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TRANSVERSE SINGULARITIES OF MINIMAL
TWO-VALUED GRAPHS IN ARBITRARY

CODIMENSION

Spencer T. Becker-Kahn

Abstract

We prove some epsilon regularity results for n-dimensional min-
imal two-valued Lipschitz graphs. The main theorems imply
uniqueness of tangent cones and regularity of the singular set in
a neighbourhood of any point at which at least one tangent cone
is equal to a pair of transversely intersecting multiplicity one n-
dimensional planes, and in a neighbourhood of any point at which
at which at least one tangent cone is equal to a union of four dis-
tinct multiplicity one n-dimensional half-planes that meet along an
(n− 1)-dimensional axis. The key ingredient is a new Excess Im-
provement Lemma obtained via a blow-up method (inspired by the
work of L. Simon on the singularities of ‘multiplicity one’ classes of
minimal submanifolds) and which can be iterated unconditionally.
We also show that any tangent cone to an n-dimensional minimal
two-valued Lipschitz graph that is translation invariant along an
(n− 1) or (n− 2)-dimensional subspace is indeed a cone of one of
the two aforementioned forms, which yields a global decomposi-
tion result for the singular set.
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There are very few results about the nature of the singular set of a
minimal submanifold in arbitrary codimension. Allard’s seminal work in
this area ([All72]) shows only that the singular set is closed and nowhere
dense. In light of the simple example of a transverse union of hyper-
planes, the optimal dimension estimate for the singular set (of an n-
dimensional stationary integral varifold) would be dimH(sing V ) ≤ n−1,
but the possibility of a singular set with positive Hn measure, i.e., a
‘fat Cantor set’-like singular set, has not been ruled out. Despite this,
sharp dimension estimates for the singular set have been obtained in
various special cases, most notably for area-minimizing surfaces (i.e.,
integral currents) in the celebrated work of Almgren ([Alm00]). The
same result has recently been obtained by De Lellis and Spadaro in a se-
ries of works [DLS11, DLS13, DLS14, DLS16a, DLS16b]. A sharp
dimension estimate for the singular set is also known for minimal Lips-
chitz graphs via the combined work of Allard ([All72]), Allard–Almgren
([AA76]), Barbosa ([Bar79]) and Lawson–Osserman ([LO77]). How-
ever, there are even fewer examples where, in arbitrary codimension, a
more detailed analysis of the singular set has been possible (e.g., gain-
ing precise asymptotics on approach to singularities or proving unique-
ness of tangent cones). Of particular note are the following cases: the
n = 1 case (a complete description of one-dimensional stationary vari-
folds was given by Allard and Almgren in [AA76]), the two-dimensional
area-minimizing case (uniqueness of tangent cones is due to White:
[Whi83], and complete regularity Chang: [Cha88]) and the work of
Simon ([Sim93]) on ‘multiplicity one classes’ of minimal submanifolds,
in which he introduced techniques designed to control the linearization
of the minimal surface operator (the ‘blow-up’) at certain singular min-
imal cones. Since Simon’s work, the blow-up method has been adapted
by Wickramasekera to some codimension 1 settings in which the multi-
plicity one hypothesis does not hold (in [Wic04], [Wic08] and [Wic14],
Wickramasekera studies certain higher multiplicity singularities of sta-
ble hypersurfaces).

Here we study the regularity properties of the graph of a two-valued
Lipschitz function when that graph is assumed to be minimal, i.e., as-
sumed to be a stationary point of the n-dimensional area functional in
Rn+k. We will call such an object a ‘minimal two-valued graph’ (note
that by ‘two-valued function’ we mean a function that maps points in
Rn to unordered pairs of points in Rk). This context, the context
in which we work, is in arbitrary codimension and in the presence of
higher multiplicity singularities (which we will explain shortly). Also,
we do not assume that our objects are area-minimizing or stable. Our
most restrictive assumption, and one that we rely on, is that of be-
ing a two-valued graph. We are interested in the local structure of a
minimal two-valued graph close to certain density two singular points.
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More specifically, we describe the structure of an n-dimensional mini-
mal two-valued graph and its singular set close to points at which at
least one tangent cone is equal to a transversely intersecting pair of n-
dimensional subspaces, and close to points at which at least one tangent
cone is equal to a union of four n-dimensional half-spaces meeting only
along an (n−1)-dimensional axis. The main results will be stated in full
detail shortly, but roughly speaking can be summarized in the following
three statements.

Theorem 1. If an n-dimensional minimal two-valued graph lies suf-
ficiently close to a pair of planes meeting along an axis of dimension at
most (n − 2), then it must be equal to the union of two smooth mini-
mal submanifolds, each of which lies close to one of the two planes and
which intersect only along a subset of an (n − 2)-dimensional smooth
submanifold that is graphical over the axis of the pair of planes.

Theorem 2. If an n-dimensional minimal two-valued graph lies suf-
ficiently close to a pair of planes meeting along an (n− 1)-dimensional
axis, then its singular set is contained in an (n − 1)-dimensional C1,α

submanifold and at each singular point there is a unique tangent cone
equal to either a transversely intersecting pair of planes or a union of
four half-planes meeting only along an (n − 1)-dimensional axis.

Theorem 3. If an n-dimensional minimal two-valued graph lies suf-
ficiently close to a union of four n-dimensional half-planes that meet
only along an (n− 1)-dimensional axis and that are not equal to a pair
of planes, then it must be equal to the union of four smooth, minimal
submanifolds with boundary meeting only along an (n− 1)-dimensional
C1,α submanifold, their common boundary.

The key ingredient in the proof of Theorems 1–3 is a so-called “Ex-
cess Improvement Lemma” (Lemma 6.2). It says that if a minimal
two-valued graph is sufficiently close in L2 distance at scale 1 to a cylin-
drical cone C of the appropriate form, then there exists another cone
C′, relative to which the L2 distance at a smaller scale θ has decayed
by a factor that is better than that which is expected from just scale
invariance. The basic structure of the proof of this lemma is very similar
to that of Lemma 1 of [Sim93], from which the main results are then
achieved by careful iteration of this lemma. At a technical level, our dif-
ficulties are compounded by the fact that there can be significant gaps
in the part of the singular set consisting of points X at which the density
ΘV (X) is at least 2, i.e., gaps in the set {X : ΘV (X) ≥ ΘC(0) = 2}.
In the aforementioned manifestations of the method, strongest results
were achieved when it was either assumed (Remark 1.14 of [Sim93]) or
could be checked (e.g., using the stability inequality as in [Wic04] and
[Wic14]) that there were ‘lots’ of good density points in the sense that
a δ-neighbourhood of the set {X : ΘV (X) ≥ ΘC(0)} contained the axis
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of the cone. In our setting, this does not hold and extra effort must be
expended to prove an excess decay Lemma that can (at multiplicity two
points) be iterated indefinitely and thus still yield strong results.

We also show the following result, which classifies certain tangent
cones and in light of well-known stratification results about the singular
set, leads to global information.

Theorem 4. Any tangent cone to an n-dimensional minimal two-
valued graph that is invariant under translations along an (n − 2)-
dimensional subspace must be equal to either a union of two distinct,
multiplicity one n-dimensional planes intersecting along an (n − 2)-
dimensional subspace or equal to a union of four n-dimensional half-
planes meeting only along an (n− 1)-dimensional axis.

Acknowledgments. I would like to thank my advisor Neshan Wickra-
masekera for his guidance and encouragement and for the many hours
that he spent teaching me. I would also like to thank the referee for mak-
ing many helpful remarks on the first version of the article and drawing
my attention to places where the clarity needed to be improved.

1. Notation and main theorems

1.1. Basic notation. We start by setting out basic notation and ter-
minology that is common to all sections.

We will use upper case letters such as X to denote points in Rn+k.
For X ∈ Rn+k, we will write R = R(X) = |X|.
For X0 ∈ Rn+k and ρ > 0, Bρ(X0) = {X ∈ Rn+k : |X0 −X| < ρ}.
For X0 ∈ Rn × {0}k and ρ > 0, Bn

ρ (X0) = {X ∈ Rn × {0}k :
|X0 −X| < ρ}.

For X0 ∈ Rn+k and ρ > 0, we define the transformations ηX0,ρ, TX0

and τX0 : R
n+k → Rn+k by ηX0,ρ(X) = ρ−1(X−X0), TX0(X) = X+X0

and τX0(X) = X −X0.
For s ≥ 0, Hs denotes the s-dimensional Hausdorff measure on Rn+k

and ωn = Hn(Bn
1 (0)).

For A,B ⊂ Rn+k, dH(A,B) denotes the Hausdorff distance between
A and B.

For X ∈ Rn+k and A ⊂ Rn+k, dist(X,A) = infY ∈A |X − Y |.
For A ⊂ Rn+k and ρ > 0, we write (A)ρ = {X ∈ Rn+k : dist(X,A) <

ρ}.
By a plane we mean any affine n-dimensional subspace of Rn+k and

for any plane T , we use pT to denote the orthogonal projection onto T .
More commonly, we will use the shorthand Y �T = pTY and Y ⊥T =
pT⊥Y .

By a half-plane, we mean a closed half-plane: Any set which is the
closure of one of the connected components of T \ L, where T is any
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plane and L is any (n − 1)-dimensional subspace of T . For any half-
plane H, we write pH for the orthogonal projection onto the unique
plane containing H.

Gn denotes the space of n-dimensional subspaces of Rn+k.
For an integral n-varifold V (see [All72] or [Sim83, Chapter 4, 8])

in the open set U , we use the following notation:
The weight measure ‖V ‖ of V is the Radon measure on U given by

‖V ‖(A) = V ({(x, S) ∈ U × Gn : x ∈ A}) and spt ‖V ‖ is called the
support of the varifold V .

Given an n-rectifiable setM , |M | denotes the multiplicity one varifold
associated with M .

For Z ∈ spt ‖V ‖, Var Tan(V,Z) denotes the set of all varifold tan-
gent cones to V at Z, i.e., each W ∈ VarTan(V,Z) arises as W =
limj→∞(ηZ,ρj)∗V for some sequence of positive numbers ρj → 0, where,
for any proper, injective, Lipschitz map f , f∗V is the pushforward of V
by f .

For Hn-a.e. Z ∈ spt ‖V ‖, we write TZV for the approximate tangent
plane (see [Sim83, Chapter 3]) to spt ‖V ‖ at Z.

reg V denotes the regular part of V , by which we mean that X ∈
reg V if and only if X ∈ spt ‖V ‖ and there exists ρ > 0 such that
Bρ(X) ∩ spt ‖V ‖ is a smooth, n-dimensional embedded submanifold of
Bρ(X).

singV denotes the (interior) singular part of V , i.e., sing V =
(spt ‖V ‖ \ reg V ) ∩ U .

1.2. The Minimal Surface System. For the single-valued function
f : Bn

2 (0)→ Rk, the area formula tells us that

(1.1) Hn(graph f) =

∫
Bn

2 (0)
det(δij +Σk

κ=1Dif
κDjf

κ)1/2 dHn.

If Vf := | graph f | is stationary as a rectifiable n-varifold in Bn
2 (0)×Rk,

then it is in particular stationary with respect to deformations only in
the vertical directions and, therefore,

(1.2)
d

dt

∣∣∣∣
t=0

Hn(graph(f + tϕ)) = 0,

for any ϕ ∈ C∞
c (Bn

2 (0);R
k). This implies (as can be seen by direct com-

putation using the fact that for a square matrix A(t) that is a function
of the scalar parameter t, one has (d/dt)(detA(t)) = tr(adjA(t)A′(t)))
that f is a Lipschitz weak solution to the Minimal Surface System, i.e.,
it satisfies

(1.3)

∫
Bn

2 (0)

√
g(f)gij(f)

k∑
κ=1

Dif
κDjϕ

κdHn = 0,
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for all ϕ ∈ C∞
c (Bn

2 (0);R
k), where gij(f)= δij+Σk

κ=1Dif
κDjf

κ, gij(f)=
(gij(f))

−1 and g(f) = det gij(f). A homogeneous degree one Lipschitz

weak solution g : Rd → Rk to the Minimal Surface System is necessarily
linear if d ∈ {1, 2, 3} (this follows from the main theorem of [Bar79]).
Using this in conjunction with Allard’s Regularity Theorem and the
stratification of the singular set (see (1.6)), we see that a Lipschitz weak
solution to the Minimal Surface System is C1,α away from codimension
four set. Hence, by standard regularity theory for elliptic systems (see
[Mor66]), such a function is analytic away from a codimension four set.
In particular, sing Vf ≤ n − 4. The following example due to Lawson
and Osserman ([LO77]) shows that such a function can indeed have
singularities on a codimension four set:

Example 1.1 ([LO77]). Consider S3 to be the unit sphere in C2 ∼=
R4 and consider S2 to be the unit sphere in R × C ∼= R3. Define
η : S3 → S2 by

η(z1, z2) = (|z1|2 − |z2|2, 2z1z̄2)
(this is the Hopf map). The homogeneous degree one function f : R4 →
R3 given by

f(x) =

√
5

2
|x|η

( x

|x|
)

for x �= 0

is a Lipschitz weak solution to the minimal surface system on R4 with
an isolated singularity at the origin.

1.3. Two-valued functions. We write A2(R
k) for the set of all un-

ordered pairs of points in Rk. A two-valued function (or more gen-
erally a two-Rk-valued function) on an open set Ω ⊂ Rn is a map
f : Ω→ A2(R

k). We equip A2(R
k) with the metric

G(a, b) := min{|a1 − b1|+ |a2 − b2|, |a1 − b2|+ |a2 − b1|},
where a = {a1, a2} ∈ A2(R

k) and b = {b1, b2} ∈ A2(R
k). Thus a two-

valued function f on Ω is Lipschitz if there exists some constant L such
that

G(f(x), f(y)) ≤ L|x− y|,
for all x, y,∈ Ω. We say that f is differentiable at x ∈ Ω if there exists
a two-Rk-valued affine function Ax on Rn of the form

Ax(h) = {f1(x) +A1(x)h, f2(x) +A2(x)h},
for k × n matrices A1(x) and A2(x) such that

lim
h→0

|h|−1G(f(x), Ax(h)) = 0.

In this case, we write Df(x) = {Df1(x),Df2(x)} instead of {A1(x),
A2(x)}. A two-valued function f on Ω is continuously differentiable on
Ω and we write f ∈ C1(Ω;A2(R

k)) if it is both differentiable at every
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point of Ω and the two-valued function Df is continuous on Ω. We say
that f ∈ C1,μ(Ω;A2(R

k)) for μ ∈ (0, 1] if f is C1 and also

|f |1,α;Ω <∞,

where

|f |1,α;Ω = sup
Ω
|f |+ sup

Ω
|Df |+ [Df ]α,Ω.

Here, the Hölder coefficient is interpreted in the obvious way, i.e.,

[Df ]α;Ω = sup
x,y,∈Ω
x 	=y

|x− y|−αG(Df(x),Df(y)).

Note that C1(Ω;A2(R
k)) and C1,α(Ω;A2(R

k)) are not linear spaces
as there is in general no well-defined pointwise addition on two-valued
functions. We define the graph of a two-valued function f by

graph f := {(x, y) ∈ Ω×Rk : y ∈ {f1(x), f2(x)}}.

1.4. Minimal two-valued graphs. Write π for the orthogonal pro-
jection of Rn+k onto Rn × {0}k. Now, it is not difficult to see that
if f : Bn

2 (0) → A2(R
k) is Lipschitz, then graph f is n-rectifiable. So,

by taking graph f together with the multiplicity function defined on it
which is equal to two at points Y ∈ graph f for which f1(πY ) = f2(πY )
and equal to 1 otherwise, we can consider graph f to be an integral
n-varifold Vf in Bn

2 (0) ×Rk. We will say that V = Vf is the varifold

associated to graph f or to f . When V is stationary in Bn
2 (0)×Rk, i.e.,

when

(1.4)

∫
(Bn

2 (0)×Rk)×Gn

divS Φ(x) dV (x, S) = 0,

for all Φ ∈ C1
c (U ;Rn+k), we say that V is a minimal two-valued graph.

Write V for the set of all minimal two-valued graphs in Bn
2 (0)×Rk that

are associated to some Lipschitz function f : B2(0)→ A2(R
k).

Let V = Vf ∈ V. For X ∈ spt ‖V ‖, the assignment of single-valued

Lipschitz functions fi : Bn
δ (πX) × {0}k → Rk for i = 1, 2 and some

δ > 0 such that V (Bn
δ (πX) ×Rk) = | graph f1|+ | graph f2| is called

a labelling of f in Bn
δ (πX). If U ⊂ Bn

2 (0) ×Rk is such that V U =
V1+V2, where for i = 1, 2, Vi is a (possibly empty) stationary, Lipschitz
single-valued graph, then we say that V decomposes in U . From the
definition of stationarity and the fact that f is continuous, it is easy to
see that V decomposes in any cylindrical region Ω × Rk which is free
of multiplicity two points and in a neighbourhood of any multiplicity
one point. The branch set Bf is the complement in graph f of the set
{X ∈ graph f : V decomposes in a neighbourhood of X}. Any X ∈ Bf

is called a branch point of V . Let us remark here that in general V ∈ V
does not globally decompose: Large classes of C1,α branched minimal
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two-valued graphs were constructed directly in [SW07], [Ros10] and
[Kru13].

1.5. Stratification of the singular set. It is well-known that the
singular set of a stationary integral varifold can be ‘stratified’ in the
following way: For any stationary cone C (where, for our purposes,
‘cone’ will mean an integral varifold whose support is a union of rays
emanating from the origin), we write S(C) := {Z ∈ Rn+k : ΘC(Z) =
ΘC(0)}. We call this set the spine of C and it is not difficult to show
that it is a linear subspace of Rn+k. Given a stationary varifold V we
write

(1.5) Sj = {X ∈ singV : dimS(C) ≤ j ∀ C ∈ VarTan(V,X)}.
Then we have that

(1.6) dimH Sj ≤ j.

This was first shown for stationary integral varifolds by F. Almgren
([Alm00]), but is true in analogous forms in other settings in the study
of solutions to geometric variational problems (e.g., energy-minimizing
maps [Sim96] and mean curvature flow [Whi97]. Or see [Sim83] for
a general abstract version).

1.6. Relevant classes of varifolds. Write P for the set of all integral
n-varifolds in Rn+k which are of the form C = |P1| + |P2|, where P1,
P2 are distinct planes meeting only along an affine subspace A(C) :=
P1 ∩P2 �= ∅, which we call the axis of C.

We write P∅ for the set of all integral n-varifolds in Rn+k which are
of the form C = |P1|+ |P2|, where P1, P2 are disjoint planes.

We write P≤n−2 for the set of all C ∈ P with dimA(C) ≤ n− 2 and
Pn−1 for the set of all C ∈ P with dimA(C) = n− 1.

Write Cn−1 for the set of all integral n-varifolds in Rn+k which are of
the form C =

∑4
i=1 |Hi|, where for i = 1, ..., 4, the Hi are distinct half-

planes meeting only along their common boundary A(C) = ∩4
i=1Hi, the

axis of C, which is an affine (n − 1)-dimensional subspace. Note that
Pn−1 ⊂ Cn−1.

Write C := Cn−1 ∪ P≤n−2.
For C ∈ C, when the coordinates of Rn+k are labelled in such a way

that for m := dimA(C) and l := n−m we have A(C) = {0}l+k×Rm ⊂
Rl+k×Rm (so that X = (x, y) ∈ A(C)⊥×A(C) = Rl+k×Rm = Rn+k),
we will say that C is properly aligned. In this case, C = C0 × Rm,
where singC0 = {0} and C0, the cross-section of C, is either the sum
of two distinct l-dimensional subspaces of Rl+k meeting only at the
origin or the sum of four distinct rays in R1+k meeting only at the
origin, depending on whether C ∈ P≤n−2 or C ∈ Cn−1, respectively.

When C(0) ∈ Cn−1 is properly aligned, we write {ω1, ..., ω4} = {rC(0) =
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1} ∩ A(C(0))⊥ ∩ spt ‖C(0)‖, where, for any cone C ∈ C we define rC =
rC(X) := dist(X,A(C)).

For V ∈ V and C, C(0) ∈ C, we define

QV (C) :=

(∫
Bn

2 (0)×Rk

dist2(X, spt ‖C‖) d‖V ‖(X)

+

∫
(Bn

2 (0)×Rk)\{r
C
(0)<1/8}

dist2(X, spt ‖V ‖) d‖C‖(X)

)1/2

.

Finally, we define VL to be the set of all V = Vf ∈ V for which the
Lipschitz constant of f is at most L.

1.7. Main results. Suppose throughout these statements that we have
fixed L > 0.

Theorem 1. Let C(0) ∈ P≤n−2. There exists ε = ε(n, k,C(0), L) > 0
such that the following is true. If V ∈ VL is such that 0 ∈ spt ‖V ‖ and
QV (C

(0)) < ε, then we have the following conclusions:

1) V B1/2(0) = |M1| + |M2|, where, for i = 1, 2, Mi is a smooth,
embedded n-dimensional minimal submanifold of B1/2(0).

2) singV ∩B1/2(0) = M1 ∩M2 ⊂ graphϕ, where, for some

α = α(n, k,C(0), L) ∈ (0, 1), ϕ : A(C(0)) ∩ B1/2(0) → A(C(0))⊥

is a C1,α function satisfying ‖ϕ‖C1,α(A(C(0))∩B1/2(0))
≤ cQV (C

(0))

for some c = c(n, k,C(0), L).
3) At each Z ∈ sing V ∩B1/2(0), we have that VarTan(V,Z) = {CZ}

for some CZ ∈ P≤n−2 and we have the decay estimate

(1.7) ρ−n−2

∫
Bn

ρ (πZ)×Rk

dist2(X, spt ‖CZ‖)d‖V ‖(X) ≤ cρ2αQ2
V (C

(0)),

which holds for all ρ ∈ (0, 1/8) and for some c = c(n, k,

C(0), L) > 0.

Theorem 2. Let C(0) ∈ Pn−1. There exists ε = ε(n, k,C(0), L) > 0
such that the following is true. If V ∈ VL is such that 0 ∈ spt ‖V ‖ and
QV (C

(0)) < ε, then we have the following conclusions:

1) singV ∩B1/2(0) ⊂ graphϕ, where, for some α = α(n, k,C(0), L) ∈
(0, 1), ϕ : A(C(0)) ∩ B1/2(0) → A(C(0))⊥ is a C1,α function sat-

isfying ‖ϕ‖C1,α(A(C(0))∩B1/2(0))
≤ cQV (C

(0)) for some c = c(n, k,

C(0), L).
2) At each Z ∈ sing V ∩B1/2(0), we have that VarTan(V,Z) = {CZ}

for some CZ ∈ C and we have the decay estimate

(1.8) ρ−n−2

∫
Bn

ρ (πZ)×Rk

dist2(X, spt ‖CZ‖)d‖V ‖(X) ≤ cρ2αQ2
V (C

(0)),
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which holds for all ρ ∈ (0, 1/8) and for some c = c(n, k,

C(0), L) > 0.

Theorem 3. Let C(0) ∈ Cn−1 \ Pn−1. There exists ε = ε(n, k,

C(0), L) > 0 such that the following is true. If V ∈ VL is such that

0 ∈ spt ‖V ‖ and QV (C
(0)) < ε, then we have the following conclusions:

1) V B1/2(0) =
∑4

j=1 |Mj |, where for j = 1, 2, 3, 4, Mj is a smooth,

embedded n-dimensional minimal submanifold in B1/2(0).

2) singV ∩B1/2(0) = graphϕ ∩B1/2(0) = ∩4
j=1Mj , where, for some

α = α(n, k,C(0), L) ∈ (0, 1), ϕ : A(C(0)) ∩ B1/2(0) → A(C(0))⊥

is a C1,α function satisfying ‖ϕ‖C1,α(A(C(0))∩B1/2(0))
≤ cQV (C

(0))

for some c = c(n, k, C(0), L). Moreover, graphϕ ∩ B1/2(0) =

∂Mi occurs in the sense of C1,α manifolds-with-boundary for i =
1, 2, 3, 4.

3) At each Z ∈ sing V ∩B1/2(0), we have that VarTan(V,Z) = {CZ}
for some CZ ∈ Cn−1 \ Pn−1 and we have the decay estimate

(1.9) ρ−n−2

∫
Bn

ρ (πZ)×Rk

dist2(X, spt ‖CZ‖)d‖V ‖(X) ≤ cρ2αQ2
V (C

(0)),

which holds for all ρ ∈ (0, 1/8) and for some c = c(n, k,

C(0), L) > 0.

Note first that our assumptions do not immediately ensure multiplic-
ity one convergence of V to C(0) away from the axis of C(0) (this was
an assumption in [Sim93]). To expand on this point a little, in a region

very close to the axis of C(0), the smallness of QV (C
(0)) only amounts to

the L2 smallness of dist2(X, spt ‖C(0)‖) over the support of the varifold
and a priori, smallness of this latter quantity allows for both ‘sheets’ of
the two-valued graph to be very close to the same plane of C(0). This is
what we mean by having to deal with higher multiplicity singularities.

Note that the conclusions of Theorem 1 imply that the varifold is
smooth as a two-valued graph in a neighbourhood of a singular point at
which at least one tangent cone belongs to P≤n−2. The conclusions of
the other theorems, however, do not imply that V is C1 as a two-valued
graph. The following example makes this explicit:

Example 1.2. Let f denote the two-R2-valued function on R given
by f(t) = {(t, 0), (−t, 0)} for t ≤ 0 an f(t) = {(0, t), (0,−t)} for t > 0.
This is Lipschitz as a two-valued function and its graph is minimal in
R3 (and indeed equal to a union of four smooth ‘sheets’). However, it is
clearly not C1 as a two-valued function at the origin. The codimension
of this example is irrelevant and so one can produce such examples of any
dimension and codimension by ‘crossing’ this example with Euclidean
space.
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The next example shows that more exotic singular minimal two-
valued graphical cones exist:

Example 1.3. If f is as in Example 1.1, then the two valued function
x �→ {f(x),−f(x)} is an example of a minimal two-valued Lipschitz
graph which is a cone and which is not equal to a union of planes or
half-planes.

The conclusions of Theorems 1 to 3 imply that sufficiently close to
a singular point at which at least one tangent cone belongs to C, every
tangent cone is unique and also belongs to C. In particular, a point with
a tangent cone in C cannot be the limit point of points at which there
are ‘exotic tangent cones’, such as that of the above example.

If one is able to achieve C1,α regularity for a minimal two-valued
graph, then one may apply the results of [SW10] to deduce that the

two-valued function in question is C1,1/2. Assuming only C1,α regularity
to begin with, this is the best possible general result for the regularity
of such objects, as the following example shows:

Example 1.4. Consider the irreducible holomorphic variety I :=
{(z, w) ∈ C×C : z2 = w3} ⊂ R4. It is well known that such a variety is
area-minimizing (because it is ‘calibrated’) and, therefore, minimal and

yet it is easy to see that if viewed as the two-valued graph of w �→ w3/2,
then the regularity at the origin is no better than C1,1/2.

We also establish the following theorem:

Theorem 4. Let V ∈ V and X ∈ singV . If C ∈ VarTan(V,X) is
such that dimS(C) = n− 2, then C ∈ P and A(C) = S(C).

When combined with our two main ε-regularity theorems, this result
implies that we have a complete description of a minimal two-valued
Lipschitz graph near points in Sn−1 \ Sn−2 and points in Sn−2 \ Sn−3.
Let B denote the set of points X ∈ singV for which there exists C ∈
VarTan(V,X) equal to a multiplicity two hyperplane. Write S̃n−1 for
the set of points X ∈ singV for which there exits C ∈ VarTan(V,X) ∩
Cn−1 and similarly S̃n−2 for the set of points X ∈ singV for which there
exits C ∈ VarTan(V,X)∩P≤n−2. Finally, define S̃n−3 := singV \ (B∪
S̃n−1 ∪ S̃n−2).

Corollary 1.5. For V ∈ V, the singular set sing V is the disjoint
union B ∪ S̃n−1 ∪ S̃n−2 ∪ S̃n−3, where

1) By definition, for every X ∈ B, there is C ∈ VarTan(V,X) equal
to a multiplicity two n-dimensional plane.

2) dimH S̃n−1 ≤ n − 1, S̃n−1 ∪ S̃n−2 is relatively open in sing V and

for every X ∈ S̃n−1, we have that the conclusions of Theorems 2
or 3 hold in a neighbourhood of X.
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3) dimH S̃n−2 ≤ n−2, S̃n−2 is relatively open in singV and for every

X ∈ S̃n−2, we have that the conclusions of Theorem 1 hold in a
neighbourhood of X.

4) dimH S̃n−3 ≤ n − 3 and the closure of S̃n−3 does not intersect

S̃n−1 ∪ S̃n−2.

One application of our main results is to two-valued graphs that are
locally area minimizing: It is a standard fact (and not difficult to see
by a comparison argument) that an n-dimensional area-minimizing cur-
rent without boundary cannot have a tangent cone with spine dimension
(n− 1). The work of Almgren ([Alm00]) implies that for such a cur-
rent, the set of points where there is a multiplicity 2 tangent plane has
Hausdorff dimension at most (n−2). Thus we get the following corollary
of our main theorems:

Corollary 1.6. If V ∈ V is a locally area-minimizing current with
∂ V = 0 in Bn

2 (0)×Rk, then V is smoothly immersed away from a closed
set S with dimH(S) ≤ n− 2. Moreover, S is the disjoint union S1 ∪S2,
where S1 is the set of points at which there exists at least one tangent
cone equal to a multiplicity two hyperplane and dimH(S2) ≤ n− 3.

2. Gaps in the top density part

In this section, we analyse the structure of a minimal two-valued
graph in regions in which there are no points of density greater than or
equal to 2.

2.1. Decomposition into single-valued graphs. The result of this
subsection is the following:

Theorem 2.1. Let V ∈ V and let U ⊂ Bn
2 (0) × Rk be a simply

connected open set. If {Z ∈ U : ΘV (Z) ≥ 2} = ∅, then V decomposes
in U .

We prove a separate lemma first.

Lemma 2.2. Suppose that V ∈ V is such that {Z ∈ U : ΘV (Z) ≥
2} = ∅ for some set U ⊂ Bn

2 (0)×Rk. Then dimH(sing V ∩U) ≤ n− 3.

Proof. Pick X ∈ sing V and consider C ∈ VarTan(V,X). Bearing
in mind the stratification of the singular set (1.6), the proof will be
complete once we show that dimS(C) ≤ n− 3.

Suppose first that spt ‖C‖ is a single-valued graph (i.e., suppose that
X is a multiplicity one point) and assume for the sake of contradiction
that dimS(C) ∈ {n, n − 1, n − 2}. If dimS(C) = n, then C would be
a multiplicity one plane. By Allard’s Regularity Theorem, this would
mean that X ∈ reg V , which is a contradiction. If dimS(C) = {n −
1, n − 2}, then we can write C = C0 × Rd where d ∈ {n − 1, n − 2}



SINGULARITIES OF MINIMAL TWO-VALUED GRAPHS 253

and C0 is the graph of a single-valued, Lipschitz, homogeneous degree
one weak solution to the Minimal Surface System g : Rd′ → Rk, where
d′ ∈ {1, 2}. In both of these cases, g must be linear, which proves thatC
is a multiplicity one plane and thus we derive a contradiction as before.

Suppose now that spt ‖C‖ is a two-valued graph. If dimS(C) = n,
then C must be a multiplicity two plane which implies that ΘV (X) = 2,
but this is false by hypothesis. If dimS(C) = n− 1 and we again write
C = C0 × Rn−1, then spt ‖C0‖ is the union of four rays meeting at
a point. This means that C0 and hence C has density equal to two
at the origin and hence ΘV (X) = 2, which is again a contradiction.
Finally, suppose that dimS(C) = n − 2 and write C = C0 × Rn−2.
Consider the link M := | spt ‖C0‖ ∩ S2+k−1|, which is a 1-dimensional
stationary integral varifold in the sphere. Suppose that singM �= ∅ and
pick Y ∈ singM. The Allard–Almgren classification of stationary 1-
varifolds ([AA76]) together with the fact that spt ‖C0‖ is a two-valued
graph implies that a tangent cone D ∈ VarTan(M, Y ) is a union of 4
rays meeting at a point. This means that

(2.1) 2 = Θ1
D(0) = Θ1

M(Y ) = Θ2
C0

(Y ) ≤ Θ2
C0

(0) = Θn
C(0) = Θn

V (X),

which is a contradiction. Therefore, M is free of singular points and so
must consist of a union of two disjoint great circles. We then deduce
that Θ2

C0
(0) = 2 and, therefore, that Θn

V (X) = 2. This is again a
contradiction and we, therefore, have that dimS(C) ≤ n−3, as required.

q.e.d.

Proof of Theorem 2.1. Write S := singV ∩ U . Crucially, since
dimH πS ≤ n − 3 (by the above lemma), we have that πU \ πS is sim-
ply connected (see, e.g., the appendix to [SW10] for a proof that the
complement in Rn of a set of Hn−2 measure zero is simply connected).
Write Ω := πU\πS. We construct two smooth functions f1, f2 : Ω→ Rk

which are solutions to the Minimal Surface System on Ω and such that
graph f ∩ (Ω×Rk) is the disjoint union graph f1 ∪ graph f2.

First note that for any z ∈ Ω, there exists ηz > 0 such that graph f ∩
(Bn

ηz (z)×Rk) is the disjoint union of two smooth graphs Gz
a and Gz

b , say.
Fix a point x ∈ Ω and define f1 and f2 by writing Gx

a = graph f1 and
Gx

b = graph f2. For any other point y ∈ Ω, since Ω is path-connected,
we can find a simple continuous path γy : [0, 1] → Ω with γ(0) = x and
γ(1) = y.

By the compactness of γ := γ([0, 1]), we have that

(2.2) γ ⊂ Bn
ηx(x) ∪

N⋃
i=1

Bn
ηzi

(zi) ∪Bn
ηy(y),

for some zi ∈ γ for i = 1, ..., N . Assume that γ(ti) = zi where t1 < ... <
tN . Since graph f ∩((Bn

ηx(x)∪Bn
ηz1

(z1))×Rk) is embedded and consists
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of two connected components, there is a bijection Φ : {a, b} → {a, b} so
that Gz1

Φ(a) ∪ graph f1 and Gz1
Φ(b) ∪ graph f2 are two disjoint, embedded,

smooth submanifolds. Thus we can extend f1 and f2 to the domain
Bn

ηx(x) ∪ Bn
ηz1

(z1) in such a way that f1 and f2 are both still smooth

solutions to the Minimal Surface System.
We continue this process: Given smooth solutions to the minimal

surface system fi : B
n
ηx(x) ∪ (

⋃K−1
i=1 Bn

ηzi
(zi))→ Rk, for which

graph f ∩
([

Bn
ηx(x) ∪

K−1⋃
i=1

Bn
ηzi

(zi)
]
×Rk

)

is the disjoint union graph f1 ∪ graph f2, the above procedure gives a
labelling in Bn

ηzK
(zK) which suitably extends the domains of fi for i =

1, 2. When this process terminates, we have defined a labelling at y.
Without loss of generality, we will assume that

(2.3) graph f1∩(Bn
ηy(y)×Rk) = Gy

a and graph f2∩(Bn
ηy(y)×Rk) = Gy

b .

Now, let F denote the two-Rn+k-valued function F (x) = (x, f(x)) and
notice that F (γ) is embedded and is the disjoint union of two paths ω1

and ω2 in graph f ⊂ Rn+k such that ωi(0) = (x, fi(x)) for i = 1, 2, say,
and

(2.4) ω1(1) ∈ Gy
a and ω2(1) ∈ Gy

b .

We now see that the labelling produced in (2.3) is well-defined: Take
another path γ′ connecting x to y along which the same process has been
performed but assume for the sake of contradiction that by labelling
along a finite sequence of balls covering γ′ in the manner described
above, we obtain a different – i.e., the opposite, as there are only two –
labelling of f in Bn

ηy(y). Note again that since γ′ ∈ Ω, the image F (γ′)

is the disjoint union of two paths ω′
1 and ω′

2 in graph f . This time we
have ω′

i(0) = (x, fi(x)) as before, but

(2.5) ω′
1(1) = ω2(1) and ω′

2(1) = ω1(1).

Consider now the loop Γ formed by joining γ and γ′, i.e.,

Γ(t) :=

{
γ′(2t) for 0 ≤ t ≤ 1

2 ,

γ(2− 2t) for 1
2 ≤ t ≤ 1.

By construction, we have that F (Γ) is a loop in graph f . Since Ω is
simply connected we can continuously contract Γ while staying in Ω,
i.e., we have a continuous family {Γt}0≤t≤1 of loops, all of which lie in Ω
and such that Γ0 = Γ and Γ1 is a single point {x0} ⊂ Ω. Now, using the
Lipschitz continuity of f , the continuity of Γt(s) in both variables, and
the fact that a (two-valued) graph over a simply connected domain is
simply connected, we get that F (Γt) must also contract to a single point.
This means that (x0, f(x0)) is a single multiplicity two point, which
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means that the graph is not embedded at (x0, f(x0)). Since x0 ∈ Ω,
this is a contradiction. Therefore, the labelling we described must, in
fact, be well-defined. We can, therefore, define two functions f1 and f2
on the whole of Ω as claimed.

We extend f1 and f2 to the whole of πU , by using the facts that Ω is
dense in πU and f is continuous. We claim that the graphs of f1 and
f2 are both stationary in U . We have that Vf1 – the varifold associated
to graph f1 – is an integral n-varifold which is stationary away from S.
However, since Hn−1(S) = 0 and we have the volume growth bound

(2.6) ‖Vf1‖(Bρ(X)) ≤ cρn ∀ X ∈ S
(which follows from the fact that Vf1 is a Lipschitz graph), a standard
cut-off argument implies that graph f1 is stationary. The same holds for
the varifold associated to graph f2 and this completes the proof. q.e.d.

2.2. Excess relative to a single plane. What follows is a very impor-
tant lemma that bounds the excess relative to one plane by the excess
relative to the pair of planes. It is elementary in the sense that it does
not use stationarity; it is just a geometric fact about Lipschitz graphs.

Lemma 2.3. Fix C(0) = |P(0)
1 | + |P

(0)
2 | ∈ P and L > 0. There

exists a number ε0 = ε0(n, k,C
(0), L) ∈ (0, 1) such that the following is

true. If, for some ε < ε0, we have that C = |P1| + |P2| ∈ P and V =
Vf for f ∈ C0,1(Bn

2 (0),A2(R
k)) with Lip f < L satisfy the following

hypotheses:
1) ‖V ‖(Bn

2 (0)×Rk) ≤ ‖C(0)‖(Bn
2 (0) ×Rk) + 1/2.

2) 0∈A(C)⊂A(C(0)) and dH(spt ‖C‖∩B2(0), spt ‖C(0)‖∩B2(0))< ε.

3)
∫
B2(0)

dist2(X,P
(0)
1 )d‖V ‖(X) < ε.

Then,
(2.7)∫

B1/2(0)
dist2(X,P1)d‖V ‖(X) ≤ c

∫
B1(0)

dist2(X, spt ‖C‖)d‖V ‖(X),

for some c = c(n, k,C(0), L) > 0.

Proof. By tilting Rn by an arbitrarily small amount (if necessary),
we can assume that P1 = graph p1 for a linear function p1 : Rn → Rk

the domain of which contains the domain as f . The idea of the proof
is to slice V into one-dimensional varifolds for which we can prove the
result directly and then to use the coarea formula to reconstruct the full
result.

Suppose that the hypotheses of the lemma are satisfied and let Q be
a hyperplane in Rn+k containing P2 and such that dim(P1∩Q) = n−1.
Let K ⊂ P1 be an n-dimensional cube in P1 of edge length 1/(4

√
n)

centred at the origin and with sides parallel and perpendicular to P1∩Q.
Let K := πK and notice that K � Bn

1 (0). Define M := π(P1 ∩Q∩K).
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Now for each Y ∈ M , let L′
Y be the unique line that lies in P1 with

L′
Y ⊥ (P1 ∩Q) and L′

Y ∩ P1 ∩Q = {(Y, p1(Y ))}. Then define LY :=
L′
Y ∩K and let LY := πLY . Finally, define VY := Vf |LY

.

Step 1. Define

δ = δ(Y ) := sup
X∈spt ‖VY ‖∩W1/2

|X|,

where W1/2 := {X ∈ Rn+k : 2dist(X,Q) ≤ dist(X,P1)}. We first claim

that if ε is sufficiently small, then there exists γ = γ(n, k,C(0), L) > 0
such that for each Y ∈M , either

spt ‖VY ‖ ∩W1/2 = ∅,
or

(2.8) ‖VY ‖
(
{X ∈W : dist(X,Q) ≥ γδ}

)
≥ γδ,

where W := {X ∈ Rn+k : dist(X,Q) ≤ dist(X,P1)}. To prove this
claim, take sequences {f j}∞j=1 ∈ C0,1(Bn

2 (0),A2(R
k)), {Cj}∞j=1 ∈ P,

and {εj}∞j=1 ↓ 0+ satisfying the hypotheses of the lemma with f j, Cj

and εj in place of f , C and ε, respectively. Write Cj = |Pj
1| + |P

j
2| in

such a way that Pj
i → P

(0)
i as j →∞ for i = 1, 2. Define M j , Kj, Lj

Y ,

Qj and δj analogously to their definitions above, but of course with P1,

P2 and V replaced by Pj
1, P

j
2 and V j := Vfj , respectively. Let p

(0)
1 and

pj1 be the linear functions the graphs of which are equal to P
(0)
1 and Pj

1
for j = 1, 2, ..., respectively. Now, assume for the sake of contradiction,
that there exist {Yj}∞j=1 ∈ Mj and γj ↓ 0+ such that for sufficiently

large j we have spt ‖V j
Yj
‖ ∩W j

1/2 �= ∅ and

(2.9) ‖V j
Yj
‖({X ∈W j : dist(X,Qj) ≥ γjδj(Yj)}) < γjδj(Yj),

where W j and W j
1/2 are defined analogously to W and W1/2 but with

Qj and Pj in place of Q and P. Now, Hypotheses 2) and 3) imply that

f j → p
(0)
1 pointwise as j →∞. Using the fact that {f j}∞j=1 is a sequence

of Lipschitz functions with fixed Lipschitz constant, this implies (after

passing to a subsequence) that f j → p
(0)
1 uniformly on compact subsets

of Bn
1 (0). Of course hypothesis 2) also implies that pj1 → p

(0)
1 uniformly.

So we have that supU |f j − pj1| → 0 as j → ∞ for all U � Bn
1 (0). We

may also assume that along this subsequence:

• dH(P
j
1 ∩Qj ∩B1(0), A

′ ∩B1(0))→ 0, where A′ is a fixed (n− 1)-
dimensional subspace of Rn+k.

• dH(Q
j ∩B2(0),Q

(0) ∩B2(0))→ 0, where Q(0) is some (n+ k− 1)-

dimensional subspace containing P
(0)
2 .

• Yj → Y0 for some Y0 ∈ π(P
(0)
1 ∩Q(0)∩K), so that dH(LYj , LY0)→

0. Here LY0 is a interval that contains Y0 and lies in P
(0)
1 .
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Let λ ∈ (0, 1) be such that for sufficiently large j, we have LYj \
π(Bλ(0)) �= ∅. Then set

Ṽ j := TYj ∗ηYj ,δj(Yj)/λ ∗V
j
Yj
.

Notice that Ṽ j = Vf̃j for some f̃ j ∈ C0,1(LYj ;A2(R
k)) with Lip f̃ j ≤ L.

Also, we observe that

(2.10) ‖Ṽ j‖
(
{X ∈W j : dist(X,Qj) ≥ γjλ}

)
< γjλ

and

(2.11) sup
X∈spt ‖Ṽ j‖∩W j

1/2

|X| = λ.

Then, let lj : LY0 → L⊥
Y0

be the function that represents LYj as a graph

over LY0 and define gj(X) = f̃ j(X + lj(X)) for X ∈ LY0 . After passing
to another subsequence, gj converges uniformly on compact subsets to
some Lipschitz two-valued function g. From (2.10) and (2.11) we deduce
that

graph g ∩W (0) ⊂ Q(0) ∩Bλ(0),(2.12)

where W (0) := {X ∈ Rn+k : dist(X,Q(0)) ≤ dist(X,P
(0)
1 )}. Also,

(2.11) shows that there exists X ∈ graph g ∩W (0) with |X| = λ, but
since LY0 \ π(Bλ(0)) �= ∅, this now means that

dH
(
graph g|π(graph g∩W (0)), graph g|LY0

\π(graph g∩W (0))

)
> 0,

which contradicts the fact that g is a Lipschitz graph over LY0 . This
proves the claim.

Step 2. We can now prove the ‘1-dimensional’ version of the lemma:
Namely, if the hypotheses are satisfied for sufficiently small ε > 0, then
(2.13)∫

B1(0)
dist2(X,P1)d‖VY ‖(X) ≤ c

∫
B1(0)

dist2(X,P1 ∪Q)d‖VY ‖(X),

for every Y ∈M , where c = c(n, k,C(0), L) > 0. To see this we observe
that for every Y ∈M ,

(2.14)

∫
W1/2∩B1(0)

dist2(X,P1)d‖VY ‖(X) ≤ cδ3,

for some constant c = c(n, k,C(0), L) > 0. Then notice that (2.8) of
Step 1 implies that

(2.15)

∫
W1/2∩B1(0)

dist2(X,P1 ∪Q)d‖VY ‖(X) ≥ γ3δ3.

Putting these together proves (2.13) with a constant c that does not
depend on Y .
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Step 3. Now we can prove the full lemma. When the hypotheses are
satisfied for appropriate ε > 0, the previous two steps show that
(2.16)∫

B1(0)
dist2(X,P1)d‖VY ‖(X) ≤ c

∫
B1(0)

dist2(X,P1 ∪Q)d‖VY ‖(X),

for every Y ∈ M . We also note that when ε is small enough we have
that

(2.17) spt ‖V ‖ ∩B1/8n(0) ⊂
⋃

Y ∈M

spt ‖VY ‖.

So, using a change of variables, the coarea formula, the uniform Lips-
chitz constant bound and another change of variables, we have that∫
B1/8n(0)

dist2(X,P1)d‖V ‖(X)

≤
∑
α=1,2

∫
⋃

Y ∈M LY

dist2((X, fα(X)),P1)×

det(δαβ +ΣκDαf
α,κ ·Dβf

α,κ)1/2dHn(X)

≤ c
∑
α=1,2

∫
M

∫
LY

dist2((x, Y, fα(x, Y )),P1)×

det(δαβ +ΣκDαf
α,κ ·Dβf

α,κ)1/2dH1(x)dHn−1(Y )

≤ c

∫
M

∫
B1(0)

dist2(X,P1)d‖VY ‖(X)dHn−1(Y ),

where c = c(n, k,C(0), L) > 0 and where f j(X) = {f1(X), f2(X)} and
fα(X) = (fα,1(X), . . . , fα,k(X)). From here we can apply (2.16) to get
that this is at most

(2.18) c

∫
M

∫
B1(0)

dist2(X,P1 ∪Q)d‖VY ‖(X)dHn−1(Y ).

Then we can again write the integral as an integral over the domain of
f , apply the coarea formula and re-write as an integral with respect to
‖V ‖ in order to see that this is indeed at most

(2.19) c

∫
B1(0)

dist2(X,P1 ∪Q)d‖V ‖(X),

which is in turn bounded above by the right-hand side of (2.7). This
proves (2.7) with an integral over B1/8n(0) on the left-hand side, but
this can now be leveraged to prove the inequality as claimed. q.e.d.
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3. L2 estimates

In this section, we discuss in detail the main L2 estimates. The proofs
are technically involved and are deferred to Section 6. Suppose we have
fixed C(0) ∈ C.

3.1. Specific notation. Recall that for C ∈ C and V ∈ V, we define

QV (C) :=

(∫
Bn

2 (0)×Rk

dist2(X, spt ‖C‖) d‖V ‖(X)

+

∫
(Bn

2 (0)×Rk)\{r
C
(0)<1/8}

dist2(X, spt ‖V ‖) d‖C‖(X)

)1/2

.

We also define:

E2
V (C) :=

∫
B1(0)

dist2(X, spt ‖C‖)d‖V ‖(X),

and aCV (X) :=

⎛
⎝ m∑

j=1

|e⊥TXV

l+k+j|2
⎞
⎠

1/2

,

where e1, ..., en+k is an orthonormal basis ofRn+k in whichC is properly
aligned (so that el+k+1, ..., en+k is an orthonormal basis of A(C)).

3.1.1. Comparing nearby cones. For C ∈ C, the integer quantity
qC := dimA(C(0))− dimA(C), which throughout will be non-negative,
will play an important role: It will be the parameter with which we
perform an induction argument in Section 6 in order to prove the main
L2 estimates. Given another D ∈ C, we define

(3.1) νC,D := dH(spt ‖C‖ ∩B2(0), spt ‖D‖ ∩B2(0)).

This will play a similar role to the ν defined on [Wic14, p. 908].

Remark 3.1.

1) The reason qC will always be non-negative is that if ε > 0 is

sufficiently small depending on C(0) then νC,C(0) < ε implies that
qC ≥ 0.

2) If C(0) /∈ P, then there is some constant c = c(n, k,C(0)) > 0 such
that infC′∈P νC(0),C′ ≥ c > 0.

3) If qC > 0, then C ∈ P≤n−2. Thus, if ε > 0 is sufficiently small

depending on C(0), then νC,C(0) < ε with qC > 0 implies that

C(0) ∈ P.

Fix Z ∈ B1(0) and write ξ = Z⊥A(C) . Using the invariance of C under
translations in directions along its axis, we have that for any X ∈ B1(0):
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|dist(X, spt ‖C‖)− dist(X, spt ‖TZ∗C‖)| ≤ νC,TZ∗C(3.2)

≤ |ξ|.(3.3)

Also, if 0 ∈ A(C) � A(C(0)) with C(0) = |P(0)
1 |+ |P

(0)
2 | ∈ P, then we

have that:

νC,TZ∗C ≤ 2max
i=1,2

dH(Pi ∩B2(0), TZ∗Pi ∩B2(0))(3.4)

≤ cmax
i=1,2

[
|ξ

⊥
P
(0)
i |+ νC,C(0) |ξ

�
P
(0)
i |

]
.(3.5)

To get to (3.5), we have used the triangle inequality and the fact that

dH(Pi∩B2(0), TY ∗Pi∩B2(0)) ≤ cνC,C(0) |Y | for any Y ∈ P
(0)
i . This last

inequality holds because if one were to write Pi as a graph over P
(0)
i ,

the Lipschitz constant would be controlled by νC,C(0) .

Hypotheses A. We will often have the following hypotheses in place
for some appropriate ε ∈ (0, 1):

1) C(0) ∈ C and V ∈ V; ‖V ‖(Bn
2 (0)×Rk) ≤ ‖C(0)‖(Bn

2 (0)×Rk)+1/2.

2) C ∈ C and 0 ∈ A(C) ⊂ A(C(0)).
3) νC,C(0) < ε.

4) QV (C
(0)) < ε.

3.2. Main theorems. We now state the main L2 estimates. These
theorems are analogous to Theorem 3.1 of [Sim93] and Theorems 10.1

and 16.2 of [Wic14]. We assume throughout that we have fixedC(0) ∈ C
and L > 0.

Theorem 3.2. Fix τ ∈ (0, 1). There exists ε0 = ε0(n, k,C
(0), τ, L) >

0 such that the following is true. Suppose that for some ε < ε0, we have
that V ∈ VL and C,C(0) ∈ C satisfy Hypotheses A and that ΘV (0) ≥ 2.
Then we have the following conclusions:
i) {X ∈ B2(0) : ΘV (X) ≥ 2} ⊂ {rC(0) < τ} and V (B15/8(0) ∩
{rC(0) > τ}) = | graph(u + c)| (B15/8(0) ∩ {rC(0) > τ}), where

u ∈ C∞(spt ‖C(0)‖∩{rC(0) > τ/2};C(0)⊥) and c ∈ C∞(spt ‖C(0)‖∩
{rC(0) > 0};C(0)⊥) is such that C {rC(0) > 0} = | graph c| and for

X ∈ spt ‖C(0)‖ ∩ {rC(0) > τ/2}, |u(X)| ≤ (1 + cε)dist(X + u(X) +
c(X), spt ‖C‖) for some constant c = c(n, k) > 0.

ii)
∫
B5/8(0)

|aCV (X)|2d‖V ‖(X) ≤ c
∫
B1(0)

dist2(X, spt ‖C‖)d‖V ‖(X).

iii)
∫
B5/8(0)

dist2(X,spt ‖C‖)

|X|n+7/4 d‖V ‖(X)≤ c
∫
B1(0)

dist2(X, spt ‖C‖)d‖V ‖(X).

iv)
∫
B5/8(0)

|X
⊥TXV |2

|X|n+2 d‖V ‖(X) ≤ c
∫
B1(0)

dist2(X, spt ‖C‖)d‖V ‖(X).

v) ∫
Ωτ/2∩B5/8(0)

R2−n

∣∣∣∣∂((u(X) + c(X))/R)

∂R

∣∣∣∣
2

dHn(X)
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≤ c

∫
B1(0)

dist2(X, spt ‖C‖)d‖V ‖(X),

where Ωτ/2 := spt ‖C(0)‖ ∩ {rC(0) > τ/2}.
In ii) to v), c = c(n, k,C(0), L) > 0.

Corollary 3.3. For σ ∈ (0, 1) and each ρ ∈ (0, 1−σ] and, there exists

ε1 = ε1(n, k,C
(0), L, ρ, σ) > 0 such that the following is true. Suppose

that for some ε < ε1, we have that V ∈ V and C,C(0) ∈ C satisfy
Hypotheses A and that Z ∈ spt ‖V ‖ ∩ Bσ(0) has ΘV (Z) ≥ 2. Then we
have the following conclusions:

i) dist2(Z,A(C(0))) ≤ c
∫
B1(0)

dist2(X, spt ‖C‖)d‖V ‖(X).

ii) If qC = 0, then |ξ|2 ≤ c
∫
B1(0)

dist2(X, spt ‖C‖)d‖V ‖(X). If in-

stead qC > 0, then C(0) = |P(0)
1 | + |P

(0)
2 | ∈ P and |ξ

⊥
P
(0)
i |2 +

ν2
C,C(0) |ξ

�
P
(0)
i |2 ≤ c

∫
B1(0)

dist2(X, spt ‖C‖)d‖V ‖(X) for i = 1, 2,

where in both cases ξ = Z⊥A(C) .

iii)
∫
B5ρ/8(Z)

dist2(X,spt ‖TZ∗C‖)

|X−Z|n+7/4 d‖V ‖(X)

≤ cρ−n−7/4
∫
Bρ(Z) dist

2(X, spt ‖TZ∗C‖)d‖V ‖(X).

iv)
∫
B5ρ/8(Z)

dist2(X,spt ‖C‖)
|X−Z|n−1/4 d‖V ‖(X)

≤ c
∫
B1(0)

dist2(X, spt ‖C‖)d‖V ‖(X).

v)∫
Ωτ/2∩B5ρ/8(Z)

R̄2−n
Z

∣∣∣∣∣∂((u(X) + c(X) − Z
⊥

TXC(0) )/R̄Z)

∂R̄Z

∣∣∣∣∣
2

dHn(X)

≤ cρ−n−2

∫
Bρ(Z)

dist2(X, spt ‖C‖)d‖V ‖(X),

for some constant c= c(n, k,C(0), L, σ)> 0, where R̄Z = R̄Z(X)=

|X−Z�
TXC

(0) |, where u and c are functions as in i) of Theorem 3.2
and where Ωτ/2 is as in v) of Theorem 3.2.

In i) to iv), c = c(n, k,C(0), L) > 0.

Remark 3.4. When the hypotheses of Corollary 3.3 are satisfied, we
can combine (3.2) to (3.5) with ii) of Corollary 3.3 to get that

ν2C,TZ∗C
≤ c

∫
B1(0)

dist2(X, spt ‖C‖)d‖V ‖(X),(3.6)

for some c = c(n, k, L,C(0)) > 0.

4. The blow-up class

In this section, we will assume Theorem 3.2 and Corollary 3.3 and
use them to construct the blow-up class, which is a class of functions
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defined on C(0) that represents the linearised problem. We will say
that a properly aligned cone C(0) ∈ C, sequences {Cj}∞j=1 ∈ C (with qCj

constant, equal to q, say) and {V j}∞j=1 ∈ VL, a sequence of real numbers

{εj}∞j=1 with εj ↓ 0+ and a relatively closed set D ⊂ A(C(0)) ∩ B2(0)
satisfy Hypotheses † if the following hold.

Hypotheses †.
(1†) For each j, we have that V j , Cj and C(0) satisfy Hypotheses A

with εj in place of ε.

(2†) dH(Dj ∩B2(0),D∩B2(0))→ 0 and Dj ∩B1/16(0) �= ∅ for every j,

where Dj := {Z ∈ Bn
2 (0)×Rk : ΘV j (Z) ≥ 2}.

(3†) If D ∩B1(0) �= A(C(0)) ∩B1(0), then Cj ∈ P for all j.

When we have these hypotheses in place, we write Ej := EV j (Cj),
which we call the excess of V j relative to Cj.

Remark 4.1. Suppose C(0), {Cj}∞j=1, {V j}∞j=1, {εj}∞j=1, and D sat-
isfy Hypotheses †. We make the following observations.

1) If D ∩ B1(0) �= A(C(0)) ∩ B1(0), then C(0) ∈ P. To see this,

consider Z ∈ (A(C(0)) \ D) ∩B1(0). By (2†), we know that there
exists some δ = δ(Z) > 0 such that for sufficiently large j we have

(4.1) Bδ(Z) ∩ Dj = ∅.
Thus we have a decomposition V j Bδ(Z) = V j

1 + V j
2 of V j in

Bδ(Z) as per Theorem 2.1. Using the mass bound (1) of Hy-
potheses A) and the compactness theorem for stationary integral
varifolds ([All72]), we may pass to a subsequence (depending

on Z) along which V j
i converges in the sense of varifolds to a

stationary integral n-varifold Wi in Bδ(Z) for i = 1, 2. Since

V j Bδ(Z) → C(0) Bδ(Z) (from 4) of Hypotheses A), we know

that W1 +W2 = C(0) Bδ(Z). By applying the Constancy The-
orem ([Sim83, § 41]) on each of the connected components of

spt ‖C(0)‖ ∩ {rC(0) > η} for arbitrary η > 0, we deduce that Wi

has constant multiplicity along each of the half-planes that con-
stitute C(0). Since Wi is itself stationary in Bδ(Z) this implies

that there must be a plane P
(0)
i for which Wi = P

(0)
i Bδ(Z)

whence C(0) Bδ(Z) = (|P(0)
1 | + |P

(0)
2 |) Bδ(Z) whence C(0) =

|P(0)
1 |+ |P

(0)
2 |, because C(0) is a cylindrical cone.

2) For δ ∈ (0, 1/8) and σ ∈ (0, 1), there exists J = J(δ, σ) ∈ N such
that for all j ≥ J , we have

(4.2)

∫
(D)δ∩Bσ(0)

dist2(X, spt ‖Cj‖)d‖V j‖(X) ≤ cδ3/4E2
j ,

for some c = c(n, k,C(0), L, σ) > 0. The proof of this claim follows
the argument of [Sim93, Corollary 3.2(ii)], except that we use iv)
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of Corollary 3.3 instead of (i) of Theorem 3.1 therein. The minor
difference is that instead of being able to cover the whole axis by
balls, here we can only cover the set D and the correspondingly
weaker conclusion, therefore, follows naturally.

3) The argument of 1) above shows generally that singularities con-
centrate near good density points in the following sense: Given
η > 0 there is ε = ε(n, k,C(0), η) > 0 such that if V ∈ V satisfies

QV (C
(0)) < ε, then sing V ∩ B1/2(0) ⊂ ({Z ∈ spt ‖V ‖ ∩ B1/2(0) :

ΘV (Z) ≥ 2})η .

4.1. Constructing blow-ups. Given parameters τ0, ρ0 and σ0 we de-
fine ε̄ as follows: Let ε̄i for i = 0, 1 be those constants the existence
of which is asserted by Theorem 3.2 and Corollary 3.3 when one takes
τ = τ0, ρ = ρ0 and σ = σ0 in the statements. Then set ε̄ = mini ε̄i.
Now if we suppose that C(0), {Cj}∞j=1, {V j}∞j=1, {εj}∞j=1 and D satisfy
Hypotheses †, then we can pick τj , ρj and σj → 0 sufficiently slowly

so as to ensure that εj < ε̄(n, k,C(0), L, τj , ρj , σj) for every j. Possibly
after passing to a subsequence we have the following:

(1j) ‖V j‖(Bn
2 (0)×Rk) ≤ ‖C(0)‖(Bn

2 (0) ×Rk) + 1/2 for all j.

(2j) 0 ∈ A(Cj) ⊂ A(C(0)).
(3j) QV j (Cj) < εj for all j.
(4j) νCj ,C(0) < εj for all j.

(5j) By Theorem 2.1: For any Y ∈ A(C(0)) ∩ B15/8(0) and ρ ∈
(0, 1/4), such that Bρ(Y ) ∩ Dj = ∅, we have the decomposi-

tion V j (Bn
ρ (Y ) × Rk) = V j

1 + V j
2 , where for i = 1, 2, V j

i

is a minimal Lipschitz graph (which means that we also have

dimH(sing V
j
i ) ≤ n− 4 for i = 1, 2).

(6j) By 1) of Remark 4.1, (2†) and (3†), a closed set D ⊂ A(C(0)) ∩
B2(0) for which D∩B1/16(0) �= ∅, dH(Dj ∩B2(0),D∩B2(0))→ 0

and such that if D∩B1(0) � A(C(0))∩B1(0), then C(0) ∈ P and
Cj ∈ P for all j.

(7j) By Theorem 3.2

V j (B15/8(0)∩{rC(0) > τj})
= | graph(uj + cj)| (B15/8(0) ∩ {rC(0) > τj}),(4.3)

where uj ∈ C∞(spt ‖C(0)‖ ∩ {rC(0) > τj/2} ∩ B31/16(0);C
(0)⊥),

cj : spt ‖C(0)‖ \A(C(0))→ C(0)⊥ is such that Cj {rC(0) > 0} =
| graph cj | and for X ∈ spt ‖C(0)‖ ∩ {rC(0) > τj/2}, dist(X +
uj(X) + cj(X), spt ‖Cj‖) ≥ (1 + cεj)|uj(X)| for some constant
c = c(n, k) > 0.

(8j) By 2) of Remark 4.1, i.e., by (4.2): For any δ ∈ (0, 1/8) and
σ ∈ (0, 1), there exists J(δ, σ) ∈ N such that for j ≥ J :
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(4.4)

∫
(D)δ∩Bσ(0)

dist2(X, spt ‖Cj‖)d‖V j‖(X) ≤ cδ3/4E2
j ,

for some c = c(n, k,C(0), L) > 0.
(9j) By i) to v) of Corollary 3.3: Given Zj ∈ Dj ∩ B1/4(0) and ρ ∈

(0, 1/4], there exists an integer J(ρ) such that for j ≥ J(ρ) we
have

(4.5) dist2(Zj , A(C
(0))) ≤ cE2

j ,

(4.6)

|ξj|2 ≤ cE2
j if qCj ≡ q = 0,

max
i=1,2

[
|ξ

⊥
P
(0)
i

j |2 + ν2
Cj ,C(0) |ξ

�
P
(0)
i

j |2
]
≤ cE2

j if qCj ≡ q > 0,

∫
B5ρ/8(Zj)

dist2(X, spt ‖TZj∗C
j‖)

|X − Zj |n+7/4
d‖V j‖(X) ≤ cE2

j ,

(4.7)

∫
B5ρ/8(Zj)

dist2(X, spt ‖TZj∗C
j‖)

|X − Zj |n+7/4
d‖V j‖(X)

(4.8)

≤ cρ−n−7/4

∫
Bρ(Zj)

dist2(X, spt ‖TZj∗C
j‖)d‖V j‖(X),

and

∫
Ωτj

∩B5ρ/8(Zj)
R2−n

Zj

∣∣∣∣∣∣
∂((uj(X) + cj(X) − Z

⊥
TXC(0)

j )/RZj )

∂RZj

∣∣∣∣∣∣
2

dHn(X)

(4.9)

≤ cρ−n−2

∫
Bρ(Zj)

dist2(X, spt ‖Cj‖)d‖V j‖(X),

for some constant c = c(n, k,C(0), L) > 0, where RZ = RZ(X) =

|X − Z
�

TXC
(0) | and where ξj := Z

⊥
A(Cj )

j .

(10j) From (3.6) of Remark 3.4: Given Zj ∈ Dj ∩B1/4(0) we have

(4.10) ν2Cj ,TZj∗
Cj ≤ cE2

j .

In the rest of this section, we construct the blow-up class B(C(0)) and

prove a list of basic properties. Suppose first that D∩B1(0) = A(C(0))∩
B1(0). Extend each function uj to all of spt ‖C(0)‖ ∩ {rC(0) > 0} ∩
B31/16(0) by defining its values to be zero on spt ‖C(0)‖ ∩ {0 < rC(0) <
τj}. By (4.3) and elliptic estimates, there exists a harmonic function

v : spt ‖C(0)‖ ∩ {rC(0) > 0} ∩B1(0)→ C(0)⊥ such that
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(4.11) E−1
j uj → v,

where the convergence is in C2(K) for every compact subset of the
domain of v. Then, using (4.4) of (8j), we deduce that for σ ∈ (0, 1),
sufficiently small δ and sufficiently large j depending on δ and σ, we
have

(4.12)

∫
spt ‖C(0)‖∩{0<r

C
(0)<δ}∩Bσ(0)

|E−1
j uj|2dHn ≤ cδ3/4,

from which we deduce that the convergence in (4.11) is also in

L2(spt ‖C(0)‖ ∩ {rC(0) > 0} ∩Bσ(0);C
(0)⊥) for every σ ∈ (0, 1).

Now suppose instead that D∩B1(0) � A(C(0))∩B1(0). From (6j) we

have that C(0) = |P(0)
1 |+ |P

(0)
2 | ∈ P and Cj = |Pj

1|+ |P
j
2| ∈ P, which we

label so that Pj
i → P

(0)
i as j → ∞. Define rD = rD(X) := dist(X,D).

Note that we can extend the domain of definition of cji := cj |
P

(0)
i

over the

axis A(C(0)) so that Pj
i = graph cji . Fix a small number τ0 ∈ (0, 1/64)

and using (6j), choose j sufficiently large (depending on τ0) such that

dH(Dj ∩ B2(0),D ∩ B2(0)) < τ0/2. Now for Y ∈ A(C(0)) ∩ B31/32(0) ∩
{rD > τ0}, we have that Bτ0/2(Y ) ∩ Dj = ∅ and so (as per (5j)), we

have the decomposition V j Bτ0/2(Y ) = V j
1 + V j

2 for each j, where

V j
i → P

(0)
i Bτ0/2(Y ) as j → ∞, for i = 1, 2. By covering {rC(0) <

τ0/8}∩{rD > τ0}∩B31/32(0) by a finite collection of balls {Bτ0/2(Yp)}Mp=1

where M = M(n, τ0), performing this argument at each point Yp for
p = 1, ..,M and using Allard’s Regularity Theorem on each of the single-
valued minimal graphs obtained, we have that (for sufficiently large j,

depending on τ0) we can extend uji := uj|
P

(0)
i

for i = 1, 2 to a smooth

function uji ∈ C∞(P
(0)
i ∩ {rD > τ0} ∩B31/32(0);P

(0)⊥
i ) such that

(4.13) V j ({rD > τ0} ∩B15/8(0)) =

2∑
i=1

V j
i ,

where

(4.14) V j
i = | graph(uji + cji )| ({rD > τ0} ∩B15/8(0)).

Further extend each uji to be equal to zero everywhere inside the region

P
(0)
i ∩{rD ≤ τ0}∩B15/8(0). Now, using elliptic estimates and combining

these with Lemma 2.3, we have that for each i = 1, 2, there exists a

harmonic function vi : P
(0)
i ∩ {rD > 0} ∩B1(0)→ P

(0)⊥
i such that

(4.15) E−1
j uji → vi,

where the convergence is in C2(K) for every compact subset of the
domain of vi. We can then again use 4.4 of (8j) to deduce that the
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convergence is also in L2(P
(0)
i ∩ {rD > 0} ∩ Bσ(0);P

(0)⊥
i ) for every

σ ∈ (0, 1). We then define v : spt ‖C(0)‖∩B1(0)→ C(0)⊥ by v|
P

(0)
i

= vi.

Write Ω := spt‖C(0)‖ ∩ {rC(0) > 0} ∩B1(0).

Definition. Corresponding to C(0), {Cj}∞j=1, {V j}∞j=1, {εj}∞j=1, and

D satisfying Hypotheses †, a function v ∈ L2(Ω;C(0)⊥) ∩ C∞(Ω;C(0)⊥)

constructed in this way is called a blow-up of the sequence V j off C(0)

relative to Cj. We define B(C(0)) to be the class of all blow-ups off

C(0).

4.2. Properties of blow-ups. We now prove that the class of func-
tions B(C(0)) satisfies certain fundamental properties that will enable
us in the next section to prove that they exhibit quantitative C1,α reg-
ularity properties.

Definition. Given a properly aligned cone C(0) ∈ C, the class of
functions H(C(0)) is defined as follows. If C(0) ∈ Cn−1, then it consists

of functions ψ : spt ‖C(0)‖ ∩ {rC(0) > 0} → C(0)⊥ of the following form:

For some collection of vectors c1, ..., cn−1 ∈ A(C(0))⊥ and a function

ϕ : {ω1, ..., ω4} → C(0)⊥ with ϕ(ωj) ∈ T⊥
(ωj ,0)

C(0) for j = 1, ..., 4 we have

(4.16) ψ(X) = ψ(x, y) =

n−1∑
p=1

ypc
⊥

TXC
(0)

p + |x|ϕ(x/|x|).

If C(0) ∈ P≤n−2 then it consists of functions ψ : spt ‖C(0)‖ ∩ {rC(0) >

0} → C(0)⊥ for which ψ|
P

(0)
i

is linear for i = 1, 2.

Remark 4.2. When C(0) ∈ Cn−1, the class H(C(0)) accounts for all

blow-ups of sequences of cones {Dj}∞j=1 ∈ Cn−1 of the form Dj = Rj
∗D̃

j

where Rj are rotations with Rj → idRn+k and D̃j has A(D̃j) = A(C(0))
for all j. See Section 2 of [Sim93].

The rest of this section is devoted to the proof of the following theo-
rem.

Theorem 4.3. For a properly aligned cone C(0) ∈ C, the class B =
B(C(0)) satisfies the following properties.

(B1) v ∈ L2(Ω;C(0)⊥) ∩ C∞(Ω;C(0)⊥).
(B2) Δv = 0 on Ω.

(B3) For each v ∈ B there is a distinguished closed set Dv ⊂ A(C(0))∩
B1(0) with Dv ∩ B1/16(0) �= ∅ such that if Dv �= A(C(0)) ∩ B1(0),

then C(0) ∈ P and vi := v|
Ω∩P

(0)
i

extends to a smooth, L2 har-

monic function on (P
(0)
i \ Dv) ∩B1(0) for i = 1, 2.

(B4) When C(0) ∈ Cn−1, we have that



SINGULARITIES OF MINIMAL TWO-VALUED GRAPHS 267

sup
|y|≤3/8

∣∣∣∣∣∣
∂2

∂rC(0)∂yp

4∑
j=1

v(rC(0)ωj , y)

∣∣∣∣∣∣→ 0,

as rC(0) ↓ 0+, for p = 1, ..., n − 1.
(B5) For any v ∈ B, we have the following closure and compactness

properties:
(B5I) ṽY,ρ(X) := ‖v(Y + ρ(·))‖−1

L2(Ω)
v(Y + ρX) ∈ B for any Y ∈

A(C(0)) ∩B1/2(0) and ρ ∈ (0, 1/4(1/2 − |Y |)] for which v(Y +
ρ(·)) �≡ 0.

(B5II) ‖v − κ
⊥

T(·)C
(0) − ψ‖−1

L2(Ω)
(v − κ

⊥
T(·)C

(0) − ψ) ∈ B for any κ ∈

A(C(0))⊥×{0}m and any ψ ∈ H(C(0)) such that v−κ
⊥

T(·)C
(0)−

ψ �≡ 0.
(B5III) For any sequence {vj}∞j=1 ∈ B, there exists a subsequence {j′}

of {j} and some v ∈ B such that vj
′ → v in C2

loc(spt ‖C(0)‖ ∩
{dist(·,Dv) > 0} ∩B1(0);C

(0)⊥).

(B6) For every Z ∈ Dv ∩ B1/4(0), there exists κv(Z) ∈ A(C(0))⊥ sat-

isfying |κv(Z)|2 ≤ c
∫
Ω |v|2 for some c = c(n, k,C(0), L) > 0 and

such that for all ρ ∈ (0, 1/4] we have the estimates

∫
Ω∩Bρ/2(Z)

|v(X) − κv(Z)
⊥

TXC
(0) |2

|X − Y |n+7/4
dHn(X)

≤ c

∫
Ω
|v(X)|2dHn(X),

(4.17)

∫
Ω∩Bρ/2(Z)

|v(X) − κv(Z)
⊥

TXC
(0) |2

|X − Y |n+7/4
dHn(X)

≤ cρ−n−7/4

∫
Ω∩Bρ(Z)

|v(X) − κv(Z)
⊥

TXC
(0) |2dHn(X),

(4.18)

and ∫
Ω∩Bρ/2(Z)

R2−n
Z

∣∣∣∣∣∂((v(X) − κv(Z)
⊥

TXC
(0) )/RZ)

∂RZ

∣∣∣∣∣
2

dHn(X)

≤ cρ−n−2

∫
Ω∩Bρ(Z)

|v(X)|2dHn(X),

(4.19)

where here RZ = RZ(X) = |X − Z|.
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Proof. It is clear from the construction in Section 4.1 that (B1)
and (B2) hold. And (B3) follows from 1) of Remark 4.1 once we set
Dv := D ∩B1(0), where D is as in (2†).

Proof of (B4): This is proved using the argument of the proof of
Lemma 1 of [Sim93] from equation (16) therein until the end. The
only significant difference is that in [Sim93] at line (20), Theorem 3.1
was used, whereas here we must use estimate ii) of Theorem 3.2 applied
to ηZj ,9/10 ∗V

j for some Zj ∈ Dj ∩ B1/16(0) (the existence of which is

guaranteed by (B3)).
Proof of (B5): Firstly, if v ∈ B is not identically zero, then for

any Y ∈ A(C(0)) ∩ B1/2(0) and ρ ∈ (0, 1/4(1/2 − |Y |)], we have that

ṽY,ρ is a blow-up of {(ηY,ρ)∗V j}∞j=1 off C(0) relative to {Cj}∞j=1. This

establishes (B5I).

Now, if C(0) ∈ P≤n−2 and we are given v ∈ B and ψ ∈ H(C(0)), then

firstly let Ĉj be the unique element of P which contains the graph of
cj + Ejψ (where cj is the function that graphically represents Cj over

C(0)). Secondly, for κ ∈ A(C(0))⊥, we replace the sequence {V j}∞j=1

with {τEjκ∗V
j}∞j=1. One can then check that Hypotheses † are still

satisfied and that ‖v − κ
⊥

TXC
(0) − ψ‖−1

L2(Ω)
(v − κ

⊥
TXC

(0) − ψ) is a blow-

up of τEjκ∗V
j off C(0) relative to Ĉj.

Now suppose that C(0) ∈ Cn−1 and that we are given ψ ∈ H(C(0)).

Let Dj = Rj
∗D̃

j be as in Remark 4.2. Let dj be the function that

represents D̃j as a graph overC(0) and then let Ĉj be the unique element
of Cn−1 that contains the graph of cj+Ejdj (where c

j is the function that

graphically represents Cj over C(0)). If we are also given κ ∈ A(C(0))⊥,

we replace the sequence {V j}∞j=1 by Ṽ j := τEjκ∗(R
j)−1

∗ V j and again

the result is that ‖v−κ
⊥

TXC(0) −ψ‖−1
L2(Ω)

(v−κ
⊥

TXC(0) −ψ) is a blow-up

of {Ṽ j}∞j=1 off C(0) relative to {Ĉj}∞j=1.

To see (B5III), suppose that for each j, we have that vj is the blow-up
of {V p

j }∞p=1 relative to {Cp
j}∞p=1. For each j, notice that we can choose

pj such that {pj}∞j=1 is strictly increasing and such that

(4.20) ‖(E
V

pj
j
(Cp

j ))
−1u

pj
j − vj‖L2(Ω) < j−1,

where upj is the function that represents V p
j as a graph over as per (7j).

That this is possible is clear from the construction of the blow-up.
We then select a further subsequence of the {V pj

j }∞j=1 to ensure that

E
V

pj
j
(Cp

j)→ 0 as j →∞. Now, with D′
j = {X ∈ B2(0) : ΘV

pj
j
(X) ≥ 2},

we construct D by using the sequential compactness of the space of
closed sets with the Hausdorff metric: This means we can pass to a
subsequence for which D′

j ∩B2(0) converges in the Hausdorff metric to
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D ⊂ B2(0). Then we choose εj such that C(0), {εj}∞j=1, {V
pj
j }∞j=1, D

and {Cpj
j }∞p=1 satisfy Hypotheses † and, therefore, we can define v to be

a blow-up of V
pj
j relative to C

pj
j . Then using (4.20), elliptic estimates,

the Arzéla–Ascoĺı theorem, a compact exhaustion and a diagonalisation,
we deduce that along a further subsequence, vj′ → v locally in C2 as
required.

Proof of (B6): Let Z ∈ Dv ∩ B1/4(0) and ρ ∈ (0, 1/2]. Suppose that
Zj ∈ Dj is such that Zj → Z as j →∞ and pick ρ′ ∈ (ρ/2, ρ) so that for
sufficiently large j we have Bρ/2(Z) ⊂ B5ρ′/8(Zj) ⊂ Bρ′(Zj) ⊂ Bρ(Z).

Write ξj := Z
⊥

A(Cj)

j . Fix τ > 0. Having applied (4.8) of (9j) at the

point Zj and at scale ρ′, we then use the area formula to write the
graphical part of the integral on the left-hand side of (4.8) over the
domain in C(0). The result is that for sufficiently large j we have:

∫
Ω∩{rDv>τ}∩Bρ/2(Z)

|uj(X) − ξ
⊥

TXC
(0)

j |2

|X + uj(X) + cj(X)− Zj|n+7/4
dHn(X)

≤ cρ−n−7/4

∫
Bρ(Z)

dist2(X, spt ‖TZj∗C
j‖)d‖V j‖(X),(4.21)

where c = c(n, k,C(0), L) > 0. By splitting the domain of integration
of the integral on the right-hand side of the above line into the comple-
mentary regions Bρ(Z) ∩ {rDv < τ} and Bρ(Z) ∩ {rDv > τ} and using
(3.2) on the second integral, we see that the right-hand side is at most

cρ−n−7/4

∫
Bρ(Z)∩{rDv>τ}

dist2(X, spt ‖TZj∗C
j‖)d‖V j‖(X)

+ cρ−n−7/4

∫
Bρ(Z)∩{rDv<τ}

dist2(X, spt ‖Cj‖)d‖V j‖(X)

+ cρ−n−7/4ν2Cj ,T
Zj∗

Cj × ‖V j‖(Bρ(Z) ∩ {rDv < τ}).(4.22)

From (4.4) of (8j) we have
(4.23)

ρ−n−7/4

∫
Bρ(Z)∩{rDv<τ}

dist2(X, spt ‖Cj‖)d‖V j‖(X) ≤ ρ−n−7/4τ3/4E2
j ,

and using (4.10) of (10j) we have

(4.24) ρ−n−7/4ν2Cj ,T
Zj∗

Cj‖V j‖(Bρ(Z) ∩ {rDv < τ}) ≤ ρ−n−7/4E2
j τ.

Also, using (4.6) of (9j), we have that if C(0) /∈ P, then E−1
j |ξ

⊥
H

(0)
i

j | is

bounded for i = 1, . . . , 4 and if C(0) ∈ P then E−1
j |ξ

⊥
P
(0)
i

j | is bounded
for i = 1, 2. Therefore, by taking an appropriate subsequential limit and
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using (4.5) of (9j), we can conclude that there exists κv(Z) ∈ A(C(0))⊥

with

(4.25) |κv(Z)| ≤ c = c(n, k,C(0), L),

and such that E−1
j ξ

⊥
TXC

(0)

j → κv(Z)
⊥

TXC
(0) as j → ∞, for all X ∈

spt ‖C(0)‖ \ A(C(0)). Now we divide (4.21) by E2
j . And, using (4.22),

(4.23), (4.24), the strong L2 convergence of E−1
j uj to v, the C2

loc con-

vergence of cj and uj to 0, and the dominated convergence theorem, we
can justify taking limits first along a subsequence as j → ∞ and then
as τ ↓ 0+. The result is∫

Ω∩Bρ/2(Z)

|v(X) − κv(Z)
⊥

TXC
(0) |2

|X − Z|n+7/4
dHn(X)

≤ cρ−n−7/4

∫
Ω∩Bρ(Z)

|v(X) − κv(Z)
⊥

TXC(0) |2dHn(X).(4.26)

By starting with (4.7) and performing a similar procedure we also
have that

∫
Ω∩Bρ/2(Z)

|v(X) − κv(Z)
⊥

TXC(0) |2
|X − Z|n+7/4

dHn(X) ≤ c

∫
Ω
|v(X)|2dHn(X).

(4.27)

This latter estimate implies that κv(Z) indeed depends only on Z and
the particular blow-up v. Finally, the estimate (4.19) is obtained simi-
larly, by dividing (4.9) by E2

j and carefully justifying the taking of the
limit as j →∞. q.e.d.

Remark 4.4. Suppose v ∈ B(C(0)) arises as the blow up of {V j}∞j=1.

The proof of (B5II) implies the following: Given ψ ∈ H(C(0)) with
supΩ |ψ|2 ≤ c

∫
Ω |v|2, there exist rotations Rj with |Rj − idRn+k | ≤ cEj

and a sequence Ĉj ∈ C such that ‖v−ψ‖−1
L2(Ω)

(v−ψ) arises as a blow-up

of {Rj
∗V

j}∞j=1 off C(0) relative to {Ĉj}∞j=1.

Remark 4.5. The way that the function κv is defined in the proof
of (B6) implies the following: Suppose that v arises as the blow up
of {V j}∞j=1 relative to some sequence of cones {Cj}∞j=1 for which the

conclusions of Theorem 3.2 and Corollary 3.3 hold with V j and Cj

in place of V and C. Fix Y ∈ Dv. If there exists a sequence Yj ∈
A(Cj) ∩ spt ‖V j‖ with ΘV j (Yj) ≥ 2 for all j and such that Yj → Y ,

then κv(Y ) = 0. This is because in this case ξj := Y
⊥

A(Cj )

j = 0 for all j.

5. Regularity of blow-ups

The content of this section is that blow-ups satisfy a quantitative C1,α

estimate. The first result is a non-concentration estimate for blow-ups.
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Lemma 5.1. Suppose C(0) ∈ Cn−1. For any v ∈ B(C(0)), there exists

a function κv : Ω→ A(C(0))⊥ of the form κv(X) = κv(rC(0) ,X
�

A(C(0)))

that satisfies supΩ |κv |2 ≤ c
∫
Ω |v|2dHn for some c = c(n, k,C(0), L) > 0

and is such that:
(5.1)∫

Ω∩(Dv)ρ/4

|v(X) − κv(X)
⊥

TXC
(0) |2

dist(X,Dv)5/2
dHn(X) ≤ c

∫
Ω
|v(X)|2dHn(X),

for every ρ ∈ (0, 1/4], where c = c(n, k,C(0), L) > 0.

Proof. Work in a basis in which C(0) is properly aligned. Fix ρ ∈
(0, 1/4). For each (r, y) = (rC(0) , y) with r > 0 define κv(r, y) ∈ R1+k ×
{y} by
(5.2)
4∑

j=1

|v(rωj, y)− κv(r, y)
⊥

T(ωj ,0)
C
(0)

|2 = inf
λ

4∑
j=1

|v(rωj , y)− λ
⊥

T(ωj,0)
C
(0)

|2,

where the infimum is taken over λ ∈ Rl+k×{0}n−1 with |λ|2 ≤ c
∫
Ω |v|2.

By using (4.17) of Theorem 4.3 and the definition of κv, it follows di-
rectly that for Z ∈ Dv and σ ∈ (0, ρ) we have

(5.3) σ−n−7/4

∫
Ω∩Bσ(Z)

|v − κ
⊥

TXC
(0)

v |2dHn ≤ c

∫
Ω
|v|2dHn.

Then we cover (Dv)σ/4 ∩ B1/2(0) with a collection of at most

c(n, k)σ−(n−1) balls {Bσ(Zj)}, where Zj ∈ Dv for each j and sum up
the integrals to get that

(5.4) σ−11/4

∫
Ω∩(Dv)σ/4

|v − κ
⊥

TXC
(0)

v |2dHn ≤ c

∫
Ω
|v|2dHn.

When we multiply by σ−3/4, integrate in σ from 0 to ρ and use Fubini’s
theorem to carry out the σ integral, a short computation gives (5.1).

q.e.d.

Boundedness and continuity of blow-ups also follows immediately
from the basic properties:

Lemma 5.2. For any v ∈ B(C(0)), the following statements hold:

1) supΩ∩B1/4(0)
|v| ≤ c, for some constant c = c(n, k,C(0), L) > 0.

2) If C(0) ∈ Cn−1 \ Pn−1, then for j = 1, .., 4, we have that
v|

H
(0)
j ∩B1/4(0)

extends continuously to the boundary portion

A(C(0))∩Ω. If C(0) ∈ P, then for i = 1, 2, we have that vi := v|
P

(0)
i

extends continuously to the whole of P
(0)
i ∩B1/4(0).
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Proof. Suppose first that C(0) ∈ P. For Z ∈ Dv ∩ B1/4(0) and 0 <
σ < ρ/2 < 1/4, (4.17) of (B6) of Theorem 4.3 implies that

σ−n

∫
Ω∩Bσ(Z)

|v − κv(Z)
⊥

TXC
(0) |2dHn(X)

≤ c

(
σ

ρ

)7/4

ρ−n

∫
Ω∩Bρ(Z)

|v − κv(Z)
⊥

TXC
(0) |2dHn(X).(5.5)

Fix a rotation Γ with the properties that Γ(A(C(0))) = A(C(0)) and

Γ(P
(0)
1 ) = P

(0)
2 . Now, for any X0 ∈ (P

(0)
1 \ Dv) ∩ B1/4(0) and any

constant vector λ ∈ A(C(0))⊥ we have (using the mean value property
of harmonic functions) that

σ−n
(∫

P
(0)
1 ∩Bσ(X0)

|v1 − v1(X0)|2dHn

+

∫
P

(0)
2 ∩Bσ(Γ(X0))

|v2 − v2(Γ(X0))|2dHn
)

≤ c

(
σ

ρ

)2

ρ−n

(∫
P

(0)
1 ∩Bρ(X0)

|v1 − λ
⊥

P
(0)
1 |2dHn

+

∫
P

(0)
2 ∩Bρ(Γ(X0))

|v2 − λ
⊥

P
(0)
2 |2dHn

)
,(5.6)

for 0 < σ ≤ ρ/2 ≤ 1
2 min{14 ,dist(X0,Dv)} and where c = c(n, k) > 0.

By elementary means, (5.5) and (5.6) can be leveraged (see [Wic14],
e.g., the proof of Lemma 4.3 or the proof of Lemma 12.1 from line (12.5)
onwards, for details of such an argument) to yield the estimate

ρ−n

(∫
P

(0)
1 ∩Bρ(Z)

|v1 − v1(Z)|2dHn

+

∫
P

(0)
2 ∩Bρ(Γ(Z))

|v2 − v2(Γ(Z))|2dHn

)

≤ cρ2β

(∫
P

(0)
1 ∩B1/2(Z)

|v1|2dHn +

∫
P

(0)
2 ∩B1/2(Γ(Z))

|v2|2dHn

)
,(5.7)

for any ρ ∈ (0, γ], some fixed γ = γ(n, k) > 0 and β = β(n, k,C(0), L) ∈
(0, 1). From here, it is standard (see, e.g., Lemma 1 of [Sim96]) that

vi ∈ C0,β(P
(0)
i ∩B1/4(0);P

(0)⊥
i ) for i = 1, 2.

If, on the other hand, C(0) ∈ Cn−1 \ Pn−1, then a similar argument

shows that v|
H

(0)
j ∩B1/4(0)

∈ C0,β(H
(0)
j ∩ B1/4(0);H

(0)⊥
j ). In either case,

1) of the present lemma also follows. q.e.d.
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5.1. Homogeneous degree one blow-ups. Most of the work of this
section goes into understanding the structure of a homogeneous degree
one blow-up for which Hn−2(Dv) = ∞. Firstly, we must gain better
information about the way in which v decays to its values on Dv.

Lemma 5.3. Suppose C(0) ∈ Cn−1 is properly aligned. For any
v ∈ B(C(0)) that is homogeneous degree one and satisfies Hn−2(Dv ∩
B1/8(0)) =∞, there are vectors cp ∈ R1+k × {0}n−1 for p = 1, ..., n− 1
such that for j = 1, .., 4 we have
(5.8)

lim
ρ↓0+

ρ−5/4

∫
Ωj∩(Dv)ρ∩B1/4(0)

|v(rωj , y)− Σn−1
i=1 y

pc
⊥Hj
p |2 dHn(X) = 0,

where Ωj := Ω ∩H
(0)
j .

Proof. This proof is based on the proof of Lemma 4.2 of [Sim93].
In light of (B4), we may apply the reflection principle for harmonic
functions to the function

(5.9) (r, y) �→ ∂2

∂r∂yp

4∑
j=1

v(rωj, y),

which is initially defined on the domain (0,∞) ×Rn−1. We, therefore,
deduce that the function

(5.10) Ψyp(r, y) :=
∂

∂yp

4∑
j=1

v(rωj, y)

extends via even reflection in the r-variable to a homogeneous degree
zero harmonic function on the whole of Rn. Since such functions are
necessarily constant and since this holds for each p ∈ {1, ..., n − 1}, we
deduce that

(5.11) Ψ(r, y) :=
4∑

j=1

v(rωj , y) = ra+
n−1∑
p=1

ypbp,

for some a, bp ∈ R1+k × {0}n−1 (we have also used the fact that v is
homogeneous degree one to deduce the form of the dependence on the
r variable). From here, (5.1) of Lemma 5.1 implies that
(5.12)

lim
ρ↓0+

ρ−5/2

∫
Ω∩(Dv)ρ∩B1/4(0)

∣∣Σn−1
p=1y

pbp −
4∑

j=1

κv(r, y)
⊥

H
(0)
j
∣∣2dHn = 0.

We claim that this means that each bp is in the subspace

T :=
{ 4∑
j=1

c
⊥

H
(0)
j : c ∈ R1+k × {0}n−1

}
.
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This is equivalent to the claim that S := span〈b1, ..., bn−1〉 ⊂ T . So,
suppose for the sake of contradiction that S � T and write L(x, y) =

Σn−1
p=1y

pbp. Since L does not depend on the r-variable, if Y = (0, y) ∈
L−1(T ) ∩ A(C(0)), then (rωj, y) ∈ L−1(T ) for all r > 0 and each j =

1, .., 4. Now, by assumption we have that L−1(T )∩A(C(0))∩B1/8(0) �

A(C(0)) ∩ B1/8(0), whence dimH(L
−1(T ) ∩ A(C(0))) ≤ n − 2 (because

L−1(T ) ∩A(C(0)) is a subspace). And since Hn−2(Dv ∩ B1/8(0)) = ∞,

we can find some subset D′ ⊂ Dv ∩ B1/8(0) with Hn−2(D′) > 0 and

dist(D′, L−1(T )) > 0. Thus we know that δ := inf(0,y)∈D′ dist(L(x, y), T )
is strictly positive. It follows from the definition of Hausdorff mea-
sure and the fact that Hn−2(D′) > 0 that for all sufficiently small
ρ > 0 we have an estimate Hn(Ω ∩ (D′)ρ ∩ B1/4(0)) ≥ cρ2 for some
c = c(D′, n) > 0. Moreover, for sufficiently small ρ > 0, we have that
dist(L(x, y), T ) ≥ δ/2 for all (r, y) ∈ (D′)ρ. Thus we can bound below
by integrating only over (D′)ρ to deduce that

ρ−5/2

∫
Ω∩(Dv)ρ∩B1/4(0)

∣∣Σn−1
i=1 y

pbp −
4∑

j=1

κv(r, y)
⊥

H
(0)
j
∣∣2dHn

≥ cρ−5/2(δ/2)2ρ2

≥ cρ−1/2 →∞,

as ρ ↓ 0+, which is a contradiction. Therefore, S ⊂ T and the claim is
proved.

So, we have that for each p ∈ {1, ..., n − 1}, there is some cp ∈

R1+k × {0}n−1 for which bp =
∑4

j=1 c
⊥

H
(0)
j

p and this means that

(5.13)

lim
ρ↓0+

ρ−5/2

∫
Ω∩(Dv)ρ∩B1/4(0)

∣∣ 4∑
j=1

(Σn−1
p=1y

pcp − κv(r, y))
⊥

H
(0)
j
∣∣2dHn = 0.

From here the argument can be finished exactly as on page 622 of
[Sim93]. q.e.d.

We must introduce one more piece of useful terminology: Suppose
that C(0) ∈ Cn−1. Given v ∈ B(C(0)) that is homogeneous degree
one, Z ∈ Dv ∩ B1/4(0) and ρ ∈ (0, 1/4] we say that the function ψ

dehomogenizes v in Bρ(Z) when ψ(· − Z) ∈ H(C(0)) and∫
Ω∩Bρ(Z)

|v(X) − ψ(X)|2dHn(X)

= inf
l∈H(C(0))

∫
Ω∩Bρ(Z)

|v(X) − l(Z +X)|2dHn(X).
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When v satisfies
(5.14)

inf
l∈H(C(0))

∫
Ω∩Bρ(Z)

|v(X) − l(Z +X)|2dHn =

∫
Ω∩Bρ(Z)

|v(X)|2dHn(X),

we say that v is dehomogenized in Bρ(Z). It is straightforward (using

orthogonal projection in L2(Ω ∩ Bρ(Z),C(0)⊥)) to prove the existence
of dehomogenizers and one can see (from (4.16)) that it is equivalent
to being L2-orthogonal to the functions (rω, y) �→ rϕ(ω) and (rω, y) �→

ype
⊥

T(rω,y)C
(0)

j for p = 1, .., n − 1, j = 1, ..., 1 + k. We are now in a
position to categorize homogeneous degree one blow-ups. The proof of
the following theorem uses a modification of the proof of Proposition
4.2 of [Wic14].

Theorem 5.4. Fix a properly aligned cone C(0) ∈ C and a homoge-
neous degree one blow-up v ∈ B(C(0)). Then v ∈ H(C(0)).

Proof. Step 1. The Negligible Part of Dv. By (B3), if Hn−2(Dv) <
∞, then C(0) ∈ P. This means that the set Dv ∩ B1/8(0) is of zero
2-capacity and is, therefore, a removable set for the bounded harmonic
function vi. So vi can be extended to a homogeneous degree one har-

monic function defined on the whole of P
(0)
i and such functions are

linear. In particular, v ∈ H(C(0)). Thus from now on we may assume

that Hn−2(Dv ∩B1/8(0)) =∞ (which means that C(0) ∈ Cn−1).

Step 2. The Thick Part of Dv. Let Tv denote the set of points Z ∈
Dv ∩ B1/4(0) for which Hn−1(Dv ∩ Bη(Z)) > 0 for every η > 0. We
claim that for all Z ∈ Tv, we have that

(5.15) κv(Z)
⊥

H
(0)
j = Σn−1

p=1y
pc

⊥
H

(0)
j

p ,

with cp as per (5.8) of Lemma 5.3. Since

ρ−5/4

∫
Ωj∩(Dv)ρ∩B1/4(0)

|v(rωj, y)− Σn−1
p=1y

pc
⊥

H
(0)
j

p |2dHn

≥ ρ−1

∫
H

(0)
j ∩(B1+k

ρ (0)×Tv)∩B1/4(0)
|v(rωj , y)− Σn−1

p=1y
pc

⊥
H

(0)
j

p |2dHn

≥ ρ−1

∫ ρ

0

∫
(B1+k

r (0)×Tv)∩B1/4(0)
|v(rωj , y)

− Σn−1
p=1y

pc
⊥

H
(0)
j

p |2 dHn−1(y) dr,

Lemma 5.3 implies that this last expression goes to zero as ρ → 0 and
so by Lebesgue differentiation we conclude that

lim
r→0

v(rωj , y) = Σn−1
p=1y

pc
⊥

H
(0)
j

p ,
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for Hn−1-almost every y ∈ Tv, i.e., (5.15) holds at Hn−1-almost every

point of Tv. But v|Ωj is continuous along A(C(0)) (from Lemma 5.2)
and using the definition of Tv, we can see that every point of Tv is a
limit point of a sequence along which (5.15) holds, which implies that
(5.15) holds for all Z ∈ Tv.

Note that at this stage of the argument, if Dv ∩B1/4(0) = A(C(0)) ∩
B1/4(0), then Tv = Dv ∩ B1/4(0). Thus for any j ∈ {1, .., 4}, the odd

reflection of v(rωj , y)− Σn−1
p=1y

pc
⊥

H
(0)
j

p in the r-variable is entire, homo-

geneous degree one, harmonic and equal to zero on {r = 0}. It follows
that

v(rωj, y) = ra+Σn−1
p=1y

pc
⊥

H
(0)
j

p ,

for some a ∈ H
(0)⊥
j , which proves exactly that v ∈ H(C(0)). So, in

light of Step 2, the remaining case is that in which C(0) ∈ Pn−1, Dv ∩
B1/4(0) �= A(C(0)) ∩B1/4(0) and Hn−2(Dv ∩B1/8(0)) =∞.

Step 3. Setting up the Induction. For any homogeneous degree one
blow up w, we will write

S(w) = {Z ∈ A(C(0)) : w(X + Z) = w(X) for all X ∈ Ω}.
It is easy to verify, using the homogeneity of w, that S(w) is always

a linear subspace of A(C(0)). We will prove, by induction on d, the

following statement: If v ∈ B(C(0)) is homogeneous degree one with
Hn−2(Dv) = ∞ and has dimS(v) = n − d, then v ∈ H(C(0)). Note

that when d = 1, i.e., when dimS(v) = n − 1, then S(v) = A(C(0)),
from which, using the homogeneity of v, we immediately deduce that
v ∈ H(C(0)). So, we now fix d ≥ 2 and using the inductive hypothesis
(together with the results of Steps 1 and 2) we may assume that any

homogeneous degree one blow up w ∈ B(C(0)) with dimS(w) > n − d
belongs to H(C(0)).

For Z ∈ Dv and ρ > 0 let ψZ,ρ be the function that dehomogenizes v

in Bρ(Z). Obviously we may assume that v /∈ H(C(0)) (or else there is
nothing to prove), so that v−ψZ,ρ �≡ 0. And note that sinceHn−2(Dv) =
∞, we have that Dv \ S(v) �= ∅.
Step 4. The Reverse Hardt–Simon Inequality. We claim that for any
compact subsetK of (A(C(0))\S(v))∩B1/4(0), there exists ε = ε(v,K) ∈
(0, 1) such that for any Y ∈ Dv∩K with κv(Y ) = 0 and for any ρ ∈ (0, ε],
we have ∫

Ω∩(Bρ(Y )\Bρ/2(Y ))
R2−n

Y

∣∣∣∣∂((v − ψY,ρ)/RY )

∂RY

∣∣∣∣
2

dHn

≥ ερ−n−2

∫
Ω∩Bρ(Y )

|v − ψY,ρ|2dHn.(5.16)
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If this were false, there would exist a sequence of points {Yj}∞j=1 ∈ Dv∩K
with κYj = 0 and v − ψYj ,ρj �≡ 0 for all j, a sequence εj ↓ 0+, and a

sequence of radii ρj ↓ 0+ such that, writing ψj := ψYj ,ρj , we have

∫
Ω∩(Bρj (Yj)\Bρj/2

(Yj))
R2−n

Yj

∣∣∣∣∣∂((v − ψj)/RYj )

∂RYj

∣∣∣∣∣
2

dHn

< εjρ
−n−2
j

∫
Ω∩Bρj (Yj)

|v − ψj |2dHn.(5.17)

By property (B5II), we have that vjψ := ‖v−ψj‖−1
L2(Ω)

(v−ψj) ∈ B(C(0))

for each j and then by property (B5I), we also have that

(5.18) wj := ‖vjψ(Yj + ρj(·))‖−1
L2(Ω)

vjψ(Yj + ρj(·)) ∈ B(C(0)),

for each j. The result of these transformations is that wj is dehomoge-
nized in B1/4(0) (as one can check using (5.14)). Then, using (B5III),

we have that there exists w ∈ B(C(0)) and a subsequence {j′} of {j} (to
which we pass to without changing notation) for which wj |

P
(0)
i

→ w|
P

(0)
i

in C2
loc(P

(0)
i ∩{dist(·,Dw) > 0}∩B1(0);P

(0)⊥
i ) for i = 1, 2. Assume also,

by compactness of K, that along this subsequence we have Yj → Y ∈
Dv ∩K. Dividing (5.17) by ρ−n−2

j

∫
Ω∩Bρj (Yj)

|v − ψj |2dHn and making

the appropriate substitutions in the integrals we see that

(5.19)

∫
Ω∩(B1(0)\B1/2(0))

R2−n

∣∣∣∣∂(wj/R)

∂R

∣∣∣∣
2

dHn < εj,

which implies that

(5.20)

∫
Ω∩(B1(0)\B1/2(0))

∣∣∣∣∂(w/R)

∂R

∣∣∣∣
2

dHn = 0,

which means that w is homogeneous degree one on Ω∩(B1(0)\B1/2(0)).
And note that by unique continuation of harmonic functions, it is equal
to its homogeneous degree one extension on Ω. Since wj → w weakly
in L2(Ω), one can also check that w is dehomogenized in B1(0).

Let us now see that dimS(w) > dimS(v): Write μj = ‖vjψ(Yj +

ρj(·))‖L2(Ω). For each X0 ∈ Ω, sufficiently small σ > 0 and sufficiently
large j, we have:

σ−n

∫
Ω∩Bσ(X0)

wj(X + Y )dHn(X)

= μ−1
j σ−n

∫
Ω∩Bσ(X0)

vjψ(Yj + ρj(X + Y ))dHn(X)

= (1 + ρj)μ
−1
j σ−n
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×
∫
Ω∩Bσ(X0)

vjψ(Yj +(1+ ρj)
−1ρj(Y −Yj)+ (1+ ρj)

−1ρjX)dHn(X)

= (1 + ρj)
n+1μ−1

j σ−n

×
∫
Ω∩B(1+ρj)

−1σ((1+ρj)−1(Y−Yj+X0))
vjψ(Yj + ρjX)dHn(X)

= (1 + ρj)
n+1σ−n

∫
Ω∩B(1+ρj )

−1σ((1+ρj )−1(Y−Yj+X0))
wj(X)dHn(X).

Letting j → ∞ and σ ↓ 0+, we conclude that w(X0 + Y ) = w(X0)
for every X0 ∈ Ω, which implies that Y ∈ S(w). Since (as one can
check) S(v) ⊂ S(w), we have that dimS(w) ≥ n − d + 1. Thus by the

inductive hypothesis we have that w ∈ H(C(0)). However, since w is
dehomogenized in B1(0) we deduce that w ≡ 0. But now, following the
proof of Lemma 5.7 of [Wic08], we deduce a contradiction: Given any
η > 0, we can choose j sufficiently large so that

(5.21)

∫
Ω∩B1/2(0)

|wj |2dHn ≤ η.

Since by construction we have that
∫
Ω |wj |dHn = 1, this shows that for

any η > 0, we have

(5.22)

∫
Ω∩(B1(0)\B1/2(0))

|wj |2dHn > 1− η,

for sufficiently large j. But now, for r, s ∈ (1/4, 1) and ω ∈ C(0) ∩
{rC(0) > 0} ∩ ∂B1(0), we have
(5.23)∣∣∣∣wj(rω)

r
− wj(sω)

s

∣∣∣∣ =
∣∣∣∣
∫ r

s

∂(wj(tω)/t)

∂t
dt

∣∣∣∣ ≤
∫ r

s

∣∣∣∣∂(wj(tω)/t)

∂t

∣∣∣∣ dt,
and so by the triangle inequality, Cauchy–Schwarz and the fact that
|r/s| is bounded we have

(5.24) |wj(rω)|2 ≤ c

(
|wj(sω)|2 +

∫ 1

1/4
tn−1

∣∣∣∣∂(wj(tω)/t)

∂t

∣∣∣∣
2

dt

)
,

for some constant c = c(n) > 0. Now we integrate with respect to

ω ∈ C(0) ∩ {r > 0} ∩ ∂B1(0). Then, we multiply by rn−1 and integrate
with respect to r in (1/4, 1) and finally we multiply by sn−1 and integrate
with respect to s in (1/4, 1/2) to give (using the coarea formula)∫

Ω∩(B1(0)\B1/4(0))
|wj |2dHn ≤ c

(∫
C(0)∩(B1/2(0)\B1/4(0))

|wj |2dHn+

∫
Ω∩(B1(0)\B1/4(0))

∣∣∣∣∂(wj/R)

∂R

∣∣∣∣
2

dHn

)
,
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for some c = c(n) ≥ 1. Now we add
∫
Ω∩B1/4(0)

|wj |2dHn to both sides

and use (5.21) and the fact that the final term in the above line tends
to zero to deduce that

(5.25) η >

∫
Ω∩B1/2(0)

|wj |2dHn ≥ c(n) > 0,

independently of j, which is a contradiction. Thus the proof of the claim
is complete and the estimate (5.16) indeed holds.

Step 5. C1 Boundary Regularity. Now with K again any compact
subset of (A(C(0))\S(v))∩B1/4(0) and Y ∈ Dv∩K for which κv(Y ) �= 0,

we can replace v by ‖v+κv(Y )
⊥

T(·)C
(0)‖−1

L2(Ω)
(v+κv(Y )

⊥
T(·)C

(0)
) (which

belongs to B(C(0)) by (B5II)) in order to arrange that κv(Y ) = 0.
Assuming we have made this replacement, (5.16) together with the fact
that ∂(ψY,ρ/R)/∂R ≡ 0 implies

ερ−n−2

∫
Ω∩Bρ(Y )

|v − ψY,ρ|2dHn

≤
∫
Ω∩(Bρ(Y )\Bρ/2(Y ))

R2−n
Y

∣∣∣∣∂(v/RY )

∂RY

∣∣∣∣
2

dHn.(5.26)

Also, (4.19) of (B6) applied to ‖v−ψY,ρ‖−1
L2(C(0)∩B1(0))

(v−ψY,ρ) tells us

that
(5.27)∫

Ω∩Bρ/2(Y )
R2−n

Y

∣∣∣∣∂(v/RY )

∂RY

∣∣∣∣
2

dHn ≤ cρ−n−2

∫
Ω∩Bρ(Y )

|v − ψY,ρ|2dHn.

Combining these two inequalities we see that

ε

c

∫
Ω∩Bρ/2(Y )

R2−n
Y

∣∣∣∣∂(v/RY )

∂RY

∣∣∣∣
2

dHn

≤
∫
Ω∩(Bρ(Y )\Bρ/2(Y ))

R2−n
Y

∣∣∣∣∂(v/RY )

∂RY

∣∣∣∣
2

dHn,(5.28)

where the c that appears on the left-hand side here is the constant from

the right-hand side of (5.27). Adding
∫
Ω∩Bρ/2(Y )R

2−n
Y

∣∣∣∂(v/RY )
∂RY

∣∣∣2 to both
sides (‘hole-filling’) and dividing by (1 + ε/c) we get that
(5.29)∫

Ω∩Bρ/2(Y )
R2−n

Y

∣∣∣∣∂(v/RY )

∂RY

∣∣∣∣
2

dHn ≤ η

∫
Ω∩Bρ(Y )

R2−n
Y

∣∣∣∣∂(v/RY )

∂RY

∣∣∣∣
2

dHn,

for some η ∈ (0, 1). Then, by iterating this with 2−iρ in place of ρ
and using a standard argument to interpolate between these scales, we
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deduce that ∫
Ω∩Bσ(Y )

R2−n
Y

∣∣∣∣∂(v/RY )

∂RY

∣∣∣∣
2

dHn

≤ c

(
σ

ρ

)μ ∫
Ω∩Bρ(Y )

R2−n
Y

∣∣∣∣∂(v/RY )

∂RY

∣∣∣∣
2

dHn,(5.30)

for some μ = μ(n, k,C(0), v,K) ∈ (0, 1), c = c(n, k,C(0), L) > 0 and
0 < σ ≤ ρ/2 ≤ ε/4. Then using (5.26) and (4.19) of (B6) we deduce
easily from this that

σ−n−2

∫
Ω∩Bσ(Y )

|v − ψY,σ|2dHn

≤ cε−1

(
σ

ρ

)μ

ρ−n−2

∫
Ω∩Bρ(Y )

|v − ψY,ρ|2dHn,(5.31)

for some c = c(n, k,C(0), L) > 0 and 0 < σ ≤ ρ/2 ≤ ε/8. Using (5.31)
and the triangle inequality, it is then straightforward to check that there
exists a single ψY ∈ H(C(0)) for which
(5.32)

σ−n−2

∫
Ω∩Bσ(Y )

|v−ψY |2dHn≤ cε−1

(
σ

ρ

)μ

ρ−n−2

∫
Ω∩Bρ(Y )

|v−ψY |2dHn,

for all σ ∈ (0, ρ/2]. Now, in general by replacing v with

‖v − κv(Y )
⊥

T(·)C
(0) ‖−1

L2(Ω)
(v − κv(Y )

⊥
T(·)C

(0)
),

we see that for each Y ∈ Dv ∩K, there is ϕY ∈ H(C(0)) for which we
have

σ−n−2

∫
Ω∩Bσ(Y )

|v − κv(Y )
⊥

TXC
(0) − ϕY |2dHn

≤ β

(
σ

ρ

)μ

ρ−n−2

∫
Ω∩Bρ(Y )

|v − κv(Y )
⊥

TXC(0) − ϕY |2dHn,(5.33)

for all 0 < σ ≤ ρ/2 ≤ ε/8. Here β = β(n, k,C(0),K, v) > 0. Using the
regularity of v away from Dv, we know that for any X0 = (rωj, y) ∈
(H

(0)
j \ Dv) ∩B1/4(0) and any affine function l : Rn → Rk we have

σ−n−2
4∑

j=1

∫
H

(0)
j ∩Bσ((rωj ,y))

|v(X) − (v((rωj , y))

+X ·Dv((rωj , y)))|2dHn(X)

≤ c

(
σ

ρ

)2

ρ−n−2
4∑

j=1

∫
H

(0)
j ∩Bρ((rωj ,y))

|v − l|2dHn,(5.34)
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for 0 < σ ≤ ρ/2 ≤ 1
2 min{14 ,dist(X0,Dv)} and where c = c(n, k) > 0.

Provided we allow a larger constant in this estimate, a short compact-
ness argument using only basic properties of harmonic functions shows
that it is still true if we replace the l that appears on the right-hand
side by any ψ ∈ H(C(0)). Then these two estimates can be used in
an elementary way together with a Campanato Lemma (e.g., [RS13,

Theorem 4.4]) to give that v|
H

(0)
j ∩Ω

∈ C1((H
(0)
j \ S(v));H(0)⊥

j ) for j =

1, .., 4. Recalling that {ω1, ..., ω4} = {rC(0) = 1}∩A(C(0))⊥∩spt ‖C(0)‖,
for (r, y) = (rC(0) , y) ∈ [0,∞) × A(C(0)), we will write ṽj(r, y) =
v(rωj, y).

Step 6. The Thin Part of Dv. We claim that vi is harmonic at points of

P
(0)
i \Tv. By the definition of Tv, we have that for each Y ∈ Dv\Tv, there

is η > 0 such that Hn−1(Dv ∩ Bη(Y )) = 0. The previous step shows
that vi is Lipschitz and sets of Hn−1 measure zero are removable for
Lipschitz harmonic functions (this follows from a short cut-off argument
using the fact that such sets are of zero 1-capacity). Therefore, Dv \ Tv
is removable for vi. We can obviously now assume that 0 ∈ Tv.

Step 7. Concluding the Argument. Suppose that ω1, ω3 ∈ P
(0)
1 . Notice

that (r, y) �→ ṽ1(r, y) − ṽ3(r, y) is a homogeneous degree one harmonic
function that solves the half-space Dirichlet problem with zero boundary
values. This means that ṽ1(r, y)− ṽ3(r, y) = ra for some constant vector

a ∈ P
(0)⊥
1 , but by considering a point (0, y) ∈ A(C(0)) at which v1 is

smooth, we see that

(5.35) lim
r↓0+

∂

∂r
ṽ1(r, y) = lim

r↓0+

∂

∂r
ṽ3(r, y),

which implies that a = 0 and hence that the above equation holds for
all (0, y) ∈ A(C(0)) \ S(v).

We now turn our attention to derivatives in the directions along the
axis. By taking derivatives on the set IntA(C(0))(Tv) (by which we mean

the interior of Tv as a subset of or ‘relative to’ A(C(0))) and using (5.15),
we have that

(5.36) Dp(v1|Tv ) ≡ c
⊥

P
(0)
1

p on IntA(C(0))(Tv) \ S(v),

for p ∈ {1, ..., n − 1}. If we write Tv := IntA(C(0))(Tv), then using the

continuity of Dpṽj on A(C(0)) \ S(v) for j ∈ {1, 3}, we get that (5.36)
holds on all of Tv \ S(v). In conjunction with (5.35), this means that
v1 is C1 at points of Tv \ S(v). Now consider a point Y = (0, y) ∈
(Tv \ Tv) \ S(v). The general (i.e., purely topological) fact that for any

set U we have U c ⊃ U \ Int(U) means that there exists a sequence of

points Ym = (0, ym) ∈ (A(C(0)) \ Tv) \ S(v) with Ym → Y . By Step 6,
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v1 is smooth and harmonic at each Ym, which implies that

lim
r↓0+

Dpṽ1(r, ym) = lim
r↓0+

Dpṽ3(r, ym),

for each p = 1, ..., n−1. The fact that v|
H

(0)
j ∩Ω

∈ C1((H
(0)
j \S(v));H

(0)⊥
j )

for j = 1, .., 4 (from Step 5) means that we can then let m → ∞ to
deduce that

lim
r↓0+

Dpṽ1(r, y) = lim
r↓0+

Dpṽ3(r, y).

In conjunction with (5.35), this proves that v1 is C1 at (0, y) and hence

is C1 on P
(0)
1 \ S(v). Now, since Tv is contained in the zero set of

v1 − Σn−1
p=1y

pc
⊥

P
(0)
1

p , we can deduce that v1 is smooth and harmonic at

points of Tv \ S(v), because the zero set of a C1 harmonic function is
removable (see, for example, [JL05]). We, therefore, deduce that v1 is

smooth and harmonic on P
(0)
1 \ S(v). Finally, since dimS(v) ≤ n − 2,

it too is removable and thus v1 is smooth at the origin and, therefore,
linear. Of course the same is true for v2 and this completes the proof.

q.e.d.

Finally, we prove the main result of this section.

Theorem 5.5. Fix a properly aligned cone C(0) ∈ C and L > 0.
There exists θ̄1 = θ̄1(n, k,C

(0), L) ∈ (0, 1/16) and μ = μ(n, k,C(0), L) ∈
(0, 1) such that the following is true. Let v ∈ B(C(0)) be the blow-up of
a sequence {V j}∞j=1 ∈ VL with ΘV j(0) ≥ 2 for every j. Then there exists

ψ ∈ H(C(0)) with supΩ |ψ|2 ≤ c
∫
Ω |v|2dHn such that for any θ ∈ (0, θ̄1)

we have the estimate:

(5.37) θ−n−2

∫
Ω∩Bθ(0)

|v − ψ|2dHn ≤ cθ2μ
∫
Ω
|v|2dHn,

for some c = c(n, k,C(0), L) > 0.

Proof. We argue exactly as in Steps 4 and 5 of the proof of Theo-
rem 5.4. That is, we first argue by contradiction to prove that there
exists ε = ε(n, k,C(0)) > 0 such that for every ρ ∈ (0, 1/4] and Y ∈
Dv ∩B1/4(0), there exists ϕY ∈ H(C(0)) such that

∫
Ω∩(Bρ(Y )\Bρ/2(Y ))

R2−n

∣∣∣∣∣∂((v − κv(Y )
⊥

TXC
(0) − ϕY )/R)

∂R

∣∣∣∣∣
2

dHn

≥ ερ−n−2

∫
Ω∩Bρ(Y )

|v − κv(Y )
⊥

TXC
(0) − ϕY |2dHn.(5.38)

Then by the same ‘hole-filling’ argument used in Step 5, we get that
there is θ̄ ∈ (0, 1) such that for every Y ∈ Dv ∩ B1/4(0), there is ϕY ∈
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H(C(0)) and κv(Y ) ∈ R1+k × {0}m such that

σ−n−2

∫
C(0)∩Bσ(Y )

|v − κv(Y )
⊥

TXC(0) − ϕY |2dHn

≤ β

(
σ

ρ

)μ

ρ−n−2

∫
C(0)∩Bρ(Y )

|v − κv(Y )
⊥

TXC
(0) − ϕY |2dHn,(5.39)

for all 0 < σ ≤ ρ/2 ≤ θ̄/2. Here β = β(n, k,C(0)) > 0. And as
before, using the regularity of v away from Dv, we know that for any

X0 = (rωj, y) ∈ (H
(0)
j \ Dv) ∩B1/4(0) and any ϕ ∈ H(C(0)) we have

σ−n−2
4∑

j=1

∫
H

(0)
j ∩Bσ((rωj ,y))

|v(X) − (v((rωj , y))

+X ·Dv((rωj , y)))|2dHn(X)

≤ c

(
σ

ρ

)2

ρ−n−2
4∑

j=1

∫
H

(0)
j ∩Bρ((rωj ,y))

|v − ϕ|2dHn,(5.40)

for 0 < σ ≤ ρ/2 ≤ 1
2 min{14 ,dist(X,Dv)} and where c = c(n, k) > 0.

And in a similar way to the end of Step 5, using no further properties
these estimates can be leveraged to yield (5.37). Notice that the as-
sumption ΘV j (0) ≥ 2 ∀j implies, via the content of Remark 4.5, that
κv(0) = 0. q.e.d.

6. Proofs of L2 estimates

The work of Sections 3, 4 and 5 relied on Theorem 3.2 and Corol-
lary 3.3. In this section, we prove Theorem 3.2 and Corollary 3.3 using
an induction argument on qC. Given C with qC > 0, we define the
following induction hypothesis:

Induction Hypothesis H(C,C(0)). The statements of Theorem 3.2
and Corollary 3.3 both hold with any C′ ∈ P that satisfies 0 ≤ qC′ < qC
in place of C.

We will prove the qC = 0 case simultaneously, in a manner which is
not circular. Let us briefly outline how this is done. Logically, one must
proceed as follows:

1) Prove Lemma 6.1.
2) Prove Theorem 3.2 for qC = 0 (using Section 6.3 up to but not

including Section 6.3.2).
3) Prove Corollary 3.3 for qC = 0 (Section 6.4).

Once this is done, we can consider a general value of qC > 0 and assume
the induction hypothesis H(C,C(0)). Now, starting from Lemma 6.2,
the logical order matches the order in which the article is written.
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In order to use the induction hypothesis it will be useful to make the
following definition for C ∈ P with qC > 0.

(6.1) E2V (C) := inf
D∈C:

A(D)�A(C)
qD≥0

∫
B1(0)

dist2(X, spt ‖D‖)d‖V ‖(X).

Given a subspace A of Rn+k, ζ ∈ A, ρ ∈ (0, 1] and r ∈ (0, ρ), we define

TA
ρ,r(ζ) := {(x, y) ∈ A⊥ ×A : (|x| − ρ)2 + |y − ζ|2 < r2}.

For any C ∈ C, we define TC
ρ,r(ζ) := T

A(C)
ρ,r (ζ). Notice that TC

ρ,r(ζ) is
always a toric region that ‘goes around’ the axis of C. In particular,
TC
ρ,r(ζ) ∩ A(C) = ∅. More generally, for any set S ⊂ Rn+k, we define

TC(S) to be the region of revolution formed by rotating S about A(C),
i.e., TC(S) is the set of points (x, y) (in coordinates in which C is
properly aligned) such that there is some ω ∈ A(C)⊥ ∩ {rC = 1} such
that (|x|ω, y) ∈ S.

Of crucial importance will be a good understanding of the behaviour
that can occur when the varifold exhibits small L2 excess in a region
of the form TC(S) for some set S, where usually S ∩ A(C) = ∅. The
situation when qC > 0 is significantly more complicated than when
qC = 0. Let us begin with the easier case. Henceforth, in this section,
we assume that we have fixed C(0) ∈ C and L > 0.

6.1. Small one-sided excess in toric regions when qC = 0.

Lemma 6.1. There exists ε0 = ε0(n, k,C
(0), L) > 0 such that the

following is true. Suppose that, for some ε < ε0, we have that V ∈ VL,
C,C(0) ∈ C satisfy the following hypotheses:

1) ‖V ‖(Bn
2 (0)×Rk) ≤ ‖C(0)‖(Bn

2 (0) ×Rk) + 1/2.

2) A(C) = A(C(0)) (in particular, qC = 0).
3) νC,C(0) < ε.

4) EV TC

1/2,7/16
(0)(C) < ε.

Then there are various different possible conclusions.
If dimA(C(0)) = n − 1, then one of A) and B) hold. Write C =∑4
i=1 |Hi| and C(0) =

∑4
i=1 |H

(0)
i |, labelled so that dH(Hi ∩ (Bn

2 (0) ×
Rk),H

(0)
i ∩ (Bn

2 (0) ×Rk)) < ε. There exists I ⊂ {1, 2, 3, 4} such that
V T1/2,6/16(0) =

∑
i∈I Vi where each Vi is a stationary varifold in

TC
1/2,6/16(0) for which there exists a domain Ωi ⊂ Hi ∩ TC

1/2,6/16(0) such

that either

A) Vi is a smooth minimal graph: There exists ui ∈ C∞(Ωi;C
⊥) such

that
i) Vi = | graphui|.
ii) For X ∈ Ωi, dist(X + ui(X),Hi) = |ui(X)|.
Or,
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B) Vi is, up to a small set, a minimal two-valued graph: There exists
a measurable set Σi ⊂ Ωi and ui ∈ C0,1(Ωi;A2(H

⊥
i )) such that

i) Vi TC
1/2,6/16(0) \ (Σi ×H⊥

i ) = Vui|Ωi\Σi
.

ii) Hn(Σ) + ‖Vi TC
1/2,6/16(0)‖(Σi ×H⊥

i )

≤ c
∫
TC

1/2,7/16
(0) dist

2(X, spt ‖C|)d‖V ‖(X).

iii) For X ∈ Ωi \ Σi, dist(X + ui(X),Hi) = |ui(X)|.
If dimA(C(0)) < n − 1, then one of C) and D) hold. Write C =∑2

i=1 |Pi| and C(0) =
∑2

i=1 |P
(0)
i |, labelled so that dH(Pi ∩ (Bn

2 (0) ×
Rk),P

(0)
i ∩ (Bn

2 (0) ×Rk)) < ε. Then we have either

C) V TC
1/2,6/16(0) is a union of smooth minimal graphs: There exists

a domain Ω ⊂ spt ‖C‖ ∩ TC
1/2,6/16(0) and a smooth function u ∈

C∞(Ω;C⊥), such that
i) V = | graphu|.
ii) For X ∈ Ω ∩Pi, dist(X + u(X),Pi) = |u(X)|.
Or

D) V TC
1/2,6/16(0) is, up to a small set, a minimal two-valued graph:

There exists i ∈ {1, 2}, a domain Ω ⊂ Pi ∩ TC
1/2,6/16(0), a measur-

able set Σ ⊂ Ω and ui ∈ C0,1(Ω;A2(P
⊥
i )) such that

i) V TC
1/2,6/16(0) \ (Σ×P⊥

i ) = Vui|Ω\Σ
.

ii) Hn(Σ) + ‖V TC
1/2,6/16(0)‖(Σ ×P⊥

i )

≤ c
∫
TC

1/2,7/16
(0) dist

2(X, spt ‖C|)d‖V ‖(X).

iii) For X ∈ Ω \Σ, dist(X + ui(X),Pi) = |ui(X)|.
Proof. To prove this lemma we take a sequence of varifolds and cones

satisfying the hypotheses for smaller and smaller choices of ε0 and show
that the conclusions must hold at least along a subsequence. So con-
sider a sequence of real numbers εj ↓ 0+, sequences {V j}∞j=1 ∈ VL and

{Cj}∞j=1 ∈ C such that for every j ≥ 1, the Hypotheses 1) to 4) in the

statement of the lemma are satisfied with V j, Cj and εj in place of V ,
C and ε, respectively.

Now, using the mass bound 1) and the compactness theorem for
stationary integral varifolds, we know that there exists a subsequence
{j′} of {j} (to which we pass without changing notation and) along

which we have that V j TCj

1/2,7/16(0) converges to some stationary inte-

gral varifold W in TC(0)

1/2,7/16(0). By 3) and 4) we have that spt ‖W‖ ⊂
spt ‖C(0)‖ ∩ TC(0)

1/2,7/16(0).

Suppose now that dimA(C) = n − 1. Since W is stationary, the
Constancy Theorem [Sim83, Theorem 41.1] implies that it has constant
multiplicity on each connected component of spt ‖W‖ and so we see

that each connected component of spt ‖W‖ must be of the form H
(0)
i ∩
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TC(0)

1/2,7/16(0) for one of the half-planes H
(0)
i of C(0), i.e., we can write

W =
∑

i∈I θi|H
(0)
i ∩T1/2,7/16(0)| where θi is a positive integer for each i.

Choose a small but fixed η > 0 so that the regions (H
(0)
i )η∩T1/2,7/16(0)

for i ∈ I are disjoint. Then, since dH(spt ‖V j‖ ∩ TC(0)

1/2,7/16(0), spt ‖W‖ ∩
TC(0)

1/2,7/16(0))→ 0, we know that for sufficiently large j,

(6.2) spt ‖V j‖ ∩ TC(0)

1/2,7/16(0) ⊂ (H
(0)
i )η ∩ TC(0)

1/2,7/16(0),

whence we define V j
i := V j (H

(0)
i )η ∩ TC(0)

1/2,1/4(0). Now given i ∈ I for

which θi = 1, for sufficiently large j we may apply Allard’s Regular-

ity Theorem to V j
i in order to write it as a smooth graph and deduce

conclusion A). In fact, given any i ∈ I for which Θ
V j
i
(X) < 2 for

all X ∈ spt ‖V j
i ‖ and all sufficiently large j, we can use Theorem 2.1

followed by Allard’s Regularity Theorem to get the same conclusions.

Given i ∈ I for which θi = 2 and such that there exists Z ∈ spt ‖V j
i ‖

with ΘV (Z) ≥ 2, we apply instead Almgren’s Lipschitz Approximation
Lemma ([Alm00, Corollary 3.11], or see [Wic14, Theorem 5.1]) in or-
der to deduce B). Finally, if we were to suppose that there were an i
for which θi ≥ 3, one can use the fact that W is a limit of two-valued
Lipschitz graphs together with the mass bound (1.) to reach a contra-
diction. This completes the proof in the case dimA(C) = n − 1. We
omit the proof for the case where dimA(C) < n−1 as it follows exactly
the same method. The slightly different conclusion results naturally
from the different geometry. q.e.d.

6.2. Small one-sided excess in toric regions when qC > 0. In
this subsection we will prove a lemma that is analogous to Lemma 6.1,
but in the case where qC > 0. To do so, we must make use of the
induction hypothesis H(C,C(0)) (recall that logically, the use of this
lemma comes only after the proofs of Theorem 3.2 and Corollary 3.3
have been established for the qC = 0 case).

Notice that if V j → C(0), the set {Z : ΘV j (Z) ≥ 2} will concentrate

near A(C(0)) – this is how the proof of Lemma 6.1 worked. The next
lemma expresses the important fact that if qC > 0 and if the excess
measured relative to C is much smaller than the excess measured rela-
tive to pairs of planes with higher-dimensional axes, (see Hypothesis 6)
below), then the set {Z : ΘV j (Z) ≥ 2} will concentrate near the smaller

set A(C) � A(C(0)).

Lemma 6.2. There exist numbers ε0 = ε0(n, k,C
(0), L) > 0 and

γ0 = γ0(n, k,C
(0), L) > 0 such that the following is true. If, for some

ε < ε0 and γ < γ0, we have that V ∈ VL, C = |P1| + |P2| ∈ P and

C(0) ∈ P satisfy
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1) ‖V ‖(Bn
2 (0)×Rk) ≤ ‖C(0)‖(Bn

2 (0) ×Rk) + 1/2.

2) qC > 0 and 0 ∈ A(C) � A(C(0)).

3) Hypothesis H(C,C(0)).
4) νC,C(0) < ε.

5) EV TC

1/2,7/16
(0)(C) < ε.

6) EV TC

1/2,7/16
(0)(C) < γEV TC

1/2,7/16
(0)(C).

Then there are two possible conclusions, E) and F): Either

E) V TC
1/2,6/16(0) is a union of single-valued graphs: {X ∈ spt ‖V ‖∩

TC
1/2,6/16(0) : ΘV (X) ≥ 2} = ∅ and V TC

1/2,6/16(0) =
∑2

i=1 Vi,

where for each i ∈ {1, 2}, Vi is a stationary varifold for which
there exists a domain Ωi ⊂ Pi ∩TC

1/2,6/16(0) and ui ∈ C∞(Ωi;C
⊥)

such that
i) Vi = | graphui|.
ii)

∫
TC

1/2,13/32
(0) dist

2(X,Pi)d‖Vi‖(X)

≤ c
∫
TC

1/2,7/16
(0) dist

2(X, spt ‖C‖)d‖V ‖(X), for some constant

c = c(n, k,C(0), L) > 0 (for X ∈ Ωi, dist(X + ui(X),Pi) =
|ui(X)|).

Or,

F) V TC
1/2,6/16(0) is, up to a small set, a minimal two-valued graph:

There exists i ∈ {1, 2}, a domain Ω ⊂ Pi ∩ TC
1/2,6/16(0), a measur-

able set Σ ⊂ Ω and ui ∈ C0,1(Ω;A2(P
⊥
i )) such that

i) V TC
1/2,6/16(0) \ (Σ × P⊥

i ) = Vui|Ω\Σ
and for X ∈ Ω \ Σ,

dist(X+ui(X),Pi) = |ui(X)|, for some constant c = c(n, k) >
0.

ii) Hn(Σ) + ‖V TC
1/2,6/16(0)‖(Σ ×P⊥

i )

≤ c
∫
TC

1/2,13/32
(0) dist

2(X,Pi)d‖V ‖(X), for some constant

c = c(n, k,C(0), L) > 0.
iii)

∫
TC

1/2,13/32
(0) dist

2(X,Pi)d‖V ‖(X)

≤ c
∫
TC

1/2,7/16
(0) dist

2(X, spt ‖C‖)d‖V ‖(X), for some constant

c = c(n, k,C(0), L) > 0.

Proof. Consider to begin with sequences of real numbers εj ↓ 0+ and
γj ↓ 0+, sequences {V j}∞j=1 ∈ V and {Cj}∞j=1 ∈ P such that for every

j ≥ 1, the hypotheses are satisfied with V j, Cj, εj and γj in place of V ,
C, ε and γ, respectively. It suffices to prove that the conclusions of the
lemma hold along some subsequence.

Step 1. Reducing to transverse case. By passing to a subsequence we
may assume the following:
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• There exists a subspace A � A(C(0)) for which dH(A(C
j)∩B2(0),

A ∩B2(0))→ 0 as j →∞.
• qCj ≡ q > 0.
• Using the mass bound (hypothesis 1) of the present lemma) and
the compactness theorem for stationary integral varifolds, there
exists a stationary integral varifold W in TA

1/2,7/16(0) for which

V j TCj

1/2,7/16(0)→ W .

First note that Hypotheses 4) and 5) imply that spt ‖W‖ ⊂ spt ‖C(0)‖∩
TA
1/2,7/16(0) and the Constancy Theorem ([Sim83, Theorem 41.1]) tells

us that the multiplicity of W is constant on each connected component
of spt ‖C(0)‖ \ A(C(0)). If C(0) ∈ P≤n−2, then this means that either

W = C(0) TA
1/2,7/16(0) or W = 2|P(0)

i ∩ TA
1/2,7/16(0)| for some i ∈

{1, 2}. If C(0) ∈ Pn−1, then we have the same conclusions because
the stationarity of W rules out the case where W is supported on 3
half-planes of C(0).

Suppose that W = 2|P(0)
i ∩ TA

1/2,7/16(0)|. If ΘV j (X) < 2 for all X ∈
spt ‖V j‖ ∩ TCj

1/2,7/16(0) for infinitely many j, then conclusion F) follows

along this subsequence by combining Lemma 2.3 with Theorem 2.1 and
Allard’s Regularity Theorem. If, on the other hand, there exist points

Zj ∈ spt ‖V j‖ ∩ TCj

1/2,7/16(0) with ΘV j (Zj) ≥ 2 for sufficiently large

j, then we use Almgren’s Lipschitz Approximation Lemma ([Alm00,
Corollary 3.11]) to also yield conclusion F). Therefore, we can suppose

that W = C(0) TA
1/2,7/16(0). This means that Q

V j TCj

1/2,7/16
(0)

(C(0))→ 0

as j →∞.
We now assume, for the sake of contradiction, that:

for sufficiently large j there exists Zj ∈ spt ‖V j‖ ∩ TCj

1/2,6/16(0)(X)

with ΘV j (Zj) ≥ 2.

Step 2. Picking optimal coarser cones. For some constant β > 0 (that
we will show can be determined depending only on n, k, C(0) and L)
and for each j = 1, 2, ..., we pick a new cone Dj ∈ P according to the

following algorithm: First set Dj
(0) = Cj. Then starting with p = 1,

choose Dj
(p) inductively to satisfy

A(Dj
(p)) � A(Dj

(p−1)),(6.3)

dimA(Dj
(p)) ≤ dimA(C(0)), and(6.4)

E
V j TCj

1/2,7/16
(0)

(Dj
(p)) ≤

3

2
E
V j TCj

1/2,7/16
(0)

(Dj
(p−1)).(6.5)

At each step (i.e., for each p in turn), if either
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dimA(Dj
(p)) = dimA(C(0)), or(6.6)

E
V j TCj

1/2,7/16
(0)

(Dj
(p)) ≤ βE

V j TCj

1/2,7/16
(0)

(Dj
(p))(6.7)

hold, then stop and set Dj = Dj
(p) (in fact, if (6.6) holds, then we

can say that (6.7) holds vacuously). Notice that it must eventually be

the case that (6.6) holds, because the sequence dimA(Dj
(p)) is strictly

increasing in p. Notice also from the construction that

(6.8) E
V j TCj

1/2,7/16
(0)

(Dj) ≤ cE
V j TCj

1/2,7/16
(0)

(Cj),

for some constant c = c(n, k,C(0), L, β) > 0. This follows from the fact

that if Dj = Dj
(p′), then we have the opposite inequality in (6.7) for all

p = 1, . . . , p′−1. Using this in conjunction with (6.5) for p = 1, . . . , p′−1
establishes (6.8).

By passing to another subsequence we may further assume that:
• There exists a subspace A′ with A � A′ ⊂ A(C(0)) for which
dH(A(D

j) ∩B2(0), A
′ ∩B2(0))→ 0 as j →∞.

• 0 ≤ qDj ≡ q′ < q.
• Dj → C(0).
• Zj → Z ∈ A(C(0)) ∩ TA

1/2,6/16(0).

Step 3. Blowing Up. Now let R be the set of all rotations R of Rn+k

such that

1) R fixes A(Cj).

2) R maps TCj

1/2,7/16(0) to itself, and

3) R(Zj) ∈ A(Dj).

And then, for each j, choose Rj ∈ R satisfying

(6.9) |Rj − idRn+k | ≤ 3

2
inf
R∈R

|R− idRn+k |.

Next we let G be the set of all rotations Γ of Rn+k such that

1) Γ fixes A(Cj).

2) Γ maps TCj

1/2,7/16(0) to itself, and

3) (A(Cj) ∪ {Z}) ⊂ A(Γ∗D
j) ⊂ A(C(0)).

And for each j we choose Γj ∈ G satisfying

(6.10) |Γj − idRn+k | ≤ 3

2
inf
Γ∈G

|Γ− idRn+k |.

We claim that

(6.11) ν2
Rj

∗D
j ,Dj ≤ c

∫
TCj

1/2,7/16
(0)

dist2(X, spt ‖Dj‖)d‖V j‖(X).

We will need to use Corollary 3.3 (applied with Dj in place of C); this is

valid because of the induction hypothesisH(C,C(0)) and because q′ < q.
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If q′ = 0, then ii) of Corollary 3.3 implies easily that dist(Zj , A(D
j)) <

1/32, whence some elementary geometric considerations show that for
sufficiently large j,

(6.12) ν
Rj

∗D
j ,Dj ≤ c νTZj∗

Dj ,Dj ,

for some constant c = c(n, k) > 0 (here we have used the fact that Zj

is bounded away from A(Cj), by virtue of belonging to TCj

1/2,6/16(0)).

We see that (6.11) now follows readily from (3.6) of Remark 3.4 applied
with (η

Z
�
A(C(0))

j ,1/32
)∗V

j in place of V . If, on the other hand, q′ > 0,

then more work is needed because ii) of Corollary 3.3 gives only that

dist2(Zj , A(D
j))

≤ c
(
ν2
Dj ,C(0)

)−1
∫
TCj

1/2,7/16
(0)

dist2(X, spt ‖Dj‖)d‖V j‖(X).(6.13)

But, by using the triangle inequality and (3.2) we have that∫
TCj

1/2,7/16
(0)

dist2(X, spt ‖C(0)‖)d‖V j‖(X)(6.14)

≤ 2

∫
TCj

1/2,7/16
(0)

dist2(X, spt ‖Dj‖)d‖V j‖(X) + c ν2
Dj ,C(0) ,

for some absolute constant c > 0. And so, by using (6.7), we deduce
from this that
(6.15)

c−1(1− 2β2)

∫
TCj

1/2,7/16
(0)

dist2(X, spt ‖C(0)‖)d‖V j‖(X) ≤ ν2
Dj ,C(0) .

Combining this with (6.13) and using (6.7) again, we have that

(6.16) dist2(Zj , A(D
j)) ≤ c

β2

1− 2β2
,

for c = c(n, k,C(0), L) > 0. Therefore, by single choice of β de-
pending only on n, k, C(0) and L, we can ensure once again that
dist2(Zj , A(D

j)) < 1/32, whence for sufficiently large j we have that
ν
Rj

∗D
j ,Dj ≤ c νTZj∗

Dj ,Dj . From here, (3.6) of Remark 3.4 applied with

(η
Z

�
A(C(0))

j ,1/32
)∗V

j completes the proof of (6.11).

Moreover, since dH(A(D
j)∩B2(0), A

′∩B2(0))→ 0 and |Zj−Z| → 0,
we have that ν

Γj
∗D

j ,(Rj)−1
∗ Dj → 0, whence using triangle inequality and

the fact that Dj → C(0), we get that ν
Γj
∗D

j ,C(0) → 0.

We will now blow up {Γj
∗R

j
∗V

j TCj

1/2,7/16(0)}∞j=1 off C(0) relative to

the sequence of cones {Γj
∗D

j}∞j=1 in the region TA
1/2,7/16(0). Because of

the different domain, this is slightly different from the general blow-up
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procedure used to constructB(C(0)) in Section 4, but we will only need a
few properties of the blow-up so let us briefly outline the procedure here:

Fix τ0 ∈ (0, 1/64) and suppose that Γj
∗D

j = |ΓjQj
1| + |ΓjQj

2|, labelled
so that |ΓjQj

i | → |P(0)
i | as j → ∞ for i = 1, 2. Then, for sufficiently

large j, we can represent ΓjQj
i ∩{rC(0) > τ0} as the graph of dj (defined

on a domain in Ω := B1(0) ∩ (spt ‖C(0)‖ \ A(C(0)))). Furthermore, we

can represent Γj
∗R

j
∗V

j (TCj

1/2,(1−τ0)7/16
(0) ∩ {rC(0) > τ0}) as the graph

of dj + uj, where uj is defined on a domain in Ω ∩ TA
1/2,7/16(0). Then,

since τ0 is arbitrary, if we set

(6.17) Ej :=

(∫
TCj

1/2,7/16
(0)

dist2(X, spt ‖Γj
∗D

j‖)d‖Γj
∗R

j
∗V

j‖(X)

)1/2

,

we have that E−1
j uj converges on compact subsets of Ω∩TA

1/2,7/16(0) to

a harmonic function v.

Step 4. The Structure of the Blow-Up. Using the facts that both Rj

and Γj are rigid motions of TCj

1/2,7/16(0) together with Hypothesis 6) of

the present lemma, we see that∫
TCj

1/2,7/16
(0)

dist2(X, spt ‖Γj
∗R

j
∗C

j‖)d‖Γj
∗R

j
∗V

j‖(X)

=

∫
TCj

1/2,7/16
(0)

dist2(X, spt ‖Cj‖)d‖V j‖(X)

<γj

∫
TCj

1/2,7/16
(0)

dist2(X, spt ‖(Rj)−1
∗ Dj‖)d‖V j‖(X)

=γjE
2
j .(6.18)

This shows that on Ω ∩ TA
1/2,7/16(0), the function v coincides with the

function obtained by blowing up Γj
∗R

j
∗C

j relative to Γj
∗D

j using the
same excess. This latter blow-up is the blow-up of a sequence of pairs
of planes and so we deduce that v is given by linear functions defined

on (P
(0)
i \A(C(0))) ∩ TA

1/2,7/16(0) for i = 1, 2.

Let us check that v �≡ 0. Relying again on the fact that Rj is a rigid

motion of TCj

1/2,7/16(0), and then using the triangle inequality and (3.2)

we have that

E2
j =

∫
TCj

1/2,7/16
(0)

dist2(X, spt ‖Dj‖)d‖Rj
∗V

j‖(X)

(6.19)

≤
∫
TCj

1/2,7/16
(0)

dist2(X, spt ‖Rj
∗C

j‖)d‖Rj
∗V

j‖(X) + c ν2
Dj ,Rj

∗C
j ,
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for some absolute constant c > 0. Then by changing variables in the
integral and using Hypothesis 6) of the present lemma, we have that
this is less than

γj

∫
TCj

1/2,7/16
(0)

dist2(X, spt ‖(Rj)−1
∗ Dj‖)d‖V j‖(X) + c ν2

Dj ,Rj
∗C

j

=γjE
2
j + c ν2

Dj ,Rj
∗C

j ,

(6.20)

Thus by absorbing the first term in (6.20) back into (6.19), we deduce
that

(6.21) 0 < c ≤ E−1
j ν

Γj
∗D

j ,Γj
∗R

j
∗C

j ,

for some absolute constant c > 0, which indeed implies that v �≡ 0.

Now on (P
(0)
i \ A(C(0))) ∩ TA

1/2,7/16(0) set lji := dji + Ejv and let Lj
i

denote the unique plane containing graph lji . We define Fj := |Lj
1|+|L

j
2|.

Since v �≡ 0, notice that Fj �= Dj .

We claim that A(Fj) � A(Cj). Since A(Cj) � A(Γj
∗D

j) ⊂ A(C(0))

for every j we have that dji ≡ 0 on A(Cj). And since v is the blow-up of

Γj
∗R

j
∗C

j and A(Γj
∗R

j
∗C

j) = A(Cj) for every j, we also have that v ≡ 0

on A(Cj). This means that lji ≡ 0 on A(Cj) for i = 1, 2 which means
that

(6.22) A(Cj) ⊂ (Lj
1 ∩ Lj

2) = A(Fj).

Now, since Z ∈ A(Γj
∗D

j) ⊂ A(C(0)) for every j, we have that dji (Z) = 0

for every j. And, since |(Γj ◦Rj)(Zj)
⊥

A(Γ
j
∗D

j ) | = 0 for every j, we have

that κv(Z) = 0 (by Remark 4.5). This means that lji (Z) = 0 for all j
and for i = 1, 2, from which we can conclude that

(6.23) Z ∈ (Lj
1 ∩ Lj

2) = A(Fj).

Since we also have dist(Zj , A(C
j)) ≥ 1/16, the combination of (6.22)

and (6.23) shows that A(Fj) � A(Cj) as claimed.

Step 5. Establishing a Contradiction. The L2 convergence to the blow-
up implies that

(6.24) E−1
j

∫
TCj

1/2,7/16
(0)

dist2(X, spt ‖(Γj ◦Rj)−1
∗ Fj‖)d‖V j‖(X)→ 0.

And, using the triangle inequality and (3.2) we have

E2
j =

∫
TCj

1/2,7/16
(0)

dist2(X, spt ‖(Rj)−1
∗ Dj‖)d‖V j‖(X)(6.25)

≤
∫
TCj

1/2,7/16
(0)

dist2(X, spt ‖Dj‖)d‖V j‖(X) + c ν2
Dj ,(Rj)−1

∗ Dj ,(6.26)
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for some absolute constant c > 0. So, since ν
Dj ,(Rj)−1

∗ Dj = ν
Rj

∗D
j ,Dj ,

using (6.11) shows that

(6.27) Ej ≤ c

∫
TCj

1/2,7/16
(0)

dist2(X, spt ‖Dj‖)d‖V j‖(X),

for some constant c = c(n, k,C(0), L) > 0. Combining (6.24) with (6.27)
contradicts (6.8). This contradiction establishes that (X) does not hold.
Therefore, along a subsequence we have that ΘV j (Z) < 2 for all Z ∈
spt ‖V j‖ ∩ TCj

1/2,6/16(0). From here, the specific conclusions of E) follow

by applying Theorem 2.1, Allard’s Regularity Theorem and (2.7) of
Lemma 2.3 to get E) ii). q.e.d.

The next lemma records the observations that one can easily make in
the situation in which Hypothesis 6) of Lemma 6.2 does not hold. This
is the setting for the most intricate part of the proof of Theorem 3.2,
namely Section 6.3.2.

On more than on occasion in the sequel we will need the following
construction: Given D ∈ C, we define HD as follows. If dimA(D) =

n− 1, then we have that D =
∑4

i=1 |Hi| for half-planes Hi and we just
set HD = H1. If instead dimA(D) < n− 1, then D = |Q1|+ |Q2| ∈ P
and we pick a unit length vector ωD that lies in Q1 and is orthogonal to
A(D). Then let A1 be the d := (dimA(D) + 1) – dimensional subspace
of Q1 that is spanned by ωD and A(D). Now define HD to be the
connected component of A1 \ A(D) that contains ωD. Observe that if
X = (x, y) is written in a basis in which D is properly aligned, then ωD

is the unique direction such that (|x|ωD, y) ∈ HD.

Corollary 6.3. Fix η and α > 0. There exists a number ε0 = ε0(n, k,

C(0), L, η) > 0 such that the following is true. If, for some ε < ε0, we

have that V ∈ VL, C = |P1|+ |P2| ∈ P and C(0) ∈ P satisfy Hypotheses
1) to 5) of Lemma 6.2, then: Either one of the conclusions E) of F) of
Lemma 6.2 holds, or we have:

G) There exists D = |Q1|+ |Q2| ∈ P and an open set O ⊂ HD such
that
i) A(C) � A(D),
ii) EV TC

1/2,7/16
(0)(D) ≤ cEV TC

1/2,7/16
(0)(C)

for some c = c(n, k,C(0), L, α) > 0,
iii) Either qD = 0,

or qD > 0 and we have cνD,C(0) ≥ EV TC

1/2,7/16
(0)(C

(0)) for some

c = c(n, k,C(0), L) > 0 and EV TC

1/2,7/16
(0)(D) ≤

αEV TC

1/2,7/16
(0)(D),

iv) V TD(O) consists only of smooth graphs defined over Q1 or
Q2,
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v) HD ∩ TC
1/2,6/16(0) ⊂ O ∪ (D(V ))η,

vi) O ∩ (D(V ))η/4 = ∅,
where

D(V ) :=
{
X ∈ HD ∩ TC

1/2,6/16(0) : ∃Z ∈ TD({X}) with ΘV (Z) ≥ 2
}
.

Proof. Consider to begin with a sequence of real numbers εj ↓ 0+ and
sequences {V j}∞j=1 ∈ VL and {Cj}∞j=1 ∈ P such that for every j ≥ 1,

the hypotheses are satisfied with V j , Cj and εj in place of V , C and
ε, respectively. It suffices to prove that the conclusions of the lemma
hold along some subsequence. By arguing as in Step 1 of the proof of
Lemma 6.2, we see that either we have conclusion F) of Lemma 6.2 or

we have that Q
V j TCj

1/2,7/16
(0)

(C(0))→ 0 as j →∞. If

E
V j TCj

1/2,7/16
(0)

(Cj) < γ0EV j TCj

1/2,7/16
(0)

(Cj)(6.28)

holds for infinitely many j, where γ0 is as in the statement of Lemma 6.2,
then we can of course get conclusion E) of Lemma 6.2. So we will now
prove G) under the assumption that (6.28) does not hold.

Begin by constructing new cones {Dj}∞j=1 exactly as in Step 2 of the
proof of Lemma 6.2. The construction is such that we can immediately
verify i) and (bearing in mind the negation of (6.28)), ii) of the present
lemma. Conclusion iii) is obtained by arguing as per (6.13)–(6.15) in
Lemma 6.2. Set

Dj :=
{
X ∈ HDj ∩ TCj

1/2,6/16(0) : ∃Z ∈ TDj
({X}) with ΘV j (Z) ≥ 2

}
.

By correct choice of HDj and by passing to a subsequence we may
assume that:
• There exists a subspace A with A ⊂ A(C(0)) for which dH(A(C

j)∩
B2(0), A ∩B2(0))→ 0 as j →∞.

• There exists a subspace A′ with A � A′ ⊂ A(C(0)) for which
dH(A(D

j) ∩B2(0), A
′ ∩B2(0))→ 0 as j →∞.

• There exists a half-space H′ with A′ ⊂ H′ ⊂ spt ‖C(0)‖ for which
dH(HDj ∩B2(0),H

′ ∩B2(0))→ 0 as j →∞.
• 0 ≤ qDj ≡ q′ < q.
• dH(Dj,D)→ 0 as j →∞ for some closed set D ⊂ H′.

For sufficiently large j (depending on η > 0) we have that (Dj)η/4 ⊂
(D)η/2 ⊂ (Dj)η. Write

Oj := Hj ∩
(
TA′

(H′ ∩ (D)cη/2 ∩ TCj

1/2,13/32(0))
)
.

Since (Dj)η/4 ⊂ (D)η/2, we can use Theorem 2.1 and Allard’s regularity

theorem to conclude that V j TA′
(H′ ∩ (D)cη/2 ∩ TCj

1/2,6/16(0)) consists

of a finite collection of smooth graphs, which for sufficiently large j
can be taken to be defined over the planes of Dj . This shows that
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Oj satisfies iv). It is also straightforward to check from this definition
that v) and vi) hold. q.e.d.

Remark 6.4. In Step 3 of Section 6.3.2, we will have a situation
where

e(K)−n−2EV TC(K)(TZ∗C) < ε,

for sufficiently small ε > 0, where K ⊂ HC is a cube with edge length
e(K) and that is adjacent to A(C) and where rC(Z) < 1

10e(K). This is
different from the other situations analysed thus far, but arguments very
similar to those that we have seen in Step 1 of the proof of Lemma 6.2
and again in the proof of Corollary 6.3 show that one of the following
situations must occur:
E)adj ΘV (Z) < 2 for all Z ∈ spt ‖V ‖∩TC(K). In this case, V TC(K ′)

(for a smaller cube K ′ ⊂ K) is a union of smooth graphs over the
planes of TZ∗C.

F )adj V TC(K ′) is, up to a small set, a two-valued graph over one
of the planes of TZ∗C. In this case, conclusions analogous to F)
of Lemma 6.2 hold with TC(K ′′) and TC(K ′) for smaller cubes
K ′′ ⊂ K ′ ⊂ K in place of the regions TC

1/2,6/16(0) and TC
1/2,13/32(0).

G)adj None of the above: V TC(K) is ‘transverse’, by which we mean
that∫

TC(K)∩{r
C
(0)>

1
8e(K)}

dist2(X, spt ‖τξ∗V ‖)d‖C‖(X) < cε,

for some constant c = c(n, k,C(0), L) > 0, where ξ := Z⊥A(C) ,
and there are still singular points present, i.e., {Z : ΘV (Z) ≥
2} ∩ TC(K) �= ∅.

6.3. Proof of Theorem 3.2. Now we begin the proof of Theorem 3.2.
Suppose we have a sequence of numbers {εj}∞j=1 with εj ↓ 0+ and se-

quences {V j}∞j=1 ∈ VL and {Cj}∞j=1 ∈ C satisfying the hypotheses of

the theorem with V j, Cj and εj in place of V , C and ε. In this case,
using the mass bound (1) of Hypotheses A) and the compactness the-
orem for stationary integral varifolds, we can extract a subsequence
{j′} of {j} (to which we pass without changing notation) and a sta-
tionary integral n-varifold W in Bn

2 (0) ×Rk for which V j → W . We

get from 3) and 4) of Hypotheses A that spt ‖W‖ ⊂ spt ‖C(0)‖ and

spt ‖W‖ \ {rC(0) < 1/8} = spt ‖C(0)‖ \ {rC(0) < 1/8}. Furthermore, the
Constancy Theorem ([Sim83, § 41]) implies thatW has constant integer
multiplicity on each of the connected components of spt ‖C(0)‖\A(C(0)).
Using this together with the mass bound for W (the same mass bound is
inherited), we see that this multiplicity must, in fact, be one everywhere

and hence that W = C(0).
Now, the upper semicontinuity of ΘV j (·) with respect to both the spa-

tial variable and varifold convergence implies that for sufficiently large
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j (depending on τ , n, k and C(0))) we have that {Z : ΘV j (Z) ≥ 2} ⊂
{rC(0) < τ/4}. This means that for anyX ∈ spt ‖C(0)‖∩B2(0)∩{rC(0) ≥
τ}, we may apply Allard’s Regularity Theorem to V j Bτ/2(X) to de-

duce that V j Bτ/4(X) = | graph(uX + c)|, where uX ∈ C∞(UX ;C(0)⊥)
for some domain UX ⊂ spt ‖C‖ ∩ {rC(0) > 0}. Since we may do this

at each point of the compact set spt ‖C(0)‖ ∩B15/8(0) ∩ {rC(0) ≥ τ/2},
we may invoke unique continuation of smooth solutions to the minimal
surface system to deduce that provided j is sufficiently large (depend-
ing only on τ , n, k and C(0)), we indeed have a function u satisfying
conclusion i). For the remainder of the proof we drop the index j.

The proof of the estimates ii) to v) are based on the proof of
Lemma 3.4 of [Sim93], but require substantial modification. Some
of these modifications are in the spirit of the proof of Theorem 10.1
of [Wic14] and some are new. As per the derivation of (2) and (3)
in the proof of Lemma 3.4 of [Sim93], we let ψ : [0,∞) → R be a
non-increasing smooth function with ψ ≡ 1 on [0, 13/16] and ψ ≡ 0 on
(29/32,∞) and such that ψ′ and ψ′′ are bounded by some absolute con-
stant. Then, using the monotonicity formula and a computation with
the first variation formula, we establish the estimates

∫
B5/8(0)

|X⊥TXV |2
|X|n+2

d‖V ‖(X) ≤c
(∫

B1(0)
ψ2(R)d‖V ‖(X)

−
∫
B1(0)

ψ2(R)d‖C‖(X)

)
,(6.29)

and

∫
B1(0)

⎛
⎝l +

1

2

m∑
j=1

|e⊥TXV

l+k+j|2
⎞
⎠ψ2(R)d‖V ‖(X)

≤ c

∫
B1(0)

|(x, 0)⊥TXV |2
(
(ψ′(R))2 + ψ(R)2

)
d‖V ‖(X)

− 2

∫
B1(0)

r2CR
−1ψ(R)ψ′(R)d‖V ‖(X),

(6.30)

for some constant c = c(n) > 0 and where (x, y) is written in a basis
in which C is properly aligned. Also (as in (6) of the same proof in
[Sim93]), it can be verified via a computation using the coarea formula
and integration by parts that

(6.31) l

∫
B1(0)

ψ2(R)d‖C‖(X) = −2
∫
B1(0)

r2CR
−1ψ(R)ψ′(R)d‖C‖(X).
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Subtracting (6.31) from (6.30) gives

1

2

∫
B1(0)

m∑
j=1

|e⊥TXV

l+k+j|2ψ2(R)d‖V ‖(X)

+ l

∫
B1(0)

ψ2(R)d‖V ‖(X) − l

∫
B1(0)

ψ2(R)d‖C‖(X)

≤ c

∫
B1(0)

|(x, 0)⊥TXV |2
(
(ψ′(R))2 + ψ(R)2

)
d‖V ‖(X)

− 2

∫
B1(0)

r2CR
−1ψ(R)ψ′(R)d‖V ‖(X)

+ 2

∫
B1(0)

r2CR
−1ψ(R)ψ′(R)d‖C‖(X).(6.32)

We bound the right-hand side of the above line using a covering argu-
ment. Set H := HC and define Y := H ∩ {0 < rC < 1/28} ∩B15/16(0).
Now pick a countable collection I of points (x, y) ∈ Y (points here are
in a basis in which C is properly aligned) such that
C1) Y ⊂ ⋃

(x,y)∈I B|x|/8(x, y).

C2) B := {B15|x|/16(x, y)}(x,y)∈I can be decomposed into the pairwise
disjoint sub-collections B1,...,BN for some N = N(n).

This can be done exactly as in the proof of Theorem 10.1 of [Wic14],
immediately preceding (10.18) therein. Then let J be a collection of
J = J(n) points Y ∈ Z := H ∩ (B15/16(0) \ {rC < 1/28}) such that
Z ⊂ ⋃

Y ∈J B1/64(Y ) and define

Ψ := {B3|x|/16(x, y) ∩H}(x,y)∈I ∪ {B3/128(Y ) ∩H}Y ∈J .

Then apply [Fed69, 3.1.13] to the covering Ψ and with the function

h(X) :=
1

20
sup
B∈Ψ

min{1,dist(X,Bc)},

for X ∈ ⋃
Ψ. The result is that we obtain a family of smooth functions

{ϕs}s∈S , for which
1) S is a countable subset of

⋃
Ψ and ϕs :

⋃
Ψ→ [0, 1] for all s ∈ S.

2) {Bh(s)(s)}s∈S is pairwise disjoint and for each s ∈ S, there exists
B ∈ Ψ such that Bh(s)(s) ⊂ sptϕs ⊂ B10h(s)(s) ⊂ B.

3)
∑

s∈S ϕs(X) = 1 for all X ∈ ⋃
Ψ.

4) |Dϕs(X)| ≤ Ch(X)−1 for each s ∈ S and each X ∈ ⋃
Ψ, where

C = C(n) ∈ (0,∞).
It follows from 4) and the definition of h that for each s ∈ S,
(6.33) |Dϕs(X̃)| ≤ crC(X̃)−1,

whenever X̃ ∈ ⋃
(x,y)∈I(B5|x|/32 ∩ H) ∪ ⋃

Y ∈J (B5/256(Y ) ∩ H). For

each s ∈ S, extend ϕs to the rest of H by setting ϕs(X) = 0 for
X ∈ H \⋃Ψ and let ϕ̃s be the smooth extension of ϕs to Rn+k defined
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by ϕ̃s(x, y) = ϕs(|x|ωC, y). As per (10.22) and (10.23) of [Wic14,
Theorem 10.1], it can now be shown, by only elementary considerations,
that there is a fixed constant M = M(n, k) such that for each (x, y) ∈ I,
(6.34) #{s ∈ S : spt ϕ̃s ⊂ TC

|x|,3|x|/16(x, y)} ≤M,

and for each Y ∈ J ,

(6.35) #{s ∈ S : spt ϕ̃s ⊂ TC(B3/128(Y ))} ≤M.

Note (by the construction of H) that ϕs(X) only depends on rC(X) =

|x| and X�A(C) = y. The main claim is then the following:

Claim 6.5. Suppose (ξ, ζ) ∈ I and s ∈ S is such that spt ϕ̃s ⊂
TC
|ξ|,3|ξ|/16(ζ). Then we have the following estimate:∫

B1(0)
ϕ̃s |(x, 0)⊥TXV |2d‖V ‖(X)

− 2

∫
B1(0)

ϕ̃s r
2
CR

−1ψ(R)ψ′(R)d‖V ‖(X)

+ 2

∫
B1(0)

ϕ̃s r
2
CR

−1ψ(R)ψ′(R)d‖C‖(X)

≤ c

∫
TC

|ξ|,15|ξ|/16
(0)

dist2(X, spt ‖C‖)d‖V ‖(X).(6.36)

It will be clear from the proof of this claim that the following corre-
sponding estimate for points of J also holds: For any Y ∈ J and any
s ∈ S with spt ϕ̃s ⊂ TC(B3/128(Y )), we have∫

B1(0)
ϕ̃s |(x, 0)⊥TXV |2d‖V ‖(X)

− 2

∫
B1(0)

ϕ̃s r
2
CR

−1ψ(R)ψ′(R)d‖V ‖(X)

+ 2

∫
B1(0)

ϕs r
2
CR

−1ψ(R)ψ′(R)d‖C‖(X)

≤ c

∫
TC(B1/32(Y ))

dist2(X, spt ‖C‖)d‖V ‖(X).(6.37)

Before we move on to the proof of Claim 6.5, let us see how it implies
the conclusions ii) to v) in the statement. First note that

B15|x|/16(x, y) ∩B15|x0|/16(x0, y0) �= ∅(6.38)

⇔TC
|x|,15|x|/16(y) ∩ TC

|x0|,15|x0|/16
(y0) �= ∅,

which implies (in light of C2)) that {TC
|x|,15|x|/16(y)}(x,y)∈I can be de-

composed into N pairwise disjoint sub-collections. Now choose enumer-
ations J = {Yj}Jj=1 and I = {(xJ+j , yJ+j)}∞j=1 and for 1 ≤ j ≤ J
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let
(6.39)

Sj := {s ∈ S : spt ϕ̃s ⊂ TC(B3/128(Yj)) and spt ϕ̃s ∩ spt ‖V ‖ �= ∅},
and for j ≥ J + 1 let
(6.40)

Sj := {s ∈ S : spt ϕ̃s ⊂ TC
|xj |,3|xj|/16

(yj) and spt ϕ̃s ∩ spt ‖V ‖ �= ∅}.

And write {s ∈ S : spt ϕ̃s ∩ spt ‖V ‖ �= ∅} =
⋃∞

j=1 S ′
j , where S ′

1 = S1 and

S ′
j = Sj\

⋃j−1
i=1 S ′

i. The collections S ′
j are pairwise disjoint and (by (6.34)

and (6.35)) we have that card S ′
j ≤M for every j. So now, in (6.36) and

(6.37) we sum first over s ∈ S ′
j and then over j ∈ {1, ...J} in (6.37) and

j ≥ J + 1 in (6.36). Then adding the two resulting inequalities, using
the fact that

∑
s∈S ϕs(X) = 1 and the fact that {TC

|x|,15|x|/16(y)}(x,y)∈I
can be decomposed into N pairwise disjoint sub-collections, we achieve
the estimate∫
B15/16(0)

|(x, 0)⊥TXV |2d‖V ‖(X)− 2

∫
B15/16(0)

r2CR
−1ψ(R)ψ′(R)d‖V ‖(X)

+ 2

∫
B15/16(0)

r2CR
−1ψ(R)ψ′(R)d‖C‖(X)

≤ c

∫
B1(0)

dist2(X, spt ‖C‖)d‖V ‖(X).

(6.41)

We, therefore, deduce (in light of (6.32) and (6.29)), conclusions ii)
and iv). The other conclusions (i.e., iii) and v)) can now be derived
exactly as they are in the proof of Lemma 3.4 of [Sim93]. We, therefore,
shift our attention to the proof of Claim 6.5.

6.3.1. Proof of Claim 6.5. Let m′ := dimA(C) + 1, i.e., the dimen-
sion of H. For some δ to eventually be determined depending only on
n, k, C(0) and L, we write Y = U ∪ W, where W is the set of points
(ξ, ζ) ∈ Y where

(6.42) (15|ξ|/16)−m′−2EV TC

|ξ|,7|ξ|/8
(ζ)(C) ≥ δ,

and U := Y \W. If qC > 0, then for some β to eventually be determined

depending only on n, k, C(0) and L, we write U = U1 ∪ U2, where U1 is
the set of points (ξ, ζ) ∈ U where

(6.43) EV TC

|ξ|,7|ξ|/8
(ζ)(C) < βEV TC

|ξ|,7|ξ|/8
(ζ)(C),

and U2 is the set of points (ξ, ζ) ∈ U where

(6.44) EV TC

|ξ|,7|ξ|/8
(ζ)(C) ≥ βEV TC

|ξ|,7|ξ|/8
(ζ)(C).
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Suppose to begin with that (ξ, ζ) ∈ W. In this case, using the mono-
tonicity formula and the fact that r2C|TC

|ξ|,3|ξ|/16
(ζ) ≤ c(n)|ξ|2, we easily

have that∫
B1(0)

ϕ̃s |(x, 0)⊥TXV |2d‖V ‖(X)− 2

∫
B1(0)

ϕ̃s r
2
CR

−1ψ(R)ψ′(R)d‖V ‖(X)

+ 2

∫
B1(0)

ϕ̃s r
2
CR

−1ψ(R)ψ′(R)‖C‖(X) ≤ c|ξ|m′+2,

(6.45)

and so the required estimate follows immediately from (6.42). Suppose
now that (ξ, ζ) ∈ U . Assume to begin with that either we have qC = 0
or we have both qC > 0 and (ξ, ζ) ∈ U1. Under these hypotheses
we will be able to appeal to Lemma 6.1 (if qC = 0) or Lemma 6.2

(if qC > 0 and (ξ, ζ) ∈ U1). Let us do exactly that. Define Ṽ :=
((η(0,ζ),2|ξ|)∗V ) (Bn

2 (0) × Rk). Since the negation of (6.42) holds, a
change of variables shows that

(6.46) EṼ TC

1/2,7/16
(0)(C) < cδ,

for some constant c = c(n) > 0 and similarly, if qC > 0, we get from
(6.43) that

(6.47) EṼ TC

1/2,7/16
(0)(C) < cβEṼ TC

1/2,7/16
(0)(C).

So, by correct choice of δ and β, we have that Ṽ , C and C(0) satisfy
the hypotheses of Lemma 6.1 (if qC = 0) or Lemma 6.2 (if qC > 0 and
(ξ, ζ) ∈ U1). After applying the relevant lemma, there are various possi-
ble different conclusions (i.e., conclusions A), B), C) or D) of Lemma 6.1
and conclusions E) and F) of Lemma 6.2). These possibilities may be
summarized by saying that we may now write V TC

|ξ|,|ξ|/2(ζ) =
∑

i∈I Vi

where for each i ∈ I: Vi is a stationary varifold in TC
|ξ|,|ξ|/2(ζ) and there

exists a plane Q(i) and a domain Ωi ⊂ Q(i) such that either

• Q(i) = Pi for some i ∈ {1, 2} (if C = |P1|+ |P2| ∈ P),
or

• Q(i) ⊃ Hj ⊃ Ωi for some j ∈ {1, . . . , 4} (if C =
∑4

j=1 |Hj| ∈
Cn−1 \ Pn−1),

and such that either

• Vi is a smooth single-valued graph over Ωi (conclusions A), C) and
E)), or

• Vi is (‘up to a small set’) a two-valued Lipschitz graph over Ωi

(conclusions B), D) and F)).

In describing this part of the argument, let us assume that C ∈ P
and that i ∈ I is such that Vi is, up to a small set, a two-valued
graph. The other cases here are strictly simpler. Let Σi ⊂ Ωi and
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ui be the measurable set and function the existences of which are as-
serted by conclusions B), D) or F). Now, for X = (x, y) ∈ ((Ωi \ Σi)×
Q⊥

(i)) ∩ spt ‖Vi‖ ∩ TC
|ξ|,|ξ|/2(ζ), write X ′ = (x′, y) for the nearest point

projection of X to Q(i), so that ui(x
′, y) = (x − x′, 0). Then notice

that

(x, 0)⊥TXVi = uαi (x
′, y) + (x, 0)⊥TXVi − uαi (x

′, y)

= uαi (x
′, y) + (p⊥

TXVi
− p⊥

Q(i)
)(x, 0)

(where α ∈ {1, 2} for ui(X) = {u1i (X), u2u(X)}), and hence

(6.48) |(x, 0)⊥TXVi |2 ≤ 2(|uαi (X ′)|2 + ‖p⊥
TXVi

− p⊥
Q(i)
‖2r2C(X)).

Recall also that in each of the conclusions B), D) and F) we get the
estimate

Hn(Σi) + ‖Vi‖(Σi×Q⊥
(i))

≤ c|ξ|−2

∫
TC

|ξ|,15|ξ|/16
(ζ)

dist2(X, spt ‖C‖)d‖V ‖(X).(6.49)

So, we use (6.49) on the non-graphical set. And on the graphical set
((Ωi \ Σi) × Q⊥

(i)) ∩ spt ‖Vi‖ we use (6.48) and [Sim83, Lemma 22.2]

(the standard estimate for tilt-excess in term of height-excess). And
in both cases, we also use the point-wise estimate r2C|Ωi ≤ |ξ|2 to get
that:∫
TC

|ξ|,|ξ|/4
(ζ)

ϕ̃s |(x, 0)⊥TXVi |2d‖Vi‖(X)

≤ c

∫
TC

|ξ|,|ξ|/2
(ζ)

dist2(X, spt ‖Q(i)‖)d‖Vi‖(X).(6.50)

When Vi is a single-valued graph, one can use elliptic estimates for the
supremum of |ui| and |Dui| in terms of L2 norm to get this estimate.
Finally, we can conclude that∫

B1(0)
ϕ̃s |(x, 0)⊥TXV |2d‖V ‖(X)

≤ c

∫
TC

|ξ|,15|ξ|/16
(ζ)

dist2(X, spt ‖C‖)d‖V ‖(X),(6.51)

where, in the case qC > 0, we have used the estimate iii) of F) of
Lemma 6.2. This completely handles the first term of the estimate
in Claim 6.5 when qC = 0 and (ξ, ζ) ∈ U and when qC > 0 and
(ξ, ζ) ∈ U1.

Now for the other terms of the estimate in Claim 6.5. This part is
similar to lines (10.24)–(10.27) of [Wic14]. First, we can once again
discard the non-graphical part of Vi, i.e., spt ‖Vi‖ ∩ (Σi × Q⊥

(i)) and
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subsume it into an error term, the size of which is controlled by (6.49).
Then, we use the area formula to write the graphical part spt ‖Vi‖ ∩
((Ωi \Σi)×Q⊥

(i)) as an integral over Ωi \Σi:∫
TC

|ξ|,|ξ|/2
(ζ)

ϕ̃s(X)r2CR
−1ψ(R)ψ′(R)d‖Vi‖(X)

=
∑
α=1,2

∫
Ωi\Σi

ϕs(rC,uα
i
, y)

× r2C,uα
i
R−1

uα
i
ψ(Ruα

i
)ψ′(Ruα

i
)|J (uαi )|dHn(X) + E1,

where rC,uα
i
(x, y) :=

√
|x|2 + |uαi (x, y)|2, Ruα

i
(X) :=

√
|X|2 + |uαi (X)|2

and |J (uαi )| := det(δαβ+ΣκDαu
α,κ
i Dβu

α,κ
i )1/2, where uαi (X) = (uα,1i , ...,

uα,ki ). Continuing with this estimate we have that

∑
α=1,2

∫
Ωi\Σi

ϕs(rC,uα
i
, y) r2C,uα

i
R−1

uα
i
ψ(Ruα

i
)ψ′(Ruα

i
)|J (uαi )|dHn(X) + E1

=
∑
α=1,2

∫
Ωi\Σi

ϕs(rC,uα
i
, y) r2CR

−1
uα
i
ψ(Ruα

i
)ψ′(Ruα

i
)dHn(X) + E2

=
∑
α=1,2

∫
Ωi\Σi

ϕs(rC,uα
i
, y) r2CR

−1ψ(R)ψ′(R)dHn(X)

+
∑
α=1,2

∫
Ωi\Σi

ϕs(rC,uα
i
, y) r2C

[
R−1

uα
i
ψ(Ruα

i
)ψ′(Ruα

i
)

−R−1ψ(R)ψ′(R)
]
dHn(X) + E2

=
∑
α=1,2

∫
Ωi\Σi

ϕs(rC,uα
i
, y) r2CR

−1ψ(R)ψ′(R)dHn(X) + E3,

where, by using the estimate (6.49), the mean-value inequality, the
bound for tilt-excess in terms of height-excess, the pointwise identity
|uαi (X)| = dist(X + uαi (X),Q(i)) and r2C|Ωi ≤ c|ξ|2, and iii) of F) of
Lemma 6.2 (if qC > 0), we have that

(6.52) |E1|, |E2|, |E3| ≤ c

∫
TC

|ξ|,15|ξ|/16
(ζ)

dist2(X, spt ‖C‖)d‖V ‖(X),

for some constant c = c(n, k,C(0), L) > 0. Then finally∑
α=1,2

∫
Ωi\Σi

ϕs(rC,uα
i
, y) r2CR

−1ψ(R)ψ′(R)dHn(X) + E3

= 2

∫
Ωi\Σi

ϕs(rC, y) r
2
CR

−1ψ(R)ψ′(R)d‖C‖(X)



SINGULARITIES OF MINIMAL TWO-VALUED GRAPHS 303

+
∑
α=1,2

∫
Ωi\Σi

(
ϕs(rC,uα

i
, y)− ϕs(rC, y)

)
× r2CR

−1ψ(R)ψ′(R)dHn(X) + E3.

We can again use the mean value inequality together with (6.33), to
bound the absolute value of the second term by

c

∫
TC

|ξ|,15|ξ|/16
(ζ)

dist2(X, spt ‖C‖)d‖V ‖(X).

Thus we achieve the estimate

−2
∫
TC

|ξ|,|ξ|/2
(ζ)

ϕ̃s r
2
CR

−1ψ(R)ψ′(R)d‖Vi‖(X)

+2

∫
Ωi

ϕs r
2
CR

−1ψ(R)ψ′(R)d‖C‖(X)

≤ c

∫
TC

|ξ|,15|ξ|/16
(ζ)

dist2(X, spt ‖C‖)d‖V ‖(X).(6.53)

By a similar argument for the case in which Vi is a single-valued graph
and then by summing over i, we get that

−2
∫
TC

|ξ|,|ξ|/2
(ζ)

ϕ̃s r
2
CR

−1ψ(R)ψ′(R)d‖V ‖(X)

+2

∫
TC

|ξ|,|ξ|/2
(ζ)

ϕs r
2
CR

−1ψ(R)ψ′(R)d‖C‖(X)

≤ c

∫
TC

|ξ|,15|ξ|/16
(ζ)

dist2(X, spt ‖C‖)d‖V ‖(X),(6.54)

which handles the second two terms in (6.36) and, therefore, completes
the proof of Claim 6.5 when qC = 0 and (ξ, ζ) ∈ U and when qC > 0
and (ξ, ζ) ∈ U1.

This completes the proof of Theorem 3.2 in the qC = 0 case. It
remains to complete the proof of Claim 6.5 in the case where qC > 0
and (ξ, ζ) ∈ U2.
6.3.2. Proof of Claim 6.5 continued: Estimates in terms of a
coarser excess. So here we suppose that qC > 0 and (ξ, ζ) ∈ U2. Define

Ṽ := ((η(0,ζ),2|ξ|)∗V ) (Bn
2 (0) ×Rk). Notice that we have

(6.55) EṼ TC

1/2,7/16
(0)(C) < cδ,

for some constant c = c(n) > 0 and we note (from (6.44)) that

(6.56) EṼ TC

1/2,7/16
(0)(C) ≥ cβEṼ TC

1/2,7/16
(0)(C).

Given values for the parameters η and α > 0, an appropriate choice of δ
will ensure that Ṽ , C and C(0) satisfy the hypotheses of Corollary 6.3 in
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TC
1/2,7/16(0) with these values. Therefore, either E) or F) of Lemma 6.2

holds or G) of Corollary 6.3 holds. If E) or F) of Lemma 6.2 holds,
then we can argue exactly as we have just done for the (ξ, ζ) ∈ U1
case in order to establish the estimate of the claim. So assume that
G) of Corollary 6.3 holds. This implies in particular, via the induction

Hypothesis H(C,C(0)), that the estimates of Corollary 3.3 hold with D
in place of C. The idea now is to bound the left-hand side of (6.36) by
EṼ TC

1/2,7/16
(0)(D), which (by ii) of Corollary 6.3 and (6.56)) is controlled

by EṼ TC

1/2,7/16
(0)(C). Let us write

(6.57) g(X) := 2ϕ̃s(X
′)r2C(X

′)R(X ′)−1ψ(R(X ′))ψ′(R(X ′)),

where X ′ := 2|ξ|X + (0, ζ). Using the fact that A(D) ⊃ A(C) and the

fact that g depends only on R(X) and X�A(C) , we have

(6.58)

∫
TC

1/2,7/16
(0)

g(X)d‖C‖(X) =

∫
TC

1/2,7/16
(0)

g(X)d‖D‖(X).

Therefore, it suffices to prove the estimate∫
TC

1/2,5/16
(0)
|(x, 0)⊥TX Ṽ |2d‖Ṽ ‖(X)

−
∫
TC

1/2,5/16
(0)

g(X)d‖Ṽ ‖(X) +

∫
TC

1/2,5/16
(0)

g(X)d‖D‖(X)

≤
∫
TC

1/2,7/16
(0)

dist2(X, spt ‖D‖)d‖Ṽ ‖(X).(6.59)

Let us use the shorthand

Ẽ2 :=

∫
TC

1/2,7/16
(0)

dist2(X, spt ‖D‖)d‖Ṽ ‖(X),

and, for any region S ⊂ HD,

I(S) :=
∫
TD(S)

|(x, 0)⊥TX Ṽ |2d‖Ṽ ‖(X) −
∫
TD(S)

g(X)d‖Ṽ ‖(X)

+

∫
TD(S)

g(X)d‖D‖(X).

Step 1. A cubical decomposition. Write

D(Ṽ ) := {Z ∈ spt ‖Ṽ ‖ ∩ TC
1/2,6/16(0) : ΘṼ (Z) ≥ 2},

D(Ṽ ) := {X ∈ HD ∩ TC
1/2,6/16(0) : T

D({X}) ∩ D(Ṽ ) �= ∅}.

We will define a partition of a region of the form (D(Ṽ ))η∩HD into cubes
that is reminiscent of the Whitney decomposition of the complement
of D(Ṽ ). Broadly speaking, the initial part of the construction is a
modification of [Ste70, pp. 167–169]. There will be various parameters
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involved, all of which can eventually be chosen depending only on n, k,
C(0) and L.

Firstly observe that there is a constant c = c(n, k,C(0), L) > 0, so
that the parameter t > 0 defined by

(6.60) t2 :=

{
cẼ2 if qD = 0,

c
(
ν2
D,C(0)

)−1
Ẽ2 if qD > 0,

is such that

D(Ṽ ) ⊂ (A(D))t.(6.61)

This follows directly from the estimate of ii) of Corollary 3.3.
Write d := dimA(D)+1 = dimHD. Since HD is a half-space we can

write it in the form {(x1, . . . , xd) : xd > 0} so that it makes sense to
talk of the lattice of points in HD whose coordinates are integral. This
lattice determines a collection of open cubesM0 of unit edge length, the
vertices of which are points of the lattice. ThenM0 defines a sequence
Mj := 2−jM0 for j = 1, 2, . . . of collections of cubes, where each cube

Q ∈ Mp determines 2d open cubes inMp+1 by bisecting the sides of Q.
We then set

(6.62) Ωj := {X ∈ HD : 2−j+1√n < dist(X,D(Ṽ )) ≤ 2−j+2√n}.
Now set

Finitial :=MJ2 ∪
J2−1⋃
j=J1

{Q ∈ Mj : Q ∩ Ωj �= ∅},

where J1 = min{j : 2−j < s} and J2 = max{j : 2−j ≥ 10t}. We see
that J1 and J2 are defined so that 10t ≤ e(Q) < s for every Q ∈ Finitial,
where e(Q) is the edge length of Q. Notice that if Q1, Q2 ∈ Finitial have
e(Q1) �= e(Q2) and Q1 ∩Q2 �= ∅, then one of them contains the other.
This implies that for every cube Q ∈ Finitial, there is a unique largest
cube in Finitial that contains Q. Call such a cube maximal and observe
that any two maximal cubes have pairwise disjoint interiors. Let F

denote the collection of all maximal cubes Q ∈ Finitial that intersect
HD ∩ TC

1/2,6/16(0) and are such that

Q �⊂
{
X ∈ HD : rD(X) < Ẽ2

}
.

Let Fadj denote those cubes in F that are adjacent to A(D).
We build up a number of observations about F . The first observation

we make is that

dH(Q,D(Ṽ )) ≤ 4 diam(Q) for every Q ∈ F .F (i)

To see this: If Q ∈ F ∩Mj for j < J2, then diamQ = 2−j√n and there

exists X ∈ Q ∩ Ωj. Thus dH(Q,D(Ṽ )) ≤ dist(X,D(Ṽ )) ≤ 2−j+2√n =
4diam(Q). So suppose Q ∈ F ∩MJ2 . If Q′ ∩ Q �= ∅ for some Q′ ∈
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Finitial ∩Mj for some j ≤ J2 − 1, then Q′ ⊃ Q, in which case Q would
not be maximal. Therefore, Q ⊂ ∪j≥J2Ωj and so there is X ∈ Ωj ∩ Q

for some j ≥ J2, which means that dH(Q,D(Ṽ )) ≤ dist(X,D(Ṽ )) ≤
2−J2+2√n = 4diam(Q) as before.

For each cubeQ ∈ F , pick ZQ ∈ spt ‖Ṽ ‖∩TC
1/2,6/16(0) with ΘṼ (ZQ)≥

2 satisfying

(6.63) dist(ZQ, T
D(Q)) = inf

Z∈spt ‖Ṽ ‖∩TC

1/2,6/16
(0)

:ΘṼ (Z)≥2

dist(Z, TD(Q)).

Then we claim that there exists a constant c̃ = c̃(n, k, L,C(0)) > 0 such
that

TD(1410Q) ⊂ Bc̃e(Q)(ZQ) ⊂ TC
1/2,6/16+1/200(0),F (ii)

for every Q ∈ F ,

where, for ρ > 0, the cube ρQ is defined to be the cube with the
same centre point as Q but with e(ρQ) = ρe(Q). To see this: No-
tice that from F (i) we have dH(T

D(Q), TD({ZQ})) ≤ ce(Q) for c =
c(n) > 0. Then, using (6.61) and the fact that 10t ≤ e(Q) we have that
diamTD({ZQ}) ≤ ct ≤ ce(Q). Combining these facts gives TD(1410Q) ⊂
Bc̃e(Q)(ZQ) for a constant c̃ as claimed. Then, since e(Q) < s, we can
suppose that s > 0 is such that c̃e(Q) < 1/200 which proves F (ii).

Remark 6.6. Notice that in checking F (ii), we chose s to be small

(depending on the allowed parameters n, k C(0) and L). Since 10t ≤
e(Q) ≤ s for every cube Q ∈ Finitial, this means that we need to be able
to choose t smaller than a fixed factor times s. In the qD > 0 case, we
have that t ≤ cα (from iii) of Corollary 6.3) and so this is achieved by
choosing α small. In the qD = 0 case, we have t ≤ cδ, so it follows just
because we will choose δ small.

Finally, we claim that

dH(A(D), Q) ≤ ce(Q) for every Q ∈ F .F (iii)

To see this: Notice that dH(A(D), TD({ZQ})) ≤ diamTD({ZQ}), which
in the explanation of F (ii) above we showed was at most ce(Q). Then
observe that F (i) implies that dH(T

D({ZQ}), Q) ≤ 4
√
ne(Q).

Thus F (iii) is proved by using the triangle inequality dH(A(D), Q) ≤
dH(A(D), TD({ZQ})) + dH(T

D({ZQ}), Q).

Step 2. Regions in which Ṽ has large excess. Recall that τY (X) =

X − Y and TY (X) = X + Y and write ξQ := Z
⊥A(D)

Q . First we suppose
that Q ∈ F is such that

e(Q)−n−2

∫
TD(

13
10Q)

dist2(X, spt ‖D‖)d‖τξQ∗Ṽ ‖(X) ≥ δ′,(6.64)
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for some δ′ > 0. Using (6.61) together with the fact that e(Q) ≥ 10t,
we have that TD(1410Q) ⊃ TξQ

(
TD(1310Q)

)
whence

e(Q)−n−2

∫
TD(

14
10Q)

dist2(X, spt ‖TZQ∗D‖)d‖Ṽ ‖(X) ≥ δ′.(6.65)

In this case, we can use a crude supremum bound for the integrands to
get that

I
(
14
10Q

)
≤ ce(Q)d.(6.66)

And, for such a cube Q, using (6.65) followed by the first inclusion
of F (ii), we can estimate thus:

ce(Q)d

≤ cδ′−1e(Q)−2−n+d

∫
TD(

14
10Q)

dist2(X, spt ‖TZQ∗D‖)d‖Ṽ ‖(X)

≤ cδ′−1e(Q)d−1/4

∫
Bc̃e(Q)(ZQ)

dist2(X, spt ‖TZQ∗D‖)
|X − ZQ|n+7/4

d‖Ṽ ‖(X).

Now, since Bc̃e(Q)(ZQ) ⊂ B1/200(ZQ), we can use iii) of Corollary 3.3 at
a fixed scale (i.e., with ρ = 1/100) to see that this is at most

cδ′−1e(Q)d−1/4

∫
TC

1/2,6/16
(0)

dist2(X, spt ‖TZQ∗D‖)d‖Ṽ ‖(X).(6.67)

And using (3.2) and Remark 3.4, we achieve the estimate

I
(
14
10Q

)
≤ ce(Q)d−1/4Ẽ2,(6.68)

where c = c(n, k, L,C(0), δ′) > 0.

Step 3. Regions in which Ṽ is graphical. Now suppose that Q ∈ F is
such that

e(Q)−n−2

∫
TD(

13
10Q)

dist2(X, spt ‖D‖)d‖τξQ∗Ṽ ‖(X) < δ′.(6.69)

Since TD(1210Q) ⊂ TξQ

(
TD(1310Q)

)
, this implies that

e(Q)−n−2

∫
TD(

12
10Q)

dist2(X, spt ‖TZQ∗D‖)d‖Ṽ ‖(X) < δ′.(6.70)

If Q /∈ Fadj, then using (6.61) and the fact that e(Q) ≥ 10t, we have

that TD(1210Q) ∩ D(Ṽ ) = ∅. Therefore, we can apply Theorem 2.1 in

TD(1210Q) and, after making an appropriate choice of δ′ > 0, apply

Allard’s Regularity Theorem in TD(1110Q), in order to deduce that Ṽ

TD(1110Q) is equal to a union of smooth graphs over the planes of TZQ∗D.
If, on the other hand, Q ∈ Fadj, then we appeal to the observations of
Remark 6.4. Thus one of the following conclusions holds:
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G1) Ṽ TD(1110Q) is a union of smooth graphs over the planes of TZQ∗D
(either Q /∈ Fadj or Q ∈ Fadj and conclusion E)adj of Remark 6.4
holds).

G2) Q ∈ Fadj, and Ṽ TD(1110Q) is, up to a small set, a two-valued
graph over one of the planes of TZQ∗D (conclusion F)adj of Re-
mark 6.4 holds).

Or,
‘trouble’ Q ∈ Fadj and G)adj of Remark 6.4 holds.
If G1) or G2) hold, then the arguments of Section 6.3.1 can easily be
repeated with only very minor modifications and combined with F (ii)
to achieve the estimate∫

TD(
11
10Q)

|(x, 0)⊥TX Ṽ |2d‖Ṽ ‖(X)

−
∫
TD(

11
10Q)

g(X)d‖Ṽ ‖(X) +

∫
TD(

11
10Q)

g(X)d‖TZQ∗D‖(X)

≤ ce(Q)−2

∫
Bc̃e(Q)(ZQ)

dist2(X, spt ‖TZQ∗D‖)d‖Ṽ ‖(X)(6.71)

(notice that the third term on the left-hand side of the above estimate
is with respect to ‖TZQ∗D‖ and not ‖D‖). Then, arguing as per the
series of estimates at the end of Step 2 that led to (6.68), we bound
this term above by

(6.72) ce(Q)n−1/4

∫
TC

1/2,6/16
(0)

dist2(X, spt ‖TZQ∗D‖)d‖Ṽ ‖(X).

Again combining this with (3.2) and Remark 3.4 we get that∫
TD(

11
10Q)

|(x, 0)⊥TX Ṽ |2d‖Ṽ ‖(X)

−
∫
TD(

11
10Q)

g(X)d‖Ṽ ‖(X) +

∫
TD(

11
10Q)

g(X)d‖TZQ∗D‖(X)

≤ ce(Q)n−1/4Ẽ2.(6.73)

Also, by expressing the planes of TZQ∗D as graphs over the respective
planes of D and again arguing as per the series of steps leading to (6.53)
in Section 6.3.1, we achieve the estimate

−
∫
TD(

11
10Q)

g(X)d‖TZQ∗D‖(X)

+

∫
TD(

11
10Q)

g(X)d‖D‖(X) ≤ ce(Q)dν2D,TZQ∗D
.(6.74)
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By (3.3) (if qD = 0) or (3.5) (if qD > 0) and ii) of Corollary 3.3, this is
at most

(6.75) ce(Q)dẼ2.

Thus, by combining (6.73), (6.74) and (6.75) and noting that d ≤ n, we
achieve the estimate

I
(
11
10Q

)
≤ c e(Q)d−1/4Ẽ2.(6.76)

Step 4. Handling Troublesome Cubes. It remains to deal with cubes
Q ∈ Fadj such that (6.69) and (‘trouble’) hold. We call such cubes
troublesome for F and we let Ftrouble denote the collection of such
cubes.

Since τξQ∗Ṽ TD(1210Q) is transverse in the sense of G)adj of Re-

mark 6.4, we have that (by choice of δ′) the estimates of Corollary 3.3

hold for τξQ∗Ṽ at the scale of TD(1210Q).

Remark 6.7. Roughly speaking, troublesome cubes are cubes over
which the varifold looks no simpler: Ṽ TD(Q) has the same structure

as Ṽ TC
1/2,6/16(0), i.e., the varifold is transverse, passes close to A(D)

and contains singular points. We will turn this to our advantage by
‘restarting’ the decomposition algorithm inside these cubes.

Write ṼQ := τξQ∗Ṽ . If qD = 0, then set

(6.77) t2Q := ce(Q)−n

∫
TD(

12
10Q)

dist2(X, spt ‖D‖)d‖ṼQ‖(X).

In this case, for the same reasons as before (except this time at the new
scale TD(1210Q)), we have that(

D(ṼQ) ∩ TD(1110Q)
)
⊂ (A(D))tQ .(6.78)

Notice also that tQ < ce(Q)
√
δ′. If, on the other hand, qD > 0, then we

suppose for the time being that

E
ṼQ TD(

12
10Q)

(D) ≤ αE
ṼQ TD(

12
10Q)

(D),(6.79)

and set
(6.80)

t2Q := ce(Q)−n
(
ν2
D,C(0)

)−1
∫
TD(

12
10Q)

dist2(X, spt ‖D‖)d‖ṼQ‖(X).

Then we get (6.78) again, and (by using (6.79) in the same way that
(6.15) was derived in the proof of Lemma 6.2) we have that tQ <≤
ce(Q)

√
α. This shows that we can insist that tQ is smaller than a

fixed, small factor of e(Q) (this is analogous to the issue discussed in
Remark 6.6). So assume now that either qD = 0 or qD > 0 and (6.79)
holds. The final case, in which qD > 0 and (6.79) does not hold, we
postpone to Step 6.



310 S. T. BECKER-KAHN

Following a similar procedure as was done in Step 1, set

Finitial(Q) :=MJ2,Q ∪
J2,Q−1⋃
j=J1

{L ∈ Mj : L ∩ Ωj �= ∅},

where J1 is as it was before and J2,Q = max{j : 2−j ≥ 10tQ}. Note
that 10tQ ≤ e(L) < s for every L ∈ Finitial(Q). Let F (Q) denote
the collection of all maximal cubes L in Finitial(Q) that intersect HD ∩
TC
1/2,6/16(0) and that satisfy

L �⊂
{
X ∈ HD : rD(X) < Ẽ2

}
.(6.81)

We perform this construction for every cube Q ∈ Ftrouble.
It is straightforward to see that F (i) holds with F (Q) in place of

F . Let us explain the property of F (Q) that is analogous to F (ii):

For each L ∈ F (Q), choose ZL ∈ spt ‖ṼQ‖ ∩ TD(Q) with ΘṼQ
(ZL) ≥ 2

satisfying

(6.82) dist(ZL, T
D(L)) = inf

Z∈spt‖ṼQ‖∩TD(Q)
:ΘṼQ

(Z)≥2

dist(Z, TD(L)).

From F (i) we again have dH(T
D(L), TD({ZL})) ≤ ce(L) for c = c(n) >

0 and from (6.78), we have diamTD({ZL}) ≤ ctQ ≤ ce(L). Combining

these facts gives TD(1310L) ⊂ Bc̃e(L)(ZL). Once again we have that

c̃e(L)≤ c̃s < 1/200, which ensures that Bc̃αe(L)(ZL) ⊂ TC
1/2,6/16+1/200(0).

Now we also get that F (iii) holds for F (Q) by the same argument as
before. Finally, we record that we can easily insist that

(6.83) e(L) ≤ 1

2
e(Q) for every L ∈ F (Q).

Suppose first that L ∈ F (Q) is such that

e(L)−n−2

∫
TD(

13
10L)

dist2(X, spt ‖D‖)d‖τξL∗ṼQ‖(X) ≥ δ′.(6.84)

Here we can follow the arguments of Step 2 to get that

I
(
13
10L

)
≤ ce(L)d−1/4

∫
B1/200(ZL)

dist2(X, spt ‖TZL∗D‖)
|X − ZL|n+7/4

d‖ṼQ‖(X).

(6.85)

At this point, notice that Remark 3.4 implies that∫
TC

1/2,13/32
(0)

dist2(X, spt ‖D‖)d‖ṼQ‖(X) ≤ cẼ2 < cδ,(6.86)

for c = c(n, k, L,C(0)) > 0, which means that the hypotheses of Corol-

lary 3.3 are satisfied at unit scale with ṼQ in place of Ṽ . So combining
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(6.85) with iii) of Corollary 3.3 (for ṼQ) gives us that

I
(
13
10L

)
≤ ce(L)d−1/4

∫
TC

1/2,13/32
(0)

dist2(X, spt ‖D‖)d‖ṼQ‖(X).(6.87)

Applying (6.86) we in particular have that

I
(
11
10L

)
≤ ce(L)d−1/4Ẽ2.(6.88)

Now suppose that L ∈ F (Q) is such that

e(L)−n−2

∫
TD(

13
10L)

dist2(X, spt ‖D‖)d‖τξL∗ṼQ‖(X) < δ′.(6.89)

In this case, we can similarly mimic the arguments of Step 3. The
result is that we achieve the estimate (6.88), except in the case where L
is troublesome for F (Q), i.e., except when L ∈ Fadj(Q) and L satisfies
both (6.89) and (‘trouble’). Let Ftrouble(Q) denote the collection of such

cubes: Cubes that are troublesome for F (Q). Now, with F (1) := F

and F
(1)
trouble := Ftrouble, we inductively define

F
(j) =

⋃
Q∈F

(j−1)
trouble

{L : L ∈ F (Q)},

F
(j)
trouble :=

⋃
Q∈F

(j−1)
trouble

{L : L ∈ Ftrouble(Q)}.

for j = 2, 3, .... And we claim that there exists some J ≥ 1 for

which F
(J)
trouble = ∅. To see this: Notice that (6.83) implies that

supL∈F (j) e(L) ≤ c2−j . So for sufficiently large J , any cube L that is

adjacent to A(D) and that comes from subdividing some Q ∈ F (J) will
satisfy

L ⊂
{
X ∈ HD : rD(X) < Ẽ2

}
.

By construction, such cubes will not be included in any collection F (j′)

for j′ > J . In particular, this means that F
(J)
trouble = ∅. Finally, write

Ffinal :=

J⋃
j=1

F
(j) \F

(j)
trouble.

Our construction is such that F (ii) and F (iii) hold for Ffinal.

Step 5. Completing the argument. We can now pick η > 0 in our
application of Corollary 6.3 so that

HD ∩ TC
1/2,5/16(0) ⊂

(
{rD < Ẽ2} ∪ O ∪

⋃
Q∈Ffinal

11
10Q

)
.

To do this, η must depend on s, because s determines the region that is
covered by Ffinal. Having done this, we can finally fix the δ > 0 in (6.42)
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(the definition of the set U) so that the conclusions of Corollary 6.3 hold
with the values of α and η that we have established here.

By arguing as in the (ξ, ζ) ∈ U1 case in Section 6.3.1, we achieve the
estimate:

I
(
O
)
≤ c

∫
TD((O)1/200∩HD)

dist2(X, spt ‖D‖)d‖Ṽ ‖(X),(6.90)

where c = c(n, k, L,C(0)) > 0. Elementary geometric considerations tell
us that

TC
1/2,5/16(0) ⊂ TD(HD ∩ TC

1/2,5/16(0))

⊂
(
{rD < Ẽ2} ∪ TD(O) ∪

⋃
Q∈Ffinal

TD(1110Q)

)
,(6.91)

and we trivially have

I
( ⋃
Q∈Ffinal

11
10Q

)
≤

∑
Q∈Ffinal

I
(
11
10Q

)
.(6.92)

Suppose that we have the estimate (6.88) for every cube in Ffinal. This
would mean that the right-hand side of (6.92) were at most

c

( ∑
Q∈Ffinal

e(Q)d−1/4

)
Ẽ2,(6.93)

for c = c(n, k, L,C(0)) > 0. Now, for each Q ∈ Ffinal, property F (iii)

implies that dist(X,A(D))−1/4 ≥ ce(Q)−1/4 for all X ∈ Q whence
e(Q)d−1/4 ≤ c

∫
Q dist(X,A(D))−1/4dHd(X). This means that

∑
Q∈Ffinal

e(Q)d−1/4 ≤
∫
HD∩B1(0)

dist(X,A(D))−1/4dHd(X) ≤ C,(6.94)

for some absolute constant C > 0. Observing lastly that

‖Ṽ ‖
(
{rD < Ẽ2}

)
≤ cẼ2,(6.95)

then (6.59) follows by putting together (6.92)–(6.96).

Step 6. Handling Troublesome Cubes when qD > 0. In light of
(6.68), (6.76) and (6.88), it remains to prove the estimate I(1110Q) ≤
ce(Q)d−1/4Ẽ2 when qD > 0 and Q ∈ Ftrouble is such that (6.79) does
not hold. In this case, by using the same process used in Step 2 of the
proof of Lemma 6.2 and in the proof of Corollary 6.3, but carried out in
the domain TD(1210Q) and with the varifold ṼQ, we can find a new cone

DQ ∈ C so that A(DQ) ⊃ A(D), dimA(DQ) ≤ dimA(C(0)),

E
ṼQ TD(

12
10Q)

(DQ) ≤ cE
ṼQ TD(

12
10Q)

(D),(6.96)
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and such that either qDQ = 0 or

E
ṼQ TD(

12
10Q)

(DQ) ≤ αE
ṼQ TD(

12
10Q)

(DQ).(6.97)

Cubes Q for which this is necessary are such that at unit scale Ṽ re-
sembles D, but at the scale of Q, the varifold ṼQ resembles a cone with
a larger dimensional axis. Now, if we are able to argue that

I(1210Q) ≤
∫
TD(

12
10Q)

dist2(X, spt ‖DQ‖)d‖ṼQ‖(X),(6.98)

then by using (6.96), the non-concentration estimate iv) of Corollary 3.3,
and (6.86) we would get the result that

I(1210Q) ≤ ce(Q)d−1/4Ẽ2,

which is exactly the estimate required to sum over the cubes as is done
at the end of the previous step. To justify (6.98), we observe that
it is of the same form as (6.59) except that qDQ < qD. Therefore,
we argue inductively with respect to this parameter: Relying on the
scale invariance of the arguments we have made thus far, we can repeat
Steps 1 to 4 with TD(1210Q) taking the role of TC

1/2,7/16(0), D
Q taking the

role D and with ṼQ taking the role of Ṽ and do so in a such a way that
the parameters δ′, s, η and α can be chosen once and for all depending
only on n, k, C(0) and L. Moreover, the strict inequality qDQ < qD
ensures that this process terminates; eventually we are either working
with a cone DL for which qDL = 0 (where L has come from subdividing
Q) or else every cube that satisfies (6.69) also satisfies (6.79). In these
cases, the estimate has already been justified by the work of the other
steps. And in this way, we justify (6.98).

Notice that despite the complexity of the full construction, there
are only ever finitely many cubes. This finishes the proof of (6.36)
of Claim 6.5, which completes the proof of the induction step for The-
orem 3.2.

6.4. Proof of Corollary 3.3. This proof relies on being able to apply
Theorem 3.2 with τ = 1/16 and with V̄ := ηZ,ρ/2∗(V Bρ(Z)) in place
of V . To do this, we need to show that it is possible to choose ε in such
a way that all of the hypotheses of Theorem 3.2 are satisfied with V̄ in
place of V . Let ε0 be the constant the existence of which is asserted
by Theorem 3.2 when we take τ = 1/16 therein. We claim that the
following list of statements can be satisfied:

1) ‖V̄ ‖(Bn
2 (0)×Rk) ≤ ‖C(0)‖(Bn

2 (0) ×Rk) + 1/2.

2) 0 ∈ A(C) ⊂ A(C(0)).
3) νC,C(0) < ε.

4) QV̄ (C
(0)) < ε.

5) ΘV̄ (0) ≥ 2.
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Firstly observe that 2) and 3) hold trivially because they only concern

C and C(0), which are unchanged and that 5) is immediate because
ΘV (Z) ≥ 2. Now, 4) follows by choosing ε < ρn+2ε0 and 1) also follows,
using varifold convergence, by choice of ε sufficiently small depending
on ρ and σ. Thus we may apply Theorem 3.2 to V̄ . This establishes iii)
directly. The other conclusions rest on being able to prove ii).

Writing ξ = Z⊥A(C) , notice that for fixed ρ0 = ρ0(n, k,C
(0), L) > 0,

the argument of [Wic04, Lemma 6.21] shows that we can choose ε
sufficiently small so that

(6.99) ‖V ‖({X ∈ Bρ0(Z) : |ξ⊥T
x′

C | ≥ cνC,C(0) |ξ|}) ≥ cρn0 ,

for some constant c ∈ (0, 1), where x′ is the nearest point projection of

X⊥A(C) onto spt ‖C‖. This means that

(6.100) ν2
C,C(0)|ξ|2 ≤ cρ−n

0

∫
Bρ0 (Z)

|ξ⊥T
x′

C |2d‖V ‖(X),

which implies that

(6.101) ν2
C,C(0)|ξ

�
P
(0)
i |2 ≤ cρ−n

0

∫
Bρ0(Z)

|ξ⊥T
x′

C |2d‖V ‖(X).

Also, since for any X ∈ spt ‖V ‖ ∩ Bρ0(Z) and i = 1, 2, the triangle
inequality implies that

(6.102) |ξ
⊥

P
(0)
i |2 ≤ 2|ξ

⊥
P
(0)
i − ξ

⊥T
x′

C|2 + 2|ξ⊥T
x′

C|2,
we have that

|ξ
⊥

P
(0)
i |2 ≤ cν2

C,C(0) |ξ|2 + cρ−n
0

∫
Bρ0 (Z)

|ξ⊥T
x′

C |2d‖V ‖(X),

and so using (6.100) we get that

(6.103) |ξ
⊥

P
(0)
i |2 ≤ cρ−n

0

∫
Bρ0 (Z)

|ξ⊥T
x′

C|2d‖V ‖(X).

Using (6.101), (6.103) and the fact that

(6.104) |ξ⊥T
x′

C|2 ≤ 2dist2(X, spt ‖TZ∗C‖) + 2dist2(X, spt ‖C‖),
we have

|ξ
⊥

P
(0)
i |2 + ν2

C,C(0)|ξ
�

P
(0)
i |2

≤ cρ−n
0

∫
Bρ0 (Z)

|ξ⊥T
x′

C |2d‖V ‖(X)

≤ cρ−n
0

∫
Bρ0 (Z)

dist2(X, spt ‖TZ∗C‖)d‖V ‖(X)

+ cρ−n
0

∫
Bρ0 (Z)

dist2(X, spt ‖C‖)d‖V ‖(X).(6.105)
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Then, using iii) of the present corollary applied to ηZ,ρ0∗V (which we
have already established), we bound this last expression by

cρ
7/4
0

∫
B1(0)

dist2(X, spt ‖TZ∗C‖)d‖V ‖(X)

+ cρ−n
0

∫
Bρ0 (Z)

dist2(X, spt ‖C‖)d‖V ‖(X).(6.106)

By first summing over i = 1, 2 and then using the triangle inequality on
the integrand of the first term of (6.106), followed by (3.4) and (3.5),
we conclude that

max
i=1,2

[
|ξ

⊥
P
(0)
i |2 + ν2

C,C(0) |ξ
�

P
(0)
i |2

]
≤ cρ

7/4
0

∫
B1(0)

dist2(X, spt ‖C‖)d‖V ‖(X)

+cρ
7/4
0 max

i=1,2

[
|ξ

⊥
P
(0)
i |2 + ν2

C,C(0) |ξ
�

P
(0)
i |2

]
+ cρ−n

0

∫
Bρ0 (Z)

dist2(X, spt ‖C‖)d‖V ‖(X).(6.107)

From here was see that by choosing ρ0 sufficiently small depending only
on the allowed parameters n, k, C(0) and L, we can absorb the middle
term to the left-hand side to get that
(6.108)

|ξ
⊥

P
(0)
i |2 + ν2

C,C(0) |ξ
�

P
(0)
i |2 ≤ c

∫
B1(0)

dist2(X, spt ‖C‖)d‖V ‖(X),

for some constant c = c(n, k,C(0), L) > 0. This completes the proof of

(ii) of Corollary 3.3, from which (i) follows by taking C = C(0) and from
which one can now deduce (iv) and (v) by using (iii) of Corollary 3.3
and (v) of Theorem 3.2 applied to ηZ,ρ∗V , respectively. This completes
the proof of Corollary 3.3 and completes the induction for qC.

7. Proofs of main results

In this chapter we prove the main Excess Improvement Lemma (7.2)
and the main Theorems 1–4.

7.1. Excess improvement. Firstly we must prove a lemma that al-
lows us – when C(0) ∈ Pn−1 – to only work with blow-ups taken relative
to sequences of pairs of planes.

Lemma 7.1. Fix C(0) ∈ Pn−1, L > 0 and δ > 0. There exists
ε0 = ε0(n, k,C

(0), δ) > 0 and η = η(n, k,C(0), δ) > 0 such that the
following is true. Suppose that for some ε < ε0, we have that V ∈ VL,
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C(0) and C ∈ Cn−1 \ Pn−1 satisfy Hypotheses A and suppose that there

exists Y ∈ A(C(0)) ∩B1(0) for which

(7.1) Bδ(Y ) ∩ {X : ΘV (X) ≥ 2} = ∅.
This is called a “δ-gap”. Then

(7.2) EV (C) ≥ ηEV (C̃),

where C̃ ∈ P is chosen so that

(7.3) EV (C̃) ≤ (3/2) inf
C′∈P

EV (C
′).

Proof. If the lemma is false then there are sequences of numbers
{εj}∞j=1, {ηj}∞j=1 with εj , ηj ↓ 0+, points Yj ∈ A(C(0)) ∩ B1(0) and

{Cj}∞j=1 ∈ P, {V j}∞j=1 ∈ VL satisfying all of the hypotheses but with

V j , Cj, εj, ηj and Yj in place of V , C, ε, η and Y , respectively, and for
which

(7.4) EV j(Cj) < ηjEV j(C̃j),

for all j, where the C̃j ∈ P are such that

(7.5) EV j(C̃j) ≤ (3/2) inf
C′∈P

EV j(C′).

Begin by passing to a subsequence for which Yj → Y ∈ A(C(0))∩B1(0)

as j →∞. Using the definition of C̃j, the fact that C(0) ∈ P and 3) of

Hypotheses A, we see that C̃j → C(0). Choose a sequence Γj of rigid
motions of Rn+k for which Γj(A(C̃j)) ⊂ A(C(0)) and such that

(7.6) |idRn+k − Γj | ≤ 3

2
inf |idRn+k − Γ|,

where the infimum is taken over all rigid motions Γ for which Γ(A(C̃j))⊂
A(C(0)). Then, using (7.4) and the triangle inequality, we have that

(7.7) ν
Γj
∗C̃

j ,Γj
∗C

j ≤ cE
Γj
∗V j (Γ

j
∗C̃

j),

for some absolute constant c > 0. Let c̃j + cj be the function that
represents Γj

∗C
j as a graph over C(0) in a such a way that c̃j represents

Γj
∗C̃

j as a graph over C(0) (at least away from a small neighbourhood

of A(C(0))). Now we blow up Γj
∗C

j off C(0) relative to Γj
∗C̃

j using the

excess Ẽj := E
Γj
∗V j (Γ

j
∗C̃

j), i.e., using (7.7), we deduce that along a

subsequence Ẽ−1
j cj converges locally uniformly in spt ‖C(0)‖ ∩ {rC(0) >

0} ∩B1(0) to some function w, say.

Now, if we let v be a blow-up of Γj
∗V

j off C(0) relative to Γj
∗C̃

j, then
dividing (7.4) by Ẽ2

j , letting j →∞ and using the smooth convergence

to the blow-up together with the non-concentration estimate (4.4) shows
that w = v. Now let us see that v �≡ 0: From (7.1) we have that
Bδ/2(Y ) ∩ Dv = ∅ and so the C2

loc convergence to the blow-up and the
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fact that v = w imply that graph v is a pair of planes. Notice again now
that by a pointwise triangle inequality we have that

Ẽ2
j ≤ E2

Γj
∗V j(Γ

j
∗C

j) + c ν2
Γj
∗C̃

j ,Γj
∗C

j ,

where c is a positive absolute constant, from which, using (7.4), we get
that

(7.8) 0 < c ≤ Ẽ−1
j ν

Γj
∗C̃

j ,Γj
∗C

j .

This implies that v �≡ 0. But now, if we write Ĉj for the unique pair of
planes containing graph(c̃j + Ẽjv), we have that

Ẽ−1
j E

Γj
∗V j(Ĉ

j)→ 0,

as j → ∞. Thus for sufficiently large j, the pair of planes (Γj)−1
∗ Ĉj

contradicts (7.5) and this completes the proof of the lemma. q.e.d.

We now come to the main lemma.

Lemma 7.2 (Excess Improvement). Let C(0) ∈ C and L > 0. There

exists ε0 = ε0(n, k,C
(0), L) > 0 such that the following is true. If, for

some ε < ε0, we have V ∈ VL and C, C(0) ∈ C satisfying Hypotheses
A and ΘV (0) ≥ 2, then there exists θ = θ(n, k,C(0), L) > 0, c1 =

c1(n, k,C
(0)L) ≥ 1, C′ ∈ C and a rotation Γ of Rn+k such that

1) 0 ∈ A(C′) ⊂ A(C(0)),

2) |Γ− idRn+k | ≤ c1QV (C
(0)),

3) νC′,C(0) ≤ c1QV (C
(0)),

and such that

θ−n−2

∫
Bn

θ (0)×Rk

dist2(X, spt ‖Γ∗C
′‖)d‖V ‖(X)

+ θ−n−2

∫
Γ
(
(Bn

θ (0)×Rk)\{r
C
(0)<θ/8}

) dist2(X, spt ‖V ‖)d‖Γ∗C
′‖(X)

≤ 1

2
Q2

V (C),

(7.9)

where

QV (C) :=

(∫
Bn

2 (0)×Rk

dist2(X, spt ‖C‖) d‖V ‖(X)

+

∫
(Bn

2 (0)×Rk)\{r
C
(0)<1/8}

dist2(X, spt ‖V ‖) d‖C‖(X)

)1/2

.

Moreover, if C(0) ∈ P≤n−2, then C′ ∈ P≤n−2. And if C(0) ∈ Cn−1\Pn−1,
then C′ ∈ Cn−1 \ Pn−1.
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Proof. We first prove a weakened version of the lemma that is analo-
gous to Lemma 1 of [Sim93], in which a dichotomy is established. We
claim that when all the hypotheses are satisfied for sufficiently small ε,
there exists δ0 = δ0(n, k,C

(0), L) > 0 such that either V has a δ0-gap
(in the language of the statement of Lemma 7.1) or the conclusions of
the present lemma hold. So take a sequence {εj}∞j=1 of positive numbers

with 0 < εj ↓ 0+ as j →∞ and arbitrary sequencesCj, V j satisfying the
hypotheses with V j , Cj and εj in place of V , C and ε, respectively. We
will prove that the conclusions of this claim hold along a subsequence.

If there is a fixed δ0 > 0 such that for sufficiently large j, V j has
a δ0 gap, then we are of course done. So assume that this is not the
case. This means that given {δj}∞j=1 with δj ↓ 0+, we can pass to

a subsequence for which it is the case that V j has no δj-gap. To be

precise, this means that Bδj (Y )∩Dj �= ∅ for every Y ∈ A(C(0))∩B1(0).

Note that V j , Cj and C(0) satisfy Hypotheses A and let Dj be as in

(2†) of Hypotheses †. Using the fact that Dj ∩B2(0) is closed, together
with the sequential compactness of the Hausdorff metric on the space
of closed subsets of a compact space, we have that there exists a closed
subset D ⊂ A(C(0)) ∩ B2(0) such that (along a further subsequence to

which we pass without changing notation), we have dH(Dj ∩B2(0),D∩
B2(0)) → 0. Since there are no δj gaps, we have that D ∩ B1(0) =

A(C(0)) ∩ B1(0). So (3†) is vacuously satisfied. And since 0 ∈ Dj

for all j by assumption, we have that (2†) is satisfied. Now pass to a

subsequence along which qCj ≡ q. Then, since V j , Cj and C(0) satisfy
Hypotheses A, we have that (1†) is satisfied.

Now let v ∈ B(C(0)) denote a blow-up of V j off C(0) relative to Cj

and let ψ be as in (5.37) of Theorem 5.5 and pass to a subsequence
along which we have convergence to v. Remark 4.4 shows that ‖v −
ψ‖−1

L2(Ω)
(v − ψ) is a blow-up of Ṽ j := Rj

∗V
j off C(0) relative to a new

sequence {Ĉj}∞j=1 ∈ C, for some sequence of rotations Rj satisfying

|Rj − idRn+k | ≤ cQV j (Cj).
Now note that for sufficiently large j we have spt ‖V j‖ ∩

(Bn
θ (0) × Rk) ⊂ B2Lθ(0). Let θ̄1 be as in Theorem 5.5 and pick θ <

θ̄1/(2min{L, 1}). So, using (5.37) of Theorem 5.5, the non-concentration
estimate (4.2) of Remark (4.1) and the strong L2 convergence to the
blow-up, we have

θ−n−2

∫
Bn

θ (0)×Rk

dist2(X, spt ‖(Rj)−1
∗ Ĉj‖)d‖V j‖(X)

≤ c2θ
2μ

∫
Bn

2 (0)
dist2(X, spt ‖(Rj)−1

∗ Cj‖)d‖V j‖(X),(7.10)

for sufficiently large j and for some c2 = c2(n, k,C
(0), L) > 0.
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We define Γj to be the rigid motion of Rn+k which minimizes |Γj −
idRn+k | subject to the constraint that Γj(A(C(0))) ⊃ A((Rj)−1

∗ Ĉj).

Then we set C′ j = (Γj)−1
∗ (Rj)−1

∗ Ĉj. It is easy to see that by con-
struction, conclusions 1), 2) and 3) are satisfied. Using the fact that
V j is graphical outside of a small neighbourhood of A(C(0)) to control
the second term on the left-hand side of (7.9) and choosing θ so that

c2θ
2μ = 1/2, we get (7.9). Conclusion 1) shows that if C(0) ∈ P≤n−2

then C′ j ∈ P≤n−2. And if C(0) ∈ Cn−1 \Pn−1, then the final conclusion
follows from 3), Remark 3.1 and choice of ε0 sufficiently small depending

on C(0), n and k. This completes the proof of the claim.
Then to establish the full lemma, we return to an arbitrary sequence

satisfying the hypotheses. By applying the claim, we either already
have the conclusions of the lemma, or else there is a fixed δ0-gap for
every j. Now, if we are in the situation where C(0) ∈ P and Cj /∈ P
for sufficiently large j, then we can appeal to Lemma 7.1 in order to
replace each Cj by C̃j ∈ P such that EV j(C̃j) ≤ cEV j (Cj), whence it
suffices to improve the excess relative to this new sequence. Moreover,
this replacement process means that (3†) is now satisfied. Thus we can
proceed with the proof of the current lemma as in the proof of the claim
and again yield (7.9) and conclusions 1), 2) and 3). This completes the
proof of the lemma. q.e.d.

7.2. Proofs of Theorems 1, 2, and 3. We begin by making argu-
ments that are common to the proof of all three theorems: We claim
that by iterating Lemma 7.2 we can produce a sequence {C(j)}∞j=1 ∈ C
and a sequence {Γj}∞j=1 of rotations of Rn+k such that

1) 0 ∈ A(C(j)) ⊂ C(0).

2) ν
Γj
∗C

(j),Γj−1
∗ C(j−1) ≤ c2−jQV (C

(0)).

3) |Γj − idRn+k | ≤ cQV (C
(0)).

4) θ−j(n+2)
∫
Bn

θj
(0)×Rk dist

2(X, spt ‖Γj
∗C

(j)‖) d‖V ‖(X) ≤
2−jQ2

V (C
(0)).

5) θ−j(n+2)
∫
Γj
(
(Bn

θj
(0)×Rk)\{r

C
(0)<θj/8}

)×
dist2(X, spt ‖V ‖) d‖Γj

∗C
(j)‖(X) ≤ 2−jQ2

V (C
(0)).

To prove this claim, we construct the sequence inductively: Let ε0 be as
in Lemma 7.2. By choice of ε in the hypotheses of the present theorems
and by applying Lemma 7.2 withC(0) in place ofC, we produceC(1) ∈ C
and Γ1 which, by the conclusions of Lemma 7.2, show that 1) to 5)

hold with j = 1. Now suppose we have constructed {C(j)}Jj=1 and

{Γj}Jj=1 satisfying 1) to 5). By choice of ε, we can insist that εc1(1 +
1
2+(12 )

2+ ...) < ε0. Then note that 1) to 5) imply that the hypotheses of

Lemma 7.2 are satisfied with C(J) in place of C and with η0,θJ ∗(Γ
J)−1

∗ V

in place of V . Applying the lemma produces C(J+1) and a rigid motion
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ΓJ+1
∗ which satisfy the listed properties and this shows that we indeed

have the sequence as claimed.
Now observe that by choosing ε sufficiently small, we can repeat the

proof of the claim but starting with (ηZ,1/8)∗V in place of V for any Z ∈
spt ‖V ‖ ∩ B3/4(0) with ΘV (Z) ≥ 2 (to initially satisfy the hypotheses

of Lemma 7.2 here we need to use the translation invariance of C(0)

along its axis and the estimate i) of Corollary 3.3). Then 2) implies

that for each such Z, the sequence {Γj
Z ∗C

(j)
Z }∞j=1 whose existence is

asserted by the claim converges. The result is that there exists some
CZ ∈ C, a rotation ΓZ and α = α(n, k,C(0), L) ∈ (0, 1) for which
(writing VZ := (ηZ,1/8)∗V ) we have

I) |ΓZ − idRn+k | ≤ cQVZ
(C(0))

II) νCZ ,C(0) ≤ cQVZ
(C(0))

III) ρ−(n+2)
∫
Bn

ρ (0)×Rk dist
2(X, spt ‖ΓZ∗CZ‖) d‖VZ‖(X) ≤

cρ2αQ2
VZ

(C(0))

IV) ρ−(n+2)
∫
ΓZ

(
(Bn

ρ (0)×Rk)\{r
C
(0)<ρ/8}

)×
dist2(X, spt ‖VZ‖) d‖ΓZ∗CZ‖(X)≤ cρ2αQ2

VZ
(C(0)) for all ρ∈ (0, θ),

where the last two points are proved by using a standard argument
to interpolate between the scales θj for j = 1, 2, .... Observe that III)
implies that ΓZ∗CZ ∈ C is the unique tangent cone to V at Z.

Write D(V ) = {Z : ΘV (Z) ≥ 2}. Suppose that C(0) is properly
aligned and suppose for the sake of contradiction that there exists Y ∈
A(C(0)) ∩ B1/4(0) for which (Rl+k × {Y }) ∩ D(V ) contains more than
one point: Pick such a Y and let Z1, Z2 be two distinct points of
(Rl+k×{Y })∩D(V ). But now if we write σ = |Z1−Z2|, we can violate
estimate i) of Corollary 3.3 when we apply it with η0,16σΓ

−1
Z1 ∗VZ1 in place

of V and (16σ)−1Γ−1
Z1

(8(Z2−Z1)) in place of Z. Thus D(V )∩B1/4(0) is

graphical over A(C(0)): There exists a function ϕ̃ : A(C(0))∩B3/16(0)→
A(C(0))⊥ for which D(V )∩B1/8(0) ⊂ graph ϕ̃. In fact, if, for Z ∈ D(V )∩
B1/4(0), we write SZ = Z +ΓZ(A(C

(0))), then using i) of Corollary 3.3
in a similar way actually tells us that

(7.11) D(V ) ∩Bρ(Z) ⊂ (SZ)cρ1+α ,

for every ρ ∈ (0, 1/8), which, in light of I) above implies that ϕ̃ is
Lipschitz.

Now, pick two points X1, X2 ∈ spt ‖V ‖ ∩ (Bn
1/64(0) × Rk) with

ΘV (Xi) ≥ 2 for i = 1, 2 and write σ := |πX1 − πX2| > 0. Using III)
above, we have that

cσ−n−2

∫
Bn

32σ(0)×Rk

dist2(X, spt ‖CX2‖)d‖Γ−1
X2 ∗VX2‖(X)

≤ cσ2αQ2
V (C

(0)).(7.12)
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Note that Z̃ := Γ−1
X2

(8(X1−X2)) is a point of density at least two for the

varifold Γ−1
X2∗

VX2 . Using the inclusion Bn
2σ(πX2) ⊃ Bn

σ (πX1), followed

by ii) of Corollary 3.3 with η0,16σ∗Γ
−1
X2 ∗VX2 and CX2 in place of V and

C, respectively, and with Z = (16σ)−1Z̃, we have that∫
Bn

2 (0)×Rk

dist2(X, spt ‖CX2‖)d‖ηZ̃,8σ∗Γ
−1
X2∗

VX2‖(X)

= cσ−n−2

∫
Bn

16σ(πZ̃)×Rk

dist2(X, spt ‖TZ̃∗CX2‖)d‖Γ−1
X2∗

VX2‖(X)

≤ cσ−n−2

∫
Bn

32σ(0)×Rk

dist2(X, spt ‖TZ̃∗CX2‖)d‖Γ−1
X2∗

VX2‖(X)

≤ cσ−n−2

∫
Bn

32σ(0)×Rk

dist2(X, spt ‖CX2‖)d‖Γ−1
X2∗

VX2‖(X)

≤ cσ2αQ2
V (C

(0)) (by (7.12)).

(7.13)

This shows that we may apply Lemma 7.2 with V ′ := ηZ̃,8σ∗Γ
−1
X2∗

VX2 in

place of V and with CX2 in place of C and perform the same iteration
argument that led to I)–IV) above. The result is that we deduce the
existence of some C′

X1
∈ C and rotation Γ′

X1
for which

i)’ |Γ′
X1
− idRn+k | ≤ cσαQV ′(C(0)).

ii)’ νCX2
,C′

X1
≤ cσαQV ′(C(0)).

iii)’ ρ−n−2
∫
Bn

ρ (0)×Rk dist
2(X, spt ‖Γ′

X1∗
C′

X1
‖)d‖V ′‖(X)

≤ cρ2ασ2αQ2
V ′(C(0)) for all ρ ∈ (0, θ).

But now (iii)’) together with III) (used with X1) implies that

(7.14) η−1
X2,1/8 ∗ΓX2∗η

−1
Z,8σ ∗Γ

′
X1∗C

′
X1

= TX1ΓX1∗CX1 .

Unravelling this and using i)’ tells us that

(7.15) |(Γ−1
X2
◦ ΓX1)− idRn+k | ≤ cσαQV (C

(0)),

whence (using the fact that ϕ̃ is Lipschitz)

(7.16) |ΓX1 −ΓX2 | ≤ c(n, k, L,C(0))|X
�

A(C(0))

1 −X
�

A(C(0))

2 |αQV (C
(0)).

From here, one can invoke general Whitney-type extension theorems to
deduce that there is a C1,α function ϕ : A(C(0)) ∩ B1/64(0)→ A(C(0)),
for which D(V ) ∩B1/128(0) ⊂ graphϕ (the classical Whitney extension

will only give C1 regularity of ϕ, but [Ste70, Theorem 4; §2.3, Chap-
ter VI] suffices to deduce the existence of a C1,α extension satisfying

‖ϕ‖C1,α(A(C(0))∩B1/64(0))
≤ cQV (C

(0))).

Using 3) of Remark 4.1 and initial choice of ε, we may assume that
singV ∩ B1/4(0) ⊂ (D(V ))θ/2. If there exists X0 ∈ (sing V \ D(V )) ∩
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B1/4(0), then let Z ∈ D(V ) be such that r := |X0 − Z| = dist(X0,
D(V )). But now, using II), III) and IV), we have that

Q(η0,4r)∗Γ
−1
Z VZ B1(0)

(C(0)) ≤ cε and yet the singular point

(4r)−1Γ−1
Z (8(X0 − Z)) is distance 1/4 from the nearest point of

D((η0,4r)∗Γ−1
Z VZ). For correct choice of ε, this would directly violate

the observations of 3) of Remark 4.1. Combining this with (7.11), we,
therefore, deduce that

(7.17) D(V ) ∩B1/128(0) = sing V ∩B1/128(0) ⊂ graphϕ.

Specifics of the proof of Theorem 1. So we have that V B1/128(0)
decomposes as two disjoint smooth graphs locally away from graphϕ.
This means that we can write V B1/130(0) = (| graph ū1|+| graph ū2|)
B1/130(0), where for i = 1, 2, we have that ūi ∈ C0,1(P

(0)
i ∩ B1/130(0),

P
(0)⊥
i ) and ūi is smooth and solves the Minimal Surface System on

B1/130(0)\pP
(0)
i

(graphϕ). Now a removability result due to Harvey and

Lawson ([HL75, Theorem 1.2]) gives us that ūi extends over
p
P

(0)
i

(graphϕ) as a weak solution to the minimal surface system, after

which Allard Regularity implies that ūi is actually smooth in B1/132(0).
With Mi := graph ūi, the conclusions of Theorem 2 now hold in ball
B132(0), but it is clear that our arguments show that it can be made to
hold with B1/2(0) in place of B1/132(0).

Specifics of the Proof of Theorem 3. Notice that II) and Remark 2)
imply that CZ ∈ Cn−1\Pn−1 for all Z ∈ D(V )∩B3/4(0). Then using III)
and the argument of 1) of Remark 4.1, one can deduce that we have
equality in (7.17), i.e., singV ∩ B1/128(0) = graphϕ ∩ B1/128(0). Now
observe that Bn

1/128(0) \ π(graphϕ) is the disjoint union of two simply

connected components Ua and Ub, say, and whence V (Ua×Rk) decom-
poses as | graph f1|+ | graph f2|, where fi is smooth on Ua. Now, using a
Campanato regularity lemma (e.g., [RS13, Theorem 4.4]), we can sep-
arately prove C1,α regularity of each fi up to its boundary π graphϕ.
Therefore, V (Ua×Rk) consists of two separate smooth minimal sub-
manifolds and the same holds for Ub and 1) of Theorem 3 follows directly.

7.3. Proof of Theorem 4. By looking at the cross-section of C, the
problem is immediately reduced to that of showing that a two-dimen-
sional Lipschitz minimal two-valued graphical cone C0 with trivial spine
must be a pair of planes meeting only at the origin. Suppose then that
C0 is the varifold associated to the graph of the two-valued function
f : R2 → Rk. We will analyse the link Σ := spt ‖C0‖∩S1+k, which de-
fines a one-dimensional stationary varifold in the sphere S1+k. If the link
does not contain any singularities, then (by the Allard–Almgren clas-
sification of one-dimensional stationary varifolds in Riemannian mani-
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folds – [AA76]) it is the disjoint union of two great circles, in which
case C0 is a pair of planes meeting only at the origin and we are done.
Thus we may assume that Σ has at least one singular point. In fact, we
show that this leads to a contradiction.

Let S1 × {0} denote the unit circle in the domain, i.e., S1 × {0} :=
{(x, 0) ∈ R2 ×Rk : |x| = 1}. For each (x, 0) ∈ S1 × {0}, write

Sk
x := {Z ∈ S1+k : Z = (x, y)/|(x, y)|, for some y ∈ Rk}.

This set is an open k-dimensional hemisphere. The fact that Σ is the link
of a two-valued graph implies that for every (x, 0) ∈ S1×{0}k, we have
that Sk

x ∩Σ consists of two (possibly coinciding) points. For notational
ease we define the following two-valued function: For (x, 0) ∈ S1 ×{0},
let f̃((x, 0)) = Sk

x ∩Σ. We also write p̃ for the ‘projection’ which sends
Sk
x to (x, 0).
Note that every singular point of Σ is a multiplicity two point of V .

The work of [AA76] gives us a good description of the singularities:
For each point X ∈ sing Σ, there is a δ such that, writing dS for the
distance on the sphere, we have that

(7.18) Σ ∩ {dS(·,X) < δ} =
4⋃

i=1

{γXi (s) : s ∈ [0, tδ)},

where for i = 1, ..., 4, γXi : [0, 1]→ S1+k are geodesics in the sphere with
γXi (0) = X and such that

(7.19)

4∑
i=1

γ̇Xi (0) = 0.

Note that here we can actually take δ be the distance to the nearest
singular point, i.e.,

(7.20) δ = dist(X, sing Σ \ {X}),
where this distance is computed in the sphere metric.

Now fix a singular point X0 ∈ singΣ. Let X1 denote a singular point
at distance δ from X0 and write X1 = γX0

1 (tδ) (where δ and tδ are as in
(7.18)). Write xi := p̃Xi for i = 0, 1 and write S1×{0} = [−π, π)×{0}
in such a way that x0 = 0 and x1 > 0. Consider

(7.21) R := f̃({(x, 0) : 0 < x < x1}) \ γX0
1 ((0, tδ)).

Notice that for every x ∈ (0, x1), R∩Sk
x is a single point. Thus, in fact,

R = γX0
j ((0, t′)) for some j ∈ {2, 3, 4}, where

(7.22) t′ := inf
t∈[0,1]

γX0
j (t) ∈ Sk

x1
.

Assume without loss of generality that j = 2. Since X1 is a singular
point, it is a multiplicity two point. This means that Σ∩Sk

x1
is a single

point and, therefore, that γX0
2 (t′) = X1. However, observe that the great
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circles of which γX0
i for i = 1, 2 are segments can only possibly meet

at two antipodal points. Since they meet at X0, we deduce that they
do, in fact, meet at −X0 and, therefore, that X1 = −X0. This means
δ = diamS1+k which implies that Σ is the union of four half-great-circles
meeting only at the points X0 and −X0. We deduce that C0 is four
half-planes meeting along a line, which means that dimS(C) = n − 1.
This contradiction shows that Σ could not have had any singularities
and this completes the proof.
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