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BOUNDS ON GENUS AND GEOMETRIC 
INTERSECTIONS FROM CYLINDRICAL END 

MODULI SPACES

SASO STRLE

Abstract
In this paper we present a way of computing a lower bound for the genus of 
any smooth representative of a homology class of positive self-intersection 
in a smooth four-manifold X  with second positive Betti number =  1.
We study the solutions of the Seiberg-Witten equations on the cylindrical 
end manifold which is the complement of the surface representing the class. 
The result can be formulated as a form of generalized adjunction inequality. 
The bounds obtained depend only on the rational homology type of the 
manifold, and include the Thom conjecture as a special case. We generalize 
this approach to derive lower bounds on the number of intersection points 
of n algebraically disjoint surfaces of positive self-intersection in manifolds 
with 62" (X ) =  n.

Introduction

Seiberg-Witten theory has proved very useful in the study of the 
minimal genus problem. After Kronheimer-Mrowka’s proof of the Thom 
conjecture [6], regarding the minimal genus problem in the complex 
projective plane, the following result (the so-called generalized Thom 
conjecture) was obtained by Morgan-Szabo-Taubes [13] (for classes of 
nonnegative self-intersection) and Ozsvath-Szabo [18] (the general case): 
any smooth symplectic curve in a closed symplectic four-manifold min
imizes the genus in its homology class. Their proofs depend on results 
of Taubes [22] about Seiberg-Witten theory of symplectic manifolds, 
specifically the basic classes of such manifolds. In this paper we present 
a way of deriving genus bounds that does not depend on any special
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structure on the manifold. Rather than working over a closed man
ifold, we study Seiberg-Witten equations on an associated cylindrical 
end manifold; this approach is related to the work of Frpyshov [2]. The 
bounds obtained in this way depend only on the rational homology type 
of the manifold. Since the results are so general, the information about 
a possible symplectic structure on X  is lost; in particular, the bounds 
are independent of (the sign of) the canonical class of X, whereas the 
bounds coming from the generalized Thom conjecture detect differences 
in canonical classes. An important advantage of our approach is that it 
can be used in manifolds with vanishing Seiberg-Witten invariants, in 
particular to study geometric intersections of surfaces.

Consider a divisible homology class G H2(X\ Z) of positive self
intersection in a smooth four-manifold X  with b\(X) =  0 and b^iX) =
1. The divisibility d > 1 of the homology class is crucial (for technical 
reasons) while studying Seiberg-Witten equations on the cylindrical end 
manifold Z  =  X —S, where E is a smooth embedded surface representing 
d£. The end of Z  is modeled on a nontrivial circle bundle Y  over E, 
and we work with Seiberg-Witten solutions on Z  that exponentially 
decay to solutions on Y. This depends on description of the perturbed 
Seiberg-Witten moduli spaces on Y  obtained by Mrowka-Ozsvath-Yu

[15]-
Even though the method requires us to consider a divisible class, 

the main result concerning genus bounds holds for primitive classes as 
well. The bound can be stated in the form of a generalized adjunction 
inequality.

Theorem  A . Let X  be a smooth closed oriented four-manifold with 
b i(X ) =  0 and b ^ X ) =  1. I f  E C X  is a smooth embedded surface of 
positive self-intersection, then

(1) x (S ) +  [E]2 < |(c,[S])|

for any characteristic vector c G H 2(X ) that satisfies c2 >  cr(X).

Based on this inequality it is straightforward to derive minimal genus 
formulae in (rational homology) C P 2, S2 x S2 and C P 2# C P 2. In 
manifolds with rational homology of rational surfaces C P 2# n C P  with 
2 <  n <  9 the results are easiest to state for reduced classes, defined 
by Li-Li [8]. In particular, we prove that for any g >  0 there are only 
finitely many reduced classes of minimal genus g (see Proposition 14.2; 
also see [7]). We note that genuine rational surfaces mentioned above 
are ‘genus-minimal’ in the sense that minimal genus representatives in
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these manifolds have the smallest possible genus among all manifolds 
with the same rational homology type.

Above considerations generalize to manifolds X  with b^iX) =  n 
in a way that allows us to study a collection of n surfaces in X. The 
counterpart of the adjunction inequality is the following result.

Theorem  B. Let X  be a smooth closed connected four-manifold 
with b i(X ) =  0 and b^iX) — n > 1, and let £ ]_,..., £ n be disjoint 
embedded surfaces in X  with positive self-intersections. J / c G  H 2(X ) is 
a characteristic vector satisfying

c2 > d (X ) and (c, [£^]) >  0 for all i,

then

(2) x(£i) + [£*]2 < (c, [Si])
holds for at least one i.

We use this to derive a lower bound on the number of intersec
tion points of surfaces of low genus. For example, suppose that classes 
(p, q, 0,0) and (0,0, r, s) in 2 x S2jfS 2 x S2) are represented by 
spheres in the connected sum S2 x S2jfS 2 x S2. If p, g,r, s >  2 and 
p +  q > r +  5, then the number of intersection points of the two spheres 
is at least

pq +  (r -  l ) (s  -  1).

In general, the lower bound on the number of intersection points ob
tained in this way is roughly by a factor of 2 better than the bounds 
obtained via the G-signature Theorem (see [4]). We also give an exam
ple where the bound on the number of intersection points is optimal.

This paper is divided in two parts. Part I is concerned with technical 
aspects of Seiberg-Witten moduli spaces over cylindrical end manifolds. 
The main results of this part are the dimension formula for the moduli 
space (Corollary 8.2) and compactness and regularity results of Sec
tion 9. In Part II we use results of Part I to derive genus bounds and 
bounds on the number of intersection points of surfaces. We first present 
a derivation of a genus bound in C P 2 (which is equivalent to the Thom 
conjecture) and then proceed to the general case. This is described in 
Theorem 11.1, which can be rephrased as a generalized adjunction in
equality stated above (see Section 12). After that we consider several 
examples in which one can derive explicit formulae for genus bounds
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and address the question of representability. In the last section of the 
paper we turn to geometric intersections of surfaces.
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Part I: Cylindrical end moduli spaces

1. The setup

Throughout X  will denote a smooth closed connected oriented four- 
manifold. If a smooth oriented surface S is embedded in X  so that the 
image of its fundamental homology class [S] in #2 (AT) is not a torsion 
class, we say that S represents this homology class. Denote by N  C  X  a 
compact tubular neighborhood of S. It will be convenient to distinguish 
between dTV, oriented as the boundary of A , and Y  =  —dN, oriented 
as the ‘boundary’ of Z. More precisely, let Zo be the closure of the 
complement of N  in X; then Y  =  dZo and we think of Z  =  X  — E 
as Zo with a half-infinite cylinder attached, Z  — Zo Uy [0, 00) x Y . 
We refer to [0, 00) x Y  as the cylindrical end of Z  and say that the 
end of Z  is modeled on Y . The following proposition summarizes the 
relevant cohomological information about these spaces. Unless specified 
otherwise all the (co)homology groups have integer coefficients.

Proposition  1.1. Let X  be a closed oriented four-manifold and 
let £ C  X  be an embedded surface representing the class d£, where 
£ E H2(X ) is a primitive class of nonzero self-intersection and d >  1 is 
an integer. Denote by N  a compact tubular neighborhood of S and by 
n =  (d£)2 the degree of the circle bundle ON —> S. Then

H'idN)  “  H1̂ ) ,  H2(dN) ^ F 2(S)/n[S]* © H1̂ ) ,

H X(Z ) H 2(Z ) =  H 2(X)/da © F,
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where [E]* denotes the fundamental cohomology class of E, a is the 
Poincare dual of £ and F  is a subgroup of jfif1(E). The restriction 
homomorphism H 2{X ) —* H 2(N ) sends a to d£2[E]* and its image 
is a subgroup of index d. Moreover, the restriction homomorphism 
H 2(Z ) —» H 2{dN) is injective on F.

Proof The cohomology groups of dN  follow easily from the Gysin 
exact sequence of the circle bundle S1 ^  dN  — E with the Chern 
class ci =  n[E]*.

To determine the cohomology of Y, use the Poincare duality and 
excision isomorphisms: H 2(Z ) =  H2(Z ,d N ) =  H2(X ,N ).  The last 
group can be computed using the exact sequence of the pair (X , N ):

HS(X ) ^  H z (X ,N ) -  H2(N ) H2(X ) -  H2(X 9N ) -  H ^ N ).

Since H\(N) is a free abelian group, we have H2(X , N ) =  H2(X)/d£ © 
F ' for some subgroup F ' of H i(N ). Similarly we obtain Frl(Z ) =

From (a, [E]) =  it follows that a G H 2(X ) restricts to d£2[E]* G 
H 2(N ). The remaining claims follow easily. q.e.d.

2. Seiberg-W itten  solutions on a circle bundle

We describe the structure of the moduli spaces of solutions of cer
tain perturbed Seiberg-Witten equations on a circle bundle p : Y  —► E of 
degree n ^  0 over an oriented smooth surface E, studied by Mrowka- 
Ozsvath-Yu [15]. The purpose of the perturbation is to make the equa
tions behave as if the bundle Y  were a product. This is achieved by 
choosing a ‘product’ connection as the background connection in T *Y  
in place of the Levi-Civita connection.

To define the background connection, choose a constant curvature 
metric gy of volume 1 on E; denote by voly the corresponding volume 
form and let uj =  p*(voly) be its pull-back to Y . The circle bundle Y  ad
mits a connection 1-form itp: T Y  —» iH  of constant curvature; observe 
that dtp =  —27too;, since Y  has degree n. This connection determines 
a splitting T *Y  — R ,(p © id, where H  =  p*T*E is the horizontal dis
tribution. A  metric on Y , compatible with this splitting, is given by 
gY =  ip2 +  p*gy; the corresponding volume form is voly =  tp A uo. Note 
that the radius of a fiber circle with respect to this metric is 1. The 
product connection on Y  is defined by V y — d© p *V s , where V s is the
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Levi-Civita connection of (E ,gs). Connection V y is compatible with 
the splitting and the metric. However, it is not torsion-free as Y  —> E 
is a nontrivial bundle.

The trivial Spin0 structure on Y  is the one with the trivial bundle of 
spinors W Y. By viewing W Y as the pull-back of a spinor bundle over E, 
one can endow it with a V y -compatible spin connection that we denote 
by V y as well. The Clifford multiplication in W Y is as follows: vectors 
in H  act via the pull-back action, while ip acts by ± i  on (W Y)± , where 
the splitting W y =  (W Y)+ © (W Y)~ is induced by the splitting of the 
spinor bundle over E.

Given a hermitian line bundle E  —> Y  we say that the Spin0 structure 
on Y  with the bundle of spinors W% — W Y <g>E is determined by E. A  
unitary connection A  in E  induces a spin connection V y ® A in W Y ®E; 
the Dirac operator of this connection is denoted by D a - We need to 
understand the moduli space of solutions of the perturbed 3-dimensional 
Seiberg-Witten equations on Y  (i.e., the equations defined using the 
above Dirac operator) in a given Spin0 structure. The space of reducible 
solutions in the Spin0 structure determined by E  is nonempty only for 
torsion bundles E  (i.e., the ones with torsion Chern class). If A q is a 
smooth flat connection in E , then A q +  ia is a reducible solution if and 
only if a is a closed one-form on Y. This gives an identification between 
the space of reducible solutions and the space of closed one-forms on 
Y. The moduli space of reducible solutions, obtained by dividing the 
space of solutions by the gauge group action, is therefore identified with 
i f ^ y j R V i f ^ Y )  ** H 1{E ;# 1) via the choice of A 0.

Recall that the three-dimensional Seiberg-Witten equations are the 
equations for the critical points of the Chern-Simons-Dirac functional on 
R  x Y  (see [13]). This means that their linearization is self-adjoint, so for 
positive dimensional moduli spaces the linearization of the equations is 
not surjective. The appropriate notion of non-degeneracy of the moduli 
space is the following.

Defin ition 2.1. A  component N  of the moduli space of Seiberg- 
Witten solutions on Y  is (Morse-Bott) nondegenerate, if the kernel of 
the linearization of the Seiberg-Witten equations at (A, <3>) is isomorphic 
to the tangent space to J\f at [A, <E>] for any point [A, $] G J\f.

The following theorem, proved in [15], describes the moduli spaces 
of solutions to the perturbed Seiberg-Witten equations on Y  for various 
Spin0 structures.
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Theorem  2.2. Let Y  be a circle bundle of degree n /  0 over a 
surface E. The space of solutions in the Spinc structure determined by 
E  —> Y  is nonempty only if E  is the pull-back of a line bundle F  —► E. 
Fix such an E and let c =  c i(F ).

(a) The moduli space 71(E) of reducible solutions is homeomorphic to 
the dual torus H 1(E; S1). Moreover, if c ^  0 mod n or if E =  S2, 
this space is nondegenerate. In particular, the above identification 
is a diffeomorphism.

(b) The irreducible components of the moduli space are parameterized 
by line bundles Eq —> E satisfying

c i(E q) =  c mod n and 0 <  \ci(E q)\ < g.

All of these components are compact and nondegenerate; they arise 
as the pull-backs of solutions to the vortex equations on E.

(c) Since the Chern class of the Spin0 structure is torsion, the Chern- 
Simons-Dirac functional descends to a real-valued function on the 
moduli space. If  we normalize it so that it equals 0 on 71(E), then 
its value on the component corresponding to a line bundle Eq is 
87r2(c i(E 0) )2/n.

3. Seiberg-W itten  solutions on a cylinder

The first step in understanding the structure of the space of Seiberg- 
Witten solutions on a manifold with a cylindrical end is to study the 
solutions on the cylindrical part. A  standard approach which guarantees 
good limiting behavior of solutions at infinity is to consider only finite 
energy solutions (see [13] and [12]).

Let (A, \&) be a configuration on [0, oo) x Y  in a temporal gauge; de
note by (At, ^ t) the path of configurations on Y  obtained by restricting 
(A, \&) to the slices t x Y. Recall that the Seiberg-Witten equations on 
the cylinder take the form

=  (*Y ( q ( * t ) - F At),D At* t ).

The energy of a configuration (A, \I>) on [0, oo) x F i n a  temporal gauge 
is given by the square of the L 2-norm of the right-hand side in the above 
equation.
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Any solution on Y, being a critical point of the above equation, 
gives rise to a static solution on the cylinder; such a solution clearly 
has finite energy. Moreover, any finite energy solution on the cylin
der converges to a static solution exponentially fast. This result is 
the Seiberg-Witten analogue of the exponential decay results estab
lished by Morgan-Mrowka-Ruberman [12] in Donaldson’s theory. For 
our purposes, however, we do not need to know that all solutions are 
exponentially decaying to solutions on Y. That is, without referring to 
exponential decay results, we will consider only those configurations on 
the cylinder [0, oo) x Y  that decay exponentially to solutions on Y , for 
some appropriately chosen decay constant.

4. Seiberg-W itten  equations on a cylindrical end manifold

Let Zq denote a compact oriented 4-manifold with boundary, Y, 
a circle bundle of degree n 0 over a surface S. Choose a collar 
[—1,0] x Y  C  Zo and equip Z  =  Z q U [0, oo) x Y  with a cylindrical end 
metric that agrees with dt2 +  gy on [—1, oo) x Y, where gy is the metric 
on Y  described in Section 2. As the background connection V z for the 
Dirac operator we use a metric compatible connection that agrees with 
the Levi-Civita connection on the complement of (—1, oo) x Y  and agrees 
with the pull-back of the connection X Y on the cylinder [0, oo) x Y.

Given a Spin0 structure on Z  we denote the corresponding bundles 
of spinors by W  =  W + (BW~ and the determinant line by L =  det(W + ). 
As the configuration space for the Seiberg-Witten equations on Z  we 
choose the subset of uniformly exponentially decaying configurations. 
The restriction of an exponentially decaying configuration to the end 
[0, oo) x Y  differs from some static solution on the cylinder by a term that 
converges to zero exponentially fast along the cylinder (see Definition 5.1 
for details). We will specify the rate of convergence in Proposition 6.2.

Suppose now that we are in the situation from Section 1: Z  is the 
complement of a representative S of a multiple class d£ in a closed 
manifold X. In this case the following proposition shows that any Spin0 
structure on Z  which admits exponentially decaying solutions arises as 
the restriction of a Spin0 structure on X. We will use this to express 
the dimension of the moduli space of Seiberg-Witten solutions on Z  in 
terms of the invariants of X.
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Proposition  4.1. Let £ C X  be a smooth representative of the class 
d£ and let n =  (d£)2; denote by N  a compact tubular neighborhood ofY, 
and by Z  =  X  — £ t/ie cylindrical end manifold with the end modeled on 
Y . Let S be a Spin0 structure on Z  for which the space of exponentially 
decaying Seiberg- Witten solutions is nonempty.

(a) The restriction of S to Y  is determined by a torsion line bundle 
and it extends to a Spin0 structure on the disk bundle N . We 
fix the extension W N of the trivial Spin0 structure W Y on Y  to 
a Spin0 structure on N , which is uniquely determined by requir
ing that the Chern class of its determinant line is equal to n[£]*. 
Through this choice we obtain a canonical extension of the given 
Spin0 structure S on Z  to a Spin0 structure on X .

(b) Any two Spin0 structures on X  that induce the given Spin0 struc
ture S on Z  differ by a power of the line bundle on X  with the 
Chern class da, where a denotes the Poincare dual of £.

Proof The induced Spin0 structure on Y  is determined by a line 
bundle E  —► Y  satisfying L\y =  E 2. Note that the existence of expo
nentially decaying Seiberg-Witten solutions on Z  implies the existence 
of solutions on Y . Combining this with Theorem 2.2 we conclude that 
the line bundle E  is torsion and hence the pull-back of a line bundle on 
£.

An extension of the trivial Spin0 structure W Y on Y  to a Spin0 
structure on N  is given as follows. Denote by N  —> £ the normal 
bundle of £ in X, considered as a complex line bundle of degree n. A sa  
complex manifold, the line bundle N  carries a canonical Spin0 structure 
with the bundles of spinors W + =  A0 © A0,2 and W~ =  A0,1. These 
bundles are determined up to isomorphism by their restrictions to the 
zero-section £ C N. Note that W ~|s =  N  © iV^1, where K s is the 
canonical bundle of £. The determinant line is therefore isomorphic to 
N  0  K ^ 1. Since the pull-back of N  is trivial over Y , we need to change 
the Spin0 structure by a square root of the pull-back of the canonical 
bundle of £.

A different extension of a Spin0 structure on Z  to a Spin0 structure 
on X  can be obtained by changing the Spin0 structure on TV by a power 
of the pull-back of N  (since this operation preserves the Spin0 structure 
on Y). From c\{N) — (d£)2[£]* and Proposition 1.1 it follows that the 
Chern class of the auxiliary bundle on X  changes under this operation 
by a multiple of da. To see that these are the only possibilities, consider
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two Spin0 structures on X  that differ by a line bundle E. If they restrict 
to give the same Spin0 structure on Z, then E\z is trivial, hence c\(E) 
lies in the kernel of the restriction homomorphism H 2(X ) —► H 2(Z ). 
Recall that this kernel is generated by da. q.e.d.

As in the case of Spin0 structures on Y  we will say that a Spin0 
structure on N  is determined by a line bundle E  —► N  (or by a line 
bundle Eq —> E) if the bundle of spinors is of the form W N ® E  (or 
W N ® p*E0) .

Given a Spin0 structure on X , denote its determinant line by Det. 
With the above notation, we write (ci(Det),£) — k +  (2s +  1 )d£>2 for 
some k E {0 , . . . ,  2d£2 — 1} and s E Z. Note that k is the representative 
of the residue class

(ci(Det),£) +  d£2 mod 2d£2

in {0 , . . . ,  2d£2 — 1}; the purpose of the shift by d£2 is to make k directly 
related to the induced Spin0 structure on Y. Indeed, the induced bundle 
of spinors over N  is determined by a line bundle Eq E with c i(E q) =  e 
satisfying 2e =  d(k +  2sd£>2).

Possible values of k are constrained by the fact that ci(Det) is a 
characteristic class; this motivates the following definition.

Defin ition 4.2. We call k E {0 , . . . ,  2d£2 — 1} a characteristic num
ber for (X , £, d), if there exists a Spin0 structure on X  whose determinant 
line Det satisfies (ci(Det), £) =  k +  (2s +  1 )d£2 for some s E Z.

Clearly the parity of a characteristic number is uniquely determined. 
The following characterization of characteristic numbers is easily veri
fied.

Lem m a 4.3. Let X  be a closed four-manifold, £ E i?2(X ) a prim
itive class of positive self-intersection, and d >  1 an integer. I f  £2 is 
even, then the set of characteristic numbers for (X , £, d) consists of all 
even numbers in {0 , . . . ,  2d£2 — 1}; if t;2 is odd, then the set of char
acteristic numbers consists of all numbers in {0 , . . . ,  2d£2 — 1} with the 
parity opposite to that of d. In particular, kd is even in either case.

5. Configuration space over a cylindrical end manifold

In order to be able to consider the Seiberg-Witten equations on Z  
as an elliptic system of equations we need to choose appropriate func
tion spaces in which to study the equations. Since we chose to work
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with configurations on Z  that uniformly exponentially decay to config
urations on Y , we can work with the weighted Sobolev spaces L 2 s for 
some small 5 >  0. We cannot choose 5 =  0 because with this choice 
the operator on Y, associated to the linearization of the Seiberg-Witten 
equations on Z, has a nontrivial kernel and so the equations are not 
Fredholm (cf. [11]). Recall that the L 2 norm of a function / can be 
defined by ||/||| =  f z \f\2eSr, where r :  Z  —> R  is a smooth function 
that is equal to —1 on the complement of (—1, oo) x Y  and agrees with 
the t coordinate on the cylinder [0, oo) x Y; we further assume that r  
depends only on t and is non-decreasing. Sobolev norms for r >  0 are 
defined analogously.

We are interested in the space of configurations on Z  decaying to 
reducible solutions on Y. Fix for now a Spin0 structure on Z  with 
nonempty space of exponentially decaying Seiberg-Witten solutions with 
reducible limits. For (A, \I/) a smooth solution on Z  denote its asymp
totic value by (B ^ O ). The space of all asymptotic values is an affine 
space whose underlying vector space is the space of imaginary-valued 
closed one-forms on Y. We let B be a smooth unitary connection in L 
(the determinant line of the Spin0 structure on Z ) which agrees with the 
pull-back of Boo on the cylinder [0, oo) x Y. We use the connection B 
(resp. Boo) to identify the space of unitary connections in L  (resp. L\y) 
with the imaginary-valued 1-forms on Z  (resp. Y ).

Rather than working with the full configuration space, we restrict 
the possible asymptotic values of configurations (by fixing the gauge at 
infinity). Specifically, we replace the space of imaginary-valued closed 
one-forms on Y  by the subspace H of imaginary-valued harmonic one- 
forms. Note that the subgroup of the gauge group Qy that acts on H 
consists of harmonic gauge transformations and is therefore isomorphic 
to S1 x B 1(Y ), where S1 corresponds to the constant gauge transfor
mations. However, apart from the constant gauge transformations, the 
only harmonic gauge transformations on Y  that extend to gauge trans
formations on Z  are those that correspond to the classes in the image 
of B ^ Z ) —> B 1(Y ). In our application of the cylindrical end moduli 
space to the genus problem we will assume that b\(Z) — 0. Assuming 
the latter, the gauge group over Z  for the restricted (i.e., gauge-fixed at 
infinity) configuration space consists of the gauge transformations that 
converge to the constant gauge transformations on Y. We will see later 
that the space of solutions on Z  contains reducible configurations, so 
the subgroup of constant gauge transformations does not act freely on 
it. For this reason we consider the based moduli space, obtained by di
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viding the space of solutions by the action of the gauge group based at 
infinity. The group of constant gauge transformations still acts on the 
based moduli space and we will use this action to obtain our results.

Defin ition 5.1. The exponentially decaying configuration space on 
Z, corresponding to the reducible solutions on Y , is defined to be

H x  L\s{iKl {Z )® W + ).

More precisely, the configuration associated to an element (A, a, <1>) is 

(A ,® ) -  (B +  a +  rh ,$ ).

A gauge transformation a G L\ ioc(Z, S1) belongs to the gauge group 
based at infinity, Goo? if there exist a T  >  0 and an / G Lg^QT, oo) x 
Y, iR ) so that the restriction of a to the cylinder [T, oo) x Y  is given by 
<t =  exp (/).

6. Deform ation com plex

Recall that Spin0 structures on Z  with nonempty exponentially de
caying configuration space are induced from X. Moreover, we will con
sider only Spin0 structures on X  for which the induced Spin0 structure 
on Y  is nontrivial, unless S is a sphere; this way the moduli space of re
ducible solutions on Y  is always nondegenerate (Theorem 2.2). Suppose 
(#00,0) is the asymptotic value of a smooth solution (A, \I/) on Z. We 
use the configuration space on Z  as described in Definition 5.1. Since 
the configurations on Z  converge to reducible solutions on Y, Seiberg- 
Witten equations on Z  give rise to a map

(3) SW : © L\s(ik l {Z ) © W +) -► L f>5(iA2’+ (Z ) © W ~).

This is well-defined because all the terms in the Seiberg-Witten map 
exponentially decay to 0 (recall that the multiplication L\ §<g)L\ s —> L\s 
is continuous). The deformation complex 'D(a^ ) ° f  the solution (A, \&), 
taking into account the action of Goo is

(4) 0 -  L l s(Z, iR ) H  © © W +) -

T(A- ^ SW L?)<5(iA2’+ (Z ) © W ~) -► 0,
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where K^A^ ) ( f )  =  (0, 2df, —/4/) is the infinitesimal gauge group action 
and

T(a>*) SW(S, i/j) =  (d+a -  2 Q (tf, ^ ), D A^ +  a -V )

is the linearization of the Seiberg-Witten map at (A, 4/). Here Q is the 
bilinear map associated to the quadratic map q in the Seiberg-Witten 
equations and a — a+ rh  is the one-form on Z  corresponding to (/i, a) G 
H®L\ <5(iA1(Z )). The cohomology groups of this complex provide some 
local information about the based moduli space as described below. We 
first make the following observation.

Lem m a 6.1. The zeroth cohomology group of the deformation com
plex is trivial.

Proof If / G L\^(Z, iR ) is in the kernel of then df =  0.
Thus / is constant and since it converges to 0 at infinity, it must be 
identically equal to zero. q.e.d.

The first cohomology group of the deformation complex (4) is called 
the Zariski tangent space of the moduli space and the second cohomology 
group is called the obstruction space. If (A, 4/) is a regular point for the 
Seiberg-Witten map, then the obstruction space vanishes and the first 
cohomology of the complex is isomorphic to the (geometric) tangent 
space of the moduli space at [A, *?].

We will compute the index of the deformation complex 'D(a ,v ) via 
the index of the fiber complex associated to it; the latter is defined
by the following exact sequence of complexes

o - »  F (a ,v ) —>■ ^{A^) —*• W —>■ 0,

where 7~L denotes the deformation complex of the asymptotic value 
(i?oo,0) of (A, 4/) and the morphism to TL corresponds to taking lim
its at infinity. Here we identified the complex H with its only nonzero 
group (in dimension 1), namely the group of harmonic one-forms on 
Y. The fiber complex differs from the full deformation complex by a 
finite dimensional space H (of dimension 2g, where g is the genus of E), 
hence it suffices to compute the index of the fiber complex. The Fred
holm properties of the fiber complex are determined by the asymptotic 
behavior of its ‘wrapped-up’ form [11], given by (5) below.

Proposition  6.2. There exists do >  0 so that for any 6 G (0 ,5o]> 
the Seiberg-Witten map (3), considered as a map of the spaces of sec
tions, is Fredholm and its index is constant on the configuration space. 
Moreover, the asymptotic map of the linearization has trivial kernel.
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Proof. Let (A, \&) be a configuration on Z  with a reducible asymp
totic value (.BqcO) on Y. The L 2 adjoint K$ of the infinitesimal gauge 
group action K (a^ ) is defined with respect to the following inner prod
ucts: for imaginary-valued forms a and (3 let

(a ,0 )s =  [  a A *P  eSr,
Jz

where * is the complex anti-linear extension of the Hodge star-operator; 
for spinors ^ and (j) let

=  2Re [  (V>(z),(/>(z))eSTvolz .
Jz

Then K ^ (a ^ ) =  2e~6rd*e5ra +  2ilm(\&,<0); after dividing by 2 we 
obtain the ‘wrapped-up’ fiber complex

(5) FS: L ls iiA ^ Z ) © W +) -  L?>tf(iA0(Z ) © iA2’+ (Z ) 0  W ~),

Fs(a, ip) =  (eTSTd*eSTa +  ilm  (\I>, ip), d+a — 2Q('S>,ip), D a^  +  a ■ \I/).

To analyze this map we conjugate it by the isometry Tg =  e~ST: L 2 —> 
L 2, where e =  8/2. This gives a map F  between the spaces of L 2 sections 
that sends (a, i/;) to

/ d*a — £(a, dr) +  ilm  (\I/, V>)
I d+a — e{dr A a )+ — 2Q (^ , VO 
\ D aV> ~ zdr • V> +  ol •

For the purpose of computing the asymptotic operator of F  we only 
need to understand its form on the cylinder C =  [0, oo) x Y . Recall 
that W + =  p ^We over where is the bundle of spinors on Y  and 
P2 : [0, oo) x Y  —> y  is the projection. Moreover, the Clifford multiplica
tion by dt induces an isomorphism between and W ~. The bundles
of forms on the cylinder are given by A 1 (C ) =  P2(A ° (T ) © A X(T ))  and 
A2,+ (C ) =  p^A^T ), where the last isomorphism follows from the fact 
that any self-dual two-form on the cylinder is of the form dt A 7* +  *37* 
for some path 71 of one-forms on Y . Writing a =  ifdt +  i/3, F(i/, i/3, VO 
is given by

{ ^ -^ { f^ -d lP + e f^ i i f ^ -d z f+ n d z P -s ^ ,  ^ - D Booip -£ ip j+ o (l).
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Up to an obvious isomorphism, F  is of the form — G +  o{ 1), where the
asymptotic operator G acts on the space of sections of A ° (T ) © A 1( l r) © 

via the matrix operator

1 d% 0 "
^3 — *3 ds +  £ 0

_ 0 0 D Bqo +  £_

Notice that G splits as the sum of (the perturbations of) the asymptotic 
operators corresponding to the anti-self-duality (ASD) operator and the 
Dirac operator on Y. By results of Lockhart and McOwen [11], the 
operator F  (and hence F$) is Fredholm if the kernel of G is trivial. 
For the ASD part this follows from the computation of the spectrum 
of this operator (see the proof of Proposition 7.2): for £ == 0 the ASD 
asymptotic operator has nontrivial kernel, whereas for positive e the 
kernel is trivial. For the Dirac part recall that by our choice of the Spin0 
structure on X , the space of reducible solutions on Y  in the induced 
Spin0 structure is nondegenerate, hence the kernel of D b^ is trivial. 
Moreover, the spectrum of D b^ depends only on the gauge equivalence 
class of J5oo; from compactness of the fundamental domain for the action 
of the gauge group on the space of flat connections on Y, invertibility of 
the operators, and the fact that D Boo has discrete spectrum, it follows 
that G has trivial kernel for all small enough positive e.

Above we showed that the operator F  (and hence F j), associated 
to an arbitrary configuration (A, \I/), is Fredholm. To finish the proof 
we only need to show that the operator F§ depends continuously on the 
configuration (A, \k). Suppose (A 7, $ ') is another configuration; denote 
the difference (A',\I/') — (A, \k) by (a, <fi). Then the difference of the 
two linearizations is a bilinear map in ((a, </>), (a , '0)). The required 
continuity now follows from the continuity of the Sobolev multiplication

Lh  x L h  -  Lh -  q-e-d-

7, Index o f the deform ation com plex

We use the Atiyah-Patodi-Singer index formula (see [1]) to compute 
the index of the fiber complex. This requires the operator to be in
dependent of the t variable along the cylinder, which is not the case 
at a solution to the Seiberg-Witten equations. However, according to 
Proposition 6.2, the index can be computed using any configuration 
with a reducible limit, in particular one which agrees with the pull-back
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of a reducible configuration on Y  along the cylinder. Recall that the 
Atiyah-Patodi-Singer index can be expressed in terms of the (extended) 
L? solutions; since by Proposition 6.2 the asymptotic operator on L2 has 
no kernel, the Atiyah-Patodi-Singer index of the fiber complex agrees 
with its Fredholm index.

We first recall the relevant results from [1]. Let P q, E\ —> Z\ be 
hermitian vector bundles of the same fiber dimension over Z\ — {z G 
Z  | t ( z ) < 1} and let P : T(E q) —» r (P i )  be an elliptic operator. Assume 
that on the cylinder [0,1] x  Y  C  Z\ we have F  — cr( ~  G), for some 
self-adjoint operator G : T (E ) —> T (P ), where E =  E o\y  and a is an 
isomorphism between Eo and E\ over the cylinder. The new ingredient 
in the index formula (compared to the formula over a closed manifold) 
is a boundary correction term, which is a spectral function of G. More
precisely, let rj(s) =  ^  sign(A)|A|“ s, where A runs over the spectrum of 

Â O
G, be the eta function of G. This series defines a holomorphic function 
in a half-plane Re(z) > zo and extends to a meromorphic function on 
the entire plane; this extension has a finite value at 0. The correction 
term is defined in terms of 77(0) and the dimension h of the kernel of G.

The Atiyah-Patodi-Singer domain of P, denoted by r (P o ,P ),  con
sists of all the sections of Eo whose restriction to the boundary 1 x 7  
of Z\ lies in the kernel of P. Here P  =  P>0: T (P ) T (P ) denotes the 
spectral projection of G, corresponding to the nonnegative eigenvalues, 
i.e., the orthogonal projection onto the subspace spanned by the eigen
vectors of G with nonnegative eigenvalues. Notice that with this choice 
of domain any solution of F  — 0 extends to an L 2 solution on Z .

Theorem  7.1. With the above notation, F : T(Eo^P) T (E i) has 
a finite index given by

indAPSF =  f  k - h ± f )} .
J Z\ 1

where k is a differential form on Z\ determined by F, called the index 
density of F. Moreover, ukU p s P  — h(Eo) — h(E\) — hoo(E{), where 
h{E0) is the dimension of the kernel of F  on the space of L 2 sections on 
Zj h (E i) is the corresponding dimension for the adjoint P* of F, and 
hoo(Ei) is the dimension of the space of asymptotic values of extended 
L? solutions of F*.

To compute the index of the fiber complex we need the signature 
eta invariant of Y, which was computed by Komuro [5], and the eta in
variant of the perturbed Dirac operator on Y  (see Section 2), which was
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computed by Nicolaescu [17]; the latter paper also contains a derivation 
of the index formula.

Proposition  7.2. Let X  be a closed four-manifold and E C X  a 
smooth surface representing the homology class d£, where d >  1 and 
£ G H2(X ) is a primitive class of positive self-intersection. Given a 
Spin0 structure on X  with the determinant line Det, we write

(ci(Det), f ) =  k +  (2s +  1 )d£2

for some characteristic number k and some s G Z .  The index of the 
fiber complex (5), associated to the space of Seiberg-Witten solutions on 
the cylindrical end manifold Z  =  X  — E, that along the end converge to 
a fixed reducible solution (Boc,0), is

(6) i  j f  c i(B )2 -  ^  +  1 +  h (X )  -  b+(X ) -  2g,

where B is a unitary connection in Det|^, which agrees with the pull
back of Boo on the end [0, oo) x Y.

Remark. By rewriting the above dimension formula, one can ob
tain the Frpyshov invariant (see [2]) of the circle bundle Y  for a range 
of Spin0 structures.

Proof We will compute the (real) index of the linearization of the 
Seiberg-Witten map at a configuration (J3,0) with asymptotic value 
(# 00,0). In this case the associated operator F  (defined in the proof of 
Proposition 6.2) on the spaces of L 2 sections takes the form

F(a, 'ip) i—► (d*a, D b P̂) — £((a, dr), (dr A a )+ , dr •tip).

Clearly F  splits as the sum Fo © F\, where Fo is a zeroth-order per
turbation of the anti-self-duality operator A  — d* © and F\ is a 
zeroth-order perturbation of the Dirac operator D b • Hence we can split 
the index computation accordingly.

Index of the anti-self-dual part: For the purpose of invoking the
Atiyah-Patodi-Singer index theorem we complexify the spaces of forms. 
The index density in the statement of Theorem 7.1 depends only on the 
principal symbol of the operator; for Fq it is therefore determined by 
A. The difference in the indices of Fo and A  comes from the correction 
term in the index formula and can be described as the spectral flow 
of a family of associated asymptotic operators as made precise below.
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Notice that A  is (isomorphic to) the adjoint of the operator A+ from [1] 
and we will use the following fact from there. The Atiyah-Patodi-Singer 
index computation gives

+  x (Z ) )  =  f  k -  r̂?sign(0),

where a (Z ) and X(Z ) are the signature and the Euler characteristic of Z  
respectively, k is the index density of A  and r?sign(0) is its eta invariant. 
Therefore we obtain

inda p s (A ) =  ~ — -(/i — 7?sign (0 )) =  —~ (a (Z ) +  x (Z )  +  h)i

where h is the dimension of the kernel of the asymptotic operator

Go
0 3̂
ds — *3 ds

n °(Y ) © n ^ Y ) -> n °(Y ) © n \ Y ).

A pair (/, /3) in the kernel of Go satisfies dy3 =  0 and d^f =  *3̂ 3/? =  0. 
Hence the kernel of Go consists of harmonic forms and we have h =  
1 +  2g. Using this, along with cr(X) =  cr(Z) +  1, X(X ) =  X(Z ) +  2 - 2 g, 
and a (X ) +  X(X ) -  2 -  2b1(X ) +  26+(X ), we obtain a (Z ) +  X(Z ) =  
-1  +  26i(X) +  26+ (X ) +  2g- thus mdAps{A) =  h (X ) -  6+ (X ) -  2g. 

Notice that the asymptotic operator of To is of the form Go +  sE ,

where E =
-1  0
0 1

It will be convenient to consider the family of

operators Gu =  Go+ueE for u E [0,1], connecting the limiting operators 
Go and G\ of A  and To respectively. The difference in the correction 
terms for Go and G\ is equal to the spectral flow of the family Gu. More 
precisely, let rju =  \{hcu +  VGU(0)) denote the reduced eta invariant of 
Gu. From the definition it is clear that rfu has a jump at u =  a only 
if some eigenvalue X(u) of Gu vanishes at a (but is not zero at least on 
one side of u =  a). The case of interest to us is when any eigenvalue 
A(u) behaves in one of the following ways: X(u) =  0 for all u, X(u) 0 
for all u, or A(u) =  0 iff u =  0 and this zero is transverse. Assume first 
that A(u) is the only eigenvalue crossing 0 at u =  0. If A'(0) >  0, then 
771 — 770 5 since at u — 0 the eigenvalue A(0) contributes +1 to h and 
nothing to 77, whereas for u >  0 it contributes +1 to 77 and nothing to 
h. Similar considerations in the case A;(0) <  0 imply that rji =  77b — 
since in this case A(-u) contributes to h and 77 with the opposite signs. 
This clearly generalizes to a finite number of eigenvalues crossing 0 at
u =  0.
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To determine the difference of indices of A  and Fq we therefore need 
to understand the behavior of the eigenvalues of the family Gu. A  pair 
(/,/?) G £l°(Y) © ^ ( T )  in the kernel of Gu satisfies

dip =  euf, dsf -  *3̂ 3/? =  -eu/3.

This implies d^dsf — —u2e2f , which has no solutions for u ^  0 since the 
Laplace operator d̂ ds is positive definite. For u =  0 we computed above 
that the dimension of the kernel is 1 +  2g. The eigenvalue Ai(u) — — eu, 
corresponding to the space of constant functions, has multiplicity 1 (at 
0), whereas the multiplicity of A2 (u) =  eu, corresponding to the space 
of harmonic one-forms, is 2g. We conclude from the previous paragraph 
that rj\ =  rjo — 1, and hence the index of Fo is 1 +  61 (X ) — b% (X ) — 2g.

Index of the Dirac part: Using similar considerations as above we 
see that the index of F\ is equal to the index of D b ] the reason for 
this is that all the asymptotic operators D b^ +  ue are invertible (for 
u G [0,1]) by Theorem 2.2 and our choice of e. The index density of D b 
is | (c i(i? )2—L (V Z)), where L (V Z) =  ^P i(V z ) is the Hirzebruch L-class 
associated to the background connection V z in Z; recall that V z agrees 
with the Levi-Civita connection V LC on the complement of (—1, 00) x Y  
and agrees with the pull-back of V y on [0, 00) x Y . From Theorem 7.1 
we get inda p s (D b ) =  i  Jz (ci (-B)2 “  L (^ Z)) ~ 5VdBoo{Q)- The eta 
invariant of the Dirac operator on Y, coupled to the flat connection 
Boo, was computed in [17] and is equal to

VdBoo (o) =  -
ad2 
~6~

kd
4a +  T ’

where we used the fact that the radius of the fiber circles in Y  is 1. The 
only other term we need to interpret is the integral of the L-class. If we 
were using the Levi-Civita connection as the background connection on 
Z, then we could use the fact that L (V l c ) is the index density of the 
signature operator on Z. In particular, we have cr(Z) =  f z L (V l c ) — 
^sign(O). The signature eta invariant ?7sign(0) for Y  was computed in [5] 
and is given by

✓ n. _ ad2 2ad2 , 9  ̂ s
%ign(0) =  1 ---- -— I--- —  (a d +  2g — 2).

In our case, however, there is another term coming from the difference 
in the L-classes of the two connections: we have

f  L {V Z) =  f  L (V l c ) +  f  L (V Z).
Jz0 Jz-i J[-l,0]xY
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The last term in this expression can be computed explicitly; write V z =  
V°° +  f ( t )a , where V°° denotes the pull-back connection, a — V °° — 
V LC and / is a smooth non-decreasing function that maps [—1,0] onto 
itself. The computation can be done with respect to a local orthonormal 
coframe (991, </?2> <p) on Y, where i<p is the connection of the circle bundle 
Y  —» £ and (< î, ^2) is the pull-back of a local coframe on £. This yields

[ L (VZ) = - ^ f ( a 2d4 + 2g~2)

(see [17] for more details). Note that the index formula gives the com
plex index of the operator F\. q.e.d.

8. Dimension o f the cylindrical end moduli space

To express the formal dimension of the moduli space of Seiberg- 
Witten solutions on the cylindrical end manifold Z  — X  — £ in terms 
of the data on the closed manifold X  we need the following result.

Lem m a 8.1. Let X  be a closed four-manifold and let £  C  X  be 
an embedded surface with self-intersection n 7̂  0 .  Denote by Z  the 
complement X  — £, thought of as a manifold with a cylindrical end 
[ 0 , 00) x  Y. Given a Spin0 structure on X , let p =  (ci(Det), [£]) E  Z, 
where Det —» X  denotes the determinant line of the Spin0 structure. 
For any unitary connection B on L =  Det \z, whose restriction to the 
cylinder [0, 00) x  Y  agrees with the pull-back of a flat connection in 
Det \ yj we have

(7) /  c\{B)2 =  cx(Det)2 — — .
JZ n

Proof. Let Z\ — {z E  Z  | r (z ) < 1} and let Y  be the oriented 
boundary of Z\. We think of X  as the union of Z\ and a compact tubular 
neighborhood N  of £ in X. Denote by [0,1] x Y  the oriented collar to 
the boundary Y  of N. Suppose A  is a connection in Det |w that in a 
neighborhood of the boundary 0 x 7  agrees with the pull-back of i?oo, 
the latter being the limit of B. Then A and B together define a (smooth) 
connection in Det and we have ci(Det)2 =  f z c\{B)2 +  f N c i(A )2. We 
will evaluate the second integral. Combining Proposition 6.2 and the 
index formula (6), we see that, for the purpose of the computation, we 
can choose A to be any connection in Det |w which in a neighborhood of
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Y  agrees with the pull-back of some flat connection in Det|y. In what 
follows we use the notation from Section 2.

Let A\ be the pull-back of a constant curvature connection in Det |y 
to Det |jv; then Fa1 =  —27riptu. We let A =  A\ +  i^f(t)ip , where 
i<p is a constant curvature connection of the circle bundle Y  S and 
/: [0,1] —> [0,1] is a smooth non-increasing function which is identically 
1 in a neighborhood of 0 and identically 0 in a neighborhood of 1. Since 
the degree of Y  is —n, we have dip =  2irnuj, so A is flat close to the 
boundary of N. A  simple computation shows that Fa =  2nip(f(t) — 
l)u> +  i nf'itfd t A ip and hence

Fa A Fa =  -47t—  (/ (f) -  1 ) f ' ( t )  dt A voly.
n

Using this along with vol (Y ) =  2ix and c\(A) =  ^ F a gives

/ Cl(A)2 = 2̂  /‘(/(t) -  l)/'(t)d* =
Jz n Jo n

q.e.d.

Now we can obtain a convenient formula for the (formal) dimension 
of the moduli space of Seiberg-Witten solutions on Z  with reducible 
limits.

Corollary 8.2. Let X  be a closed four-manifold with b\(X) =  0 
and 62" (X ) =  1. Suppose S c  X  is a smooth surface representing the 
homology class d£, where d >  1 and £ £ H z(X ) is a primitive class of 
positive self-intersection. Let Z  — X  — S, thought of as a cylindrical 
end manifold. Given a Spin0 structure on X , letp =  (ci(Det),£), where 
Det —► X  denotes the determinant line of the Spin0 structure; we write 
p =  k +  (2s +  1 )d£2 for some characteristic number k and some s £ 
Z. The formal dimension of the based moduli space of Seiberg-Witten 
solutions on Z  with reducible limits is given by

^  cr(Det)2 — cr(X) , (k -  d ? )2 -  p2
(8) --------- 4--------- + -------- 4 ^ ------- ’

Moreover, this dimension depends only on the induced Spin0 structure 
on Z, i.e., it is independent of s.

Proof. Starting with the index of the fiber complex, given by (6), 
recall from the discussion preceding Proposition 6.2 that we need to 
add 2g to it (where g is the genus of S) to obtain the index of the full
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deformation complex. The formula now follows from the lemma above 
with n =  (d£)2 and p replaced by pd.

Considering ci(Det) as a class in H 2(X ; R ), we write

cr(Det) =  —a +  c 
a

for some c € H 2(X ] R ), where a is the Poincare dual of £ and a =  £2. 
It follows that c U a =  (c, £) =  0, hence ci(Det)2 =  p2/a +  c2, which 
implies the following expression for the formal dimension:

c2 — <y(X) (k — d£2)2
4 +  4£2 '

Note that since a and c are orthogonal and b ^ X )  =  1, c2 cannot be 
positive.

Finally, consider another Spinc structure on X  which, induces the 
same Spin0 structure on Z. Then its determinant line, denoted by Det', 
satisfies ci(Det') =  ci(Det) +  2 sda for some s G Z (Proposition 4 . 1 ) .  
This shows that c', defined analogously as c above, equals c; the last 
assertion of the corollary then follows from the above expression for the 
formal dimension. q.e.d.

9. Compactness and regularity o f the cylindrical end moduli
space

Let S be an embedded surface of positive self-intersection in a closed 
four-manifold X  with b i(X ) =  0. Denote by Z  the complement X  — S, 
thought of as a manifold with a cylindrical end [0, oo) x Y. We topologize 
the moduli space of exponentially decaying Seiberg-Witten solutions 
on Z  by the weakest topology, containing the topology of uniform Ck 
convergence on compact subsets for some k > 3, with respect to which 
the Chern-Simons-Dirac functional along the cylinder is continuous at 
infinity.

Proposition  9.1. Fix a Spin0 structure on X  for which there are 
no irreducible Seiberg- Witten solutions on Y  in the induced Spin0 struc
ture. Then the moduli space of exponentially decaying Seiberg-Witten 
solutions on Z  (in the induced Spin0 structure) with reducible limits is 
compact.
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Proof. Given a sequence (A n, 4/n) of Seiberg-Witten solutions on Z, 
observe that this sequence has a convergent subsequence on any sub
manifold Zt C  Z  (after appropriate changes of gauge). This is essentially 
a consequence of [6, Lemma 4]. The uniform boundedness of |4/n| on Z  
follows from the fact that the configurations converge to zero at infinity, 
and from a standard maximum principle argument [6, Lemma 2]. The 
only difference is that we are not using the Levi-Civita connection as 
the background connection. However, the two Dirac operators differ 
by Clifford multiplication by a one-form f{t)dt, where / is a smooth 
bounded function [15, Lemma 5.2.1], and it easily follows from this that 
the result holds for the perturbed Dirac operator as well.

By the diagonal argument we can find a subsequence of (A n,\I/n) 
which, after appropriate changes of gauge, converges on all compact 
subsets of Z  to some solution (A, 4/) of the Seiberg-Witten equations 
on Z\ we still denote this subsequence by (A n,\I/n). Potential non
compactness therefore arises from the behavior of solutions on the end 
[0, oo) x Y. In particular, the convergence of the sequence (A n,\&n) 
depends on the convergence of the sequence of its asymptotic values. 
Recall that the moduli space of asymptotic values is identified with the 
space H of imaginary valued harmonic one-forms on Y.

We first prove that the sequence of the asymptotic values of (A n, 4>n) 
is bounded; in fact, the moduli space is contained in the fiber of the 
projection to the space of asymptotic values. Let (A, 4/) and (B, <3>) 
be two solutions with reducible asymptotic values. Then a =  A — B 
exponentially decays to a form Dqo £ H. To prove that Qoo =  0 it suffices 
to show that fK =  0 for any embedded circle K  C Y  representing a 
homology class in the kernel of the morphism H\{Y) —► H\(Z). Since 
such a I f  is the boundary of a surface S C Z, this is equivalent to 
Js (Pa ~ Fb ) =  0. As both Fa and Fb represent the same relative 
cohomology class on Z, the claim follows.

Suppose now that [(An,\Vn)\ does not converge to [(A, 4/)] in the 
topology of the moduli space. This means that the Chern-Simons- 
Dirac functional has different values on the asymptotic configurations 
of (A n,4/n) and (A, \k). Then the asymptotic value of (A, \&) is irre
ducible (see [13, Proposition 8.5] for more details), which contradicts 
the assumption that the space of solutions on Y  consists entirely of 
reducibles. q.e.d.

Now we turn to the question of regularity of the moduli space. We 
are particularly interested in the behavior of the Dirac operator at a
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reducible solution; a more general result regarding such Dirac operators 
on a closed manifold is proved in [21]. For technical reasons we choose 
to work with L\8 (k >  4) configuration space.

Proposition  9.2. Let X  be a closed oriented four-manifold with 
b i(X ) =  0 and b^iX) =  1. Suppose that S c l  is a smooth surface of 
positive self-intersection, and let Z  =  X  — E, thought of as a cylindrical 
end manifold. Then for any small enough S >  0 there exists a second 
category subset of imaginary-valued s self-dual two-forms on Z , 
such that for any w e f t  the following holds. For any exponentially de
caying connection A in the determinant line L  —> Z  satisfying F j[ =  w, 
the Dirac operator D a is either injective or surjective. Moreover, the 
irreducible part of the w-perturbed moduli space of exponentially decay
ing Seiberg-Witten solutions on Z  with reducible asymptotic values is a 
smooth orientable finite dimensional manifold.

Proof. Fix a smooth unitary connection Aq in the determinant line 
L  —> Z  and let Af be the manifold of all exponentially decaying config
urations (A, 4/) (with reducible limits) satisfying

T(A,V) = (d¥(A-AQ) ,DA* )  = 0, ^ 0.
To prove that Af is a smooth manifold we need to verify that the differ
ential

D(A,*)T (a, if) =  (d*a, D A^  +  a • ^ ) 

of T  at (A , 4>) is onto. The adjoint of this operator is

(/, x) ^  (df +  i(- • x) -  D aX +  Sdr • x),

where we used the usual L 2 inner product on the space of imaginary 
valued one-forms and the real part of the hermitian L 2 inner product 
on spinors. Expression i(_- 4/, x) denotes the imaginary valued one-form 
characterized by

(a ,i(_- # , x »  =  Re (a • ®,x>,

for all imaginary valued one-forms a.
Rather than proving directly that the kernel of the adjoint is trivial, 

we will replace the adjoint by the operator of the same kind with 5 =  0. 
The injectivity of thus obtained operator D  implies the injectivity of 
the adjoint for 5 >  0 small enough.
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Suppose that D (f ,x )  =  0* Computing with respect to a local or
thonormal coframe {(/?i,. . . ,  ^4}  on Z  we obtain

The first two terms in this expression vanish as 4/ and x  are harmonic. 
Moreover, the one-form inside the last term vanishes for Levi-Civita 
connection. The background connection we are using differs from the 
Levi-Civita connection on the cylinder [0, 00) x Y  by a multiple of

(see [15, Lemma 5.2.1]), where we took ((^1,(^2) to be the pull-back of 
an orthonormal coframe on S and i(ps to be the connection one-form of 
the circle bundle Y. So the last term in the above expression vanishes as 
well. This implies that / is constant, and since / exponentially decays 
to zero, f  — 0. Finally, since (a • 4/, x) — 0 for any ol, where 4/ and x  are 
harmonic, it follows from unique continuation property for harmonic 
spinors that % — 0 (see [14, Lemma 6.2.1]). This proves that J\f is 
smooth. In particular, at any point (A, \k) G A/*,

im D a +  {a  • V \ d*a =  0}  =  L\5(W -).

Let fio be the set of regular values of the map J\f L\ 5(iA2,+ (Z )),
(A, 4/) F^. Given 10 G let (A, 4/) G N  be a point satisfying
n  =  (jJ. Now the differential from the tangent space to N  at (A, 4/) 
to the space of imaginary self-dual two-forms is onto by the choice of
l0. Further, from Hodge decomposition of L\6 forms on Z  (see [10]; 
note that we chose 5 so that the Laplace operator is Fredholm), and the 
assumption H X{Z) — 0, it follows that the space of co-closed one-forms 
maps isomorphically onto the space of self-dual two-forms. Thus for 
any co-closed one-form a there exists a spinor ^ so that D a 'ip +  ol • 4/ =  
0. Combining this with the observation at the end of the previous 
paragraph proves that D a is onto.

The proof of regularity of the irreducible part proceeds as for a closed 
manifold (see [14]); we get a set Qi of regular perturbation parameters 
and let =  Dq H Qi . q.e.d.

id*df =  Re (iDAV, x ) +  ( i* ,  D\X)

0 (p$ (fi2 0 \
-<P3 0 ~P\ 0
—P2 0 0

0 0 0 0 /
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Part II: Genus bounds

10. A n  example: genus bounds in C P 2

Before stating and proving the main theorem (in the next section), 
we will demonstrate the argument in the simplest possible case, for 
X  — C P 2. Let £ =  [C P 1] be the standard generator of then
£2 =  1. We fix d >  1 and consider a smooth genus g representative E 
of the class d£. A  Spin0 structure on X  is uniquely determined by p =  
(ci(Det), £). As before we write p =  k+d for some characteristic number 
k. We will see in the proof of Theorem 11.1 that it suffices to consider 
k G { 0 , . .., d}. Recall from the discussion preceding Definition 4.2 that 
the line bundle, determining the induced Spin0 structure on T , is the 
pull-back of a line bundle Eo —► E with ci(Eo) =  kdj2. According 
to part (b) of Theorem 2.2, irreducible solutions in the given Spin0 
structure on Y  exist only if

(9)

The general formula (8) for the formal dimension of the based moduli 
space of Seiberg-Witten solutions with reducible limits on Z  in the case 
we are considering becomes

(10)
(k -  d)2 - 1  

4

Notice that this number is even and by 1 greater than the expected 
dimension of the moduli space.

Using inequality (9) and the dimension formula (10) we obtain a 
lower bound on the genus g of S based on the following observation (ex
plained in the proof of Theorem 11.1): if the moduli space of Seiberg- 
Witten solutions with reducible limits on Z  is compact and positive 
dimensional, this leads to a contradiction. In other words, using Propo
sition 9.1, if the moduli space is positive dimensional, then (9) must 
hold.

The dimension (10) of the based moduli space is positive for k < d—1 
in the range of fc’s considered. Since d and k have different parity, we 
conclude (for d > 3) that

(d — 3 )d 
9 > S 2
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Since the classes ^ [C P1] for d =  1, 2 are represented by spheres, this 
inequality is equivalent to the Thom conjecture, which was first estab
lished by Kronheimer and Mrowka [6].

Theorem  10.1. Let S C C P 2 represent the class d fCP1] for some 
d >  1. Then the genus g of S satisfies

(11) 9 >
( d - l ) ( d - 2 )

2
Moreover, this lower bound is attained by a smooth holomorphic curve 
representing this homology class.

Remark.

(a) Note that analogous genus bound holds for classes ^ [C P1] with 
d <  — 1, where d gets replaced by \d\ in (11). This observation is 
true in general, since we can always replace £ by — £.

(b) From above computations we see that genus bound (11) holds in 
any X  which is a rational homology C P 2: by possibly changing 
the orientation we can assume that X  is positive definite and let 
£ be a generator of H2{X ). However, it is not true in general that 
this bound is the best possible for any rational homology C P 2. As 
an example, consider Mumford surface [16], which is an algebraic 
surface of general type with the canonical class 3. According to 
the generalized symplectic Thom conjecture (see [13]) the minimal 
genus in the class of multiplicity d >  0 equals

{d +  1) (d +  2)
2 ’

11. The main theorem

In the previous section we saw how the moduli space of Seiberg- 
Witten solutions on the complement of an embedded surface, represent
ing a given homology class in C P 2, can be used to derive a lower bound 
for the genus of any smooth representative of this class. Below we gen
eralize this result to a bigger class of four-manifolds with b%= 1. The 
bound is not explicit, but it can be effectively computed in many spe
cific cases. The idea of the proof is analogous to Kronheimer’s proof of 
Donaldson’s Theorem on definite intersection forms of closed manifolds 
(see [21]).
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Theorem  11.1. Let X  be a smooth closed oriented four-manifold 
with b\{X) =  0 and b$(X) =  1. Suppose E C X  is a smooth sur
face representing homology class d£, where d >  1 and £ G H2(X ) is 
a primitive class of positive self-intersection. Let K  be the set of all 
characteristic numbers k G {0, . ..,d£2}  for (X ,£,d) which satisfy the 
following condition: there exists a Spin0 structure on X  such that

(12) Cl(D e tf > a (X ) +  4kd,

and (ci(Det), £) =  k+d^2, where Det is the determinant line of the Spin0 
structure. Suppose that K  is not empty and let ko be the maximum of 
K. Then the genus g of E satisfies

(13) 9 >
kod
~Y'

Proof. We will use our standard notation Z  — X  ~  E for the cylin
drical end manifold and Y  for the boundary of a tubular neighborhood 
of E (oriented as the ‘boundary’ of Z ). Choose a regular perturbation 
u  G ft (see Proposition 9.2); then the irreducible part M *  of the per
turbed moduli space M  is smooth. Notice that (12) is equivalent to the 
dimension of the (perturbed) based moduli space M  being positive (by 
Corollary 8.2); since this dimension is even, this also implies that the 
dimension of M  is positive. With this remark, the statement of the the
orem is equivalent to the following claim, which we prove below: if the 
moduli space of Seiberg-Witten solutions on Z  is positive dimensional 
for a given Spin0 structure, then it is not compact.

Suppose contrary to the statement of the theorem that for some 
k G K, kdj2 >  g. Fix a Spin0 structure on X  for which (12) holds for k. 
According to part (b) of Theorem 2.2 there are no irreducible solutions 
on Y  in the induced Spin0 structure and therefore the moduli space M  
is compact (see Proposition 9.1).

Next we show that M  contains a unique reducible point [A, 0]. Since 
lj G £1, is a surjection from the space of extended one-forms to the 
space of self-dual two-forms. Hence the equation F~̂  — to has a solution. 
Suppose now that (A A, 0) is another solution and write Af =  A +  ia for 
some one-form a on Z; clearly d+a =  0 and therefore da =  0. By the 
choice of gauge the asymptotic value h of a is harmonic. Since the class 
of a is trivial in H l (Z ] R ), h represents the trivial class in H l {Y; R ), 
hence h — 0. Thus there exists a function / on Z, exponentially decaying 
to 0 at infinity, such that a =  2df, i.e., (A, 0) and (A ',0) are gauge 
equivalent.
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To finish the proof of the claim, we need to understand the structure 
of A f at the reducible point [A, 0]. Recall that the index of the ASD 
part of the linearization at (A , 0) is zero. Since its kernel also vanishes 
(by an argument similar to the one in the previous paragraph), the 
(Zariski) tangent space and the obstruction space at (A, 0) correspond 
to the kernel and cokernel of D a respectively. As we assumed that the 
index is positive, Proposition 9.2 implies that the cokernel of the Dirac 
operator vanishes, so the based moduli space A4 is smooth. The action 
of the group S'1 of constant gauge transformations on the kernel of D a 
is by complex multiplication, hence a closed neighborhood V of [A, 0] 
in A t is a cone on some projective space C P n. Let J\f be the smooth 
compact submanifold of A t with the boundary C P n, obtained as the 
closure of the complement of V^Denote by c the Chern form of the S1 
bundle J\f —> A r, where N  C Ad is the preimage of J\f. Note that the 
induced S'1 bundle over the boundary C P n is the tautological bundle. 

So fcp n °n ~  fj\fd(cn) — 0 is a contradiction.
We remark that for k — 0, the condition g >  0 that we obtain from 

the argument above is consistent with the assumption that E is a sphere 
(needed for non-degeneracy of solutions on Y).

Finally, we check that it suffices to consider characteristic numbers < 
ad, i.e., that for ad < k <  2ad we do not get any new restrictions on the 
genus (here a =  £2). Suppose that for some k in (ad, 2ad) condition (12) 
holds for some Spin0 structure on X. Then we claim that there exists a 
Spin0 structure on X  with the characteristic number kf =  2ad — fc, for 
which (12) holds as well, hence k! G K. To see this first change the given 
Spin0 structure by the line bundle E  on X  with c\{E) =  —da, where a is 
the Poincare dual of £. The characteristic number of the inverse of thus 
obtained Spin0 structure is k'. The expression for the dimension of the 
moduli space is unaffected by these changes of the Spin0 structure. For 
the first change this follows from Corollary 8.2. For the second note that 
c i(—Det) =  — ci(Det), hence the class c, defined by (ci(Det), £) =  ^a+c, 
changes sign. The claim now follows from the alternative form of the 
dimension formula in the proof of Corollary 8.2. Since k' G AT, we have 
seen above that g > k'd/2 =  \k — 2ad|d/2; however, by part (b) of 
Theorem 2.2, this implies that there exist irreducible Seiberg-Witten 
solutions on Y  in the Spin0 structure induced by the one given on X  
and hence the moduli space need not be compact. q.e.d.

Remark. We note that the leading term in the genus bound for 
a divisible class d£, obtained from the above theorem, equals (d£)2/2,
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which is by a factor of 2 better than the bounds obtained via the G- 
signature Theorem (cf. Rohlin [19]).

A  special case of interest occurs when the class £ G #2 (AT) is char
acteristic, that is, its Poincare dual is a characteristic class.

Corollary 11.2. With notation as in Theorem 11.1, assume that 
H\(X) — 0, the signature of X  is negative, and that £ is characteristic. 
Then the genus g of any smooth surface E representing c££ satisfies

Proof. By Furuta’s 10/8 Theorem [3] (in fact by a Theorem of 
Donaldson), X  is odd. Consider the Spin0 structure on X  characterized 
by ci(Det) =  (2d — l )a ,  where a  is the Poincare dual of £. From 
(ci(Det),£) =  (2d — T)a =  k +  ad we get k =  a(d — 1), where a =  £2. 
Since the class c (defined in the proof of Corollary 8.2) is equal to 0 in 
this case, (12) is equivalent to (k — ad)2 > acr(X), which is clearly true 
for k =  ad — a and cr(X) <  0. This implies g > a(d — l)d/2. q.e.d.

12. Geom etric constructions

Let X  be a smooth four-manifold. For a class £ G H2(X ) denote by 
g^(d) the minimal genus of a smooth representative of d£; we write g£ 
for 3^(1). In this section we will show, using some simple geometric con
structions, that asymptotically g^(d) does not grow faster than (g?£)2/2. 
Combining this with genus bounds from Theorem 11.1 we conclude that 
(<i£)2/2 describes the dominant term in g^(d) (as d —> 00) in a manifold 
X  with 6+pO  =  1. .

Proposition  12.1. Let X  be a smooth four-manifold and let £ G 
H2(X ) be a class of positive self-intersection. Then

(14) 9^{d) < ^ ~  -  ( ^  +  l - g ^ d  +  l

for any d > 1. Moreover, there exists a smooth representative of d£ with 
the genus given by the right-hand side of the above inequality.

Proof. Let E C X  be a smooth embedded surface of genus repre
senting £ and let S' denote E with the interiors of a := £2 disjoint disks 
removed. Think of the normal bundle vy> of E in X  as being obtained
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from the product bundle over £ ' by adding a degree 1 bundle over a 
2-disk for each puncture. To construct d copies £* of £ in general posi
tion, we choose d distinct parallel copies £  ̂ of £'. Over each 2-disk we 
cap-off £ ' by adding a disk in such a way that any two disks intersect 
transversely in a single point and any intersection point is common to 
two disks only. It is clear from the construction that the total number of 
intersection points between the surfaces £* thus obtained equals a{^) • A  
neighborhood of each intersection point looks like a pair of transversely 
intersecting disks. Removing these and replacing them by annuli gives 
£(d). Since the surfaces, obtained from £ ,̂ i =  1,... ,d by removing 
small (disjoint) disks around the intersection points are disjoint, we need 
d — 1 annuli to make a connected surface; each of the remaining annuli 
increases the genus by 1. q.e.d.

As an immediate consequence of the above inequality we obtain the 
following bound on the genus of a representative of a primitive class.

Corollary 12.2. Let X  be a smooth four-manifold and £ G #2 (A ) 
a class of positive self-intersection. If  g^(d) >  (d£2 — A^)d/2 for some 
d >  1, then ĝ  >  (£2 -  A d)/2.

Assume now that X  is a smooth closed oriented four-manifold with 
b i(X ) =  0 and fc^A ) =  1. If £ G #2 (A ) is a primitive class of positive 
self-intersection a, then for any integer d >  1 we know from Theo
rem 11.1 that gz(d) > (ad — A^)d/2 for some A^. For example, if the 
signature of X  is negative and £ is characteristic, we can take A^ =  a 
(see Corollary 11.2). The previous corollary then implies that a charac
teristic class in X  is not represented by an embedded sphere.

In general we obtain the following consequence of Theorem 11.1. 
This result is equivalent to the generalized adjunction inequality of The
orem A.

Corollary 12.3. Let X  be a smooth closed oriented four-manifold 
with b i(X ) =  0 and fcj"(A) =  1. For any (primitive) class £ G #2 (A ) 
of positive self-intersection there exists A  >  0 so that

(d£2 -  A )d 
2

for all d > 1.

Proof. We first check that the set K  in the statement of Theo
rem 11.1 is nonempty for d large enough. Choose a Spinc structure on 
X  with ci(Det) =  2da — 7 , where 7 is a characteristic vector satisfying
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72 >  cr(X) and 7 U a >  0. Such a characteristic vector clearly ex
ists -  starting with any characteristic vector we can get one satisfying 
these conditions by adding to it a large enough multiple of a. Then 
k =  ad — (7, £) belongs to [0, ad] for large enough d. We need to check 
that (12) also holds:

ci(Det)2 — cr(X) — +kd =  7s — cr(X) >  0.

Fix some d for which K  is nonempty and a characteristic number 
k E K  for ( X , £, d); let A  : =  ad — k. Denote by c\ =  ci(Det) the Chern 
class of the Spin0 structure that satisfies (12) with k and d, and let 
ci(Det') =  ci +  2na for some integer n. Then A ' =  a(d +  n) — kr =  A  
and it follows from the alternative form of the dimension formula in the 
proof of Corollary 8.2 that the Spin0 structure with determinant Det' 
satisfies (12) with k? and d +  n in place of k and d. This implies that the 
genus bound in the statement of the corollary holds for all multiplicities 
d +  n for which kf >  0; it clearly holds for the rest. q.e.d.

13. M anifolds w ith  signature zero

In this section X  denotes a smooth closed oriented four-manifold 
with b\ (X ) =  0, b~2 (X ) == 1 and signature cr(X) — 0. Up to isomor
phism, there are only two possible intersection forms such a manifold 
can have, distinguished by the parity. The even intersection form is

given by H =
0 1 
1 0

and is realized for example by S'2 x S'2; the odd

intersection form is given by E
1 0 ‘ 
0 -1

and is realized for example

by C P 2# C P 2. Genus bounds that follow from Theorem A  depend only 
on the intersection pairing of the manifold, so we need only consider two 
cases.

Proposition  13.1. Suppose the intersection pairing of X  is isomor
phic to H ; let {^1,^2}  be a basis 0/ i f 2(AT) modulo the torsion subgroup 
with respect to which the intersection pairing is given by H. Then any 
class £ E H2(X) ,  whose image in i f 2(X ;R ) is given by p£ 1 +  g£2 with 
pq 7  ̂ 0, satisfies

gz > (|p| - i)(kl - 1)-

Proof. After possibly changing the orientation of X  we may assume 
that the self-intersection 2pq of £ is positive; then we can further assume



BOUNDS ON GENUS AND GEOMETRIC INTERSECTIONS 501

p, q >  0. Denote by £* € i f 2(X ; R) the Hom-dual of and consider 
a characteristic vector c satisfying c =  in H 2{X\ R). Since
c2 > 0, the claimed bound follows from adjunction inequality (1). q.e.d.

The following result for S2 x S2 and the corresponding result re
garding classes in CP2#CP (see below) was proved independently by 
Ruberman [20] and by Li-Li [8].

Corollary 13.2. With notation as in the previous proposition, as
sume further that £i and £2 are represented by spheres which intersect 
transversely in one point. Then

_ j(\p\ -  i ) (k l  - ! ) ;  m  +  0
9i \ 0; pq =  0.

Proof. Let Ê  be a representative of £* as in the statement. Since 
the self-intersection of £* is zero, any class with pq =  0 is represented 
by a sphere. Suppose now that pq ^  0; we may assume p, q >  0. To 
construct a representative of £ with genus (p — l)(q  — 1), take p disjoint 
copies of Ei and q disjoint copies of E2, so that any copy of Ei intersects 
any copy of E2 in exactly one point. Resolving the intersection points 
gives the required representative. q.e.d.

Proposition 13.3. Suppose the intersection pairing of X  is isomor
phic to E ; let {£ i ,£2}  be a basis of H2(X ) modulo the torsion subgroup 
with respect to which the intersection pairing is given by E. Then any 
class £ G H2(X ) of positive self-intersection satisfies

p2 -  42 -  3|p| + |g|
9 ( > -----------j -----------'

where p£ 1 +  g£2 is the image of £ in H^iX; R ).

Proof. We may assume (by possibly changing the sign of £j) that 
p > q > 0. Let c be a characteristic class whose real image is 3£̂  — £|, 
where £* G H 2(X ] R) denotes the Hom-dual of £̂ . As c2 >  0, the 
adjunction inequality implies the claimed genus bound, except for q =  0 
and p < 2. In the latter cases the claimed bound states ĝ  >  0, which is 

the best possible bound since in CP2̂ C P2 these classes are represented 
by spheres. q.e.d.
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Corollary 13.4. With notation as in the previous proposition, as
sume further that £̂  are represented by disjoint spheres. Then

9d

V  — g2 — 3|p| +  jg| + 1 _

< g2 - P 2 -3|g| +  \p\
2 +  ’

0;\

\p\ > |g|
|g| >  \p \ 

\p \ =  |g|.

Proof. Let Ei be a representative of £̂  as in the statement. Note 
that any class of the form (=Ll,d=l) is represented by a sphere of self
intersection 0. Hence any class (p, q) with \p\ =  \q\ is represented by a 
sphere.

Suppose that |p| >  \q\ (the remaining case is analogous). We may 
assume p > q > 0 for the purpose of construction; if q =  0, the situation 
is as in C P 2. To construct a representative of £ with the stated genus, 
decompose £ as (p,q) =  q( 1,1) +  (p — g ) ( l , 0). Represent q( 1, 1) by q 
disjoint spheres, and (p — q)( 1,0) by a surface E of genus (p — q — l)(p  — 
q — 2)/2 which intersects each of the spheres in p — q points. Finally 
resolve the intersection points. q.e.d.

14. Manifolds with negative signature

Let X  be a smooth closed oriented four-manifold with b i(X ) =  0, 
b~rj(X ) =  1 and signature cr(X) =  1 — n with n > 2. We will assume 
that the intersection form of X  is odd. This is always the case for 
n < 8, since any such form is odd. Without the restriction on n, the 
assumption holds for manifolds without 2-torsion according to Furuta’s 
10/8 Theorem [3],

Fix a primitive class £ £ H2(X ) of positive self-intersection and 
choose a basis {£o?---5£n} of # 2^0  (modulo the torsion) with re
spect to which the intersection form is given by (1) © n (--l), and £ =  
(p,qi,...,qn) with p > 0 and g* > qi+1 >  0; then £2 =  p2 -  
Denote by m =  m% the number of nonzero qfs.

It turns out that the genus bounds obtained from adjunction in
equality (1) with c the ‘canonical class’ (3,—1 , . . . ,—1) are only optimal 
for reduced classes. The notion of a reduced class, used by Li-Li [8] to 
study genus bounds in rational surfaces CP2#nCP for n <  9, extends 
naturally to manifolds we are considering.
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Definition 14.1. A class £ E  H2(X ) as above is called reduced with 
respect to the basis {£o, • • •, £n} provided <  9 and p > q\ +  q<i +  <73, 
where #3 =  0 if n — 2.

It is proved in [8, Lemma 4.1] that in rational surfaces with n < 
9 any class of positive self-intersection can be mapped to a reduced 
class (with respect to the standard basis) by an orientation preserving 
diffeomorphism. The argument there also proves that any class £ E 
i?2p 0  with 77i£ < 9 is reduced with respect to some basis as above.

Proposition 14.2. With above notation, suppose that 2 <  m <  9 
and £ is reduced. Then

S£(d) >  +

Moreover, g^(d) >  0 unless d =  1 , m =  2 and £ =  (p,p — 1,1) for some 
p > 1. Excluding the latter classes, given any g >  0 £/&ene is only a finite 
number of reduced classes with minimal genus no greater than g.

Remark. The last statement gives an affirmative answer to a 
conjecture of Li and Li [8]. In fact, B.H. Li proved [7] that the above 
lower bound is sharp in rational surfaces X  =  C P 2# n C P 2 for n <  9.

Proof Let c be a characteristic vector whose real image with respect 
to the Horn-dual basis is (3, —1, . . . ,  —1); clearly c2 > cr(X). Let A  =  
(c, £) =  3p — Qii where the sum, as all other sums over i, runs from 1 
to m. Since £ is reduced, A  > 0.

Suppose first that m >  3. Since £ is reduced,

p - ^ - ( 5i- 0 + (52- 0 + (53- ^ ) '

Using this along with qi > qi+i, we obtain

£2 -  A  > (9 -  m){ql -  q3) > 0,

thus g%(d) >  1 for any d >  1. Note in general that to establish the 
last claim of this proposition, it suffices to show that an upper bound 
on minimal genus implies an upper bound on q\\ this is enough since 
increasing the value of p (while keeping qf s fixed) increases £2 — A. The 
argument is simple if m <  8, as then £2 — A  > (q\ — 1/2) (<72 — 1/2). The 
last inequality implies that an upper bound on minimal genus yields an
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upper bound on q\. For m =  9 the first inequality of this paragraph 
gives

7 9

£2 -  A  >  Y f qi ~  ®) (®  -  -  Qi) (q* -  ^  ;

we need to consider several cases. If q\ >  <77. a bound on minimal genus 
implies a bound on q\. Same holds if q\ — q?, but qi > qg. Finally, if 

Ox =  50 =  <L
f  ~  A  =  (p -  3q)(p +  3q -  3),

but positive square condition implies p > 3q; again it follows that there 
is only a finite number of such vectors whose minimal genus is at most 
9-

If m — 2, then p > qi +  qz implies

£2 - A  + 2 > 2 ( g 1 - l ) ( g 2 - l ) ,
which is strictly positive unless #2 =  1. Note also that for q2 >  1 there 
are only finitely many classes (p, 91,92) with minimal genus at most g. 
For 92 — 1 we get

£2 -  A  +  2 =  (p -  qi -  l ) (p + q i  -  2);

this equals 0 only if p =  91 + 1, and for p > qi +  2 there are only finitely 
many classes (p, 91, 1) with minimal genus no greater than g. q.e.d.

One can verify that the bound in the above proposition is the best 
possible bound obtainable from Theorem A. However, this also follows 
from work of Li-Li [8] and [9], where they prove that the minimal genus 
bound for a reduced class £ =  (p, 91, . . . ,  qm) of positive self-intersection 
in a rational surface C P 2# n C P  with n < 9 is given by

(d£2 - 3 p  +  J2 Q i)d  +  1 

2
In the next proposition we give a construction of a minimal genus rep
resentative in a special case.

Proposition  14.3. Let X , £ =  (p, 90, • • •, 9m ) and m <  9 be as 
above, and let rn be the largest value of i for which qi >  2. Assume 
further that YllLi Qi — P and that for i =  0,.. . ,  m the classes £̂  are 
represented by disjoint spheres. Then £ has a representative of genus

9i =  (C2 -  3p +  /2 +  1.
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Proof. Assume first that rfl =  m and let q Y^ILi Qi- Then £ can 
be decomposed as (p — q)£o +  J2(li(£o +  £i)- By assumption £o and £o +  & 
(for i =  1, . . . ,  m) can be represented by spheres Ei (i — 0, . . . ,  m) any 
two of which intersect transversely in one point. Moreover, the spheres 
E* for i > 1 have self-intersection zero. To construct a representative 
for £, take p — q copies of So and qi disjoint copies of Ê , so that the 
whole collection of spheres is in general position and any two spheres 
that intersect have exactly one point in common. Note that the total 
number of intersection points of these p spheres is

so after resolving the intersection points we obtain a minimal genus 
representative.

If m >  ra, for any Qi — 2 take two spheres representing & that 
intersect transversely in one point. Then connect one of the two spheres 
representing ^  to a sphere Ej for some j  < m , obtaining a surface E. 
Now cancel the —1 intersection point with one of the +1 intersection 
points of Ej. To this end choose a curve 7 C E connecting the two 
intersection points and replace the complements of small disks around 
the intersection points (cut out from the other surfaces, not E) by a 
tube which is the restriction to 7 of the normal circle bundle of E. 
Resolving the remaining intersection points again gives a minimal genus 
representative. Finally, if qi is 1, connect the corresponding sphere to 
the surface constructed before. q.e.d.

Let X  be a smooth closed connected four-manifold. We say that 
a collection of classes £1 , . . . ,£n E # 2(AT) is algebraically disjoint if 

=  0 for all pairs i ^  j.  Classes in an algebraically disjoint collec
tion can clearly be represented by disjoint surfaces -  starting with any 
choice of representatives in general position, we can eliminate a pair 
of ±1 intersection points between two surfaces by adding a one-handle 
to one of them. An important question is whether the classes can be 
represented by disjoint surfaces of low genus. It turns out that the min
imal genus representatives of the classes intersect in general and we will 
derive a lower bound for the number of pairs of ±1 intersection points.

i < j

15. Geometric intersections of surfaces
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Proof of Theorem B. We assume for the purpose of the proof that 
Ei is representing a divisible class for some di >  1. The result for 
dk =  1 then follows as in Corollary 12.2. Consider Z  =  X  — U ^ E *  
as a cylindrical end manifold with cylindrical ends [0, oo) x Yi, where 
Yi is the boundary of a tubular neighborhood of E* (with the opposite 
orientation). Note that Z  is negative semi-definite, so we can adapt the 
argument that we used to derive genus bounds to this context.

We work with exponentially decaying Seiberg-Witten configuration 
space on Z  with reducible asymptotic values; the background connec
tion on Z  agrees on the end [0, oo) x Yi with the pull-back of the product 
connection on Yi (see the proof of Proposition 7.2). By gauge fixing at 
infinity we can assume that the asymptotic values differ by imaginary- 
valued harmonic one-forms on each end. We use gauge group based at 
infinity on the first end [0, oo) x Y\. To compute the index of the defor
mation complex, we follow the proof of Proposition 7.2. The quotient 
of the deformation complex by the fiber complex is

0 -  ®?=2R  -  <B?=iH{Yf) -  0. 0,
where TL{Yi) denotes the space of imaginary-valued one-forms on Y  ̂
Hence the index of the deformation complex is the index of the fiber 
complex plus 2 gi — (n — 1), where gi is the genus of E*. The compu
tation of the fiber index splits in the anti self-dual part and the Dirac 
part. Note for the first that each end contributes 1 to the spectral flow; 
it follows that the fiber index of the ASD part equals —2 ^ )^  +  n — 1. 
The index of the deformation complex is thus given by

1 n 
-(c i(D et) -  cr(X)) -  ^  kjdj

i=1

(see also Lemma 8.1), where Det is the determinant line of a Spin0 
structure on X  satisfying

h  =  (ci(Det),£j) -  ditf e [0,c ^ 2]

for all i.
Next we argue as in the proof of Theorem 11.1. The based moduli 

space of Seiberg-Witten solutions on Z  is smooth (after choosing an 
appropriate perturbation) and contains a unique reducible point. From 
the structure of the moduli space close to the reducible point we con
clude that if the moduli space is positive dimensional, then it is not
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compact. Therefore gi > kidij2 for at least one i. Finally, setting 
ci(Det) =  dial — c, where is the Poincare dual of £*, we see that 
the formal dimension of the (based) moduli space is positive if and only 
if c2 > a (X ) (see the proof of Corollary 12.3). The condition at the end 
of the previous paragraph then becomes (c, [Li]) E [0, [S*]2], while the 
genus bound can be expressed as %(!!$) +  P d 2 <  (c> Pd)-  q.e.d.

In what follows we will restrict our attention to manifolds with 
b+(X) =  2 in order to keep the discussion simple.

Theorem  15.1. Let X  be a smooth closed connected four-manifold 
with bi (X)  =  0 and b^iX)  =  2, and let S i , S 2 be embedded surfaces 
in general position, representing algebraically disjoint classes of posi
tive self-intersection. Suppose that a characteristic vector c E  H 2(X ) 
satisfies

c2 > a ( X ) ,  (c, [S<]) > 0  /or * =  1,2,

and x (E j) +  [E*]2 > (c, [S;]} for * =  1,2.

Then

5(^ 1) +  5(^ 2) +  N  >
Fil2 + F2]2 -  (<=, [Sxl + [Sal) ! t

2

where N  denotes the number of pairs of ±1 intersection points between 
Si and S2.

Proof. If condition (2) fails for both surfaces, then by Theorem B the 
surfaces are not disjoint. To construct disjoint representatives, we trade 
pairs of ±1 intersection points for one-handles -  this way elimination of 
a pair of intersection points increases the genus of one of the surfaces 
by 1. We add the maximal possible number of handles to Si, so that 
the resulting surface still does not satisfy (2), and add the rest of the 
handles to S2. Since the sum of the genera of thus constructed disjoint 
surfaces equals g(S i) +  g (L 2) +  N, the claimed inequality follows from 
Theorem B. q.e.d.

We compare this to bounds obtained using G-signature Theorem. 
As is the case for genus bounds, the result we obtained is roughly by a 
factor of 2 better. Specifically, we state the following consequence of a 
Theorem of Gilmer [4].

Proposition  15.2 (Gilmer [4]). Let X  be a smooth closed con
nected four-manifold with b\(X) =  0 and &J(X) =  2, and let Si, S2 be 
embedded surfaces in general position, representing algebraically disjoint
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classes of positive self-intersection. I f  £1 and £2 are not disjoint and 
[£1] +  [£2] is divisible by 2, then

9 (^ 1) +  9 (^ 2) +  N  >
[Si]2 +  [S2]2 

4

where N  denotes the number of pairs of zLI intersection points between 
£1 and £ 2.

15.1 Examples

( 1) Let X  =  (S2 x  S2)# (S 2 x S2) and let f i  =  (p ,g,0,0) and & =  
(0, 0, r, s) be classes of positive self-intersection, expressed with respect 
to the standard basis for H2(X) .  We may assume that p,q,r,s > 0. If

is primitive, it is represented by an embedded sphere in X , according 
to a Theorem of Wall [23]; however, for p,q,r,s >  2 it is not represented 
by a sphere in its summand. Let S i and S2 be smooth representatives 
of £1 and £2 in general position. Denote by gt the genus of E?; and by N  
the number of pairs of ±1 intersection points between Si and S2. Using 
characteristic vectors c =  (2,2,0,0) and c =  (0,0,2,2) in Theorem 15.1 
gives the following lower bounds for gi +  §2 +  N:

U p -  1 ){q -  1) +  rs; p , q >  2, gi < (p -  1 )(q -  1) and g2 < rs 
[pg +  (r -  1) (s -  1); r , s >  2, gx < pq and g2 <  (r -  l ) (s  -  1).

In particular, if £1 and 2̂ with p, g, r, s >  2 are represented by spheres 
£1 and £2 in X , then

N  > max{(p — 1 )(g — 1) +  rs,pq +  (r — l) (s  — 1)}.

( 2) Consider now X  =  C P 2# C P 2 and let — (p, q) and 2̂ =  (9, — p) 
for some p, q > 0, expressed with respect to the standard basis for 
H2(X) .  Note that £$ has a smooth representative £  ̂ of genus

p2 +  g2 - 3 ( p  +  g)
9 -  j  ’

obtained as the connected sum of minimal genus representatives for 
classes of divisibility p and q in C P 2. Let £1 and £2 be genus g repre
sentatives of £1 and £2 in general position, and let N  be the number of
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pairs of ±1 intersection points. Using characteristic vectors c =  (3 ,-1 ), 
c =  (3,1) and c =  (1, —3) in Theorem 15.1, we obtain

fp  +  2 ^ -3 ; p >  2 

N  > l  2p +  q — 3; q > 2 and p <3q  
(p  +  4g — 3; q >  2 and p > 2>q.

In particular, for q =  1 we have N  > p — 1 and this bound is sharp, 
which can be seen as follows. Decompose (p, 1) =  (p — 1) (1,0) +  (1,1) 
and (1, —p) =  (1, —1) — (p — 1)(0,1). Since the classes (1,1) and (1, —1) 
can be represented by disjoint embedded spheres, N  =  p — 1.

(3) As the last example consider X  = 2CP2#2CP2, and let £1 = 
(p, 0, g, 0) for some p > q > 0 and £2 =  (0, r, 0, s) for some r > s >  0. 
These classes are represented by spheres in X  (according to the Theorem 
of Wall mentioned above), but not in their copy of CP2#CP , unless 
p =  q +  1 and r =  s +  1. By choosing representatives Ei for ^  of 
small genus and in general position, we get the following bound based 
on Theorem 15.1 (using c =  (3,1, —1, —1) and c =  (1, 3, —1, —1)):

9i + 92 + N  >

p2 -  q2 -3 p  +  q
+

r 2 — s2 — r +  s
2 2

p2 — q2 — p +  q r2 — s2 — 3r +  s
+ 1; 

+ 1;

P > q  +  2 

r >  s +  2.

Small genus here means that for a formula to hold, g\ has to be no 
greater than the first summand and 92 has to be no greater than the 
second summand.

Remark. It is an interesting question whether the bounds obtained 
in the above examples are optimal.
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