal surface (with multi-
plicities) obtained with the continuous min–max methods of [4], when
applied to the saturated family of sweepouts generated by isotopic defor-
mations of the level sets of a Morse function (or coming from a Heegaard
splitting), then

‖VAP ‖ ≤ ‖V ‖ ≤ ‖Vcont‖.
In some special cases (e.g., if RicM > 0, or in the absence of stable

hypersurfaces) it has been proved that a minimal hypersurface of least
area has index 1 and area ‖VAP ‖ = ‖Vcont‖ (see [19, 23, 43]). The
formula above gives us the same index bound, when n = 3, for the
minimal surface obtained by phase-transition methods.

As we explain later, the results above hold for n ≥ 3. When n = 2, a
similar construction is possible, however, as in the case of Birkhoff’s min–
max construction for geodesics, the methods we present only produce a
geodesic network, i.e., a union of geodesics with some singular vertices.
For an account on the methods for constructing embedded geodesics on
surfaces, a minimal hypersurfaces in general compact manifolds, see [22].

Theorem B is an example of a one-parameter min–max construction.
We note that our methods can be applied to families with more parame-
ters whenever they satisfy the requirements of a mountain-pass lemma
(see [12], Chapter 10). In recent years min–max constructions have been
proved to be a powerful tool in the understanding of minimal hyper-
surfaces in different context. We refer the reader to [7, 17, 19, 23, 43]
for applications to compact manifolds; [6, 26] for applications to non-
compact manifolds; [18] for applications to a free-boundary situation;
and to Marques–Neves [21, 20] for the solution of the long-standing
Willmore conjecture and the existence of infinite embedded minimal
hypersurfaces in compact manifolds with positive Ricci curvature, re-
spectively.

Finally, we briefly mention some results emphasizing the parallel be-
tween the theory of phase transitions and the earlier developed theory of
minimal hypersurfaces. Regularity results for minimal hypersurfaces were
first obtained for area minimizing currents in the solution of Plateau’s
problem by De Giorgi and Federer–Fleming. A regularity theory for
stable minimal hypersurfaces was developed by Schoen–Simon–Yau [34]
(and later by Schoen–Simon [33]), and used by Pitts to show the reg-
ularity of unstable minimal hypersurfaces in the context of Almgren’s
min–max theory of varifolds. In the same way, first regularity results
for the convergence of phase transitions were obtained by De Giorgi’s
school at Pisa in the 70’s, for energy minimizing solutions. Motivated
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by the work of Pitts, Padilla–Tonegawa [28], Hutchinson–Tonegawa
[15], Tonegawa [38] and Tonegawa–Wickramasekera [40], carried out
a program to obtain a weak convergence theory for general (unstable)
phase transitions and the regularity for the stable case. The present
work is a natural continuation of these results.

Technical remark. It is worth mentioning some technicals points con-
cerning the proofs of Theorems A and B in comparison with Pitts’
technique.

The notion of almost minimizing varifolds has a fundamental role in
the work of Pitts. It allows one to use the estimates of Schoen–Simon–
Yau [34] (and later Schoen–Simon [33]) for the construction of stable
replacements, an essential step in obtaining the regularity of the limit
varifold. In general, a min–max limit object is expected to have Morse
index at most the number of parameters used for the construction. We
believe that one of the motivations behind Pitt’s results is the observation
that finite index implies stability in small annular regions of the ambient
space (see Remark 3.3). Although this is a feature of variational nature
that holds with great generality, something like finiteness of the Morse
index is very hard to check in his context (even for particular cases, e.g.,
see [21]). The introduction of the almost minimizing property by Pitts
seems like an attempt to overcome this difficulty by proving the stability
of the limit varifold in annular regions directly from the variational
construction, without referring to any notion of index.

In the phase-transitions context the situation is slightly different. We
use a min–max lemma only in the proof of Theorem B, to guarantee the
existence of solutions of the PDE (2). The notion of Morse index for these
solutions is clear, and there are several results in the literature concerning
index bounds (see [12], Chapter 10). In particular, the stability of
the solutions in small annular regions follows from this, without the
introduction of any almost minimizing property. On the other hand, the
regularity of the stable limit-interfaces used in the proof of Theorem A,
proven by Tonegawa–Wickramasekera in [40], depends on a non-trivial
extension of the estimates of [33] due to N. Wickramasekera [42].

Organization. The content of this work is organized as follows.
In Section 2, we present some notation and review preliminaries from

the theory of varifolds and the theory of stable minimal hypersurfaces.
In Section 3, we show that the regularity results from [40], for stable

phase transition interfaces, can be extended to the finite Morse index
case.

In Section 4, using standard mountain-pass techniques for elliptic
operators, we show the existence of solutions to Equation (2) with index
at most 1.

In Section 5, we combine the results from the previous sections to show
the existence of embedded minimal hypersurfaces in compact manifolds.
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We also sketch the ideas that motivate the computations of the energy
bounds in Sections 6 and 7.

In Section 6, we prove a lower bound for the energy of mountain-
pass solutions to Equation (2), using a Sobolev space version of the
isoperimetric inequality.

In Section 7, we give upper bounds for the energy of mountain-pass
solutions to Equation (2). We show that the limit-interface has area no
bigger than the width of level sets of Morse functions. Some technical
details concerning distance functions that are used in this section are
developed in one appendix (Section 9).

In Section 8, we show that the limit-interface has area no smaller
than the minimal hypersurfaces obtained with Almgren–Pitts min–max
theory. For n = 3, we show that it has area no bigger than the surface
obtained by the continuous version of Almgren–Pitts theory from [4].

Finally, in another appendix (Section 10), we comment on the exten-
sion to general manifolds of the results from [28, 15, 38, 40].

Acknowledgments. This work is partially based on my Ph.D. thesis
at IMPA. I am grateful to my advisor, Fernando Codá Marques, for
his constant encouragement and support. I am also grateful to the
Mathematics Department of Princeton University for its hospitality. The
first drafts of this work were written there while visiting during Fall of
2014.

2. Notation and preliminaries

2.1. Notation. Along this work we will use the following notation

W a double-well potential (see 3.1).

σ the energy constant σ =
∫ 1
−1

√
W (s)/2ds.

Inj(M) the injectivity radius of M .
An(x, τ, τ ′) the annulus centered at x with radii 0 < τ < τ ′.
AN (x, r) the set {An(x, τ, τ ′) : 0 < τ < τ ′ < r}.
Br(x) the ball centered at 0 with radius r in TxM .
B(x, r) the geodesic ball centered at x with radius r.
Is(M) the set of isotopies of M .
W 1,p(M) is the Sobolev space of Lp(M) functions.

with weak derivatives also in Lp(M).
H1(M) the Sobolev space W 1,2(M).
dK(·) the distance function from a closed set K ⊂M .

2.2. The theory of varifolds. In order to study general variational
problems, Almgren introduced the notion of varifold as a generalization
of the concept of submanifolds. The theory of currents of Federer and
Fleming, available at the time, was suitable for treating minimization
problems, but for generalizing the min–max technique of Birkhoff a new
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notion was necessary. The reason for this is in part that in the theory
of currents the area functional is only lower-semicontinuous and some
cancellation of mass may occur when dealing with limits that are saddle
points.

Let U be an open subset of a Riemannian manifold Mn. We denote
by G(U) the (n − 1)-dimensional Grassmanian bundle of unoriented
hyperplanes over U .

An (n− 1)-varifold in U , or simply a varifold for the extent of this
work, is any nonnegative, finite Radon measure on G(U). The space
of varifolds is endowed with the topology of weak* convergence, so a
sequence of varifolds Vk converge to a varifold V if for every ϕ ∈ Cc(G(U))
we have ∫

ϕ(x, π)dVk(x, π) −→
∫

ϕ(x, π)dV (x, π).

We can associate a positive measure on U to any varifold V, we call
it the mass of V , and is defined by the formula∫

U
ϕ(x)d‖V ‖(x) =

∫
G(U)

ϕ(x)dV (x, π).

We also refer to ‖V ‖(U) as the mass of V in U . This measure generalizes
the area functional.

Given any (n − 1)-rectifiable set Σ ⊂ U and a Hn−1-measurable
function θ : Σ→ Z, called the multiplicity, we can associate to them a
varifold VθΣ by

VθΣ(ϕ) =

∫
Σ
ϕ(x, TxΣ)θ(x)dHn−1(x),

for any ϕ ∈ Cc(G(U)). Any varifold obtained in that way is called an
integer varifold. When θ ≡ 1 we simply write VΣ.

By using the change of variables formula we can pushforward a varifold
V in the presence of a diffeomorphism ψ : U → U ′, by defining the
varifold

ψ∗(V )(ϕ) =

∫
G(U)

φ(ψ(x), dxψ(π))|dxψ|dV (x, π),

where |dxψ| is the Jacobian of ψ at x.
Finally, we can use this pushforward to define notions of first and

second variation for varifolds with respect to vector fields in U . Given a
smooth vector field X supported in U , denote ψ(t) the associated flow
(i.e., dψ(t)/dt = X). We define the first and second variations of V with
respect to X, respectively, by

[δV ](X) =
d

dt
‖ψ(t)∗V ‖(U)

∣∣∣∣
t=0

,
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and

[δ2V ](X) =
d2

dt2
‖ψ(t)∗V ‖(U)

∣∣∣∣
t=0

.

As in the theory of smooth manifolds, we say that a varifold is stationary
if [δV ](X) = 0, for any vector field X, and we call it stable, if, in addition,
[δ2V ](X) ≥ 0.

2.3. Stable hypersurfaces. Given an orientable open set U ⊂M and
Γ ⊂M a closed subset of codimension 1, we say that Γ satisfies (SS) in
U , if Γ ∩ U is a smooth embedded hypersurface outside a closed set S,
with Hn−3(S) = 0.

The following theorem, taken from [8], is a consequence of Schoen–
Simon curvature estimates.

Theorem 2.1. Let U be an orientable open subset of a manifold and
{gk} and {Γk}, respectively, sequences of smooth metrics on U and of
hypersurfaces {Γk} satisfying (SS) in U . Assume that the metrics gk

converge smoothly to a metric g, each Γk is stable and minimal relative
to the metric gk, and supHn−1(Γk) <∞. Then there are a subsequence
of {Γk} (not relabeled), a stable stationary varifold V in U (relative to
the metric g), and a closed set S of Hausdorff dimension at most n− 8
such that

(a) V is a smooth embedded hypersurface in U \ S;
(b) Γk → V in the sense of varifolds in U ;
(c) Γk converges smoothly to V on every U ′ ⊂⊂ U \ S.
Remark 1. The smooth convergence of the subsquence {Γk} in part

(c) is understood in the following sense: take an open set U ′′ ⊂ U ′ where
the varifold V is an integer multiple N of a smooth oriented surface
Σ. Then, for k sufficiently large, Γk ∩ U ′′ is the union of N disjoint
surfaces Γk

i , i = 1, . . . , N , that are normal graphs over Σ of functions
fk
i ∈ C∞(Σ). The convergence is smooth, in the sense that, for every
l ∈ N and ε > 0, ‖fk

i ‖Cl < ε, if k is sufficiently large.

Remark 2. If 3 ≤ n ≤ 7 the closed set S from the theorem above is
empty, in particular, the limit V is an embedded smooth hypersurface.

Remark 3. We should point out that Schoen–Simon’s regularity
result actually holds when the closed set S satisfies Hn−3(S) <∞ (see
[33, 42]). However, the result as stated in [8] is enough for our purposes.

3. Convergence of phase transitions

In this section, we show that the regularity results for stable limit-
interfaces from [40], can be extended to the case of bounded Morse index
(Theorem 3.8).
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3.1. Assumptions. Let Mn be a compact Riemannian manifold, n ≥ 3,
and W ∈ C3(R). From now on we assume that we are in the following
situation:

A. W is a double-well potential : W ≥ 0, with exactly three critical
points, two of which are non-degenerated minima at ±1, with
W (±1) = 0 and W ′′(±1) > 0, and the third a local maximum
γ ∈ (−1, 1).

B. There are sequences εk → 0 and uk ∈ C3(M), such that
supk Ek(uk) <∞, supk ‖uk‖L∞(M) <∞ and uk is a critical point
of the energy functional

Ek(u) =

∫
M

εk
|∇u|2
2

+
W (u)

εk
,

i.e., it satisfies

−ε2kΔuk +W ′(uk) = 0,(3)

where Δ is the Laplace–Beltrami operator on M .

C. There existsm ∈ N, such that every uk has Morse indexm(uk) ≤ m,
i.e., the dimension of any subspace of H1(M) where the quadratic
form

E′′
k (φ, φ) =

∫
M

εk|∇φ|2 + W ′′(uk)
εk

φ2

is negative definite, is at most m.

3.2. Definition. Given an open set U ⊂ M , we say that uk ∈ C3(M)
is a stable critical point of Ek in U , if uk satisfies (3) and

d2

dt2
Ek(uk + tφ)

∣∣∣∣
t=0

= E′′
k (φ, φ) =

∫
M

εk|∇φ|2 + W ′′(uk)
εk

φ2 ≥ 0,

for every φ ∈ C1(U).

3.3. Remark. An important immediate consequence of Assumption C,
is that given any (m+1)-uple of disjoint open subsets of M , uk is a stable
critical point of Ek in at least one of them. To see this we can argue
by contradiction. If there are functions φi ∈ C1(M), i = 1, . . . ,m+ 1,
with disjoint supports and such that E′′

k (uk)(φi, φi) < 0, they generate a
(m+ 1)-dimensional subspace in which E′′

k (uk)(·, ·) is negative definite,
which contradicts m(uk) ≤ m.

3.4. The associated varifolds. Given a sequence of critical points
uk ∈ C3(M) for the functional Ek, we associate to it a sequence of
varifolds as in [15]. Recall that if Σ is a (n− 1)-rectifiable subset of M ,
VΣ denotes the varifold canonically induced by Σ.
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Set wk = Ψ ◦ uk, where Ψ(t) =
∫ t
0

√
W (s)/2ds. We define Vk, the

associated varifold to uk, by

Vk(A) =
1

σ

∫ ∞

−∞
V{wk=t}(A)dt,

for every borel set A and σ =
∫ 1
−1

√
W (s)/2ds.

Notice that by the coarea formula

‖Vk‖(A) = 1

σ

∫
A
|∇wk| = 1

σ

∫
A

√
W (s)/2 · |∇uk|,

so one may interpret Vk as a normalized averaging of the level sets
of uk.

3.5. Optimal regularity. If V = VθΣ is an integer rectifiable varifold,
reg V denotes its regular set (i.e., the points where Σ is an embed-
ded smooth hypersurface) and sing V denotes its singular set (i.e., the
complement of reg V ).

Regularity problems deal with showing that under certain circum-
stances sing V is a small set. It is not true in general that an area
minimizing varifold satisfies sing V = ∅, but one can still show that it is
a very small set. In this section, we adopt the following notation.

3.6. Definition. We say that a stationary integer rectifiable varifold
V = VθΣ has optimal regularity, if sing V has Hausdorff dimension at
most n−8 (i.e.,Hn−8+γ(sing V ) = 0, for all γ > 0). In particular, sing V
is empty if 3 ≤ n ≤ 7 and reg V is an embedded minimal hypersurface.
If, in addition, reg V is stable we will say that V is stable with optimal
regularity.

For bounded open subset of Rn, parts 1 and 2 of the following the-
orem are due to Hutchinson–Tonegawa [15] and part 3 to Tonegawa–
Wickramasekera [40]. The same statements are true in closed manifolds
(see Appendix B).

3.7. Theorem ([15, 38, 40]). Suppose that Assumptions A and B from
3.1 hold. Then, after perhaps passing to a subsequence, we have:

1) The associated varifolds Vk converge, in the varifold sense, to a
stationary integral varifold V ;

2) ‖V ‖ = 1
2σ limk→∞Ek(uk);

3) If, in addition, the uk are stable critical points of Ek on an open
set U , then V ∩ U is stable with optimal regularity.

In item (3) they assume that uk are stable solutions of (2), i.e.,
m(uk) = 0. We extend the regularity result to the bounded Morse index
case, i.e., Assumption C. This is the main result of this section and it
implies Theorem A from the introduction.
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3.8. Theorem. Suppose that Assumptions A, B and C from 3.1 hold.
Then, the varifold V from parts (1) and (2) of Theorem 3.7, has optimal
regularity.

Proof. By the remark after Definition 3.2, given any (m+ 1)-uple of
disjoint open subsets of M , each of the functions uk is stable in at least
one of them. In particular, there is a subsequence that is stable at least
in one of them and part 3 of Theorem 3.7 implies

Claim. Suppose that Assumptions A, B and C from 3.1 hold. Let V be
the varifold from parts (1) and (2) of Theorem 3.7. Then, given any
(m+ 1)-uple of disjoint open subsets of M , at least in one of them V is
stable with optimal regularity.

We expect the set suppV to have optimal regularity in all of M . As
a first step in this direction, we show regularity in small annuli centered
at an arbitrary point of M , following a similar argument as in the proof
of Proposition 2.4 from [8].

3.9. Lemma. There is a positive function r : M → R+ such that in
every annulus An ∈ AN (x, r(x)), the varifold V obtained in Corollary
3.8 is stable with optimal regularity.

Proof. We argue by contradiction. Fix x ∈ M and 0 < ρ < Inj(M),
and suppose that for every 0 < r < ρ there exists an annulus in AN (x, r)
in which V does not satisfies the conclusion of the lemma. Then by
taking r arbitrary small, we can find m+ 1 concentric, disjoint annuli
centered at x such that V does not satisfies the conclusion of the lemma
in any of them. This contradicts the claim above. q.e.d.

If n ≥ 8, Lemma 3.9 immediately implies that V has optimal regularity,
since we can hide the potentially singular point x, inside the singular
set of ‖V ‖. Then, we only need to explain why, if 3 ≤ n ≤ 7, the set
supp ‖V ‖ is also an embedded minimal hypersurface at the point x. This
can be done as in the proof of Lemma 5.2 and Step 5 of Proposition 2.8
from [8]. We present here a sketch of the proof for convenience of the
reader.

3.10. Proposition. If 3 ≤ n ≤ 7, for every x ∈ suppV , any tangent
cone to V at x is an integer multiple of a hyperplane. Furthermore, x
is in the regular set of V , in particular, suppV is a smooth embedded
minimal surface.

Proof. If ρ is small enough, the varifold V is a stable embedded
minimal hypersurface (with integer multiplicity) Σ in the punctured
normal ball B(x, ρ) \ {x}. Let Tρ : B1(x) → B(x, ρ) be the rescaled
exponential map Tρ(z) = expx(ρz).

Given a sequence ρk → 0, denote by Σk the surface T−1
ρk

(Σ). Then,
by Theorem 2.1, for any such a sequence, and every λ > 0, there is a
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subsequence {Σkn} converging to a stable minimal hypersurface in the

annulus B1−λ(x) \ Bλ(x). In particular, since ρk and λ are arbitrary,
any tangent cone to V at x, is a stable minimal hypersurface in the
punctured ball B1(x) \ {0}, and by Simons’ Theorem (see Theorem B.2
in [36]), it must be an integer multiple of a hyperplane, because n ≤ 7.

Choose ρk = 2−k. Then, given any positive constant c0, for k large
enough, there is a plane πk such that Σk ∩ (B1(x) \ B1/2(x)) is the union
of m(k) disjoint graphs of Lipschitz functions over πk, with Lipschitz
constants smaller than c0, counted with multiplicities j1(k), . . . , jm(k),
with j1 + · · ·+ jm = N .

We do not know a priori that the πk are all the same, but by comparing
it with the tangent spaces of the Lipschitz graphs, it follows that the
tilt between consecutive planes gets smaller as k grows. In particular,
in the annulus An(x, 2−k−3, 2−k) the corresponding hypersurfaces of
consecutive k’s must coincide, implying that they have the same number
of components with the same multiplicities.

Doing this inductively, we find that Σ \ {x} is the union of m disjoint
smooth embedded minimal hypersurfaces Γ1, . . . ,Γm, each homeomor-
phic to a disk minus a point and with multiplicities j1 + · · ·+ jm = N .
Each tangent cone to Γi is a hyperplane, and each Γi is a minimal
hypersurface with density 1. It follows from Allard’s regularity theorem
that each Γi is regular. Finally, since the Γi are disjoint, m > 1 would
contradict the classical maximum principle. Thus m = 1 and x is a
regular point for Σ. q.e.d.

This finishes the proof of Theorem 3.8. q.e.d.

4. Min–max for phase transitions

In this section, we apply mountain-pass methods to construct a
sequence uk ∈ C3(M) of critical points of Equation (3) satisfying
−1 ≤ u ≤ 1 and with Morse index m(uk) ≤ 1.

In what follows it will be convenient to modify the potential W outside
the set [−1, 1]. More precisely, let W ∗ ∈ C3(R) satisfy W ∗|[−1,1] =
W |[−1,1], W

∗(x) > 0 for |x| > 1 and constant on the set R \ [−2, 2].
Define the energy functional E∗ : H1(M)→ R as

(4) E∗(u) =
∫
M

|∇u|2
2

+W ∗(u).

4.1. Remark. Notice that any u that is a critical point of E∗ with −1 ≤
u ≤ 1, is also a critical point of the functional E(u) =

∫
M

|∇u|2
2 +W (u).

Also, we have omitted any reference to the parameter ε, but all the
results of this section apply to the functionals Ek defined in the last
section.

We can see right away that the functional E∗ is in a mountain-pass
type situation. In fact, as a consequence of Assumption A, and the
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definition of W ∗, the functions ±1 are the only global minimizers for
E∗ in H1(M). On the other hand, the values of E∗ are bounded away
from zero on the orthogonal complement of ±1 in H1(M), i.e., the set
of functions with zero average. More precisely:

4.2. Lemma. There is an α > 0 such that E∗(u) ≥ α > 0 for every
u ∈ H1(M) with

∫
M u = 0.

Proof. It is enough to show that there is a function u with zero average
with E∗(u) = α = inf{E∗(u) :

∫
M u = 0}. In fact, if E∗(u) = α = 0,

then u ≡ 1 or u ≡ −1, which contradicts
∫
M u = 0.

The existence of such a minimizer follows from a standard compactness
argument. Take a sequence un ∈ H1(M), with

∫
M un = 0, and such that

E∗(un)→ α. Since
∫
M un = 0, by the Poincare inequality, there is a con-

stant C > 0, such that C‖un‖L2(M) ≤ ‖∇un‖L2(M) ≤ E∗(un). In particu-

lar, un is a bounded sequence in H1(M), and by the Rellich–Kondrachov
compactness theorem, there is an u ∈ H1(M), and a subsequence
{uk} ⊂ {un} such that uk → u weakly in H1(M) and strongly in L2(M).
By the L2(M) convergence we must have

∫
M u = 0. Then E∗(u) ≥ α.

On the other hand, the functional E∗ is lower semicontinuous with
respect to the weak convergence, this implies E∗(u) ≤ limE∗(uk) = α.

q.e.d.

This fact suggest that the subspace of functions with zero average, is
a barrier for the values of the energy between the points ±1, making it
plausible to obtain a critical point by min–max arguments.

Setting for the min–max. Let ϕ be a C2-functional on a Hilbert space
X = Y ⊕ Z, with dim(Y ) = 1. In Y , identify the unit ball by BY =
{y ∈ Y : ‖y‖X ≤ 1} and the unit sphere by SY := {y ∈ Y : ‖y‖X = 1}.
They consist of a line segment and two points, respectively.

Assume that Z is a barrier for the values of ϕ between the points in
SY , i.e.,

α := inf ϕ|Z > supϕ|SY
.

Let Γ be the set of continuous paths with extrema in SY , i.e.,

Γ := {h : BY → X | h is continuous and h|SY
= IdSY

},
and c the min–max value

c := inf
h∈Γ

max
t∈[0,1]

ϕ(h(t)) ≥ α.

Denote by Kc the set of critical points with energy c, i.e.,

Kc := {x ∈ X : ϕ(x) = c, ϕ′(x) = 0}.
Remember that for x ∈ Kc its Morse index m(x) is defined to be the
index of the operator ϕ′′, i.e., the maximal dimension of a subspace of
X where ϕ′′ is negative definite.
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A sequence {hn} in Γ is called a minimizing sequence if

max
t∈[0,1]

ϕ(hn(t))→ c as n→∞.

Given a minimizing sequence {hn} we say that a sequence {xn} in X
is a min–max subsequence for {hn} if

d(xn, hn(BY ))X → 0 and ϕ(xn)→ c,

as n→∞.
Finally, we say that ϕ satisfies the Palais–Smale condition along

{hn}, if every {xn} that is a min–max sequence for {hn} and satisfies
ϕ′(xn)→ 0, as n→∞, contains a convergent subsequence.

The following min–max theorem for functionals in a Hilbert space is of
standard use in theory of semilinear elliptic partial differential equations.
Its proof, in a much more general setting, can be found in the book [12].
For our purposes it is enough to state a simplified version of Corollary
10.5 in [12] adapted to our situation.

4.3. Theorem. Let ϕ be the functional with the properties mentioned
above. If ϕ satisfies the Palais–Smale condition along a minimizing
sequence {hn} and if ϕ′′ is Fredholm on Kc, then there exists {xn}, a
min–max subsubsequence for {hn}, that converges to a critical point
x ∈ Kc with Morse index m(x) ≤ 1.

One advantage of Theorem 4.3, is that we only need to check the
Palais–Smale condition along one minimizing sequence. It is possible
to do this in the case of the functional E∗ defined in (4). For this,
and to verify the rest of its hypothesis, we rely on some well known
properties of the functional E∗ that depend solely on the fact that the
growth of the potential W ∗ is controlled. We summarize them in the
following

4.4. Proposition. Let E∗ be the energy functional defined in (4), then:

i. E∗ ∈ C2(H1(M)) with derivatives

(E∗)′(u)(v) =
∫
M
∇u · ∇v + (W ∗)′(u)v,

(E∗)′′(u)(v, w) =
∫
M
∇v · ∇w + (W ∗)′′(u)vw.

ii. E∗ satisfies the Palais–Smale condition for bounded sequences, i.e.,
if un ∈ H1(M), is a sequence such that ‖un‖H1(M) and E∗(un)
are bounded sequences, and (E∗)′(un) → 0, then it contains a
convergent subsequence.

Proof. The proof of (i) can be found on [31], Appendix B, Propositions
B.10 and B.34. To see (ii), we include here, for convenience of the reader,
a sketch of [1], Proposition 2.25.
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Since the sequence un is bounded in H1(M), by the Rellich–Kondra-
chov’s compactness theorem, there is a u ∈ H1(M) and a subsequence
{uk} ⊂ {un} such that un is converging to u, weakly in H1(M) and
strongly in L2(M).

We assert that u is a critical point of E∗. In fact,

(E∗)′(u)(v) =
∫
∇u · ∇v + (W ∗)′(u)v

= lim
n

∫
∇un∇v + (W ∗)′(un)v

= lim
n
(E∗)′(un)(v) = 0,

since un → u in L2(M) and (E∗)′(un)→ 0 by hypothesis.
This implies that (E∗)′(un)(un − u)− (E∗)′(u)(un − u)→ 0, but, on

the other hand,

(E∗)′(un)(un − u)− (E∗)′(u)(un − u)

=

∫
|∇(un − u)|2 +

[
(W ∗)′(un)− (W ∗)′(u)

]
(un − u),

and the second term on the right also goes to 0.
In particular, ∫

|∇(un − u)|2 → 0. q.e.d.

As mentioned before, in order to apply the min–max theorem we just
need one minimizing sequence such that the Palais–Smale condition holds
along it. Since the functional E∗ satisfies the Palais–Smale condition
on bounded sets of H1(M), it is enough to show that there exists a
bounded minimizing sequence.

Given any minimizing sequence {h̃n}n∈N we can obtain a bounded
sequence by truncating it between the values ±1. Define hn(t) =

min(max(h̃n(t),−1), 1), for every n ∈ N, observe that −1 ≤ hn(t) ≤ 1

and E∗(hn(t)) ≤ E∗(h̃n(t)). Then {hn}n∈N is also a minimizing sequence.
Clearly ‖hn(t)‖L2(M) and ‖∇hn(t)‖L2(M) are bounded. Hence, the im-

ages of the paths {hn}n∈N are contained in a bounded subset of H1(M)
and, by Proposition 4.4, the Palais–Smale condition is satisfied along
this sequence.

Applying Theorem 4.3 to this minimizing sequence, and by Remark
4.1, we obtain

4.5. Proposition. There exists a function u ∈ H1(M) ∩ Kc, with
−1 ≤ u ≤ 1, and Morse index m(u) ≤ 1. In particular, E(u) = c and,
by standard elliptic regularity, u ∈ C3(M) is a classical solution to
Equation (2).
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5. A minimal hypersurface as a limit-interface

In this section, we construct a minimal hypersurface as the limit-
interface of a sequence of critical points for the functionals

Eε(u) =

∫
M

ε
|∇u|2
2

+
W (u)

ε
.

The results from the last section apply to the functional Eε, for each
fixed ε > 0. In particular, if we define

(6) cε := inf
h∈Γ

max
t∈[0,1]

Eε(h(t)),

we have

5.1. Proposition. For every ε > 0, there exists uε ∈ C3(M), a crit-
ical point for Eε, with Eε(uε) = cε, −1 ≤ uε ≤ 1, and Morse index
m(uε) ≤ 1.

In order to apply Theorem 3.8 to a sequence of these uε to obtain a
non-trivial minimal hypersurface as a limit-interface, we need to verify
that the energies cε do not explode or vanish as ε → 0. We have the
following

5.2. Proposition.

0 < lim inf
ε→0

cε ≤ lim sup
ε→0

cε <∞.

The proof of Proposition 5.2 is given in Section 6 (lower bound) and
Section 7 (upper bound). Here we present a sketch of the proof to
motivate the computations done in those sections, but before that, lets
state the main theorem of this section, that correspond with Theorem B
of the introduction.

5.3. Theorem. In every n-dimensional compact manifold there exists
an integral varifold V such that

(i) ‖V ‖ = 1
2σ lim inf cε;

(ii) V is stationary in M ;
(iii) Hn−8+γ(sing(V )) = 0, for every γ > 0;
(iv) reg(V ) is an embedded minimal hypersurface.

Proof. By Proposition 5.1, to every ε > 0 we can associate a function
uε ∈ C3(M), with −1 ≤ uε ≤ 1, m(uε) ≤ 1, that is a critical point for the
functional Eε at the level Eε(uε) = cε. Any sequence {uεk}∞k=1 ⊂ {uε}ε>0

with energies converging to the value lim infε→0 cε > 0, will also have
uniformly bounded energies by Proposition 5.2. We obtain the result
after applying Theorem 3.8 to the sequence uεk . q.e.d.
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Figure 1. Isoperimetric inequality.

Figure 2. Sweepout of M .

5.4. Sketch of the proof of Proposition 5.2. To see that lim inf cε
is bounded away from zero, we use an isoperimetric inequality-type
argument. The idea is to show that every path h(t) joining ±1 passes
through a function with high energy. To see this choose t0 such that
h(t0) has zero average. On one hand, by the form of the potential W ,
the set {−a < h(t0) < a} has to be small. This implies that the set
{h(t0) ≤ −a}∪{h(t0) ≥ a} is big. On the other hand, since the function
h(t0) is bounded and has zero average, both sets will have to be big.
By the isoperimetric inequality, the level sets {h(t0) = s} are big for
s ∈ [−a, a] (Figure 1). We obtain the lower bound for the energy after
applying the coarea formula. This is done in Section 6.

To compute an upper bound for lim sup cε, we construct a path hε(t)
in H1(M) joining the constant functions ±1, with energy controlled
independently of ε.

Starting with a sweepout of M by hypersurfaces {Σt} coming from
isotopic deformations of level sets of a Morse function (Figure 2), we
choose a small tubular neighborhood Nt of Σt, and associate to it a
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Figure 3. The function h(t) associated with the slice Σt.

Figure 4. Profile of h(t) near Σt.

function hε(t) ∈ H1(M) that is +1 in one component of M \Nt and −1
on the other (Figure 3), while in the tubular neighborhood the hε(t) will
have the profile of a 1-dimensional solution to the elliptic Allen–Cahn
equation (Figure 4).

Finally, we show that the energies satisfy

Eε(hε(t))→ 2σ · Hn−1(Σt),

as ε→ 0, uniformly on t. In particular, we will have that

lim sup cε ≤ 2σ · max
t∈[0,1]

Hn−1(Σt),

which is an upper bound independent of ε. This is done in Section 7.

6. Proof of Proposition 5.2: Lower bound

In this section, we prove the lower bound in Proposition 5.2. The
proof is an adaptation of arguments from [1] which is based on a local
isoperimetric-type inequality due to De Giorgi.

De Giorgi’s Isoperimetric Inequality. The following lemma can be
interpreted as a Sobolev space version of the isoperimetric inequality. A
similar argument was used by De Giorgi in the proof of the regularity of
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solutions to elliptic PDEs. Roughly speaking, it states that functions in
H1(M) cannot have jump singularities (see [2]).

6.1. Lemma. Let u ∈ H1(M) and suppose there are numbers a < b
such that Vol({u < a}) > δ and Vol({b < u}) > δ, for some δ > 0. Then
there is a positive constant C = C(δ,M) > 0, such that

C(b− a) ≤ Vol({a ≤ u ≤ b})1/2 · ‖∇u‖L2(M).

Proof. Given a compact manifoldM , the function I : [0,Vol(M)]→ R,
defined by

I(t) = inf{Hn−1(∂Ω) : Ω ⊂M and Vol(Ω) = t},
where Ω varies among all the sets of finite perimeter, is called the
isoperimetric profile of M . It is well known that I is continuous, vanishes
on the extrema and is positive elsewhere.

Define Ωt = {u ≤ t}, then for t ∈ (a, b), we have Vol(Ωt) ∈ (δ,Vol(M)−
δ). By the continuity of I there exists a constant C = C(δ,M) > 0 such
that I(t) ≥ C for such t. The set Ωt has finite perimeter for almost every
t (see [10]) and by the coarea formula

C(b− a) ≤
∫ b

a
Hn−1(∂Ωt)dt

=

∫
{a≤u≤b}

|∇u|

≤Vol({a ≤ u ≤ b})1/2‖∇u‖L2(M). q.e.d.

By Lemma 4.2 we know that cε > 0, but a priori we have no control
over the behavior of cε as ε→ 0. In what follows, we use the isoperimetric
inequality from Lemma 6.1 to guarantee that lim inf cε does not vanish.

We argue by contradiction. Suppose lim inf cε = 0 and take a sequence
εk → 0, such that cεk → 0, as k →∞. For convenience we suppress any
reference to the parameter k along the proof.

Fixed ε > 0, choose a continuous path h : [0, 1]→ H1(M), joining ±1,
with −1 ≤ h(t) ≤ 1 and such that

maxEε(h(t)) ≤ cε + ε.

Select t such that the function u = h(t) has zero average, i.e.,
∫
M u = 0.

We assert that this function has high energy.
Fix 0 < a < 1, by the form of the potential W , there is a constant

Ca > 0, depending only on a and W , such that W (u) ≥ Ca in {−a ≤
u ≤ a}, then

CaVol({−a ≤ u ≤ a}) ≤
∫
{−a≤u≤a}

W (u) ≤ ε(cε + ε).
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It follows from the last inequality, and −1 < u < 1, that

0 =

∫
M

u dVol(M) ≤ −aVol({u < −a}) + Vol({u > a}) +C−1
a ε(cε+ε),

and

Vol(M) ≤ Vol({u < −a}) + Vol({u > a}) + C−1
a ε(cε + ε).

Combining both we obtain

Vol({u > a}) ≥ a

2
Vol(M)− C−1

a ε(cε + ε).

Hence, if ε is small enough, Vol({u > a}) ≥ a
3 Vol(M). Similarly, it can

be shown that Vol({u < −a}) ≥ a
3 Vol(M).

Finally, by Lemma 6.1, there is a constant C = C(a,M) > 0 such
that

0 < 2aC ≤ Vol({−a ≤ u ≤ a})1/2 · ‖∇u‖L2(M) ≤
√

2C−1
a (cε + ε).

This contradicts cε → 0. �

7. Proof of Proposition 5.2: Upper bound

7.1. Sweepouts coming from level sets of Morse functions. In
this section, we consider sweepouts of M by hypersurfaces, generated by
isotopic deformations of the level sets of Morse functions. More precisely,
let

Λ =

{
{Σt}t∈[0,1] : Σt = ψt(f

−1(t), 1)

}
,

where ψt and f vary on the set C∞([0, 1], Is(M)) and the set of all Morse
functions taking values in [0, 1], respectively.

Given {Σt} ∈ Λ, define

F({Σt}) = maxHn−1(Σt),

and the width of Λ as

m0(Λ) = inf F({Σt}),
where the infimum is taken among all {Σt} ∈ Λ.

In this section, we show

1

2σ
lim sup cε ≤ m0(Λ).

Roughly speaking, given any sweepout Σ′
t as mentioned, we produce

paths ht with energy controlled by F({Σ′
t}). We develop the technical

details of the sketch presented in 5.4.
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7.2. Distance functions. Let {Σt}t∈[0,1] ∈ Λ. Lets call dΣt the signed
distance function from Σt, where we choose the sign of dΣt in such a
way that, dΣt varies continuously and dΣ0 , dΣ1 are nonnegative and
nonpositive, respectively.

It is well known that dΣt ∈W 1,∞(M) and satisfies the Eikonal equa-
tion |∇dΣt | = 1. In addition, in Section 9, we show that if the map
t→ Σt is continuous in the Hausdorff distance, the functions dΣt vary
continuously in H1(M). We will make use of this fact in what fol-
lows.

7.3. One dimensional Allen–Cahn equation. Let ψ be the solution
to the 1-dimensional ODE{

ψ′(s) =
√

2W (ψ(s)),

ψ(0) = γ,

where γ ∈ (−1, 1) is the only critical point of W in this interval (see 3.1).
The following properties of ψ are easy to check and we left their proof
to the reader.

(i) ψ solves the 1-dimensional elliptic Allen–Cahn equation;
(ii) ψ : R→ (−1, 1) and is monotone increasing;
(iii) ψ(s)→ ±1, as s→ ±∞;
(iv) s W (ψ(s))→ 0, as s→ ±∞;
(v) 2σ =

∫
R
(ψ′)2/2 +W (ψ).

7.4. Functions associated to the sweepout. Using dΣt and ψ, we
can construct a path in H1(M) joining the functions ±1, with energy
concentrated in a small tubular neighborhood of every Σt. The normal
profile of this function will be a scaling of ψ, in order to fit most of the
energy inside the tubular neighborhood.

For every Σ = Σt, δ > 0 and ε > 0, define

vε,δ(Σ, x) =

{
ψ
(
dΣ(x)/ε

)
if |dΣ(x)| ≤ δ,

ψ
(
sgn dΣ · δ/ε

)
if |dΣ(x)| > δ.

For fixed δ and ε, the functions g(t)(x) = gt(x) = vε,δ(Σt, x), for t ∈
[0, 1], form a continuous curve in H1(M), since Σt is varying continuously
with respect to the Hausdorff distance (see Section 9).

Notice that for the extremal values t = 0, 1 the functions g(0) and
g(1) are not constant. Since we want to construct a path joining the
constant functions ±1, we need to attach another deformation at the
extremes. Lets do this for g(0). The construction for g(1) is analogous.

Σ0 consists of a finite number of points P and g(0) = vε,δ(P, ·) ≥ γ
by the choose of the sign of dΣ0 . For t ∈ [0, 1], define ft(x) := (1− t) +
t · vε,δ(p, x). Then ft is a continuous deformation from 1 to vε,δ(p, ·).
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Similarly, we can construct a path f̄t, joining g(1) with the constant
function −1. Combining the three, we have a continuous h : [0, 1] →
H1(M) with h(0) ≡ 1 and h(0) ≡ −1.
7.5. Controlling the energy of h. Lets see first that

(7) max
t∈[0,1]

Eε(h(t)) = max
t∈[0,1]

Eε(g(t)).

In fact, we show that the path ft constructed above, have energy
at most Eε(g(0)) (similarly, f̄t have energy controlled by Eε(g(1))).
This implies (7), since h is just the juxtaposition of the paths ft, g(t)
and f̄t.

Notice that |∇ft| ≤ |∇vε,δ(P, x)| = |∇g(0)|. Also, since dP (x) does
not change sign (it is positive in this case) the values of vε,δ are all
between [γ, 1), but the function W is strictly decreasing on this interval,
then we have W (ft(x)) ≤W (vε,δ(p, x)).

Eε(ft) =

∫
M

ε
1

2
|∇ft|2 + W (ft)

ε
dVol(x)

≤
∫
M

ε
1

2
|∇vε,δ(p, x)|2 + W (vε,δ(p, x))

ε
dVol(x)

= Eε(vε,δ(p, x)).

The path ft joins the constant function 1 with g(0), with energy along
ft at most Eε(g(0)), similarly, the energy of f̄t is at most Eε(g(1)). This
proves (7).

Then, to control the energy of h, we only need to deal with

max
t∈[0,1]

Eε(g(t)).

The energy of vε,δ(Σ, ·) is given by

Eε(vε,δ(Σ)) =

∫
M

ε

2
|∇vε,δ(Σ, x)|2 + 1

ε
W (vε,δ(Σ, x))dVol(x),

and we can estimate its value in the disjoint sets {|dΣ| > δ} and
{|dΣ| ≤ δ}.

Notice that

∇vε,δ(Σ, x) =

{
1/ε · ψ′(dΣ(x)/ε) · ∇dΣ(x) if |dΣ(x)| ≤ δ,

0 if |dΣ(x)| > δ.

The first integral is given by

(8)

∫
{|dΣ|>δ}

ε

2
|∇vε,δ(Σ, x)|2 + 1

ε
W (vε,δ(Σ, x))dVol(x) ≤

Vol(M)
1

ε

(
W (ψ(−δ/ε)) +W (ψ(δ/ε))

)
.
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To compute the second integral we use the coarea formula and
|∇dΣ| = 1.∫

{|dΣ|≤δ}
ε

2
|∇vε,δ(Σ, x)|2 + 1

ε
W (vε,δ(Σ, x))dVol(x)

=

∫ δ

−δ

1

ε

[
ψ′(s/ε)2

2
+W (ψ(s/ε))

]
· Hn−1({dΣ = s})ds

=

∫ δ/ε

−δ/ε

[
ψ′(s)2/2 +W (ψ(s))

]
· Hn−1({dΣ = εs})ds.

Remember that Σt are isotopic deformations of level sets of a Morse
function. Then, by the results from Section 9, we have that for every
η > 0, there exists a δ0 > 0 such that

(9) Hn−1({dΣt = s}) ≤ (1 + η)Hn−1(Σt),

for every |s| ≤ δ0 and every t ∈ [0, 1]. This, and (v) from 7.3, imply∫
{|dΣ|≤δ}

ε

2
|∇vε,δ(Σ, x)|2+ 1

ε
W (vε,δ(Σ, x))dVol(x) ≤ 2σ(1+ η)Hn−1(Σ),

with η → 0 as δ → 0.
Finally, observe that property (iv) from 7.3, implies that for any δ > 0

fixed, the right side of (8) vanishes as ε→ 0, independently of t.
Summarizing, we have that for every η > 0, there is ε0 such that

ε < ε0 implies that

cε ≤ 2σ(1 + η)F({Σt}).
In particular,

1

2σ
lim sup cε ≤ F({Σt}),

for {Σt} ∈ Λ arbitrary. �

8. Comparison with Almgren–Pitts min–max theory

In this section, we compare our results with Almgren–Pitts’ min–
max theory. We construct discrete sweepouts with width controlled by
lim inf cε. It follows from this that the minimal hypersurface obtained in
Theorem 5.3, has area at least the hypersurface produced by Almgren–
Pitts. This gives us a better lower bound for lim infε cε than the one
obtained in Section 7.

Notation. We follow the notation from [21, 20, 26]. The reader can
consult these references for a more detailed account on Almgren–Pitts’
methods and applications.
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I(1, k) the cell complex of I = [0, 1] whose 0-cells and
1-cells are [0], . . . , [3−k], . . . , [1− 3−k], [1] and
[0, 3−k], . . . , [1− 3−k, 1], respectively.

Ik(M) the set of k-dimensional integral currents in M .
Zn−1(M) the subspace of In−1(M) of closed currents.
F the flat seminorm on Ik(M).
M the mass seminorm on Ik(M).

8.1. Discrete setting. Given a map φ : I(1, ki)0 → Zn−1(M), its
fineness f(φ), defined as

max {M(φ(x)− φ(y) : x, y adjacent vertices in I(1, ki)0}
is a discrete counterpart of the notion of continuity.

Instead of considering continuous maps from I into Zn−1(M), Almgren–
Pitts theory is concerned with sequences of discrete maps into Zn−1(M)
with fineness tending to zero.

8.2. Homotopy notions. Given φi : I(1, ki)0 → Zn−1(M), for i = 1, 2,
we say that φ1 and φ2 are 1-homotopic in (Zn−1(M ;M), {0}), with
fineness δ, if there exist k ∈ N and a map

ψ : I(1, k)0 × I(1, k)0 → Zn−1(M),

such that

1) f(ψ) < δ;
2) ψ([i− 1], x) = φi(n(k, ki)(x)), i = 1, 2, for every x ∈ I(1, k)0;
3) ψ(x, [0]) = ψ(x, [1]) = 0 for every x ∈ I(1, k)0.

(See [21], Section 7.1, for the definition of n).

8.3. Definition. An

(1,M)− homotopy sequence of mappings into (Zn−1(M ;M), {0})
is a sequence of maps {φi}i∈N

φi : I(1, ki)0 → Zn−1(M),

such that φi is 1-homotopic to φi+1 in (Zn−1(M ;M), {0}) with fineness
δi and

(i) limi→∞ δi = 0;
(ii) sup{M(φi(x)) : x ∈ dmn(φi) and i ∈ N} <∞.

There is also a notion of homotopy between two (1,M)-homotopy
sequences of mappings into (Zn−1(M ;M), {0}).

8.4. Definition. We say that S1 = {φ1
i }i∈N is homotopic with S2 =

{φ2
i }i∈N if φ1

i is 1-homotopic to φ2
i with fineness δi and limi→∞ δi = 0.
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This defines an equivalence relation on the set of (1,M)-homotopy
sequences of mappings into (Zn−1(M ;M), {0}). An equivalence class
is called a (1,M)-homotopy class of mappings into (Zn−1(M ;M), {0}).
We denote π#

1 (Zn−1(M ;M), {0}) for the set of homotopy classes.

8.5. Width. Let Π ∈ π#
1 (Zn−1(M ;M), {0}) be a homotopy class and

S = {φi}i∈N ∈ Π. We define

(10) L(S) = lim sup
i→∞

max{M(φi(x)) : x ∈ dmn(φi)}.

The width of Π is the minimum L(S) among all S ∈ Π,

(11) L(Π) = inf{L(S) : S ∈ Π}.
Finally, we present the min–max theorem from Almgren–Pitts (see

[30, 21, 20, 26]).

8.6. Theorem. If Π ∈ π#
1 (Zn−1(M ;M), {0}) is a non-trivial homotopy

class, then L(Π) > 0 and there exists an integral varifold V such that

(i) ‖V ‖(M) = L(Π);
(ii) V is stationary in M ;
(iii) Hn−8+γ(sing(V )) = 0, for every γ > 0;
(iv) reg(V ) is an embedded minimal hypersurface.

8.7. Almgren’s Isomorphism. To use the min–max theorem below
we need to produce a non-trivial homotopy class. In his Ph.D. thesis,
Almgren constructed an isomorphism

F#
M : π#

1 (Zn−1(M ;M), {0})→ Hn(M).

Besides being one of the original motivation for applying min–max

techniques on the set π#
1 (Zn−1(M ;M), {0}), this isomorphism serve also

as a tool for showing that certain homotopy classes are non-trivial.
Formally, the isomorphism is constructed in the following way. Given

φ : I(1, k)0 → Zn−1(M),

select Aj ∈ In(M) with least mass, such that ∂Aj = φ([(j + 1)3−k])−
φ([j3−k]). Then

F#
M (φ) =

[ 3k−1∑
j=0

Aj

]
.

Since φ([0]) = φ([1]) = 0, the boundary of the sum above is zero, in

particular, F#
M (φ) is an element of Zn−1(M).

Of course, as it is, the map we just described is not well defined. First,
the Aj ’s mentioned above might not exist nor be unique. Second, we

want to define F#
M for elements in π#

1 (Zn−1(M ;M), {0}), which classes
are represented by sequences of discrete functions, rather than by just
one φ. The following results of Almgren show that all this is possible
(compare with Lemma 3.2 from [20]).
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8.8. Lemma. There are constants νM > 0 and ρM ≥ 1, such that if
S, T ∈ Zn−1(M), and F(S, T ) ≤ νM , then there is a unique (isoperimet-
ric) choice Aj ∈ In(M) such that

∂Aj = S − T and M(Aj) ≤ ρMF(S, T ).
This shows that F#

M (φ) is well defined. The work of Almgren also
shows that if

φi : I(1, k)0 → Zn−1(M) for i = 1, 2

are homotopic in the discrete sense with fineness in the flat topology less

than νM , we have F#
M (φ1) = F#

M (φ2). Then, for Π ∈ π#
1 (Zn−1(M ;M),

{0}) we can define F#
M (Π) by taking any representant {φi}i∈N ∈ Π and

defining

F#
M (Π) = F#

M (φi),

for any φi with fineness f(φi) < νM .

8.9. A non-trivial homotopy class. In what follows we show that
there is a non-trivial homotopy class Π with width controlled by the
min–max energy cε (Proposition 8.19). Roughly speaking,

L(Π) ≤ 1

2σ
lim inf cε.

We do this in the following way. Let ht be a continuous path in H1(M)
joining the constant functions ±1. First, we choose a finite number of
level sets Σi = h−1

ti
(si), for some si ∈ (−1, 1). Each Σi is selected in

such a way that its area is controlled by the energy of hi. Also, we are
able to make Σi and Σi+1 arbitrarily close with respect to the flat norm,
depending on ε. This is done in Proposition 8.13.

To obtain a class in π#
1 (Zn−1(M ;M), {0}) we need to produce se-

quences that are also fine in the mass norm. This can be done by a result
from [30], that state that closeness in the flat norm F(Σi,Σi+1) implies
the existence of discrete deformations between Σi and Σi+1, without
increasing the mass and arbitrarily fine in the mass norm. This is the
content of Proposition 8.15.

Finally, to see that the sequence obtained belongs to a non-trivial
homotopy class we show that its image by Almgren’s isomorphism is not
trivial.

Technical lemmas. The following two lemmas are important conse-
quences of the uniform bound on the energies cε and the continuity of
the paths ht ∈ H1(M). The proof of the second lemma is an adaptation
of some arguments from [1].

8.10. Lemma. Let 0 < δ < 1. Given ε > 0, let ht ∈ Γ(M), such that
Eε(ht) ≤ cε + ε, for all t ∈ [0, 1], then
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Vol({|ht| ≤ 1− δ}) ≤ C−1
δ ε(cε + ε),

where

Cδ = minW |{|x|<1−δ} > 0

is a constant depending only on δ.

Proof. By the form of the potential Cδ is a positive constant. Inte-
grating W ◦ ht on the set {|ht| ≤ 1− δ} we get

Cδ ·Vol({|ht| ≤ 1− δ}) ≤
∫
M

W (ht(x))dVolx ≤ ε(cε + ε). q.e.d.

8.11. Lemma. Let 0 < δ < 1 and α ∈ (−1 + δ, 1− δ). Given ε > 0, let
ht ∈ Γ(M), with Eε(ht) ≤ cε + ε, for all t ∈ [0, 1]. Define

Ωt = {x ∈M : ht(x) > α},
then there exists ρ > 0 such that

Vol(Ωt \ Ωs) ≤ 2Cδ
−1ε(cε + ε),

whenever |s − t| ≤ ρ, where Cδ is the constant from Lemma 8.10, de-
pending only on δ.

Proof. We argue by contradiction. Suppose there exists ε > 0 such
that for all ρ > 0, there are t = t(ρ) and s = s(ρ) satisfying |s− t| < ρ
and

Vol(Ωt \ Ωs) > 2C−1
δ ε(cε + ε).

Since α ∈ (−1 + δ, 1− δ) and

Ωt \ Ωs ⊂ Ωt ∩
({|hs| ≤ 1− δ} ∪ {hs < −1 + δ}),

by Lemma 8.10,

(12) Vol(Ωt ∩ {hs < −1 + δ}) ≥ C−1
δ ε(cε + ε).

Notice that

Ωt ∩ {hs < −1 + δ} ⊂ Xs,t = {x ∈M : |ht(x)− hs(x)| ≥ α+ 1− δ},
then (12) implies

(13) Vol(Xs,t) ≥ C−1
δ ε(cε + ε),

for s and t arbitrarily close.
This contradicts the continuity of t �→ ht in H1(M) since

(α+ 1− δ)2Vol(Xs,t) =

∫
Xs,t

|ht(x)− hs(x)|2 ≤ ‖ht − hs‖2H1(M).

q.e.d.

8.12. Construction of the non-trivial homotopy class. Define

Ψ(t) =
∫ t
s0

√
W (t)/2, where s0 is chosen so that Ψ(±1) = ±σ/2. Given

h ∈ Γ(M) we define h̃ = Ψ ◦ h. This is a normalized version of h, with
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values on the interval [−σ/2, σ/2]. Since Ψ is strictly increasing, both
functions have the same level sets.

Now we are ready to prove the following

8.13. Proposition. Given ρ̃ > 0 and 0 < δ̃ < σ/2, if ε is small enough,
there exist k > 0 and a discrete sweepout

φ : I(1, k)0 → Zn−1(M),

such that

1) φ([0]) = φ([1]) = 0;
2) F(φ(aj), φ(aj+1)) ≤ ρ̃, for all j = 0, . . . , 3k − 1, and aj = [j3−k];

3) F#
M (φ) �= 0;

4) M(φ(aj)) < (cε + ε)/4δ̃.

Proof. Given ε > 0, let ht ∈ Γ(M), with Eε(ht) < cε + ε, for all

t ∈ [0, 1]. For every t ∈ [0, 1], choose s̃(t) ∈ [−δ̃, δ̃] such that {h̃t > s̃(t)}
is a set of finite perimeter and Σ̃t = ∂{h̃t > s(t)} satisfies

2δ̃ · Hn−1(Σ̃t) ≤
∫ δ̃

−δ̃
Hn−1(∂{h̃t > s})ds ≤

∫
M
|∇h̃t|.

It follows from the definition of h̃, that

|∇h̃t| = |∇ht|
√
W (ht)/2 ≤ 1

2

(
ε
|∇ht|2

2
+

W (ht)

ε

)
.

In particular,

(14) Hn−1(Σ̃t) < (cε + ε)/4δ̃.

Notice that by the way h̃ was constructed, there are δ > 0 (depending

only on δ̃) and s(t) ∈ (−1 + δ, 1− δ), such that Σ̃t = ∂{ht > s(t)}. Let
ρ > 0 be the constant given by Lemma 8.11, and take k ∈ N such that

3−k < ρ. We assert that φ([j3−k]) = Σ̃j3−k is the discrete sweepout we
want.

(1) and (4) follows from h0 ≡ −1, h1 ≡ 1 and (14), respectively. To
see (2), choose α ∈ (−1 + δ, 1 − δ) so that Ωt = {ht > α} is a set
of finite perimeter, for all t ∈ Q, and define Σj3−k = ∂Ωj3−k , for all

j = 0, 1, . . . , 3k.
As currents,

Σt − Σs = ∂A(s, t), and

Σ̃j3−k − Σj3−k = ∂Bj ,

where A(s, t) = Ωt − Ωs and Bj = {hj3−k > s(j3−k)} − Ωj3−k .
Also, for open sets U and V considered as currents, we have supp(U −

V ) ⊂ (U \ V ) ∪ (V \ U). Then, from Lemmas 8.11 and 8.10 it follows

F(Σj3−k ,Σ(j+1)3−k) ≤ 4C−1
δ ε(cε + ε), for j = 0, 1, · · · , 3k − 1, and
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F(Σ̃j3−k ,Σj3−k) ≤ C−1
δ ε(cε + ε), for all j = 0, 1, · · · , 3k.

Then
F(Σ̃j3−k , Σ̃(j+1)3−k) ≤ 6C−1

δ ε(cε + ε),

for all j = 0, 1, · · · , 3k − 1 and (2) follows choosing ε sufficiently small.
Finally, to see (3) define Cj = B(j+1)3−k +A((j+1)3−k, j3−k)−Bj3−k .

Notice that if ε is small enough, Lemma 8.8 implies, that Cj is the only

(small) current satisfying Σ̃(j+1)3−k − Σ̃j3−k = ∂Cj . Then F#
M (φ) is well

defined by the formula

F#
M (φ) =

[ 3k−1∑
j=0

Cj

]
=

[ 3k−1∑
j=0

Aj

]
=

[
Ω1

]− [∅] = [
M

]
. q.e.d.

Proposition 8.13 provides a discrete map of currents, arbitrarily fine
in the flat norm, with controlled mass and non-trivial image under
Almgren’s isomorphism. However, to apply Almgren–Pitts min–max
technique, we need to produce discrete maps that are fine in the mass
norm. This is the discrete analogue of a situation that is common
on recent applications of the min–max technique, in which sweepouts
continuous with respect to the flat norm arise naturally (see [21, 20, 23]).

Unfortunately, an important technical difficulty appears when trying to
pass from the flat to the mass, due to the phenomenon of concentration of
mass. The problem is that a limit of currents can be quite different from
a limit of varifolds, i.e., if Si → S is a sequence of currents converging in
the flat norm, such that the induced varifolds |Si| → V are converging
in the weak topology, it is not true in general that |S| = V .

In [21, 20], the notion of sweepouts with no concentration of mass was
introduced to deal with this problem in the multiparameter min–max.
Our situation is different for two reasons. On one hand, we are dealing
with discrete maps rather than continuous sweepouts, and, on the other
hand, we are only interested in the 1-parameter min–max. The results
we need follow almost immediately from the work of Pitts [30].

Concerning the general case, in a recent work [43], Xin Zhou showed
that, in fact, it is not necessary to assume the no concentration of mass
condition.

8.14. Technical Lemma: No concentration of mass. Lemma 3.7
from [30] allow us to rule out the case of concentration of mass, we state
it here adapted to our context.

Let T, T1, T2, . . . be elements in Zn−1(M) and V ∈ Vn−1(M), such
that

1) Ti → T in the flat norm, and
2) |Ti| → V as varifolds.

Then, for every δ > 0, there exists a sequence S1, S2, . . . in Zn−1(M)
such that
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1) Si → T in the flat norm, and
2) |Si| → |T | as varifolds,

and for every i ∈ N, there is a finite sequence R0, . . . , Rm ∈ Zn−1(M),
such that

• R0 = Ti and Rm = Si,
• M(Rj) ≤M(Ti) + δ, j = 1, 2, . . . ,m,
• supj M(Rj −Rj−1) ≤ δ.

8.15. From the flat norm to the mass norm. Lemma 3.8 from [30]
states that currents close enough in the flat norm can be deformed one
into another by means of a finite sequence of deformations arbitrarily
fine in the mass norm. We state it here adapted to our context with some
modifications from [21], Lemma 13.4. Define BF

s (T ) = {S̃ ∈ Zn−1(M) :

F(T, S̃) ≤ s}.
8.16. Lemma. Given T ∈ Zn−1(M), δ > 0 and L > 0, there exists
ν = ν(T, δ, L) > 0 for which the following holds: Given 0 < s < ν and

S ∈ BF
s (T ) ∪ {S̃ ∈ Zn−1(M) : M(S̃) ≤ L} then, for some k ∈ N, there

exists

φ : I(1, k)0 → BF
s (T ),

with

1) φ([0]) = S and φ([1]) = T ,
2) f(φ) ≤ δ,
3) supM(φ) ≤ L+ δ.

Proof. Parts (1)–(3) follow from 8.14 exactly as in [30], Lemma 3.8.
That φ([x]) ∈ BF

s (T ), for x ∈ I(1, k)0, follows from the observation
made just before formula (73) in the proof of Lemma 13.4 in [21]. q.e.d.

The fact that φ ∈ BF
s (T ) is essential to guarantee that the image of

the map by Almgren’s isomorphism remains the same after refining it
in the mass norm. In fact, notice that choosing s in Lemma 8.16 small
enough, there exist Q,Q1, . . . , Qk, unique elements of In(M), given by
Lemma 8.8, and satisfying

• ∂Q = T − S,
• ∂Qi = φ([i · 3k])− φ([(i− 1) · 3k]), for all i = 1, . . . , k.

If s is small enough, we can also guarantee that Q = Q1 + · · ·+Qk.

In fact, let Q̃i ∈ In(M) be the unique isoperimetric choice such that

∂Q̃i = φ([i · 3k]) − S. By definition Q̃1 = Q1. We also have that
∂(Q1 + Q2) = φ([2 · 3k]) − S, but M(Q1 + Q2) ≤ 2s, and if s is small

enough Lemma 8.8 gives us Q1 +Q2 = Q̃2. Proceeding inductively and

noticing that Q̃k = Q we conclude that

Q = Q1 + · · ·+Qk.
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Covering the space of bounded cycles with finite balls of this type

BF
si(Ti) ∪ {S̃ ∈ Zn−1(M) : M(S̃) ≤ L},

and arguing as in Lemma 3.8 of [30], we conclude

8.17. Lemma. Fix L > 0 and δ > 0. There exists ν = ν(L, δ) > 0

such that if S, T ∈ Zn−1(M) ∪ {S̃ ∈ Zn−1(M) : M(S̃) ≤ L} satisfy
F(S, T ) < ν there exists k ∈ N and

φ : I(1, k)0 → Zn−1(M),

with

1) φ([0]) = S and φ([1]) = T ,
2) f(φ) ≤ δ,
3) supM(φ) ≤ L+ δ.

Additionally if Q,Q1, . . . , Qk, are the unique elements of In(M), given
by Lemma 8.8, and satisfying

• ∂Q = T − S,
• ∂Qi = φ([i · 3k])− φ([(i− 1) · 3k]), for all i ∈ N.

we have that Q = Q1 + · · ·+Qk.

Combining the results from this section we obtain

8.18. Corollary. Given δ̃ < σ/2 and δ > 0, if ε is small enough, there

is a non-trivial homotopy class Π ∈ π#
1 (Zn−1(M ;M), {0}) such that

0 < L(Π) ≤ (cε + ε)/4δ̃ + δ.

Proof. From Proposition 8.13, for ε small enough, we can find a map
φ : I(1, k)0 → Zn−1(M) with

supM(φ) ≤ (cε + ε)/4δ̃ and F(φ(aj), φ(aj+1)) ≤ ρ̃,

for all j = 0, . . . , 3k − 1, where aj = [j3−k] and ρ̃ small if ε is small
enough.

Define φ̃ : I(1, k̃)0 → Zn−1(M), as the refinement of φ given by
applying Lemma 8.17 to every pair of adjacent vertices of I(1, k)0, with

supM(φ̃) ≤ (cε + ε)/4δ̃ + δ and f(φ̃) < δ. Choosing δ arbitrarily small

there exists Φ, the Almgren’s extension of φ̃ (see Theorem 3.10 of [20]).
By the arguments in 8.7 and the last part of Lemma 8.17, we must have

FM (Φ) = F#
M (φ̃) = F#

M (φ).

Then, FM (Φ) = [M ] by Proposition 8.13. q.e.d.

Now we are ready to prove Proposition D from the Introduction
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8.19. Proposition. There is a non-trivial class Π such that

0 < L(Π) ≤ 1

2σ
lim inf cε.

In particular, if V is the limit-interface of Theorem 5.3, and VAP is the
stationary varifold obtained after applying Almgren–Pitt’s min–max to
the class Π (Theorem 8.6), then

‖VAP ‖ ≤ ‖V ‖.
Proof. For δ̃ < σ/2 fixed, Corollary 8.18 holds for every δ and ε

small enough, in particular, for the class Π = (F#
M )−1([M ]), we have

L(Π) ≤ 1
4δ̃

lim inf cε, and taking the limit as δ̃ → σ/2,

L(Π) ≤ 1

2σ
lim inf cε. q.e.d.

8.20. Comparison with Almgren–Pitts’ min–max theory. In [4],
a continuous refinement of the Almgren–Pitts min–max theory, due to
Simon–Smith, is presented for n = 3. In this context the min–max
procedure is applied to sweepouts of M by surfaces, coming from isotopic
deformation of level sets of Morse functions.

We considered sweepouts of this kind in Section 7. The results we
presented, imply that 1

2σ lim sup cε is at most the area of the surface
obtained in [4]. Combining this with the results from this section obtain
Corollary E of the Introduction, i.e., for n = 3,

‖VAP ‖ ≤ ‖V ‖ ≤ ‖Vcont‖,
where VAP , V and Vcont, are the varifolds obtained applying the Almgren–
Pitts Theorem 8.6 (to the class Π of Proposition 8.19), the phase tran-
sitions Theorem 5.3 and the continuous version of Almgren–Pitts from
[4] (to the saturated family generated by the level sets of a Morse
function), respectively. Then, in some sense, our phase-transitions con-
struction of minimal surfaces, lies in between the original construction of
Almgren–Pitts [30] and the continuous refinement presented in Colding–
De Lellis [4].

When n > 3, a similar refinement of the work of Almgren–Pitts is
presented by De Lellis–Tasnady [8]. Nonetheless, the sweepouts they
considered have much more singularities than the ones in [4]. This
flexibility is essential to obtain the regularity results. The methods from
Section 7 cannot be applied directly to these general class of sweepouts,
so in this case we only have the inequality

‖VAP ‖ ≤ ‖V ‖.
Nonetheless, notice that in Section 7, we use the fact that the sweep-

out comes from the level sets of Morse functions, only to obtain the
uniform inequality (9) in the last part of the argument. The rest of the
construction relies solely on the fact that the slices of the sweepout vary
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continuously with respect to the Hausdorff distance. We believe that
the Morse function condition can be removed.

9. Appendix A: Distance functions

In the first part of this section we prove some regularity properties
of the distance function dK from a compact set K. We are specially
interested in the behavior of dK when the set K is moving continuously
with respect to the Hausdorff distance.

In the rest of the section we indicate how to obtain some estimates
for the area of hypersurfaces parallel to a given one. Our objective is to
show that the area of hypersurfaces parallel to the slices of a sweepout,
can be chosen arbitrary close to the area of the slices in a uniform way
along the sweepout.

Regularity of the distance function. Let M be a compact Riemann-
ian manifold and K a non-empty compact subset of M . Define

dK(x) := d(x,K) := inf{d(x, y) : y ∈ K},
where d is the distance on M .

Also, given K1 and K2, compacts subsets of M , we define the Haus-
dorff distance by

dH(K1,K2) := max{max
x∈K1

d(x,K2),max
x∈K2

d(x,K1)}.
It is well known that dH is a metric on the set of all non-empty compact
subsets of M .

Of course, dK is never a smooth function in M . Nonetheless it
possesses some regularity properties that can be useful for applications.
The first of the propositions below is a well known fact, but we present
its proof since some parts of it are needed in the proof of the second
proposition.

9.1. Proposition. The function dK is differentiable almost everywhere
on M and satisfies the Eikonal equation ‖∇dK‖ = 1.

9.2. Proposition. If {Kn}n is a sequence of non-empty compact subsets
of M , converging in the Hausdorff distance to a compact set K, then,
for every 1 ≤ p <∞, the functions dKn converge to dK , in W 1,p(M), as
n→∞.

Proof of Proposition 9.1. By the triangle inequality we have dK(x) ≤
dK(y) + d(x, y), this implies that |dK(x)− dK(y)| ≤ d(x, y), so dK is a
Lipschitz function (on M with the metric d, but also in any chart as a
function of Rn). By Rademacher’s theorem it is differentiable almost
everywhere, and, in fact, dK ∈W 1,∞(M) with ‖∇dK‖ ≤ 1.

It is left to see that ‖∇dK‖ = 1, a.e. For any x ∈M , there is at least
one minimizing geodesic γ : [0, dk(x)]→M joining x and K. We prove
the following about the points where dK is regular.
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Claim. If x is a regular point for dK , the geodesic γ mentioned in the
last paragraph, is unique.

If γ : [0, dk(x)]→ M is a minimizing geodesic joining x and y, then
dK(γ(s)) = dK(x) − s for every s ∈ [0, dK(x)], otherwise we would be
able to find a shorter path joining x to K, contradicting the minimality
of γ. In particular,

∇dK(x) · γ′(0) = (d/ds)dK(γ(s))
∣∣
s=0

= −1,
since we already know that ‖∇dK(x)‖ ≤ 1 and ‖γ′(0)‖ = 1, this can
only happen if ∇dK(x) = −γ′(0). In particular, for almost every x
we have ‖∇dK(x)‖ = 1, and γ is unique, proving the claim and the
proposition. �

Proof of Proposition 9.2. By the triangle inequality we have d(x,K) ≤
d(x,Kn) + dH(Kn,K). Interchanging the roles of Kn and K, we obtain

sup |d(x,K)− d(x,Kn)| ≤ dH(Kn,K).

In particular, d(x,Kn) → d(x,K) in L∞(M) (and also in Lp(M), for
1 ≤ p <∞, since M is compact).

To see that∇dKn converge to∇dK in Lp(M), i.e., ‖∇dKn−∇dK‖ → 0
in Lp(M), for 1 ≤ p < ∞, observe that since we are in a compact
manifold, and the norms ‖∇dKn‖ and ‖∇dK‖ are bounded by 1, point-
wise convergence a.e. will imply Lp-convergence, by the Lp-Lebesgue
dominated convergence theorem. Then it is enough to proof that
∇dKn → ∇dK a.e.

Proposition 9.1 implies that, for almost every x ∈ M , the function
d(·,Kn) is differentiable in x, ∀n ∈ N. By the Claim above, for such an
x, and for every n ∈ N there is a unique geodesic γn : [0, dKn(x)]→M
realizing the distance from x to Kn. Lets call γ the geodesic associated
in the same way to the limit set K.

We must have that γn → γ, as n→∞. If not there would be another
geodesic realizing the distance from x to K, contradicting the uniqueness
of γ. This implies that γ′n(0)→ γ′(0). �

9.3. Parallel hypersurfaces. Let M be a complete n-dimensional
Riemannian manifold, and ν : N → M an isometric embedding of a
closed (n − 1)-dimensional orientable manifold N . Let n : N → TM
denote a choice of a normal vector field over N , i.e., n(x) ∈ TMν(x) and
n(x) ⊥ TNν(x) ⊂ TMν(x).

For such an n we associate a normal exponential map expn : N ×R→
M given by expn(x, t) = expν(x)(tn(x)). Then t → expn(x, t) is the

geodesic emanating from ν(x) with velocity n(x).
We are interested in estimating by above the size of the level sets

{dν(N) = δ}, where dν(N) is a signed distance function to ν(N), positive
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in the direction of n. Note that {dν(N) = δ} ⊂ expn(N × {δ}), so it is
enough to give an upper bound for the area∫

N
| Jacx(expn)(x, δ)|dVolN(x),

where Jacx(expn)(x, δ) denotes the Jacobian determinant of the map
expn(·, δ) : N →M that sends x→ expn(x, δ).

It is possible to give such estimates in terms of curvature bounds for
M and N . From now on we will assume that there are constants k ≥ 0
and λ ≥ 0, such that

−k < Kmin ≤ Kmax < k,

and
|〈Sn(x)(v), v〉| ≤ λ〈v, v〉,

where Kmin and Kmax are the minimum and maximum of the sectional
curvatures of 2-planes in M , respectively, and Sn(x) is the shape operator
of the surface N at x, associated to the normal vector n(x).

The volume element of the map expn(x, t) is controlled by the norm
of Jacobi vector fields along the geodesic expx (tn(x)). The classical
Rauch comparison theorem can be extended to this setting with some
modifications. In this case the Jacobi vector fields along the normal
geodesic that one should consider does not vanish at initial time, as a
consequence, its growth is not only controlled by the ambient sectional
curvatures Kmin and Kmax, but also by the initial conditions imposed
by the shape operator Sn(x) (see [13, 41]). The following proposition is
an easy consequence of Corollary 4.2 and Theorem 4.3 from [41].

9.4. Proposition. Let k, λ be as above. Define t0 to be the smallest
positive solution s of cot(

√
ks) = λ/

√
k. Then

| Jacx(expn)(x, t)| ≤ 1 + C|t|+ o(|t|2),
for t ∈ [−t0, t0], where C and o(|t|2) depend only on λ, k and n.

Then by the area formula we obtain

9.5. Corollary. Let k, λ be as above. There exists δ0 > 0, depending
only on k and λ such that

Hn−1({dν(N) = δ}) ≤ (1 + C|δ|)Hn−1(N),

for every δ ≤ |δ0|, where C depends only on λ, k and n.

9.6. Hypersurfaces parallel to level sets near a nondegenerate
critical point. In this section, we are interested in estimating the area
of parallel hypersurfaces to level sets of functions of the type

f(x) = −(x21 + · · ·+ x2k) + (x2k+1 + · · ·+ x2n),

for some 1 ≤ k ≤ n− 1 and x = (x1, . . . , xn) ∈ Rn. In this situation we
cannot apply the results from the last section since the hypersurfaces
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{f(x) = s} does not have bounded shape operator as s→ 0. However,
in this case the geometry is quite restricted and we can compute explicit
upper bounds for the areas of these sets.

More precisely, for s > 0 let Σs = f−1(s) ∩Bn(1). After choosing a
normal direction n(x) at each point x ∈ Σs (lets say the one given by
|∇f |) the image of the normal exponential map expn(x, δ) = expx(δn(x))
contains the set {dΣs = δ}, where dΣs is a signed distant function to Σs.
Notice that in our situation there are two choices for such a function
corresponding to the two possible choices of unitary normal vector fields
on Σs. In particular, the area of {dΣs = δ} is less than or equal than
the area of expn(x, δ)|Σs as a map.

Fix a ball BR around the origin with radius R > 0. It is possible to
show that there is a C = C(n) > 0 such that

Area(expn(x, δ)|Σs∩BR
) ≤ Cδ,

for any s, 0 < R < 1 and 0 < δ < 1.
This inequality is enough for our purposes since we are only interested

in showing that this area is small, independently of s, if R and δ are
small. However, this number can be computed explicitly. To do this,
notice that because of the symmetries of f , the hypersurfaces Σs are
invariant with respect to rotations of Rn that decompose as the product
of rotations of Rk and Rn−k. This implies that Σs is obtained as a
hypersurface of revolution after rotating the curve of the case n = 2
and k = 1. This allow us to compute explicitly the Jacobian of the
exponential map expn(·, δ) : Σs → Rn which is

J(x) = J(r) =

∣∣∣∣1 + δ

r

∣∣∣∣k−1∣∣∣∣1− δ

r

∣∣∣∣n−k−1∣∣∣∣1− sδ

r3

∣∣∣∣,
where r = r(x) = ‖x‖.

Using the area formula for the map expn(·, δ) and coarea formula on
Σs, we obtain

Area(expn(x, δ)|Σs∩BR
) =

∫ R

√
s
J(r)

r2

2
(
√

r2 + s)k−2(
√

r2 − s)n−k−2.

Since R < 1 and δ < 1, the integrand is bounded by above by[
1 + c(n)

δ

rn−2

][
1 +

δs

r3

]
rn

(
√
r2 + s)(

√
r2 − s)

.

Which are themselves bounded by

c(n)

(
r2 +

δs

r

)
1

(
√
r2 + s)(

√
r2 − s)

,

whose integral in [
√
s,R] can be checked to be bounded by Cδ for some

C = C(n).
Summarizing we obtain the following
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9.7. Lemma. Let f be as in the beginning of the section, 0 < R < 1
and 0 < δ < 1. There exists a constant C depending only on n, such
that for all s ∈ R

Hn−1(expn(Σs ∩BR, δ)) ≤ cδ,

where Σs = f−1(s).

The following consequence of the lemma above is useful when dealing
with sweepouts generated by the level sets of a Morse function.

9.8. Corollary. Suppose that ψs ∈ C∞([−ε, ε] : Diff(U : Rn)), where

U ∈ Rn is an open set of Rn. Given Ũ ⊂⊂ U , define Σs = ψs(f
−1(s)∩Ũ).

Then, there exists a constant C depending only on ψ, Ũ and n such that
for all s ∈ [−ε, ε] and δ ∈ R we have

Hn−1(expns(Σs, δ)) ≤ (1 + C|δ|)Hn−1(Σs),

where ns is any Gauss map associated to Σs.

10. Appendix B: Limit-interface on manifolds

We now indicate how the convergence and regularity results for phase
transitions in bounded open sets of Rn, can be extended to general
manifolds. Since the proofs are essentially the same, the content of
this section is not self-contained, but rather it is intended to serve as
companion for adapting the arguments from [15, 38, 40]. This has
been done before in the special case of closed 2-dimensional Riemannian
manifold [9].

10.1. Remark. Several arguments from [15, 40] involve the use of
blow-up arguments and elliptic estimates, which are local in nature and
can be carried out similarly in our context using normal coordinates.
The Laplace–Beltrami operator coincide, in these coordinates, with the
Laplacian of Rn at the origin, and usually error terms can be corrected
if we restricting computations to a small neighborhood of the origin. An
exception appears, for example, when trying to generalize Lemma 5.2
from [15], since we must deal with the error associated to the function
ψ, but we can still control these terms with a standard application of
Harnack’s inequality and Schauder’s estimates.

Multiplying Equation (2) by ∇u ·g and integrating by parts, we obtain
the following useful formula.

(15)

∫
{|∇u|>0}

(
div g−∇ν g ·ν)ε|∇u|2 =

∫
M

(
ε
|∇u|2
2

−W (u)

ε

)
div g,

where both integrals are with respect to the volume form of M ; div
denotes the divergence operator of M ; g is a smooth tangent vector field
on M and ν = ∇u/|∇u|.
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10.2. Local monotonicity formula. One important step in [15] is
the derivation of a local monotonicity formula for the energy functional.
This can be done using Equation (15) in the following way.

Let ϕ : R → R be a smooth function such that ϕ(x) = 1 if x ≤ 0,
ϕ(x) = 1 if x > 1 and 0 ≤ ϕ(x) ≤ 1 for all x ∈ R. Given x ∈M , define
a vector field in a neighborhood of x by the formula g = rψ(r)∇r, where
r is the distance to x and ψ(s) = ϕ( s−ρ

δ ). Note that ψ(r) converges,
as δ → 0, to the characteristic function of the normal ball of radius ρ
centered at x.

In a neighborhood of x we can assume thatKM , the sectional curvature
ofM , is bounded by k. An application of the Hessian comparison theorem
(see Lemma 7.1 from [5]) gives

(16)

∣∣∣∣(Hess r)(X,X)− 1

r

∣∣X − (X · ∇r)∇r
∣∣2∣∣∣∣ ≤ √k,

for |X| = 1 and r small enough.
Plugging g into Equation (15), using (16) and making δ → 0 we obtain

−(n− 1)

∫
Bρ

eε(u) + ρ

∫
∂Bρ

eε(u) ≥
∫
Bρ

(−ξε)(u) + ερ

∫
∂Bρ

(∇u · ∇r)2

(17)

−
√
k

∫
Bρ

r(eε(u) + ε|∇u|2),

where eε(u) = ε|∇u|2/2 +W (u)/ε is the energy integrand and ξε(u) =
ε|∇u|2/2−W (u)/ε is the discrepancy function.

Finally, diving by ρ−n and multiplying by the exponential function
emρ with m ≥ 3

√
k we obtain the formula

d

dρ

(
emρρ−n+1

∫
Bρ

eε(u)

)
≥ emρρ−n+1

∫
Bρ

(−ξε)(u),

the rest of the proof is the same as in [15].

10.3. Stationarity and integrality. In [28] it is shown

(18) δVε(g) =

∫
{|∇u|>0}

(
div g −∇ν g · ν)ε|∇w|.

On the other hand, in [15], the proof that ξε → 0 and ε|∇u|2−2|∇w| → 0
L1
loc(M), only involves local elliptic estimates, and the same is true in

our context. This and Equation (15) imply that the limit-interface is
a stationary varifold. The rectifiability and integrality follow from the
density estimates in [15] which depend only on the local monotonicity
formula and standard elliptic estimates (see Remark 10.1).



MIN–MAX FOR PHASE TRANSITIONS 129

10.4. Generalized second fundamental form. From now on we as-
sume that uε is a stable solution of Equation (2). The following stability
inequality for uε is the analogue of the stability inequality for minimal
hypersurfaces (see [11], Theorem 6).
(19)∫

M

(
Ric(∇uε,∇uε) + |Hessuε|2 −

∣∣∇|∇uε|
∣∣2)φ2 ≤

∫
M
|∇uε|2|∇φ|2.

For the definition of generalized second fundamental form we refer the
reader to [14, 38]. In [38] it is shown that the limit-interface have a
generalized second fundamental form that satisfies a stability inequality.
We adapt what is done in [14, 38], after embedding M isometrically
into some Rp.

For every x ∈M , let P = P (x) be the projection onto the subspace
TxM and Pij its coordinates on a orthonormal basis, e1, . . . , ep, of R

p.
Let νk be the coordinates of the vector ν = |∇uε|/|∇uε|, whenever
|∇uε| > 0 (notice that ν depends on ε). We denote by ν ⊗ ν the
projection onto the vector ν, with coordinates (ν ⊗ ν)ij = νiνj . Then
(P − ν ⊗ ν) is the projection onto the subspace orthogonal to ν in TxM .

Denote by ∇ and div, the connection on M (or the intrinsic gradient
if applied to a function) and the divergence operator on M , respectively.
The coordinates of Rn×Grn−1(R

p) in the basis e1, . . . , ep, we denote by
xi, Slk, for i, l, k = 1, . . . , p, and the partial derivatives in the direction
of the vectors of the basis by Di = ∂xi and D∗

lk.
The definition of the second fundamental form involves functions Aijk

(see [14]). For every ε > 0 and x ∈M such that |∇uε| > 0 define

Aε
ijk(x, S) := Ssi∂xs(Pjk − νjνk),

and

(Bε)kij(x, S) = Slj

(
Aikl − Sim∂xmPkl

)
.

Given ϕ ∈ C2(Rp ×Grn−1(Rp)), let g be the vector field tangent to
M defined by

g = φ(P − ν ⊗ ν)(ei),

where φ ∈ C2(Rn) is defined by φ(x) = ϕ(x, P − ν ⊗ ν) (it is not true in
general that φ ∈ C2(Rn), due to the singularities of ν, but we can proceed
as in [38]. Define φs(x) = ϕ

(
x, P − ∇uε⊗∇uε

s+|∇uε|2
)
, do all the computations

with φs instead of φ and then make s→ 0).
Plugging g into Equation (15) we obtain∫ (

SsiDsφ+Aε
kikφ+Aε

iljD
∗
ljφ

)
dV ε =

∫
M

(
ε
|∇u|2
2

− W (u)

ε

)
div g.

We assert that all the terms on this equation can be bounded as
measure-function pairs (see [14, 38]), using the stability inequality (19),
and that, in that sense, the righthand side of this equation goes to zero
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as ε→ 0 as in [38]. Also, after passing to a subsequence, the functions
Aε

ijk converge to functions Aijk satisfying∫ (
SsiDsφ+Akikφ+AiljD

∗
ljφ

)
dV = 0,

where V is the limit varifold. Then Bk
ij is the generalized fundamental

form of V as a (n− 1)-varifold of M (see [14, 38]).
It is left to see that (Aε

ijk, V
ε) are bounded as measure-function pairs.

Notice that it is possible to compare their values in coordinates with

the integrand
∣∣Hessuε|2 −

∣∣∇|∇uε|
∣∣2 from the stability inequality. In

fact, for x ∈ M , with ∇uε �= 0, choose e1, . . . , ep such that TxM =
〈e1, . . . , en〉 = Rn and ν = en. The following observations will help make
the computations easier.

Let B denote the second fundamental form of M as a submanifold of
Rp and B

k
ij = B(ei, ej) · ek, ∇u = (u1, · · · , un) and ∂xi∂xju = uij . Then

(i) Pij = 1 if i = j ≤ n and = 0 other wise.
(ii) ∂xsPij = 0 if i, j ≤ n.
(iii) ∂xsνn = 0.

(iv) B
k
ij = PljPis∂xsPkl.

(v) uik = un∂xiPkn if i ≤ n and k > n.

(i) follows from the chose of the basis. (ii) follows differentiating the
identity Pij = PikPkj and applying (i). (iii) is similar. (iv) is proved in
[14] and (v) follows from (iv).

Using these formulas we obtain

∣∣Hessuε|2 −
∣∣∇|∇uε|

∣∣2 = n−1∑
i,j

u2ij +

n−1∑
j

u2nj ,

and
p∑

i,j,k

|Aε
ijk|2 = 2

n−1∑
i,j

uij
2

u2n
+

n−1∑
i

∑
j,k≥n+1

(∂xiPjk)
2.

Notice that the last sum in the above equality depends only on M . Com-
bining these with the stability formula (19) we obtain the boundedness
of |Aε

ijk|2.

10.5. Stability and regularity. In Section 18 of [42], the stability of
a varifold V is defined by means of an inequality satisfied by the push-
forward of V to a tangent space of M via the inverse of the exponential
map. This inequality is the same found in [33] and is a consequence of
the classical stability inequality for hypersurfaces.

That the limit-interface satisfies the same inequality is a consequence
of formula (19). In fact, proceeding as in 10.4,
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|Bε|2 =
p∑
ijk

(
(Bε)kij

)2

≤
n−1∑
ij

u2ij
|∇u|2 ,

and we can relate this to (19) as in 10.4. The terms obtained in the
inequality are exactly the same appearing in the stability inequality
of [42].

The rest of the regularity proof for stable limit-interface in [40],
involves the study of the behavior of the tangent cones of V . These
computations are local and depend only on elliptic estimates and blowup
arguments, which also hold in our context.
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