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Pin−(2)-MONOPOLE INVARIANTS

Nobuhiro Nakamura

Abstract

We introduce a diffeomorphism invariant of 4-manifolds, the
Pin−(2)-monopole invariant, defined by using the Pin−(2)-mono-
pole equations. We compute the invariants of several 4-manifolds,
and prove gluing formulae. By using the invariants, we construct
exotic smooth structures on the connected sum of an elliptic sur-
face E(n) with arbitrary number of the 4-manifolds of the form
of S2 ×Σ or S1 × Y where Σ is a compact Riemann surface with
positive genus and Y is a closed 3-manifold. As another applica-
tion, we give an estimate of the genus of surfaces embedded in a
4-manifold X representing a class α ∈ H2(X ; l), where l is a local
coefficient on X .

1. Introduction

In the paper [16], we introduced the Pin−(2)-monopole equations
which are a twisted or a real version of the Seiberg-Witten equations,
and obtained several constraints on the intersection forms with local co-
efficients of 4-manifolds by analyzing the moduli spaces. In this article,
we investigate diffeomorphism invariants defined by using the Pin−(2)-
monopole equations, which we will call Pin−(2)-monopole invariants.
We compute the invariants of several 4-manifolds, and prove connected-
sum formulae. We give two applications. The first application is to con-
struct exotic smooth structures on E(n)#(#k

i=1(S
2×Σi))#(#l

j=1(S
1×

Yj)) where Σi are compact Riemann surfaces with positive genus and
Yj are closed 3-manifolds. The second application is an estimate of
the genus of surfaces embedded in a 4-manifold X representing a class
α ∈ H2(X; l), where l is a local coefficient on X, which can be consid-
ered as a local coefficient analogue of the adjunction inequalities in the
Seiberg-Witten theory [11, 5, 14, 19].

1.1. Exotic smooth structures. We state the first application:

Theorem 1.1. For any positive integer n, there exists a set Sn of
infinitely many distinct smooth structures on the elliptic surface E(n)
which have the following significance: For σ ∈ Sn, let E(n)σ be the
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manifold with the smooth structure σ homeomorphic to E(n). Let Z
be a connected sum of arbitrary positive number of 4-manifolds, each
of which is S2 × Σ or S1 × Y where Σ is a compact Riemann surface
with positive genus and Y is a closed 3-manifold. Then, E(n)σ#Z for
different σ are mutually non-diffeomorphic.

Remark 1.2. A famous result due to C. T. C. Wall tells us that any
pair of simply-connected smooth 4-manifolds M1 and M2 which have
isomorphic intersection forms are stably diffeomorphic for stabilization
by taking connected sums with k(S2 × S2) for sufficiently large k. (See
e.g. [9].) Theorem 1.1 says that there exist infinitely many exotic
structures on E(n) which can not be stabilized by S2 ×Σ with positive
g(Σ) or S1 × Y 3.

1.2. Pin−(2)-monopole invariants. To prove the theorem above, the
Pin−(2)-monopole invariant will be defined and used. We remark that
the Pin−(2)-monopole equations are defined on a Spinc−-structure (§2.1
and [16], Section 3), which is a Pin−(2)-analogue of Spinc-structure.
One of the special features of the Pin−(2)-monopole theory is that the
moduli spaces may be nonorientable. Hence, in general, Z2-valued in-
variants will be defined. Only when the moduli space is orientable, Z-
valued invariants can be defined. Here, we state several non-vanishing
results on the Pin−(2)-monopole invariants.

A Spinc−-structure is an object on a double covering X̃ → X of a 4-
manifold X rather than on X itself. For a Spinc−-structure on X̃ → X,
an O(2)-bundle E called the characteristic O(2)-bundle is associated

(§2.1). Let l be the Z-bundle associated to the double covering X̃ → X,

i.e., l = X̃ ×{±1} Z. The l-coefficient Euler class of E in H2(X; l)
is denoted by c̃1(E). More precisely, we need to fix an l-coefficient
orientation of E to define the Euler class c̃1(E). (See §2.1.)

An Enriques surface N0 has a double covering π : K0 → N0 with K0 a
K3 surface. More generally, a smooth 4-manifold N which is homotopy
equivalent to an Enriques surface is known to be homeomorphic to the
standard Enriques surface [18], and has a double covering π : K → N
such that K is a homotopy K3 surface. Let lK = K ×{±1} Z.

Theorem 1.3. There exists a Spinc−-structure c on π : K → N which
satisfies the following:

• π∗c̃1(E) = 0, where E is the characteristic O(2)-bundle and
π∗ : H2(N ; lK) → H2(K;Z) is the induced homomorphism,

• the Z2-valued Pin−(2)-monopole invariant of (N, c) is nontrivial.

Remark 1.4. The virtual dimension of the moduli space of (N, c) is
0.
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Remark 1.5. Theorem 1.3 is proved by Theorem 2.22 which relates
the Pin−(2)-monopole invariants of N with the Seiberg-Witten invari-
ants of the double covering K, together with the non-vanishing result
due to J. Morgan and Z. Szabó [13] for homotopy K3 surfaces.

Next we state a connected-sum formula for Pin−(2)-monopole invari-
ants. Before that, we note the following remarks. In general, an ordi-
nary Spinc-structure can be seen as a reduction of an untwisted Spinc−-
structure defined on a trivial double cover X̃ → X (§2.1). Furthermore,
the Seiberg-Witten (U(1)-monopole) equations on a Spinc-structure can
be identified with the Pin−(2)-monopole equations on the correspond-
ing untwisted Spinc−-structure (§2.4). Often, we will not distinguish an
untwisted Spinc−-structure and the Spinc-structure which is its reduc-
tion, and use the same symbol. In the following, we consider the gluing
of Pin−(2)-monopoles and ordinary Seiberg-Witten U(1)-monopoles.

Let X1 be a 4-manifold with an ordinary Spinc-(or untwisted Spinc−-)
structure c1. LetX2 be the manifold Z in Theorem 1.1 whose connected-
summands are of the form of S2×Σ or S1×Y . To define a Z-bundle on
X2, consider a 2-torus T 2 with a nontrivial Z-bundle lT . An oriented
Riemann surface Σ with positive genus g can be considered as a con-
nected sum of g tori: Σ = T 2# · · ·#T 2. Let lΣ be the Z-bundle over
Σ which is given by the connected sum of lT : lΣ = lT# · · ·#lT . For
a Riemann surface Σ with positive genus, consider the product S2 × Σ
with the Z-bundle l which is the pull-back

l = π∗lΣ,

where π : S2 × Σ → Σ is the projection. We also consider S1 × Y with
the Z-bundle l′ which is the pullback of a nontrivial Z-bundle lS1 over
S1.

Remark 1.6. For (X; l), let blk = bk(X; l) = dimHk(X; l ⊗ Q). For

(X, l) = (S2 × Σg; l), b
l
0 = bl2 = bl4 = 0 and bl1 = bl3 = 2g − 2. For

(X, l) = (S1 × Y ; l), blk = 0 for all k.

Recall X2 is a connected-sum of 4-manifolds of the form of S2 ×Σ or
S1 × Y . Equip each component of the form of S2 × Σ (resp. S1 × Y )
with the Z-bundles l (resp. l′) as above, and define the Z-bundle lX2 on
X2 as their connected sum. If we write the cardinality of H2(X2; lX2)
as n, there are n distinct isomorphism classes of Spinc−-structures for
X̃2 → X2, where X̃2 is the double covering associated to lX2 . (See
Proposition 2.3.) Each of these Spinc−-structures has a characteristic
O(2)-bundle E with torsion c̃1(E). Let c2 be such a Spinc−-structure on
X2. We consider the connected sum X1#X2 with the Spinc−-structure
c1#c2 which is the connected sum of the Spinc−-structures c1 and c2.
(Here we assume c1 is an untwisted Spinc−-structure.) Then, the fol-
lowing holds:
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Theorem 1.7. Let X1 be a closed oriented connected 4-manifolds
with a Spinc(untwisted Spinc−)-structure such that

• b+(X1) ≥ 2,
• the virtual dimension of the Seiberg-Witten moduli space for (X1,
c1) is zero,

• the Seiberg-Witten invariant for (X1, c1) is odd.

Let X2 and lX2 be as above. Then, for any Spinc−-structure c2 on X̃2 →
X2, the Pin−(2)-monopole invariant of (X1#X2, c1#c2) is nonzero.

Remark 1.8. The virtual dimension d of the moduli space of
(X1#X2, c1#c2) is positive: For instance, if

X2 = #k
i=1(S

2 × Σi)##m
j=1(S

1 × Yj),

then

d =

k∑
i=1

(2g(Σi)− 2) + (k +m) = 2

k∑
i=1

g(Σi)− k +m ≥ k +m.

Remark 1.9. This non-vanishing result would be interesting because
of the following two points: First, although the dimension of the moduli
space is positive, the (co)homological (not cohomotopical) invariant is
nontrivial. Second, if X2 contains a component of the form of S2×Σ, all
of the Seiberg-Witten invariants and the cohomotopy refinement [2] of
X1#X2 are 0 because S2 ×Σ admits a positive scalar curvature metric
and b+(S

2 × Σ) > 0.

Remark 1.10. It is worth to notice that b+(X2; l) = 0. In fact,
Theorem 1.7 can be considered as a Pin−(2)-monopole analogue of the
Seiberg-Witten gluing formulae for connected sums X1#X2 when X1 is
a 4-manifold with positive b+(X1) and X2 is one of the following:

(1) X2 is a 4-manifold with b1(X2) = b+(X2) = 0, (Froyshov [7],
Chapter 14 for general cases; Fintushel-Stern [5], Theorem 1.4

and Nicolaescu [17], §4.6.2 for CP
2
; Kotschick-Morgan-Taubes

[10], Proposition 2 for rational homology 4-spheres),
(2) X2 = S1 × S3, (Ozsváth-Szabó [20]) or
(3) X2 is a connected sum of several manifolds in (1) or (2) above.

Remark 1.11. Theorem 1.7 is a special case of Theorem 3.8.

As mentioned above, the Pin−(2)-monopole invariants are defined as
Z2-valued invariants. But in some exceptional cases, we can define Z-
valued invariants. For instance, the non-vanishing result for homotopy
Enriques surfaces (Theorem 1.3) is refined as follows:

Theorem 1.12. The Z-valued Pin−(2)-monopole invariant for (N, c)
in Theorem 1.3 is odd.
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Furthermore, the following holds for connected sums of homotopy
Enriques surfaces.

Theorem 1.13. For any integer n ≥ 2, let Xn = N1#N2# · · ·#Nn

where each Ni is a homotopy Enriques surface. Then Xn has a Spinc−-
structure cn such that

• the Z2-valued Pin−(2)-monopole invariant is 0, but
• the Z-valued invariant is nontrivial.

Remark 1.14. Since b+(Ni) ≥ 1, the Seiberg-Witten invariants and
Donaldson invariants of Xn are 0.

1.3. The genus of embedded surfaces. We state the second appli-
cation of the Pin−(2)-monopole invariants, which is an estimate of the
genus of embedded surfaces representing a local-coefficient class. Let
X be a closed oriented connected 4-manifold and suppose a nontrivial
double covering X̃ → X is given, and let l = X̃ ×{±1} Z. Then a ho-
mology class α ∈ H2(X; l) is represented by an embedded surface Σ as
follows:

• Σ is a connected surface embedded in X. Let i : Σ → X be the
embedding map.

• The orientation system of Σ is identified with the pull-back i∗l of
l by i.

• If i∗ : H2(Σ; i
∗l) → H2(X; l) is the induced homomorphism and

[Σ] ∈ H2(Σ; i
∗l) is the fundamental class, then α = i∗[Σ].

Conversely, a connected embedded surface Σ whose orientation system
is the restriction of l has its fundamental class [Σ] in H2(X; l).

For such embedded surfaces, the following adjunction inequality holds.

Theorem 1.15. Let c be a Spinc−-structure on X̃ → X, and c̃ be
the Spinc-structure on X̃ induced from c (see §2). Suppose at least one
of the following occurs:

• b+(X; l) ≥ 2 and the Pin−(2)-monopole invariant of (X, c) is
nontrivial.

• b+(X̃) ≥ 2 and the ordinary Seiberg-Witten invariant of (X̃, c̃) is
nontrivial.

Suppose a class α ∈ H2(X; l) is represented by a connected embedded
surface as above. If α has infinite order and α · α ≥ 0, then

−χ(Σ) ≥ |c̃1(E) · α|+ α · α,
where χ(Σ) is the Euler characteristic of Σ.

Combining Theorem 1.15 with the non-vanishing results in §1.2, we
obtain the following estimates for several concrete 4-manifolds.

Theorem 1.16. Suppose a pair (X, l) of 4-manifold X, and a Z-
bundle l over X is one of the following:
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• (N1#N2# · · ·#Nn, l1# · · ·#ln), where each Ni is a homotopy
Enriques surface, and li is a nontrivial Z-bundle, or

• (E(2)#Z, l) as in Theorem 1.1.

Let Σ be a connected embedded surface as above representing a class
α ∈ H2(X; l). If α has infinite order and α · α ≥ 0, then

−χ(Σ) ≥ α · α.
Remark 1.17. The number α ·α is the normal Euler number of the

embedding Σ ⊂ X.

From this, we can also obtain some kind of equivariant adjunction
inequality on the double coverings:

Corollary 1.18. Let X̃ → X be the double covering associated with
(X, l) in Theorem 1.16, and ι : X̃ → X̃ be the covering transformation.

Suppose an oriented connected surface Σ embedded in X̃ satisfies the
property that [Σ]− ι∗[Σ] has infinite order in H2(X̃ ;Z) and [Σ] · [Σ] ≥ 0.
If Σ ∩ ι(Σ) = ∅, then
(1.19) −χ(Σ) ≥ [Σ] · [Σ].

Example 1.20. Let us examine Corollary 1.18 for a simple example.
Let X = K3#(T 2 × S2). Consider the double cover X̃ → X which
is associated to a nontrivial double cover T 2 × S2 → T 2 × S2. Then
X̃ = K1#(T 2 × S2)#K2, where Ki are copies of K3. Let σ = [pt× S2]
and τ = [T 2 × pt] in H2(T

2 × S2;Z). Take a 2-sphere S representing σ
embedded in the T 2×S2-component, and oriented connected surfaces Σi

(i = 1, 2) embedded in the Ki-components so that [Σi] 	= 0, [Σi]
2 ≥ 0,

ι(Σ1) ∩ Σ2 = ∅ and ι∗[Σ1] 	= [Σ2]. Then we can arrange to take a

connected sum Σ = Σ1#S#Σ2 in X̃ such that Σ ∩ ι(Σ) = ∅. Such
a Σ certainly satisfies (1.19) because of the adjunction inequality for
K3. On the other hand, we can construct oriented connected surfaces
Σ embedded in X̃ with Σ ∩ ι(Σ) 	= ∅ which violate (1.19) as follows.
Let g1 be the genus of Σ1 above. We can take an embedded 2-torus T
representing τ + nσ so that 2n > 2g1 − [Σ1]

2. Then take a connected

sum Σ = Σ1#T in X̃ . Since [Σ] · ι∗[Σ] = (σ + nτ)2 = 2n > 0, we have
Σ ∩ ι(Σ) 	= ∅.

The organization of the paper is as follows. In Section 2, we introduce
Pin−(2)-monopole invariants, and discuss the relation with the Seiberg-
Witten invariants on the double covering, and prove Theorem 1.3 and
Theorem 1.12. In Section 3, several versions of gluing formulae are
stated, and assuming these, we prove Theorem 1.1 and Theorem 1.13.
Sections 4-6 are devoted to the proof of the gluing theorems stated in §2.
Section 4 describes the Pin−(2)-monopole theory on 3-manifolds. Sec-
tion 5 deals with finite energy Pin−(2)-monopoles on 4-manifolds with
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tubular ends. In Section 6, we give the proofs of the gluing theorems.
In Section 7, the proof of the genus estimate (Theorem 1.15) is given.

Acknowledgements. The author would like to thank M. Furuta for
helpful discussions and invaluable suggestions at various stages of this
work which enabled the author to enrich the contents of this paper. It is
also pleasure to thank the referees for their detailed and valuable com-
ments and pointing out mistakes in the previous version of the paper.

2. Pin−(2)-monopole invariants

2.1. Spinc−-structures. The Pin−(2)-monopole equations are defined
on Spinc−-structures, which are a Pin−(2)-version of the Spinc-struc-
tures. While a Spinc-structure is given as a Spinc(4) = Spin(4) ×{±1}
U(1)-lift of the frame bundle, a Spinc−-structure is given by a
Spin(4)×{±1}Pin−(2)-lift of it. The precise definition is given as follows.

(See also [16], Section 3.) The group Spin(4) ×{±1} Pin−(2) is denoted
by Spinc−(4). Let X be a closed oriented connected Riemannian 4-

manifold with double covering X̃ → X. The SO(4)-frame bundle on X
is denoted by Fr(X). Since Pin−(2) = U(1) ∪ j U(1), Spinc(4) is the
identity component of Spinc−(4), and Spinc−(4)/Spinc(4) = {±1}. Also
we have Spinc−(4)/Pin−(2) = SO(4) and Spinc−(4)/Spin(4) = O(2).

Definition 2.1. A Spinc−-structure on X̃ → X is a triple (P, σ, τ)
where

• P is a Spinc−(4)-bundle over X,
• σ is an isomorphism between the Z/2-bundles P/Spinc(4) and

X̃ ,
• τ is an isomorphism between the SO(4)-bundles P/Pin−(2) and
Fr(X).

Instead of the determinant U(1)-bundle for a Spinc-structure, an
O(2)-bundle E = P/Spin(4) is associated to a Spinc−-structure. We call

this E the characteristic O(2)-bundle. Let l be the Z-bundle X̃ ×{±1} Z
over X. Then l is related to E by detE = l ⊗ R. The l-coefficient
orientation of E (and hence c̃1(E) ∈ H2(X; l)) is determined via the

isomorphism σ : P/Spinc(4)
∼=→ X̃ as follows. As described in [16], §3.3,

the Spinc(4)-bundle P → P/Spinc(4) ∼= X̃ defines a Spinc-structure on

X̃. Let L be its determinant line bundle, and D(L), S(L) be its disk
and sphere bundles. Let ER be the R2-bundle associated to E, and
D(ER), S(ER) be similar objects. Then choose the l-coefficient orien-
tation of E so that the Thom classes ũ ∈ H2(D(L), S(L);Z) of L and
u ∈ H2(D(ER), S(ER); l) of ER satisfy the relation

(2.2) π∗u = ũ,



514 N. NAKAMURA

where π∗ is the homomorphism induced from the projection π : X̃ → X.
Then we also have the relation π∗c̃1(E) = c1(L).

The basic fact on Spinc−-structures on X̃ → X is as follows:

Proposition 2.3. (1) For an O(2)-bundle E over X with detE = l⊗
R as above, there exists a Spinc−-structure on X̃ → X whose character-
istic bundle is isomorphic to E if and only if w2(X) = w2(E)+w1(l⊗R)2.

(2) If a Spinc−-structure on X̃ → X is given, there is a bijective corre-
spondence between the set of isomorphism classes of Spinc−-structures
on X̃ → X and H2(X; l).

Proof. The assertion (1) is proved in [16]. To prove the assertion (2),
let us consider the exact sequence,

(2.4) 1 → S1 → Spinc−(4) → SO(4) × {±1} → 1.

From this, we have a fibration,

(2.5) BS1 → B Spinc−(4) → B(SO(4) × {±1}).
In (2.4), {±1} gives rise to an automorphism of S1 of complex conjuga-
tion. If we identify BS1 with CP∞, the action of π1(B({±1})) ∼= Z2 on a
fiber of (2.5) can be homotopically identified with complex conjugation

on CP∞. Then Spinc−-structures on X̃ → X are classified by

H2(X; π̃2(BS1)) ∼= H2(X; l),

where π̃2 is the local coefficient with respect to the π1(B({±1}))-action
on fibers. q.e.d.

Usually, we will assume the covering X̃ → X is nontrivial. But in the
case when X̃ → X is trivial, the Spinc−(4)-bundle of a Spinc−-structure
on X has a Spinc(4)-reduction, and in fact, this reduction induces a
Spinc-structure on X. We will refer to a Spinc−-structure with trivial
X̃ as an untwisted Spinc−-structure.

2.2. Definition of Pin−(2)-monopole invariants. In this subsection,
we introduce Pin−(2)-monopole invariants. Let X be an oriented closed

connected 4-manifold with double covering X̃ → X, and suppose a
Spinc−-structure c on X̃ → X is given. Let l = X̃ ×{±1} Z, λ = l ⊗ R,
and E be the characteristic O(2)-bundle. Then we have λ = detE.
Let A be the space of O(2)-connections on E, C the configuration space
C = A×Γ(S+), and C∗ the space of irreducible configurations, C∗ = A×
(Γ(S+) \ 0). Fix k ≥ 3 and take L2

k-completion of C and C∗. The gauge

transformation group G is the L2
k+1-completion of Γ(X̃ ×{±1} U(1)),

where {±1} acts on U(1) by complex conjugation. We use the same
symbols for the completed spaces. Let B∗ = C∗/G.
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The (perturbed) Pin−(2)-monopole equations for (A,Φ) ∈ C are given
as follows:

(2.6)

⎧⎨
⎩

DAΦ =0,

1

2
F+
A =q(Φ) + μ,

where DA is the Dirac operator, q is a quadratic form and μ ∈ Ω+(iλ).
(See Section 4 of [16] for the precise meaning and definition of each
term of the equations.)

Remark 2.7. Here we adopt the convention according to [12], slightly
different from [16], with 1

2 on the curvature term F+
A . Of course, this

set of the equations is essentially same with that in [16], because they
coincide after an appropriate rescaling.

The moduli spaceM(X, c) = MPin−(2)(X, c) is defined as the space of

solutions modulo gauge transformations. (The perturbed moduli space
is usually denoted by the same symbol.)

Remark 2.8. When the Spinc−-structure is untwisted, since X̃ →
X is trivial, we have G = Γ(X̃ ×{±1} U(1)) ∼= Map(X,U(1)). While

the stabilizer of the Pin−(2)-monopole reducible on a twisted Spinc−-
structure is {±1}, that in the untwisted case is U(1). (See also §2.4.)

For the time being, we suppose the Spinc−-structure is twisted. Sup-
pose b+(X; l) ≥ 1. Then, as in the case of the ordinary Seiberg-Witten
theory, by a generic choice of μ, the moduli space M(X, c) has no re-
ducible and is a compact manifold whose dimension is given by

(2.9) d(c) =
1

4
(c̃1(E)2 − sign(X))− (b0(X; l) − b1(X; l) + b+(X; l)).

Note that the index of the Dirac operator DA is given by 1
4(c̃1(E)2 −

sign(X)) and b0(X; l) = 0 if l is nontrivial.
In a sense, the Pin−(2)-monopole invariant of (X, c) is defined as the

fundamental class of the moduli space [M(X, c)] ∈ Hd(c)(B∗). We can
obtain a numerical invariant by evaluating [M(X, c)] by a cohomology

class in Hd(c)(B∗). If X̃ → X is nontrivial, B∗ has the homotopy type

of the classifying space of the group Z/2× Zb1(X;l). This fact is stated
in [16], Proposition 25. However, the proof of Lemma 27 in [16] which
is used in the proof of Proposition 25 is incomplete in that it is not
proved there that the identity component of G is contractible. Here we
complement it.

Lemma 2.10. The gauge transformation group G is homotopy equiv-
alent to (Z/2)× Zb1(X;l).

Proof. Let G̃ = Map(X̃,U(1)). Define the involution I on G̃ by u �→
ι∗u where ι : X̃ → X̃ is the covering transformation and “ ·̄ ” means
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the complex conjugation. Then G is identified with the I-fixed point set

G̃I . Let h : G̃ → [X̃, S1] ∼= H1(X̃ ;Z) ∼= Zb1(X̃) be the map which sends

each element of G̃ to its homotopy class. Put K̃ = kerh. Consider the
following diagram:

1 −−−−→ K̃ −−−−→ G̃ −−−−→ [X,S1]
h−−−−→ 1�⏐⏐ �⏐⏐ �⏐⏐j

1 −−−−→ K̃ ∩ G̃I −−−−→ G̃I −−−−→ h(G̃I) −−−−→ 1

The vertical map j is injective since the first and second vertical maps
are inclusions. It is proved that π0G̃I = π0G = Z2 ⊕ Zb1(X;l) in the
proof of Lemma 27 in [16]. Now it suffices to see that K̃ ∩ G̃I is ho-

motopy equivalent to {±1}. Each element u ∈ K̃ can be written as

u = exp(2π
√−1f) for some function f : X̃ → R. If u = exp(2π

√−1f)

is in K̃ ∩ G̃I , then there is an integer m so that f(ιx) = m − f(x) for

every x ∈ X̃ . If we fix a base point x0 ∈ X̃ and choose f so that
f(x0) ∈ [0, 1), then such an m is uniquely determined. Then the homo-
topy ft = tf + (1− t)m/2 gives the homotopy between u and ±1.

q.e.d.

In contrast to the ordinary Seiberg-Witten theory, the moduli space
M(X, c) may be non-orientable. (A necessary condition for M(X, c)
to be orientable will be given in §2.3.) In general, we can define the
following Z/2-valued version of the Pin−(2)-monopole invariants.

Definition 2.11. The Pin−(2)-monopole invariant of (X, c) is de-
fined as a map

SWPin(X, c) : Hd(c)(B∗;Z/2) → Z/2,

given by

SWPin(X, c)(ξ) := 〈ξ, [M(X, c)]〉.
If b+(X; l) ≥ 2, then SWPin(X, c) is a diffeomorphism invariant. If

b+(X; l) = 1, then SWPin(X, c) depends on the chamber structure of
the space of metrics and perturbations.

Remark 2.12. We give a geometric description of the cohomology
classes of B∗ in §3.1 and §3.2.

Remark 2.13. The compactness of M(X, c) enables us to develop
the Bauer-Furuta theory [2] for the Pin−(2)-monopole equations. In
fact, we can define a stable cohomotopy refinement of the Pin−(2)-
monopole invariants. This will be discussed elsewhere.
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2.3. Orientability of the moduli spaces. The purpose of this sub-
section is to discuss the orientability of the moduli spaces. Let us con-
sider the family of Dirac operators δ̃Dirac = {DA}A∈A. In [16], §4, we
introduced a subgroup Kγ in G, which has the properties:

• G/Kγ = {±1}.
• Kγ acts on A freely, and A/Kγ has the same homotopy type of
H1(X;λ)/H1(X; l).

Remark 2.14. Here γ is a circle embedded in X on which l is non-
trivial. The subgroup Kγ is defined as the set of gauge transformations
whose restrictions to γ are homotopic to 1.

Dividing δ̃Dirac by Kγ , we obtain the family δDirac = δ̃Dirac/Kγ over
A/Kγ .

Proposition 2.15. If the index of the Dirac operator is even and
det ind δDirac is trivial, then the moduli space is orientable.

Proof. For a configuration (A,Φ), let us consider the sequence,

0 −−−−→ Ω0(iλ)
IΦ−−−−→ Ω1(iλ) ⊕ Γ(S+)

D(A,Φ)−−−−→ Ω+(iλ)⊕ Γ(S−) −−−−→ 0,

where IΦ(f) = (−2df, fΦ) and D(A,Φ)(a, φ) = d+a − DqΦ(φ),DAφ +
1
2ρ(a)Φ), which are the linearizations of the gauge group action and the

monopole map. Let V = Ω1(iλ) ⊕ Γ(S+), and W = (Ω0 ⊕ Ω+)(iλ) ⊕
Γ(S−) and define δ(A,Φ) : V → W by,

δ(A,Φ) = I∗Φ ⊕D(A,Φ).

Then the family δ̃ = {δ(A,Φ)}(A,Φ)∈C defines a bundle homomorphism
between the bundles over C,

δ̃ : C × V → C ×W.

Restricting δ̃ to C∗ and dividing by G, we obtain a bundle homomor-
phism over B∗ = C∗/G,

δ : C∗ ×G V → C∗ ×G W.

The moduli space is orientable if det ind δ is trivial. By deforming δ(A,Φ)

by δ(A,tφ) (0 ≤ t ≤ 1), we may assume δ̃ = {(d∗ ⊕ d+) ⊕ DA}(A,Φ)∈C .

Since (d∗ ⊕ d+) does not depend on (A,Φ), det ind(d∗ ⊕ d+) is trivial.
Therefore it suffices to consider the Dirac family

(2.16) δ̃′ = {DA}(A,Φ)∈C : C × Γ(S+) → C × Γ(S−).

Then (2.16) can be identified with the pull-back of δ̃Dirac, via the
projection p : C → A with p(A,Φ) = A. Dividing (2.16) by Kγ , we

obtain δ̃′/K : C ×Kγ Γ(S+) → C ×Kγ Γ(S−). Note that C/Kγ is ho-

motopic to A/Kγ . Thus ind(δ̃′/K) is identified with p∗ ind(δDirac),
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which is trivial by the assumption. Hence det ind δ is trivial if and
only if det ((p∗ ind(δDirac))|C∗)/{±1}) over C∗/G is trivial. Note that

C∗/G � RP∞×T b1(X;l). Let η → C∗/G be the nontrivial real line bundle
which represents the generator of H1(RP∞;Z2). Then by the assump-
tions, we see that det ((p∗ ind(δDirac)|C∗)/{±1}) ∼= η⊗ indD. Thus the
proposition is proved. q.e.d.

Remark 2.17. For instance, if b1(X; l) = 0 and the Dirac index is
even, then the moduli space is orientable.

Note that H∗(B∗;Z)/Tor ∼= H∗(T b1(X;l);Z). Suppose the moduli
spaceM(X) is orientable. Fixing an orientation, we can define Z-valued
Pin−(2)-monopole invariants SWPin

Z by evaluating the fundamental class
[M(X)] by infinite-order classes ξ in H∗(B∗;Z):

SWPin
Z (X, c)(ξ) = 〈ξ, [M(X)]〉.

2.4. Pin−(2)-monopoles on untwisted Spinc−-structures. Let us
consider an untwisted Spinc−-structure c = (P, σ, τ) on a (trivial) dou-

ble covering X̃ → X. The two connected components of X̃ will be
denoted by X+ and X− according to the rule described below. Con-
sider the Spinc-structure on X̃ which is defined by the projection P →
P/Spinc(4) ∼= X̃ . Its restrictions to the components X+ and X− of X̃
are mutually complex conjugate Spinc-structures c+ and c− (see [16],

§2(iii)). Let i± : X± → X̃ be the inclusion maps. Let L± be the deter-
minant line bundles of c±, and their Thom classes be u±. Then X+ is
chosen to satisfy

u+ = i∗+(ũ) = i∗+ ◦ π∗(u),
where u and ũ are the Thom classes as in (2.2). We call the Spinc-
structure c+ the canonical reduction.

Remark 2.18. When a Spinc-structure c0 with Spinc(4)-bundle Pc →
X is given, the Spinc−(4)-bundle P = Pc ×Spinc(4) Spin

c−(4) defines an

untwisted Spinc−-structure c on X̃ = P/Spinc(4) → X. Then c0 is the
canonical reduction of c.

As real vector bundles, we have identifications among spinor bundles
for c, c+ and c−,

S±c
∼= S±c+

∼= S±c−.

Also as real vector bundles, we have identifications among the R2-vector
bundle associated to the characteristic O(2)-bundle E of c and the de-
terminant line bundles L±. If an O(2)-connection A on E is given, we
have U(1)-connections A± on L± induced from A by reduction. As
real operators, the covariant derivatives of A and A± can be identi-
fied, and therefore the Dirac operators induced from A and A± can
also be identified as real operators. Furthermore, it can be seen that



Pin−(2)-MONOPOLE INVARIANTS 519

the Pin−(2)-monopole solutions on c can be identified with the Seiberg-
Witten solutions on c± via the identifications above:

Proposition 2.19. Let c be an untwisted Spinc−-structure, and c±
the Spinc-structures which are its reductions as above. Then there are
identifications among the set of Pin−(2)-monopole solutions on c and
the sets of Seiberg-Witten solutions on c±. Moreover, at the level of
moduli spaces, we have

MPin−(2)(X, c) ∼= MU(1)(X, c+) ∼= MU(1)(X, c−),

where MU(1) means the ordinary Seiberg-Witten (U(1)-monopole) mod-
uli spaces.

In what follows, when we use a phrase like “a Spinc( untwisted
Spinc−)-structure c”, it means an untwisted Spinc−-structure and its
canonical reduction. We consider them to be an equivalent object, and
use them alternatively according to situations.

2.5. Relation with the Seiberg-Witten invariants of the double
coverings. Let us consider a twisted Spinc−-structure c on a (nontriv-

ial) covering π : X̃ → X. If we pull-back the Spinc−-structure c to

X̃, the pulled-back Spinc−-structure c̃ on X̃ is untwisted. If P is the
Spinc−(4)-bundle for c, the projection P → P/Spinc ∼= X̃ can be con-

sidered as a Spinc(4)-bundle over X̃ which defines a Spinc-structure

c̃+ over X̃ which is, in fact, the canonical reduction of c̃. Then π∗P
is identified with P ×Spinc(4) Spin

c−(4). The covering transformation

ι : X̃ → X̃ has a natural lift ι̃ on c̃ which is given by a Spinc−(4)-
bundle morphism of P×Spinc(4)Spin

c−(4) defined by ι̃([p, g]) = [pJ, J−1g]

for [p, g] ∈ P ×Spinc(4) Spin
c−(4), where J = [1, j−1] ∈ Spinc−(4) =

Spin(4)×{±1}Pin−(2). Then there is a bijective correspondence between
the configuration space of c and the space of ι̃-invariant configurations
on c̃. If we interpret the objects on c̃ in terms of the Spinc-structure c̃+,
the ι̃-action is identified with the antilinear involution I defined in [16],
§4(v). Thus we can identify configurations on (X, c) with I-invariant

configurations on (X̃, c̃+). In particular, we have,

Proposition 2.20 ([16], Proposition 4.11). There is a bijective cor-
respondence between the set of Pin−(2)-monopole solutions on (X, c) and

the set of I-invariant Seiberg-Witten solutions on (X̃, c̃+). Moreover we
have

(2.21) MPin−(2)(X, c) ∼= MU(1)(X̃, c̃+)
I .

Let us discuss the relation of the Pin−(2)-monopole invariants of X

and the Seiberg-Witten invariants of X̃. Mimicking the arguments in
[21] or [15], we can prove a formula which relates the Pin−(2)-monopole
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invariants of (X, c) with the Seiberg-Witten invariants of (X̃, c̃+) as
follows.

Theorem 2.22. If d(c) = 0 and b1(X̃) = 0, then

(2.23) SWU(1)(X̃, c̃+) ≡
∑
cσ

SWPin(X, cσ) mod 2

where SWU(1)(X̃, c̃+) is the Seiberg-Witten invariant of (X̃, c̃+), and

cσ runs through all Spinc−-structures on X whose pull-back on X̃ are
isomorphic to c̃+.

Remark 2.24. Since the I-action is free and d(c) = 0, the virtual

dimension of the Seiberg-Witten moduli for (X̃, c̃+) is also zero.

Remark 2.25. The set of cσ’s as above is identified with

{c+ a | a ∈ ker(π∗ : H∗(X; l) → H∗(X̃;π∗l))}.
Proof of Theorem 2.22. In the I-equivariant setting, the moduli space
MU(1)(X̃, c̃+) is decomposed into the I-invariant part and the free
part. The I-invariant part is identified with MPin−(2)(X, c) as in (2.21).
On the other hand, if the free part is a 0-dimensional manifold, then
the number of elements in the free part is even, because Z/2 acts
freely. Now, the theorem follows if the equivariant transversality can
be achieved by an equivariant perturbation. This issue is discussed in
[15]. (Cf. [21].) It is easy to achieve the transversality on the free

part. For the I-invariant part, on each point ξ ∈ MU(1)(X̃, c̃+)
I , con-

sider the Kuranishi model fξ : H1 → H2, where H1 and H2 are finite
dimensional I-linear vector spaces. Since the I-action on the base space
X̃ is free, the Lefschetz formula tells us that H1 and H2 are isomorphic
as the I-spaces. Then fixing an I-linear isomorphism Lξ : H1 → H2, we
can perturb the equations I-equivariantly by using Lξ to achieve the
transversality around ξ. q.e.d.

Now, we can prove Theorem 1.3 and Theorem 1.12.

Proof of Theorem 1.3 and Theorem 1.12. There exists a Spinc−-struc-
ture c on N whose associated O(2)-bundle is isomorphic to R⊕(lK⊗R).
Then the associated Spinc-structure c̃ on the double cover K has a triv-
ial determinant line bundle. Then SWU(1)(K, c̃) is congruent to one
modulo 2 by Morgan-Szabó [13]. On the other hand, since b1(N ; l) = 0,
the Dirac index is even and d(c) = 0 for the Spinc−-structure c, the
moduli space is orientable, and by fixing an orientation, the Z-valued
invariant is defined. Then, by Theorem 2.22, there is a Spinc−-structure
c′ such that SWPin

Z (N, c′) is odd. q.e.d.

Remark 2.26. At present, the author does not know the exact value
of SWPin

Z (N, c′) for any homotopy Enriques surface N .
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3. Gluing formulae

In this section, we state several versions of gluing formulae for the
Pin−(2)-monopole invariants, and prove Theorem 1.1 and Theorem 1.13.
Before that, we introduce two kinds of μ-maps in order to represent
various cohomology classes of B∗.
3.1. μ-map (1). In this subsection, we define the first μ-map, μE . The

isomorphism class of a double cover X̃ → X is determined by a homo-
morphism ρ : π1(X) → {±1}. Let H = π1(X̃). When the double cover

X̃ → X is nontrivial, we have the exact sequence

1 → H → π1(X)
ρ→ {±1} → 1.

Let ι∗ be the involution on the rational cohomology group H1(X̃ ;Q)

induced from the covering transformation ι : X̃ → X̃. If we write its
(+1)(resp. (−1))-eigenspace as H+

1 (resp. H−
1 ), we have the identifica-

tions H+
1

∼= H1(X;Q) and H−
1

∼= H1(X; l ⊗ Q), where l = X̃ ×{±1} Z.
On the other hand, H1(X̃ ;Q) is identified with (H/[H,H]) ⊗ Q. Then
we can choose loops γ1, . . . , γb in X, where b = b1(X; l), such that

(C1) the homotopy class of each γi is in ker ρ, and
(C2) the homology classes of γ1, . . . , γb generate H1(X; l)/Tor.

Note that the restriction of l to γi is a trivial Z-bundle and the restriction
Eγi of E to γi has a unique U(1)-reduction according to the l-orientation
of E.

Let E be the characteristic O(2)-bundle of a Spinc−-structure on a

nontrivial double covering X̃ → X, and π : X × C∗ → X be the projec-
tion. We define the universal characteristic O(2)-bundle E over X ×B∗
as E = π∗E/G. Then we have its characteristic classes

c̃1(E) ∈ H2(X × B∗; l⊗̂Z), w2(E) ∈ H2(X × B∗;Z2),

where ⊗̂ denotes the exterior tensor product of local coefficients. Now
let us define the μ-maps

μ̂E : H1(X; l) → H1(B∗;Z), μE : H1(X;Z2) → H1(B∗;Z2),

by the formula

μ̂E(α) = c̃1(E)/α, μE(α) = w2(E)/α.
Since the restriction of detE = l⊗R to γi is a trivial R-bundle over γi, for
any O(2)-connection A on E, the holonomy Holγi(A) around γi is con-

tained in SO(2) ⊂ O(2). Let θ̂ ∈ H1(SO(2);Z) and θ ∈ H1(SO(2);Z2)
be the generators.

Proposition 3.1. μ̂E(γi) = Hol∗γi θ̂, μE(γi) = Hol∗γiθ.

Remark 3.2. As in the proposition above, we sometimes abuse the
symbol for a loop to denote its homotopy class or homology class.
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Proof. (The proof is parallel to the ordinary Seiberg-Witten case.
Cf. [20], §9.) For a loop β : S1 → B∗, the restriction E|γi×β has a
U(1)-reduction associated to the U(1)-reduction of E|γi . Then

〈c̃1(E)/γi, β〉 = 〈c1(E|γi×β), γi × β〉 = deg(Holγi ◦ β).
q.e.d.

Since B∗ � RP∞×T b, H1(B∗;Z2) andH1(B∗;Z) have decompositions

H1(B∗;Z2) = HP ⊕HT , H1(B∗;Z) = ĤP ⊕ ĤT ,

where HP is a subgroup isomorphic to H1(RP
∞;Z2) ∼= Z2, ĤP

∼=
H1(RP

∞;Z) ∼= Z2, HT
∼= H1(T

b;Z2) ∼= Zb
2 and ĤT

∼= H1(T
b;Z) ∼= Zb.

Let η1 (resp. η̂1) be the generator of HP (resp. ĤP ).

Corollary 3.3. There exist basis τ1, . . . , τb for HT and τ̂1, . . . , τ̂b for
ĤT such that

• 〈μE (γi), τj〉 = δij , 〈μE(γi), η1〉 = 0,
• 〈μ̂E (γi), τ̂j〉 = δij , 〈μ̂E(γi), η̂1〉 = 0.

Proof. The assertions for τi and τ̂i are obvious from Proposition 3.1.
On the other hand, the class η1 is represented by a path η̃1 =
{(At,Φt)}t∈[0,1] in C∗ such that At = A0 and Φ1 = −Φ0, and therefore
(A1,Φ1) is gauge equivalent to (A0,Φ0) by the constant gauge transfor-
mation −1. q.e.d.

Remark 3.4. For each γi as above, the holonomy map Holγi : A/G →
S1 represents a cohomology class γ̄i in H1(A/G;Z) ∼= [A/G, S1]. In fact,
(γ̄1, . . . , γ̄b) gives a basis for H1(A/G;Z).
3.2. μ-map (2). We define the second μ-map μF . When we define

the involution I on X̃ × C by I(x, v) = (ιx, v̄), we have an R2-bundle

E0 = (X̃ ×C)/I over X which is identified with R⊕ (l⊗√−1R). Then

G = Γ(X̃ ×{±1} U(1)) naturally acts on E0 by (x, v) �→ (x, u(x)v). Let

π : X × C∗ → X be the projection, and define the R2-bundle F over
X × B∗ by F = π∗E0/G. By using the Stiefel-Whitney class w2(F) ∈
H2(X × B∗;Z2), define the μ-map μF for k = 0, 1 as follows:

μF : Hk(X;Z2) → H2−k(B∗;Z2), μF (α) = w2(F)/α.

Let us consider the case when α ∈ H1(X;Z2). By the universal
coefficient theorem, we have a split exact sequence

0 → H1(X; l) ⊗ Z2 → H1(X;Z2) → Tor(H0(X; l),Z2) → 0.

Then there is a loop ν in X such that

(N) the homology class of ν in H1(X;Z) corresponds to the generator
of Tor(H0(X; l),Z2) ∼= Z2.

Let η1 and τ1, . . . , τb be the basis for H1(B∗;Z2) = HP ⊕HT as in §3.1.
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Proposition 3.5. 〈μF (ν), η1〉 = 1, and 〈μF (ν), τi〉 = 0 for any i.

Proof. As in the proof of Corollary 3.3, the class η1 is represented by
a path η̃1 = {(At,Φt)}t∈[0,1] in C∗ such that At = A0 and (A1,Φ1) =
(−1)(A0,Φ0). Then F|ν×η1 is identified with [0, 1]× [0, 1]×C/ ∼, where

(0, y, v) ∼ (1, y, v̄), (x, 0, v) ∼ (x, 1,−v).

In other words, when πi : S
1×S1 → S1 is the i-th projection and ε → S1

is a nontrivial R-bundle over S1,

F|ν×η1 ∼= π∗2ε⊕ (π∗1ε⊗ π∗2ε).

Then the first assertion follows because w2(F|ν×η1) = w1(π
∗
2ε)w1(π

∗
1ε⊗

π∗2ε) is the generator of H2(ν × η;Z2).
Recall that π0G ∼= H1(X; l) ⊕ Z2. For the dual basis γ̌i ∈ H1(X; l)

of γi ∈ H1(X; l), we can take ui ∈ G representing γ̌i. Then ui|ν � 1,
and we may assume ui|ν = 1. The homology class τi ∈ H1(X;Z2)
is represented by a path τ̃i = {(At,Φt)}t∈[0,1] such that Φ1 = uiΦ0 and

At = A0+t(2u−1i dui). Then F|ν×τi can be identified with [0, 1]× [0, 1]×
C/ ∼, where

(0, y, v) ∼ (1, y, v̄), (x, 0, v) ∼ (x, 1, v).

Hence w2(F|ν×τi) is 0. q.e.d.

Corollary 3.6. H∗(B∗;Z2) is generated by μF (ν) and μE(γi) for
i = 1, . . . , b.

Next we consider μF (x0) for a generator x0 of H0(X;Z2).

Proposition 3.7. μF (x0) = μF (ν) ∪ μF (ν).

Proof. Since B∗ � RP∞×T b, H2(B∗;Z2) is generated by

• η2 corresponding to the generator of H2(RP
∞;Z2),

• η1 ⊗ τj, where η1 and τj are as in §3.1, and
• τi × τj (i 	= j).

First we prove that 〈μF (x), η2〉 	= 0. Fix an O(2)-connection A0 on
E, and choose φ0, φ1, φ2 ∈ Γ(S+) which are linearly independent. Let
S be the 2-sphere in C∗ defined as

S = {A0} × {pφ0 + qφ1 + rφ2 | p, q, r ∈ R, p2 + q2 + r2 = 1 }.
Then the class η2 is represented by [S/{±1}]. Let ε → RP2 be the
canonical line bundle. We see that F|{x0}×S/{±1} is isomorphic to ε⊕ ε.

Next we prove that 〈μF (x), η1 ⊗ τi〉 = 〈μF (x), τi × τj〉 = 0. As in
the proof of Proposition 3.5, we can choose ui ∈ G representing γ̌i.
We may assume ui(x0) = 1. The homology class τi ∈ H1(X;Z2) is
represented by a path τ̃i = {(At,Φt)}t∈[0,1] such that Φ1 = uiΦ0 and

At = A0 + t(2u−1i dui). Then we can see that
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w2(F|{x0}×(η1×τi)) = w2(F|{x0}×(τi×τj)) = 0.

q.e.d.

For cohomology classes of B∗, let
ν∗ = μF (ν), γ∗i = μE(γi), γ̂∗i = μ̂E(γi).

Then, for example, H∗(B;Z2) can be written as

H∗(B;Z2) = Z2[ν
∗]⊗

∧
(Z2γ

∗
1 ⊕ · · · ⊕ Z2γ

∗
b ),

and a cohomology class ξ ∈ H∗(B;Z2) can be written as

ξ = (ν∗)a
∏
i∈I

γ∗i ,

where a is a non-negative integer and I is a subset of {1, . . . , b}.
For a Spinc(untwisted Spinc−)-structure, we have the μ-map of ordi-

nary Seiberg-Witten theory ([20], §9):
μ0 : Hk(X;Z) → H2−k(B∗;Z) (k = 0, 1).

For x ∈ H0(X;Z) and γ ∈ H1(X;Z), let x∗ = μ0(x), γ
∗ = μ0(γ).

3.3. Cutting down the moduli spaces. The purpose of this subsec-
tion is to construct the submanifolds in the moduli spaces which are dual
to the classes μF (ν), μF (x0) and μE(γi). (Cf. [4], §5.2 and [19], §9.)
For a loop ν in X as in §3.2, fix a tubular neighborhood n(ν) of ν which
is a smooth open submanifold with smooth boundary in X. Let C∗n(ν) be
the space of irreducible configurations on n(ν), Gn(ν) be the gauge trans-
formation group and B∗n(ν) = C∗n(ν)/Gn(ν). Note that π0Gn(ν) = {±1}.
Let Gn(ν) act on R via the projection Gn(ν) → π0Gn(ν) = {±1} and the
multiplication of {±1}. Dividing by the diagonal action, we obtain a
real line bundle

Lν = C∗n(ν) ×Gn(ν)
R → B∗n(ν).

Suppose thet the moduli space M(X) contains no reducibles and is
perturbed to be a smooth manifold. LetM beM(X) itself or its smooth
submanifold. Since the restriction of an irreducible solution on X to an
open subset of X is also irreducible by the unique continuation property
of the Dirac operator, we have a well-defined restriction map

rν : M → B∗n(ν).
We can choose a section s of Lν so that the pull-back r∗νs is transverse
to the zero-section of r∗νLν ([4], 5.2.2). Then the zero-set of r∗νs is a
codimension-one submanifold of M which is dual to the class μF (ν) in
M , and is denoted by

M ∩ Vν .



Pin−(2)-MONOPOLE INVARIANTS 525

Similarly, for the class μF (x0), we can construct a codimension-two
submanifold of M which is dual to μF (x0) in M , and is denoted by

M ∩ Vx0 .

For the loops γi chosen in §3.1, let Holγi : M → S1 be the smooth map
defined by the holonomy around γi. When we take a regular value θ ∈ S1

of Holγi , the inverse image Hol−1γi (θ) is a codimension-one submanifold
of M which is dual to μE(γi) in M , and is denoted by

M ∩ Vγi .

3.4. Gluing theorems. In this subsection, we state several gluing for-
mulae for Pin−(2)-monopole invariants, which will be proved in later
sections. The formulae have different forms depending on whether the
Spinc−-structures are twisted or untwisted, and the moduli spaces con-
tain reducibles or not. For local coefficients l1 and l2 over X1 and X2, if
both of li are nontrivial, then we have b1(X1#X2; l1#l2) = b1(X1; l1) +
b1(X2; l2) + 1 by the Meyer-Vietoris sequence. Hence there is an extra
generator of H1(X1#X2) which does not come from X1 or X2. On the
other hand, if one of li is trivial, then b1(X1#X2; l1#l2) = b1(X1; l1) +
b1(X2; l2). Choose loops α1, . . . , αb1(l1) in X1, and β1, . . . , βb1(l2) in X2,
where b1(li) = b1(Xi; li) for i = 1, 2, and δ in X1#X2 representing an
extra generator if both of l1 and l2 are nontrivial, such that

• α1, . . . , αb1(l1) and β1, . . . , βb1(l2) satisfy the conditions (C1) and
(C2) in §3.1 for (X1, l1) and (X2, l2), respectively, and

• α1, . . . , αb1(l1), β1, . . . , βb1(l2) and δ (if exists) satisfy the conditions
(C1) and (C2) for (X1#X2, l1#l2). (We assume αi and βj are also
contained in X1#X2.)

For each i = 1, 2, if li is nontrivial, then choose another loop νi in Xi

satisfying the condition (N) before Proposition 3.5. We also assume
that νi is contained in X1#X2.

The first gluing formula is on the gluing of U(1)-irreducible monopoles
and Pin−(2)-reducible monopoles.

Theorem 3.8. Let X1 be a closed oriented connected 4-manifold with
b+(X1) ≥ 2 and a Spinc(untwisted Spinc−)-structure c1. Let X2 be a
closed oriented connected 4-manifold which satisfies the following:

• There exists a nontrivial double covering X̃2 → X2 such that
b+(X2; l2) = 0 where l2 = X̃2 ×{±1} Z.

• There exists a Spinc−-structure c2 on X̃2 → X2 such that c̃1(E)2 =
sign(X2) (and hence the Dirac index is 0 and d(c2) = b1(X2; l2)).

For a cohomology class ξ∈H∗(B∗(X1, c1);Z2)of the form ξ=
∏

i∈I μ0(αi)
where I ⊂ {1, . . . , b1(l1)}, let

ξ′ =
∏
i∈I

μE(αi) ∈ H∗(B∗(X1#X2, c1#c2);Z2).
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Then we have

SWPin(X1#X2, c1#c2)(ξ
′(ν∗2)

2a+1β∗1 · · · β∗b1(l2))
≡ SWU(1)(X1, c1)(ξ(x

∗)a) mod 2.

Theorem 1.7 is a corollary of Theorem 3.8.
The second one is a generalized blow-up formula by the gluing of

Pin−(2)-irreducibles and U(1)-reducibles.

Theorem 3.9 (Cf. [5, 17, 7]). Let X1 be a closed oriented connected
4-manifold with a Spinc−-structure c1 with b+(X1; l1) ≥ 2. Let X2 be
a closed oriented connected 4-manifold with a Spinc(untwisted Spinc−)-
structure c2 such that b1(X2) = b+(X2) = 0 and d(c2) = −1. For any
ξ = (ν∗1 )

a
∏

i∈I α
∗
i where I ⊂ {1, . . . , b1(l1)},

SWPin(X1#X2, c1#c2)(ξ) = SWPin(X1, c1)(ξ).

Remark 3.10. In Theorem 3.9, ξ is assumed to represent both of the
cohomology classes of B∗(X1, c1) and B∗(X1#X2, c1#c2). The similar
remark is valid for the following theorems.

The third one is on the gluing of Pin−(2)-irreducibles and Pin−(2)-
reducibles.

Theorem 3.11. Let X1 be a closed oriented connected 4-manifold
with a twisted Spinc−-structure c1 with b+(X; l1) ≥ 2, and X2 be a
manifold with a Spinc−-structure c2 as in Theorem 3.8. Then, for any
ξ = (ν∗1 )

a
∏

i∈I α
∗
i where I ⊂ {1, . . . , b1(l1)},

SWPin(X1#X2, c1#c2)(ξδ
∗β∗1 · · · β∗b1(l2)) = SWPin(X1, c1)(ξ).

If 4-manifolds X1 and X2 have positive b+, then the Seiberg-Witten
invariants of X1#X2 are always 0. Likewise, the Z2-valued Pin−(2)-
monopole invariants have a similar property.

Theorem 3.12. Let X1 be a closed oriented connected 4-manifold
with a twisted Spinc−-structure c1 with b+(X1; l1) ≥ 1. Let X2 be
a closed oriented connected 4-manifold with a (twisted or untwisted)
Spinc−-structure c2, and suppose one of the following:

(i) b+(X2) ≥ 1 and c2 is an untwisted Spinc−-structure on X2.
(ii) c2 is a twisted Spinc−-structure on X2 with b+(X2; l2) ≥ 1.

Then SWPin(X1#X2, c1#c2)(ξ) = 0 for any class ξ ∈ H∗(B;Z2).

On the other hand, the Z-valued invariants can be nontrivial for a
connected sum X1#X2 even when both of b+(X1; l1) and b+(X2; l2) are
positive. Consider (Xi, li) (i = 0, 1, . . . , n) with nontrivial li. We assume
b1(Xi, li) = 0 for every i. Let X = X0# · · ·#Xn and l = l0# · · ·#ln.
As noticed above, each time we take a connected sum, we have an extra
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generator in the first homology of the connected sum. Choose loops
δ1, . . . , δn in X representing such extra generators in H1(X; l) satisfying
the conditions (C1), (C2).

Theorem 3.13. Let n be any positive integer. For i = 0, 1, . . . , n,
let Xi be a closed oriented connected 4-manifold with a twisted Spinc−-
structure ci satisfying

• b1(Xi; li) = 0, b+(Xi; li) ≥ 2.
• d(ci) = 0, and
• the index of the Dirac operator is positive and even.

Note that in this situation, the moduli space M(Xi, ci) is orientable,
and the Z-valued invariant SWPin

Z (Xi, ci)(1) is defined for a choice of
orientation. Let X = X0# · · ·#Xn and c = c0# · · ·#cn. Then the
glued moduli space M(X, c) is orientable, and

SWPin
Z (X, c)(δ̂∗1 · · · δ̂∗n) = 2n

n∏
i=0

SWPin
Z (Xi, ci)(1),

for a choice of orientation.

3.5. Proofs of Theorem 1.1 and Theorem 1.13. In this subsection,
we prove Theorem 1.1 and Theorem 1.13 by assuming Theorem 3.8 and
Theorem 3.13.

Proof of Theorem 1.1. Let (X2, lX2) be as in Theorem 1.7. Then this
satisfies the conditions for X2 in Theorem 3.8.

For given n, required exotic structures on E(n) can be constructed
by either logarithmic transformation (see e.g., [8]) or Fintushel-Stern’s
knot surgery [6].

First, we discuss on the case of logarithmic transformation. Let
E(n)p.q be the log transformed E(n) with two multiple fibers of mul-
tiplicities p and q. For odd n, all of E(n)p.q with gcd(p, q) = 1 is
homeomorphic to E(n). On the other hand, for even n, E(n)p.q is
homeomorphic to E(n) if and only if gcd(p, q) = 1 and pq is odd. Let
f ∈ H2(E(n)p,q) be the Poincaré dual of the homology class of a regular
fiber. Then there is a primitive class f0 with f = pqf0, and the Poincaré
duals fp and fq of the multiple fibers of p and q are given by fp = qf0
and fq = pf0. If we put

D(a, b, c) = af + bfp + cfq,

then, for n ≥ 2, the canonical class K is given as K = D(n − 2, p −
1, q− 1). The Seiberg-Witten basic classes are given by K − 2D(a, b, c),
where 0 ≤ a ≤ n − 2, 0 ≤ b ≤ p − 1, 0 ≤ c ≤ q − 1, and the value the
Seiberg-Witten invariant for the class K − 2D(a, b, c) is

SWU(1)(E(n)p,q,K − 2D(a, b, c)) = (−1)a
(
n− 2
a

)
,
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which is independent of b and c. Similar facts hold for the case when
n = 1. In general, the number of basic classes whose Seiberg-Witten
invariants are odd is changed if p and q are varied. By using these
facts together with Theorem 3.8, we can find infinitely many {p, q} such
that E(n)p,q#X2 have different numbers of basic classes for Pin−(2)-
monopole invariants.

For a knotK, let E(n)K be the manifold obtained by the knot surgery
on a regular fiber T with K. If we consider the Seiberg-Witten invariant
as a symmetric Laurent polynomial as in [6], the invariant of E(n) is
related to that of E(n)K by

SW
U(1)
E(n)K

= SW
U(1)
E(n)

·ΔK(t),

where t = exp(2[T ]) and ΔK(t) is the (symmetrized) Alexander polyno-
mial of K. Now, let XK = E(n)K , and let us fix a Spinc−-structure c2
on X2 as in Theorem 3.8, and consider a function of Pin−(2)-monopole
invariants of XK#X2,

SWPin
XK#(X2,c2)

: {h ∈ H2(XK ;Z) |h ≡ w2(X) mod 2} → Z2,

which is defined as

SWPin
XK#(X2,c2)

(h) = SWPin(XK#X2, c(h)#c2)(ν
∗
2β
∗
1 · · · β∗b1(l2)),

where c(h) is the Spinc-structure on XK with c1 = h. If we assume
SWPin

XK#(X2,c2)
as a Z2-coefficient polynomial, then Theorem 1.7 implies

that SWPin
XK#(X2,c2)

is the Z2-reduction of the Z-coefficient polynomial

SW
U(1)
E(n)K

. Then we can find infinitely many K so that SWPin
XK#(X2,c2)

are different. q.e.d.

Proof of Theorem 1.13. For each (Ni, li), we have b1(Xi; li) = 0 and
b+(Xi; li) = 2. By Theorem 1.12, there is a twisted Spinc−-structure
ci such that d(ci) = 0, the Dirac index is 2 and SWPin

Z (Xi, ci) is odd.
Then the theorem follows from Theorem 3.13. q.e.d.

4. Pin−(2)-monopole theory on 3-manifolds

Sections 4-6 are devoted to the proof of the gluing theorems in §3.4,
and this preparatory section is on the Pin−(2)-monopole theory on 3-
manifolds. We refer to [12, 7] for the Seiberg-Witten counterpart of the
topics in this section.

4.1. Spinc−-structures on 3-manifolds. Define the group Spinc−(3)
by

Spinc−(3) = Spin(3) ×{±1} Pin−(2) = Sp(1) ×{±1} Pin−(2).
Let Y be an oriented closed connected Riemannian 3-manifold, and
Fr(Y ) its SO(3)-frame bundle. Suppose a double covering Ỹ → Y is
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given. A Spinc−-structure on Ỹ → Y consists of a principal Spinc−(3)-

bundle P and isomorphisms σ : P/Spinc(3) → Ỹ and τ : P/Pin−(2) →
Fr(Y ). The characteristic O(2)-bundle E is defined as E = P/Spin(3).

Remark 4.1. As in the 4-dimensional case, if Ỹ → Y is trivial, then
a Spinc−-structure on Ỹ → Y can be reduced to a Spinc-structure on
Y , and is called untwisted.

Define the action of Spinc−(3) on ImH by

[q, u] · v = qvq−1,

for [q, u] ∈ Spinc−(3) and v ∈ ImH. Then the associated bundle
P ×Spinc−(3) ImH is identified with the tangent bundle TY . Define
the Spinc−(3)-action on H by

[q, u] · ψ = qψu−1,

for [q, u] ∈ Spinc−(3) and ψ ∈ H. Then we obtain the associated bundle
S = P ×Spinc−(3) H which is the spinor bundle for the Spinc−-structure.

The Clifford multiplication is defined as follows. The identity compo-
nent of Spinc−(3) is Spinc(3), and the quotient group Spinc−(3)/Spinc(3)
is isomorphic to {±1}. Let C− be a copy of C with the {±1}-action
by complex conjugation. Then Spinc−(3) acts on C− via the projection
Spinc−(3) → Spinc−(3)/Spinc(3) = {±1}. If we define

ρ0 : (ImH)⊗R C− ×H → H

by ρ0(v ⊗ a, ψ) = v̄ψā, then ρ0 is Spinc−(3)-equivariant. Let K =

Ỹ ×{±1} C−. Then we can define the Clifford multiplication

ρ : T ∗Y ⊗R K → Hom(S, S),

which induces
ρ : Ω1(Y ;K)× Γ(S) → Γ(S).

Note that K = R ⊕ iλ, and so Ω1(Y ;K) = Ω1(Y ;R) ⊕ Ω1(Y ; iλ). Al-
though the spinor bundle S does not have an ordinary hermitian inner
product, the pointwise twisted hermitian product

(4.2) 〈·, ·〉K,x : Sx × Sx → Kx

is defined. For α⊗ 1 ∈ T ∗Y ⊗K, the image ρ(α⊗ 1) is a traceless endo-
morphism which is skew-adjoint with respect to the inner product (4.2).
The whole image of T ∗Y by ρ forms the subbundle of Hom(S, S), which
we write as s̃u(S), equipped with the inner product 1

2 tr(a
∗b). When

{e1, e2, e3} is an oriented frame on Λ1(Y ), we assume the orientation
convention

ρ(e1)ρ(e2)ρ(e3) = 1.

We extends ρ to forms by the rule,

ρ(α ∧ β) =
1

2

(
ρ(α)ρ(β) + (−1)deg αdeg βρ(β)ρ(α)

)
.
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The orientation convention implies ρ(∗α) = −ρ(α) for 1-forms.

4.2. Pin−(2)-monopole equations on 3-manifolds. An O(2)-con-
nection B on E together with the Levi-Civita connection defines a
Spinc−(3)-connection on P . Then we have the Dirac operator DB : Γ(S)
→ Γ(S) associated to B.

The bundle Λ1(Y ) ⊗R iλ is also associated with P as follows. Let
ε : Pin−(2) → Pin−(2)/U(1) ∼= {±1} be the projection, and let
Spinc−(3) act on ImH by

v ∈ ImH → ε(u)qvq−1 for [q, u] ∈ Spinc−(3).

Then Λ1(Y )⊗R iλ is identified with P×Spinc−(3) ImH. For ψ ∈ H, ψiψ̄ is

in ImH. Then the map ψ ∈ H → ψiψ̄ ∈ ImH is Spinc−(3)-equivariant,
and induces a quadratic map

q : Γ(S) → Ω1(Y ; iλ).

For a closed 2-form η ∈ Ω2(iλ), the perturbed Pin−(2)-monopole equa-
tions on Y are defined as

(4.3)

⎧⎨
⎩

DBΨ = 0,

−1

2
(∗(FB + η)) = q(Ψ),

for O(2)-connections B on E and Ψ ∈ Γ(S). The gauge transformation
group is given by

GY = Γ(Ỹ ×{±1} U(1)),
where {±1} acts on U(1) by complex conjugation.

Remark 4.4. If the Spinc−-structure is untwisted, then the 3-di-
mensional Pin−(2)-monopole equations are also identified with the 3-
dimensional Seiberg-Witten equations.

4.3. Pin−(2)-Chern-Simons-Dirac functional. Choose a reference
O(2)-connection B0 on E. Let A(E) be the space of O(2)-connections
on E, and C = A(E)× Γ(S).

Definition 4.5. Let η be a closed 2-form in Ω2(λ). The (perturbed)
Pin−(2)-Chern-Simons-Dirac functional ϑ : C → R is defined by
(4.6)

ϑ(B,Ψ) = −1

8

∫
Y
(B −B0) ∧ (FB + FB0 + iη) +

1

2

∫
Y
〈DBΨ,Ψ〉RdvolY .

A few comments on the definition. For α ∈ Ω1(iλ) and β ∈ Ω2(iλ),
α∧ β is in Ω3(Y ;R) since λ⊗2 is trivial. The inner product 〈·, ·〉R is the
real part of (4.2).
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The tangent space of C at (B,Ψ) is T(B,Ψ)C = Ω1(iλ) ⊕ Γ(S). We

equip the tangent space with an L2 metric. Then the gradient of ϑ with
respect to the L2-metric is given by

∇ϑ =

(
1

2
(∗(FB + iη)) + q(Ψ),DBΨ

)
.

Hence the critical points of ϑ are the solutions of the Pin−(2)-monopole
equations on Y .

For a critical point (B,Ψ) of ϑ, let H(B,Ψ) : Ω
1(iλ)⊕Γ(S) → Ω1(iλ)⊕

Γ(S) be the derivative of ∇ϑ at (B,Ψ) given as

H(B,Ψ)(b, ψ) =

(
1

2
∗ db−DqΨ(ψ),−DBψ − 1

2
bΨ

)
,

where DqΨ is the linearization of q. A critical point (B,Ψ) is called non-
degenerate if the middle cohomology group of the following complex is
0:

Ω0(iλ)
IΨ−−−−→ Ω1(iλ) ⊕ Γ(S)

H(B,Ψ)−−−−→ Ω1(iλ)⊕ Γ(S),

where IΨ is defined by IΨ(f) = (−2df, fΨ).
For g ∈ GY , g

−1dg is an iλ-valued 1-form, and the λ-valued 1-form
1
2πig

−1dg represents an integral class [g] ∈ H1(Y ; l)/Tor.

Proposition 4.7. For (B,Ψ) ∈ C and g ∈ GY ,

ϑ(g(B,Ψ)) − ϑ(B,Ψ) = 2π([g] ∪ (πc̃1(E)− [η])[Y ],

where [η] ∈ H2(Y ;λ) is the de Rham cohomology class of η.

4.4. Non-degenerate critical point on S3. Here, we suppose Y =
S3 with a positive scalar curvature metric. Since S3 is simply-connected,
every Spinc−-structure is untwisted. This is unique up to isomorphism
and identified with a unique Spinc-structure. For a positive scalar curva-
ture metric, every monopole solution is a reducible one, say (θ, 0), which
is unique up to gauge. Furthermore, the kernel of the Dirac operator
Dθ is trivial. Since the index of Dθ is 0, the cokernel is also trivial, and
this implies (θ, 0) is nondegerate. The stabilizer of (θ, 0) of the gauge
group action is denoted by Γθ:

Γθ = {g ∈ Map(S3; U(1)) | g(θ, 0) = (θ, 0)}.
Note that Γθ

∼= S1.

5. Pin−(2)-monopoles on a 4-manifold with a tubular end

In this section, we continue the preparation for gluing, and discuss
on finite energy Pin−(2)-monopoles on 4-manifolds with tubular ends.
We refer to [3] as well as [12, 7].
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5.1. Setting. Let X be a Riemannian 4-manifold with a Spinc−-struc-
ture containing a tubular end [−1,∞) × Y , where Y is a closed, con-
nected, Riemannian 3-manifold with a Spinc−-structure. More precisely,
suppose we are given

(1) an orientation preserving isometric embedding i : [−1,∞)× Y →
X such that

Xt = X \ i((t,∞) × Y )

is compact for any t ≥ −1,
(2) an isomorphism between Spinc−-structure on [−1,∞)×Y induced

from Y and the one inherited from X via the embedding i.

Remark 5.1. If the Spinc−-structure on X is twisted but its restric-
tion on the tube [−1,∞)×Y is untwisted, then the double cover X̃ has
two tubular ends.

In order to define weighted Sobolev norms on various sections over X,
take a C∞-function w : X → R such that

(5.2) w(t) =

{
1 on X−1

eαt for (t, y) ∈ [0,∞)× Y

where α is a small positive number which will been chosen later to be
suitable for our purpose. For a nonnegative integer k, we will use the
weighted Sobolev norm of a section f (e.g., a form or a spinor) on X
given by

‖f‖
L2,w
k

= ‖wf‖L2
k
.

Let X1 and X2 be 4-manifolds with tubular ends as above with iso-
metric embeddings

i1 : [−1,∞) × Y → X1, i2 : [−1,∞) × Ȳ → X2,

where Ȳ is Y with opposite orientation. For T ≥ 0, let X#T be the
manifold obtained by gluing X2T

1 and X2T
2 via the identification

i1(t, y) ∼ i2(2T − t, y).

Then we naturally have an isometric embedding of a neck iT : [−T, T ]×
Y → X#T . (Here, the negative side is connected to X0

1 and the positive
side to X0

2 .) When we take functions w1, w2 as (5.2), a continuous
function wT : X

#T → R is induced by gluing w1 and w2 such that

(5.3) wT (t) = eα(T−|t|)

for (t, y) ∈ [−T, T ] × Y . For the sections over X#T , we will use the
weighted norm

‖f‖
L
2,wT
k

= ‖wT f‖L2
k
.
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5.2. Exponential decay. The purpose of this subsection is to give ex-
ponential decay estimates for Pin−(2)-monopoles on a cylinder [0,∞)×
Y and a band (−T, T )× Y . Since a Pin−(2)-monopole on an untwisted
Spinc−-structure is identified with an ordinary Seiberg-Witten mono-
pole, the estimates for Seiberg-Witten monopoles on a cylinder [0,∞)×
Y hold for Pin−(2)-monopoles on an untwisted Spinc−-structure. On
the other hand, we can also obtain an estimate for Pin−(2)-monopoles
on a twisted Spinc−-structure by lifting everything to the double cover
[0,∞)×Ỹ on which the corresponding Spinc−-structure is untwisted and
applying the estimate for the Seiberg-Witten monopole. Thus, invoking
the results due to Froyshov [7] for the Seiberg-Witten monopoles, we
obtain the estimates for Pin−(2)-monopoles as follows.

Let β be a nondegenerate monopole over Y , and U ⊂ BY is an L2-
closed subset which contains no monopoles except perhaps [β]. Define
Bt = [t− 1, t+ 1]× Y .

Theorem 5.4 ([7], Theorem 6.3.1.). There exists a constant λ+

which has the following significance. For any C > 0, there exist con-
stants ε and Ck for nonnegative integer k such that the following holds.
Let x = (A,Φ) be a Pin−(2)-monopole in temporal gauge over (−2,∞)×
Y such that x(t) ∈ U for some t ≥ 0. Set

ν̄ = ‖∇ϑ‖L2((−2,∞)×Y ), ν(t) = ‖∇ϑ‖L2(Bt).

If ‖Φ‖∞ ≤ C and ν̄ ≤ ε then there is a smooth Pin−(2)-monopole α
over Y , gauge equivalent to β, such that if B is the connection part of
π∗α then for every t ≥ 1 and nonnegative integer k one has

sup
y∈Y

|∇k
B(x− π∗α)|(t,y) ≤ Ck

√
ν(0)e−λ

+t.

Theorem 5.5 ([7], Theorem 6.3.2.). There exists a constant λ+

which has the following significance. For any C > 0, there exist con-
stants ε and Ck for nonnegative integer k such that the following holds
for every T > 1. Let x = (A,Φ) be a Pin−(2)-monopole in temporal
gauge over the band [−T − 2, T + 2] × Y such that x(t) ∈ U for some
t ∈ [−T − 2, T + 2]. Set

ν̄ = ‖∇ϑ‖L2([−T−2,T+2]×Y ), ν(t) = ‖∇ϑ‖L2(Bt).

If ‖Φ‖∞ ≤ C and ν̄ ≤ ε then there is a smooth Pin−(2)-monopole α
over Y , gauge equivalent to β, such that if B is the connection part of
π∗α then for every t ≤ T − 1 and nonnegative integer k one has

sup
y∈Y

|∇k
B(x− π∗α)|(t,y) ≤ Ck(ν(−T ) + ν(T ))1/2e−λ

+(T−|t|).
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5.3. Energy. Let Z be a Riemannian Spinc−-4-manifold possibly non-
compact or with boundaries, such as X with a tubular end, or its com-
pact submanifolds Xt or a compact tube [a, b] × Y . Let μ be a closed
2-form in Ω2(iλ), and assume μ is the pull-back of η on the tube. For
configurations (A,Φ), we define the energy by

E(A,Φ) = 1

4

∫
Z
|FA − μ|2 +

∫
Z
|∇AΦ|2

+
1

4

∫
Z

(
|Φ|2 + s

2

)2
−

∫
Z

s2

16
+ 2

∫
Z
〈Φ, ρ(μ)Φ〉,

where s is the scalar curvature.

Proposition 5.6 ([12], Chapter II and Chapter VIII). (1) If (A,Φ)
is a Pin−(2)-monopole on Z = XT with a finite cylinder (−1, T ] × Y
near the boundary Y , then

E(A,Φ) = 1

4

∫
Z
(FA − μ) ∧ (FA − μ)−

∫
Y
〈Φ|Y ,DB(Φ|Y )〉,

where B is the boundary connection induced from A.
(2) If (A,Φ) is a Pin−(2)-monopole on [t0, t1] × Y in temporal gauge,
then

1

2
E(A,Φ) = ϑ(A(t1),Φ(t1))− ϑ(A(t0),Φ(t0)).

5.4. Compactness. We invoke a compactness result due to Kronheim-
er and Mrowka.

Proposition 5.7 ([12], Theorem 5.1.1). Let Z be a compact Rie-
mannian Spinc−-4-manifold with boundary. Suppose there exists a con-
stant C so that a sequence (An,Φn) of smooth solutions to Pin−(2)-
monopole equations satisfies the bound E(An,Φn) ≤ C. Then there
exists a sequence gn of (smooth) gauge transformations with the follow-
ing properties: after passing to a subsequence, the transformed solutions
gn(An,Φn) converges weakly in L2

1 to a L2
1-configuration (A,Φ) on Z,

and converges strongly in C∞ on every interior domain Z ′ ⊂ Z.

Corollary 5.8. Let x(t) = (A(t),Φ(t)) be a smooth monopole on
[−1,∞)×Y in temporal gauge. If E(A,Φ) is finite, then [x(t)] converges
in BY to some critical point as t → ∞.

Proof. By translation, (AT ,ΦT ) = (A,Φ)|[T−1,T+1]×Y can be consid-
ered as a monopole on [−1, 1]×Y . Let Tn be any sequence with Tn → ∞
as n → ∞. Since E(A,Φ) is finite, E(ATn ,ΦTn) → 0 as n → ∞. Then,
after some gauge transformations, we may assume (ATn ,ΦTn) converges
in C∞ on (−1, 1)×Y to the pull-back of some critical point. From this,
the corollary is proved. q.e.d.
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Proposition 5.9. Let X be a Spinc−-4-manifold X with an end
[−1,∞) × Y . If a smooth monopole (A,Φ) over X has a finite energy
E(A,Φ), then we have either

Φ = 0, or ‖Φ‖C0 ≤ −1

2
inf
x∈X

s(x) + 4‖μ‖C0 ,

where s is the scalar curvature of X.

Proof. By Corollary 5.8, we may assume (A,Φ) converges to a mono-
pole (B,Ψ) on Y . If |Φ| takes its maximum on X, then the argu-
ment in [11], Lemma 2, implies the proposition. Otherwise we have
‖Φ‖C0 = ‖Ψ‖C0 . Since (B,Ψ) is a 3-dimensional monopole, Ψ also
satisfies

Ψ = 0 or ‖Ψ‖C0 ≤ −1

2
inf
y∈Y

s(y) + 4‖η‖C0 .

q.e.d.

5.5. Weighted moduli spaces. Throughout this subsection, we as-
sume X is a Spinc−-4-manifold with the end [−1,∞)× S3. Let us fix a
smooth reference connection A0 which is the pull-back of θ on the tube
[0,∞) × S3. For later purpose, we choose an integer k so that k ≥ 3.
We consider the space of configurations

Cw = {(A0 + a,Φ) | a ∈ L2,w
k (Λ1(iλ)),Φ ∈ L2,w

k (S+)}.
Let us consider the set of gauge transformations

Gw = {g ∈ L2
k+1,loc(Γ(X̃ ×{±1} U(1))) |∇0g ∈ L2,w

k },
where ∇0 denotes the covariant derivative of A0. We can prove,

Proposition 5.10 ([22], Section 7, Cf. [3], §4.3, [7] Chapter 2).
(1) Let LGw be the set defined by

LGw = {ξ ∈ L2
k+1,loc(Λ

0(iλ)) |∇0ξ ∈ L2,w
k+1}.

Then each element ξ ∈ LGw tends to a limit in Lie Γθ
∼= iR at infinity,

and therefore the evaluation map is defined:

r : LGw → Lie Γθ.

When we define the inner product on LGw by

〈ξ, η〉 = 〈∇0ξ,∇0η〉L2,w
k+1

+ 〈r(ξ), r(η)〉iR, ξ, η ∈ LGw,

LGw is a Hilbert space.
(2) Gw is a Hilbert Lie group which is modeled on the Lie algebra LGw.
Each element g ∈ Gw tends to a limit in Γθ at infinity, and the evalua-
tion map is defined:

R : Gw → Γθ.
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Let Gw
0 be the kernel of R. Then Gw/Gw

0
∼= Γθ. Now the Lie algebra

of Gw
0 is given by

LGw
0 = L2,w

k+1(Λ
0(iλ)).

For a configuration (A,Φ) ∈ Cw, the infinitesimal Gw
0 -action is given

by the map

IΦ : L2,w
k+1(Λ

0(iλ)) → L2,w
k (Λ1(iλ)⊕ S+)

defined by IΦ(f) = (−2df, fΦ). When I∗Φ is the formal adjoint of IΦ,
the adjoint of IΦ with respect to the weighted norm is given by

I∗,wΦ (α) = w−2I∗Φ(w2α).

This gives the decomposition(Cf. [7]):

L2,w
k (Λ1(iλ) ⊕ S+) = (ker I∗,wΦ ⊂ L2,w

k )⊕ IΦ(L2,w
k+1).

Since the Gw
0 -action on Cw is free, the quotient space B̃w = Cw/Gw

0 is a
Hilbert manifold, with a local model

T[(A,Φ)]B̃w = ker I∗,wΦ ∩ L2,w
k .

The Pin−(2)-monopole map is defined as

Θ = Θμ : Cw → L2,w
k−1(Λ

+(iλ)⊕ S−),

Θμ(A,Φ) =

(
1

2
F+
A − q(Φ)− μ,DAΦ

)
,

where μ is a (compact-supported) iλ-valued self-dual 2-form. The mod-
uli space is defined by M = Θ−1(0)/Gw .

Proposition 5.11. The moduli space M is compact.

Proof. Let [(An,Φn)] be any sequence inM. In general, one can prove
that the sequence has a chain convergent subsequence. ([3], Chapter 5
and [7], Chapter 7.) Since there is only one critical point on Y = S3,
the subsequence converges in M. q.e.d.

The differential of Θ at x = (A,Φ) is given by

D(A,Φ) = DΘ: L2,w
k (Λ1(iλ)⊕ S+) → L2,w

k−1(Λ
+(iλ)⊕ S−),

D(A,Φ)(a, φ) =

(
1

2
d+a−DqΦ(φ),DAφ+

1

2
ρ(b)Φ

)
,

where DqΦ is the differential of q. Then

(5.12) D(A,Φ) ◦ IΦ(f) = (0, fDAΦ).

Therefore, if (A,Φ) is a Pin−(2)-monopole solution, thenD(A,Φ)◦IΦ(f)=
0, which forms the deformation complex:

0 −−−−→ L2,w
k+1(Λ

0(iλ))
IΦ−−−−→ L2,w

k (Λ1(iλ)⊕ S+)

D(A,Φ)−−−−→ L2,w
k−1(Λ

+(iλ)⊕ S−) −−−−→ 0.
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The cohomology groups are denoted by H i
(A,Φ).

The monopole map Θ defines a Γθ-invariant section of a bundle over
B̃w whose linearization is given by I∗,wΦ ⊕D(A,Φ). When Y is the standard

S3, the virtual dimension of the moduli space ”framed at infinity” M̃ =
Θ−1(0)/Gw

0 ⊂ B̃w is given by

ind+(I∗Φ ⊕D(A,Φ)) + dimΓθ = d(c) + 1,

where d(c) is in (2.9). The genuine moduli space is M = M̃/Γθ whose

virtual dimension is d(c). In general, M and M̃ are not smooth mani-
folds, and we need to perturb the equations. Before that, we introduce
a term.

Definition 5.13. The moduli space M is said to be regular if all of
elements [(A,Φ)] of M have H2

(A,Φ) = 0.

Remark 5.14. If M contains no reducibles, then H0
(A,Φ) = 0 for all

[(A,Φ)] ∈ M. But the converse is not necessarily true, because the
stabilizer of a Pin−(2)-monopole reducible [(A, 0)] on a twisted Spinc−-
structure is {±1}, and then H0

(A,0) = 0.

If b+(X; l) ≥ 1, by perturbing the equation by adding a compactly-

supported self-dual 2-form as in (2.6), we obtain a smooth M̃:

Theorem 5.15 ([7], Proposition 8.2.1). Suppose b+(X; l) ≥ 1. For
generic compactly-supported self-dual 2-forms, by perturbing the equa-
tions as in (2.6), the perturbed moduli space M̃ is regular and contains
no reducibles, and therefore is a smooth manifold of dimension d(c)+1.
Then M is a smooth manifold of dimension d(c).

When M(X) has no reducibles, the cutting-down method described
in §3.3 works well for M(X) in this section. However, if M(X) con-
tains a reducible, we need a little care for it as follows. Choose loops
γ1, . . . , γb, where b = b1(X; l), satisfying the conditions (C1) and (C2)
in §3.1. Define the map h : M(X) → T b by h = Holγ1 × · · · ×Holγb .

Theorem 5.16. Suppose b+(X; l) = 0, c̃1(E)2 = sign(X) (and hence
the Dirac index is 0 and d(c) = b1(X; l)). For a generic choice of α ∈ T b

and a compactly-supported self-dual 2-form, the cut-down moduli space
M∩ h−1(α) is regular, and therefore consists of one reducible point and
a finite number of irreducible points.

Proof. The proof is similar to that in [16], Subsection 4.8. Due to the
noncompactness of X, we need to modify the following point: The space
L2,w
k (Λ1(iλ)) is decomposed into the direct sum of ker d+ and its com-

plement (ker d+)⊥. Furthermore, since b+(X; l) = 0, d+ : (ker d+)⊥ →
L2,w
k−1(Λ

+(iλ)) is an isomorphism. Mimicking the argument in the proof
of Lemma 14.2.1 of [7], we can prove the following.
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Claim. Fix a compact codimension-0 submanifold K ⊂ X and let
Ω+
X,K(iλ) be the space of smooth self-dual 2-forms on X supported

on K with C∞-topology. For (b, μ) ∈ ker d+ ⊕ Ω+
X,K(iλ), let A(b, μ)

be the connection A0 + b + (d+)−1(μ). Let R be the set of (b, μ) ∈
ker d+⊕Ω+

X,K(iλ) such that DA(b,μ) is surjective, (and hence, of course,

also injective). Then R is open-dense.

Claim. There exists a gauge invariant open-dense subset R′ ⊂ Cw ×
Ω+
X,K(iλ) such that the restriction of the Pin−(2)-monopole map Θμ to

R′ has 0 as regular value.

With these understood,

Z = {(A,Φ, μ) ∈ R′ |Θμ(A,Φ) = 0 }
is a submanifold in R′. Then it suffices to apply the Sard-Smale theorem
to the map

h× π : Z → T b × Ω+
X,K(iλ),

where π is the projection. q.e.d.

6. Proofs of gluing formulae

The purpose of this section is to give proofs of the gluing formulae in
§3.4.
6.1. Gluing monopoles. Let X1 and X2 be Spinc−-4-manifolds with
ends [−1,∞) × Y1 and [−1,∞) × Y2, where Y1 = Ȳ2 = S3. Fix a
reducible solution (θ, 0) on S3, and choose a C∞ reference connection
A0

i on each Xi which is the pull-back of θ on the tube. Let xi = (Ai,Φi)
be finite energy monopole solutions on Xi (i = 1, 2). Furthermore, we
also suppose H2

x1
= H2

x2
= 0. We assume each Ai is in temporal gauge

on the tube, and if necessary, consider it as a one-parameter family of
connections θ+ai(t) on the tube. The spinors Φi are also considered as
one-parameter families Φi(t) on the tube.

Now, we construct an approximated solution on X#T from (A1,Φ1)
and (A2,Φ2) by splicing construction. Choose a smooth cut-off function
γ, with γ(t) = 1 for t ≤ 0 and γ(t) = 0 for t ≥ 1. Define x′1 = (A′1,Φ

′
1)

over X1 by

(6.1)
A′1 =θ + γ(t− T + 3)a1(t),

Φ′1 =γ(t− T + 3)Φ1(t).

Define x′2 = (A′2,Φ
′
2) over X2 in a similar fashion.

Fix an identification of the Spinc−-structures on [0, 2T ] × Y1 and
[0, 2T ] × Y2 with respect to θ. Note that the Spinc−-structures on the
tubes are untwisted, which are identified with ordinary Spinc-structures.
The all possibilities of such identifications are parameterized by Γθ,
which are called the gluing parameters. If we fix an identification σ0,
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then the other identifications are indicated as σ = exp(v)σ0 for v ∈
Lie Γθ

∼= iR. For an identification σ, we can glue x′1 and x′2 via σ to give
a configuration over X#T . The glued configuration is denoted by

x′(σ) = (A′(σ),Φ′(σ)).

Then it is easy to see the following

Proposition 6.2. For each i = 1, 2, let Γi be the stabilizer of the
monopole xi. Then x′(σ1) and x′(σ2) are gauge equivalent if and only
if [σ1] = [σ2] in Γθ/(Γ1 × Γ2), where Γi are the stabilizers of xi.

Let Gl = Γθ/(Γ1 × Γ2). Define the map F′ : Gl → B(X#T ) by the
splicing construction above: [σ] �→ [x′(σ)]. If H2

x1
= H2

x2
= 0 and T is

sufficiently large, then we can find in a unique way a monopole solution
x(σ) on X#T near the spliced configuration x′(σ). (This is standard in
gluing theory. See [4, 3, 7, 17].) Then we have a smooth map

(6.3) F : Gl → M(X#T ), [σ] �→ [x(σ)].

Before proceeding, we give another description of the spliced family
{[x′(σ)]} for gluing parameters σ ∈ Γθ. According to the definition of
x′(σ), for different σ, x′(σ) are objects on different bundles parameter-
ized by σ. It is convenient if we can represent all [x′(σ)] as objects on a
fixed identification, say σ0, of bundles. This is also done in [4], §7.2.4,
in the ASD case.

Recall X#T = X0
1∪([−T, T ]×Y )∪X0

2 , andX2T
1 andX2T

2 are assumed
to be embedded in X#T . Choose a smooth function λ1 on X#T such
that λ1 = 1 on X0

1 , λ1 = 0 on X0
2 and

λ1(t, y) =

{
1 − T ≤ t ≤ −1, y ∈ Y,

0 1 ≤ t ≤ T, y ∈ Y,

and satisfies |∇λ| = O(1). Define another function λ2 on X#T by
λ2 = 1 − λ1. Let v ∈ Lie Γθ = iR, and σ = σ0 exp(v). Define gauge
transformations h1 and h2 on X#T by

(6.4)
h1 =exp(λ2v)

h2 =exp(−λ1v).

Note that h1h
−1
2 = exp(λ1 + λ2)v = exp v. Then h1x

′
1 = h2x

′
2 over

[−2, 2]×Y on which x′1 and x′2 are flat, and therefore we can glue them.
The glued configuration is denoted by x′(σ0, v). Then, by definition, it
can be seen that x′(σ) and x′(σ0, v) are gauge equivalent. Often, we will
not distinguish these two, and use the same symbol x′(σ).

6.2. Gluing maps between the moduli spaces. The gluing con-
struction (6.3) can be globalized to whole moduli spaces. In fact, we
can define the map

Ξ: M̃(X1)×Γθ
M̃(X2) → M(X#T ),
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for sufficiently large T .

Theorem 6.5. Let X1 and X2 be Spinc−-4-manifolds with ends
[−1,∞) × Y1 and [−1,∞) × Y2, where Y1 = Ȳ2 = S3. Suppose the
following.

• The Spinc−-structure on X1 may be twisted or untwisted, and
M(X1) contains no reducibles.

• The Spinc−-structure on X2 is twisted, and M(X2) may contain
a reducibles.

• Both of M(X1) and M(X2) are regular and 0-dimensional.

Then Ξ is a diffeomorphism between 1-dimensional compact manifolds.

Theorem 6.6. Suppose X1 is a Spinc−-4-manifold with the end
[−1,∞)×S3 whose moduli space M(X1) is regular and contains no re-
ducibles. Suppose X2 is a Spinc(untwisted Spinc−)-4-manifold with the
end [−1,∞)×S3 such that b1(X2) = b+(X2) = 0 and dimM(X2) = −1.
Then Ξ induces a diffeomorphism

M(X1) → M(X#T ).

With the results in the previous subsections understood, we can prove
these theorems by a similar way to those of the corresponding theorems
in the Seiberg-Witten and Donaldson theory. (See [4, 3, 7, 17]).

6.3. The images of the map F. To prove the gluing formulae, we
want to know what is the homology class of the image of F in H∗(B).
The homology class depends on whether each of the Spinc−-structures
on X1 and X2 is twisted or untwisted, and whether each of monopoles
x1 and x2 is irreducible or not. We call an irreducible/reducible mono-
pole on a twisted Spinc−-structure Pin−(2)-irreducible/reducible, and an
irreducible/reducible monopole on an untwisted Spinc−-structure U(1)-
irreducible/reducible. We assume that the Spinc−-structures of x2 is

twisted. Then B(X#T ) is homotopy equivalent to RP∞×T b1(X#T ;l).

Let ν∗2 = μF (ν2) and δ̂∗ = μ̂E(δ) for the loops ν2 and δ in X#T chosen
as in §3.4. For monopoles x1 and x2 on X1 and X2, let C be the image
of F. Suppose x1 and x2 are not U(1)-reducible. Then C is a circle.

Theorem 6.7. For the homology classes [C] ∈ H1(B;Z) and [C]2 ∈
H1(B;Z2) of C, we have the following:

(1) If x1 is a U(1)-irreducible and x2 is a Pin−(2)-reducible, then
〈ν∗2 , [C]2〉 	= 0.

(2) If x1 is a U(1)-irreducible and x2 is a Pin−(2)-irreducible, then
[C] = [C]2 = 0.

(3) If x1 is a Pin−(2)-irreducible and x2 is a Pin−(2)-reducible, then

〈δ̂∗, [C]〉 = ±1.

(4) If both of x1 and x2 are Pin−(2)-irreducibles, then 〈δ̂∗, [C]〉 = ±2.
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Before proving the theorem, we give some preliminaries. In the fol-
lowing, we simplify the notation as G = Gw, G0 = Gw

0 and K = Kγ which
is in Remark 2.14. Let K0 = K ∩ G0. For each i = 1, 2, let Si be the set
of solutions which are G-equivalent to xi. Now, we prove the assertions
(1) and (2).

Proof of (1) and (2). We have a commutative diagram whose vertical
and horizontal arrows are exact:

1 1�⏐⏐ �⏐⏐
{±1} {±1}�⏐⏐ �⏐⏐

1 −−−−→ G0 −−−−→ G −−−−→ Γθ −−−−→ 1,�⏐⏐ �⏐⏐ ∥∥∥
1 −−−−→ K0 −−−−→ K −−−−→ Γθ −−−−→ 1,�⏐⏐ �⏐⏐

1 1

We also have the following diagrams of various quotient maps:

S2/K0

{±1}

����
��
��
��
�

Γθ

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

S2/G0

Γθ

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

S1/G0

Γθ

��

S2/K

{±1}����
��
��
��
�

S2/G S1/G
By definition, S1/G and S2/G are one-point sets. Then S1/G0 is a circle
on which Γθ acts freely. Hence, C = ImF can be written as

C = (S1/G0)×Γθ
(S2/G0) =

(S1/G0)×Γθ
(S2/K0)

{±1} = (S2/K0)/{±1}.

First, let us consider the case of (2). In this case, G acts on S2 freely.
Therefore S2/K0

∼= Γθ × {±1}, and we can see that the homology class
of C is zero. In the case of (1), each element of S2 has the stabilizer
{±1} ⊂ G. Since G0 ∩ {±1} = {1}, we see that S2/G0

∼= Γθ/{±1} and
[C] is the generator of H1(RP

∞;Z2) ∼= Z2. q.e.d.
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We give an alternative proof which gives more intuitive understanding
of the homology class of [C].

Alternative proof of (1) and (2). For a section Φi of the spinor bundle
S+
i of ci (i = 1, 2), let Φ′i be the cut-off section as in (6.1). Define

Γ(S+
i )
′ := {Φ′i |Φi ∈ Γ(S+

i ) }.
Let S+

σ0
= S+

1 #σ0S
+
2 be the glued spinor bundle over X#T via the gluing

parameter σ0. Then we can assume Γ(S+
1 )
′ ⊕ Γ(S+

2 )
′ is a subspace of

Γ(S+
σ0
) via the splicing construction. For the monopoles xi = (Ai,Φi)

and σ = σ0 exp(v) (v ∈ Lie Γθ), define the configuration y(σ) on X#T

by

y(σ) = (A′(σ0), (exp(v)Φ
′
1,Φ

′
2))

where (exp(v)Φ′1,Φ
′
2) ∈ Γ(S+

1 )
′⊕Γ(S+

2 )
′ is assumed to be an element of

Γ(S+
σ0
) as above. Then the homology class [C] is represented by

{y(σ)}σ∈Γθ
= {A′(σ0)} × C1 × {Φ′2},

where C1 = {exp(v)Φ′1}v. Note that C1 is a circle in the complex line
generated by Φ′1. Let P = (Γ(S+

σ0
) \ {0})/{±1}. Then P is homotopy

equivalent to RP∞. Consider the following map

q : P → B∗ = C∗/G, [Φ] �→ [(A′(σ0),Φ)].

Then the map q induces an injective homomorphism

q∗ : H∗(P) → H∗(B∗).
If x2 is a Pin−(2)-reducible, then Φ′2 ≡ 0 and [C1 ×{Φ′2}] is a generator
of H1(P;Z2). On the other hand, if x2 is a Pin−(2)-irreducible, then
Φ′2 	= 0 and [C1 × {Φ′2}] is null-homologous. q.e.d.

In order to prove the assertions (3) and (4), we first consider the
gluing of connections. For each i = 1, 2, let Ai be a connection on the
characteristic bundle Ei for ci. For σ ∈ Γθ, let A1#σA2 be the spliced
connection on E = E1#σE2 as in §6.1. Note that A1#σA2 is gauge
equivalent to A1#−σA2, where −σ = σ expπi.

Lemma 6.8. Let S = {[A1#σA2]}σ∈Γθ/{±1} ⊂ A(E)/G be the set
of gauge equivalence classes of the family {A1#σA2}σ∈Γθ

. Then its
homology class [S] ∈ H1(A(E)/G;Z) satisfies the following:

(1) 〈ᾱi, [S]〉 = 〈β̄j , [S]〉 = 0 for i = 1, . . . , b1(l1), j = 1, . . . , b1(l2)),
(2) 〈δ̄, [S]〉 = ±1,

where ᾱi, β̄j , δ ∈ H1(A/G;Z) as in Remark 3.4.

Proof. The assertion (1) is obvious. We prove the assertion (2). Fix
σ0 ∈ Γθ as based point, and the spliced connections A1#σA2 for other
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σ are constructed by using (6.4) as in §6.1. For σ ∈ Γθ, A1#σA2 and
A1#−σA2 are gauge equivalent by the gauge transformation ǧ such that

ǧ =

⎧⎪⎨
⎪⎩

1 on X0
1

−1 on X0
2

exp(λ2πi) on [−T, T ]× Y

where λ2 is the function defined around (6.4). On the other hand, for
any w with 0 < w < π, if we put σw = σ exp(iw), then A1#σA2 and
A1#σwA2 are not gauge equivalent. Therefore S is a circle embedded in
A(E)/G. By taking homotopy class and projection, we have a surjec-
tion ρ : G → H1(X; l)/Tor (see [16], Lemma 4.22). Then it suffices to
prove 〈ρ(ǧ), [δ]〉 = ±1. To see this, consider the following commutative
diagram:

G̃ = Map(X̃; U(1))
ρ̃−−−−→ H1(X̃;Z)

�

�⏐⏐ �′

�⏐⏐
G = Γ(X̃ ×{±1} U(1))

ρ−−−−→ H1(X; l)/Tor,

where the maps � and �′ are the pull-back maps to the double covering
X̃. Note the following:

• The image of � is the fixed point set G̃I , where the I-action is
given by Ig̃ = ι∗g̃.

• Let X̃i (i = 1, 2) be the double coverings of Xi. Then X̃ is the

connected sum “at two points” of X̃1 and X̃2. That is, this is
obtained as follows: For each i = 1, 2, removing two 4-balls from
each of X̃i, we obtain a manifold X̃ ′

i whose boundary Ỹi is a

disjoint union of two S3. Then X̃ = X̃ ′
1 ∪Ỹ1=Ỹ2

X̃ ′
2.

Consider a circle δ̃ embedded in X̃ starting from a point x1 in X̃ ′
1 and

entering X̃ ′
2 via a component of Ỹ1 = Ỹ2 and returning to x1 via another

component of Ỹ1 = Ỹ2. Then the restriction of �(ǧ) to δ̃ gives a degree

one map from δ̃ to U(1). q.e.d.

Proof of (3) and (4). Let us consider the projection

π : C = (S1/G0)×Γθ
(S2/G0) → S,

which is defined by π([x1], [x2]) = [A1#σA2], where each Ai is the con-
nection part of xi. Note that π is a map between two S1. Then, π has
degree 1 in the case of (3), and degree 2 in the case (4). q.e.d.

6.4. Proofs of the gluing theorems.

Proof of Theorem 3.8. First assume d(ci) = dimM(Xi) = 0 for i =
1, 2. For each i = 1, 2, let X ′

i be the manifold with cylindrical end
obtained from removing a 4-ball from Xi. By perturbing the equa-
tions with a compactly-supported 2-form, Theorem 6.6 implies that
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M̃(Xi) ∼= M̃(X ′
i) for a metric on Xi with long neck. By the assump-

tion, M(X ′
1) consists of odd numbers, say k, of U(1)-irreducible points.

The assumption that dimM(X2) = 0 implies bl1 = b1(X2; l2) = 0, and
then M(X2) consists of one Pin−(2)-reducible point and maybe sev-
eral Pin−(2)-irreducible points. By Theorem 6.5, M(X#T ) is a disjoint
union of several circles:

M(X#T ) =
k⋃

i=1

Ci ∪
⋃
j

C ′j ,

where Ci are obtained by gluing U(1)-irreducibles and a Pin−(2)-redu-
cible, and C ′j are made from U(1)-irreducibles and Pin−(2)-irreducibles.

Then Theorem 6.7(1)(2) implies that 〈h, [M(X#T )]〉 = k mod 2, and
this implies the theorem.

In the case when d(c1) or d(c2) is positive, Theorem 6.5 can be gen-
eralized to give the diffeomorphism between 1-dimensional cut-down
moduli spaces:

Ξ: M̃1 ×Γθ
M̃2 → MT ,

where

(6.9)

M̃1 = M̃(X1) ∩
⋂
i∈I

Vαi
∩

a⋂
k=1

Vxk
,

M̃2 = M̃(X2) ∩ h−1(α),

MT = M(X#T ) ∩
⋂
i∈I

Vαi
∩

a⋂
k=1

Vxk
∩ h−1(α),

and M̃1, M̃2 and MT are assumed to be smooth and 1-dimensional.
When N is a closed submanifold of M(X#T ), as a homology class,

[N ∩ Vx0 ] = μF (x0) ∩ [N ] = (μF (ν) ∪ μF (ν)) ∩ [N ].

From these, the theorem follows. q.e.d.

Proof of Theorem 3.9. This is a corollary of Theorem 6.6. q.e.d.

Proof of Theorem 3.11. The proof is similar to that of Theorem 3.8, by
using Theorem 6.7 (3)(4). q.e.d.

Proof of Theorem 3.12. For each i = 1, 2, M(Xi) is perturbed to have
no reducibles since b+(Xi; li) ≥ 1. The cut-down moduli space MT as
in (6.9) is a disjoint union of circles Ci. In the case (i), each Ci is
null-homologous by Theorem 6.7(2). In the case (ii), 〈γ∗0 , [Ci]〉 = ±2 by
Theorem 6.7(4). Therefore the Z2-valued invariant is zero. q.e.d.

By the proof of the case (ii) of Theorem 3.12, Theorem 3.13 is true
if the glued moduli space is orientable. The orientability of the glued
moduli space follows from the next lemma:
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Lemma 6.10. For i = 1, 2, let Xi be a closed oriented connected 4-
manifold with a twisted Spinc−-structure ci whose Dirac index is positive
and even, and Ai be a connection on the characteristic bundle Ei. Then
for S in Lemma 6.8, the restriction of ind δDirac to S, ind(δDirac|S), is
orientable.

Proof. We construct a framing of the index bundle ind(δDirac|S). For
simplicity, we assume indDA2 = 2, and the general case will be clear.
Let us consider the family {DA1#σA2}σ∈Γθ

. By Proposition 2.2 in [1],
we may assume CokerDA1#σA2 = 0 for any σ. Since kerDθ = 0 on S3,
we can construct an isomorphism for each σ ([3], §3.3):

ασ : kerDA1 ⊕ kerDA2 → kerDA1#σA2 .

In the proof of Lemma 6.8, we have seen that A1#σA2 is gauge equiv-
alent to A1#−σA2 by a gauge transformation g. Now we can see that,
for ψ ∈ KerDA1 and φ ∈ KerDA2 ,

ασ(ψ, φ) = gα−σ(ψ,−φ).

Let {ψj} be a basis for kerDA1 , and {φ1, φ2} be a basis for kerDA2 .
Fix σ0 ∈ Γθ and let σw = σ0 exp(iw) for 0 ≤ w ≤ π, and(

φ1
w

φ2
w

)
=

(
cosw − sinw
sinw cosw

)(
φ1

φ2

)
.

Then the following gives a framing for ind(δDirac|S):
{ασw(ψ

j , φ1
w), ασw(ψ

j , φ2
w)}.

q.e.d.

Corollary 6.11. For each i = 1, 2, let Xi be a closed oriented con-
nected 4-manifold with a twisted Spinc−-structure which has the follow-
ing properties:

• the index of the Dirac operator is positive and even, and
• the moduli space M(Xi) is orientable.

Then the glued moduli space M(X1#X2) is also orientable.

Proof of Theorem 3.13. Since each ofM(Xi) is orientable, Corollary 6.11
implies the moduli space of X0# · · ·#Xn is also orientable. The state-
ment for the invariant is proved by Theorem 6.7. q.e.d.

7. Proofs of Theorem 1.15 and Corollary 1.18

We begin with the proof of Theorem 1.15. Our proof of Theorem
1.15 is similar to the proof of Thom conjecture due to Kronheimer and
Mrowka [11]. (Cf. [17].)



546 N. NAKAMURA

7.1. Reduction to the case when α ·α = 0. Suppose n := α ·α > 0.

Let X ′ = X#nCP
2
, and Ei (i = 1, . . . , n) be the (−1)-sphere in the

i-th CP
2
. Take the connected sum in X ′,

Σ′ = Σ#E1# · · ·#En.

Then [Σ′] · [Σ′] = 0.
Even if we replace X by X ′, the Pin−(2)-monopole invariant is un-

changed by Theorem 3.9. Furthermore, even if we replace X̃ by X̃ ′,
the Seiberg-Witten invariant is also unchanged by the ordinary blow-up
formulae [5, 17]. The quantity −χ(Σ) and α · α + |c̃1(E) · α| are also
unchanged. Thus, we may assume α · α = 0.

In the remainder of this section, we suppose (X,α,Σ) satisfies the
assumption of the beginning of §1.3, and

• α = [Σ] ∈ H2(X; l) has infinite order, and
• α · α = 0.

7.2. The case when χ(Σ) > 0. Here, we prove that, under the as-
sumption of Theorem 1.15, the Euler characteristic of Σ cannot be pos-
itive:

Proposition 7.1. If χ(Σ) > 0, then the Pin−(2)-monopole invari-

ants of (X, c) and the Seiberg-Witten invariants of (X̃, c̃) are trivial.

Proof. The Seiberg-Witten case is proved by Theorem 1.1.1 in [7] or
Proposition 4.6.5 in [17]. The Pin−(2)-monopole case is similar. Take

a tubular neighborhood N of Σ, and let Y = ∂N and X0 = X \N .
Then Y admits a positive scalar curvature metric gY . Decompose X as
X = X0 ∪Y N . For a positive real number T , let us insert a cylinder
between X0 and N as:

XT = X0 ∪ ([−T, T ]× Y ) ∪N.

Fix a metric on XT which is product on the cylinder: dt2 + gY . Let
αR be the class in H2(XT ;λ) = H2(XT ; l ⊗ R) corresponding to α ∈
H2(XT ; l). Since α is suuposed to have infinite order, αR is a nonzero
class in H2(XT ;λ). Let a ∈ H2(XT ;λ) be the Kronecker dual of αR

such that 〈a, αR〉 = 1. Then the image of a by the restriction map
r : H2(XT ;λ) → H2(Y ; i∗λ) is also a nonzero class. Choose a 2-form
η ∈ Ω2(Y ; i∗λ) representing r(a). Let us perturb the Pin−(2)-monopole
equations on Y by η as in (4.3). Since every Pin−(2)-monopole solution
for a positive scalar curvature metric gY is reducible, a generic small
choice of η makes the perturbed Chern-Simons-Dirac functional (4.6)
have no critical point. Choose a 2-form μ ∈ iΩ2(X;λ) whose restriction
to the cylinder is the pull-back of iη.

Now suppose the Pin−(2)-monopole invariants of (X, c) is nontrivial.
Then the moduli space M(XT ) is nonempty for all T . Taking the
limit T → ∞, we can obtain a finite energy solution on the manifold
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with cylindrical end, X0 ∪ [−1,∞) × Y . Since a finite energy solution
should converge to a critical point at infinity (Corollary 5.8), this is a
contradiction. q.e.d.

7.3. The case when Σ is nonorientable. Take a tubular neighbor-
hood N of Σ, and let Y = ∂N and X0 = X \N . Decompose X as
X = X0 ∪Y N . For a large T > 0, insert a long cylinder between X0

and N as:

XT = X0 ∪ ([−T, T ]× Y ) ∪N.

Fix a metric on XT which is product on the cylinder: dt2+ gY . (Below,

we will take a special metric gY on Y .) Let X̃T be the associated double
covering. Then

X̃T = X̃0 ∪ ([−T, T ]× Ỹ ) ∪ Ñ ,

where Ỹ = S1×Σ̃ and Ñ = D2×Σ̃. (The object with ˜ is the associated
double covering.) Take the metric gY on Y so that its pull-back metric

on Ỹ = S1 × Σ̃ is of the form

dθ2 + gΣ̃,

where gΣ̃ is the metric with constant scalar curvature −2π(4g(Σ̃)− 4).

Then the volume of Σ̃ is 1.
Now, consider the limit T → ∞. For X̃T , the following is known.

Proposition 7.2 ([11], Proposition 8). If the Seiberg-Witten invari-

ant of (X̃, c̃) is nontrivial, then there is a translation invariant Seiberg-

Witten solution on R× Ỹ .

The same method of proof as in [11] yields the following:

Proposition 7.3. If the Pin−(2)-monopole invariant of (X, c) is non-
trivial, then there exists a translation invariant Pin−(2)-monopole solu-
tion on R× Y .

Under the situation of Proposition 7.3, by pulling back the Pin−(2)-

monopole solution on R×Y to R×Ỹ , we also have a translation invariant
Seiberg-Witten solution on R× Ỹ .

By the argument in [11], the existence of a translation invariant so-

lution on R× Ỹ implies

−χ(Σ̃) ≥ |c1(L)[Σ̃]|,
where L is the determinant line bundle of the Spinc-structure c̃. This
immediately implies

−χ(Σ) ≥ |c̃1(E)[Σ]|.
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7.4. The case when Σ is orientable. Since the restriction of the
local system l to Σ is trivial for orientable Σ, the restrictions of the
Spinc−-structure to Y and N are untwisted. This reduces the argument
to the Seiberg-Witten case [11]. Let us consider the case when the

Seiberg-Witten invariant of (X̃, c̃) is nontrivial. Since Σ is orientable, Σ̃

has two components: Σ̃ = Σ̃1 ∪ Σ̃2. Then take a tubular neighborhood

Ñ1 of Σ̃1, and let Ỹ1 = ∂Ñ1 and X̃0 = X̃ \ Ñ1. Let us consider

X̃ ′
T = X̃0 ∪ ([−T, T ]× Ỹ1) ∪ Ñ1,

for large T . This also reduces the argument to the Seiberg-Witten case
[11].

Proof of Corollary 1.18. Since (ι∗)
2 = id, H2(X̃ ;Q) splits into (±1)-

eigenspaces. Then (−1)-eigenspace is identified with H2(X; l ⊗Q). Let

π : X̃ → X be the projection. Then π∗ : H2(X̃;Q) → H2(X; l ⊗Q) can
be identified with α �→ 1

2 (α−ι∗α). It follows from these and the assump-
tion that Σ∩ ιΣ = ∅ that π(Σ) satisfies the conditions in Theorem 1.16.

q.e.d.
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