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MAXIMAL TOTALLY GEODESIC SUBMANIFOLDS
AND INDEX OF SYMMETRIC SPACES
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Abstract

Let M be an irreducible Riemannian symmetric space. The
index ¢(M) of M is the minimal codimension of a totally geo-
desic submanifold of M. In [1] we proved that (M) is bounded
from below by the rank rk(M) of M, that is, k(M) < i(M).
In this paper we classify all irreducible Riemannian symmetric
spaces M for which the equality holds, that is, rk(M) = i(M).
In this context we also obtain an explicit classification of all non-
semisimple maximal totally geodesic submanifolds in irreducible
Riemannian symmetric spaces of noncompact type and show that
they are closely related to irreducible symmetric R-spaces. We
also determine the index of some symmetric spaces and classify
the irreducible Riemannian symmetric spaces of noncompact type
with i(M) € {4,5,6}.

1. Introduction

Let M be a connected Riemannian manifold and denote by S the set
of all connected totally geodesic submanifolds ¥ of M with dim(X) <
dim(M). The index i(M) of M is defined by

i(M) = min{dim(M) — dim(X) | ¥ € S} = min{codim(X) | ¥ € S}.

This notion was introduced by Onishchik in [13] who also classified
the irreducible simply connected Riemannian symmetric spaces M with
(M) <2.

In [1] we investigated i(M) for irreducible Riemannian symmetric
spaces M. We proved that the rank rk(M) of M is always less or
equal than the index of M and classified all irreducible Riemannian
symmetric spaces M with i(M) < 3. The motivation for this paper
was to understand better the equality case rk(M) = i(M). The main
result of this paper is the classification of all irreducible Riemannian
symmetric spaces M with rk(M) = i(M).
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Theorem 1.1. Let M be an irreducible Riemannian symmetric space
of noncompact type. The equality rk(M) = i(M) holds if and only if M
18 1sometric to one of the following symmetric spaces:

(1) SLT+1(R)/SO7«+1, T 2 1,'
(11) SO$7r+k/SOTSOT’+k) r>1,k=>0, (Tv k) ¢ {(170)7 (270)}

Duality between Riemannian symmetric spaces of noncompact type and
of compact type preserves totally geodesic submanifolds, and if M is
an irreducible Riemannian symmetric space of compact type and M
is its Riemannian universal covering space (which is also a Riemann-
ian symmetric space of compact type), then i(M) = i(M). Therefore
Theorem 1.1 leads, via duality and covering maps, to the classifica-
tion of irreducible Riemannian symmetric spaces of compact type with
rk(M) = i(M).

In order to compute the index explicitly we need to have a good un-
derstanding of maximal totally geodesic submanifolds. Every maximal
totally geodesic submanifold ¥ in an irreducible Riemannian symmetric
space M of noncompact type is either semisimple or non-semisimple.
As part of our investigation we obtain an explicit classification for the
non-semisimple case and a conceptual characterization of such subman-
ifolds in terms of symmetric R-spaces. Denote by r the rank of M and
write M = G /K, where G is the connected identity component of the
isometry group I(M) of M and K = G, is the isotropy group of G
at p € M. Consider a set of simple roots A = {aq,...,a.} of a re-
stricted root space decomposition of the Lie algebra g of G and denote
by § = d1a1 + ...+ 6, the highest root. Let g; be the parabolic subal-
gebra of g which is determined by the root subsystem ®; = A\ {«;} and
consider the Chevalley decomposition q; = [; & n; of g; into a reductive
subalgebra [; and a nilpotent subalgebra n;. Let L; be the connected
closed subgroup of G with Lie algebra [; and denote by F; the orbit of L;
containing p. Then Fj is a non-semisimple totally geodesic submanifold
of M which decomposes into F; = R x B;, where B; is a semisimple
Riemannian symmetric space of noncompact type. The classification
and characterization of non-semisimple maximal totally geodesic sub-
manifolds in M is as follows:

Theorem 1.2. Let M = G/K be an irreducible Riemannian sym-
metric space of noncompact type and let ¥ be a non-semisimple con-
nected complete totally geodesic submanifold of M. Then the following
statements are equivalent:

(i) X is a mazimal totally geodesic submanifold of M ;
(ii) X is isometrically congruent to F; =R x B; and §; = 1;
(iii) The normal space vpy% of ¥ at p is the tangent space of a symmetric
R-space in T, M ;
(iv) The pair (M,X) is as in Table 3.
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An R-space is a real flag manifold and a symmetric R-space is a real
flag manifold which is also a symmetric space. R-spaces are projective
varieties and symmetric R-spaces were classified and investigated by
Kobayashi and Nagano in [9]. They arise as certain orbits of the isotropy
representation of semisimple Riemannian symmetric spaces.

This paper is organized as follows. In Section 2 we summarize ba-
sic material about Riemannian symmetric spaces of noncompact type,
their restricted root space decompositions and Dynkin diagrams, para-
bolic subalgebras, and their boundary components with respect to the
maximal Satake compactification.

In Section 3 we obtain some sufficient criteria for totally geodesic
submanifolds in Riemannian symmetric spaces of noncompact type to
be reflective. As is well-known, totally geodesic submanifolds are in
one-to-one correspondence with Lie triple systems. If the orthogonal
complement of a Lie triple system is also a Lie triple system, then the
Lie triple system and the corresponding totally geodesic submanifold
are said to be reflective. Geometrically, reflective submanifolds arise as
connected components of fixed point sets of isometric involutions. Re-
flective submanifolds in irreducible simply connected Riemannian sym-
metric spaces of compact type were classified by Leung in [10] and [11].
The concept of reflectivity turns out to be very useful in our context.
One of our main criteria is Proposition 3.4 which states that if the kernel
of the slice representation of a semisimple totally geodesic submanifold
Y in an irreducible Riemannian symmetric space of noncompact type
has positive dimension, then ¥ is reflective. This criterion then pro-
vides a lower bound for the codimension of 3 which we will use in index
calculations.

In Section 4 we will prove Theorem 1.2. The first step is to show
that any non-semisimple maximal totally geodesic submanifold in M is
congruent to one of the orbits F; introduced above. The coefficient J;
of a; in the highest root § then plays a crucial role for the next step. If
d; > 2, we construct explicitly a larger Lie triple system containing the
Lie triple system corresponding to F;. The situation for §; = 1 is much
more involved. With delicate arguments using Killing fields, Jacobi
fields, reflections and transvections we can show that F; is maximal when
0; = 1. As an application of Theorem 1.2 we obtain that every maximal
totally geodesic submanifold of an irreducible Riemannian symmetric
space of noncompact type whose root system is of type (BC,), (Eg),
(Fy) or (G2) must be semisimple. Another application states that every
non-semisimple maximal totally geodesic submanifold of an irreducible
Riemannian symmetric space of noncompact type must be reflective.
As a third application we obtain that the index of SL,1(R)/SO,41 is
equal to its rank r.
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In Section 5 we prove that the two classes of symmetric spaces listed
in Theorem 1.1 satisfy the equality rk(M) = i(M). For this we explicitly
construct totally geodesic submanifolds ¥ of M with codim(X) = rk(M)
using standard algebraic theory of symmetric spaces.

In Section 6 we prove Theorem 1.1. A crucial step is Proposition 6.2
which states that if M satisfies the equality rk(M) = i(M), then every
irreducible boundary component B of the maximal Satake compactifi-
cation of M satisfies rk(B) = i(B). As an application we obtain that
with the possible exception of ES/Spy, EY/SUg and ES /SO there are
no other irreducible Riemannian symmetric spaces M of noncompact
type with rk(M) = ¢(M) than those discussed in Section 5. The excep-
tional symmetric space Eg /Spy has the interesting property that each
of its irreducible boundary components B satisfies rk(B) = i(B). In
order to come to a conclusion for this exceptional symmetric space we
developed the criteria about reflective submanifolds in Section 3. Us-
ing these criteria we can show that E¢/Sps does not satisfy the equal-
ity tk(M) = i(M). Since E{/Spy arises as a boundary component of
EI/SUg and of E§/SO16 we can then conclude that these two symmetric
spaces do not satisfy the equality rk(M) = i(M) either.

In Section 7 we apply some of the results in Sections 3 and 4 to
calculate explicitly the index of some other symmetric spaces. We also
classify the irreducible Riemannian symmetric spaces of noncompact
type with i(M) € {4,5,6}.

Acknowledgments. The article was written while the first author
visited the University of California, Irvine. He would like to thank
Professor Chuu-Lian Terng and the University for their kind support
and hospitality during the visit.

2. Riemannian symmetric spaces of noncompact type

We assume that the reader is familiar with the general theory of
Riemannian symmetric spaces as in [4] and summarize below some basic
facts and notations which are used in this paper.

Let M = G/K be an irreducible Riemannian symmetric space of
noncompact type, where G = I°(M) is the connected component of
the isometry group I(M) of M containing the identity transformation,
p € M and K = G, is the isotropy group of G at p. Then G is a
noncompact real semisimple Lie group and K is a maximal compact
subgroup of G. Let g = £®p be the corresponding Cartan decomposition
of g and denote by 6 the corresponding Cartan involution on g. Let B be
the Killing form of g. Then (X,Y) = —B(X,0Y) is a positive definite
inner product on g. The vector space p can be identified canonically
with the tangent space T,M of M a p. Since the Riemannian metric
on M is unique up to homothety, we can assume that the Riemannian
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metric on M coincides with the G-invariant Riemannian metric induced
by <'7 >

We denote by r = rk(M) the rank of M. Let a be a maximal abelian
subspace of p and denote by a* the dual space of a. Note that dim(a) =
r. For a € a* we define g, ={X € g| [H,X] = o(H)X for all H € a}.
If « # 0 and g, # {0}, then « is a restricted root and g, is a restricted
root space of g with respect to a. The positive integer m, = dim(g,)
is called the multiplicity of the root . We denote by ¥ the set of
restricted roots with respect to a. The direct sum decomposition

9=006 <EBga>

aev

is the restricted root space decomposition of g with respect to a. The
eigenspace go decomposes into go = & @© a, where £y = Zg(a) is the
centralizer of a in £.

Let {a1,...,a,} = A C ¥ be a set of simple roots of ¥. We de-
note by H',...,H" € a the dual basis of a1,...,q, € a* defined by
ai(H7) = §;; for all 4,5 € {1,...,r}, where §; = 0 for i # j and
0;; = 1 for ¢ = j. Riemannian symmetric spaces of noncompact type
are uniquely determined by the Dynkin diagram of their restricted root
system together with the multiplicities of the simple roots. In Table 1
we list the Dynkin diagrams and root multiplicities for all irreducible
Riemannian symmetric spaces of noncompact type.

Parabolic subalgebras (resp. subgroups) of real semisimple Lie al-
gebras (resp. Lie groups) play an important role for the geometry of
Riemannian symmetric spaces of noncompact type for which their is no
analogue in the compact case. We will now describe how to construct
all parabolic subalgebras of g. We denote by U™ the set of positive roots
in ¥ with respect to the set A of simple roots. Let ® be a subset of A.
We denote by Vg the root subsystem of W generated by @, that is, Vg
is the intersection of ¥ and the linear span of ®. We define a reductive
subalgebra [ and a nilpotent subalgebra ng of g by

=000 P va| and o= P ga

acVg a€‘11+\\11$
It follows from properties of root spaces that [lg,ng] C ng and therefore

qgo = lo ®no

is a subalgebra of g, the so-called parabolic subalgebra of g associated
with the subsystem ® of W. The decomposition qe = lp ® ng is the
Chevalley decomposition of the parabolic subalgebra qe.

Every parabolic subalgebra of g is conjugate in g to qe for some
subset ® of A. The set of conjugacy classes of parabolic subalgebras of
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Table 1. Dynkin diagrams and root multiplicities for
irreducible Riemannian symmetric spaces M of noncom-

pact type
Dynkin diagram M Multiplicities Comments
SOiH.k/SOHk k k>1
SL,»+1(R)/SOT+1 1,17...7171 7‘22
1?1_52. (;7071_(101_ SLT+1(C)/SUT+1 2,2,...,2,2 r>2
SU3, 5/ Spr41 4,4,...,4,4 r>2
Eg*/Fy 8,8
. SOﬁ,Hk/SOTSOHk 1,1,..., 1,1,k r>2k>1
a1 o2 QrozQrolar SOZT+1(C)/SOQT+1 27 27 s 723 27 2 r>2
Sp,(R)/U, 1,1,...,1,1,1 r>3
SU,.»/S(U.U,) 2,2,...,2,2,1 r>3
Spr(C)/Spr 2,2,...,2,2,2 r>3
a1 @y ar2a0o1 ap SO}, /Usy 4,4,...,4,4,1 r>3
Sprr/SprSpy 4,4,...,443  r>2
E;% | EeUy 8,8,1
:2““‘ S02,/50,50, 1,1,...,1,1,1,1 r>4
Q1 Q2 Qr—3 Qr-2 ar SOQ7(C)/SOQ, 2, 2, cee ,2, 2, 2, 2 r 2 4
SUr,r+k/S(UTUT+k) 2,2,. '72727(2k71) r>1Lk>1
SpT',7'+k/SpTSp7'+k 4-, 47 s 747 47 (4k7 3) r>1, k>1
6?1—0?2 Qn ) SOZT‘+2/U2T+1 47 45 ce 747 47 (47 1) r= 2
o Eg™/SpiniogUy  6,(8,1)
F[QO/Sping (8,7)
T E¢/Sps 1,1,1,1,1,1
> E()(C)/E() 27272727232
SR EI/SUs 1,1,1,1,1,1,1
> Fr(C)/E; 2,2,2,2,2,2,2
(51 a3 “ @y as ag oy ag Eg/SOlﬁ 17 1’ 17 1 1’ 17 17 1
> Es(C)/EBs 2,2,2,2,2,2,2,2
F}/Sp3Sp 1,1,1,1
E2/SUsSm 1,1,2,2
ac1 00:2 QOS HOA E;5/50125p1 1,1,4,4
Eg*!/ExSpy 1,1,8,8
F4((C)/F4 2727272
G3/50, 1,1
[er—=6} 2 ’
a a2 GQ(C)/GQ 27 2

g therefore has 2" elements. Two parabolic subalgebras q¢, and qg, of
g are conjugate in the full automorphism group Aut(g) of g if and only
if there exists an automorphism F' of the Dynkin diagram associated to
A with F(®1) = ®9. If || = 7 — 1 then qg is said to be a maximal
parabolic subalgebra of g.

Let

ap = m ker(a) C

aced

a
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be the split component of [y and denote by a® = a © ag the orthogonal
complement of ag in a. The reductive subalgebra [g is the centralizer
(and the normalizer) of ag in g. The orthogonal complement mg =
lp © ag of ag in lg is a reductive subalgebra of g. The decomposition

qp = Mg P ap D ne

is the Langlands decomposition of the parabolic subalgebra qg. We have
[mq>,aq>] = 0 and [mcp,nq;] C ng. Moreover, do = [mcp,mq;] = [[q>, [q;] is
a semisimple subalgebra of g. The center 3¢ of mg is contained in €
and induces the direct sum decomposition mg = 33 P g and therefore,
since 3¢ C £y, we see that go Nty = £y © 35.

For each o € U we define £, = tN(g_a D ga) and po = PN (g—0 D ga)-
Then we have ¢, = €., P = Po and £, B Ppo = g_a P gq for all a € V.
From general root space properties it follows that

fo = loMp = a® | ) pa | andbo = menp = garp = a®@ ) pa

acVg acVqg

are Lie triple systems in p. We define a subalgebra £g of € by

to=deNt=lNt=ment=tea | P t

acVg

Then we have [tp, mg] C Mo, [tp,as] = {0} and [tp,ne| C ng. More-
over, go = (go Ntyp) @ by is a Cartan decomposition of the semisimple
subalgebra ge of g and a® is a maximal abelian subspace of bg. If we

define (go)o = (go N€) @ a®, then go = (ga)o <@a6\11<1> Ela) is the

restricted root space decomposition of ge with respect to a® and @ is
the corresponding set of simple roots.

Let Fg and Bg be the connected complete totally geodesic submani-
fold of M corresponding to the Lie triple systems f¢ and bg, respectively.
Then Bg is a Riemannian symmetric space of noncompact type with
rk(Bg) = |®|, also known as a boundary component in the maximal
Satake compactification of M (see [3]). Note that Bg is irreducible if
and only if the Dynkin diagram corresponding to ® is connected. The
totally geodesic submanifold Fg is isometric to the Riemannian product
Bg x R™1?l where R"~1¢l is the totally geodesic Euclidean space in M
corresponding to the abelian Lie triple system ag. Fori € {1,...,r} we
define ®; = A\ {«a;}, l; = lo,, F; = Fg,, B; = Bg,, etcetera. Then we
have F; = R x B;.
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3. Reflective submanifolds

Let ¥’ be a connected totally geodesic submanifold of M. Since M
is homogeneous we can assume that p € ¥/. Moreover, since every con-
nected totally geodesic submanifold of a Riemannian symmetric space is
contained in a connected complete totally geodesic submanifold, we can
also assume that ¥’ is complete. Since M is of noncompact type, ¥/ is
the Riemannian product of a (possibly 0-dimensional) Euclidean space
and a (possibly 0-dimensional) Riemannian symmetric space of noncom-
pact type. This implies in particular that ¥’ is simply connected.

The tangent space m’ = 1,5 C T,M = p is a Lie triple system in
p and thus ¢’ = [m/,wm'] @& m’ C €@ p = g is a subalgebra of g. Let G’
be the connected closed subgroup of G' with Lie algebra g’. Then X' is
the orbit G’ - p of the G’-action on M containing p. Thus we can write
¥ = G'/K', where K' = G, is the isotropy group of G’ at p. Since ¥/ is
simply connected, the isotropy group K’ is connected. The Lie algebra
¥ of K’ is given by ¥ = [m’/,m’]. Note that G’ is a normal subgroup of
G ={g€G|g(X) =%} and K’ is a normal subgroup of (G>),.

The following Slice Lemma was proved in [1] and will be used later.
We formulate it here for the noncompact case, but it is valid also for
the compact case.

Lemma 3.1. (SLICE LEMMA) Let M = G/K be an irreducible Rie-
mannian symmetric space of noncompact type with rk(M) > 2, where
G = I°(M) and K = G, is the isotropy group of G at p € M. Let
g =EtDp be the corresponding Cartan decomposition. Let X' be a non-
flat totally geodesic submanifold of M such that p € ¥'. Let G’ be the
connected closed subgroup of G with Lie algebra [m/,w'] & w', where
Y =wm' Cp=T,M, and K' = Gi,. Then the slice representation of
K’ on vpX' is nontrivial.

In general, the orthogonal complement m” of a Lie triple system m’ in
p is not a Lie triple system. If m” is a Lie triple system, then m’ is said to
be a reflective Lie triple system and Y’ is said to be a reflective subman-
ifold of M. The notion comes from the fact that the geodesic reflection
of M in Y/ is a well-defined global isometry of M if and only if both m’
and m” are Lie triple systems. Reflective submanifolds therefore always
come in pairs ¥’ and X" corresponding to the two reflective Lie triple
systems m’ and m”. In this situation we write X" = G” /K", where G” is
the connected closed subgroup of G with Lie algebra g” = [m”, m”] ¢ m”
and K" = G} is the connected closed subgroup of K with Lie algebra
¢’ = [m” , m”]. The reflective submanifolds of irreducible simply con-
nected Riemannian symmetric spaces of compact type were classified
by Leung ([10],[11]). Using duality one obtains the classification of
reflective submanifolds in irreducible Riemannian symmetric spaces of
noncompact type.
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Let R denote the Riemannian curvature tensor of M. As ¥/ is totally
geodesic in M, the restriction of R to ¥’ coincides with the Riemannian
curvature tensor of ¥'. We will regard, via the isotropy representation
at p, K' ¢ K C SO(T,M). Note that ¢ and ¢ are generated by the
curvature transformations R, , € so(T,M) with z,y € T,M and z,y €
T,%', respectively. The curvature operator R : A%(T,M) — A*(T,M)
is negative semidefinite. This implies, as is well-known, that K’ acts
almost effectively on T),%'.

Let p : K' — SO(pY'), k > dpk),, 5 be the slice representation
of K’ on the normal space 1,Y’ of ¥’ at p and denote by ker(p) the
kernel of p. Let x : K" — SO(T,X"), k + dpkjr,s» be the isotropy
representation of K” on the tangent space T,%".

Lemma 3.2. Let M = G/K be an irreducible Riemannian symmetric
space of noncompact type, ' = G' /K’ be a reflective submanifold of M
and X" = G" /K" be the reflective submanifold of M with T,X" = v,
Then:

(i) p(K') is a normal subgroup of x(K").

(ii) The subspace (1Y), = {€ € 1,X' | p(K)E =& for all ' € K'} of
vpX = T,5" is x(K")-invariant and X" = X x ¥ (Riemannian
product), where ! is the totally geodesic submanifold of %" with
1,0 = (1pY)o. Moreover, if tk(M) > 2, then X! is flat.

Proof. As previously observed, K’ is a normal subgroup of (Gzl)p.
Observe also that K” C (G>'), and that p(K') C x(K") (for the last
inclusion see the paragraph below Lemma 2.1 in [1]). Then p(K') =
p(K"K'(K")™Y) = x(K")p(K")(x(k"))~! for all k¥ € K" and thus p(K')
is a normal subgroup of x(K”). Thus the subspace (v,Y'), of T,X" is
X(K")-invariant and hence also invariant under the holonomy group of
¥ at p. Since ¥ is simply connected, the de Rham decomposition
theorem for Riemannian manifolds implies that 3" decomposes as a
Riemannian product into X" = X7 x 3, where ¥ is the totally geodesic
submanifold of X" with T,X = (1,%),.

We write ¥ = GV/K], where G/ is the connected closed subgroup
of G with Lie algebra g, = [T,X), 1,37 & T, and K is the isotropy
group of G at p. Let z1, 22 € TyX) = (1pY),. For all y € T,X/ we have
Ry, 2,y = 0 since X7 = X7 x 3 is a Riemannian product and totally
geodesic in M. Clearly, T,,3] is K/ -invariant and hence 7,Y’ is also
K]-invariant. If 2’,y" € T,X', then (Ry, 2,2",y') = (Ry y21,22) = 0,
since x1,x2 € (1pY'), are fixed under the slice representation of K.
Since v,X! = T,X] & T,¥' and ¥ is linearly spanned by the curvature
endomorphisms of pairs of elements in 7,%”, we conclude that the slice
representation of K on 1,X/ is trivial. It follows from the Slice Lemma
3.1 that 37 is flat if rk(M) > 2. This finishes the proof of part (ii).

q.e.d.
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Corollary 3.3. Let M = G/K be an irreducible Riemannian sym-
metric space of noncompact type with k(M) > 2 and let ¥ be a totally
geodesic submanifold of M which decomposes into a Riemannian prod-
uct X = Yo X X1 with a Fuclidean factor g and a semisimple factor
¥y with dim(Xg) > 0 and dim(X1) > 0. Then X is not a reflective
submanifold of M.

Proof. Assume that ¥; is a reflective submanifold of M. We will
apply Lemma 3.2 with ¥/ = ;. In the notation of Lemma 3.2, we have
T,%0 C (1Y), and therefore Xy is contained in the flat factor X of
¥". This implies that Ry, ,» = 0 for all g € T,Xy and 2" € T,,3". We
obviously also have Ry, ,, = 0 for all xy € T,Xg and x; € T,X; = T,%.
Since T,M = T,X'®T,¥" this implies R,,. = 0 for all zy € T,X(, which
is a contradiction. q.e.d.

The next result provides a useful sufficient criterion for a semisimple
totally geodesic submanifold of an irreducible Riemannian symmetric
space to be reflective.

Proposition 3.4. Let M = G/K be an irreducible Riemannian sym-
metric space of noncompact type with k(M) > 2 and let ¥ = G'/K’
be a semisimple totally geodesic submanifold of M. Assume that the
kernel ker(p) of the slice representation p : K' — SO(v,X) has positive
dimension. Then we have

vpX ={{ e T,M | p(k) =& for all k € ker(p)°}
and, in particular, X is a reflective submanifold of M.

Proof. The subspace V = {{ € T,X | dpk(§) = & for all k € ker(p)?}
of T,¥ is K'-invariant since ker(p)? is a normal subgroup of K’.

We first assume that V = T,%. Since ker(p)® acts trivially on v,
we conclude that ker(p)? and hence K’ acts trivially on T,,M, which is
a contradiction.

Next, we assume that V is a nontrivial proper K’-invariant subspace
of T,¥. Then ¥ decomposes as a Riemannian product ¥ = X x 3o,
where V = T,%,. If we write, as usual, ¥; = G;/K;, then K’ = K| x K»
(almost direct product). Let h; be the orthogonal projection of the Lie
algebra of ker(p) into ¢ and let H; be the connected subgroup of K;
with Lie algebra b;. Then H; acts trivially on V = T3 since both
ker(p)° and Hj act trivially on V. Since K; acts almost effectively on
T,%1 and H; is connected, it follows that H; is trivial. Thus we have
shown that ker(p)® C K.

Note that {{ € Ty,M | p(k)¢ = & for all k € ker(p)°} = Va2 =
vp29. This shows that ¥ is a reflective submanifold of M. Let ¥3 =
G5/ K3 be the reflective submanifold of M with T),X3 = v,¥X2. We denote
by pi : Ki — SO(vp%;) the slice representation of K; on the normal
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space v,%; and by x; : K; — SO(T,%;) the isotropy representation of
K, i€ {1,2,3}

From Lemma 3.2(i) we see that pa(K32) is a normal subgroup of
x3(K3). Let W be the set of fixed vectors of pa(K2) in 1,39 = T35 =
V&Y =T,51 ®rpX. Since Ky acts trivially on 7,21 one has that
71,3 € W. From Lemma 3.2(ii) we know that W is the tangent space
of a Euclidean factor of ¥3. This is a contradiction since 7 is contained
in this Euclidean factor, however, > is not flat as 3 is semisimple. It
follows that V = {0}, which proves the assertion. q.e.d.

The following consequence of Proposition 3.4 states that totally geo-
desic submanifolds of sufficiently small codimension in irreducible Rie-
mannian symmetric spaces are reflective.

Corollary 3.5. Let M be an n-dimensional irreducible Riemannian
symmetric space of noncompact type with r = k(M) > 2 and let ¥ be a
semisimple connected complete totally geodesic submanifold of M with
codim(X) =d. If

%d(d 1) +1k(E) <,

then 3 is a reflective submanifold of M. In particular, if
d(d+1) <2(n—r),

then X is a reflective submanifold of M.

Proof. As usual, we write ¥ = G'/K’. If dim(K’) > dim(SO(1,X)) =
+d(d — 1), then the kernel of the slice representation p : K’ — SO (1)
must have positive dimension and therefore X is a reflective submanifold
of M by Proposition 3.4. A principal K’-orbit on Y has dimension
n —d —rk(¥) and thus dim(K’) > n — d — rk(3). Consequently, if
2d(d—1) <n—d—1k(X), then ¥ is a reflective submanifold of M. The
inequality 3d(d—1) < n—d—1k(X) is equivalent to $d(d+1)+rk(X) < n.
The last statement follows from the fact that rk(3) < rk(M) = r. q.e.d.

4. Non-semisimple maximal totally geodesic submanifolds

Let ¥ be a connected totally geodesic submanifold of M. We may
assume that ¥ is complete and p € ¥. Every connected complete to-
tally geodesic submanifold of a Riemannian symmetric space is again
a Riemannian symmetric space. In this paper, when we consider a to-
tally geodesic submanifold ¥ of M, we always assume that p € ¥ and
that ¥ is connected and complete. Since M is of noncompact type, it
follows that X is isometric to the Riemannian product g x ¥1, where
Yo is a (possibly 0-dimensional) Euclidean space and ¥ is a (possibly
O-dimensional) Riemannian symmetric space of noncompact type.
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The next result relates non-semisimple maximal totally geodesic sub-
manifolds of M to the reductive factors in the Chevalley decompositions
of the maximal parabolic subalgebras of g.

Proposition 4.1. Let M = G/K be an irreducible Riemannian sym-
metric space of noncompact type and let 3 be a non-semisimple mazximal
totally geodesic submanifold of M. Then X is congruent to F; = R X B;
for some i € {i,...,r}.

Proof. Let a be a maximal abelian subspace of p with 7,3y C a and
consider the restricted root space decomposition of g induced by a. We
define T = {a; € A | 0;(TpX0) = 0} C A. Assume that T = A, which
means that o;(7,%0) = 0 for all o; € A. This implies T,¥¢ = {0} and
therefore ¥ = 3J; is semisimple, which is a contradiction. Thus we have
|T| < |A] = r and therefore there exists i € {1,...,7} such that T C ;.
Then we get

T,Y C Zy(T,%0) = {X € p | [X,Y] =0 for all Y € T, %}
C Zy(T,20) ={X € g | [X,Y] =0 for all Y € T, %}

=90& D s|=wch
eV, a(TpXo)={0}

which implies T, C [;Np = §; and therefore ¥ C F; = Rx B;. If ¥ is a
maximal totally geodesic submanifold of M we must have ¥ = Fj, since

F; is a totally geodesic submanifold of M which is strictly contained in
M. q.e.d.

The remaining problem is to clarify which of the totally geodesic
submanifolds F; are maximal. The solution of this problem is related
to symmetric R-spaces. Let M = G/K be an irreducible Riemannian
symmetric space of noncompact type and consider the isotropy repre-
sentation

X: K —=T,M=p, v dyk(v) = Ad(k)v.
For every 0 # v € p the orbit
K-v={Ad(k)v | ke K} Cp

is called an R-space (or real flag manifold). One can show that the
normal space v, (K -v) of K -v at v is equal to

vo(K - v) = Zp(v) = {w € p | [v,w] = 0},

where Z,(v) is the centralizer of v in p. It follows from the Jacobi
identity that Z,(v) is a Lie triple system. Thus, for every 0 # v € p,
there exists a connected complete totally geodesic submanifold XY of M
with T,X" = 1,(K - v). Since every v € p is contained in a maximal
abelian subspace of p we can assume that v € a. Then we have lp =
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Table 2. Highest roots ¢ of root systems (R)

(R) Highest root 6 = d1a1 + ... + 0,y Comments
(A4) a1+...+a r>1

B,) ay + 20 + ...+ 20, r>2

Cy)  2a1+...4 20,1 +a r>3

D,) al +2a0 4+ ...+ 2009 + ap_1 + @ r >4
BC,) 201+ ...+ 2a, r>1

Es a1 + 209 + 2a3 + 3oy + 2a5 4 ag

2a1 4 29 + 3az + day + 3as + 206 + a7
201 +3as+4as+6ay+das+4ag+3ar+2as
201 4+ 3o + 4as + 20y

3a + 20

S5

=

AAAA/_\/_\/_\/_\/_\
N oo

Zg(v) with @ = {a; € A | oy(v) = 0}, which implies fo = Z,(v) =
vy (K - v) and therefore Fp = X°.

A special situation occurs when the orbit K-v is a symmetric space. In
this situation the orbit K -wv is called an irreducible symmetric R-space.
The irreducibility here refers to the irreducibility of the symmetric space
G /K and not to the orbit. An irreducible symmetric R-space can be re-
ducible as a Riemannian manifold. The irreducible symmetric R-spaces
were classified by Kobayashi and Nagano in [9]. Their classification can
be read off from the Dynkin diagrams and highest roots of the symmet-
ric spaces G/K. In Table 1 we already listed the Dynkin diagrams. In
Table 2 we list the corresponding highest roots 6 = d1a1 + ... + 0pp.

Kobayashi and Nagano proved that an R-space K - v is symmetric if
and only if v = H' and §; = 1. From Tables 1 and 2 one can easily get
the classification of irreducible symmetric R-spaces. We can now state
the main result of this section:

Theorem 4.2. Let M = G/K be an irreducible Riemannian sym-
metric space of noncompact type and let ¥ be a non-semisimple con-
nected complete totally geodesic submanifold of M. Then the following
statements are equivalent:

(i) ¥ is a mazimal totally geodesic submanifold of M

(ii) X is isometrically congruent to F; =R x B; and §; = 1;
(ili) vpX is the tangent space of a symmetric R-space in T,M ;

(iv) The pair (M,%) is as in Table 3.

Proof. The equivalence of (ii) and (iv) is a straightforward compu-
tation using Tables 1 and 2. Kobayashi and Nagano proved that an
R-space K - v is symmetric if and only if v = H* and §; = 1. In
this situation we have vy:(K - H') = Z,(H") = §; = T,F; and hence
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Table 3. Non-semisimple maximal totally geodesic sub-
manifolds ¥ = R x B of irreducible Riemannian symmet-
ric spaces M of noncompact type

M B codim(X)  Comments

SLTJr] (R)/SO7+1 SLl(R)/SOZXSLT+171(R)/507+1,L Z(T+ 1 *’[) r> 2, 1 < i < [g]

SL,41(C)/SU, 41 SL;(C)/SU; x SU,41-i(C)/SU,41-; 2i(r+1—i) r>2,1<i< [%]

SU57:+2/SPT+1 SU3;/Spi x SU2*(7-+17i)/SpT+1—i di(r+1-i) r=21<i<[g]

E%/F, RH? 16

SO7, 1 /80:SO sy SOP_y 14 /SOr-180; 14y, 2r—2+k r>2k>1

SOQrJr] ((C)/SOQT+] SOQrfl(C)/SOm,l 4r — 2 T 2 2

Spr(R) /U, SL(R)/SO; rr+1) r>3

SU,../S(UU,) SL,.(C)/SU, r2 r>3

Sp,(C)/Spy SL,(C)/SU, r(r+1) r>3

S0O;, /Uay SU;./Spr r(2r—1) r>3

Sprr/SprSpr SUs./Spr r(2r+1) r>2

ET% |EgUy Eg*/Fy 27

S0y, /S0,SO, SOy ,1/S0,-150, 1 2(r—1) r>4
SL,(R)/SO, ir(r—1) r>4

S04,(C)/S03, SO53-1)(C)/SOs(r_1) 4(r—1) r>4
SL.(C)/SU, r(r—1) r>4

Eg/Sp4 50315/5‘05505 16

E7/SUs Eg/Spa 27

Es(C)/Eg S010(C)/SOq9 32

E7(C)/Er Eg(C)/Eg 54

vpF; = Tyi(K - HY). This gives the equivalence of (ii) and (iii). We
shall now prove the equivalence of (i) and (ii).

We first assume that ¥ is a maximal totally geodesic submanifold of
M. From Proposition 4.1 we know that, up to conjugacy, ¥ = F; for
some i € {1,...,7}. Assume that ¢; > 2 and let ¢ be a prime number
with ¢t < 9;. Then define the semisimple subalgebra b;; of g by

bis = g0 @ P da

a€¥,a(H*)=0(mod t)

Since

i = g0 ® P e

aeW,a(H*)=0

and 9; > t we see that [; is strictly contained in b;;. It follows that
the Lie triple system [; N'p = §; is strictly contained in the Lie triple
system b; ; Mp. This is a contradiction since, by assumption, 7, = §; is
a maximal Lie triple system. Consequently we must have §; = 1. This
finishes the proof for “(i) = (ii)”.

Conversely, let us assume that ¥ = F; for some i € {1,...,r} and
that §; = 1. We denote by S; the symmetric R-space K-H' C p =T, M.
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Then we have o(H?) € {—1,0,+1} for all @ € ¥ and therefore ad(H?")?
induces a vector space decomposition g = g @ g' of g, where

' =Li=go| P g|awdd= H o

aeW,a(HY)=0 aeV,a(HY)=+1

The map Xg + X1 — Xo — X3 defines an involutive automorphism of
g =g ®g'. We denote by s; : p — p the induced isomorphism on p.
Then we have s;(X) = —X forall X € Ty:S; = g'np = Baev,a(Hi)=1Pa
and s;(X) = X for all X € vy:S; = g’ Np =§i = R x b; = Z,(HY).
The isomorphism s; is the orthogonal reflection of p in the normal space
vyiS; and its restriction to S; leaves S; invariant and hence induces an
involutive isometry on S; for which H’ is an isolated fixed point. This
shows that S; is a symmetric R-space and that S; is an extrinsically
symmetric submanifold of the Euclidean space T,M = p with s; as the
extrinsic symmetry.

Since [g¥, g#] C g Ht#W(med2) e see that vy S; = g® Np and Ty S; =
g' Np are Lie triple systems. It follows that both the tangent space and
the normal space of the symmetric R-space S; at H® are reflective Lie
triple systems.

Let V # p be a Lie triple system in p with f; C V and let ¥’ be
the connected complete totally geodesic submanifold of M with 7,3 =
V. Then we have ¥ = G'/K’, where G’ and K’ is the connected
closed subgroup of G with Lie algebra g’ = [V,V] @V and ¢ = [V, V],
respectively.

Since rk(M) > 2, the semisimple factor b; of f; is non-trivial and
therefore V is a non-abelian subspace of p. Since Ty:S; is a Lie triple
system, V N Ty:S; is a Lie triple system as well. Let N be the con-
nected component containing H* of the intersection ¥/ N S;. It is clear
from the construction that NV is a smooth submanifold of S; in an open
neighborhood of H°.

We identify X € g with the Killing field ¢ — X.q = %“:0(15 >
Exp(tX)(q)) on M. The orthogonal projection X of Xjsv to TY is a
Killing field on the totally geodesic submanifold ¥’ which lies in the
transvection algebra of X' (see the paragraph below Lemma 2.1 in [1]).
Note that X.p = 0 if X € €. Then, if X € £ there exists X’ € ¢
such that Z)s is always perpendicular to X', where Z = X — X’. This
implies that Z.V c V+. In fact, let ~, be the geodesic in M with initial
condition 7/,(0) = u € V. The Jacobi field Z.y,(t) is perpendicular
to T, ;%' and therefore its covariant derivative (Z.v,)'(t) must be so.
Hence (Z.7,)'(0) = Z.u € V. So, if X € & we have X.u = X'.u+ Zu
and thus T, (K -u) C Ty(K’' -u) @ V+ for all w € V. This implies
Tu(K -u) = Ty(K'-u) ® V+ (orthogonal direct sum) and v, (K’ - u) =
vy (K - w) for all u € S;, since v S; C V.
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As we have previously observed, N is a submanifold of .S; in an open
neighborhood of H*. Since K'-H* C V and K’ C K we obtain K'-H' C
N and K’ - N = N. From the previous paragraph we conclude that N
coincides with K’ - H* around H’, since both submanifolds of S; have
the same dimension. Moreover, since V is K'-invariant, V contains the
normal space v,S; = v,(K - w) for all w € K'- H*. This implies in
particular that N is totally geodesic in S; at all points w € K’ - H'.
Thus N is a submanifold around any w € K’ - H* and N coincides,
around w, with this orbit. Therefore K’ - H* is an open subset of N.
Since K'-H* is compact and N is Hausdorff, the orbit K- H* is a closed
subset of N. Since N is connected this implies that N = K’- H' is a
totally geodesic submanifold of .5;.

Let us consider the extrinsic symmetry s; at H* of the extrinsically
symmetric submanifold S; of T,M. Since s; leaves S;, V and {H'}
invariant, it also leaves invariant the connected component N = K’ - H’
of S;NV containing H’. Hence s; restricted to V is an extrinsic symmetry
of N C V at H'. This proves that N is an extrinsically symmetric
submanifold of V.

Note that the extrinsic symmetry s; has the property s;(V) =V and
therefore siK’si_l =K'

We want to prove that N = {H'}, or equivalently, that V = vy:S;.
Assume that this is not true. Let W C V be the linear span of N =
K’ - H'. Then W is the tangent space to a (symmetric) Riemannian
factor of ', since it is K’-invariant. The subspace W cannot have an
abelian part since N = K’-H' is full in W. Also, since K acts irreducibly
on T,M, K must act effectively on the symmetric orbit S;. The group
K is generated by the so-called geometric transvections s, o s,, where
z,y € S; and s, denotes the extrinsic symmetry at z. In fact, the
connected group K cannot be bigger than the group of transvections of
the symmetric space S; since S; is compact, and so any Killing field on
S; is bounded and hence belongs to the Lie algebra of the transvection
group.

Let K” be the connected closed subgroup of K’ with Lie algebra
¢ = [W,W] ®W. Note that K’ - H* = K" - H". Moreover, K" acts
almost effectively on N. In fact, K" acts almost effectively on W (see
Section 2 of [1]) and if ¥” € K" acts trivially on N it must act trivially
on its linear span. We also have K’ = K" x K (almost direct product),
where K is the connected closed subgroup of K’ with Lie algebra £ =
[W-NV,Wtnv]e (Wtnv).

As we have seen above, N = K" H' is a symmetric submanifold of S;
and thus K” must be generated by {s, os,} with 2/,y’ € K’- H. The
following observation is crucial: s,s0s,, is the identity on the orthogonal
complement of W. In fact, s, is the identity on W+ NV, since this
subspace is contained in v,/S;. Moreover, s,/ is minus the identity on
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V+, which is tangent to S; at /. The same is true if one replaces z’ by
Yy’ and s0 s, 0 8,/ is the identity on V- & (W-NV) = W, This implies
that K” acts trivially on W+, which contradicts the Slice Lemma 3.1.
Then V = vy:S; which implies that vy:S; = T,% is maximal. Thus we
have proved that ¥ is a maximal totally geodesic submanifold of M.
This finishes the proof of “(ii) = (i)”. q.e.d.

From Theorem 4.2 and Table 2 we obtain

Corollary 4.3. Let M = G/K be an irreducible Riemannian sym-
metric space of noncompact type. If the restricted root system of M is
of type (BC,), (Eg), (Fy) or (G2), then every mazimal totally geodesic
submanifold of M is semisimple.

We have seen in the proof of Theorem 4.2 that v, F; is a Lie triple
system when ¢; = 1, which implies that T,,F; is a reflective Lie triple
system when d; = 1. From Theorem 4.2 we can therefore conclude:

Corollary 4.4. Let M = G/K be an irreducible Riemannian sym-
metric space of noncompact type and let 3 be a non-semisimple maximal
totally geodesic submanifold of M. Then ¥ is a reflective submanifold
of M.

We remark that the analogous statement for the semisimple case does
not hold. For example, SL3(R)/SOs3 is a semisimple maximal totally
geodesic submanifold of G3/S0O, which is not reflective.

We recall from [1] the following result:

Theorem 4.5. Let M be an irreducible Riemannian symmetric space.
Then

rk(M) < i(M).

From Table 3 we obtain that the codimension of the totally geodesic
submanifold ¥ = R x SL,(R)/SO, in M = SL,1(R)/SO, ;1 is equal
to r = rk(M), which implies i(M) < rk(M). Using Theorem 4.5 we
thus conclude:

Corollary 4.6. For M = SL,1(R)/SO,+1 we have tk(M) = r =

5. Examples of symmetric spaces with rk(M) = i(M)

We first consider the symmetric space M = SL,11(R)/SO;4; for
r > 1 and present a more explicit version of Corollary 4.6. This sym-
metric space has tk(M) = r and dim(M) = r(r +3). For r = 1 we get
the real hyperbolic plane RH?2. Thus, if ¥ is a geodesic in M, we have
codim(X) = 1 = rk(M). For r > 2 we consider the Cartan decomposi-
tion g = €@ p of the Lie algebra g = sl,1(R) of G = SL,41(R) which is
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induced by the Lie algebra £ = so0,1 of K = 50,;1. The vector space
p is given by
p={Acsl (R)| AT = A}.

We now define
m = {A: (‘“0(3) g) €p ' B € gl,(R), BT:B}.

Then we have
[[m, m], m] = {Az (8 %) €p ‘ B € sl.(R), BT:B} Cm,

which shows that m is a Lie triple system in p. We have dim(m) =
$7(r+1) and hence dim(p)—dim(m) = Jr(r43)—31r(r+1) = r. Thus the
connected complete totally geodesic submanifold ¥ of M corresponding
to the Lie triple system m, which is isometric to R x SL,(R)/SO,,
satisfies codim(X) = r = rk(M). From Theorem 4.5 we can therefore
conclude that the index of SL,11(R)/SO,; is equal to the rank of
SLy11(R)/SO;41. We remark that R x SL,(R)/SO, is tangent to the
normal space of a Veronese embedding of the real projective space RP"
into p (see e.g. Lemma 8.1 in [12]).

Next, we consider the symmetric space M = SO,?’T 1 1/50:50, 1y,
with » > 1, £ > 0 and (r, k) ¢ {(1,0),(2,0)}. This symmetric space
has rk(M) = r and dim(M) = r(r + k). For (r,k) = (1,0) we have
dim(M) = 1 and so M is not of noncompact type. For (r, k) = (2,0) we
have the symmetric space M = SO3 ,/S02S03 which is isometric to the
Riemannian product of two real hyperbolic planes and therefore not ir-
reducible. Note that SO7,/50; = SLy(R)/SOq and SO 3/503S0;5 =
SL4(R)/SOy.

For r = 1 we get the (k + 1)-dimensional real hyperbolic space
M =RHF! = 50(1),1+k/501+k- This space contains a totally geodesic
hypersurface ¥ = RH" and therefore tk(M) = 1 = i(M).

Now assume that r > 2 and consider the Cartan decomposition g =
t @ p of the Lie algebra g = 50,4 of G = SO} ., which is induced by
the Lie algebra ¢ = so0, & s0,,1 of K = SO SOHk The vector space p
is given by

0 B
A: <BT O), BGMTJ“-{-]C(R)})

where M, ,1,(R) denotes the vector space of r x (r + k)-matrices with
real coefficients. We define a linear subspace m of p by

0 B
m:{A:<BT 0>ep

A straightforward calculation shows that [[m, m],m] C m, that is, m is
a Lie triple system in p. We have dim(m) = r(r + k — 1) and hence

p= {A € 50, 4k

—(C 0), Ce M,«,r+k_1(R)}'
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dim(p) — dim(m) = r(r + k) —r(r +k — 1) = r. Thus the connected
complete totally geodesic submanifold ¥ of M corresponding to the Lie
triple system m, which is isometric to SO7 ., /S0, SO, 1, satisfies
codim(X) = r = rk(M). From Theorem 4.5 it follows that the index of
SOﬁHk/SOTSOHk is equal to 7.

Altogether we have now proved the “if”-part of Theorem 1.1:

Proposition 5.1. Let M be one of the following Riemannian sym-
metric spaces of noncompact type:
(1) SLT+1(R)/SO7«+1, T 2 1,'
(11) 507?77«-1-]@/‘907“507’-‘1-/6) r>1, k>0, (Tv k) ¢ {(170)7 (270)}
Then rk(M) = r =i(M).

6. The classification

The following result was proved in [1] and will be used later.

Theorem 6.1. Let M be an irreducible Riemannian symmetric space,
3 be a connected totally geodesic submanifold of M and p € 3. Then
there exists a maximal abelian subspace a of p such that a is transversal
to T,X, that is, aN'T,% = {0}.

Let M = G/K be an irreducible Riemannian symmetric space of
noncompact type and assume that i(M) = r = rk(M). Then there
exists a connected complete totally geodesic submanifold ¥ of M with
p € ¥ such that codim(X) = r. According to Theorem 6.1 there exists a
maximal abelian subspace a of p such that a is transversal to 7). Let ¥
be the set of restricted roots with respect to a and A = {aq,...,a,.} bea
set of simple roots for W. The next result provides a necessary criterion
for an irreducible Riemannian symmetric space M with rk(M) > 2 to
satisfy the equality rk(M) = i(M).

Proposition 6.2. (BOUNDARY REDUCTION) Let M be an irreducible
Riemannian symmetric space of noncompact type with rk(M) > 2 and
assume that the equality tk(M) = i(M) holds. Then every irreducible
boundary component By of M satisfies tk(Bg) = i(Bg).

Proof. Let ¢ be the connected complete totally geodesic subman-
ifold of Fp corresponding to the Lie triple system 7, N 7T,Fg. Since
T,M =T, & a (direct sum) and a C T,Fg, we have T,Fp = T,X¢ @ a
(direct sum). Thus the codimension of ¥¢ in Fg is equal to dima =
r=rk(M) =1k(Fgp).

The orthogonal projection (TpZ‘@)Tp By Of the Lie triple system T),Y¢
onto T),Bg is a Lie triple system. Let ¥}, be the connected complete to-
tally geodesic submanifold of B corresponding to the Lie triple system
(T)28)1,By- Since T,Fp = T,X¢ ® a = T,Bp ® ag (direct sum) and
a = a®®ag, we have T, By = T,X5®a® (direct sum), which implies that
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the codimension of ¥}, in By is equal to dim(a®) = dim(a) — dim(agp) =
r— (r —|®|) = |®| = rk(Bg). This implies i(Bg) < rk(Bg). However,
since Bg is irreducible, we also have rk(Bg) < i(Bg) by Theorem 4.5.
Altogether this implies rk(Bg) = i(Bg). q.e.d.

We recall the following result from [1]:

Theorem 6.3. (SYMMETRIC SPACES WITH INDEX < 3) Let M be an
wrreducible Riemannian symmetric space of noncompact type.
(1) i(M) =1 if and only if M is isometric to
(i) the real hyperbolic space RHF1 = SO 111/ SO14ks k> 1.
(2) i(M) = 2 if and only if M is isometric to one of the following
spaces:
(i) the complex hyperbolic space CHF 1 = SU; 114/S(U1Uiy), k >
1;
(i) the Grassmannian SO3 4, /SO028044k, k > 1;
(iii) the symmetric space SL3(R)/SOs3.
(3) i(M) = 3 if and only if M 1is isometric to one of the following
spaces:
(i) the Grassmannian SO 5., /SO3503.), k > 1;
(ii) the symmetric space G%/SO4;
(iii) the symmetric space SLs(C)/SUs;
(iv) the symmetric space SLy(R)/SOy.

The Riemannian symmetric spaces of noncompact type with rk(M) =
1 =i(M) are precisely the real hyperbolic spaces SO‘in/SOHk, k>
1. The irreducible Riemannian symmetric spaces of noncompact type
with k(M) > 2 whose rank one boundary components are all real
hyperbolic spaces are precisely those for which the restricted root system
is reduced, that is, is not of type (BC,). From Proposition 6.2 we
therefore obtain:

Corollary 6.4. (RANK ONE BOUNDARY REDUCTION) Let M be
an irreducible Riemannian symmetric space of moncompact type with
tk(M) > 2 and assume that tk(M) = i(M). Then the restricted root
system of M is not of type (BC, ).

According to Theorem 6.3, the Riemannian symmetric spaces of non-
compact type with rk(M) = 2 = i(M) are precisely SO3 5 ;./SO2502,
k > 1, and SL3(R)/SO3. The corresponding Dynkin diagrams with
multiplicities are

oc——=0 and o—o .
1 k 1 1

We can easily extract from Table 1 the Dynkin diagrams of rank > 3
with multiplicities for which every connected subdiagram of rank 2 is
one of the above:
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o—o0 0—0 , O—0 O0—0=—>0 , O—0 000
1 1r 1 1 1 1 1 1 k£ 1 1 1 1 1

1 1 1 1 1 1 171 1 1 1

From Proposition 6.2 we thus obtain:

Corollary 6.5. (RANK TwO BOUNDARY REDUCTION) Let M be
an irreducible Riemannian symmetric space of moncompact type with
rk(M) > 3 and assume that tk(M) = i(M). Then M must be among
the following spaces:

( ) SLT+1(R)/SO7‘+1) T > 3;
SOﬁHk/SOTSOHk, r>3,k>0;
Sp,(R)/U,., r > 3;

Eg/ Spa;

E;/SUg,'

Eg/SOIG;

F}/Sps3Sp.

We know from Proposition 5.1 that the symmetric spaces in (1) and
(2) satisfy the equality rk(M) = i(M). In order to prove Theorem 1.1 it
remains to show that the symmetric spaces (3)-(7) in Corollary 6.5 do
not satisfy the equality tk(M) = i(M). For Sp,(R)/U, and F}/Sp3Sp;
we can apply rank three boundary reduction:

\_/\_/\_/\_/\_/\_/

(2

(3
(4
(5
(6
(7

Corollary 6.6. The symmetric spaces M = Sp,(R)/U, (r > 3) and
M = F}/Sp3Sp1 do not satisfy the equality tk(M) = i(M).

Proof. The corresponding Dynkin diagrams with multiplicities are

0—0 - 0—0&=0 , O—O0—>0—0
1 1 1 1 1 1 1 1 1

We see from Theorem 6.3 that the boundary component By = Sp3(R)/
Us corresponding to the rank three subdiagram

o—>0—o0

1 1 1
does not satisfy the equality rk(Bg) = i(Bg). The statement thus
follows from Proposition 6.2. q.e.d.

The situation for the exceptional symmetric space E66 /Sp4 is quite
interesting as the following result shows.

Proposition 6.7. Every irreducible boundary component Bg of M =
E§/Sps satisfies k(Bg) = i(Bg). However, M does not satify the
equality tk(M) = i(M).
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Proof. We list the different types of irreducible boundary components
of M by cardinality of ®.

(1) [®] =1: Be = SL2(R)/SOs;
(2) |®| =2: By = SL3(R)/SO0s;
(3) |®] =3: Be = SL4(R)/SOx;
(4) |®] = 4: By = SLs(R)/SO5 and By = SO3,/S0450;
(5) ‘Q)’ =5 Bcp = SLG(R)/SOG and Bq) = 50575/505505.

As we have shown in Proposition 5.1, each of these boundary compo-
nents satisfies rk(Bg) = i(Bg).

We have n = dim(M) = 42 and r = rk(M) = 6. Assume that
there exists a maximal totally geodesic submanifold ¥ of M with d =
codim(X) = 6. We first assume that ¥ is semisimple. Then the inequal-
ity in Corollary 3.5 is satisfied and thus 3 is a reflective submanifold of
M. As usual, we write ¥ = G'/K’, where G’ is the connected closed
subgroup of E¢ with Lie algebra ¢’ = [1,%,T,%] @ T, and K’ = Gy,
Note that K’ is connected since X is simply connected. Let s € (M) be
the geodesic reflection of M in ¥ and define 7 : E§ — ES, g~ sgs™ L.
It is clear that G’, and hence also K’, is contained in the fixed point
set of 7. Since s commutes with the geodesic symmetry of M at p, we
have 7(Spy) = Spy. Let H be the connected component of the fixed
point set of 7g,, containing the identity transformation of Sps. Note
that K’ C H. Then Spy/H is a (simply connected) Riemannian sym-
metric space of compact type. However, as we observed in the proof of
Corollary 3.5, we have dim(K’) > dim(X) — rk(M) = 30 and therefore
dim(Sps/H) < dim(Sps/K’) < 6. Since there is no Riemannian sym-
metric space of Spy of dimension < 6 we conclude that there is no reflec-
tive submanifold ¥ of M with codim(X) = 6. [Note: This fact can also
be seen directly from Leung’s classification of reflective submanifolds.
However, we prefer to give a conceptual proof here.] Therefore ¥ cannot
be semisimple. If ¥ is non-semisimple, then > = R x 50‘5)75/505505 by
Table 3 and hence codim(X) = 16, which is a contradiction. Altogether
we can now conclude that there is no totally geodesic submanifold in
M with codim(M ) = 6. This implies rk(M) < i(M). q.e.d.

As a consequence of Proposition 6.7 we can now settle the two re-
maining cases.

Corollary 6.8. The symmetric spaces M = E;/SUg and M =
E8/SO16 do not satisfy the equality rk(M) = i(M).

Proof. We see from Table 1 that the Dynkin diagram with multi-
plicities for Eg /Spy can be embedded into the Dynkin diagrams with
multiplicities for EY/SUg and E§/SO16. This means that ES/Spy is an
irreducible boundary component of both EI/SUg and E§/SOq6. From
Proposition 6.2 and Proposition 6.7 we can conclude that both M =
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EI/SUg and M = E§/SO14 do not satisfy the equality rk(M) = i(M).
q.e.d.

Theorem 1.1 now follows from Proposition 5.1, Corollary 6.5, Corol-
lary 6.6, Proposition 6.7 and Corollary 6.8. We also obtain the following
interesting characterization of the exceptional symmetric space Eg /Sp4:

Proposition 6.9. The exceptional symmetric space Eg/Sp4 is the
only irreducible Riemannian symmetric space M of moncompact type
with rk(M) > 3 for which every irreducible boundary component B
satisfies tk(B) = i(B) but the manifold itself does not satisfy k(M) =

7. Further applications

In this section we will calculate i(M) for a few irreducible Riemannian
symmetric spaces M of noncompact type using the methods we devel-
oped in this paper and Leung’s classification of reflective submanifolds.
We first recall some known results to put our results into context.

The totally geodesic submanifolds of Riemannian symmetric spaces
M of noncompact type with rk(M) = 1 were classified by Wolf in [14].
We use the following notations: RHM = SO‘in/SOHk denotes the
(k+1)-dimensional real hyperbolic space, CH**! = SU; 114/S(U1Uy41)
denotes the (k + 1)-dimensional complex hyperbolic space, HH k1 —
Sp11+k/Sp1Sp1+k denotes the (k + 1)-dimensional quaternionic hyper-
bolic space, and OH? = F, 20 /Sping denotes the Cayley hyperbolic
plane. Here, kK > 1. The totally geodesic submanifolds of irreducible
Riemannian symmetric spaces M of noncompact type with rk(M) = 2
were classified by Klein in [5], [6], [7] and [8]. From Wolf’s and Klein’s
classifications we obtain (M) for all irreducible Riemannian symmetric
spaces M of noncompact type with rk(M) < 2. Some of the indices for
rk(M) = 2 were calculated by Onishchik in [13]. We summarize all this
in Table 4.

Let M be a connected Riemannian manifold and denote by S, the set
of all connected reflective submanifolds ¥ of M with dim(X) < dim(M).
The reflective index i, (M) of M is defined by

ir(M) = min{dim(M) — dim(X) | ¥ € S, } = min{codim(X) | ¥ € S,.}.

It is clear that i(M) < i,.(M) and thus i,(M) is an upper bound for
i(M). Leung classified in [10] and [11] the reflective submanifolds of
irreducible simply connected Riemannian symmetric spaces of compact
type. Using duality this allows us to calculate (M) explicitly for all
irreducible Riemannian symmetric spaces M of noncompact type. We
list the reflective indices i, (M) for all M with rk(M) > 3 in Table 5.
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Table 4. The index (M) for irreducible Riemann-
ian symmetric spaces M of noncompact type with
rk(M) < 2 and totally geodesic submanifolds ¥ of M
with codim(X) = (M)

M b dim(M) (M) Comments
RHF+ RH* E+1 1 k>1
cHM! CH* (and RH? for k = 1) 2(k+1) 2 E>1
HEF+ HH* (and CH? for k = 1) 4(k+1) 4 E>1
OH? OH', HH? 16 8
SLg(R)/SOg RXRHZ 5 2

503 5,1/S028041 1 SO, ,,./S02501 4y, 2(k+2) 2 E>1
SL3(C)/SUs SL3(R)/SO3 8 3

G2%/50, SL3(R)/SO; 8 3
SO5(C)/SO5 504(C)/S04, SO3 3/50,505 10 4
SUQ’QJ’,]Q/S(UQUQJ’,]C) SU2’1+k/S(U2U1+k) 4(/{,‘+2) 4 k>1
SU¢/Sps SL3(C)/SU3, HH? 14 6

G2(C) /G G2%/S04, SL3(C)/SU;3 14 6
Sp2.2/SpaSpa Spa(C)/Sp2 16 6

SO03,/Us SO /Uy, SUz3/S(UsUs) 20 8
Spaovk/SP2Spatk  SP2,14k/SD2SD1 4k 8(k+2) 8 kE>1
E;?°/F, 0H? 26 10
Egl4/5pin10U1 SOTO/U5 32 12

As an application of Corollaries 3.5 and 4.4 we will now calculate
the index of a few symmetric spaces. Let ¥ be a maximal totally ge-
odesic submanifold of an n-dimensional irreducible Riemannian sym-
metric space M of noncompact type with » = rk(M) > 2 such that
i(M) = codim(X). If ¥ is non-semisimple, then ¥ is a reflective sub-
manifold by Corollary 4.4. If ¥ is semisimple and d = codim(X)
satisfies d(d + 1) < 2(n — r), then X is a reflective submanifold of
M by Corollary 3.5. It follows that if codim(X) < 4,(M) — 1 and
(ir(M) —1)i,(M) < 2(n —r), then ¥ is a reflective submanifold. Alto-
gether this implies the following

Proposition 7.1. Let M be an irreducible Riemannian symmetric
space of noncompact type with tk(M) > 2. If

(ir (M) = 1)ip(M) < 2(dim(M) — rk(M)),
then i(M) =i, (M).

The inequality in Proposition 7.1 can be checked explicitly for each
symmetric space M in Table 5:

Corollary 7.2. The following Riemannian symmetric spaces M of
noncompact type with tk(M) > 3 satisfy the inequality in Proposition
7.1 and therefore satisfy the equality i(M) = i,.(M):
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SLT+1(R)/SO7«+1, r> 3,'
SL4((C)/SU4,’

SO°, 4/SOSO0, g, 723, k > 1;
502, 41(C)/SO241, 7 > 3;
Spr(R)/Uy, 3 <1 <4;
S02,/S0,80,, r > 4;
509,(C) /800y, 1> 4;
SUT,T’—l—k/S(UTUr—i-k); r >3, k> 1;
Spr,r-i—k/sprspr-‘rk; 3<r<k.

We inserted this result into the last column of Table 5.
We can also use these methods to determine all irreducible Riemann-
ian symmetric spaces M of noncompact type with i(M) = 4.
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Table 5. The reflective index i, (M) for irreducible Rie-
mannian symmetric spaces M of noncompact type with
rk(M) > 3 and reflective submanifolds ¥ of M with
codim(X) = i, (M)

M D) dim(M) i (M) Comments (M) =1i,(M)?
SL,11(R)/SO.41 R x SL.(R)/SO, r(r+3) r r>3 yes
SL4(C)/SUy Sp2(C)/Sp2 15 5 yes
SLy+1(C)/SUr 41 R x SL,.(C)/SU, r(r+2) 2r r>4 ?

SUs, ., o/Sprs1 R x SU3./Spy r(2r+3) 4r r>3 ?
SOf,TJrk/SOTSOHgC SO‘T”T+k71/SOTSOr+k,1 rir+k) r r>3,k>1 yes
S5092,+1(C)/SO241  S0O2,(C)/SOs, r(2r+1) 2r r>3 yes
Spr(R)/U, RH? x Sp,_1(R)/Up—1 r(r+1) 2r—=2 r>3 yes for r < 5,

otherwise ?

SU,../S(U,U,) SU—1,/S(Ur-1U;) 2r? 2r r>3 yes
Spr(C)/Spy RH3%xSp,_1(C)/Spr—1 7(2r+1) 4r—4 r>3 ?

SO}, /Usy SO;,_o/Usr—1 2r(2r—1) 4r—2 r>3 ?
Spr,r/sprspr Sp7'717r/Sprflsp7' 4r? 4r r>3 ?

E;% | EsUr Eg*/Spiniolh 54 22 ?

S0y, /SO.SO, SO;p_4,/S0,-150; r? r r>4 yes
S04,(C)/SOq, S02,-1(C)/SO2,—1 r(2r—1) 2r—1 r>4 yes
SUr,r+k/S(UrUr+k) SUnTJrk—l/S(UTUrJrk—l) QT(T + k’) 2r r=3,k=>1 yes
Sprrk/SPrSPrst SPrytk—1/SPrSpryk—1  Ar(r+k) Ar r>3,k>1 yesforr—1<k,

otherwise ?

SOZT,+2/U2T+1 SOZ,/UZT 27‘(27‘+ 1) 4r T 2 3 ?

E¢/Spa F}/SpsSpy 42 14 ?
E(C)/Eg Fy(C)/F,y 78 26 ?

EI/SUs R x E§/Sps 70 27 ?
E7((C)/E7 R x E@((C)/Eﬁ 133 54 ?

E§/S0s6 RH? x EI/SUs 128 56 ?
Es(C)/Es RH? x E;(C)/E; 248 112 ?
F}/Sp3Sp S0O95/504S05 28 8 yes
Eg/SUGSpl Ff/SpgSpl 40 12 ?
E;S/SO]QSIH EGZ/SUGS]h 64 24 ?
Eg*'/E:Sp E75/8012Sp; 112 48 ?

Fy(C)/F,y S0y(C)/SOg 52 16 ?
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Theorem 7.3. (SYMMETRIC SPACES WITH INDEX FOUR) Let M be
an irreducible Riemannian symmetric space of noncompact type. Then
(M) = 4 if and only if M is isometric to one of the following symmetric
spaces:

(i) HH*™ = Sp114%/Sp1Spk, k> 1;
(ii) SUz24k/S(UaUzyr), k > 1;
(iii) SOZ’4+k/SO4SO4+k, k>0;
(iv) SO5(C)/SOs;
(v) Sps(R)/Us;
(vi) SL5(R)/SO:s.

Proof. From Tables 4 and 5 and Corollary 7.2 we see that every sym-
metric space listed in Theorem 7.3 satisfies ¢(M) = 4. Conversely, let
M be an irreducible Riemannian symmetric space of noncompact type
with i(M) = 4 and let ¥ be a maximal totally geodesic submanifold of
M with d = codim(X) = 4. If rk(M) < 2 we obtain from Table 4 that
M is one of the spaces in (i), (ii) and (iv). Assume that rk(M) > 3.
If ¥ is non-semisimple, then X is reflective by Corollary 4.4. If ¥ is
semisimple and dim(M ) —rk(M) > 11, then X is reflective by Corollary
3.5. Thus we have i,(M) = i(M) = 4 if dim(M) —rk(M) > 11 and
we can use Table 5 to see that M is isometric to a space in (iii). The
symmetric spaces M with rk(M) > 3 and dim(M) — rk(M) < 11 are
SLy(R)/SO4 and SO§ ,/SO3S0, (which both have index 3 by Theo-
rem 6.3), Sp3(R)/Us and SL5(R)/SO5 (which both have index 4 by
Corollary 7.2). This concludes the proof of Theorem 7.3 q.e.d.

The analogous argument does not work for index five. For example,
M = SUs3/S(UsUs) has i,(M) = 6, but for d = 5 the inequality
d(d+1) < 2(dim(M) —rk(M)) is not satisfied, so we can only conclude
i(M) € {5,6} with our results so far. However, using the classification in
[2] of cohomogeneity one actions on irreducible Riemannian symmetric
spaces of noncompact type, we can improve the inequality in Corollary
3.5 when codim(X) > 5:

Proposition 7.4. Let M be an n-dimensional irreducible Riemann-
ian symmetric space of noncompact type with r = rk(M) > 2 and let 3
be a semisimple connected complete totally geodesic submanifold of M
with codim(X) =d > 5. If

did—1) <2(n—r—1),
then X is a reflective submanifold of M.

Proof. Asusual, we write ¥ = G’ /K’ and identify SO, with SO(v,X).
Since d > 5 and any connected subgroup of SO, is totally geodesic in
SOy, we see from Corollary 7.2 that the minimal codimension of a con-

nected subgroup of SOy is equal to d — 1, which is exactly the codimen-
sion of SO4_1. A principal K'-orbit on ¥ has dimension n — d — rk(%),
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which implies dim(K’) > n —d —rk(X) > n — d — r. Consequently,
if 2(d—1)(d—2) < n—d—r, then dim(K’) > 1(d —1)(d — 2) =
dim(SO4—1). The inequality 5(d —1)(d —2) < n —d — r is equivalent
to d(d — 1) < 2(n —r — 1). If the kernel ker(p) of the slice representa-
tion p : K’ — SO(v,X) has positive dimension, then ¥ is a reflective
submanifold by Proposition 3.4. If dim(ker(p)) = 0, then we must have
¥ = so; and the action of K’ on the unit sphere in 1,% is transitive.
This implies that 3 is a totally geodesic singular orbit of a cohomogene-
ity one action on M. It was proved in [2] that with five exceptions any
such orbit is reflective. Three of the five exceptions do not satisfy the
assumption d > 5. The remaining two exceptions are ¥ = G‘QC /G2 in
M = SO(C)/SO7 and ¥ = SL3(C)/SUs in M = G /G4, and both do
not satisfy the inequality d(d — 1) < 2(n —r — 1). It follows that X is
reflective. q.e.d.

Note that the assumption d > 5 in Proposition 7.4 is essential. For
example, ¥ = G3/S0, is a semisimple totally geodesic submanifold
of M = SO3,/S0350, with d = codim(X) = 4. The inequality in
Proposition 7.4 is satisfied, but ¥ is non-reflective. For d = 3 the totally
geodesic submanifold ¥ = SL3(R)/SO3 in M = G3/S0, provides a
counterexample.

From Proposition 7.4 we obtain:

Corollary 7.5. Let M be an irreducible Riemannian symmetric space
of noncompact type and let X2 be a semisimple connected complete totally
geodesic submanifold of M with codim(X) > 5. If codim(X) = rk(M),
then X is a reflective submanifold of M.

Proof. For d = codim(X) = rk(M) = r the inequality in Proposition
7.4 becomes 1% + 1 < 2n— 2. It is clear that n = dim(M) > $#(R) +r,
where (R) denotes the restricted root system of M. For every root
system occuring here we have 72 4+ r < #(R), with equality if and only
if (R) = (A,). Altogether this implies 72 +7 < #(R) < 2n—2r < 2n —2
and hence X is reflective by Proposition 7.4. q.e.d.

From Proposition 7.4 we also obtain:

Corollary 7.6. Let M be an irreducible Riemannian symmetric space
of noncompact type with tk(M) > 2, i(M) > 5 and i,(M) > 6. If
(i (M) = 2)(i, (M) — 1) < 2(dim(M) — k(M) — 1),
then i(M) = i,(M).
Proof. Let ¥ be a maximal totally geodesic submanifold of M such
that d = codim(X) = i(M) > 5. We put n = dim(M) and r = rk(M). If
3} is non-semisimple, then 3 is a reflective submanifold by Corollary 4.4

and hence d > i,(M). If ¥ is semisimple and d < ¢, (M), then d(d—1) <
2(n —r — 1) by assumption and thus ¥ is a reflective submanifold by
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Corollary 7.4, which is a contradiction to d < i,(M). It follows that
d > i,(M) and therefore i(M) = i,.(M). q.e.d.

We can use Corollary 7.6 to calculate a few more indices for symmetric
spaces which cannot be obtained via the inequality in Proposition 7.1
and are therefore not listed in Corollary 7.2:

Corollary 7.7. The following symmetric spaces satisfy i(M) = i,(M):
(i) Sps(R)/Us;
(ii) SU,,/S(UU,), > 3;
(iil) Sprrik/SPrSPryks k+1=12>3;
(iv) F{/Sp3Spr.

Proof. Let M be one of the symmetric spaces in (i)-(iv). It is clear
that rk(M) > 2. From Theorems 6.3 and 7.3 we see that (M) > 5 and
from Table 5 we see that i,.(M) > 6. It is a straightforward calculation
to show that M satisfies the inequality in Corollary 7.6, which then
implies (M) = i, (M). q.e.d.

We inserted this result into the last column of Table 5.
We can now also settle the classifications for (M) = 5 and i(M) = 6.

Theorem 7.8. (SYMMETRIC SPACES WITH INDEX FIVE) Let M be
an irreducible Riemannian symmetric space of noncompact type. Then
i(M) =5 if and only if M is isometric to one of the following symmetric
spaces:

(i) SO§’5+R/SO5SO5+;€, k>0;
(i) SL4(C)/SUL;
(iii) SLe(R)/SOg.

Proof. From Corollary 7.2 and Table 5 we see that every symmetric
space listed in Theorem 7.8 satisfies i(M) = 5. Conversely, let M be
an irreducible Riemannian symmetric space of noncompact type with
i(M) = 5 and let ¥ be a maximal totally geodesic submanifold of M
with d = codim(X) = 5. From Table 4 we obtain rk(M) > 3. If ¥ is
non-semisimple, then ¥ is reflective by Corollary 4.4. If 3 is semisimple
and dim(M) — rk(M) > 11, then ¥ is reflective by Proposition 7.4.
Thus we have i,(M) = (M) = 5 if dim(M) —rk(M) > 11 and we
can use Table 5 to see that M is isometric to one of the spaces in (i)-
(iii). If dim(M) —rk(M) < 11 we saw in the proof of Theorem 7.3 that
i(M) € {3,4}. There is no symmetric space M with rk(M) > 3 and
dim(M) —rk(M) = 11. This concludes the proof of Theorem 7.8.

q.e.d.

Theorem 7.9. (SYMMETRIC SPACES WITH INDEX SIX) Let M be
an irreducible Riemannian symmetric space of noncompact type. Then
i(M) = 6 if and only if M is isometric to one of the following symmetric
spaces:
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Proof. From Tables 4 and 5 we see that every symmetric space listed
in Theorem 7.9 satisfies (M) = 6. Conversely, let M be an irreducible
Riemannian symmetric space of noncompact type with (M) = 6 and let
¥ be a maximal totally geodesic submanifold of M with d = codim(X) =
6. If rk(M) € {1,2} we see from Table 4 that M is one of the spaces in
(iii)-(v). We assume that rk(M) > 3. If ¥ is non-semisimple, then 3 is
reflective by Corollary 4.4. If ¥ is semisimple and dim(M) — rk(M) >
16, then X is reflective by Proposition 7.4. Thus we have i,.(M) =
i(M) = 6 if dim(M) — rk(M) > 16 and we can use Table 5 to see
that M is isometric to one of the spaces in (i), (ii), (vii) and (viii). If
dim(M) —rk(M) < 12 we saw in the proof of Theorem 7.8 that i(M) €
{3,4}. The symmetric spaces M with rk(M) > 3 and 12 < dim(M) —
rk(M) < 16 are SO$ 5/SO3505 and SO 5/SO350¢ (which both have
index 3 by Theorem 6.3), SOf,/S04S0, and SOj 5/SO4S05 (which
both have index 4 by Theorem 7.3), SLg(R)/SO¢ and SL4(C)/SU,4
(which both have index 5 by Theorem 7.8), Sps(R)/Us (which has index
6 by Corollary 7.2 and Table 5), SU3 3/S(UsUs) (which has index 6 by
Corollary 7.7 and Table 5). This concludes the proof of Theorem 7.8.

q.e.d.

We cannot continue beyond (M) = 6 with our methods. For exam-
ple, the symmetric space M = Sp3(C)/Sps satisfies dim(M) = 21 and
rk(M) = 3. Thus the inequality d(d—1) < 2(dim(M) —rk(M)—1) = 34
in Proposition 7.4 is satisfied if and only if d < 6. However, from Table
5 we know that (M) = 8. Thus we must have i(M) € {7,8}. We
cannot exclude the possiblity (M) = 7 here.

It is worthwhile to point out that the only irreducible Riemannian
symmetric space M with i(M) < i,(M) known to us is M = G3/SOj.
This leads us to the

Conjecture. Let M be an irreducible Riemannian symmetric space
of noncompact type and M # G3/SO,. Then i(M) = i,.(M).

We verified the conjecture in this paper for several symmetric spaces
and for all symmetric spaces with (M) < 6 or dim(M) < 20. In the last
column of Table 5 we summarize the current status of this conjecture.
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