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COHOMOLOGY AND HODGE THEORY

ON SYMPLECTIC MANIFOLDS: III

Chung-Jun Tsai, Li-Sheng Tseng & Shing-Tung Yau

Abstract

We introduce filtered cohomologies of differential forms on sym-
plectic manifolds. They generalize and include the cohomologies
discussed in Papers I and II as a subset. The filtered cohomolo-
gies are finite-dimensional and can be associated with differen-
tial elliptic complexes. Algebraically, we show that the filtered
cohomologies give a two-sided resolution of Lefschetz maps, and
thereby, they are directly related to the kernels and cokernels of
the Lefschetz maps. We also introduce a novel, non-associative
product operation on differential forms for symplectic manifolds.
This product generates an A∞-algebra structure on forms that
underlies the filtered cohomologies and gives them a ring struc-
ture. As an application, we demonstrate how the ring structure of
the filtered cohomologies can distinguish different symplectic four-
manifolds in the context of a circle times a fibered three-manifold.
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4. Filtered cohomologies and Lefschetz maps 106

4.1. Long exact sequences 106

4.2. Resolution of Lefschetz maps 109

Received 5/2/2014.

83



84 C.-J. TSAI, L.-S. TSENG & S.-T. YAU

4.3. Properties of cohomologies 111

4.4. Examples 113

5. A∞-algebra structure on filtered forms 116

5.1. Product on filtered forms 118

5.2. Leibniz rules 122

5.3. Non-associativity of product 125

5.4. Triviality of higher order maps 128

6. Ring structure of the symplectic four-manifold from fibered
three-manifold 130

6.1. Representatives of de Rham cohomologies of the
fibered three-manifold 131

6.2. Representatives of the primitive cohomologies of the
symplectic four-manifold 133

6.3. Two examples and their product structures 135

Appendix A. Compatibility of filtered product with topological
products 137

References 142

1. Introduction

On a symplectic manifold (M2n, ω) of dimension 2n, there is a well-
known sl(2) action on the space of differential forms, Ω∗(M). This action
leads directly to what is called the Lefschetz decomposition of a differ-
ential k-form, Ak ∈ Ωk(M),

(1.1) Ak = Bk + ω ∧Bk−2 + ω2 ∧Bk−4 + ω3 ∧Bk−6 + . . . ,

where the forms Bs ∈ Ps(M), for 0 ≤ s ≤ n, denote the so-called
primitive forms. The primitive forms are the highest weight elements of
the sl(2) action and in (1.1) are uniquely determined by the given Ak.

In Papers I and II [18, 19], several symplectic cohomologies of differ-
ential forms, labeled by {Hd+dΛ ,HddΛ ,H∂+ ,H∂

−

}, were introduced and
all were shown to commute with this sl(2) action. Hence, in essence, all
information of these cohomologies is encoded in their primitive compo-
nents, {PHd+dΛ , PHddΛ , PH∂+ , PH∂

−

} , which can be defined purely on
the space of primitive forms, P∗(M). In short, the cohomologies intro-
duced in Papers I and II are truly just primitive cohomologies.

This may seem to suggest if one wants to study cohomologies of forms
on symplectic manifolds that one should focus on the primitive forms
and their cohomologies. However, this certainly can not be the case as
we know from explicit examples in [18, 19] that primitive cohomologies
in general contain different information than the de Rham cohomology,
and of course, the de Rham cohomology is defined on Ω∗(M) which are
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PH0
∂+

, PH1
∂+

, . . . , PHn−1
∂+

, PHn
ddΛ , PHn

d+dΛ , PHn−1
∂
−

, . . . , PH1
∂
−

, PH0
∂
−

PHn−1
ddΛ , PHn−1

d+dΛ

...
...

PH1
ddΛ , PH1

d+dΛ

PH0
ddΛ , PH0

d+dΛ

Table 1. The primitive cohomologies introduced in Pa-
pers I and II [18, 19] for symplectic manifolds of dimen-
sion 2n.

generally non-primitive. So one may wonder, besides the de Rham coho-
mology, are there any other non-primitive cohomologies of differential
forms on (M,ω)?

Another curiosity comes from the relations between the known prim-
itive cohomologies. In Table 1, we list the main primitive cohomolo-
gies that were studied in [18, 19]. As arranged, the cohomologies listed
above the top horizontal line are all associated with a single symplectic
elliptic complex [19]. It would seem rather unnatural if somehow the
other primitive cohomologies, between the two vertical dashed lines, do
not also arise from some elliptic complexes. For instance, what makes
PHn

d+dΛ
so different from PHn−1

d+dΛ
? Certainly from their definitions in

[18], the only difference is just the degree of the space of primitive forms
P∗(M) which they are defined on and nothing more. But if they are not
so different, then what other elliptic complexes are there on symplec-
tic manifolds? Would these new elliptic complexes involve non-primitive
forms?

1.1. Filtered forms and symplectic elliptic complexes. These
questions concerning the existence of new non-primitive cohomologies
and other elliptic complexes on symplectic manifolds turn out to be
closely related. For at the level of the differential forms, one can think of
the primitive forms as the result of a projection operator, Π0 : Ωk(M)→
Pk(M), that projects any form to its primitive component and thereby
discards all terms of order ω and higher. Generalizing this, we can in-
troduce the projection operator, Πp, for 0 ≤ p ≤ n, that keeps terms up
to the ωp-th order of the Lefschetz decomposition in (1.1):

Ak = Bk + ω ∧Bk−2 + ω2 ∧Bk−4 + ω3 ∧Bk−6 + . . . ,

Π0Ak = Bk,

Π1Ak = Bk + ω ∧Bk−2,

...

ΠpAk = Bk + ω ∧Bk−2 + ω2 ∧Bk−4 + . . .+ ωp ∧Bk−2p,

...
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We shall use the notation F pΩ∗ to denote the projected space of ΠpΩ∗ ⊂
Ω∗ and call it the space of p-filtered forms. We shall also call the index
p the filtration degree as it parametrizes a natural filtration:

P∗ = F 0Ω∗ ⊂ F 1Ω∗ ⊂ F 2Ω∗ ⊂ . . . ⊂ FnΩ∗ = Ω∗.

Notice that the zero-filtered forms are precisely the primitive forms, i.e.
P∗ = F 0Ω∗, and the n-filtered forms are just Ω∗. In this way, increasing
the filtration degree from p = 0 to p = n allows us to interpolate from
P∗ to Ω∗ .

The introduction of filtered forms turns out to be a fruitful enterprise.
For one, it allows us to generalize the symplectic elliptic complex for
primitive forms to obtain an elliptic complex of p-filtered forms of any
fixed filtration degree p. Specifically, we shall show in Theorem 3.1 that
the following complex is elliptic:

0 �� F pΩ0 d+ �� F pΩ1 d+ �� . . .
d+ �� F pΩn+p−1 d+ �� F pΩn+p

∂+∂
−

��

0 F pΩ0�� F pΩ1d
−�� . . .

d
−�� F pΩn+p−1d

−�� F pΩn+p
d
−��

(1.2)

The three differential operators—two first-order differential operators
{d+, d−} and a second-order differential operator ∂+∂−—appearing in
this complex will be defined in Section 2. What is important here is
that associated with the above elliptic complex are filtered cohomologies
defined on the space of p-filtered forms, F pΩ∗. We shall denote these
cohomologies by F pH. Let us note that the elliptic complex in (1.2)
has two levels: a top level associated with the “+” operator d+ and a
bottom one associated with the “−” operator d−. Hence, it is natural to
notationally split the cohomologies within each grouping of F pH into
two as follows:

F pH =
{
F pH+, F

pH−
}

=
{(

F pH0
+, . . . , F

pHn+p−1
+ , F pHn+p

+

)
,(

F pHn+p
− , F pHn+p−1

− , . . . , F pH0
−

)}
.

Of particular interest, we point out the isomorphisms F pHn+p
+

∼=PHn−p

ddΛ

and F pHn+p
−

∼=PHn−p

d+dΛ
. Thus, Table 1 can now be filled in precisely by

the filtered cohomologies as seen in Table 2.
Having introduced filtered cohomologies, it may seem that we have

now a full-blown array of cohomologies arranged together by the filtra-
tion degree p in F pH. But why so many? And what information do
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F ∗H F ∗H∗
+ F ∗H∗

−

F 0H PH0
∂+

, . . . , PHn−1
∂+

, PHn
ddΛ

, PHn
d+dΛ

, PHn−1
∂
−

, . . . , PH0
∂
−

F 1H F 1H0
+, . . . , F 1Hn

+, PHn−1
ddΛ

, PHn−1
d+dΛ

, F 1Hn
−, . . . , F 1H0

−

...
...

...

F pH F pH0
+, . . . , F pHn+p−1

+ , PHn−p

ddΛ
, PHn−p

d+dΛ
, F pHn+p−1

− , . . . , F pH0
−

...
...

...

Table 2. The filtered cohomologies F pH ={
F pH+, F

pH−
}

with 0 ≤ p ≤ n with isomorphisms

F pHn+p
+

∼
= PHn−p

ddΛ
and F pHn+p

−

∼
= PHn−p

d+dΛ
.

these cohomologies contain? It turns out the answers are directly re-
lated to Lefschetz maps, which are fundamental algebraic operations in
symplectic geometry. Let us turn to describe them now.

1.2. Cohomologies and Lefschetz maps. For any symplectic mani-
fold, there is a most distinguished set of elements of the de Rham coho-
mology consisting of the symplectic form and its powers, {ω, ω2, . . . , ωn} .
As the de Rham cohomology has a product structure given by the wedge
product, it is natural to focus in on the product of ωr ∈ H2r

d (M),
for r = 1, . . . , n, with other elements of the de Rham cohomology, i.e.
ωr ⊗ Hk

d (M). Such a product by ωr can be considered as a map, tak-

ing an element of Hk
d (M) into an element of Hk+2r

d (M). This action is
referred to as the Lefschetz map (of degree r):

Lr : Hk
d (M) → Hk+2r

d (M) ,

[Ak] → [ωr ∧Ak],
(1.3)

where [Ak] ∈ Hk
d (M). Clearly, Lefschetz maps are linear and only de-

pend on the cohomology class of [ωr] ∈ H2r
d (M). But importantly, Lef-

schetz maps are in general neither injective nor surjective. So a basic
question one can ask for any symplectic manifold is what are the kernels
and cokernels of the Lefschetz maps?

In the special case in which the symplectic manifold is Kähler, this
question is directly answered by the well-known Hard Lefschetz theo-
rem. But for a generic symplectic manifold, the Hard Lefschetz theorem
does not hold. We can nevertheless address this question in full general-
ity by first analyzing the Lefschetz action on differential forms. Indeed,
the degree one Lefschetz map, L, is one of the three sl(2) generators
that lead to the Lefschetz decomposition of differential forms. We will
show in Section 2 that the information of this Lefschetz decomposition
can be neatly re-packaged in terms of a series of short exact sequences
of differential forms involving Lefschetz maps. Though these exact se-
quences do not naturally fit into a single short exact sequence of chain
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complexes, we will prove in Section 4 that they do nevertheless give a
long exact sequence of cohomologies involving the Lefschetz maps.

These long exact sequences of cohomologies turn out to contain pre-
cisely the data of the kernels and cokernels of the Lefschetz maps. As
we will show in Section 4, for Lefschetz maps of degree r, there is a two-
sided resolution that involves precisely the (r−1)-filtered cohomologies,
F r−1H . (For the r = 1 case, this result concerning the primitive coho-
mologies was also found independently by M. Eastwood via a different
method [5].) We can in fact encapsulate the resolution of the degree r
Lefschetz map in a simple, elegant, exact triangle diagram of cohomolo-
gies:

F r−1H∗(M)

�����
��
��
��
��

H∗
d(M)

Lr
�� H∗

d(M)

�������������

(1.4)

For example, in dimension 2n = 4, the triangle for r = 1 represents the
following long exact sequence:

0 �� H1
d (M) �� PH1

∂+
(M) ����

���	
������ H0

d(M)
L �� H2

d (M) �� PH2
ddΛ

(M) ����
���	

������ H1
d(M)

L �� H3
d (M) �� PH2

d+dΛ
(M) ����

���	
������ H2

d(M)
L �� H4

d (M) �� PH1
∂
−

(M) ����
���	

������ H3
d(M) �� 0

Since the information of the long exact sequence at each element can be
written as a split short exact sequence of kernel and cokernel of maps,
we immediately find from the above exact sequence for example in four
dimensions that

PH2
ddΛ(M) ∼= coker[L : H0

d(M)→ H2
d(M)]⊕ ker[L : H1

d(M)→ H3
d(M)],

PH2
d+dΛ(M) ∼= coker[L : H1

d(M)→ H3
d(M)]⊕ ker[L : H2

d(M)→ H4
d(M)].

In general, the triangle (1.4) and its associated long exact sequence
implies that the (r−1)-filtered cohomologies F r−1H∗(M) are isomorphic
to the direct sum of kernels and cokernels of the Lefschetz maps of degree
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r. More explicitly, we have the following isomorphisms:

F r−1Hk
+(M)∼=coker

[
Lr :Hk−2r

d (M)→ Hk
d (M)

]
⊕ ker

[
Lr :Hk−2r+1

d (M)→ Hk+1
d (M)

]
,

F r−1Hk
−(M)∼=coker

[
Lr:H2n−k−1

d (M)→H2n−k+2r−1
d (M)

]
⊕ker

[
Lr:H2n−k

d (M)→H2n−k+2r
d (M)

]
,

for 0 ≤ k ≤ n+ r − 1.
In fact, we can also think of the Lefschetz map triangle (1.4) as a

special case of the exact triangle relating filtered cohomologies:

F r−1H∗(M)

�����
��
��
��
��

F lH∗(M) �� F l+rH∗(M)

		������������

(1.5)

as we will also show in Section 4.

1.3. Filtered cohomology rings and their underlying A∞-algebras.

It is indeed rather interesting that the filtered cohomologies F pH, de-
fined differentially by the elliptic complex (1.2), are isomorphic via the
exact triangle (1.4) with the kernels and cokernels of the Lefschetz maps,
which are purely algebraic quantities. Considering the exact triangle
(1.4), it is further tempting to think that the filtered cohomologies may
have similar algebraic properties to the two de Rham cohomologies that
accompany it. For instance, could the p-filtered cohomology group F pH
actually form a cohomology ring? Ideally, to consider this question, one
would like to have a grading for p-filtered forms and introduce a prod-
uct operation that preserves the grading. But what grading should one
use for p-filtered forms? This is not at all immediate as each filtered
space F pΩk for 0 ≤ k ≤ n+ p noteworthily appears twice in the elliptic
complex of (1.2). To settle on a grading, we can appeal to the analogy
with the de Rham complex, and heuristically, just “bend” the elliptic
complex of (1.2) and rearrange it into a single line:

0 �� F pΩ0 d+ �� . . .
d+ �� F pΩn+p

∂+∂
− �� F pΩn+p

d
− �� . . .

d
− �� F pΩ0

d
− �� 0

where we have used a bar, F pΩ∗, to distinguish those F pΩ∗ associated
with the bottom level of the elliptic complex. Writing the complex in
this form, we can construct a new algebra

Fp = {F pΩ0, F pΩ1, . . . , F pΩn+p, F pΩn+p, . . . , F pΩ1, F pΩ0}
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with elements F j
p , for 0 ≤ j ≤ 2n+ 2p+ 1, given by

F j
p =

{
F pΩj if 0 ≤ j ≤ n+ p,

F pΩ2n+2p+1−j if n+ p+ 1 ≤ j ≤ 2n + 2p + 1.

Following closely the elliptic complex, we define the differential dj :

F j
p → F j+1

p to be

dj =

⎧⎪⎨⎪⎩
d+ if 0 ≤ j < n+ p− 1,

−∂+∂− if j = n+ p,

−d− if n+ p+ 1 ≤ j ≤ 2n+ 2p + 1.

(1.6)

One can then try to construct a multiplication which preserves the grad-
ing

F j
p ×F

k
p → F j+k

p

and is graded commutative, i.e. F j
p×Fk

p = (−1)jkFk
p ×F

j
p . In fact, as we

will describe in Section 5, such a multiplication operation × can indeed
be constructed based on the exact triangle (1.4). (See Definition 5.1.)
This multiplication on forms is rather novel in that it involves first-order
derivative operators. The presence of these derivatives turns out to be
important as they allow us to prove the Leibniz rule:

dj+k(F
j
p ×F

k
p ) = (djF

j
p)×F

k
p + (−1)jF j

p × (dkF
k
p ).

This Leibniz rule represents a rather subtle balancing between the def-
inition of the differential dj and the product ×. However, one of the
consequences of having derivatives in the definition of a multiplication
is that the product × generally is non-associative. This means that the
algebra (Fp, dj ,×) can not be a differential graded algebra as in the de
Rham complex case. Nevertheless, as we will show in Section 5, the non-
associativity of the p-filtered algebra Fp can be captured by a trilinear
map m3. Together, (Fp, dj ,×,m3) turns out to fit precisely the A∞-
algebra structure, with the higher k-linear maps, mk, for k ≥ 4 taken to
be zero. And as an immediate corollary of satisfying the requirements
of an A∞-algebra, the cohomology F pH = H(Fp) indeed has a ring
structure.

The existence of the ring structure of F pH provides a new set of in-
variants for distinguishing different symplectic manifolds. We will show
in Section 6 how the product structure can be different for two sym-
plectic four-manifolds that are both a product of a circle times a fibered
three-manifold. We give an example of a pair of such symplectic mani-
folds that have isomorphic de Rham cohomology rings and identical fil-
tered cohomology dimensions, but with different filtered product struc-
ture.
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2. Preliminaries

We here present some of the properties of differential forms and dif-
ferential operators on symplectic manifolds that will be relevant for our
analysis in later sections. We begin first by describing the sl(2) action
and other natural operations on differential forms. We then introduce
the filtered forms and discuss the linear differential operators that act
on them. We then use these filtered forms to write down short exact
sequences involving Lefschetz maps.

2.1. Operations on differential forms. On a symplectic manifold
(M2n, ω), the presence of a non-degenerate two-form, ω, allows for the
decomposition of differential forms into representation modules of an
sl(2) Lie algebra which has the following generators:

L : A→ ω ∧A,

Λ : A→
1

2
(ω−1)ij ι∂

xi
ι∂

xj
A,

H : A→ (n− k)A for A ∈ Ωk(M),

(2.1)

and commutation relations:

[H,Λ] = 2Λ , [H,L] = −2L , [Λ, L] = H .(2.2)

Here, L is called the Lefschetz operator, and is just the operation of
wedging a form with ω. The operator Λ represents the action of the
associated Poisson bivector field. The “highest weight” forms are the
primitive forms, which are denoted by Bs ∈ P

s(M). The primitive forms
are characterized by the following condition:

(primitivity condition) ΛBs = 0 , or equivalently, Ln+1−sBs = 0 .

(2.3)

An sl(2) representation module then consists of the set{
Bs , ω ∧Bs , ω2 ∧Bs , . . . , ωn−s ∧Bs

}
,

where each basis element can be labeled by the pair (r, s) with

Lr,s(M) = LrPs(M) =
{
A ∈ Ω2r+s(M)

⏐⏐A = ωr ∧Bs and ΛBs = 0
}
.

Indeed, the sl(2) decomposition of Ω∗(M) can be simply pictured by
an (r, s)-pyramid diagram [19] as for example drawn in Figure 1 for
dimension 2n = 8.
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Ω0 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

P4

P3 LP3

P2 LP2 L2P2

P1 LP1 L2P1 L3P1

P0 LP0 L2P0 L3P0 L4P0

Figure 1. The decomposition of differential forms into
an (r, s)-pyramid diagram in dimension 2n = 8. The de-
gree of the forms starts from zero (on the left) to 2n = 8
(on the right).

We now introduce some natural operations on differential forms that
will be useful for the discussion to follow.

First, note that there is an obvious reflection symmetry about the
central axis of the (r, s)-pyramid diagram as in Figure 1. This central
axis lies on forms of middle degree, Ωn. An example of an operator that
reflects forms is the standard symplectic star operator ∗s , which can be
defined by the Weil’s relation [20, 9]

∗s
1

r!
Lr Bs = (−1)s(s+1)/2 1

(n− r − s)!
Ln−r−sBs.(2.4)

where Bs ∈ P
s. The minus sign and combinatorial factors in (2.4), how-

ever, can become rather cumbersome for calculations. So for simplicity,
we introduce another reflection operator, denoted as ∗r , and define it
simply as

∗r (L
r Bs) = Ln−r−sBs.(2.5)

It is easy to check as expected that

(∗r)
2 = 1.

Second, we can broaden the definition of the Lefschetz operator Lr

to allow for negative integer powers, i.e. r < 0 . For a differential k-form
Ak ∈ Ωk , consider its Lefschetz decomposition

Ak = Bk + LBk−2 + . . . + LpBk−2p + Lp+1Bk−2p−2 + . . . .(2.6)

The map L−p : Ωk → Ωk−2p for p > 0 is then defined to be

L−pAk = Bk−2p + LBk−2p−2 + . . . .(2.7)

Notice that this action of L−p is similar to Λp in that both lower the
degree of a differential form by 2p; however, they are not identical. This
can be easily seen by noting that by definition, L−1(LBs) = Bs, while
Λ(LBs) = HBs, using the third sl(2) commutation relation in (2.2).
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Defining L raised to a negative power by (2.7) is useful in that it allows
us to express the reflection ∗r operator simply as

∗r Ak = Ln−kAk,(2.8)

for k arbitrary. In fact, L−p can be heuristically thought of as the ∗r
adjoint of Lp:

L−p = ∗r L
p ∗r(2.9)

which can be checked straightforwardly using (2.8). This relation (2.9)
indeed is analogous to the standard adjoint relation, Λ = ∗s L ∗s [21].

Comparing (2.7) with (2.6), it is clear that the operator L−p com-
pletely removes the Lefschetz components of a form that have powers of
ω less than p. This suggests it may be useful to introduce an operator
that projects onto the Lefschetz components with powers of ω bounded
by some integer. Thus, we define a projection operator, Πp : Ωk → Ωk

for p > 0, which acts on the Lefschetz decomposed form of (2.6) as

ΠpAk = Bk + LBk−2 + . . .+ LpBk−2p.(2.10)

In other words, it projects out components with higher powers of ω, i.e.
(Lp+1Bk−2p−2 + . . .). With such a projection operator, we can express
any differential form as

Ak = ΠpAk + Lp+1(L−(p+1)Ak),

which simply implies

1 = Πp + Lp+1L−(p+1).(2.11)

Written in this form, it is clear that Lp+1L−(p+1) is also a projection
operator and we can alternatively define the projection operator as Πp =
1− Lp+1L−(p+1) .

As will be useful later, we can take the ∗r adjoint of (2.11) and obtain
the following:

1 = Πp∗ + L−(p+1)Lp+1,(2.12)

where Πp∗ = ∗rΠ
p∗r. Note that both Πp∗ and L−(p+1)Lp+1 are also

projection operators.
Regarding differential operators, we first point out that the exterior

derivative operator, d, has a natural decomposition into two linear dif-
ferential operators from the above sl(2) or Lefschetz decomposition [19]:

d = ∂+ + L∂−(2.13)

where ∂± : Lr,s → Lr,s±1. The differential operators (∂+, ∂−) have the
desirable properties that

(∂+)
2 = (∂−)

2 = 0, L (∂+∂− + ∂−∂+) = 0, [L, ∂+] = [L,L ∂−] = 0.
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Another useful operator is the symplectic adjoint of the exterior de-
rivative [6, 2]

dΛ : = dΛ− Λ d

= (−1)k+1 ∗s d ∗s(2.14)

where the second relation is defined acting on a differential k-form.
Analogous to dΛ, we shall introduce the ∗r adjoint operator defined to
be

d− := ∗r d ∗r.(2.15)

It follows trivially from (∗r)
2 = 1 that d− d− = 0 . In fact, it can be

straightforwardly checked for any Lr,s(M) space that

d− = ∂− + ∂+ L−1.(2.16)

2.2. Filtered forms and differential operators. The Lefschetz de-
composition is suggestive of a natural filtration for differential forms on
(M2n, ω). The space of differential k-forms Ωk has the following Lef-
schetz decomposition:

Ωk =
⊕

max(0,k−n)≤ r≤
k/2�

Lr,k−2r,(2.17)

where � � denotes rounding down to the nearest integer. Applying the
projection Πp, which caps the sum over the index r to some fixed integer
p, we define the p-filtered forms of degree k as

F pΩk = ΠpΩk =
⊕

max(0,k−n)≤ r≤min(p,
k/2�)

Lr,k−2r.(2.18)

We call p the filtration degree which can range from 0 to n . Let us
note the two special cases of F pΩk: (i) p = 0 consists of primitive k-
forms, F 0Ωk = Pk; (ii) p = �k/2� consists of all differential k-forms,

F 
k/2�Ωk = Ωk . Clearly then,

Pk = F 0Ωk ⊂ F 1Ωk ⊂ F 2Ωk ⊂ . . . ⊂ F 
k/2�Ωk = Ωk.

Now, consider the elements of F pΩ∗ for a fixed filtration number p.
In this case, the degree k in F pΩk has the range 0 ≤ k ≤ n + p. For
p ≥ 1, we have

F pΩk = Ωk, for 0 ≤ k ≤ 2p+ 1,(2.19)

...
...

F pΩn+p−1 = Lp−1Pn−p+1 ⊕ LpPn−p−1,

(2.20)

F pΩn+p = LpPn−p.(2.21)

Hence, for k sufficiently small, F pΩk contains all differential k-forms. On
the other hand, for the largest value k = n + p, F pΩn+p has only one
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Ω0 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

P4

P3 LP3

P2 LP2 L2P2

P1 LP1 L2P1 ∅

P0 LP0 L2P0 ∅ ∅

Figure 2. The forms of F 2Ωk with 0 ≤ k ≤ 6 decom-
posed in an (r, s) pyramid diagram in dimension 2n = 8.
Notice that F 2Ωk = Ωk , for k ≤ 5 .

component of the Lefschetz decomposition of (2.17) and is isomorphic
to Pn−p . The example of F 2Ω∗ in dimension 2n = 8 is illustrated in
Figure 2.

Alternatively, we can also define the filtered form based on loosening
the primitivity condition of (2.3).

Definition 2.1. A differential k-form Ak with k ≤ n + p is called
p-filtered, i.e. Ak ∈ F pΩk , if it satisfies the two equivalent conditions:
(i) Λp+1Ak = 0 ; (ii) Ln+p+1−kAk = 0 .

By equation (2.8), the p-filtered condition can be equivalently ex-
pressed as

Lp+1 ∗r Ak = 0,(2.22)

for Ak ∈ F pΩk .
Turning now to the differential operators that act within the filtered

spaces, the composition of the projection operator with the exterior
derivative induces the differential operator

d+ : F pΩk d
−→ Ωk+1 Πp

−→ F pΩk+1.

The projection operator Πp effectively drops the L∂− action on the
Lp,k−2p component. Explicitly, letting Ak ∈ F pΩk, we can write

d+Ak = d+ (Bk + LBk−2 + . . . + LpBk−2p)

= d
(
Bk + . . .+ Lp−1Bk−2p+2

)
+ Lp∂+Bk−2p

where in the second line, we have applied (2.13) on the Lp dBk−2p term
and projected out the resulting term Lp+1∂−Bk−2p . Now, applying d+
again, we find

d+(d+Ak) = d2
(
Bk + . . .+ Lp−1Bk−2p+2

)
+ Lp(∂+)

2Bk−2p = 0;

hence, we have shown that (d+)
2 = 0 . We remark that with (2.19), d+

is just the exterior derivative d when k ≤ 2p.
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Now we will also be interested in the action of the d− operator (2.15)
on filtered forms. Indeed, acting on F pΩ∗, it preserves the filtration
number and decreases the degree by one:

d− : F pΩk−→F pΩk−1.

The convention for the ± signs for d+ and d− indicates that the differ-
ential operator raises and lowers the degree of differential forms by one,
just like the notation for (∂+, ∂−).

What follows is a formula involving the relation of the operators d−,
Πp, and ∗r. It will be helpful for calculations in later sections.

Lemma 2.2. For Ak ∈ Ωk,

Πp ∗r (dAk) = d− (Πp ∗r Ak) + Πp ∗r dL
−(p+1)(ωp+1 ∧Ak).(2.23)

Proof. Since d− : F pΩk → F pΩk−1 preserves the filtration degree,

d−Π
pAk = Πpd−Π

pAk

= Πpd−Ak −Πp ∗r d ∗r ω
p+1L−(p+1)Ak.

Replacing Ak with ∗r Ak and using (2.15) and (2.9), we obtain (2.23).
q.e.d.

2.3. Short exact sequences. The data of the (r, s) pyramid diagram
can be nicely repackaged in terms of short exact sequences. For instance,
from the pyramid diagram of Figure 1, it is not hard to see that the
following sequences involving a degree one Lefschetz maps are exact:

0 �� Ω0 L �� Ω2 Π0

�� P2 �� 0

0 �� Ω1 L �� Ω3 Π0

�� P3 �� 0

0 �� Ω2 L �� Ω4 Π0

�� P4 �� 0.

At the middle of the pyramid, we have

0 �� Ω3 L �� Ω5 �� 0.

For forms of degree four or greater, we can write

0 �� P4 ∗r �� Ω4 L �� Ω6 �� 0

0 �� P3 ∗r �� Ω5 L �� Ω7 �� 0

0 �� P2 ∗r �� Ω6 L �� Ω8 �� 0.

Exact sequences involving higher degree Lefschetz maps Lr can similarly
be written using F r−1Ω∗. Generally, we can arrange the short exact
sequence of any filtration number together in a suggestive commutative
diagram as follows.
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Lemma 2.3. On a symplectic manifold (M2n, ω), there is the follow-
ing commutative diagram of short exact sequences for 1 ≤ r < n:

...

d

��

...

d+

��

0 �� Ω2r−1 Π
r−1

��

d

��

F r−1Ω2r−1 ��

d+
��

0

0 �� Ω0 Lr
��

d
��

Ω2r Π
r−1

��

d
��

F r−1Ω2r ��

d+
��

0

...

d

��

...

d

��

...

d+

��

0 �� Ωn−r−2 Lr
��

d

��

Ωn+r−2 Π
r−1

��

d

��

F r−1Ωn+r−2 ��

d+
��

0

0 �� Ωn−r−1 Lr
��

d

��

Ωn+r−1 Π
r−1

��

d

��

F r−1Ωn+r−1 �� 0

0 �� Ωn−r Lr
��

d

��

Ωn+r ��

d

��

0

0 �� F r−1Ωn+r−1
∗r ��

d
−

��

Ωn−r+1 Lr
��

d

��

Ωn+r+1 ��

d

��

0

0 �� F r−1Ωn+r−2
∗r ��

d
−

��

Ωn−r+2 Lr
��

d
��

Ωn+r+2 ��

d
��

0

...

d
−

��

...

d

��

...

d

��

0 �� F r−1Ω2r ∗r ��

d
−

��

Ω2n−2r Lr
��

d

��

Ω2n �� 0

0 �� F r−1Ω2r−1
∗r ��

d
−

��

Ω2n−2r+1 ��

d
��

0

...
...

(2.24)

Note that F r−1Ω2r−1 = F 
2r−1�Ω2r−1 = Ω2r−1 . The above is not a
standard exact sequence between the three complexes (Ω∗,Ω∗, F r−1Ω∗)
due to a “shift” in the middle of the diagram. This shift is due to
the structure of the (r, s) pyramid, and as we will see in Section 4, it
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provides an explanation for the presence of cohomologies that involve
the 2nd-order differential operator ∂+∂− .

Additionally, for the Lefschetz map, we can also write short exact
sequences involving filtered forms (F lΩ∗, F l+rΩ∗, F r−1Ω∗). For instance,
for the pyramid diagram Figure 2, the elements of the complexes (F 1Ω∗,
F 2Ω∗, F 0Ω∗) give the following series of short exact sequences (with
three shifts):

0 �� F 1Ω0
L �� F 2Ω2

Π
1

�� F 0Ω2 �� 0

0 �� F 1Ω1
L �� F 2Ω3

Π
1

�� F 0Ω3 �� 0

0 �� F 1Ω2
L �� F 2Ω4

Π
1

�� F 0Ω4 �� 0

0 �� F 1Ω3
L �� F 2Ω5 �� 0

0 �� F 0Ω4
∗r �� F 1Ω4

L �� F 2Ω6 �� 0

0 �� F 0Ω3
∗r �� F 1Ω5 �� 0

0 �� F 2Ω6
L−2

�� F 0Ω2 �� 0

0 �� F 1Ω5
ι �� F 2Ω5

L−2

�� F 0Ω1 �� 0

0 �� F 1Ω4
ι �� F 2Ω4

L−2

�� F 0Ω0 �� 0

In general, we can write the following chain of short exact sequences.

Lemma 2.4. On a symplectic manifold (M2n, ω), there is the follow-
ing commutative diagram of short exact sequences for 1 ≤ r < n:
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.

.

.

d+

��

.

.

.

d+

��
0 �� F l+rΩ2r−1

Π
r−1

��

d+
��

F r−1Ω2r−1 ��

d+
��

0

0 �� F lΩ0
Lr

��
d+ ��

F l+rΩ2r Π
r−1

��
d+ ��

F r−1Ω2r ��
d+ ��

0

.

.

.

d+

��

.

.

.

d+

��

.

.

.

d+

��
0 �� F lΩn−r−1

Lr
��

d+
��

F l+rΩn+r−1
Π
r−1

��

d+
��

F r−1Ωn+r−1 ��

d+

��

0

0 �� F lΩn−r Lr
��

d+
��

F l+rΩn+r ��

d+
��

0

0 �� F r−1Ωn+r−1
∗r ��

d
− ��

F lΩn−r+1
Lr

��
d+ ��

F l+rΩn+r+1 ��
d+ ��

0

.

.

.

d
−

��

.

.

.

d+

��

.

.

.

d+

��
0 �� F r−1Ωn+r−l

∗r ��

d
−

��

F lΩn−r+l Lr
��

d+
��

F l+rΩn+r+l �� 0

0 �� F r−1Ωn+r−l−1
∗r ��

d
−

��

F lΩn−r+l+1 ��

d+
��

0

0 �� F l+rΩn+r+lL
−(l+1)

��
d
− ��

F r−1Ωn+r−l−2
∗r ��

d
− ��

F lΩn−r+l+2 ��
d+ ��

0

.

.

.

d
−

��

.

.

.

d
−

��

.

.

.

d+

��
0 �� F l+rΩn+l+2

L−(l+1)

��

d
−

��

F r−1Ωn−l
∗r ��

d
−

��

F lΩn+l �� 0

0 �� F l+rΩn+l+1
L−(l+1)

��

d
−

��

F r−1Ωn−l−1 ��

d
−

��

0

0 �� F lΩn+l ι ��
d
− ��

F l+rΩn+l L−(l+1)

��
d
− ��

F r−1Ωn−l−2 ��
d
− ��

0

.

.

.

d
−

��

.

.

.

d
−

��

.

.

.

d
−

��
0 �� F lΩl+2

ι ��

d
−

��

F l+rΩl+2
L−(l+1)

��

d
−

��

F r−1Ω0 ��

d
−

��

0

0 �� F lΩl+1
ι ��

d
− ��

F l+rΩl+1 ��
d
− ��

0

.

.

.

.

.

.
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3. Filtered cohomologies

3.1. Elliptic complexes and associated cohomologies. In Paper
II [19, Proposition 2.8], the following differential complex of primitive
form was shown to be elliptic:

0 �� P0 ∂+ �� P1 ∂+ �� . . .
∂+ �� Pn−1 ∂+ �� Pn

∂+∂
−

��
0 P0�� P1∂

−�� . . .
∂
−�� Pn−1∂

−�� Pn
∂
−��

(3.1)

This complex was found in the four-dimensional case by Smith in 1976
[14]. In higher dimensions, besides [19], it was also independently found
by Eastwood and Seshadri [4] (see also [3, 5]) who were motivated by
the hyperelliptic complex of Rumin in contact geometry [16].

In the context of filtered forms, primitive forms correspond to F pΩk

with p = 0, and therefore, we can rewrite the primitive elliptic complex
equivalently as

0 �� F 0Ω0 d+ �� F 0Ω1 d+ �� . . .
d+ �� F 0Ωn−1 d+ �� F 0Ωn

∂+∂
−

��

0 F 0Ω0�� F 0Ω1d
−�� . . .

d
−�� F 0Ωn−1d

−�� F 0Ωn
d
−��

Written in this form and with the introduction of more general p-filtered
forms, it is then natural to consider complexes with higher filtration
degree p by replacing F 0Ω∗ with F pΩ∗ in the complex above. Indeed,
the resulting complexes are elliptic as well.

Theorem 3.1. The following differential complex is elliptic for 0 ≤
p ≤ n.

0 �� F pΩ0 d+ �� F pΩ1 d+ �� . . .
d+ �� F pΩn+p−1 d+ �� F pΩn+p

∂+∂
−

��

0 F pΩ0�� F pΩ1d
−�� . . .

d
−�� F pΩn+p−1d

−�� F pΩn+p
d
−��

(3.2)

Proof. Recall from the previous section that (d+)
2 = (d−)

2 = 0.
Moreover, it is straightforward to check that (∂+∂−)d+ = d−(∂+∂−) = 0
acting on any p-filtered form. Hence, (3.2) is a differential complex.

To prove that the complex is elliptic, we need to show that the asso-
ciated symbol complex is exact at each point x ∈ M . Let ξ ∈ T ∗x\{0}.
By an Sp(2n) transformation, we can set ξ = e1 and take the symplectic
form to be ω = e1 ∧ e2 + e3 ∧ e4 + . . . + e2n−1 ∧ e2n, where e1, . . . , e2n
spans a basis for T ∗x . Let ηk ∈ F p

∧k T ∗x . Then we can write

ηk = μk + ω ∧ μk−2 + . . .+ ωp ∧ μk−2p,(3.3)
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where the μ’s denote elements of the primitive exterior vector space,
P
∧

T ∗x . Each primitive vector can also be decomposed as [19, Lemma
2.3]

μl = e1 ∧ β1
l−1 + e2 ∧ β2

l−1 + e′12 ∧ β3
l−2 + β4

l(3.4)

where β1, β2, β3, β4 ∈ P
∧∗ T ∗x are primitive exterior products involving

only e3, e4, . . . , e2n, and

e′12 = e1 ∧ e2 −
1

H + 1

n∑
j=2

e2j−1 ∧ e2j .

Here, H is the operator defined by (2.1). In the following argument,
the letter η always means a p-filtered element, and μ always means a
primitive element. The symbol is denoted by σ.

We will show the exactness in four steps.
(1) Exactness of the symbol sequence corresponding to the top line

0→ F pΩ0 → . . .→ F pΩn+p−1.
Since d+d+ = 0, it is clear that imσ(d+) ⊂ ker σ(d+). We need

to show that ker σ(d+) ⊂ imσ(∂+). Now, σ(d+) = Πp(e1 ∧ ·) . So if
ηk ∈ kerσ(d+), then either (i) e1 ∧ ηk = 0 or (ii) e1 ∧ ηk = ωp+1 ∧
μk−2p−1 
= 0. In case (i), it follows by the exactness of the symbol
complex associated with the de Rham complex that there exists an

ζk−1 ∈
∧k−1 T ∗x such that ηk = e1 ∧ ζk−1. But since the operation

e1 ∧ · can only preserve the filtration degree p or increase it by one,
we conclude that ηk = σ(d+)(Π

pζk−1). In case (ii), ηk must contain a
nontrivial Lefschetz component ωp ∧ μk−2p (3.3). By (3.4),

e1 ∧ μk−2p = e1 ∧
(
e1 ∧ β1

k−2p−1 + e2 ∧ β2
k−2p−1 + e′12 ∧ β3

k−2p−2 + β4
k−2p

)
= c1 e

′
12 ∧ β2

k−2p−1 + c2 ω ∧ β2
k−2p−1 + c3 ω ∧ e1 ∧ β3

k−2p−2

+ e1 ∧ β4
k−2p

for some non-zero constants c1, c2, and c3. This implies that μk−2p must
have a non-zero β2 or β3 term. However, a β2 term is not possible since
the first term e′12 ∧ β2 can not be canceled to satisfy Πp(e1 ∧ ηk) = 0.
This is because e′12 ∧ β2 /∈ imσ(∂−) [19, (2.36)] (or see (3.7) below).
Hence, we only need to worry about the e′12 ∧ β3 term in μk−2p , and
express it as an element of imσ(d+). To do so, we note that

e1 ∧ e2 ∧ β3
k−2p−2 =

H + 1

H + 2
e′12 ∧ β3

k−2p−2 +
1

H + 2
ω ∧ β3

k−2p−2.

Therefore, we can write e′12 ∧ β3
k−2p−2 = H+2

H+1 Π
0(e1 ∧ e2 ∧ β3

k−2p−2) =

Π0
{
e1 ∧

[
H+1
H

(e2 ∧ β3
k−2p−2)

]}
.

(2) Exactness of the symbol sequence corresponding to the bottom
line 0← F pΩ0 ← . . .← F pΩn+p−1.
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Note that the reflection of the de Rham complex by ∗r gives an
elliptic d−-complex, and therefore, ker σ(d−) = im σ(d−) for the

∧
T ∗x

sequence. Now for a filtered space, suppose that ηk ∈ F p
∧k T ∗x and

σ(d−)ηk = 0. By the exactness of the d−-complex, ηk = σ(d−)ξk+1 for

some ξk+1 ∈
∧k+1 T ∗x . It suffices to show that we can choose a ξk+1

such that ξk+1 ∈ F p
∧k T ∗x .

Consider the Lefschetz decomposition of ηk as in (3.3), and write

ξk+1 = μ̃k+1 + . . . + ωp ∧ μ̃k−2p+1 + ωp+1 ∧ μ̃k−2p−1 + . . . ,

where μ̃’s are elements of the primitive vector space P
∧∗ T ∗x . Using

(2.16), we have

ηk = σ(d−)ξk+1

= σ(d−)
(
μ̃k+1 + . . . + ωp−1 ∧ μ̃k−2p+3

)
+ σ(∂+)(ω

p−1 ∧ μ̃k−2p+1)

+ σ(∂−)(ω
p ∧ μ̃k−2p+1) + σ(∂+)(ω

p ∧ μ̃k−2p−1).

Since σ(∂±) : P
∧k T ∗x → P

∧k±1 T ∗x , it implies for the ωp term that

μk−2p = σ(∂−)μ̃k−2p+1 + σ(∂+)μ̃k−2p−1.

Now the condition σ(d−)ηk = 0 requires σ(∂−)μk−2p = 0. Hence, in the
decomposition (3.4) for μk−2p, there are only two non-zero terms,

μk−2p = e1 ∧ β1
k−2p−1 + β4

k−2p,(3.5)

as {e2 ∧ β2, e′12 ∧ β3} /∈ ker σ(∂−) [19, (2.39)]. Let us also recall from
[19, (2.35) and (2.36)] that acting on the decomposition (3.4), we have

imσ(∂+) =
{
e′12 ∧ β2 , e1 ∧ β4

}
,(3.6)

imσ(∂−) =
{
β2 , e1 ∧ β3

}
.(3.7)

Hence, it is clear that if σ(∂+)μ̃k−2p−1 is non-zero, then σ(∂+)μ̃k−2p−1 =
e1 ∧ β′k−2p−1 for some primitive element β′ independent of e1 and e2.

But then by (3.7), we can write

σ(∂+)μ̃k−2p−1 = c σ(∂−)e
′
12 ∧ β′k−2p−1

where c is some non-zero constant. Letting μ′k−2p+1 = c e′12 ∧ β′k−2p−1
and noting that σ(∂+)μ

′
k−2p+1 = σ(∂+)(c e

′
12 ∧ β′k−2p−1) = 0, we obtain

the desired result

ηk = σ(d−)
[
μ̃k+1 + . . .+ ωp−1 ∧ μ̃k−2p+3 + ωp ∧ (μ̃k−2p+1 + μ′k−2p+1)

]
.

(3) Exactness of the symbol sequence corresponding to F pΩn+p−1 →
F pΩn+p → F pΩn+p.

By (2.20) and (2.21), we need to show that

P
∧n−p+1 T ∗x ⊕ P

∧n−p−1 T ∗x
σ(d+)

�� P
∧n+p T ∗x

σ(∂+∂
−
)
�� P

∧n+p T ∗x
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is exact at the middle. In terms of the decomposition of (3.4), it is
straightforward to check that

ker σ(∂+∂−) = imσ(d+) =
{
e1 ∧ β1

n−p−1 , e
′
12 ∧ β3

n−p−2 , β
4
n−p

}
.

(4) Exactness of the symbol sequence corresponding to F pΩn+p →
F pΩn+p → F pΩn+p−1.

Here we need to show that the symbol sequence

P
∧n+p T ∗x

σ(∂+∂
−
)
�� P

∧n+p T ∗x
σ(d

−
)
�� P

∧n−p+1 T ∗x ⊕ P
∧n−p−1 T ∗x

is exact at the middle. In terms of the decomposition of (3.4), it is clear
that

ker σ(d−) = imσ(∂+∂−) =
{
e1 ∧ β1

n−p−1

}
.

q.e.d.

Having established the ellipticity of the complex (3.2), we have also
shown the finite-dimensionality of the associated filtered cohomologies
which we shall denote by

F pH =
{
F pH0

+, F
pH1

+, . . . , F
pHn+p

+ , F pHn+p
− , . . . , F pH1

−, F
pH0

−

}(3.8)

where

F pHk
+ =

ker(d+) ∩ F pΩk

d+(F pΩk−1)
, F pHk

− =
ker(d−) ∩ F pΩk

d−(F pΩk+1)
,

for k = 0, 1, · · · , n+ p− 1 and

F pHn+p
+ =

ker(∂+∂−) ∩ F pΩn+p

d+(F pΩn+p−1)
, F pHn+p

− =
ker(d−) ∩ F pΩn+p

∂+∂−(F pΩn+p)
.

Let us make several comments concerning these filtered cohomologies.
First, modulo powers of L, we can make the identification:

F pΩn+p−1 ∼= Pn−p+1 ⊕ Pn−p−1.

For the middle of the elliptic complex (3.2), such an identification trans-
lates into

· · · �� Pn−p+1 ⊕ Pn−p−1 ∂
−
+ ∂+�� Pn−p

∂+∂
− �� Pn−p

∂+⊕∂
− �� Pn−p+1 ⊕ Pn−p−1 �� · · · .
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Thus, the middle two cohomologies of (3.8) are equivalent to PHn−p

ddΛ
(M)

and PHn−p

d+dΛ
(M) introduced in [19]. Specifically,

F pHn+p
+ (M) ∼= PHn−p

ddΛ
(M) =

ker ∂+∂− ∩ P
n−p(M)

∂+Pn−p−1 + ∂−Pn+p+1
,(3.9)

F pHn+p
− (M) ∼= PHn−p

d+dΛ
(M) =

ker(∂+ + ∂−) ∩ P
n−p(M)

∂+∂−Pn−p(M)
.(3.10)

Second, since F pΩk = Ωk for k ≤ 2p+ 1 as noted in (2.19), the section
of the elliptic complex consisting of the first 2p + 1 elements of the
top line of (3.2) is effectively equivalent to the usual de Rham complex.
Similarly, the section of the bottom line involving the last 2p+1 elements
is equivalent to the ∗r dual of the de Rham complex. Thus, we have the
following relations:

F pHk
+(M) = Hk

d (M), for 0 ≤ k ≤ 2p,(3.11)

F pHk
−(M) ∼= H2n−k

d (M), for 0 ≤ k ≤ 2p.(3.12)

Lastly, since the filtered cohomologies are associated with elliptic
complexes, we can write down an elliptic laplacian for each filtered co-
homology. Note that the laplacians associated with the cohomologies
F pHn+p

+ (3.9) and F pHn+p
− (3.10) are of fourth order. But since each

laplacian is elliptic, we can nevertheless associate a Hodge theory to each
cohomology. That is, with the introduction of a Riemannian metric, we
can define a unique harmonic representative for each cohomology class
and Hodge decompose any form into three orthogonal components con-
sisting of harmonic, exact, and co-exact forms. An expanded discussion
of the Hodge theoretical properties for those filtered cohomologies that
are primitive (i.e. p = 0 or k = n+ p) can be found in [18, 19].

3.2. Local Poincaré lemmata. We now consider the above coho-
mologies for an open unit disk U in R2n with the standard symplectic
form ω =

∑n
i=1 dx

i ∧ dxn+i. The primitive cohomologies PHk
ddΛ

(U) and

PHk
d+dΛ

(U) have been calculated by [19, Proposition 3.12 and Corollary

3.11]:

dimPHk
ddΛ(U) =

{
1 when k = 1,

0 otherwise ;
dimPHk

d+dΛ(U) =

{
1 when k = 0,

0 otherwise .

Proposition 3.2 (d+-Poincaré lemma). Let U be an open unit disk
in R2n with the standard symplectic form ω =

∑
dxi ∧ dxn+i. Then for

0 ≤ p < n,

dimF pH0
+(U) = dimF pH2p+1

+ (U) = 1,

and dimF pHk
+(U) = 0 for 1 ≤ k ≤ n+ p− 1 and k 
= 2p + 1.
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Proof. When 0 ≤ k ≤ 2p, the cohomology F pHk
+(U) = Hk

d (U). When

k ≥ 2p + 1, any element Ak ∈ F pΩk has the Lefschetz decomposi-

tion
∑min(p,n+p−k)

s=0 Lp−sBk−2p+2s for Bk−2p+2s ∈ P
k−2p+2s. If Ak is d+-

closed, either (1) dAk = 0 or (2) d+Ak = 0 but dAk = Lp+1B′k−2p−1 
= 0

for some B′k−2p−1 ∈ P
k−2p−1.

Case (1): The standard Poincaré lemma implies that Ak = dA′k−1 for

some A′k−1 ∈ Ωk−1. Let A′′k−1 = ΠpA′k−1. After taking Πp ◦ d and using
(2.11), we find that d+A

′′
k−1 = Ak.

Case (2a): Let 2p + 1 < k < n + p. Since d2Ak = Lp+1dB′k−2p−1 = 0

and Lp+1 is not zero on Pk−p, we have dB′k−2p−1 = 0. It follows from

the primitive Poincaré lemma [19, Proposition 3.10] that there exists
a B′′k−2p−1 ∈ P

k−2p−1 such that ∂+∂−B
′′
k−2p−1 = B′k−2p−1. Note that

Lp+1∂−B
′′
k−2p−1 /∈ F pΩk and

d(Ak − Lp+1∂−B
′′
k−2p−1) = Lp+1B′k−2p−1 − Lp+1∂+∂−B

′′
k−2p−1 = 0.

The standard Poincaré lemma implies that Ak − Lp+1∂−B
′′
k−2p−1 =

dA′k−1 for some A′k−1 ∈ Ωk−1. Now let A′′k−1 = ΠpA′k−1. Then simi-
lar to case (1), we have d+A

′′
k−1 = Ak.

Case (2b): Let k = 2p+1. Since dA2p+1 = Lp+1B′0 
= 0 and d2A2p+1 =
Lp+1dB′0 = 0, B′0 must be a non-zero constant function. Since
(F pΩ2p, d+) = (Ω2p, d), such A2p+1 does not belong to d+(F

pΩ2p).
Because B′0 is a constant, the argument of case (1) implies that dim

F pH2p+1
+ (U) ≤ 1. We finish the proof by taking A2p+1 = Lp(−

∑
xn+i

dxi). q.e.d.

Proposition 3.3 (d−-Poincaré lemma). Let U be an open unit disk
in R2n with the standard symplectic form ω =

∑
dxi ∧ dxn+i. Then for

0 < p < n and 0 ≤ k ≤ n+ p− 1,

dimF pHk
−(U) = 0.

Proof. When 0 ≤ k ≤ 2p, it follows from (3.12) that dimF pHk
−(U) =

dimH2n−k
d (U) = 0. When 2p < k < n + p − 1, the ∗r-dual of the

standard Poincaré lemma implies that any d−-closed Ak ∈ F pΩk is
equal to d−A

′
k+1 for some A′k+1 ∈ Ωk+1. Let A′′k+1 = ΠpA′k+1. Then the

difference between Ak and d−A
′′
k+1 can be expressed as Ak − d−A

′′
k+1 =

LpB′k−2p for some B′k−2p ∈ P
k−2p.

Now we have d−(Ak − d−A
′′
k−1) = d−(L

pB′k−2p) = 0. By (2.16), this

implies ∂+B
′
k−2p = ∂−B

′
k−2p = 0, and equivalently dB′k−2p = 0. Since

k − 2p > 0, the primitive ddΛ-Poincaré lemma [19, Proposition 3.10]
says that there exists a B′′k−2p ∈ P

k−2p such that B′k−2p = ∂+∂−B
′′
k−2p.

Therefore, we have LpB′k−2p = d−(L
p∂+B

′′
k−2p) and Ak = d−(A

′′
k+1 −

Lp∂+B
′′
k−2p). q.e.d.
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Let us note that the above proof does not work for p = 0, which is the
primitive ∂−-Poincaré lemma [19, Proposition 3.14]. The argument fails
because we can not conclude that dB′k−2p = 0 when p = 0. Moreover,

when p = n, the elliptic complex (3.2) simply consists of two de Rham
complexes.

Corollary 3.4. Let U be an open unit disk in R2n with the standard
symplectic form ω =

∑
dxi ∧ dxn+i. For 0 ≤ p ≤ n, the index of the

elliptic complex (3.2) is zero.

4. Filtered cohomologies and Lefschetz maps

Let (M,ω) be a compact symplectic manifold of dimension 2n. Recall
that the strong Lefschetz property means that the map

Lk : Hn−k
d (M)→ Hn+k

d (M)

is an isomorphism for all k ∈ {0, 1, . . . , n}. It is known that the strong
Lefschetz property is equivalent to what we call the ddΛ-lemma [13,
9, 18]. In general, the strong Lefschetz property does not hold for a
non-Kähler symplectic manifold.

We would like to analyze the kernel and cokernel of an arbitrary
Lefschetz map, Lr. Certain aspects of Lefschetz maps have appeared
in the literature previously. In four dimensions, Baldridge and Li [1]
identified the symplectic invariant ker[L : H1

d → H3
d ] and called it the

degeneracy. Lefschetz maps in higher dimensions were also discussed for
instance in [8, 11].

The commutative diagram of short exact sequences of Lemma 2.3 and
Lemma 2.4 is suggestive of a long exact sequence involving Lefschetz
maps. However, the main challenge and novelty remains with the shifts
in the diagram. In order to maintain a continuous long exact sequence
and also take account of the shift, cohomologies involving 2nd-order
differential operators must be introduced. In this regard, these shifts
provide a natural explanation for why cohomologies like PH

ddΛ
and

PH
d+dΛ

involving ∂+∂− operators are natural for symplectic manifolds.

4.1. Long exact sequences. In the following proposition, we explain
how to treat the shift in the commutative diagrams of Lemma 2.3 and
Lemma 2.4.
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Proposition 4.1. Given the cochain complexes

...

δD
��

...

δE
��

...

δF
��

0 �� Dl−2 φ
��

δD
��

El−2 ψ
��

δE
��

F l−2 ��

δF
��

0

0 �� Dl−1 φ
��

δD
��

El−1 ψ
��

δE
��

F l−1 �� 0

0 �� Dl φ
��

δD
��

El ��

δE
��

0

0 �� C l+1 ρ
��

δC
��

Dl+1 φ
��

δD
��

Dl+1 ��

δE
��

0

0 �� C l+2 ρ
��

δC ��

Dl+2 φ
��

δD ��

El+2 ��

δE ��

0

...
...

...

such that

ρφ = 0, φ ψ = 0,

ρ δC = δD ρ, φ δD = δE φ, ψ δE = δF ψ,

there is a long exact sequence of cohomology

. . . �� H l−1(D)
φ∗

�� H l−1(E)
ψ∗

�� H l−1(F ) ����
���	

δ∗
E �� H l(D)

φ∗
�� H l(E) ����

���	
δ∗
D �� H l+1(C)

ρ∗
�� H l+1(D)

φ∗
�� H l+1(E) �� . . .

where δ∗D and δ∗E are induced by the derivative operators δD and δE,

respectively, and except for the two cohomologies H l−1(F ) and H l+1(C)
which are defined as follows:

H l−1(F ) =
ker(δDδ

∗
E) ∩ F l−1

im δF ∩ F l−1
,

H l+1(C) =
ker δC ∩C l+1

im(δ∗DδE) ∩C l+1
,

the other cohomologies are standardly defined, for instance,

H∗(D) =
ker δD
im δD

.
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Proof. We first define the operators:
(1) Definition of δ∗D. Let el ∈ H l(E). Choose a dl ∈ Dl such that

φ(dl) = el. Then there exists cl+1 ∈ C l+1 such that ρ(cl+1) = δDdl. We
therefore define

δ∗D[el] = [cl+1].

That δ∗D defines a homomorphism should be self-evident. Let us show,
though, that δ∗D is well-defined. That is, we want to show that if el and

e′l are cohomologous in H l(E), then the corresponding cl+1 and c′l+1 are

also cohomologous in H l+1(C). Here, we will see that the non-standard
definition of H l+1(C) becomes important.

Since el and e′l are cohomologous, we can write

el = e′l + δE el−1

for some el−1 ∈ El−1. Note in general that ψ(el−1) 
= 0. Now by surjec-

tivity, there exist dl, d
′
l, d̃l ∈ Dl such that φ(dl) = φ(d′l) + δE el−1 and

therefore,

φ(dl − d′l) = δE el−1 = φ d̃l.

Clearly, δD(dl − d′l) = δD d̃l. With δD dl = ρ cl+1 and δD d′l = ρ c′l+1, we
then have

ρ(cl+1 − c′l+1) = δDd̃l = δD(φ
−1δE ẽl−1)

= ρ(ρ−1δDφ
−1δE ẽl−1).

By the injectivity of ρ, this shows that cl+1 and c′l+1 are cohomologous.

(2) Definition of δ∗E . Let fl−1 ∈ H l−1(F ). Choose an el−1 ∈ El−1

such that ψ(el−1) = fl−1. Then there exists a dl ∈ Dl such that φ(dl) =
δE el−1. We therefore define

δ∗E [fl−1] = [dl].

It follows from standard arguments that δ∗E is a well-defined homomor-
phism.

(3) Definition of H l+1(C) and H l−1(F ). Let us show that both (a)
im(δ∗DδE)∩C

l+1 and (b) ker(δDδ
∗
E)∩F

l−1 are well-defined. To show this,

it is important that the map φ at degree l, φ : Dl → El, is bijective,
and thus φ−1 is well-defined. For (a), notice here that δ∗D = ρ−1δDφ

−1 :

El → C l+1 is well-defined only if el ∈ El is δE-closed. Hence, δ
∗
DδE is

well-defined. For (b), δ∗E = φ−1δEψ
−1 : F l−1 → Dl is only defined up to

a δD-exact term. Hence, δDδ
∗
E is well-defined.

Proving the exactness of the cohomology sequence follows the stan-
dard diagram-chasing arguments. Indeed, all standard arguments can
be applied to this case with the exception of the exactness at H l(E),
for which we will give a proof here.

Firstly, at H l(E), it is clear that im ⊂ ker since δ∗D φ∗ = 0. Thus,
we only need to show that ker ⊂ im. So consider the case when el ∈
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H l(E) maps to the trivial element, i.e., δ∗D el = ρ−1δDφ
−1δE el−1 =

[0] ∈ H l+1(C). In this case, there exist a dl ∈ Dl and a cl+1 ∈ C l+1

such that φ(dl) = el and ρ(cl+1) = δD dl. Then it is clear that δD(dl −
φ−1δE el−1) = 0, and hence, (dl − φ−1δE el−1) is an element of H l(D).
Moreover, we have

φ∗[dl − φ−1δE el−1] = [el − δE el−1] = [el].

This completes the proof of the proposition. q.e.d.

4.2. Resolution of Lefschetz maps. With the chain of short exact
sequences of Lemma 2.3 and now Proposition 4.1, we obtain the fol-
lowing long exact sequence relating filtered cohomologies and Lefschetz
maps.

Theorem 4.2. Let (M,ω) be a symplectic manifold of dimension 2n,
which needs not be compact. Then, the following sequence is exact for
any 1 ≤ r ≤ n:

0 �� H2r−1

d (M)
Π

r−1

�� F r−1H2r−1

+
(M) ����

���	
L−rd �� H0

d(M)
Lr

�� H2r
d (M)

Π
r−1

�� F r−1H2r
+ (M) ����

��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	
L−rd ������� Hn−r−2

d (M)
Lr

�� Hn+r−2

d (M)
Π

r−1

�� F r−1Hn+r−2

+
(M) ����

���	
L−rd �� Hn−r−1

d (M)
Lr

�� Hn+r−1

d (M)
Π

r−1

�� F r−1Hn+r−1

+
(M) ����

���	
L−rd �� Hn−r

d
(M)

Lr
�� Hn+r

d
(M)

Π
r−1

∗rdL−r

�� F r−1Hn+r−1

−

(M) ����
���	

∗r �� Hn−r+1

d (M)
Lr

�� Hn+r+1

d (M)
Π

r−1
∗rdL−r

�� F r−1Hn+r−2

−

(M) ����
���	

∗r �� Hn−r+2

d (M)
Lr

�� Hn+r+2

d (M)
Π

r−1
∗rdL−r

�� F r−1Hn+r−3

−

(M) ����
��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�	
∗r ������� H2n−2r

d
(M)

Lr
�� H2n

d (M)
Π

r−1
∗rdL−r

�� F r−1H2r−1

−

(M) ����
���	

∗r �� H2n−2r+1

d
(M) �� 0

In other words, the (r − 1)-filtered cohomologies give a resolution of
the Lefschetz map Lr.
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Proof. The theorem follows from the short exact sequences of Lemma
2.3 and Proposition 4.1 with the following identifications:

ρ = ∗r, φ = Lr, ψ = Πr−1,

and
δC = d−, δD = δE = d, δF = d+.

0 �� H2r−1

d
(M)

Π
r−1

�� F r−1H2r−1

+
(M) ����

���	
L−rd ���������������� H0

d(M)
Lr

�� H2r
d (M)

Π
r−1

�� F r−1H2r
+

(M) ����
��� � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

L−rd �������� Hn−r−2

d
(M)

Lr
�� Hn+r−2

d
(M)

Π
r−1

�� F r−1Hn+r−2

+
(M) ����

���	
L−rd �� Hn−r−1

d
(M)

Lr
�� Hn+r−1

d
(M)

Π
r−1

�� Lr−1PHn−r+1

ddΛ
(M) ����

���	
L−rd �� Hn−r

d
(M)

Lr
�� Hn+r

d
(M) ����

Π
r−1

∗rdL−r

���	
�� Lr−1PHn−r+1

d+dΛ
(M)

∗r �� Hn−r+1

d
(M)

Lr
�� Hn+r+1

d
(M) ����

Π
r−1

∗rdL−r

���	
�� F r−1Hn+r−2

−

(M)
∗r �� Hn−r+2

d
(M)

Lr
�� Hn+r+2

d
(M) ����

Π
r−1

∗rdL−r

��� � � � � � � � � � � � � � � � � � � � � � � � � ��	
����� F r−1H2r

−

(M)
∗r �� H2n−2r

d
(M)

Lr
�� H2n

d (M) ����
Π
r−1

∗rdL−r

���	
�� F r−1H2r−1

−

(M)
∗r �� H2n−2r+1

d
(M) �� 0

(4.1)

The long exact sequence is obtained noting that F r−1Ωn+r−1 =
Lr−1Pn−r+1 ∼= Pn−r+1 and also (3.9)–(3.10):

F r−1Hn+r−1
+ (M) = Lr−1PHn−r+1

ddΛ
(M),

F r−1Hn+r−1
− (M) = Lk−1PHn−r+1

d+dΛ
(M).

This completes the proof of the theorem. q.e.d.

We emphasize that the above theorem with its long exact sequence
follows directly from the chain of short exact sequences which are all
algebraic in nature. Therefore, the theorem certainly holds true for dif-
ferential forms of any type of support, e.g. compact or L2, and for both
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closed and open symplectic manifolds. Furthermore, as described in the
Introduction, Theorem 4.2 can be expressed very concisely in terms of
the following exact triangle:

F r−1H∗(M)

�����
��
��
��
��

H∗
d(M)

Lr
�� H∗

d(M)

�������������

(4.2)

Here, F r−1H∗(M) represents exactly the filtered cohomologies in (3.8)
associated with the filtered elliptic complex (3.2) with p = r − 1.

Now we have obtained the exact triangle (4.2) starting from the chain
of short exact sequences in Lemma 2.3. In fact, we have written down
another chain of short exact sequences consisting of purely filtered forms
in Lemma 2.4. Thus, we can also use Proposition 4.1 to derive another
long exact sequence involving only filtered cohomologies with Lefschetz
type actions. Instead of writing out explicitly the long exact sequence,
we will just write down the resulting exact triangle:

F r−1H∗(M)

�����
��
��
��
��

F lH∗(M)
h �� F l+rH∗(M)

		������������

(4.3)

where the map h can be read off from Lemma 2.4 and is either Lr or
the inclusion map ι. Notice that F lH(M) when l ≥ n consists roughly
of two copies of the de Rham cohomology Hd(M). Hence, the exact
triangle of (4.2) can be easily seen to be contained in (4.3) when l = n.

4.3. Properties of cohomologies. Let us consider some of the impli-
cations of Theorem 4.2 for the cohomologies. We note first some imme-
diate corollaries.

Corollary 4.3. Let (M,ω) be a symplectic manifold of dimension
2n. Then for k ≤ n,

PHk
ddΛ(M) ∼= ker(Ln−k+1 : Hk−1

d → H2n−k+1
d )

⊕ coker(Ln−k+1 : Hk−2
d → H2n−k

d ),

PHk
d+dΛ(M) ∼= ker(Ln−k+1 : Hk

d → H2n−k+2
d )

⊕ coker(Ln−k+1 : Hk−1
d → H2n−k+1

d ),

(4.4)



112 C.-J. TSAI, L.-S. TSENG & S.-T. YAU

and for 2p < k < n+ p,

F pHk
+(M) ∼= ker(Lp+1 : Hk−2p−1

d → Hk+1
d )

⊕ coker(Lp+1 : Hk−2p−2
d → Hk

d ),

F pHk
−(M) ∼= ker(Lp+1 : H2n−k

d → H2n−k+2p+2
d )

⊕ coker(Lp+1 : H2n−k−1
d → H2n+2p−k+1

d ).

(4.5)

In particular, when p = 0, we have

PHk
∂+

(M) ∼= ker(L : Hk−1
d → Hk+1

d )⊕ coker(L : Hk−2
d → Hk

d ),

PHk
∂
−

(M) ∼= ker(L : H2n−k
d → H2n−k+2

d )

⊕ coker(L : H2n−k−1
d → H2n−k+1

d ),

(4.6)

where 0 < k < n.

Note that for p = 0 and k = 1, we have

PH1
∂+

(M) ∼= H1
d(M)⊕ ker(L : H0

d → H2
d )

PH1
∂
−

(M) ∼= H2n−1
d (M)⊕ coker(L : H2n−2

d → H2n
d ).

(4.7)

In the closed case, the symplectic structure and more generally its pow-
ers, ωr, are non-trivial in H2r

d (M). Hence, the formulas above in (4.7)
simplify with the kernel and cokernel terms on the right vanishing. Such
simplification also holds more generally for F pH2p+1

± (M) as expressed
in the following corollary.

Corollary 4.4. On a closed symplectic manifold (M2n, ω),

F pH2p+1
+ (M) = H2p+1

d (M), F pH2p+1
− (M) = H2n−2p−1

d (M)

for any p ∈ {0, 1, . . . , n− 1}.

This corollary extends the general isomorphism relations between fil-
tered cohomologies, F pHk

±(M) for 0 ≤ k ≤ 2p, and de Rham cohomolo-
gies in (3.11)–(3.12). For the other filtered cohomologies, we write out
explicitly their properties in the case of dimensions four and six.

Corollary 4.5. Let (M,ω) be a 4-dimensional symplectic manifold.
Then

PH2
ddΛ(M) ∼= ker(L : H1

d → H3
d )⊕ coker(L : H0

d → H2
d ),

PH2
d+dΛ(M) ∼= ker(L : H2

d → H4
d )⊕ coker(L : H1

d → H3
d ).

(4.8)

Proof. The corollary follows from Theorem 4.2 for n = 2 and r = 1.
q.e.d.
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Corollary 4.6. Let (M,ω) be a 6-dimensional symplectic manifold.
Then

PH2
∂+

(M) ∼= ker(L : H1
d → H3

d)⊕ coker(L : H0
d → H2

d),

PH3
ddΛ(M) ∼= ker(L : H2

d → H4
d)⊕ coker(L : H1

d → H3
d),

PH3
d+dΛ(M) ∼= ker(L : H3

d → H5
d)⊕ coker(L : H2

d → H4
d),

PH2
∂
−

(M) ∼= ker(L : H4
d → H6

d)⊕ coker(L : H3
d → H5

d),

PH2
ddΛ(M) ∼= ker(L2 : H1

d → H5
d )⊕ coker(L2 : H0

d → H4
d),

PH2
d+dΛ(M) ∼= ker(L2 : H2

d → H6
d )⊕ coker(L2 : H1

d → H5
d).

(4.9)

Proof. The corollary follows from Theorem 4.2 for n = 3 and r = 1, 2.
q.e.d.

Let us describe further a few more relations between filtered coho-
mologies. In [18, 19], it was shown that on a closed symplectic manifold,
we have the following isomorphisms:

(4.10) PHk
ddΛ(M) ∼= PHk

d+dΛ(M), PHk
∂+

(M) ∼= PHk
∂
−

(M).

This can also be seen from the above relations (4.4) and (4.6) after
applying the following proposition:

Proposition 4.7. Let (M2n, ω) be a closed symplectic manifold. Then

ker(Lr : Hk
d → Hk+2r

d ) ∼= coker(Lr : H2n−k−2r
d → H2n−k

d ).(4.11)

Proof. This can be checked using the duality Hk
d (M) ∼= H2n−k

d (M)
for a closed manifold and focusing on the de Rham harmonic forms.
q.e.d.

This proposition together with (4.5) then implies the following:

Proposition 4.8. Let (M,ω) be a closed symplectic manifold. Then

F pHk
+(M) ∼= F pHk

−(M).(4.12)

Hence, we can now generalize the statement of Corollary 3.4 to the
case of a closed symplectic manifold.

Corollary 4.9. On a closed symplectic manifold, the index of the
filtered elliptic complex of (3.2) is zero.

4.4. Examples.

4.4.1. Cotangent bundle. The filtered cohomologies can be straight-
forwardly calculated for the cotangent bundleM = T ∗N with respect to
the canonical symplectic structure ω = −dα where α is the tautological
1-form.

Due to the fact that N is a deformation retract of M and that the
de Rham cohomology is homotopically invariant, we have

Hk
d (M) = Hk

d (N),
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and hence, all the de Rham cohomological data on the bundle M comes
from the base N . However, for filtered cohomologies, the Poincaré-
lemma results of Section 3.2 are suggestive that F pH(M) should contain
more information; for instance, they should involve the tautological one-
form, α. With a local coordinate chart {x1, . . . , xn, xn+1, . . . , x2n} and
the canonical symplectic form given by ω = −dα =

∑
dxi ∧ dxn+i , the

following results for the primitive cohomologies, F 0H(M) = PH(M),
were obtained previously by direct calculation in [17]:

Proposition 4.10. The primitive symplectic cohomologies of the
cotangent bundle M = T ∗N with respect to the canonical symplectic
form are

1) PH0
∂+

(M) = H0
d (N) and PHk

∂+
(M) =

{
Hk

d (N) , α ∧Hk−1
d (N)

}
for 1 ≤ k < n ;

2) PH0
ddΛ

(M) = 0, PHk
ddΛ

(M) =
{
α ∧Hk−1

d (N)
}

for 1 ≤ k < n

and PHn
ddΛ

(M) =
{
Hn

dR(N) , α ∧Hn−1
d (N)

}
;

3) PHk
d+dΛ

(M) = Hk
d (N) for 0 ≤ k ≤ n ;

4) PHk
∂
−

(M) = 0 for 0 ≤ k < n .

These results can now also be obtained using the long exact sequence
of Theorem 4.2. Moreover, we can also derive the following results for
all filtered cohomologies by applying Theorem 4.2.

Proposition 4.11. The filtered cohomologies of the cotangent bundle
M = T ∗N with respect to the canonical symplectic form are

1) F pHk
+(M) = Hk

d (N) for 0 ≤ k ≤ 2p ;

2) F pHk
+(M) =

{
Hk

d (N), ωp ∧ α ∧Hk−2p−1
d (N)

}
for 2p+1 ≤ k ≤ n ;

3) F pHk
+(M) =

{
ωp ∧ α ∧Hk−2p−1

d (N)
}

for p > 1 and n+ 1 ≤ k ≤

n+ p ;

4) F pHk
−(M) =

{
ωk−n ∧H2n−k

d (N)
}
, for n ≤ k ≤ n+ p ;

5) F pHk
−(M) = 0 , for 0 ≤ k < n .

From the above proposition, it is clear that the isomorphism relations
that hold true for closed manifolds such as F pH∗

+(M) ∼= F pH∗
−(M)

(4.12) or those in Corollary 4.4 do not hold for the cotangent bundle
M = T ∗N and are also generally not valid for open manifolds.

4.4.2. Four-dimensional symplectic manifold from fibered three-

manifold. In this subsection, we apply Theorem 4.2 to calculate the
primitive cohomologies for another class of examples: the symplectic 4-
manifold which is the product of a fibered 3-manifold with a circle. Due
to McMullen and Taubes [12], such a construction provides the first
example of a manifold with inequivalent symplectic forms.
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The input is a closed surface Σ with an orientation preserving self-
diffeomorphism τ . The map τ is called the monodromy. By Moser’s
trick, we may assume that there is a τ -invariant symplectic form ωΣ on
Σ. To be more precise, the monodromy τ might be replaced by another
isotopic one. Denote by Yτ the mapping torus

Yτ = Σ ×τ S
1 =

Σ× [0, 1]

(τ(x), 0) ∼ (x, 1)
.(4.13)

There is a natural map from Yτ to S1 induced by the projection Σ ×
[0, 1] → [0, 1]. Let φ be the coordinate for the base of the fibration
Yτ → S1. Then, the 4-manifold X = S1 × Yτ admits a symplectic form
defined by

ω = dt ∧ dφ+ ωΣ

where t is the coordinate for the S1-factor of X.
Noting Corollary 4.4, the interesting filtered/primitive cohomologies

to consider for a compact symplectic 4-manifold are PH2
ddΛ

(X) and

PH2
d+dΛ

(X). Their dimensions are given by Corollary 4.5. As we will
see momentarily, the Lefschetz map L on X is determined by the map
of wedging with dφ on Yτ . Let us start with the following useful linear
algebra lemma.

Lemma 4.12. Let (V 2n,Ω) be a symplectic vector space, and let
A : V → V be a linear symplectomorphism. Then, the Ω-orthogonal
complement of ker(A− 1) is im(A− 1), where 1 is the identity map on
V . As a consequence, ker(A − 1) ∩ im(A − 1) is exactly the kernel of
Ω|ker(A−1).

Proof. Suppose that u ∈ ker(A − 1), which means that Au = u. For
any v ∈ V , we compute

Ω(Av − v, u) = Ω(Av, u) − Ω(v, u)

= Ω(Av,Au) − Ω(v, u) = 0.

It follows that ker(A−1) and im(A−1) are Ω-orthogonal to each other.
By dimension counting, they must also be the Ω-orthogonal complement
of each other. q.e.d.

Now the de Rham cohomology of Yτ can be standardly derived.

Proposition 4.13. Let Yτ be the 3-manifold defined by (4.13), and
let dφ be the pull-back of the canonical 1-form from S1 to Yτ . Then,

1) H1
d(Yτ ) ∼= span{dφ} ⊕ ker

(
(τ∗ − 1) : H1

d(Σ)→ H1
d(Σ)

)
;

2) H2
d(Yτ ) ∼= span{ωΣ} ⊕ coker

(
(τ∗ − 1) : H1

d(Σ)→ H1
d(Σ)

)
;

3) with the above identifications, the kernel of wedging with dφ from
H1

d(Yτ ) to H2
d(Yτ ) is span{dφ} ⊕

(
ker(τ∗ − 1) ∩ im(τ∗ − 1)

)
.
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Proof. These assertions basically follow from the Wang exact se-
quence:

· · · �� H0
d (Σ)

�� H1
d (Yτ ) �� H1

d(Σ)
τ∗−1 �� H1

d(Σ)

�� H2
d(Yτ ) �� H2

d(Σ)
�� · · ·

(4.14)

which can be proved by the Mayer–Vietoris sequence. Explicit construc-
tion of the differential forms will be given in Section 6.

q.e.d.

By the Künneth formula, the de Rham cohomologies of the 4-manifold
X = S1 × Yτ are then given as follows:

H1
d(X) ∼= span{dt, dφ} ⊕ ker

(
(τ∗ − 1) : H1

d(Σ)→ H1
d(Σ)

)
,

H2
d(X) ∼=

(
dt ∧H1

d(Yτ )
)
⊕H2

d (Yτ ),

H3
d(X) ∼= span{dφ ∧ ωΣ, dt ∧ ωΣ} ⊕ coker

(
(τ∗ − 1) : H1

d(Σ)→ H1
d (Σ)

)
.

For a compact symplectic 4-manifold, the only interesting Lefschetz map
is the one from H1

d(X) to H3
d(X). In the current case, the map is deter-

mined by the third item of Proposition 4.13. With the help of Lemma
4.12, Theorem 4.2 leads to the following proposition.

Proposition 4.14. Suppose that Σ is a closed surface, τ is a mon-
odromy, and ωΣ is a τ -invariant area form. Then the 4-manifold X =
S1 × Yτ = S1 ×

(
Σ×τ S

1
)
with the symplectic form ω = dt ∧ dφ + ωΣ

has the following properties:

1) Consider τ∗ − 1 acting on H1
d(Σ). The dimension of ker(τ∗ − 1)/(

ker(τ∗ − 1) ∩ im(τ∗ − 1)
)
is even, and we denote it by 2p. Let

q + p with q ≥ p be the dimension of ker(τ∗ − 1) and q − p be the
dimension of ker(τ∗ − 1) ∩ im(τ∗ − 1).

2) dimH1
d(X) = dimH3

d(X) = q+p+2 and dimH2
d(X) = 2q+2p+2.

3) dimPH2
ddΛ

(X) = dimPH2
d+dΛ

(X) = 3q+p+1 and dimPH1
∂+

(X) =

dimPH1
∂
−

(X) = q + p+ 2.

We remark that the dimensions of the de Rham cohomologies only
depend on the dimension of the τ∗-invariant subspace of H1

d (Σ). The
dimensions of the primitive cohomologies involve the degeneracy of the
intersection pairing on the τ∗-invariant subspace of H1

d(Σ). We will re-
turn to this example in Section 6 to demonstrate aspects of the product
structures which we shall describe next.

5. A∞-algebra structure on filtered forms

The exact triangle (1.4) relates the filtered cohomologies closely with
the de Rham cohomologies through Lefschetz maps. It is thus tempting
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to think that some of the algebraic properties of the de Rham coho-
mology should also be present for filtered cohomologies. For instance,
an important property of the de Rham cohomology is its ring structure
with the product operation taken to be the exterior product on forms.
Underlying this ring structure is the standard differential graded algebra
on the space of differential forms, (Ω∗,∧, d), with the two operations be-
ing the exterior product and the exterior derivative. So could the filtered
cohomology groups also be rings? As we shall see in this section, the
answer turns out to be yes. However, there is not a differential graded
algebra for filtered forms. What we have instead is a generalization, that
of an A∞-algebra on the space of p-filtered forms.

Let us first recall the definition of an A∞-structure (see, for example,
[15, 10]). An A∞-algebra is a Z-graded vector space A = ⊕j∈ZA

j , with
graded maps,

mk : A⊗k → A, k = 1, 2, 3, . . .

of degree 2− k that satisfy the strong homotopy associative relation:

(5.1)
∑

r, t≥ 0 , s>0

(−1)r+s t mr+t+1

(
1⊗r ⊗ms ⊗ 1⊗t

)
= 0,

for each k = r + s + t . Here, when acting on elements, the standard
Koszul sign convention applies:

(ϕ1 ⊗ ϕ2)(v1 ⊗ v2) = (−1)|ϕ2||v1|ϕ1(v1)⊗ ϕ2(v2),(5.2)

where ϕi are graded maps, vi are homogeneous elements, and the abso-
lute value denotes their degree.

Explicitly, relation (5.1) implies the following for the first three mk

maps:

• m1 : A → A satisfies m1m1 = 0 . Since m1 increases the degree
of the grading by one and squares to zero, it is a differential with
(A,m1) a differential complex.

• m2 : A
⊗2 → A satisfies

(5.3) m1m2 = m2 (m1 ⊗ 1+ 1⊗m1) .

Here, m2 preserves the grading, so it is considered a multiplication
operator in A. With m1 as the differential, condition (5.3) is just
the requirement that the Leibniz product rule holds.

• m3 : A
⊗3 → A satisfies

(5.4)
m2 (1⊗m2 −m2 ⊗ 1) = m1m3 +m3 (m1 ⊗ 1⊗ 1+ 1⊗m1 ⊗+1⊗ 1⊗m1) .

The left-hand side measures the associativity of the multiplication
m2. Equation (5.4) effectively stipulates that m2 is associative up
to homotopy.

Let us note that a differential graded algebra is just a special case of
an A∞-algebra with the multiplication m2 being associative, and hence,
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F
0

p F
1

p . . . F
n+p−1

p F
n+p
p F

n+p+1

p F
n+p+2

p . . . F
2n+2p
p F

2n+2p+1

p

F pΩ0 F pΩ1 . . . F pΩn+p−1 F pΩn+p F pΩn+p F pΩn+p−1 . . . F pΩ1 F pΩ0

Table 3. The F j
p subspaces of a p-filtered graded alge-

bra Fp following the notation of (5.5).

mk = 0 for all k ≥ 3. Moreover, even though the multiplication m2 is in
general not associative on A, it is always associative on the associated
homology H∗A = H∗(A,m1). This follows directly from (5.4), since
acting on elements of H∗(A,m1) which are m1-closed, the right-hand
side is zero modulo the m1-exact term, m1m3.

We now construct an A∞-algebra on p-filtered forms. We will denote

it by Fp. The first step is to specify the F j
p subspaces. We shall use

the assignment suggested by the p-filtered elliptic complex (3.2) and its
associated filtered cohomology

F pH = {F pH0
+, F

pH1
+, . . . , F

pHn+p
+ , F pHn+p

− , F pHn+p−1
− , . . . , F pH0

−}

which consists of 2(n + p) + 2 distinct objects. Assigning each to be

the homology of a subspace, the nontrivial F j
p subspaces should have

degree in the range 0 ≤ j ≤ 2(n+ p)+ 1 . Specifically, we shall label the
subspaces in the following way. (See also Table 3.)

Aj ∈ F pΩj = F j
p for 0 ≤ j ≤ n+ p,

Āj ∈ F pΩj = F2n+2p+1−j
p for 0 ≤ j ≤ n+ p.

(5.5)

For clarity, since a p-filtered j-form may be in either F j
p or F2n+2p+1−j

p

subspace, we have distinguished the two spaces by adding a bar to de-

note those j-forms in F2n+2p+1−j
p , i.e. Āj ∈ F pΩj = F2n+2p+1−j

p . We
will follow this convention for the rest of this paper as well.

Further, mimicking closely the filtered elliptic complex, we choose the

differential of the A∞-algebra dj : F j
p → F j+1

p , i.e. the m1 map, to be
as follows:

dj =

⎧⎪⎨⎪⎩
d+ if 0 ≤ j < n+ p− 1,

−∂+∂− if j = n+ p,

−d− if n+ p+ 1 ≤ j ≤ 2n+ 2p + 1.

(5.6)

This differential clearly satisfies dj+1dj = 0 on the space {F pΩ∗, F pΩ∗} .
It only differs from the differential operators of the elliptic complex by
a negative sign in front of the “minus” operators ∂− and d−. We will
see that these negative signs are needed for satisfying the Leibniz rule
conditions in Section 5.2 below.

5.1. Product on filtered forms. The symplectic elliptic complex (3.2)
motivated the definition of the grading and the m1 map. To obtain the
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m2 multiplication map, we turn to the long exact sequence of cohomol-
ogy (4.1) and its underlying chain of short exact sequences (2.24). These
exact sequences are suggestive of how to define a product on F pΩ∗, for
they contain maps between F pΩ∗ and Ω∗ such as Πp , ∗r , L

−(p+1)d , and
Πp∗rdL

−(p+1). So to define a product on filtered forms, we can first map
F pΩ∗ to Ω∗, then apply the wedge product on Ω∗⊗Ω∗, and finally map
the resulting form back to F pΩ∗ with the desired grading. (See Figure
3 for more details.) In this way, we are led to defining the following
product operation on Fp = {F pΩ∗, F pΩ∗}:

Definition 5.1. The product × : F j
p ⊗ Fk

p → F j+k
p is defined as

follows:

Aj ×Ak = Πp(Aj ∧Ak)(5.7)

+ Πp∗r
[
−dL−(p+1)(Aj ∧Ak) + (L−(p+1)dAj) ∧Ak

+(−1)jAj ∧ (L−(p+1)dAk)
]

Aj × Āk = (−1)j∗r
(
Aj ∧ (∗rĀk)

)
(5.8)

Āj ×Ak = ∗r
(
(∗rĀj) ∧Ak

)
(5.9)

Āj × Āk = 0(5.10)

where we have used the notation of (5.5) denoting Aj ∈ F
j
p , and Āj ∈

F2n+2p+1−j
p for 0 ≤ j ≤ n+ p .

Let us note that the product of p-filtered forms F pΩ∗ in (5.7) sim-
plifies depending on the value of j + k. For if j + k > n + p, then
Πp(Aj ∧ Ak) = 0. On the other hand, the terms in the bracket of (5.7)
become trivial when j + k ≤ n+ p. Hence, we can write

Aj × Ak =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(5.11)

Πp(Aj ∧ Ak) if j + k ≤ n+ p

Πp∗r

[
− d L−(p+1)(Aj ∧ Ak)

+(L−(p+1)dAj) ∧ Ak + (−1)jAj ∧ (L−(p+1)dAk)
]

if j + k >n+ p(5.12)

Notice also that the expressions on the right-hand side of (5.8) and
(5.9) are automatically p-filtered. This can be seen simply by applying
the p-filtered condition (2.22) and using (2.8) and (∗r)

2 = 1 . Further-
more, the product Aj × Āk of (5.8) is identically zero unless j ≤ k .
(Similarly, for (5.9), a non-trivial product only occurs for k ≤ j .) This

property is natural since the product F j
p ×Fk

p = 0 if j+k > 2n+2p+1,
as subspaces with grading greater than 2n + 2p + 1 are defined to be
the empty set. This also explains why the product in (5.10) is trivial.
Lastly, the factor of (−1)j in (5.8) ensures that the product is graded
commutative. That is,

F j
p ×F

k
p = (−1)jkFk

p ×F
j
p .
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Column A B C D

Grading
...

d
��

...

d+

��
2 0 �� Ω2 Π1

��

d ��

F 1Ω2 ��

d+ ��

0

3 0 �� Ω3 Π1

��

d ��

F 1Ω3 ��

d+ ��

0

4 0 �� Ω0 L2

��

d ��

Ω4 Π1

��

d ��

F 1Ω4 ��

d+ ��

0

5 0 �� Ω1 L2

��

d ��

Ω5 Π1

��

d ��

F 1Ω5 �� 0

0 �� Ω2 L2

��

d ��

Ω6 ��

d ��

0

6 0 �� F 1Ω5
∗r ��

d
− ��

Ω3 L2

��

d ��

Ω7 ��

d ��

0

7 0 �� F 1Ω4
∗r ��

d
− ��

Ω4 L2

��

d ��

Ω8 ��

d
��

0

8 0 �� F 1Ω3
∗r ��

d
− ��

Ω5

d ��

�� 0

9 0 �� F 1Ω2
∗r ��

d
−
��

Ω6

d ��

�� 0

...
...

Figure 3. Consider as an example the above commu-
tative diagram of Lemma 2.3 in dimension 2n = 8 for
the degree two Lefschetz map which involves the p = 1
filtered forms {F 1Ω∗, F 1Ω∗}. The filtered product of Def-
inition 5.1 can be heuristically understood as first map-
ping the filtered forms in Columns A and D into Columns
B and C. Once in the middle two columns, the wedge
product can be applied and then the resulting form can
be projected back to the outer columns. For the case of
F pΩj × F pΩk where j + k > n + p, the product crosses
the middle row of the diagram which notably is without
filtered forms and therefore has no grading assignment.
Hence, in order to obtain the desired product grading of
j+ k > n+ p, the definition of the product must involve
a derivative map which shifts forms down by a row. The
three terms in (5.12) correspond to the three different
ways one can apply the derivative map to a product of
two filtered forms.
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Now we can check that our definition of the filtered product × is
consistent with the exact triangle of (4.2). At the level of cohomology,
the long exact sequence (4.1) locally has the following form (setting
r = p+ 1 in (4.1)):

. . . �� Hj−2p−2

d

Lp+1

�� Hj

d

f �� FpHj
g �� Hj−2p−1

d

Lp+1

�� Hj+1

d
�� . . .

(5.13)

where

( f , g ) =

{
( Πp, L−(p+1) d ) for j ≤ n+ p,

( Πp ∗r dL
−(p+1), ∗r ) for j > n+ p,

(5.14)

and we have denoted the filtered cohomology by

F pHj =

{
F pHj

+ for j ≤ n+ p,

F pH2n+2p+1−j
− for j > n+ p.

(5.15)

Heuristically, we can view the product of two filtered cohomologies as
tensoring two long exact sequences locally in the following way:

Hj−2p−2
d

Lp+1

��

Hk−2p−2
d

Lp+1

��

Hj+k−2p−2
d

Lp+1

��

Hj
d

f

��

⊗ Hk
d

f

��

∧ �� Hj+k
d

f

��

F pHj

g

��

⊗ F pHk

g

��

× �� F pHj+k

g

��

Hj−2p−1
d

Lp+1

��

⊗ Hk−2p−1
d

Lp+1

��

〈 , 〉p�� Hj+k−2p−1
d

Lp+1

��

Hj+1
d Hk+1

d Hj+k+1
d

(5.16)

In the above, the product at the top, Hj
d ⊗Hk

d → Hk+j
d , is clearly just

the standard wedge product. The product at the bottom, Hj−2p−1
d ⊗

Hk−2p−1
d → Hj+k−2p−1

d , however, does not have the correct degrees for it
to be a wedge product. Instead, for our purpose, it has the interpretation
as the standard Massey triple product with the middle element of the
triple product fixed to be ωp+1. To see this, since our concern is the
filtered product, we are mainly interested in the subset of elements of

Hj−2p−1
d and Hk−2p−1

d that are in the image of g from F pHj and F pHk,
respectively. By the exactness of the sequences, these elements are in
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the kernel of the Lefschetz map:

[ξj−2p−1] ∈ ker[Lp+1 : Hj−2p−1
d → Hj+1

d ]and

[ξk−2p−1] ∈ ker[Lp+1 : Hk−2p−1
d → Hk+1

d ].

Therefore, there must exist an ηj ∈ Ωj and an ηk ∈ Ωk such that

dηj = ωp+1 ∧ ξj−2p−1 and dηk = ωp+1 ∧ ξk−2p−1.

Given this, it is then natural to consider the Massey triple product
〈ξj−2p−1, ω

p+1, ξk−2p−1〉. With the symplectic structure element ωp+1

kept fixed, this Massey triple product then defines what we shall simply
call the Massey product:

〈ξj−2p−1, ξk−2p−1〉p = ξj−2p−1 ∧ ηk + (−1)jηj ∧ ξk−2p−1

∈
H∗

d (M)

I(ξj−2p−1, ξk−2p−1)
,(5.17)

where I(ξj−2p−1, ξk−2p−1) is the ideal generated by ξj−2p−1 and ξk−2p−1.
We note that this Massey product is only well-defined on the quotient
since different choices of ηj and ηk may differ by a d-closed form.

We can now ask whether the filtered product × is compatible with
the wedge and Massey products that surround it in (5.16). For the
filtered product we defined in Definition (5.1), the diagram in (5.16) in
fact commutes. The precise statement of this is given in the following
theorem whose proof is given in Appendix A.

Theorem 5.2. Let (M,ω) be a symplectic manifold. The product
operator × on F pH∗(M) is compatible with the topological products.
That is, it satisfies the following properties:

1) (Wedge product) For any two [ξj] ∈ Hj
d(M) and [ξk] ∈ Hk

d (M),
f(ξj∧ξk) = f(ξj)×f(ξk). The equality is considered on the filtered

cohomology class corresponding to f : Hj+k
d (M)→ F pHj ;

2) (Massey product) For any two [A] ∈ F pH∗(M) and [A′] ∈ F pH∗(M),
〈g(A), g(A′)〉p = g(A×A′). To be more precise, the equality is con-
sidered on H∗

d (M)/I(g(A), g(A′));

where the maps f and g are defined by (5.14) and the Massey product
is defined by (5.17).

5.2. Leibniz rules. Having defined m1 = dj and m2 = ×, we now
show that they satisfy the Leibniz rule (5.3):

dj+k(F
j
p ×F

k
p ) = djF

j
p ×F

k
p + (−1)jF j

p × dkF
k
p .

Note that the differential dj as given in (5.6) varies with the subspace

F j
p and can be either a first- or second-order differential operator. Thus

we will need to consider the Leibniz rule condition for different F j
p ×Fk

p

cases separately.
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Theorem 5.3 (Leibniz’s Rule). For Aj, Ak ∈ F pΩ∗ and Āk ∈ F pΩ∗,
the following holds:

(i) d+(Aj ×Ak) = djAj ×Ak + (−1)jAj × dkAk for j + k < n+ p(5.18)

(ii) − ∂+∂
−
(Aj × Ak) = djAj × Ak + (−1)jAj × dkAk for j + k = n+ p(5.19)

(iii) − d
−
(Aj × Ak) = djAj × Ak + (−1)jAj × dkAk for j + k > n+ p(5.20)

(iv) − d
−
(Aj × Āk) = djAj × Āk + (−1)jAj × (−d

−
)Āk for j ≤ k(5.21)

where dj = d+ if j < n+ p and dj = ∂+∂− if j = n+ p.

Before proving the theorem, let us set up some conventions that we
shall use frequently. We shall express the decomposition of Aj , Ak ∈
F pΩ∗ as

Aj = Bj + ω ∧Bj−2 + . . .+ ωp ∧Bj−2p,

Ak = Bk + ω ∧Bk−2 + . . .+ ωp ∧Bk−2p,

where the B’s are primitive forms and therefore,

L−(p+1)dAj = ∂−Bj−2p, L−(p+1)dAk = ∂−Bk−2p.(5.22)

Thus, for example, we would write

d+Aj ×Ak + (−1)jAj × d+Ak

(5.23)

= Πp ∗r
{
− dL−(p+1)(d+Aj ∧Ak) + L−(p+1)d(d+Aj) ∧Ak

+ (−1)jd+Aj ∧ L−(p+1)dAk + (−1)j
[
− dL−(p+1)(Aj ∧ d+Ak)

+ L−(p+1)dAj ∧ d+Ak + (−1)jAj ∧ L−(p+1)d(d+Ak)
]}

= Πp ∗r
{
− dL−(p+1)

(
d+Aj ∧Ak

+ (−1)jAj ∧ d+Ak

)
− ∂+∂−Bj−2p ∧Ak −Aj ∧ ∂+∂−Bk−2p

+ (−1)j
(
∂−Bj−2p ∧ d+Ak + d+Aj ∧ ∂−Bk−2p

)}
where the second equality uses the fact that d(d+Aj) =
d(dAj − ωp+1∂−Bj−2p) = −ω

p+1∂+∂−Bj−2p for Aj ∈ F pΩ∗.

Proof of Theorem 5.3.

Case (i): F j
p ×Fk

p , j + k < n+ p .

d+(Aj ×Ak) = d+Π
p(Aj ∧Ak) = (Πpd)(1 − ωp+1L−(p+1))(Aj ∧Ak)

= Πpd(Aj ∧Ak)−Πp
(
ωp+1 ∧ dL−(p+1)(Aj ∧Ak)

)
= Πp

[
(d+Aj + ωp+1 ∧ ∂−Bj−2p) ∧Ak + (−1)jAj

∧(d+Ak + ωp+1 ∧ ∂−Bk−2p)
]

= d+Aj ×Ak + (−1)jAj × d+Ak.
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Case (ii): F j
p ×Fk

p , j + k = n+ p .
Let us first note that for j + k = n+ p,

∂+∂−(Aj ×Ak) = ∂+∂−[Π
p(Aj ∧Ak)] = Πp ∗r dL

−(p+1)d(Aj ∧Ak).

(5.24)

To see this, we can write

Aj ∧Ak = ωp ∧Bn−p + ωp+1 ∧A′n−p−2

for some Bn−p ∈ P
n−p and A′n−p−2 ∈ Ωn−p−2. Then, we can calculate

both sides of (5.24):

∂+∂−(Aj ×Ak) = ∂+∂−(ω
p ∧Bn−p) = ωp ∧ ∂+∂−Bn−p,

Πp ∗r dL
−(p+1)d(Aj ∧Ak) = Πp ∗r d(∂−Bn−p + ω ∧ dA′n−p−2)

= Πp ∗r ∂+∂−Bn−p = ωp ∧ ∂+∂−Bn−p

which verifies (5.24). Furthermore, we have

Πp ∗r dL
−(p+1)d(Aj ∧Ak)

(5.25)

= Πp ∗r dL
−(p+1)

[
d+Aj ∧Ak + ωp+1∂−Bj−2p ∧Ak + (−1)j(Aj ∧ d+Ak

+Aj ∧ ωp+1∂−Bk−2p)
]

= Πp ∗r dL
−(p+1)

[
d+Aj ∧Ak + (−1)jAj ∧ d+Ak

]
+Πp ∗r

[
∂+∂−Bj−2p ∧Ak − (−1)j∂−Bj−2p ∧ dAk + (−1)jdAj ∧ ∂−Bk−2p

+Aj ∧ ∂+∂−Bk−2p

]
= Πp ∗r dL

−(p+1)
[
d+Aj ∧Ak + (−1)jAj ∧ d+Ak

]
+Πp ∗r

[
∂+∂−Bj−2p ∧Ak − (−1)j∂−Bj−2p ∧ d+Ak

+ (−1)jd+Aj ∧ ∂−Bk−2p +Aj ∧ ∂+∂−Bk−2p

]
where the last equality is obtained by canceling Πp ∗r [ω

p+1∂−Bj−2p ∧
∂−Bk−2p]. Note that (5.25) is precisely equal to the minus of (5.23).
With (5.24), this proves the Leibniz rule (5.19).

Case (iii): F j
p ×Fk

p , j, k ≤ n+ p and j + k > n+ p.
Note first,

−d−(Aj ×Ak) = −Π
p ∗r d∗r(Aj ×Ak).(5.26)

Now for j + k > n+ p, we can use (2.12) to write

∗r(Aj ×Ak) = Πp∗
[
− dL−(p+1)(Aj ∧ Ak) + L−(p+1)dAj ∧Ak

+ (−1)jAj ∧ L−(p+1)dAk

]
= −dL−(p+1)(Aj ∧ Ak) + L−(p+1)d

(
ωp+1L−(p+1)(Aj ∧ Ak)

)
+ ∂−Bj−2p ∧ Ak + (−1)jAj ∧ ∂−Bk−2p

− L−(p+1)
(
ωp+1∂−Bj−2p ∧ Ak + (−1)jAj ∧ ωp+1∂−Bk−2p

)
.
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Since j + k > n+ p, (2.11) says that ωp+1L−(p+1)(Aj ∧Ak) = Aj ∧Ak.
Furthermore, we can substitute ωp+1∂−Bj−2p∧Ak = (dAj−d+Aj)∧Ak

and Aj ∧ωp+1∂−Bk−2p = Aj ∧ (dAk − d+Ak). After some cancellations,
we find

∗r(Aj ×Ak) = −dL
−(p+1)(Aj ∧Ak)(5.27)

+ L−(p+1)
[
d+Aj ∧Ak + (−1)jAj ∧ d+Ak

]
+ ∂−Bj−2p ∧Ak + (−1)jAj ∧ ∂−Bk−2p.

By substituting (5.28) into (5.26), we obtain

−d−(Aj ×Ak) = −Π
p ∗r

{
dL−(p+1)

(
d+Aj ∧Ak + (−1)jAj ∧ d+Ak

)
+ d

(
∂−Bj−2p ∧Ak + (−1)jAj ∧ ∂−Bk−2p

)}
.

(5.28)

After applying the derivative on the second line, it gives precisely (5.23),
which proves the Leibniz rule (5.20).

Case (iv): F j
p ×F�

p , j ≤ n+ p and � > n+ p .

Let k = 2n+ 2p+ 1− � and Āk ∈ F pΩ∗. Then we have

−d−(Aj × Āk) = −(−1)
jd−∗r(Aj ∧ ∗rĀk) = −(−1)

j∗rd(Aj ∧ ∗rĀk)

= −(−1)j∗r
[
dAj ∧ ∗rĀk + (−1)jAj ∧ d ∗rĀk

]
= −(−1)j∗r

[
(d+Aj + ωp+1∂−Bj−2p) ∧ ∗rĀk

+ (−1)jAj ∧ ∗rd−Āk

]
= (−1)j+1∗r(d+Aj ∧ ∗rĀk)− ∗r(Aj ∧ ∗rd−Āk)

= d+Aj × Āk + (−1)jAj × (−d−Āk)

where (2.22) is invoked to set ωp+1∗rĀk = 0 for the fourth equality.
q.e.d.

5.3. Non-associativity of product. We now analyze the associativ-
ity of the product. In general, Ai× (Aj ×Ak) 
= (Ai×Aj)×Ak. Hence,
there is a non-trivial m3 map. We will show that the induced m3 map
satisfies (5.4).

Due to Definition 5.1, (5.7)–(5.10), there are three distinct cases when
considering the triple product Ai ×Aj ×Ak:

(i) i+ j + k ≤ n+ p ;
(ii) i+ j + k > n+ p and i, j, k ≤ n+ p ;
(iii) max{i, j, k} > n+ p .

We will show for both case (i) and case (iii) that the triple product
is associative. In contrast, case (ii) will be seen to be in general non-
associative.
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Consider first case (i). Here,

Ai × (Aj ×Ak) = Ai ×
[
(1− ωp+1L−(p+1))(Aj ∧Ak)

]
= Πp

(
Ai ∧Aj ∧Ak − ωp+1 ∧Ai ∧ L−(p+1)

(
Aj ∧Ak

))
= Πp

(
Ai ∧Aj ∧Ak

)
.

It is not hard to see that (Ai×Aj)×Ak is also equal to Πp(Ai∧Aj∧Ak).
Thus, the triple product for i+ j + k ≤ n+ p is associative.

For case (iii), we will show as an example the case where i > n + p
and j+k ≤ n+p. Let � = 2n+2p+1−i. The triple product corresponds
to

Ā� × (Aj ×Ak) = ∗r
(
∗rĀ� ∧Πp(Aj ∧Ak)

)
= ∗r

(
∗rĀ� ∧ (1− ωp+1L−(p+1))(Aj ∧Ak)

)
= ∗r

(
∗rĀ� ∧Aj ∧Ak

)
since by (2.22), ωp+1∗rĀ� = 0 . From the definition in (5.8), we have

(Ā� ×Aj)×Ak = ∗r(∗rĀ� ∧Aj)×Ak = ∗r
(
∗rĀ� ∧Aj ∧Ak

)
.

Therefore, the triple product is associative if i > n + p. In a similar
manner, the associativity for the case when j > n+ p or k > n+ p can
also easily be shown. We also note that if a pair or all three indices are
greater than n+ p, then the triple product is identically zero.

For case (ii), we have the following result.

Proposition 5.4. For Ai, Aj , Ak ∈ F pΩ∗ and i+ j + k ≥ n+ p,

Ai × (Aj × Ak) = −d−Π
p ∗r

[
Ai ∧ L−(p+1)(Aj ∧ Ak)

](5.29)

+ Πp ∗r

{
d+Ai ∧ L−(p+1)(Aj ∧ Ak) + (−1)iAi ∧ L−(p+1)(d+Aj ∧ Ak)

+ (−1)i+jAi ∧ L−(p+1)(Aj ∧ d+Ak)
}

+Πp ∗r

{
− dL−(p+1)(Ai ∧Aj ∧ Ak) + ∂

−
Bi−2p ∧Aj ∧Ak

+ (−1)iAi ∧ ∂
−
Bj−2p ∧Ak + (−1)i+jAi ∧ Aj ∧ ∂

−
Bk−2p

}
.

Proof. Assume first j + k ≤ n + p, then Aj × Ak = Πp(Aj × Ak).
Hence,

Ai × (Aj ×Ak) = Ai ×
[
(1− ωp+1L−(p+1))(Aj ∧ Ak)

]
(5.30)

= Πp ∗r

[
− dL−(p+1)

(
Ai ∧Aj ∧ Ak −Ai ∧ ωp+1L−(p+1)(Aj ∧ Ak)

)

+ (L−(p+1)dAi) ∧ (1− ωp+1L−(p+1))(Aj ∧Ak)

+ (−1)iAi ∧ L−(p+1)d
[
(1− ωp+1L−(p+1))Aj ∧ Ak

]]
.



COHOMOLOGY AND HODGE THEORY ON SYMPLECTIC MANIFOLDS 127

We will analyze the six terms in (5.30) separately. For the 2nd, 4th, and
6th term, we obtain

Πp
∗r

[
d(1− Πp∗)(Ai ∧ L−(p+1)(Aj ∧Ak)− ∂

−
Bi−2p ∧ ωp+1L−(p+1)(Aj ∧Ak)

− (−1)iAi ∧ dL−(p+1)(Aj ∧Ak)
]

= −d
−
Πp

∗r

[
Ai ∧ L−(p+1)(Aj ∧Ak)

]
+Πp

∗r

[
d+Ai ∧ L−(p+1)(Aj ∧ Ak)

]
.

(5.31)

For the first term of the first line, we have used (2.12). For the sec-

ond line, we have set L−(p+1)ωp+1 equal to one since it is acting on
dL−(p+1)(Aj ∧ Ak) ∈ ker(Πp∗) for j + k ≤ n + p. For the 3rd and 5th
term, we obtain

Πp
∗r

{
(L−(p+1)dAi) ∧ Aj ∧Ak + (−1)iAi ∧ L−(p+1)d(Aj ∧Ak)

}

= Πp
∗r

{
∂
−
Bi−2p ∧ Aj ∧Ak + (−1)iAi ∧ L−(p+1)

[
(d+Aj + ωp+1∂

−
Bj−2p) ∧Ak

]

+ (−1)i+jAj ∧ L−(p+1)
[
Ai ∧ (d+Ak + ωp+1∂

−
Bk−2p)

] }
.

(5.32)

Inserting (5.31) and (5.32) into (5.30) then results in (5.29).
The remainder case is when j + k > n+ p, and we have

Ai × (Aj × Ak) = (−1)iΠp
∗r

[
Ai ∧Πp∗

[
− dL−(p+1)(Aj ∧Ak)

+ L−(p+1)dAj ∧ Ak + (−1)jAj ∧ L−(p+1)dAk

]]

= (−1)iΠp
∗r

[
− Ai ∧ dL−(p+1)(Aj ∧Ak)

+ Ai ∧ L−(p+1)(d+Aj ∧ Ak + (−1)jAj ∧ d+Ak)(5.33)

+ Ai ∧ (∂
−
Bj−2p ∧Ak + (−1)jAj ∧ ∂

−
Bk−2p)

]
.

The second equality uses (2.12) and the fact that ωp+1L−(p+1)(Aj ∧
Ak) = Aj ∧ Ak for j + k > n + p. We can re-express the first term of
(5.33) as follows:

−Πp ∗r d
(
Ai ∧ L−(p+1)(Aj ∧Ak)

)
+Πp ∗r

(
dAi ∧ L−(p+1)(Aj ∧Ak)

)
= −d−Π

p ∗r (Ai ∧ L−(p+1)(Aj ∧Ak))

−Πp ∗r dL
−(p+1)(Ai ∧ ωp+1L−(p+1)(Aj ∧Ak))

+ Πp ∗r
[
(d+Ai ∧ L−(p+1)(Aj ∧Ak) + ∂−Bi−2p ∧Aj ∧Ak

](5.34)

where we have used (2.23) and ωp+1L−(p+1)(Aj ∧Ak) = Aj ∧Ak for the
second line. Inserting (5.34) into (5.33) then gives (5.29). q.e.d.

An analogous calculation gives the result for the other order of multi-
plication.
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Proposition 5.5. For Ai, Aj , Ak ∈ F pΩ∗ and i+ j + k ≥ n+ p,

(Ai ×Aj)×Ak = −d−Π
p ∗r

[
L−(p+1)(Ai ∧Aj) ∧Ak

]
+Πp ∗r

{
L−(p+1)(d+Ai ∧Aj) ∧Ak

+ (−1)iL−(p+1)(Ai ∧ d+Aj) ∧Ak

+ (−1)i+jL−(p+1)(Ai ∧Aj) ∧ d+Ak

}
(5.35)

+ Πp ∗r
{
− dL−(p+1)(Ai ∧Aj ∧Ak) + ∂−Bi−2p ∧Aj ∧Ak

+ (−1)iAi ∧ ∂−Bj−2p ∧Ak

+ (−1)i+jAi ∧Aj ∧ ∂−Bk−2p

}
.

With (5.29) and (5.35), we find that for Ai, Aj , Ak ∈ F pΩ∗ and i +
j + k ≥ n+ p,

Ai × (Aj ×Ak)− (Ai ×Aj)×Ak

= −d−
{
Πp ∗r

[
Ai ∧ L−(p+1)(Aj ∧ Ak)− L−(p+1)(Ai ∧ Aj) ∧Ak

]}
Πp ∗r

{
d+Ai ∧ L−(p+1)(Aj ∧ Ak)− L−(p+1)(d+Ai ∧ Aj) ∧ Ak

(5.36)

+ (−1)i
[
Ai ∧ L−(p+1)(d+Aj ∧Ak)− L−(p+1)(Ai ∧ d+Aj) ∧Ak

]
+ (−1)i+j

[
Ai ∧ L−(p+1)(Aj ∧ d+Ak)− L−(p+1)(Ai ∧ Aj) ∧ d+Ak

]}
.

This is precisely in the form (5.4) required for an A∞-algebra with

m3(Ai, Aj , Ak) = Πp ∗r
[
Ai ∧ L−(p+1)(Aj ∧Ak)− L−(p+1)(Ai ∧Aj) ∧Ak

]
.

(5.37)

Notice that if i+ j + k = n+ p+ 1, then the form inside the bracket of
(5.37) has degree i + j + k − 2(p + 1) = n − p − 1. But Πp ∗r acts on
Ωn−p−1 as the zero map. Hence we find that

m3(Ai, Aj , Ak) =

⎧⎪⎪⎨⎪⎪⎩
0 if i+ j + k < n+ p+ 2,

Πp ∗r
[
Ai ∧ L−(p+1)(Aj ∧ Ak)

−L−(p+1)(Ai ∧ Aj) ∧ Ak

]
if i+ j + k ≥ n+ p+ 2

(5.38)

for any Ai, Aj , Ak ∈ F pΩ∗.
Note that with a m3 map satisfying (5.4), we have shown that the

product is associative on F pH∗. Together with the differential satisfying
the Leibniz rule, we conclude that (F pH∗,+,×) is a ring.

5.4. Triviality of higher order maps. With m3 found to be non-
zero, we can use it to determine mk for k > 3. The condition (5.1) for
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k = 4 reads

m2(m3 ⊗ 1) +m2(1⊗m3)−m3(m2 ⊗ 1⊗2) +m3(1⊗m2 ⊗ 1)

−m3(1
⊗2 ⊗m2) = m1m4 −m4

(
m1 ⊗ 1⊗3

+1⊗m1 ⊗ 1⊗2 + 1⊗2 ⊗m1 ⊗ 1+ 1⊗3 ⊗m1

)
.

(5.39)

We will show that the left-hand side of (5.39) consisting of m2 and m3

is identically zero. Therefore, m4 can be taken to be zero.
From (5.38), we know that m3 is only non-trivial when all three ele-

ments it acts on have degree ≤ n+p and the sum of the degrees is greater
than n+p+1. Thus we only have to consider forms Ai, Aj , Ak, Al ∈ F pΩ∗

and we can write the left-hand side of (5.39) as

LHS = m3(Ai, Aj , Ak)×Al + (−1)iAi ×m3(Aj , Ak, Al)

−m3(Ai ×Aj, Ak, Al) +m3(Ai, Aj ×Ak, Al)−m3(Ai, Aj , Ak ×Al).
(5.40)

Let us consider each term on the right-hand side of (5.40).
For the first term, we find

m3(Ai, Aj , Ak)×Al = ∗r
{
∗rΠ

p ∗r
(
Ai ∧ L−(p+1)(Aj ∧Ak)

−L−(p+1)(Ai ∧Aj) ∧Ak

)
∧Al

}
= ∗r

(
Ai ∧ L−(p+1)(Aj ∧Ak) ∧Al

−L−(p+1)(Ai ∧Aj) ∧Ak ∧Al

)
− ∗r

[
L−(p+1)ωp+1

(
Ai ∧ L−(p+1)(Aj ∧Ak)

)
∧Al(5.41)

− L−(p+1)ωp+1
(
L−(p+1)(Ai ∧Aj) ∧Ak

)
∧Al

]
,

where we have used (2.12). Similarly, the second term gives

(−1)iAi ∧m3(Aj , Ak, Al) = ∗r
(
Ai ∧Aj ∧ L−(p+1)(Ak ∧Al)

−Ai ∧ L−(p+1)(Aj ∧Ak) ∧Al

)
+ ∗r

[
−Ai ∧ L−(p+1)ωp+1(Aj ∧ L−(p+1)(Ak ∧Al))(5.42)

+Ai ∧ L−(p+1)ωp+1L−(p+1)(Aj ∧Ak) ∧Al

]
.
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For the third term, the only non-zero contribution comes from i+ j ≤
n+ p. Therefore, we have

−m3(Ai ×Aj, Ak, Al) = −m3 (Π
p(Ai ∧Aj), Ak, Al)

= ∗r
[
−Ai ∧Aj ∧ L−(p+1)(Ak ∧Al)

+ L−(p+1)(Ai ∧Aj ∧Ak) ∧Al

+ ωp+1L−(p+1)(Ai ∧Aj) ∧ L−(p+1)(Ak ∧Al)(5.43)

− L−(p+1)
(
ωp+1L−(p+1)(Ai ∧Aj) ∧Ak

)
∧Al

]
.

By the same token, the fourth and fifth terms are

m3(Ai, Aj ×Ak, Al) = ∗r
[
Ai ∧ L−(p+1)(Aj ∧Ak ∧Al)

− L−(p+1)(Ai ∧Aj ∧Ak) ∧Al

−Ai ∧ L−(p+1)
(
ωp+1L−(p+1)(Aj ∧Ak) ∧Al

)
(5.44)

+ L−(p+1)
(
Ai ∧ ωp+1L−(p+1)(Aj ∧Ak)

)
∧Al

]
,

−m3(Ai, Aj , Ak ×Al) = ∗r
[
−Ai ∧ L−(p+1)(Aj ∧Ak ∧Al)

+ L−(p+1)(Ai ∧Aj) ∧Ak ∧Al

+Ai ∧ L−(p+1)
(
Aj ∧ ωp+1L−(p+1)(Ak ∧Al)

)
(5.45)

− L−(p+1)(Ai ∧Aj) ∧ ωp+1L−(p+1)(Ak ∧Al)
]
.

Summing all the terms of (5.41)–(5.45) then gives zero. This shows that
m4 can be chosen to be zero. It is also straightforward to see that the
higher maps mk for k > 4 can also be chosen to be zero. Thus, we have
shown that there is an A∞-algebra for the p-filtered forms.

6. Ring structure of the symplectic four-manifold from

fibered three-manifold

The purpose of this section is to present a pair of symplectic four-
manifolds with the following properties:

• their de Rham cohomology rings are isomorphic and their primi-
tive cohomologies have the same dimensions;

• their primitive cohomology has different ring structure; in partic-
ular, the products in the component PH2

ddΛ
⊗PH2

ddΛ
→ PH1

∂
−

are

different.

Both four-manifolds are topologically S1 × Yτ where Yτ = Σ ×τ S1

is a mapping torus of a closed surface Σ identified with a monodromy
τ . The construction of such symplectic four-manifolds were described in
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Section 4.4.2 and here we shall use the same notations and conventions
as there.

According to Proposition 4.14, the dimensions of the de Rham co-
homologies as well as the primitive cohomologies of such symplectic
four-manifolds are determined by two natural numbers. Consider the
action of τ∗ on H1

d (Σ):

1) the first number is the dimension of the τ∗-invariant subspace,
which we denote by q + p;

2) the intersection pairing is not always non-degenerate on the τ∗-
invariant subspace; the second number is the dimension of this
kernel, which is q − p.

But in order to calculate the product structure of the primitive coho-
mologies of the four-manifolds, we need to understand well their basis
elements. So to begin, we shall first give a systematic construction of
the basis elements of the de Rham cohomology of the three-manifold,
Yτ , which then will lead us to the basis elements of the primitive coho-
mologies of X = S1 × Yτ and their products.

6.1. Representatives of de Rham cohomologies of the fibered

three-manifold. By symplectic linear algebra, we may choose a basis
for the τ∗-invariant subspace of H1

d (Σ):{
[α1], [α2], . . . , [αp], [αp+1], . . . , [αq], [β1], [β2], . . . , [βp]

}
where p ≤ q and such that [αj ] · [βj ] = 1 = −[βj ] · [αj ] for 1 ≤ j ≤ p
and other pairings vanish. Here, the pairing [γ] · [γ′] is defined to be∫
Σ(γ ∧ γ′)/

∫
Σ ωΣ for any [γ], [γ′] ∈ H1

d(Σ). Again, by symplectic linear

algebra, we can extend this basis to a symplectic basis for H1
d(Σ):{

[α1], . . . , [αq], [β1], . . . , [βp]
}
∪
{
[αq+1], . . . , [αg],

[βp+1], . . . , [βq], [βq+1], . . . , [βg]
}

where g is the genus of the surface Σ. A linear algebra argument shows
that the image of τ∗ − 1 is always perpendicular to {[αk]}

p
k=1 and

{[βk]}
q
k=1 with respect to the above symplectic pairing. It follows that

the image of τ∗ − 1 is spanned by{
[αp+1], . . . , [αq], [αq+1], . . . , [αg], [βq+1], . . . , [βg ]

}
.

Thus, for example, there exists a [ζk] such that

τ∗[ζk]− [ζk] = [αk] for any p < k ≤ g.

Now the de Rham cohomology of Yτ is determined by the Wang exact
sequence in (4.14) which involves the map τ∗ − 1 on H1

d(Σ). Hence, we
can explicitly construct the basis elements of H1

d(Yτ ) and H2
d(Yτ ) in

terms of ker(τ∗ − 1) and coker(τ∗ − 1) as follows.
To start, consider the Jordan form of τ∗. When 1 ≤ k ≤ q, the

element [αk] must be the upper-left-most element of some Jordan block
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of eigenvalue 1. The size of the Jordan block is 1 if and only if 1 ≤
k ≤ p. That is to say, the interesting case is when k ∈ {p + 1, . . . , q}.
Let [γk,0], [γk,1], . . . , [γk,�k ] be the canonical basis for the block, where
γk,0 = αk, γk,1 = ζk and with �k + 1 being the size of the Jordan
block. The discussion in what immediately follows will be within a single
Jordan block, and so for notational simplicity, we shall suppress the first
subscript of γ and write γj for γk,j. With this understood, there exist

functions {gj}
�
j=0 on Σ such that

τ∗(γ0) = γ0 + dg0,

τ∗(γ1) = γ1 + γ0 + dg1,

...

τ∗(γ�) = γ� + γ�−1 + dg�.

We remark that the terminal element [γ�] does not belong to the image
of τ∗ − 1. From the canonical basis, we can construct the following
globally-defined differential forms on Yτ :

γ0 � γ̃0 = γ0 + d(χ g0),

γ1 � γ̃1 = γ1 + φγ0 + d(χ g1) + (φ− 1)d(χ g0),

γ2 � γ̃2 = γ2 + φγ1 +
φ2 − φ

2
γ0 + d(χ g2) + (φ− 1)d(χ g1)

+
φ2 − 3φ+ 2

2
d(χ g0),

...

where χ(φ) is an interpolating function defined on the interval φ ∈
(−0.1, 1.1) and is equal to 0 on (−0.1, 0.1) and 1 on (0.9, 1.1). Here, we
are covering the interval [0, 1] using three charts: (−0.1, 0.1), (0, 1), and
(0.9, 1.1). The above γ̃’s are invariant under the identification (x, φ)→
(τ(x), φ− 1), and thus are well-defined one-forms on Yτ . In general, for
j ∈ {0, . . . , �} where �+ 1 is the size of the Jordan block, we have

γj � γ̃j =

j∑
i=0

(
fi(φ)γj−i + fi(φ− 1) d(χ(φ) gj−i)

)
,

where

fi(φ) =
1

i!

i−1∏
m=0

(φ−m) =
1

i!
φ(φ− 1) . . . (φ− i+ 1)

and f0(φ) ≡ 1. The functions fi(φ) have the following properties:

• fi(φ) is a polynomial in φ of degree i;
• fi(0) = 0 for any i > 0; namely, fi(φ) does not have any constant
terms;

• fi(φ)− fi(φ− 1) = fi−1(φ− 1);
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• f ′i(φ) =
∑i

m=1(−1)
m+1fi−m(φ)/m.

Taking the exterior derivative of γ̃j , we find

dγ̃j = dφ ∧
( j∑
i=1

(−1)i+1

i
γ̃j−i

)
(6.1)

for any j ∈ {1, . . . , �}. Notice that the sum above starts from i = 1 and
hence there are no terms of the form dφ ∧ γ̃� on the right-hand side
of (6.1). Therefore, each αk for k ∈ {1, . . . , q} leads to an element in
H2

d(Yτ ) defined by

dφ ∧ α�
k where α�

k = γ̃k,�k ,

and �k + 1 is the size of the associated Jordan block.

Notice that for 1 ≤ k ≤ p, �k = 0, and therefore, α�
k = γ̃k,0 = α̃k. With

Proposition 4.13 and the Wang exact sequence of (4.14), this construc-
tion gives the following basis for the de Rham cohomologies of Yτ from
the canonical basis of τ∗:

H1
d(Yτ ) = Rq+p+1 = span{dφ, α̃1, . . . , α̃q, β̃1, . . . , β̃p},

H2
d(Yτ ) = Rq+p+1 = span{ωΣ, dφ ∧ α̃1, . . . , dφ ∧ α̃p, dφ ∧ β̃1, . . . , dφ ∧ β̃p,

dφ ∧ α�
p+1, . . . , dφ ∧ α�

q}.

6.2. Representatives of the primitive cohomologies of the sym-

plectic four-manifold. We now consider the four-manifold X = S1 ×
Yτ with the symplectic form ω = dt∧dφ+ωΣ. Its de Rham cohomologies
are

H1
d(X) = Rq+p+2 = span{dt,H1

d (Yτ )},

H2
d(X) = R2q+2p+2 = span{dt ∧H1

d (Yτ ),H
2
d (Yτ )},

H3
d(X) = Rq+p+2 = span{dφ ∧ ωΣ, dt ∧H2

d (Yτ )}.

Clearly, the Euler characteristic of X is zero. It is also straightforward
to check that the signature of X is also zero.

We will use the exact sequence of Theorem 4.2 to construct a basis
for the primitive cohomologies PH2

ddΛ
(X) and PH2

d+dΛ
(X). As noted in

Proposition 4.14, they are both isomorphic to R3q+p+1.
By Corollary 4.5, PH2

ddΛ
(X) has a component isomorphic to the

coker(L : H0
d (X) → H2

d (X)), and PH2
d+dΛ

(X) has a component iso-

morphic to the ker(L : H2
d(X) → H4

d (X)). It is not hard to see that
both these components are isomorphic to the following basis elements
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in H2
d(X):

dt ∧ (dφ− ωΣ), dt ∧ α̃1, . . . , dt ∧ α̃q, dt ∧ β̃1, . . . , dt ∧ β̃p,

dφ ∧ α̃1, . . . , dφ ∧ α̃p, dφ ∧ β̃1, . . . , dφ ∧ β̃p,

dφ ∧ α�
p+1, . . . , dφ ∧ α�

q.

The elements corresponding to dt ∧ H1
d(YΣ) may not be primitive in

general and so do need to be modified. For instance, suppose that τ∗α =
α+dg. Then, dt∧(α+d(χ g)) = dt∧(α+χdg+χ′g dφ) is not necessarily
primitive. Note that g is unique up to a constant. Thus, we may assume
that ∫

Σ
g ωΣ = 0, and thus g ωΣ = dμ,(6.2)

for some 1-form μ on Σ. The standard computation on Lefschetz de-
composition then shows that

dt ∧ (α+ d(χ g)) − d(χ′μ) = dt ∧ (α+ χdg + χ′gdφ)− χ′gωΣ − χ′′dφ ∧ μ

is a primitive 2-form, and is cohomologous to dt ∧ (α+ d(χ g)).
Now the other component in Corollary 4.5 for PH2

ddΛ
(X) is ker(L :

H1
d(X) → H3

d (X)). This kernel is spanned by {α̃p+1, . . . , α̃q}. The cor-
responding elements of PH2

ddΛ
are those that when acted upon by ∂−

give an element in the kernel. To explicitly construct them, we note that
for any k ∈ {p + 1, . . . , q},

ω ∧ α̃k = dt ∧ dφ ∧ γ̃k,0 + χ′gk,0dφ ∧ ωΣ

= −d
(
dt ∧ γ̃k,1 + χ′dφ ∧ μk,0

)
(6.3)

= −d
(
dt ∧ γ̃k,1 + χ′dφ ∧ μk,0 − d(χ′μk,1 + χ′(φ− 1)μk,0)

)
where μk,0 and μk,1 are defined by (6.2). The expression inside the exte-
rior derivative in line 2 above does not generally represent a primitive 2-
form. Therefore, we added the exterior derivative of χ′μk,1+χ′(φ−1)μk,0

in line 3 to ensure primitivity. We thus obtain the following elements in
PH2

ddΛ
for k ∈ {p+ 1, . . . , q}:

dt ∧ γ̃k,1 + χ′dφ ∧ μk,0 − d(χ′μk,1 + χ′(φ− 1)μk,0).

The computation (6.3) shows that the ∂− action on the above expression
is equal to γ̃k,0 = α̃k.

For PH2
d+dΛ

(X), the other component in Corollary 4.5 is coker(L :

H1
d(X)→ H3

d(X)). This is spanned by {(dt∧dφ+ωΣ)∧α
�
k}

q
k=p+1. These

basis elements are cohomologous to dt∧dφ∧α�
k provided that all gi has

zero integration against ωΣ. The corresponding elements in PH2
d+dΛ

(X)
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are ∂+α
�
k which by (6.1) are explicitly given by

dφ ∧
( �k∑
j=1

(−1)j+1

j
γ̃k,�k−j

)
,

for k ∈ {p + 1, . . . , q}.

6.3. Two examples and their product structures. We shall present
below two explicit constructions. The two four-manifolds will have the
same de Rham cohomology ring, as well as identical primitive coho-
mologies. However, their primitive product structures will be shown to
be different. In particular, the image of the following pairing has differ-
ent dimensions in these two constructions:

PH2

ddΛ
(X)⊗ PH2

ddΛ
(X) → PH1

∂
−

(X)

(B2, B
′

2) �→ ∗r
(
−dL−1(B2 ∧B′2) + ∂

−
B2 ∧B′2 +B2 ∧ ∂

−
B′2

)
.

(6.4)

This is a symmetric bilinear operator. Note that the first term
−∗r dL

−1(B2∧B
′
2) = −dL

−2(B2∧B
′
2) is not only ∂−-closed but also ∂+-

exact. We remark that on a compact, symplectic four-manifold, ∂+B0

is always ∂−-exact for any function B0. (See Proposition 3.16 of [19]).
Hence, the first term on the right-hand side of (6.4) does not have any
contribution here.

6.3.1. Kodaira–Thurston nilmanifold. The first example is the
Kodaira–Thurston nilmanifold, which we denote by X1. The primitive
cohomologies are computed in [18]. It is constructed from a torus with a
Dehn twist. To be more precise, let T 2 = R2/Z2, and let (a, b) be the co-
ordinate for R2. The monodromy map τ is induced by (a, b) �→ (a, a+b).
It follows that H1

d(T
2) is spanned by da and db, and τ∗(db) = da + db,

τ∗(da) = da. We take the area form on T 2 to be da ∧ db, and take the
symplectic form on X = S1 × Yτ to be ω = dt ∧ dφ+ da ∧ db.

The basis for the primitive cohomologies can be constructed from
the recipe explained in the previous subsection. Note that γ̃0 = da and
γ̃1 = db+ φda are well-defined on Yτ . With this understood, we have

PH2
ddΛ(X1) = {dt ∧ dφ− da ∧ db, dt ∧ γ̃0, dφ ∧ γ̃1, dt ∧ γ̃1},

PH1
∂
−

(X1) = {dt, dφ, γ̃1}.

The only generator of PH2
ddΛ

(X1) which is not ∂−-closed is dt∧ γ̃1, and
∂−(dt ∧ γ̃1) = −γ̃0. It follows that

(dφ ∧ γ̃1)× (dt ∧ γ̃1) = dφ and (dt ∧ γ̃1)× (dt ∧ γ̃1) = 2dt
(6.5)

are the only non-trivial pairings between the generators of PH2
ddΛ

(X1).

Remark 6.1. This is the correspondence between the convention
here and that of [18]:

e1 = dt, e2 = dφ, e3 = γ̃0, e4 = γ̃1.
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6.3.2. An example involving a genus two surface. Let Σ be a
genus two surface. Fix a symplectic basis for its H1

d (Σ): {α1, α2, β1, β2}.
Moreover, we may assume that the basis is an integral basis for the
singular cohomology of Σ. Let ωΣ be an area form of Σ. Normalize it by

[ωΣ] = [α1 ∧ β1] = [α2 ∧ β2].

Let τ be a monodromy of Σ whose actions on H1
d(Σ) are

τ∗ =

⎛⎜⎜⎝
1 n � 1
0 1 1 0
0 0 1 0
0 m m+ n 1

⎞⎟⎟⎠
with respect to {a1, b1, a2, b2}, and �,m, n are integers with m+ n 
= 0.
A direct computation shows that τ∗ preserves the intersection pairing.
It then follows from the theory of mapping class groups (see for example
[7]) that τ∗ does arise from a monodromy. Note that

S−1τ∗S = J,

where

S =

⎛⎜⎜⎝
1 0 0 1
0 0 1

m+n
−1

m+n

0 0 0 1
m+n

0 1 −n
m+n

n−�
m+n

⎞⎟⎟⎠ and J =

⎛⎜⎜⎝
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

⎞⎟⎟⎠ .

Hence, the basis for the Jordan form is as follows:

γ0 = α1, γ1 = β2,

γ2 =
1

m+ n
α2 +

−n

m+ n
β2, γ3 =

1

m+ n
β1 −

1

m+ n
α2 +

n− �

m+ n
β2.

For concreteness, we will set m = 1 and n = � = 0. The canonical basis
then becomes

γ0 = α1, γ1 = β2, γ2 = α2, γ3 = β1 − a2.

They give the following well-defined differential forms on Yτ :

γ̃0 = α1 + d(χg0),

γ̃1 = β2 + φα1 + d(χg1) + (φ− 1)d(χg0),

γ̃2 = α2 + φβ2 +
φ2

− φ

2
α1 + d(χ g2) + (φ− 1)d(χ g1) +

φ2
− 3φ+ 2

2
d(χg0),

γ̃3 = (β1 − α2) + φα2 +
φ2

− φ

2
β2 +

φ3
− 3φ2 + 2φ

6
α1

+ d(χ g3) + (φ− 1)d(χ g2) +
φ2

− 3φ+ 2

2
d(χg1) +

φ3
− 6φ2 + 11φ − 6

6
d(χg0).
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We shall assume that gi ωΣ = dμi for i ∈ {0, 1, 2, 3}. According to the
discussion in the previous subsection,

ω = dt ∧ dφ+ ωΣ,

PH2
ddΛ(X2) = {dt ∧ dφ− ωΣ, dt ∧ γ̃0, dφ ∧ γ̃3,

dt ∧ γ̃1 + χ′dφ ∧ μ0 − d(χ′μ1 + χ′(φ− 1)μ0)},

PH1
∂
−

(X2) = {dt, dφ, γ̃3}.

Since PH1
∂
−

(X2) ∼= H3
d(X2), its element can be captured by integrating

againstH1
d(X2) = {dφ, dt, γ̃0}. There is only one generator of PH2

ddΛ
(X2)

that is not d-closed:

∂−
(
dt ∧ γ̃1 + χ′dφ ∧ μ0 − d(χ′μ1 + χ′(φ− 1)μ0)

)
= −γ̃0.

We now consider the pairings between the generators of PH2
ddΛ

(X2).
If one of them is d-closed, the only non-trivial pairing is

(dφ ∧ γ̃3)×
(
dt ∧ γ̃1 + χ′dφ ∧ μ0 − d(χ′μ1 + χ′(φ− 1)μ0)

)
∼= dφ ∧ γ̃0 ∧ γ̃3.

The latter expression has non-zero integration against dt. That is to say,
the element in PH1

∂
−

(X2) is proportional to dφ.

It remains to examine the square of dt ∧ γ̃1 + χ′dφ ∧ μ0 − d(χ′μ1 +
χ′(φ− 1)μ0). As an element in H3

d (X2), it is

−2
(
dt ∧ γ̃1 + χ′dφ ∧ μ0 − d(χ′μ1 + χ′(φ− 1)μ0)

)
∧ γ̃0.

The expression has zero integration against γ̃0. We compute its integra-
tion against dφ:

2

∫
X2

dφ ∧ dt ∧ γ̃0 ∧ γ̃1,

and it is not hard to see that
∫
Σφ

γ̃0 ∧ γ̃1 = 0 on each fiber Σφ of

the fibration Yτ → S1. This implies the square of dt ∧ γ̃1 + χ′dφ ∧
μ0 − d(χ′μ1 + χ′(φ − 1)μ0) can not be proportional to dt, though it
can be proportional to dφ. We therefore can conclude that the image
of PH2

ddΛ
(X2) ⊗ PH2

ddΛ
(X2) → PH1

∂
−

(X2) is spanned only by dφ. We

have thus shown that the images of PH2
ddΛ

⊗ PH2
ddΛ

→ PH1
∂
−

of the

above two examples are of different dimensions.

Appendix A. Compatibility of filtered product with

topological products

We here provide the proof of Theorem 5.2 demonstrating the com-
patibility of the filtered product × as defined in Definition 5.1 with the
wedge and Massey product. We begin first with a lemma which will be
useful in the proof.
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Lemma A.1. For any Ak ∈ Ωk,

∗rdL
−(p+1)Ak − ∗rL

−(p+1)dAk = Πp∗rdL
−(p+1)Ak − ∗rL

−(p+1)d(ΠpAk).

(A.1)

Note that the second term of the right-hand side vanishes when k > n+p,
and the first term vanishes when k ≤ n+ p.

Proof. Case (i): when k ≤ n+ p. We invoke (2.11) to write Ak as

Ak = ΠpAk + ωp+1 ∧ (L−(p+1)Ak).

After taking L−(p+1) ◦ d, it becomes

L−(p+1)dAk = L−(p+1)d(ΠpAk) + L−(p+1)
[
ωp+1 ∧ d(L−(p+1)Ak)

]
.

Since k ≤ n + p, the last term is equal to d(L−(p+1)Ak). This finishes
the proof for this case.

Case (ii): when k > n+ p. We write Ak as

Ak = ωk−n ∧B2n−k + ωk−n+1 ∧A′2n−k−2

where B2n−k ∈ P
n−k and A′2n−k−2 ∈ Ω2n−k−2. A straightforward com-

putation shows that

dL−(p+1)Ak = ωk−n−p−1 ∧ (∂+B2n−k) + ωk−n−p ∧ (∂−B2n−k

+ dA′2n−k−2) in Ωk−2p−1,

⇒ ∗rdL
−(p+1)Ak = ωp ∧ (∂+B2n−k) + ωp+1 ∧ (∂−B2n−k + dA′2n−k−2)

in Ω2n−k+2p+1.

Hence, ωp∧ (∂+B2n−k) is Π
p∗rdL

−(p+1)Ak. Meanwhile, it is not hard to

see that ωk−n−p ∧ (∂−B2n−k + dA′2n−k−2) is L−(p+1)dAk. This finishes
the proof of the lemma. q.e.d.

We now give the proof of Theorem 5.2. We shall consider the four
different cases separately.

(1) F pHj
+ × F pHk

+ → F pHj+k
+ , j + k ≤ n+ p

Lemma A.2. For j ≤ n + p, k ≤ n + p and j + k ≤ n + p, the

product F pHj
+×F pHk

+ → F pHj+k
+ induced by (5.11) is compatible with

the topological products.

Proof. (Wedge product) Given [ξj] ∈ Hj
d and [ξk] ∈ Hk

d , it is not hard
to see that

Πp(ξj ∧ ξk) = Πp
(
(Πpξj) ∧ (Πpξk)

)
= (Πpξj)× (Πpξk).
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(Massey product) Consider two elements [Aj ] ∈ F pHj
+ and [Ak] ∈

F pHk
+. Since Aj and Ak are d+-closed, g(Aj) = L−(p+1)dAj and g(Ak) =

L−(p+1)dAk. Moreover,

dAj = ωp+1 ∧ g(Aj) and dAk = ωp+1 ∧ g(Ak).(A.2)

With (A.2), the Massey product (5.17) is

〈g(Aj), g(Ak)〉p = (L−(p+1)dAj) ∧Ak + (−1)jAj ∧ (L−(p+1)dAk).

(A.3)

We now calculate g(Aj ×Ak). According to Theorem 5.3, Aj ×Ak is

d+-closed. It follows that g(Aj ×Ak) = L−(p+1)d(Aj ×Ak). With (A.2),

d(Aj ×Ak) = d(Aj ∧Ak − ωp+1 ∧ L−(p+1)(Aj ×Ak))

= ωp+1 ∧
(
(L−(p+1)dAj) ∧Ak + (−1)jAj ∧ (L−(p+1)dAk)

+ dL−(p+1)(Aj ∧Ak)
)
.

Since j + k ≤ n+ p, Lp+1 is injective on Ωj+k−2p−1. Thus,

g(Aj ×Ak) = 〈g(Aj), g(Ak)〉p + d(L−(p+1)(Aj ∧Ak)).

This completes the proof of the lemma. q.e.d.

(2) F pHj
+ × F pHk

+ → F pH2n+2p+1−j−k
− , j + k > n+ p

Lemma A.3. For j ≤ n+p, k ≤ n+p and j+k > n+p, the product

F pHj
+×F pHk

+ → F pH2n+2p+1−j−k
− induced by (5.12) is compatible with

the topological products.

Proof. (Wedge product) Given [ξj] ∈ Hj
d and [ξk] ∈ Hk

d , let Aj =

Πpξj, ηj−2p−2 = L−(p+1)ξj, Ak = Πpξk and ηk−2p−2 = L−(p+1)ξk.
Namely,

ξj = Aj + ωp+1 ∧ ηj−2p−2 and ξk = Ak + ωp+1 ∧ ηk−2p−2.

It follows from dξj = 0 and dξk = 0 that

dAj = −ω
p+1 ∧ dηj−2p−2 and dAk = −ωp+1 ∧ dηk−2p−2.

Since j ≤ n+p, L−(p+1)dAj = −dηj−2p−2 and L−(p+1)dAk = −dηk−2p−2.
According to (5.12), f(ξj)× f(ξk) is equal to

Aj ×Ak

= Πp∗r
[
− dL−(p+1)(Aj ∧Ak)− (dηj−2p−2) ∧Ak − (−1)jAj ∧ (dηk−2p−2)

]
.

(A.4)

The next task is to compute f(ξj ∧ ξk) = −∗rdL
−(p+1)(ξj ∧ ξk). Since

j + k > n+ p, it is also equal to −Πp∗rdL
−(p+1)(ξj ∧ ξk). We write

ξj ∧ ξk = Aj ∧Ak + ωp+1 ∧ ζj+k−2p−2
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where ζj+k−2p−2 = Aj ∧ηk−2p−2+ηj−2p−2∧Ak+ωp∧ηj−2p−2∧ηk−2p−2.
Note that

dζj+k−2p−2 = (dηj−2p−2) ∧Ak + (−1)jAj ∧ (dηk−2p−2).

By applying Πp on (A.1) for ξj ∧ ξk, we find that

f(ξj ∧ ξk) = Πp∗r
[
L−(p+1)d(ξj ∧ ξk)− dL−(p+1)(Aj ∧Ak)

− d
(
L−(p+1)(ωp+1 ∧ ζj+k−2p−2)

)]
.

The first term on the right-hand side is zero. The third term can be
calculated with the help of (2.23):

−Πp∗r
[
d
(
L−(p+1)(ωp+1 ∧ ζj+k−2p−2)

)]
= −Πp∗r(dζj+k−2p−2) + d−(Π

p ∗r ζj+k−2p−2)

= −Πp∗r
[
(dηj−2p−2) ∧ Ak + (−1)jAj ∧ (dηk−2p−2)

]
+ d−(Π

p ∗r ζj+k−2p−2).

To sum up, f(ξj ∧ ξk) is equal to

−Πp∗r
[
(dηj−2p−2) ∧Ak + (−1)jAj ∧ (dηk−2p−2)− dL−(p+1)(Aj ∧Ak)

]
+ d−(Π

p ∗r ζj+k−2p−2)

(A.5)

It follows from (A.5) and (A.4) that (5.12) is compatible with the wedge
product.

(Massey product) Given [Aj ] ∈ F pHj
+ and [Ak] ∈ F pHk

+, 〈g(Aj), g(Ak)〉p
is completely the same as that in the proof of Lemma A.2, and the
Massey product is given by (A.3).

We now calculate g(Aj ×Ak). According to (5.12) and (5.14),

g(Aj ×Ak) = ∗rΠ
p∗r

[
− dL−(p+1)(Aj ∧Ak)

+ (L−(p+1)dAj) ∧Ak + (−1)jAj ∧ (L−(p+1)dAk)
]
.

(A.6)

The first term of the right-hand side can be computed with the help of
(A.1) for Aj ∧Ak:

− ∗rΠ
p∗rdL

−(p+1)(Aj ∧Ak)

=L−(p+1)d(Aj ∧Ak)− dL−(p+1)(Ak ∧Ak)

=L−(p+1)Lp+1
[
(L−(p+1)dAj) ∧Ak + (−1)kAj ∧ (L−(p+1)dAk)

]
− dL−(p+1)(Ak ∧Ak)

where the last inequality uses (A.2). By plugging it into (A.6) and ap-
plying (2.12), we have

g(Aj ×Ak) = (L−(p+1)dAj) ∧Ak + (−1)jAj ∧ (L−(p+1)dAk)

− dL−(p+1)(Ak ∧Ak).
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This together with (A.3) shows that (5.12) is compatible with the Massey
product. q.e.d.

(3) F pHj
+ × F pHk

− → F pHk−j
− , j ≤ k

Lemma A.4. For j ≤ k ≤ n + p, the product F pHj
+ × F pHk

− →

F pHk−j
− induced by (5.8) is compatible with the topological products.

Proof. (Wedge product) Suppose that [ξj] ∈ Hj
d and [ξ�] ∈ H�

d where
� = 2n + 2p + 1 − k. Since k ≤ n + p, � > n + p, ξ� = ωp+1 ∧ η2n−k−1
for some η2n−k−1 ∈ Ω2n−k−1. Let Aj = Πpξj and ηj−2p−2 = L−(p+1)ξj .
Namely,

ξj = Aj + ωp+1 ∧ ηj−2p−2 and ξ� = ωp+1 ∧ η2n−k−1.

Since dξk = 0 and dξj = 0,

dAj = −ω
p+1 ∧ dηj−2p−2 and ωp+1 ∧ dη2n−k−1 = 0.

According to (5.14), f(ξj) = Aj and f(ξ�) = −∗rdη2n−k−1. By (5.8),

f(ξj)× f(ξ�) = −(−1)
j∗r(Aj ∧ dη2n−k−1).(A.7)

We now compute f(ξj ∧ ξ�) = −∗rdL
−(p+1)(ξj ∧ ξ�). Due to (A.1),

−∗rdL
−(p+1)(ξj ∧ ξ�) = −Π

p∗rdL
−(p+1)(ξj ∧ ξ�)− ∗rL

−(p+1)d(ξj ∧ ξ�)

where the second term vanishes. Then write ξj∧ξ� as ω
p+1∧ξj∧η2n−k−1

and apply (2.23) for ζ = ξj ∧ η2n−k−1:

f(ξj ∧ ξ�) = −Π
p∗r

(
d(ξj ∧ η2n−k−1)

)
+ d−(Π

p∗rζ)

= −Πp∗r
[
(−1)j(Aj + ωp+1 ∧ ηj−2p−2) ∧ dη2n−k−1

]
+ d−(Π

p∗rζ)

= −(−1)jΠp∗r(Aj ∧ dη2n−k−1) + d−(Π
p∗rζ).

(A.8)

The last equality uses the fact that ωp+1 ∧ dη2n−k−1. Due to (2.22),
∗r(Aj ∧ dη2n−k−1) ∈ F pΩk−j. That is to say, the first Πp-operator in
(A.8) acts as the identity map.

When k−j = n+p, Πp∗rζ belongs to ΠpΩn+p+1 = {0}. By (A.7) and
(A.8), we conclude that (5.8) is compatible with the wedge product.

(Massey product) Given [Aj ] ∈ F pHj
+ and [Āk] ∈ F pHk

−, let Bj−2p =

L−pAj . Since d+Aj = 0, dAj = Lp+1 ∧ (L−(p+1)dAj). By (5.14),

g(Aj) = L−(p+1)dAj and g(Āk) = ∗rĀk.

Due to (2.22), Lp+1(g(Āk)) = 0. And the Massey product (5.17) is

〈g(Aj), g(Āk)〉p = 〈∂−Bj−2p, ∗rĀk〉p = (−1)jAj ∧ (∗rĀk).
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According to (5.8) and (5.14),

g(Aj × Āk) = ∗r(Aj × Āk) = (−1)jAj ∧ (∗rĀk).

This completes the proof of the lemma. q.e.d.

Since all the products are graded anti-commutative, the product

F pHj
− × F pHk

+ → F pHj−k
− induced by (5.9) is also compatible with

the topological products.

(4) F pHj
− × F pHk

− → 0

Lemma A.5. For j ≤ n + p and k ≤ n + p, the product F pHj
− ×

F pHk
− → 0 defined by (5.10) is compatible with the topological products.

Proof. By simple degree counting, it is compatible with the wedge
product. It follows from (2.22) that Lp+1g = −Lp+1∗r = 0. Hence, the
Massey product 〈g( · ), g( · )〉p = 0 on F pH∗

−. q.e.d.
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no. 1267, Hermann, Paris (1958), MR 0111056, Zbl 0205.51701.

[21] D. Yan, Hodge structure on symplectic manifolds, Adv. Math. 120 (1996), no.
1, 143–154, MR 1392276, Zbl 0872.58002.

Department of Mathematics

National Taiwan University

Taipei 10617, Taiwan

E-mail address: cjtsai@ntu.edu.tw

Department of Mathematics

University of California

Irvine, CA 92697 USA

E-mail address: lstseng@math.uci.edu

Department of Mathematics

Harvard University

Cambridge, MA 02138 USA

E-mail address: yau@math.harvard.edu


