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KÄHLER METRIC ON THE SPACE OF CONVEX

REAL PROJECTIVE STRUCTURES ON SURFACE

Inkang Kim & Genkai Zhang

Abstract

We prove that the space of convex real projective structures
on a surface of genus g ≥ 2 admits a mapping class group invari-
ant Kähler metric where Teichmüller space with Weil–Petersson
metric is a totally geodesic complex submanifold.

1. Introduction

Recently, the character variety χ(π1(M), G) of representations of
π1(M) in a real algebraic group G, has drawn many attentions from dif-
ferent branches of mathematics. The G-character variety χ(π1(M), G)
is the geometric quotient of Hom(π1(M), G) by inner automorphisms of
G. Often, some components of the character variety correspond to some
geometric structures on M . Hitchin [16] introduced Hitchin component
in the character variety of a closed surface group in PSL(n+1,R) gen-
eralizing Teichmüller space in PSL(2,R). More precisely, he showed
that for the adjoint group G of the split real form of a complex simple
Lie group Gc, the quotient by the conjugation action of G of the set of
homomorphisms, from the fundamental group Γ of a closed surface S of
genus g ≥ 2 to G, which acts completely reducibly on the Lie algebra
of G, has a connected component homeomorphic to Euclidean space of
dimension (2g − 2)dimG. His method is the use of Higgs bundle the-
ory developed by himself, K. Corlette, S. Donaldson, C. Simpson and
many others [15, 31]. A homomorphism from Γ to Gc defines a flat
principal Gc-bundle. Given a complex structure on S, denoted by Σ, a
theorem of Corlette and Donaldson associates a natural Gu-connection
A, where Gu is the maximal compact subgroup of Gc, and a Higgs field
Ψ ∈ H0(Σ, adP ⊗K) which satisfy the equation FA + [Ψ,Ψ∗] = 0. Here
K is the canonical line bundle over Σ, P is a principal Gu-bundle and
adP is the Lie algebra bundle associated to the adjoint representation

Research partially supported by STINT-NRF grant (2011-0031291). Research
by G. Zhang is supported partially by the Swedish Science Council (VR). I. Kim
gratefully acknowledges the partial support of grant (NRF-2017R1A2A2A05001002)
and a warm support of Chalmers University of Technology during his stay.

Received August 19, 2015.

127



128 I. KIM & G. ZHANG

of Gu. Solutions to these equations provide a holomorphic parametriza-
tion of the equivalence classes of homomorphisms from Γ to Gc. For
appropriately chosen Ψ the solutions are stable under the complex con-
jugation in Gc and reduce to G-connections corresponding to elements
in the Hitchin component.
For the real linear group SL(n + 1,R), Hitchin showed that the

Hitchin component is homeomorphic to
⊕n

j=1H
0(Σ,Kj+1). We need

to mention that this homeomorphism depends on a priori fixed complex
structure on S, and hence it is not mapping class group equivariant.
After Hitchin’s work, many people pursued to clarify this component
in many different ways. Notably Labourie [21] introduced a notion of
Anosov representations and proved that Hitchin representations are ex-
actly Anosov representations in SL(n+1,R). In [22], he also suggested
a mapping class group equivariant parametrization using Hitchin map
and an adaptation of an energy functional over Teichmüller space. We
will review his interpretation of Hitchin map in Section 3.
It has been conjectured for a long time that the Hitchin component

admits a mapping class group invariant Kähler metric. There have been
many evidences for this, see [13, 24, 6]. In the last section, we prove
the existence of a mapping class group invariant Kähler metric on the
Hitchin component for n = 2.

Theorem 1.1. The Hitchin component of the character variety

χ(π1(M), SL(3,R)) can be equipped with a mapping class group invari-

ant Kähler metric where M is a closed surface of genus ≥ 2. Further-

more, Teichmüller space equipped with the Weil–Petersson metric is a

totally geodesic complex submanifold.

This Kähler metric is constructed using certain L2-metric. Intuitively,
we glue Weil–Petersson metric on the base and L2-metric along vertical
fibers using Griffith negativity. Indeed, we need the dual of a holo-
morphic vector bundle over Teichmüller space whose fibres are cubic
holomorphic forms. The geometric properties of this metric such as
various curvatures, geodesics will be explored in a near future. We hope
that this new natural Kähler metric will help us to better understand
the moduli space of real projective structures and the Teichmüller space
as a byproduct.
This particular Hitchin component has been intensively studied by

many people. Choi–Goldman showed that the corresponding geomet-
ric structure is the convex real projective structure [7] and the bundle
structure is verified by Labourie [20] and Loftin [27] independently

using Monge–Àmpere equations relying on the seminal work of Cheng–
Yau [8]. The symplectic structure on the Hitchin component has been
studied by Goldman [13]. Recently Li [24] constructed a mapping class
group invariant metric using explicit constructions over sl(3,R)-bundles
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and Cheng–Yau metric over the cone. It would be interesting to compare
this construction with ours. Bridgeman–Canary–Labourie–Sambarino
[6] constructed a pressure metric on Hitchin component of SL(n+1,R)
for every n using different method.

Acknowledgments. We would like to thank Bo Berndtsson for a few
helpful discussions on complex vector bundles, in particular, for Kähler
property based on Griffith’s positivity. We are grateful for the anony-
mous referee for valuable suggestions and for the careful reading of an
earlier version of this paper.

2. Convex projective structures on a manifold M

A flat projective structure on an n-dimensional manifold M is a
(RPn, PSL(n + 1,R))-structure, i.e., there exists a maximal atlas on
M whose transition maps are restrictions to open sets in RP

n of ele-
ments in PSL(n + 1,R). Then there exist a natural holonomy map
ρ : π1(M) → PSL(n + 1,R) and a developing map from the universal

cover M̃ , f : M̃ → RP
n such that

∀x ∈ M̃, ∀γ ∈ π1(M), f(γx) = ρ(γ)f(x).

We will consider projective structures deformed from hyperbolic struc-
tures, and all holonomy representations will lift to SL(n + 1,R). An
RP

n-structure is convex if the developing map is a homeomorphism
onto a convex domain in RP

n. It is properly convex if the domain is
included in a compact convex set of an affine chart, strictly convex if
the convex set is strictly convex.
When M = S is a closed Riemann surface of genus at least 2, a

huge amount of literature for the set of marked strictly convex real
projective structures on S exist concerning its parametrization [14], its
identification with Hitchin component [7], degeneration of the projective
structures [18], entropy of geodesic flow [12], the marked length rigidity
[17], its Zariski tangent space at Fuchsian locus of the character variety
in SL(n,R) [19] and many more. For a recent generalization to finite
volume convex real projective structures, see [3, 10].
In this paper, we utilize the holomorphic vector bundle structure of

the space of the marked strictly convex real projective structures on
a closed surface of genus at least 2, [20, 27], where Monge–Àmpere
equation type argument is used. The method is initiated by Cheng and
Yau [8, 9].

3. Hitchin map and bundle structure

In this section, we collect known results to introduce the Hitchin map.
See [20, 22] for details. If ρ is a reductive representation from π1(S) to a
semisimple Lie group G, Corlette proved [11] the following claim: There

exists a unique, up to G, ρ-equivariant harmonic map fρ,J : S̃ → G/K
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where G/K is the symmetric space of G and J is a complex structure

on S. If f is a ρ-equivariant map from the universal cover S̃ to G/K,
then one can define the energy E(J, f) of f with respect to a complex
structure J on S. Hence, given ρ, one can define an energy functional
eρ(J) on Teichmüller space by the infimum of energy of ρ-equivariant
functions with respect to a complex structure J . This harmonic map
minimizes the energy, i.e., E(J, fρ,J ) = eρ(J). The minimum area of ρ
is defined to be infJ eρ(J). Then it is known [28, 29] that a harmonic
map realizing the minimum area of ρ is conformal.
For a map f from S to a Riemannian manifold (M,g), Tf can be

viewed as a 1-form on S with values in f∗TM . Let TCf(u) = Tf(u)−
iTf(Ju) be a complexified tangent map with values in the complexified
vector bundle f∗TM ⊗R C. Then f is harmonic if and only if TCf is
holomorphic. Furthermore, gC(TCf, TCf) = 0 if and only if f is minimal.
Every G-invariant symmetric multilinear form P on g gives rise to

a parallel polynomial function P , with the same notation, on G/K.
Hence, for any complex structure J on S, and for every symmetric G-
invariant multilinear form P of degree k on g, any reductive represen-
tation ρ gives rise to an element in Q(k, J) by P (TCf, · · · , TCf) where
f is a ρ-equivariant harmonic map. Here Q(k, J) = H0((S, J),Kk) is
the space of holomorphic k-differentials. Denote this map by FP,J(ρ) =
P (TCf, · · · , TCf).
For G = SL(n,R), we can use the symmetric polynomial Pk of degree

k. Then FP2
is a metric on SL(n,R)/SO(n). Set

ΨJ =

k=n⊕

k=2

FPk,J .

Hitchin proved that the map ΨJ is a homeomorphism from the Hitchin
component to Q(2, J) ⊕ · · · ⊕ Q(n, J). Set ε(n) to be the bundle over
Teichmüller space with fibres Q(k, J), k ≥ 3. Labourie introduced the

Hitchin map from ε(n) to the Hitchin component

H(J, ω) = Ψ−1
J (ω),

for ω ∈⊕n
k=3Q(3, J) ⊕ · · · ⊕Q(n, J). He showed that

Theorem 3.1. The Hitchin map is surjective.

For n = 3, this Hitchin map is injective also. Let T be the Teichmüller
space of complex structures Σt on the surface S with the holomorphic
tangent space given by H(0,1)(Σt,K−1) at each t ∈ T . Following [20]
we consider the space

V = {(v, t); v ∈ Vt := H0(K3
t ), t ∈ T }.

Labourie [20] showed that
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Theorem 3.2. There exists a mapping class group equivariant dif-

feomorphism between the moduli space of convex structures on S and

the moduli space of pairs (J,Q) where J is a complex structure on S
and Q is a cubic holomorphic differential on S with respect to J , i.e.,
diffeomorphic to V.
Hence, the moduli space of convex projective structures can be treated

as the holomorphic vector bundle V over T .
The vector bundle V (sometimes called Hodge bundle) can be treated

as in [4]. Consider the tautological bundle [1]

T̂ = {(t, w); t ∈ T , w ∈ Σt},
over the Techmüller space T equipped with the canonical complex struc-
ture; see [1, §5]. Note that T̂ is a Kähler manifold with the Kähler metric
defined locally by the potential on the fiber Σt [32].
The Hodge vector bundle V is then a complex vector bundle and, in

particular, it is a complex manifold, see, e.g., [4]. We let V∗ be the dual
bundle of V. This can be realized as

V∗ = {(v, t); v ∈ Vt := H0,1(K−2
t ), t ∈ T },

via the natural mapping class group invariant paring (f, g) =
∫
Σt

g(f),

f ∈ H0,1(K−2
t ), g ∈ H0(K3

t ) = H1(K2
t ).

4. Various notions of curvature positivity

We shall need some results on the positivity for the curvature of
the Hodge bundle above. Recall that generally a complex manifold M
equipped with a Hermitian metric is said to have a nonpositive bisec-

tional curvature if

R(X,Y, X̄, Ȳ ) ≤ 0,

for all X,Y ∈ TM⊗C where R is the curvature tensor extended complex
linearly to complexified bundle. When we deal with the holomorphic
vector bundles, there are similar notions of positivity (negativity). Let
E be a holomorphic vector bundle over a Kähler manifold M and h a
Hermitian metric on E. Let ∇ be a Chern connection which is com-
patible with the metric h and complex structure on E. If we write
∇ = D + ∂̄, then its curvature F is equal to D∂̄ − ∂̄D when acting
on local holomorphic sections. More concretely, for any section s and
(complexified) vector fields X,Y ,

F (X,Y )(s) = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s.

F is of type (1, 1), real and satisfies

h(F (s1), s2) + h(s1, F (s2)) = 0,

for any sections s1 and s2.
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If zi are local holomorphic coordinates onM and eα is a local orthog-
onal frame on E, then the curvature F can be written by

√
−1F =

∑
cᾱβ
jk̄

dzjdz̄k ⊗ e∗α ⊗ eβ ,

where cᾱβ
jk̄

= cβ̄αkj . This curvature gives rise to a Hermitian (sesqui-linear)

form Θ on TM ⊗ E, given locally by

Θ =
∑

cᾱβ
jk̄
(dzj ⊗ e∗α)⊗ (dzk ⊗ e∗β).

In tensorial notation, let eα be a local holomorphic frame of E and eα

the dual frame, then the curvature tensor R ∈ Γ(M,∧2T ∗M ⊗E∗ ⊗E)
of ∇ has the form

R =

√
−1
2π

∑
Rγ

ij̄α
dzidz̄j ⊗ eα ⊗ eγ ,

where Rγ
ij̄α

= hγβ̄Rij̄αβ̄ and

Rij̄αβ̄ = −
∂2hαβ̄
∂zi∂z̄j

+
∑

hγδ̄
∂hαδ̄
∂zi

∂hγβ̄
∂z̄j

.

Then the Hermitian vector bundle (E, h) is said to be

1) Griffith positive if for any nonzero vectors u =
∑

ui ∂
∂zi

and v =∑
vαeα, ∑

Rij̄αβ̄u
iūjvαv̄β > 0,

i.e.,
Θ(u⊗ v, u⊗ v) = h(F (u, ū)(v), v) > 0,

for any section v �= 0 and non-zero holomorphic tangent vector
field u. In other words, Θ is positive definite on nonzero simple
tensors of the form u⊗ v.

2) Nakano positive if for any nonzero vector u =
∑

uiα ∂
∂zi
⊗ eα,

∑
Rij̄αβ̄u

iαūjβ > 0,

i.e., the associated sesqui-linear form Θ is a positive definite Her-
mitian form.

3) dual Nakano positive if for any nonzero vector u =
∑

uiα ∂
∂zi
⊗ eα,

∑
Rij̄αβ̄u

iβūjα > 0.

It is obvious from the definition that Nakano positivity implies Griffith
positivity. Also (E, h) is dual Nakano positive if and only if (E∗, h∗) is
Nakano negative. If E is Griffith positive then its dual E∗ is Griffith
negative. We also remark that Griffith positivity implies that the bundle
E is ample.
In particular, if E is a line bundle, then the above notions of positivity

all agree. The curvature in this case is computed by ∂̄∂ log ‖w‖2 for any
local holomorphic frame (i.e., nonzero-section) w. We will use these
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notions of positivity to prove the existence of Kähler metric on the
Hitchin component of χ(π1(S), SL(3,R)).

5. Kähler property

The following result is a corollary of a general theorem of Berndtsson
[4] applied to the vector bundle V; when we replace the fiber of the bun-
dle V by the spaces H0(K2

t ) viewed as the dual space of the holomorphic
tangent space of Teichmüller space, it is a classical result of Ahlfors [2]
that the Teichmüller space has negative holomorphic sectional curvature
equipped with the Weil–Petersson metric.

Theorem 5.1. The bundle V is Griffith positive.

Proof. The tangent line bundle K−1
t on each Riemann surface Σt is

equipped with a unique Kähler–Einstein metric of negative curvature
−1, in other words, the canonical line bundle Kt is Kähler–Einstein of
positive curvature 1. Let L on T̂ be the pull-back of the line bundle Kt

to T̂ under the projection T̂ → T . It follows from [32, Theorem 5.5,
Lemma 5.8] that the bundle L is positive; see also [30, Main Theorem,
Theorem 1] for generalization. Thus L2 is positive since L is a line
bundle. In [4], it is proved that the Hermitian vector bundle over T ,

H0(Σt, L0 ⊗KT̂ /T ) �→ t,

the fiber being the spaces of global sections, endowed with L2-metric, is
Nakano positive, where L0 is any positive line bundle over the Kähler
manifold T̂ . In particular, taking L0 = L2 we have

H0(Σt,L2 ⊗KT̂ /T ) = H0(Σt,K2
t ⊗KT̂ /T ) = H0(Σt,K3

t ),

we see that the bundle with fiber H0(K3
t ) over T , i.e., the bundle V is

Nakano positive, hence Griffith positive. q.e.d.

Remark 5.2. The Nakano positivity of the bundle H0(Σt,K3
t ) can

also be directly proved by using the result of Berndtsson in [5]. It is
proved there whenever the metric on L0 is positive fiberwise then the
Nakano positivity still holds for H0(Σt, L0 ⊗ KT̂ /T ). In our case the

fiber metric is dual to the hyperbolic metric on the Riemann surfaces
and has constant positive curvature. See also [25, 26] for related works.

Corollary 5.3. The bundle V∗ is Griffith negative.

The first statement below can be proved for general bundles with the
Griffith negativity, and here we are only interested in the special case
of V∗.

Theorem 5.4. The bundle V∗ is a Kähler manifold. In particular,

the Hitchin component of the character variety χ(π1(S), SL(3,R)) has

a mapping class group invariant Kähler metric.
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Proof. Let w0 �= 0 be a fixed point in V∗ with z0 = π(w0), where
π : V∗ → T is the defining projection. We choose a local trivializing
holomorphic frame {eα = eα(z)} in a coordinate neighborhood U of
z0, and write, with some abuse of notation, z = (z1, · · · , zn) as the
coordinate of U . The local holomorphic coordinates near w0 will be
w =

∑
α x

αeα(z) → (zi, xα), and the holomorphic tangent vectors are

T = (u, v) with u =
∑

ui
∂
∂zi

and v =
∑

vα
∂

∂xα .
We let ψ be a local Kähler potential for T near z0, T being equipped

with the Weil–Petersson metric. Thus π∗ψ(w) is defined in a neighbor-
hood of w0. We let

φ(w) = ‖w‖2 + ψ(π(w)) = ‖w‖2 + π∗ψ(w),

to be defined in a neighborhood of w0.
Let ∇ = D+ ∂̄ be the Chern connection acting on sections of V∗ and

Deα =
∑

θβαeβ where θβα is type (1, 0). We fix T = (u, v) �= 0 at w0

and perform the differentiation ∂̄T∂Tφ with ∂T = ∂u + ∂v. The vectors
w =

∑
α x

αeα(z) will be viewed as holomorphic sections for fixed xα.
The curvature R(u, ū) of Chern connection ∇ is

R(u, ū)w = ∇u∇ūw−∇ū∇uw−∇[u,ū]w = ∇u∂̄uw− ∂̄uDuw = −∂̄uDuw

using ∂̄uw = 0 and [u, ū] = 0. We have

∂u‖w‖2 = (Duw,w) + (w, ∂̄uw) = (Duw,w),

∂̄u∂u‖w‖2 = ∂̄u(Duw,w) = (∂̄uDuw,w) + (Duw,Duw)

= −(R(u, ū)w,w) + (Duw,Duw).

Since

Duw =
∑

Dux
αeα +

∑
xαDueα =

∑
xαθβα(u)eβ(z),

θβα(u)eβ(z) depends smoothly only on z, and hence ∂̄vDuw = 0. Also
∂vw = v, hence

∂̄v∂u‖w‖2 = (Duw, v), ∂̄u∂v‖w‖2 = (v,Duw),

and

∂̄v∂v‖w‖2 = (v, v).

Thus

∂̄T∂T ‖w‖2 = −(R(u, ū)w,w) + (Duw,Duw)

+ (Duw, v) + (v,Duw) + (v, v)

= −(R(u, ū)w,w) + (Duw + v,Duw + v) ≥ 0.

Here we use Griffith negativity of V∗ to have (R(u, ū)w,w) < 0. We
have also

∂̄T ∂Tπ
∗ψ = ∂̄u∂uψ,
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which is positive definite in u. Thus

∂̄T∂Tφ = −(R(u, ū)w,w)+ (Duw+ v,Duw+ v)+ ∂̄u∂uψ = I+ II+ III,

a sum of three semi-positive Hermitian forms. We prove that it is
positive at w = w0. Suppose the quadratic form vanishes. Then
I = II = III = 0. If w0 �= 0, then I = 0 implies that u = 0 by
Griffith negativity, and the second term is 0 = II = (v, v), which im-
plies further that v = 0. Suppose w0 = 0, i.e., in the zero section. Then
III = 0 implies that u = 0, which in turn implies 0 = II = (v, v)
and v = 0. In either cases, T = (0, 0), a contradiction to the choice of
T = (u, v) �= 0. q.e.d.

It follows from the definition that the map w → −w is an isom-
etry and its fixed point set is the space of zero sections, namely the
Teichmüller space identified as a submanifold. We have thus

Corollary 5.5. Let Teichmüller space T be equipped with the map-

ping class group invariant Weil–Petersson metric and the Hitchin com-

ponent χH(π1(S), SL(3,R)) of the character variety χ(π1(S), SL(3,R))
be equipped with the mapping class group invariant Kähler metric as in

Theorem 5.4. Then T is a totally geodesic submanifold of χH(π1(S),
SL(3,R)).

Recently Labourie [23] generalized this theorem to the Hitchin com-
ponents associated to all real split simple Lie groups of rank 2.

Remark 5.6. If we consider the bundle W over Teichmüller space

whose fiber over t equal to
∑

j≥2H
0(Σt,Kj

t ), then it is Griffith positive
and the same method applies to show that the total space W∗ has a
mapping class group invariant Kähler metric. For example, the space of
the marked complex projective structures on a closed surface of genus
at least 2 is a holomorphic vector bundle over Teichmüller space with
fibers being the space of holomorphic quadratic differentials. Hence,
this space has a natural mapping class group invariant Kähler metric.
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