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RELATIVE PRYM VARIETIES ASSOCIATED TO THE
DOUBLE COVER OF AN ENRIQUES SURFACE

E. Arbarello, G. Saccà & A. Ferretti

Abstract

Given an Enriques surface T , its universal K3 cover f : S → T ,
and a genus g linear system |C| on T , we construct the rela-
tive Prym variety PH = Prymv,H(D/C), where C → |C| and
D → |f∗C| are the universal families, v is the Mukai vector
(0, [D], 2 − 2g), and H is a polarization on S. The relative Prym
variety is a (2g − 2)-dimensional possibly singular variety, whose
smooth locus is endowed with a hyperkähler structure. This vari-
ety is constructed as the closure of the fixed locus of a symplectic
birational involution defined on the moduli spaceMv,H(S). There
is a natural Lagrangian fibration η : PH → |C| that makes the reg-
ular locus of PH into an integrable system whose general fiber is a
(g− 1)-dimensional (principally polarized) Prym variety, which in
most cases is not the Jacobian of a curve. We prove that if |C| is
a hyperelliptic linear system, then PH admits a symplectic resolu-
tion which is birational to a hyperkähler manifold of K3[g−1]-type,
while if |C| is not hyperelliptic, then PH admits no symplectic
resolution. We also prove that any resolution of PH is simply con-
nected and, when g is odd, any resolution of PH has h2,0-Hodge
number equal to one.

1. Introduction

One of the many beautiful features of the Beauville-Mukai integrable
systems is that they can be observed and studied from two quite different
perspectives. The starting point is a linear system |D| of genus h curves
on a K3 surface S. If D → |D| = Ph is the universal family, one can
view the Beauville-Mukai integrable system as the relative compactified
Jacobian π : J(D) → Ph, whose fibers are compactified Jacobians of—
say—degree zero. But the hyperkähler and Lagrangian nature of this
fibration is not unveiled until one sees it from the second perspective
where J(D) is taken to be the moduli space Mv,H(S) of H-semistable
rank zero sheaves with Mukai vector v = (0, [D], 1 − h). From this
point of view, another aspect comes to the forefront: the choice of a
polarization H, which is inherent to the notion of semistability. Its
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interplay with the Mukai vector v introduces a subdivision of the ample
cone of S into chambers, bordered by walls. VaryingH in Amp(S) leaves
unchanged the birational type of Mv,H(S). When H lies on a wall the
corresponding moduli space is singular, while moving H away from a
wall, into the various adjacent chambers, corresponds to distinct smooth
birational models of the same moduli space. When smooth, these moduli
spaces are as nice as one can think of: they are irreducible symplectic
manifolds, meaning that they are compact, simply connected, and that
their H2,0 space is one-dimensional, spanned by a non-degenerate (i.e.
symplectic) form.

Our task is to study to which extent a similar picture presents itself
when Jacobians are substituted with more general abelian varieties. The
first natural abelian varieties that come to mind are Prym varieties and
the way we make them appear is to start from an Enriques surface T ,
look at its universal K3 cover f : S → T , and take on S a linear system
|D| which is the pull-back, via f , of a linear system |C| on T of genus
g ≥ 2. For each smooth curve C0 ∈ |C| we look at the double cover f :
D0 = f−1(C0) → C0 and we consider the Prym variety Prym(D0/C0),
which is a (g − 1)-dimensional abelian variety. If U ⊂ |C| is the locus
of smooth curves we see, right away, a fibration P −→ U ⊂ Pg−1 in
(g − 1)-dimensional, principally polarized, abelian varieties. If ι is the
involution on D0 induced by the two-sheeted covering, the Prym variety
Prym(D0/C0) can be viewed as the (identity component of the) fixed
locus in J(D0) of the involution −ι

∗. The way to compactify P is now
laid out: define the involution −ι∗ on J(C) =Mv,H(S) and take its fixed
locus.
When H is ι∗-invariant, the involution ι causes no problem. It acts on

S and ι∗ acts on the set ofH-semistable coherent sheaves on S supported
on curves belonging to |D|, preserving all their good properties (rank,
H-semistability) and especially their first Chern class, which is the ι∗-
invariant class [D].
For the involution “j = −1” matters are more complicated. For a

smooth curve D0 ∈ |D| the involution j on J(D0) is given by j([F ]) =
[F∨] = HomD0

(F,OD0
). Thus, for [F ] ∈ Mv,H(S), a natural choice is

to set j(F ) = Ext1S(F,OS(−D)) (see Lemma 3.7). The Ext
1 functor be-

haves nicely in families and therefore j induces a well defined morphism
of the deformation functor into itself, the Mukai vector is preserved by
j, and, at least if the support of F is irreducible, both F and j(F ) are
H-stable, for any polarization H. Therefore we get a birational “−1”
involution: j : Mv,H(S) ��� Mv,H(S) which commutes with ι∗. How-
ever, the only way to have it preserve stability is to choose a polarization
which is a multiple of D. Taking H = D, we then get a regular map
j :Mv,D(S)→Mv,D(S), but now Mv,D(S) is singular.
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To define the relative Prym variety, we consider the birational invo-
lution

τ = j ◦ ι∗ : Mv,H(S) ��� Mv,H(S)

and we look at the Lagrangian fibrationMv,H(S)→ |D|. Over the locus
of irreducible curves, this fibration has a zero-section s whose restriction
to |C| ⊂ |D| lands in the fixed locus of τ . We then define the relative
Prym variety PH = Prymv,H(D/C) to be the irreducible component of
the closure of fixed locus of τ containing the zero section s. Since the
birational involutions j and ι∗ are antisymplectic (see Proposition 3.11),
a Zariski open subset of PH has a natural symplectic structure.
Taking a slightly longer view we see that, a priori, there is more

leeway in our choices. We could choose another divisor N and define
jN (F ) = Ext1S(F,OS(N)). As long as N is ι∗-invariant and 2χ(F ) =
N · D, we still get a birational involution jN : Mv,H(S) ��� Mv,H(S)
which commutes with ι∗. It is then natural to ask whether it is possible
to choose H, N , and v in such a way that jN preserves H-stability and,
at the same time, Mv,H(S) is smooth. In Proposition 3.16 we show that
this is not possible. The alternative: regularity of the assignment [F ] �→
[Ext1S(F,OS(N))] versus smoothness of Mv,H(S) is in the nature of this
problem. Moreover, the relative Prym varieties that one can construct
out of the involution τN ◦ ι

∗ : Mv,H(S) ��� Mv,H(S) enjoy, by and
large, the same properties of the relative Prym variety we just defined
by taking N = −D. Consequently this will be our choice throughout
the present paper.
The next observation is that the geometry of the relative Prym variety

strongly depends on whether the linear system |C| on the Enriques
surface T is hyperelliptic or not (cf. Definition A.3).
In the non-hyperelliptic case we show that PD (and hence PH) does

not admit a symplectic desingularization. This is seen by going to a sin-
gular point of PD that is represented by a polystable sheaf F which splits
into a direct sum F = F1 ⊕ F2 of two stable sheaves supported on irre-
ducible and ι-invariant curves D1 and D2 respectively. We prove that,
locally around the point [F ], the relative Prym variety PD is isomorphic
to its tangent cone at [F ] and this can be nicely described in terms of the
quadratic term of the Kuranishi map (see Proposition 5.1). The result
is that, locally around [F ], the relative Prym variety PD looks like the
product of a smooth variety times the cone over the degree two Veronese
embedding of a projective space PW , with dimW = D1 ·D2 = 2C1 ·C2.
This cone is Q-factorial and, if dimW ≥ 3, it is also terminal. When
|C|, and therefore |D|, is non-hyperelliptic, we must have D1 ·D2 ≥ 4,
and therefore PD has no symplectic resolution.
In the hyperelliptic case, things go in the opposite direction. In this

case the “−1” involution j can be nicely described in geometrical terms.
The key remark is that, in the hyperelliptic case, not only ι∗ but also
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j comes from an involution defined on S. Indeed the linear system
|D| exhibits S as a two sheeted ramified cover of a rational surface
R ⊂ Ph. If � is the involution associated to this cover, �∗ = j is the “−1”
involution on each J(D), when D is smooth. The composition k = � ◦ ι
is a symplectic involution on S and k∗ coincides with τ as birational
maps. Taking S/〈k〉 and resolving the eight singular points yields a K3

surface Ŝ. We then show that, for any ι∗-invariant polarization H, the
relative Prym variety Pv,H is birational to an appropriate moduli space

of sheaves on Ŝ and is therefore of K3[g−1]-type. We also show that,
choosing H appropriately, Pv,H is a symplectic resolution of Pv,D.
In Sections 7 and 8 we prove that the relative Prym variety P shares

two fundamental properties with the moduli spaces Mv,H(S). The first
result is that any resolution of P is simply connected. To show this we
prove that the homology of the fibers of the Prym fibration P → Pg−1 is
generated by vanishing cycles. The second result is that, at least when
the genus g is odd, the (2, 0)-Hodge number of any desingularization of
P is equal to one.
Summarizing, the main results that we prove are the following.

Theorem 1.1. Let T be a general Enriques surface and f : S → T
its K3 double cover. Let C ⊂ T be a primitive curve of genus g ≥ 2. Set
|D| = |f−1C|. Set v = (0, [D], 2 − 2g) and let PH = Prymv,H(D/C) →

|C| = Pg−1 be the relative Prym variety. Then:
i) If |C| is hyperelliptic, PH is birational to a hyperkähler manifold

of K3 [g−1]-type.
ii) If |C| is not hyperelliptic, PH admits no symplectic resolution.

Theorem 1.2. With the same notation as in Theorem 1.1, any reso-
lution of the singularities of PH is simply connected and, when g is odd
(or |D| is hyperelliptic), has (2, 0)-Hodge number equal to 1.

In Section 9, we compute the degree of the discriminant of the Prym-
Lagrangian fibration P → |C|. In the case of a compact hyperkähler
manifold this degree has been linked by Hitchin and Sawon to the
Rozanski-Witten invariant. Comparing the degree of the discriminant of
the Prym fibration with the degrees of the discriminants in hyperkähler
cases, we highlight a curious numerological phenomenon arising therein.
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2. Notation

Let T be an Enriques surface, and let

(2.1) f : S → T

be the universal cover of T . It is well known that S is a K3 surface. We
denote by

(2.2) ι : S → S

the covering involution. The involution ι acts as −1 on the space
H0(S, ωS) of global sections of the canonical bundle of S, i.e., ι is an
anti-symplectic involution. By a result of Namikawa (Proposition (2.3)
of [37]) the invariant subspace of the involution ι∗ acting on the Néron-
Severi group1 NS(S) is equal to f∗(NS(T )). Since the pull-back

f∗ : NS(T )→ NS(S),

is injective, we deduce that f∗NS(T ) is a rank 10 primitive sub-lattice
of NS(S). In particular, the Picard number of S is greater than or equal
to 10. It is well known (Proposition (5.6) of [37]) that if T is general in
moduli, then

(2.3) NS(S) ∼= f∗NS(T ).

From now on, when we say that T is general, we mean that (2.3) holds.
If T is general, then

NS(S) ∼= NS(T )(2) .2

Consequently, the square of any class in NS(S) is divisible by 4. In
particular, S and T do not contain any algebraic −2 classes, i.e., they
do not contain any smooth rational curve. A surface that does not
contain any smooth rational curve is called unodal.
In this paper C will denote a curve on T , and we will set

D := f−1(C).

By abuse of notation, we denote by

(2.4) ι : D → D

the induced covering involution. For any sheaf F on T , we set

(2.5) F ′ := F ⊗ ωT .

Then f∗F ∼= f∗F ′. If C is a curve with C2 ≥ 0, we usually denote by
C ′ a section of O(C)′.

1We follow Definition 1.1.13 of [23] and for us the Néron-Severi group of a smooth
projective variety X is the group of line bundles on X modulo numerical equivalence.

2Given a lattice Λ and a non-zero integer m, we denote by Λ(m) the lattice
obtained from Λ by multiplying its non-degenerate integral bilinear form by m.
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Now suppose that C ⊂ T is an irreducible curve of genus g. If g ≥ 2,
it follows from the Hodge index theorem that D is connected and thus
f : D → C is a non-trivial étale double cover. In particular,

h := g(D) = 2g − 1.

We say that a curve on a surface is primitive, if its class is primitive
in the Néron-Severi group.
If g ≥ 2, or if C is a primitive elliptic curve, then

dim |C| =
C2

2
= g − 1,

while if C = 2C0, with C0 a primitive elliptic curve, then |C| is an
elliptic pencil with two multiple fibers. As for the K3 surface S, we
have

dim |L| =
L2

2
+ 1 = h

for every line bundle L on S with L2 = 2h− 2 ≥ 0.
Consider the covering f : S → T , a curve C ⊂ T of genus g ≥ 2, and

the induced covering D → C. Observe that ι∗ acts on |D|, and that the
two invariant subspaces are the (g − 1)-dimensional spaces

f∗|C| and f∗|C ′|.

In the sequel we will drop the symbol f∗ and consider |C| and |C ′| as
subspaces of |D|.
In the Appendix we collect a number of facts about linear systems

on K3 and Enriques surfaces that are needed in our study.

3. The relative Prym variety

3.1. Pure sheaves of dimension one. The most natural way to com-
pactify the Jacobian variety of an irreducible curve is to consider the
moduli space of rank one torsion free sheaves. On reducible curves,
however, there is no canonical moduli space to take and, in order to
compactify the Jacobian, one has to choose a polarization. For exam-
ple, if the curve is reduced, one can just give a positive integer for every
irreducible component of the curve. Different components might ap-
pear for different polarizations, and hence the resulting moduli spaces
depend on such choice. For (possibly reducible) curves with only nodal
singularities this was done by Oda and Seshadri in their fundamental
paper [39]. For a survey see [1].
More generally, Simpson [50] showed that it is possible to consider

moduli spaces of semistable pure sheaves on any polarized smooth pro-
jective variety. Given a sheaf F on a variety X, for every 0 ≤ d′ ≤ d,
we denote by Td′(F ) ⊂ F the maximal subsheaf of F of dimension d′.
A sheaf F on X is said to be pure of dimension d if all the associated
prime of F have dimension d or, equivalently, if all non-zero subsheaves
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of F have support that is of dimension d. Compactified Jacobians of
arbitrary curves lying on smooth projective surfaces are thus (closed
subsets of) special cases of these Simpson moduli spaces.
In this subsection we let (X,H) denote a smooth projective surface

together with a polarization H and F a pure sheaf of dimension one
on X.
We start by recalling a few important features of pure dimension one

sheaves on a smooth surface (cf. [16] for a more detailed discussion).
By Proposition 1.1.10 of [16], the sheaf F has homological dimension
one, and hence has a two step locally free resolution.

(3.1) 0→ L1
a
−→ L0 → F → 0.

The determinantal support of F , denoted by Suppdet(F ), is the curve
in X defined by the vanishing of the determinant of a : L1 → L0. We
have

[Suppdet(F )] = c1(F ),

where [Γ] denotes the class in H2(X) of a curve Γ ⊂ X. The scheme
theoretic support of F is the sub-scheme whose sheaf of ideals is the ker-
nel of the natural morphism OX → End(F ). Unless explicitly specified,
we will use the word support to refer to the determinantal support. Ob-
serve that the determinantal support behaves well in families, whereas
the scheme theoretic one does not.
In this case, the notion of Gieseker stability in terms of the reduced

Hilbert polynomial translates into the following definition:

Definition 3.1. The slope of F with respect to H is the rational
number

μH(F ) :=
χ(F )

c1(F ) ·H
.

A sheaf F is H-(semi)stable if and only if (we follow Notation 1.2.5 of
[16]) it is pure of dimension one and if, for every quotient sheaf F → E
that is pure of dimension one,

μH(F )(≤)μH(E).

Clearly, stability can be formulated also in terms of saturated sub-
sheaves of F , by reversing the inequality in the definition.
By definition, any pure sheaf of dimension one and rank one sup-

ported on an integral curve is automatically stable with respect to any
polarization. More interesting phenomena arise when the support is
non-integral.
Let Γ ⊂ X be the scheme theoretic support of F , and let Γ′ ⊂ Γ be

any subcurve. The restriction F|Γ′ := F ⊗OΓ′ is not necessarily pure of
dimension one, so we set

(3.2) FΓ′ := F|Γ′/T0(F|Γ′)

so that FΓ′ is pure of dimension one.



198 E. ARBARELLO, G. SACCÀ & A. FERRETTI

Lemma 3.2. Let F be a pure sheaf of dimension one and rank one
on a reduced curve Γ ⊂ X. Then F is H-(semi)stable if and only if for
every subcurve Γ′ ⊂ Γ

μH(F )(≤)μH(FΓ′).

Proof. Let α : F → G be a quotient subsheaf of pure dimension one,
and let Γ′ be the support of G. Then α factor through the natural mor-
phism F → FΓ′ and the induced morphism FΓ′ → G is an isomorphism.

q.e.d.

Notation 3.3. Let F be a pure sheaf of dimension one on a smooth
surface X, and let Γ = Γ1 + Γ2 be a decomposition of the support of F
in two reduced curves that have no common components. For i, j = 1, 2
and i �= j we set

(3.3) FΓj = ker[F|Γi
→ FΓi

].

When no confusion is possible we will use the shorthand notation

(3.4) Fi = FΓi
, Fj = FΓj

We will need the following lemma.

Lemma 3.4. Let F be a pure sheaf of dimension one on a smooth
surface X, and let Γ = Γ1 + Γ2 be a decomposition of the support of F
in two reduced curves that have no common components. Assume that
Γ1 and Γ2 meet transversally. Let ΛF be the subset of Γ1 ∩ Γ2 where F
is locally free and set ΔF =

∑
p∈ΛF

p. Then, for j = 1, 2,

FΓj ∼= FΓj
⊗OΓj

(−ΔF ).

Proof. For i, j = 1, 2, i �= j, look at the exact sequence

(3.5) 0→ OΓj
(−Γi)→ OΓ → OΓi

→ 0.

Tensoring by F we get

Tor1OΓ(F,OΓi
)→ F|Γj

(−Γi)
t
→ F → F|Γi

→ 0,

where the sheaf Tor1OΓ(F,OΓi
) is supported on

TF := Γ1 ∩ Γ2 \ ΛF .

For p ∈ TF ,

F|Γi,p
∼= FΓi,p ⊕ Cp, and F|Γj

(−Γi)p ∼= FΓj
(−Γi)p ⊕ Cp.

Since F is pure, the map t factors through a generically injective (and

thus injective) map FΓj
(−Γi)

s
→ F which fits into the following exact

sequence:

0→ FΓj
(−Γi)

s
→ F → F|Γi

→ 0.
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Consider the following commutative diagram:

0 �� FΓj
(−Γi) ��

γ

��

F �� F|Γi
��

β
����

0

0 �� ker(α) �� F
α �� FΓi

�� 0

where α : F → FΓi
is the composition of the restriction F → F|Γi

with
the natural morphism β. We know that β is an isomorphism at a point
p if and only if F is locally free at p. Moreover, γ is injective and

ker(β) ∼= ⊕p∈TF
Cp.

It follows that Coker(γ) ∼= ⊕p∈TF
Cp, and thus

ker(α) ∼= FΓj
(−Γi)

⎛⎝∑
p∈TF

p

⎞⎠ = FΓj
(−ΔF ).

q.e.d.

3.2. Relative compactified Jacobians. Let (S,H) be a polarized K3
surface, and let

v = (0, [D], χ) ∈ H∗(S,Z)

be a Mukai vector, where

χ = d− h+ 1 , h = g(D).

Following Le Potier [24] and Simpson [50], we consider the moduli space
Mv,H(S) of H-semistable sheaves of pure dimension one with c1(F ) =
[D] and χ(F ) = χ. The moduli space Mv,H(S) is a 2h-dimensional
projective variety and by [31] and [5] the smooth locus contains the
locus M s

v,H(S) of H-stable sheaves.
When no confusion is possible we will simply write:

(3.6) Mv,H =Mv,H(S).

Let [F ] ∈ Mv,H be a point corresponding to an H-stable sheaf. By
deformation theory, the tangent space toMv,H at the point [F ] is canon-

ically identified with Ext1(F,F ). Mukai showed in [31] that there is a
holomorphic symplectic form on M s

v,H . On the tangent space T[F ]M
s
v,H

this symplectic form is given by the cup product
(3.7)

σM : Ext1(F,F ) × Ext1(F,F ) −→ Ext2(F,F )
tr
∼= H2(S,OS)

= H0(S, ωS)
∨

σ
∼= C.
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Following Le Potier [24] we can define the support morphism

(3.8)
π :Mv,H −→ |D| ∼= Ph,

F �−→ Suppdet(F ).

The fiber of π over a point corresponding to a smooth curve D0 is
nothing but Jacd(D0), the degree d Jacobian of D0. If the curve D0

is not smooth but integral, the fiber of π over the point [D0] is the

compactified Jacobian Jac
d
(D0) whose points represent isomorphism

classes of rank one degree d torsion free sheaves on D0. More generally,
if D0 is reduced but possibly reducible, the fiber is the compactified

Jacobian Jac
d
H(D0) parametrizing S-equivalence classes of H-semistable

rank one torsion free sheaves on D0.
For this reason the moduli spaceMv,H is sometimes denoted with the

symbol

JacdH(|D|) =Mv,H

or else with the symbol

JacdH(D) =Mv,H

where D → |D| is the universal family.
We recall that a polarizationH is called v-generic if everyH-semistable

sheaf of Mukai vector v is automatically H-stable.
Yoshioka [52] proved that if v is primitive and if χ �= 0, the locus of

[H] ∈ Amp(S) that are not v-generic is a finite union of hyperplanes,
which are called the walls associated to v. These walls are described as
follows. Let [F ] ∈ Mv,H and let D be its support. For any subcurve
Γ ⊂ D, and any quotient sheaf F → G with Supp(G) = Γ and μH(G) =
μH(F ), there is a wall containing [H] defined in Amp(S) by the equation

(χ(G)D − χΓ) · x = 0.

By definition, when H is v-generic, the moduli space Mv,H is smooth.

It is an irreducible symplectic manifold of K3[h]-type.
A simple example of a non-v-generic polarization is the following.

Example 3.5. Let χ = −h+ 1 or, equivalently, d = 0. Suppose that
D decomposes into the sum D = D1 +D2 of two integral divisors, with
even intersection numbers D ·Di, i = 1, 2. Then D is not v-generic. In
fact, there exists a sheaf F = F1 ⊕ F2, where Fi is a sheaf on Di with
χ(Fi) = −

1
2Di ·D.

One of the beautiful features of the map (3.8) is that it exhibits
Mv,H (or rather its smooth locus) as a Lagrangian fibration. Over the
locus of smooth curves this was proved by Beauville in [6], and for this
reason this Lagrangian fibration is called the Beauville-Mukai integrable
system. If v and H are such that Mv,H is smooth (e.g. if v is primitive
and H is general), then by a general theorem of Matsushita [28] every
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irreducible component of every fiber is Lagrangian.3 In particular,
π : Mv,H → |D| is equidimensional. If d = 0, then π has a rational
section,

(3.9) s : |D| ��� Jac0H(D),

which is defined on an open subset containing the locus of integral
curves. Indeed, since any pure sheaf of rank one on an integral curve is
stable with respect to any polarization, one can define the section s by
assigning to an integral curve Γ ∈ |D| its structure sheaf.

3.3. The relative Prym variety.We recall the classical definition of
Prym variety. Let C be a smooth genus g ≥ 2 curve, and let

f : D → C

be an étale double cover. Then D is a smooth curve of genus h = 2g−1.
As usual, let ι : D → D be the covering involution. Then ι∗ acts on the
Jacobian variety Jac0(D), and the Prym variety of D over C is defined
by

(3.10) Prym(D/C) := Fix◦(−ι∗) = ker(id + ι∗)◦ ⊂ Jac0(D),

where the superscript ◦ stands for the identity component. Following
Mumford [33], one can also define the Prym variety as the identity
component of the kernel of norm map

Nm : Jac0(D) −→ Jac0(C),

L = OD

(∑
aixi

)
�−→ det(f∗L) = OC

(∑
aif(xi)

)
or, equivalently, as the image of (1− ι∗) : Jac0(D)→ Jac0(C). Since

f∗(Nm(L)) = (1 + ι∗)L,

and ker(Nm) and ker f∗ have two connected components (cf. [33] §6),
ker(1 + ι∗) has four connected components. In other words,

(3.11) ker(1 + ι∗) ∼= Nm−1(0)
∐

Nm−1(η),

where η ∈ Pic0(C) is the 2-torsion line bundle defining the double cover
D → C. In [32] Mumford shows, among other things, that the decom-
position in connected components of ker(Nm) is given by

(3.12) ker(Nm) = (1− ι∗)(Jac0(D))
∐

(1− ι∗)(Jac1(D)),

so that Prym(D/C) ∼= (1 − ι∗)(Jac0(D)). The Prym variety is a (g −
1)-dimensional principally polarized abelian variety (cf. [33]). Going

3Following [29] we say that a subvariety Y of a complex manifold X with a
holomorphic symplectic form σ is called Lagrangian, if dimY = dimX/2 and if there

is a resolution r : Ỹ → Y of the singularities of Y such that r∗σ|Y is identically zero.
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back to our situation, we consider a general Enriques surface T and its
universal cover

(3.13) f : S → T.

We fix a curve C ⊂ T of genus g ≥ 2 and we set D = f−1(C), so that
dim |C| = g − 1 and dim |D| = h. Set

W := f∗|C| ⊂ |D|.

Let C → |C| and D →W ∼= |C| be the universal families relative to the
two linear systems. Consider the relative cover

D
F ��

���
��

��
��

� C

����
��
��
��

|C|

Our aim is to perform the Prym construction for the relative cover F .
Of course, we could also do the relative construction starting with the
linear system W ′ := f∗|C ′| and everything we will say for W works for
W ′ as well. As in the case of the double cover of a fixed curve, we would
like to define the relative Prym variety as the fixed locus of an involution
defined on the relative Jacobian Jac0H(D) =Mv,H where, throughout,

(3.14) v = (0, [D],−h + 1)

andH is a suitable polarization. Moreover, this involution should be the
composition of a relative version of ι∗ with a relative version of “−1”,
the two involutions should commute, and they should be anti-symplectic
so their composition would be a symplectic involution. The only part
in this construction which is not straightforward, when not downright
impossible, is the construction of the involution “−1”.
As we said, the desired involution onMv,H should be the composition

of two commuting anti-symplectic involutions. Let us start by describing
the first one.

Lemma 3.6. Let T be an Enriques surface. Let S be the covering
K3 surface. Let H be a polarization on S, and let v = (0, [D], χ) where
D = f∗(C). There is a birational involution

ι∗ :Mv,H ��� Mv,H ,

F �→ ι∗F.

This birational involution is anti-symplectic and the projection π : Mv,H →
|D| is ι∗-equivariant. If H is ι∗-invariant, then ι∗ is a regular morphism.

Proof. Since the general point [F ] ∈ Mv,H is supported on an irre-
ducible curve, it is stable with respect to any polarization. This shows
that ι∗ is a birational involution, and it is clear that if H is ι∗-invariant,
then the involution is biregular. The ι∗-equivariance of π is obvious.
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The symplectic form on Mv,H is given by (3.7) and there all morphisms
are intrinsic except for the identification H0(S, ωS)

∨ ∼= C, which is dual
to the isomorphism H0(S, ωS) ∼= Cσ. As ι is an anti-symplectic invo-
lution, ι∗(σ) = −σ, and the symplectic form on Mv(S) changes sign
under ι∗. q.e.d.

Every component of the fixed locus of ι∗ is a Lagrangian subvariety
of Mv,H with trivial canonical bundle, and their geometry is studied by
the second named author in [45].
The second involution is more involved. The basic tool one uses to

define it is given by the following lemma.

Lemma 3.7. Let F be a pure sheaf of dimension one on a K3 surface
S, and let Γ be the support of F . Then,

Ext1S(F,OS(−Γ)) ∼= HomΓ(F,OΓ).

Proof. Consider the short exact sequence 0 → OS(−Γ) → OS →
OΓ → 0. Applying HomS(F, ·) we get

0→HomS(F,OΓ)→ Ext1S(F,OS(−Γ))
u
−→ Ext1S(F,OS).

Notice, however, that the map u is induced by multiplication by the
section defining Γ. Thus u = 0 and HomΓ(F,OΓ) ∼= Ext

1
S(F,OΓ(−Γ)).

q.e.d.

We set
j(F ) := Ext1S(F,O(−D)).

A pure sheaf of dimension one on a surface is reflexive (Proposition
1.1.10 of [16]), so that

j2(F ) ∼= F.

The idea is that the assignment j should be the relative version of the
involution

−1 : Jac0 (C)→ Jac0 (C)

so that j ◦ ι∗ is the relative version of the involution −ι∗ : Jac0 (C) →
Jac0 (C) whose fixed locus is the Prym variety. From now on we set

(3.15) τ := j ◦ ι∗ , i.e. τ(F ) = Ext1(ι∗F,−D)

Lemma 3.8. Let F be a flat family of pure sheaves of dimension
one on S parametrized by a scheme B. If p : S × B → S denotes the
natural projection, then Ext1(F , p∗OS) is a flat family of pure dimension
one sheaves on S parametrized by B, and for every b ∈ B, there is an
isomorphism Ext1(F ,OS×B)b ∼= Ext

1(Fb,OS).

Proof. The lemma follows from [2] in the following way. First, for
every b ∈ B we have ExtiS(Fb,OS) = 0, for i = 0, 2. Then point
(ii) of Theorem (1.10) in loc. cit. implies that Ext1(F , p∗OS) is flat
and that the base change map Ext1(F ,OS×B)b → Ext1(Fb,OS) is an
isomorphism. q.e.d.
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Let v be as in (3.14). Using Lemma 3.8 the assignment F �−→ τ(F )
yields a well defined involution

(3.16) τ : Mv,H −→Mv,H

if the following conditions are satisfied:

(3.17)

a) τ2(F ) ∼= F,

b) v(τ(F )) = v(F ),

c) F is H-semistable if and only if τ(F ) is H-semistable.

a) The condition τ2(F ) ∼= F is equivalent to the condition that j and
ι∗ commute and this happens since D is ι∗-invariant.

b) Here we demand
(3.18)

c1(F ) = c1(j(F )) = c1(Ext
1
S(F,O(−D))) , χ(F ) = χ(j(F )).

The first condition is always satisfied. Indeed, since tensoring by a line
bundle does not change the first Chern class of a sheaf supported on a
proper subscheme, we may as well replace OS(−D) with OS . Consider,
as in (3.1), a locally free resolution of F so that c1(F ) is the class of the

curve defined by the equation det a = 0. Dualizing we get: 0→ L∨1
a∨
−→

L∨0 → Ext1S(F,OS) → 0. Since (det a = 0) and (det a∨ = 0) define the
same subscheme of S, the first equality in (3.30) follows. As far as the
second equality is concerned, let us compute Hilbert polynomials. For
m >> 0 and for any pure sheaf of dimension one, we have

(3.19)

pj(F )(m,H) =χ(Ext1S(F,O(−D +mH)))

=dimH0(Ext1S(F,O(−D +mH)))

=dimExt1(F ⊗O(D −mH),OS)

=dimH1(F ⊗O(D)⊗O(−mH))

=− χ(F ⊗O(D)⊗O(−mH))

=− pF⊗O(D)(−m,H).

In particular we get

(3.20) χ(j(F )) = −χ(F ⊗O(D)) = −χ(F )− c1(F ) ·D.

When [F ] ∈ Mv,H we have c1(F ) = [D] and thus χ(j(F )) = χ(F ) =
−h+ 1.

c) This is the most delicate and interesting point. Here the polariza-
tion H comes to the forefront. The question is: for which choice of H
does the functor τ preserve H-semistability? If we only care about the
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existence of a birational involution

(3.21)
τ :Mv,H ��� Mv,H v = (0, [D],−h + 1)

[F ] �−→ [τ(F )]

the question we just raised is irrelevant, since any pure sheaf of rank one
supported on an irreducible curve is automatically stable with respect
to any polarization. Hence τ always exists as a birational map, as long
as conditions a) and b) are satisfied.
A second remark is that τ certainly preserves D-stability. For this

it suffices to check that j preserves D-stability. In fact, on the one
hand j establishes a bijection between pure dimension one subsheaves
of j(F ) and pure dimension one quotients of F and, on the other, it
follows from (3.20) that, given any subsheaf A of j(F ), the condition
μ(A) ≥ μ(j(F )) is equivalent to the condition μ(F ) ≤ μ(j(A)). Thus
we have a well defined involution

(3.22)
τ : Mv,D −→Mv,D v = (0, [D],−h + 1)

[F ] �−→ [τ(F )]

The drawback of choosing D as the polarization is that D is not v-
generic (cf. Example 3.5) and thus the moduli space Mv,D is singular.
This is the price we have to pay in order to have the involution be a
regular morphism. If we only care about a birational involution any
choice of H is admissible, in particular a v-generic one. In Subsection
3.5 we will discuss, in a more general setting, what happens when we
vary the polarization H. We now come to the central definition of this
section.

Definition 3.9. Let T be an Enriques surface and f : S → T its
universal cover. Let C be a smooth curve on T of genus g ≥ 2. Let D =
f−1(C) so that g(D) = 2g− 1. Let v = (0, [D],−h+1), with h = g(D).
Let H be a polarization on S and let τ be the birational involution on
Mv,H defined by (3.21). The relative Prym variety Prymv,H(D/C) is
defined by:

(3.23) Prymv,H(D/C) = Fix0(τ) ⊂ Jac0H(D) =Mv,H .

By this we mean that we first look at the fixed locus of the restriction of
τ to an open subset where τ is a regular morphism: then we consider the
closure of the irreducible component of this locus containing the zero-
section.

When H = D, and τ is regular, there is no need to take the closure.
When no confusion is possible we will adopt the shorthand notation:

(3.24) Pv,H = Prymv,H(D/C) .

The cases in which H �= D and H = D are rather different in nature.
In the first case, at least when v is primitive and H is v-generic, we
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are taking the closure, in a smooth ambient space, of a sublocus which
is defined in a proper open subset and on whose adherence we have no
control. In the second case we are taking the fixed locus of a regular
involution defined in a singular space and, as we will see, this yields a
singular space.
When H = D we have a good control on the singular locus of Pv,D.

The dimension of this singular locus depends on whether the linear
system |D| is hyperelliptic or not (cf. Appendix A for the relevant
definitions).

Proposition 3.10. Let P = Pv,D and let Psing be its singular locus.
If |D| is a hyperelliptic linear system then codimP Psing = 2; if |D| is
not hyperelliptic then codimP Psing ≥ 4 .

Proof. We can stratify Psing by locally closed subvarieties that are
isomorphic to open subsets of products of symmetric power of lower
dimensional relative Prym varieties. The maximal dimensional strata
of Psing are isomorphic to open subsets (or finite quotients of subsets)
of relative Prym varieties of the form Pv1,D × Pv2,D corresponding to
a decomposition D = D1 + D2. Set h1 = g(D1), h2 = g(D2). Then
h = h1 + h2 + 2ν − 1, where 2ν = D1 ·D2. Hence

dim(Pv1,D × Pv2,D) = h1 − 1 + h2 − 1 = h− 1− 2ν.

Since by Corollary A.8 ν = 1 if and only if |D| is hyperelliptic, the
proposition follows. q.e.d.

The next proposition shows that the smooth locus of the relative
Prym variety Pv,H carries a natural symplectic structure.

Proposition 3.11. The birational involution (3.21) τ is symplectic.

Proof. By Lemma 3.6, to prove that τ is symplectic it is enough to
prove that j is anti-symplectic. We argue as follows. SetM =Mv,H , let

D0 ∈ |D| be a smooth curve, and set J = Jac0(D0) = π−1(D0). Since
π is a Lagrangian fibration, the isomorphism TM

∼= Ω1M induced by the
symplectic form σM yields an isomorphism of short exact sequences,

0 �� TJ

∼=

��

�� TM |J

∼=
��

�� NJ/M

∼=
��

�� 0

0 �� N∨
J/M

�� Ω1M |J
�� Ω1J

�� 0.

In particular for a point x ∈ J we have the isomorphism

(3.25) TD0
|D| ∼= NJ/M,x

∼= (TxJ)
∨.

Since the second isomorphism in (3.25) is given by σM , and since j∗

acts as the identity on TD0
|D| and as −1 on TxJ , we conclude that

j∗(σM ) = −σM . q.e.d.
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Since τ respects the fibration π :Mv,H → |D|, there is a commutative
diagram

(3.26) Pv,H

ν

��

�� Mv,H

��
|C| �� |D|

where, as usual, we identify |C| with f∗|C| ⊂ |D|.
We sum up the results in the following theorem.

Theorem 3.12. The relative Prym variety Pv,H is a (2g − 2)-
dimensional projective variety whose smooth locus Pv,H carries a holo-
morphic two form. This two form is symplectic on a dense open subset
and with respect to this symplectic form the morphism

ν : Pv,H → |C|

has a natural structure of Lagrangian fibration.

Proof. The first statement follows directly from the proposition above.
As for the second, notice that the map ν is a Lagrangian fibration, in
the sense that it is such on the open locus of Pv,H where the symplec-
tic form is defined. The general fiber of this fibration is a principally
polarized abelian variety. Indeed, given any smooth curve C in |C| we
have:

ν−1N (C) ∼= Prym(D/C), D = f−1(C).

q.e.d.

We should point out that if H = D then the form is symplectic on
the entire smooth locus of Pv,D whereas this is not necessarily true if
H �= D (cf. Example 9.7 of [44]).
In Sections 5 and 6 we will analyze the singularities of a relative

Prym variety, and answer the natural question of whether they admit a
symplectic resolution.

3.4. Prym varieties of singular curves. Looking at the Lagrangian
fibrations (3.26), we now describe the fibers of ν over points of |C|
corresponding to classes of (mildly) singular curves. As usual, for a curve
C ⊂ T in the linear system |D|, we set D = f−1(C). To fix notation,

let m : C̃ → C and n : D̃ → D be the respective normalizations. Let

f̃ : D̃ → C̃ be the induced double cover and let

ι̃ : D̃ → D̃



208 E. ARBARELLO, G. SACCÀ & A. FERRETTI

be the corresponding involution. With this notation there is a commu-
tative diagram

D̃
n ��

f̃
��

D

f

��
C̃

m �� C

3.4.1. The irreducible (nodal) case. Here we consider the case where
C andD = f−1(C) are irreducible nodal curves. Notice that in this case,
the polarization is irrelevant. Let c1, . . . , cδ be the nodes of C, and let
p1, ι(p1), . . . , pδ, ι(pδ), i = 1, . . . , δ, with f(pi) = ci, be the nodes of D.
For i = 1, . . . , δ set

{xi, yi} = n−1(pi), so that {ι̃xi, ι̃yi} = n−1(ιpi).

With this notation we have the following proposition.

Proposition 3.13. Let C and D = f−1(C) be irreducible nodal

curves. Then Fix(τ) ⊂ Jac
0
(D) has 4 connected components, each of

which is isomorphic to a rank δ degeneration of an abelian variety.

Proof. To prove the proposition, we first consider the intersection

Fix(τ) ∩ Jac0(D) = ker(1 + ι)

and prove that it has four connected components. Then we prove that
these components stay disconnected even after passing to their closure;
the last statement of the proposition will be clear from the construction.
For the first step we argue as follows. Since D and C are irreducible

and nodal there are natural short exact sequences,

0→
δ∏

i=1

C∗pi × C∗ιpi → Jac0(D)
n∗

→ Jac0(D̃)→ 0,

0→
δ∏

i=1

C∗ci → Jac0(C)
m∗

→ Jac0(C̃)→ 0.

Consider the following commutative diagram with exact rows:
(3.27)

0 �� ∏δ
i=1 C

∗ ��
� �

ζ

��

ker(1 + ι∗)
β ��

� �

��

ker(1 + ι̃ ∗)
� �

��
0 �� ∏δ

i=1 C
∗

pi
× C∗ιpi

γ

��

�� Jac0(D)

(1+ι∗)
����

n∗

�� Jac0(D̃) ��

1+ι̃ ∗

����

0

0 �� ker(α) �� (1 + ι∗) Jac0(D)
α �� (1 + ι̃ ∗) Jac0(D̃) �� 0.



RELATIVE PRYM VARIETIES 209

Since
∏δ

i=1 C
∗ is connected and since ker(1 + ι̃ ∗) has four connected

components (recall that D̃ and C̃ are smooth), to prove that ker(1 +
ι∗) has four connected components it is sufficient to prove that β is
surjective, i.e., that γ is surjective. By Proposition 2.14 of [45], it
follows that every ι∗-invariant sheaf on D is the pull-back via f∗ of a
sheaf on C. It follows that

(1 + ι∗) Jac0(D) ⊂ f∗ Jac0(C),

so that we can consider the following commutative diagram:

0 �� ker(α) ��
� �

��

(1 + ι∗) Jac0(D)
� �

��

α �� (1 + ι̃ ∗) Jac0(D̃) �� 0

0 ��
∏δ

i=1 C
∗ �� f∗ Jac0(C) �� f̃∗ Jac0(C̃) �� 0.

Here, the fact that the kernel of the surjection f∗ Jac0(C)→ f̃∗ Jac0(C̃)
is equal to

∏
iC
∗ follows from the fact that the kernel of Jac0(C) →

f∗ Jac0(C) and of Jac0(C̃) → f̃∗ Jac0(C̃) are both equal to Z/(2). No-

tice, however, that Im γ ∼=
∏δ

i=1C
∗, so that the series of inclusions

δ∏
i=1

C∗ ⊂ ker(α) ⊂
δ∏

i=1

C∗

is in fact a series of equalities. Thus γ is surjective and, as a consequence,
β too is surjective.
To finish the proof, we just need to show that when we take the clo-

sure of ker(1 + ι) in the compactified Jacobian Jac
0
(D), the number

of connected components does not change. It is well known (cf. for
example [39]) that, in order to compactify Jac0(D), one first compact-

ifies the (
∏δ

i=1C
∗
pi × C∗ιpi)-bundle over Jac

0(D) to a (
∏δ

i=1 P
1 × P1) =

(
∏

s∈Sing(D) P
1
s)-bundle over Jac

0(D). In loc. cit. Oda and Seshadri

show that this bundle is the normalization of Jac
0
(D). Let us denote

this normalization by Z. In order to obtain Jac
0
(D) we identify the

boundary components of Z in the following way: for any 2δ-uple

Ξ = {ε1, ε
′
1, . . . , εδ , ε

′
δ}, with εi, ε

′
i ∈ {1,−1}, i = 1, . . . , δ,

we consider the section

sΞ : Jac
0(D̃)→ Z,

defined by taking the 0-section of the j-th component of P1p1 × P1ιp1 ×

· · ·P1pδ × P1ιpδ if the j-th component of Ξ is equal to 1, and taking the
∞-section if it is equal to −1. The sections corresponding to Ξ and to
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−Ξ (which are both identified to Jac0(D̃)) are then glued under a twist
by the degree zero line bundle,

LΞ := OD̃

(∑
i

εi(xi − yi) +
∑
i

ε′i ι̃ (xi − yi)

)
.

Now observe that the map ζ in diagram (3.27) sends (λ1, . . . , λδ) to
(λ1,

1
λ1

. . . , λδ ,
1
λδ
). Sending the λi’s to zero, or infinity, it follows that

the closure of ker(1 + ι∗) in the normalization of Jac
0
(D) has four con-

nected components, each of which intersects the image of the section sΞ
if and only if

εi = −ε
′
i, for i = 1, . . . , δ.

In this case then, by (3.12), LΞ belongs to the identity component of
ker(1 + ι̃ ∗). It follows that tensoring by LΞ preserves each connected

component of ker(1 + ι̃ ∗) ⊂ Jac0(D̃), and hence we may conclude that

the fixed locus of τ on Jac
0
(D) has four connected components. q.e.d.

We highlight the following corollary.

Corollary 3.14. Let C be an integral curve with one node and no
other singularity, and let D = f−1(C) be the corresponding integral
curve with two nodes. Then Prym(D/C) is a rank one degeneration of
an abelian variety.

3.4.2. A reducible case. The following example shows that the situ-
ation when C and D are not irreducible is slightly different.
Let us consider the case where the curves C = C1∪C2 and D = D1∪

D2 are the union of two smooth components intersecting transversally in
δ (resp. 2δ) points. For simplicity we assume δ = 1 so that C1 ·C2 = 1.
Set

D1 ∩D2 = {p, ιp},

and let {p1, ιp1} and {p2, ιp2} be the pair {p, ιp} viewed on D1 and D2

respectively. We consider the case where the polarization is equal to D,

so that Jac
0
D(D) is irreducible. Also, for i = 1, 2 let

ιi : Di → Di

be the involution corresponding to the double cover Di → Ci, and let ηi
be the line bundle defining the cover itself. In this case diagram (3.27)
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becomes

0 �� C∗ �� ker(1 + ι∗)
β ��

� �

��

ker(1 + ι̃ ∗)
� �

��

0 �� C∗

γ=0

��

�� Jac0(D)

(1+ι∗)
����

n∗
�� Jac0(D̃) ��

1+ι̃ ∗����

0

0 �� ker(α) �� (1 + ι∗) Jac0(D)
α �� (1 + ι̃ ∗) Jac0(D̃) �� 0

and gives an exact sequence

0→ C∗ → ker(1 + ι∗)
β
→ ker(1 + ι̃ ∗)→ ker(α)→ 0,

so that to determine the number of connected components of ker(1 +
ι∗) ⊂ Jac0(D) we need to compute ker(α). Since in the case at hand,

Jac0(D̃) ∼= Jac0(D1) × Jac0(D2), the fixed locus ker(1 + ι̃ ∗) has 16
connected components. We claim that ker(1+ ι∗) has 8 connected com-
ponents. By what we said, this is equivalent to showing that ker(α) ∼=
Z/(2). To this end, consider the following diagram:

0 �� ker(α) ��
� �

��

(1 + ι∗) Jac0(D)
� �

��

α �� (1 + ι̃ ∗) Jac0(D̃) �� 0

0 �� ker(ρ) ∼= Z/(2) �� f∗ Jac0(C)
ρ �� f̃∗ Jac0(C̃) �� 0

0 �� Jac0(C)
∼ ��

����

Jac0(C̃) ��

����

0

0 �� Z/(2)

��

�� Z/(2)× Z/(2) ��

��

Z/(2).

Suppose for a moment that ker(α) = (0); then α would be an iso-
morphism and α−1 would give a section of the non-trivial covering

f∗ Jac0(C)→ f̃∗ Jac0(C̃). This, however, is absurd and hence

ker(α) = ker(ρ) ∼= Z/(2),

and the claim is proved.

Finally we observe that the closure in Jac
0
D(D) of ker(1 + ι∗) is the

union of 4 connected components, each of which is the union of two
irreducible components. What we will show is that the closure of ev-
ery connected component of ker(1+ ι∗) intersects the closure of exactly

one other connected component. Indeed, Jac
0
D(D) is obtained from the

C∗-bundle over Jac0(D̃) = Jac0(D1) × Jac0(D2) by first compactifying
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to a P1-bundle and then gluing the 0 and ∞ sections (both identi-

fied with Jac0(D̃)), via the twist by line bundle L := OD1
(p1 − ιp1) ⊗

OD2
(p2 − ιp2). However, by (3.12), the class of L1 := OD1

(p1 − ιp1)
does not lie in the identity component of ker(1 + ι∗1), even though it
lies in Nm−1(0) ⊂ Jac0(D1). It follows that tensoring by L1 preserves
the two fibers Nm−1(0) and Nm−1(η1) (cf. (3.11)), while interchanging
the two components of each fiber. The analogous statement holds for
L2 := OD2

(p2− ιp2). We may conclude that tensoring by L⊗2 preserves
every component of ker(1+ ι̃ ∗) = ker(1+ ι∗1)×ker(1+ ι∗2). The action of
tensoring by L thus divides these components in pairs, and within each
pair the zero and infinity sections of the two components are identified.
A final remark can be made about the points at infinity of Fix(τ).

When the parameter λ of the C∗-bundle ker(1 + ι∗) goes to zero or
infinity the corresponding line bundle tends to a torsion free sheaf which
is S-equivalent to a polystable sheaf of the form F1⊕F2 where, for each
i = 1, 2, the sheaf Fi is a stable sheaf supported on Di.
The previous discussion can be repeated almost word for word in the

case in which the two curves C1 and C2 meet transversally in δ ≥ 1

points. The main difference in the case δ ≥ 2 is that Jac
0
D(D) is not

irreducible any more. However, one can see (cf. [44]) that among
the 2δ − 1 components of Jac0HD

(D) only one of them, the identity
component, contains ker(1 + ι∗).

Proposition 3.15. Let C = C1∪C2 (resp. f−1(C) = D = D1 ∪D2)
be the union of two smooth components intersecting transversally in δ

(resp. 2δ) points. Then Fix(τ) ⊂ Jac
0
D(D) has 4 connected maximal

dimensional components, each consisting in two irreducible components

meeting at the boundary of Jac
0
D(D). Moreover, each connected com-

ponent of Fix(τ) contains points of the type [F1 ⊕ F2] where for each
i = 1, 2 the sheaf Fi is a stable sheaf supported on Di.

3.5. Changing the involution and the polarization. As we ob-
served after the definition (Def. 3.9) of relative Prym variety, the choice
of the polarization H appears to lead to a dichotomy: either the ambient
space Mv,H is smooth and the involution τ is not regular, or τ is regular
and the ambient space is smooth. In this section we will introduce a
“twisted” version of the involution τ and prove that, also in this more
general setting, the above dichotomy can not be reconciled.
Start with a Mukai vector

v = (0, [D], χ) ∈ H∗(S,Z)

where χ is not necessarily equal to −g(D) + 1.
The first remark is that Lemma 3.7 implies that for any line bundle

N on S, we have

Ext1S(F,N) ∼= HomΓ(F,N ⊗OΓ(Γ)).
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We set

jN (F ) = Ext
1
S(F,N).

We now proceed, step by step, exactly as in Subsection 3.3. First of all
we notice that j2N (F )

∼= F , then we set

(3.28) τN = jN ◦ ι
∗ , i.e. τN (F ) = Ext

1(ι∗F,N)

With this notation we have τ = τ−D. Again, by virtue of Lemma 3.8,
we notice that, if conditions a), b), and c) of (3.17) are satisfied with τ
replaced by τN , then the assignment F �−→ τN(F ) yields a well defined
involution

(3.29) τN :Mv,H −→Mv,H ,

Condition a) is satisfied if N is ι∗-invariant. For condition b) we demand

(3.30) c1(F ) = c1(jN (F )) = c1(Ext
1
S(F,N)) , χ(F ) = χ(jN (F )),

The first of these two conditions is always satisfied; as for the second,
exactly as in (3.31), we have

(3.31) pjN (F )(m,H) = −pF⊗N∨(−m,H),

and in particular for any pure sheaf of dimension one,

(3.32) χ(jN (F )) = −χ(F ⊗N∨) = −χ(F ) +N · c1(F ).

When c1(F ) = D, then χ(jN (F )) = χ(F ) if and only if

(3.33) 2χ(F ) = N ·D.

Let us take a closer look at the involution τN . As for the case of
τ = τ−D, even if condition c) of (3.17) is not satisfied we still have a
rational map

τN : Mv,H ��� Mv,H .

Therefore, the natural question is whether there exists a pair (N,H)
satisfying conditions a), b), and c) of (3.17) (making τN regular), and
such that, moreover, H is v-generic, (making Mv,H smooth). In this
subsection we show that such a pair does not exist. It follows that if we
choose H to be v-generic, it is not a priori clear whether the birational
map τN extends to a regular morphism. In Section 5 we will show that
τN does not extend when |C| is non-hyperelliptic. In Section 6 we will
show that it does when |C| is hyperelliptic.

Proposition 3.16. Let T be an Enriques surface and f : S → T its
universal cover and set D = f−1C for some irreducible curve C ⊂ T .
Consider a non-zero integer χ such that v = (0, [D], χ) is primitive.
Suppose that there exists a member D1 +D2 of f∗|C| ⊂ |D| that is the
union of two integral curves D1 and D2 intersecting transversally and
whose classes are ι∗-invariant. Let N be a line bundle on S, satisfying
a) and b) of (3.17).
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If H is a v-generic polarization on S, then (N,H) does not satisfy c)
of (3.17).

Before proving Proposition 3.16 we need to establish the following
lemma.

Lemma 3.17. Consider a curve

D1 +D2

in S that is the union of two integral curves D1 and D2 meeting transver-
sally, and let F be a pure dimension one sheaf on such a curve. Let N
be a line bundle on S. Referring to Notation 3.3, we have

(jN (F ))j = jN (Fj ⊗O(−ΔF )), j = 1, 2,

where, as in Lemma 3.4, ΔF ⊂ D1 ∩D2 is the set of nodes where F is
locally free.

Proof. Let i �= j, and consider the short exact sequence

(3.34) 0→ F j → F → Fi → 0.

From Lemma 3.4 it follows that

F j ∼= Fj ⊗O(−ΔF ).

Applying jN (·), we get

0→ jN (Fi)→ jN (F )
a
→ jN (Fj ⊗O(−ΔF ))→ 0.

Moreover, since jN (Fj ⊗O(−ΔF )) is torsion free and supported on Dj ,
the morphism a factors through a surjective morphism

(jN (F ))j → jN (Fj ⊗O(−ΔF )).

However, this morphism is also injective because it is a generic isomor-
phism, and thus the lemma is proved. q.e.d.

Clearly, if F is locally free this lemma is just the consequence of the
fact that restriction to a subcurve is a group homomorphism of the
Picard groups.

Proof of Proposition 3.16. Let g1 and g2 be the genera of D1 and D2

respectively. Let F be a pure sheaf of rank one on D, and as usual set
Fi = FDi

, for i = 1, 2. Set

χ = χ(F ), χi = χ(Fi), for i = 1, 2, and q = χ(Q),

where Q is the cokernel of the natural injection F → F1 ⊕ F2. Then

ΔF := Supp(Q),

is the locus of D1 ∩D2 where F is locally free. Furthermore, let H be
a polarization, and set

k1 = H ·D1, k2 = H ·D2 and k = H ·D = k1 + k2.
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By Lemma 3.2, we know that F is H-stable if and only if{ χ

k
<

χ1
k1

,

χ

k
<

χ2
k2

.

Equivalently, since χ = χ1 + χ2 − q, the sheaf F is H-stable if and only
if

(3.35)
χ

k
<

χ1
k1

<
χ

k
+

q

k1
.

Now, using Lemma 3.17 and formula (3.32), setting n = D · N and
ni = Di ·N , for i = 1, 2, we see that jN (F ) is H-stable if and only if

−
χ

k
+

n

k
< −

χ1
k1

+
q

k1
+

n1
k1

< −
χ

k
+

n

k
+

q

k1
.

Suppose now that τN satisfies condition b) in (3.17), i.e. that N is such
that 2χ(F ) = N ·D; then this last string of inequalities becomes

(3.36)
χ

k
< −

χ1
k1

+
q

k1
+

n1
k1

<
χ

k
+

q

k1
.

On the other hand, if H is v-generic, then

m =
χ

k
k1

is not an integer. Indeed, if m is an integer, we can set χ1 = m,
χ2 = χ − m + q, and find two H-stable sheaves F1 and F2 supported
on D1 and D2 respectively, with χ(F1) = χ1 and χ(F2) = χ2. But then
the sheaf F1 ⊕ F2 is an H-polystable sheaf with Mukai vector v.
Let a be the round down of m, so that we can write m = a+ s with

0 < s < 1. Then (3.35) and (3.36) become respectively

a+ 1 ≤ χ1 ≤ a+ q and a+ 1 ≤ −χ1 + n1 + q ≤ a+ q,

meaning that every χ1 satisfying the first two inequalities must also
satisfy the remaining two. We then get

n1 = 2a+ 1.

The proposition follows; note that since N is ι∗-invariant, n1 = N ·D1

has to be even. q.e.d.

A few remarks are in order. First of all, relaxing the requirement that
H be v-generic, we can indeed find a pair (H,N) satisfying conditions
a), b), and c) in (3.17). For example, if ±N is ample, then we can choose
H = N . Second, we highlight a corollary of the proof of Proposition
3.16.

Corollary 3.18. Consider the set up and the notation of Proposition
3.16. Let H be a polarization on S and suppose that there exists a line
bundle N on S satisfying conditions b) and c) in (3.17). Then there is
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an H-polystable sheaf with Mukai vector v of the form F1 ⊕ F2 where
for i = 1, 2, Supp(Fi) = Di and Fi is H-stable.

Proof. Indeed, using the notation as in the proof of Proposition 3.16,
one can see that if D ·N = 2χ, and if χk1/k is an integer, then forcing
(3.35) and (3.36) yields

(3.37)
D ·N

D ·H
=

n

k
=

ni

ki
=

Di ·N

Di ·H
, for i = 1, 2.

It follows that there exists an H-polystable sheaf F = F1 ⊕ F2, as
requested, by choosing χ(Fi) =

χki
k = ni

2 . q.e.d.

Notice that for the corollary to be true, we do not really need to
require that jN be a regular morphism, but only that it is regular in a
neighborhood of π−1[D1 +D2].
Of course, one could give a definition of the relative Prym variety

based on the involution τN , but a word of caution is in order. When
N �= −D, in general one can not assume that the image of the rational
zero-section of Jac0(|D|) → |D| lies in the fixed locus of τN . As a

consequence there is no privileged irreducible component of Fix(τN ).
One could then content oneself in saying that any irreducible, maximal
dimensional component of Fix(τN ) is a relative Prym variety. Also in
this context one could prove that an open subset of the regular part of
the relative Prym variety carries a symplectic structure, and also in this
context one could prove that, when |D| is non-hyperelliptic, the relative
Prym variety admits no symplectic resolution. Thus nothing much is
to be gained in putting oneself in this more general context. For this
reason and also to lighten the exposition, in what follows we will only
consider the case N = −D.

4. Kuranishi families and tangent cones

Let T be an Enriques surface and f : S → T its universal covering.
Let D = f−1(C) for some integral curve C ⊂ T of genus g ≥ 2. Con-
sider the Mukai vector v = (0, [D],−h + 1), with h = g(D). Choose a
polarization H such that:

There exists a point [F ] ∈ Mv,H , with F = F1 ⊕ F2, where F1 and
F2 are two non-isomorphic H-stable sheaves (in particular H is not
v-generic).

Polystable sheaves of this type exist (cf. Corollary 3.18) and corre-
spond to the simplest singularities that can appear in Mv,H . Choose a
divisor N satisfying conditions a) and b) in (3.17). In this section we
will study the tangent cones to Pv,H and to Mv,H at singularities of the
above type. To simplify we adopt the following notation:

(4.1) M =Mv,H , τ = τN : M ��� M , P = Pv,H = Fix0(τ).
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Given a point [F ] belonging to M (to P ), we denote by

M⊂M (resp. P ⊂ P )

a suitable analytic neighborhood of [F ] in M (resp. in P ). Furthemore,
when [F ] ∈ P , we will always assume that τ is defined in a neighborhood
of [F ]. The main example of this situation is the case H = D.
We next recall a few fundamental facts about Kuranishi families.

4.1. Kuranishi families. To begin with, let us look at any point [F ] ∈
M , where F is a polystable sheaf. Let us consider a Kuranishi family
for F parametrized by a pointed analytic scheme (B, b0):

(4.2) F

ξ
��

S ×B

F = Fb0 = ξ−1(b0).

Set
G = PAut(F ).

By the universal property of the Kuranishi family, the group G acts on
(B, b0) and an analytic neighborhoodM of [F ] in M may be identified
with the quotient of B by G:

B // G =M⊂Mv,H .

Moreover, by Luna’s slice étale theorem, the analytic space B is al-
gebraic in the following sense. Let Qss ⊂ Quot be the open subset
parametrizing points x = [OX(−kH)⊕m → F ] such that F is H-
semistable and such that the induced map H0(O⊕mX ) → F (kH) on
global sections is an isomorphism, and write

M = Qss/PGL(m).

There is a point x = [OX(−kH)⊕m → F ] ∈ Qss and a G-invariant
subscheme T ⊂ Qss passing through x, such that T // G → M is étale
and B is an analytic neighborhood of x in T . To study the tangent
cones to B at b0 and of M at [F ], it is best to study the completions

ÔB,b0 and ÔM,[F ], as these two rings can be efficiently described in terms
of the Kuranishi map. We follow the notation of [19] and of [25]. Let
Ext2(F,F )0 be the kernel of the trace map Ext2(F,F ) → H2(S,OS).
The Kuranishi map is a formal map

κ : Ext1(F,F ) −→ Ext2(F,F )0

starting with a quadratic term: κ = κ2+ κ3+ · · · . (For a beautiful and
very explicit construction of the Kuranishi family, see the appendix in
[25]).
The Kuranishi map has the following properties:
a) κ is equivariant under the natural action of G on Ext1(F,F ) and

on Ext2(F,F )0.
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b) κ−1(0) is (isomorphic to) a formal neighborhood of b0 in B, while
κ−1(0) // G is (isomorphic to) a formal neighborhood of [F ] ∈M .
c) The quadratic part κ2 of κ, which is called the moment map, is

given by the cup product

(4.3)
κ2 : Ext1(F,F ) −→ Ext2(F,F )0

e �→ κ2(e) =
1

2
e ∪ e.

From now on we will set
Q = κ−12 (0).

Suppose now that the point [F ] belongs to P . Since we are assuming
that F is H-polystable, we have F ∼= τ(F ). The symplectic involution τ
on M lifts (non-uniquely) to an automorphism on the parameter space
B of the Kuranishi family (4.2). Indeed, given such a family and fixing
an isomorphism

φ : F ∼= τ(F ),

we get a new family by applying τ to it:

τ(F)

τ(ξ)

��
S ×B

ϕ−1 : F
∼=
→ τ(F ) = τ(F)b0 ,

and therefore, by universality, we obtain an automorphism

τφ : B → B,

whose first order term is uniquely defined. This automorphism need not
be an involution, but it is so at the infinitesimal level since

(4.4) dτφ = dτ = τ∗ : Ext
1(F,F ) −→ Ext1(F,F ) .

Sometimes, and when no confusion is possible, we will write τ instead
of τ∗ to indicate the homomorphism (4.4).

Remark 4.1. If F is a stable sheaf, the action of τ∗ on Ext
2(F,F ) is

equal to −1. To see this it suffices to prove that τ∗(e ∪ f) = −e ∪ f for
e, f ∈ Ext1(F,F ). Interpreting the cup product in terms of composition
of short exact sequences, we see that τ∗(e ∪ f) = τ∗(f) ∪ τ∗(e). The
fact that τ is symplectic tells us that: tr(e ∪ f) = tr(τ∗(e) ∪ τ∗(f)) =
tr(τ∗(f∪e)). Since τ∗(f∪e) = λf∪e, λ ∈ C∗, and tr(e∪f) = − tr(f∪e),
we get λ = −1.

4.2. Tangent cones. We now turn our attention to tangent cones.
Let Cb0(B) and C[F ](M) denote the tangent cones to B at b0 and to
M at [F ], respectively. Again we will assume that F is polystable. For
simplicity write

C(B) = Cb0(B) , C(M) = C[F ](M).
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The description of C(B) and C(M) is particularly simple under the
condition that the stable decomposition of F

(4.5) F = F1 ⊕ F2

has only two non-isomorphic summands. Indeed this implies that

(4.6) dimExt2(F,F )0 = 1,

that G = C∗, and that B, or better its formal neighborhood at 0, is
given by a single equation κ = 0 and, by point c) above, we have

(4.7) C(B) = Q = κ−12 (0) = {e ∈ Ext1(F,F ) | e ∪ e = 0}.

On the other hand, by point a), κ and κ2 must be C
∗-invariant; hence

(4.8) C(M) = Q // C∗ ⊂ Ext1(F,F ) // C∗.

We use the non-degenerate bilinear form

(4.9)
μ : Ext1(F2, F1)×Ext

1(F1, F2) −→ C

(f, f ′) �−→ μ(f, f ′) = tr(f ∪ f ′)

to identify Ext1(F2, F1) with Ext
1(F1, F2)

∨ and we write

(4.10)
U1 := Ext1(F1, F1) , U2 := Ext1(F2, F2) ,

W := Ext1(F1, F2) , W∨ = Ext1(F2, F1) ,

We identify Ext2(F,F )0 with Ext
2(F1, F1), and Ext

2(F1, F1) with C (via
the trace). Up to the constant factor 1

2 , the moment map (4.3) is given
by

(4.11)
Ext1(F,F ) = U1 ⊕ U2 ⊕W∨ ⊕W −→ Ext2(F,F )0 = C

e = (a, b, f, f ′) �−→ κ2(e) = μ(f, f ′) .

Remark 4.2. Using the notation of [34], p. 520, we may also write
the non-degenerate bilinear form (4.9) as a Nakajima’s moment map

(4.12)
μ : Hom(W,C)⊕Hom(C,W ) −→ C

(i, j) �−→ μ(i, j) = ij

based on the trivial quiver whose graph consists of a single vertex x and
no edges, and the pair of vector spaces attached to x is the pair (V,W )
with V = C. We will freely pass from notation (4.9) to (4.12) and vice
versa.

The action of C∗ on Ext1(F,F ) is given by

λ · (a, b, f, f ′) = (a, b, fλ−1, λf ′)

or, in Nakajima’s notation, λ · (i, j) = (iλ−1, λj). The natural map

Hom(W,C)⊕Hom(C,W ) −→ End(W )

(i, j) �−→ ji
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factors through the action of C∗ and exhibits the quotient of Hom(W,C)⊕
Hom(C,W ) by C∗ as the set End1(W ) of endomorphisms of W of rank
≤ 1. Thus,

(4.13)
Ext1(F,F )/C∗ ∼= (U1 ⊕ U2 ⊕Hom(W,C)⊕Hom(C,W )) /C∗

∼= U1 × U2 × End1(W ).

By choosing appropriate coordinates on Ext1(F,F ) and looking at C∗-
invariant polynomial functions on this vector space, one may deduce
that the equation k2 = 0 of Q/C∗ ⊂ Ext1(F,F )/C∗ is linear in the
invariant coordinates and is of the form

(4.14) A = 0 , where A ∈W ⊗W∨ = End(W )∨ .

In particular, Q/C∗ is irreducible and of the same dimension as C(M)
so that

C(M) = Q/C∗ = U1 × U2 × End1,A(W )

where

(4.15) End1,A(W ) = {a ∈ End1(W ) |A(a) = 0}.

Let us now examine the case in which the point [F ], corresponding
to the sheaf (4.5), lies in P , so that F ∼= τ(F ). Let D1 and D2 be the
supports of F1 and F2, respectively. From now on we proceed under the
assumption that D1 and D2 are two ι-invariant integral curves meeting
transversally. In particular,

(4.16) τ(Fi) ∼= Fi , i = 1, 2 .

Under these hypotheses, we wish to describe the tangent cone C(P ) =
C[F ](P ) to P at [F ]. We have

(4.17) C(P ) = C(M τ ) ⊆ C(M)τ ⊆ Ext1(F,F )/C∗)τ ,

where the action of τ on (Ext1(F,F )/C∗) is the one induced by (4.4)
and where Xτ stands for Fixτ (X), the fixed locus of τ in X. We will
momentarily see that (4.17) is in fact a series of equalities. Looking at
(4.13) we have

(4.18) (Ext1(F,F )/C∗)τ ∼= U τ
1 × U τ

2 × End1(W )τ .

Now
End1(W )τ = {φ⊗ τ(φ) | φ ∈W∨}/C∗ ⊂ End1(W ),

and this can be identified with the set End1(W )s of symmetric endomor-
phisms with respect to the non-degenerate bilinear form on W defined
by

B(v,w) = τ−1(v)(w).

As is well known, End1(W )s is isomorphic to the affine cone over the
degree two Veronese embedding

PW ↪→ PS2W.
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To prove that (4.17) is a sequence of equalities it suffices to show that
the rightmost term in (4.17) is irreducible of dimension equal to g−1 =
dimP . Since End1(W )s is irreducible we must only care about the
dimensionality statement. Let h1 = 2g1 − 1 and h2 = 2g2 − 1 be the
genera of D1 and D2 respectively. The stability of Fi, i = 1, 2, and
their τ -invariance (4.16) tell us that [F1] and [F2] are smooth points of
relative Prym varieties of dimensions g1 − 1 and g2 − 1 respectively (cf.
Remark 4.6 below) so that dimUi = 2gi − 2 for i = 1, 2. It follows that

dim(Ext1(F,F )/C∗)τ = 2g1 − 2 + 2g2 − 2 + dimEnd1(W )s

= h1 + h2 − 2 + dimW.

We must then compute the dimension of W = Ext1(F1, F2). From the
isomorphism

Ext1(F1, F2) ∼= ⊕
p∈D1∩D2

Cp

and from the local to global spectral sequence we get

(4.19) Ext1(F1, F2) = H0(S, Ext1(F1, F2)) = CD1·D2 .

Hence

dim(Ext1(F,F )/C∗)τ = h1 + h2 − 2 +D1 ·D2 =
1

2
D2 = h− 1 = dimP.

Remark 4.3. In proving that C(P ) = (Ext1(F,F )/C∗)τ we implic-
itly proved that the quadratic part of the Kuranishi equation vanishes
identically on C(P ), i.e. that the form A given in (4.14) vanishes iden-
tically on End1(W )s. This follows directly from the fact that κ2 is
τ -equivariant and that τ acts as −1 on Ext2(F,F ) (cf. Remark 4.1), so
that

A(φ⊗ τ(φ)) = φ ∪ τ(φ) = −τ(φ ∪ τ(φ)) = −φ ∪ τ(φ) = 0.

We summarize the results obtained in this section in the following
proposition.

Proposition 4.4. The assumptions and the notation being the ones
introduced at the beginning of this section, let H be a polarization such
that there exists an H-polystable sheaf [F ] ∈ M = Mv,H of the form
F = F1⊕F2, with the F1 and F2 two non-isomorphic H-stable sheaves.
For i = 1, 2, let Di be the support of Fi. Assume that D1 and D2 are
integral ι-invariant curves meeting transversely and let hi be the genus
of Di, i = 1, 2. Set W = Ext1(F1, F2). Then:

a) The tangent cone C[F ](M) to M at [F ] is isomorphic to C2(h1+h2)×
End1,A(W ), where End1,A(W ) is defined by (4.15).

b) Suppose that H is such that τ : Mv,H ��� Mv,H is biregular in
a neighborhood of [F ] (e.g., if H = D). If [F ] ∈ P = Pv,H , then the

tangent cone C[F ](P ) to P at [F ] is isomorphic to Ch1+h2−2×Ends1(W ),
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where Ends1(W ) denotes the set of symmetric (w.r.t. a suitable bilinear
form) endomorphisms of W of rank ≤ 1.

Remark 4.5. We could drop the integrality assumption of D1 and
D2 and just require that they have no common components. In fact one
can check that also in this case (4.19) holds, which is all that matters
in the proof of the proposition above.

Remark 4.6. Keeping the notation of Proposition 4.4, set χi =
χ(Fi), vi = (0, [Di], χi), Mi = Mvi,H(S), Ci = Di/ι, and Pi = Pvi,H

(|Di|/|Ci|), i = 1, 2. By hypothesis [Fi] is a smooth point for both Mi

and Pi, i = 1, 2 so that [F ] is a smooth point in both M1 ×M2 and
P1 ×P2. Thus we can write the above description of tangent cones in a
more intrinsic way:

(4.20)
C[F ](M) ∼= T[F ](M1 ×M2)× End1,A(W ),

C[F ](P ) ∼= T[F ](P1 × P2)× Ends1(W ).

5. Analysis of singularities and the non-hyperelliptic case

For the next proposition we keep the notation and the hypotheses
introduced at the beginning of Section 4. Here we look more closely at
the singular points of M and P , whose tangent cones were described in
Proposition 4.4. The first result we prove is the following.

Proposition 5.1. Let [F ] ∈M be a polystable sheaf as in the state-
ment of Proposition 4.4. Suppose that D1 · D2 ≥ 3. If the polystable
sheaf [F ] lies in P , then, locally around [F ], the relative Prym variety
P is isomorphic to its tangent cone C[F ](P ).

Proof. First of all, recall from formula (4.19) that dimW = D1 ·D2.
Let Z denote the irreducible component of the singular locus of M

containing [F ]. Then a neighborhood Z of [F1 ⊕ F2] in Z is isomor-
phic to M1 × M2 where, for i = 1, 2, Mi ⊂ Mi = Mvi,H is a suit-
able analytic neighborhood of [Fi] and vi = v(Fi). As in Proposi-
tion 4.2 in [25], one can show that the Kuranishi map vanishes iden-
tically on Ext1(F1, F1) ⊕ Ext1(F2, F2) so that under the identification
(M, [F ]) ∼= (κ−1(0)//G, 0), the pointed space (Z, [F ]) is identified with
(Ext1(F1, F1)⊕ Ext1(F2, F2), 0). Consider the natural projection

Ext1(F,F )→ Ext1(F1, F1)⊕ Ext1(F2, F2).

Since this projection is G-equivariant, and the action of G on k−1(0) is
induced by the linear action on Ext1(F,F ), the restriction

κ−1(0)→ Ext1(F1, F1)⊕ Ext1(F2, F2)

is also G-equivariant. It follows that there is an induced morphism
(recall that the G-action on the pure part of Ext1(F,F ) is trivial),

p : (M, [F ])→ (Z, [F ]) ∼= (Ext1(F1, F1)⊕ Ext1(F2, F2), 0).
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The inclusion (Z, [F ]) ⊂ (M, [F ]) defines a section of p, and that
the fiber of p over [F ] is identified with (κ−1(0) ∩ Ext1(F1, F2) ⊕ Ext1

(F1, F2))//G.
Now let Σ denote the irreducible component of the singular locus of

P containing [F ]. Then locally around [F ], Σ is isomorphic to P1×P2 ⊂
M1 ×M2 where, for i = 1, 2, Pi is a suitable neighborhood of [Fi] in
the relative Prym variety Pi ⊂ Mi. From Remark 4.6 we deduce that
the tangent cone of P in [F ] is locally isomorphic to

(5.1) P1 × P2 × Ends1(W ).

The projectionM→M1×M2 induces a morphism q : P →M1×M2,
and since the morphism induced by p at the level of tangent cones is
equivariant with respect to the induced action of τ , the image of q in
M1×M2 has the same dimension as, and therefore is equal to, P1×P2.
Thus there is a morphism q : P → P1×P2. At the level of tangent cones,
q is just the projection onto the first two factors in (5.1). In particular,
the fibration is flat and is thus a deformation of the central fiber q−1(0).
Since the tangent cone to q−1(0) is isomorphic to Ends1(W ), we can apply
the theorem of Grauert (cf. [13] and [8], Theorem 4.4) and conclude
that q−1(0) ∼= Ends1(W ). Moreover, since Ends1(W ) is isomorphic to the
cone over the degree two Veronese embedding of PW , it is rigid as soon
as dimW ≥ 3. It follows, as in the previous case, that locally around
[F ],

P ∼= P1 × P2 × Ends1(W ).

�

The main goal of this section is to prove that when |D| is not a hy-
perelliptic system the relative Prym variety does not admit a symplectic
resolution.

Theorem 5.2. Let T be a general Enriques surface and f : S → T its
universal covering. Let |C| be a non-hyperelliptic linear system of genus
g on T . Set D = f−1(C) and v = (0, [D],−h + 1), h = 2g + 1 = g(D).
The singular variety Pv,H = Prymv,H(D/C) defined in Section 3 does
not admit a symplectic resolution.

Proof. Using Corollary A.8, we can find a curve in |D| which is the
union of two smooth ι-invariant curves D1 and D2 meeting transversally
in 2ν points. Recall that, from our assumption on C and from the same
corollary, it follows that ν ≥ 2. We first examine the case H = D. By
Corollary 3.18, we can find a D-polystable sheaf

(5.2) F = F1 ⊕ F2,

with Supp(Fi) = Di for i = 1, 2. Notice that we can choose F1 and
F2 to be τ -invariant. We claim that we can moreover choose them so
that [F ] belongs to the identity component Pv,D = Fix0(τ). Indeed, by
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Proposition 3.15 everymaximal dimension component of Fix(τ) contains
a polystable sheaf as in (5.2).
We claim that the singularity of P at [F ] is Q-factorial and terminal

(but not smooth). This proves that P does not admit any symplectic
resolution.
By Proposition 5.1 above it follows that locally around [F ], the rela-

tive Prym variety Pv,D is isomorphic to the product of an affine space

times the space of symmetric endomorphisms of W = Ext1(F2, F1) of
rank ≤ 1. Moreover,

dimW = 2ν, with ν ≥ 2.

To prove the theorem, it is thus sufficient to prove the claim for Ends1(W ),
in the case when dimW ≥ 4. The fact that Ends1(W ) is Q-factorial fol-
lows from the fact that it is isomorphic to the quotient of W by Z/2Z
acting by multiplication by −1. As for the statement on the type of sin-
gularity, what we need is contained in Example 1.5 (ii) of [43]. Following
the notation of Reid, we have

n = 2ν, and k = 2,

so that b = ν and a = 1. Also notice that the blow up Ênd
s

1(W ) of
Ends1(W ) at the origin is smooth. From Reid’s computation, it fol-
lows that the discrepancy of the exceptional divisor of the blow up is
ν − 1. As Ends1(W ) is Q-factorial, any resolution factors via the blow
up and therefore its discrepancy is bounded from below by the discrep-
ancy of the blow up. In conclusion, the singularity is terminal if ν > 1.
Moreover, when ν = 1 the singularity is canonical but not terminal.
By a theorem of Flenner [11], which we can use since by Proposition

3.10 below the codimension of the singular locus of Pv,D is greater than
or equal to two, we know that the symplectic form extends to a holo-
morphic form on any smooth resolution of Pv,D. However, from what we
proved above we also know that the top exterior power of this holomor-
phic form vanishes along some exceptional divisors in any resolution.
We may conclude that no resolution of Pv,D admits a non-degenerate
symplectic form.
We now consider the case of an arbitrary polarization H. This case

can be reduced to the case H = D, by claiming that there always exists
a point [F ′] ∈ Pv,H and a birational morphism σ : Pv,H ��� Pv,D which
is defined in a neighborhood of [F ′] and such that σ([F ′]) = [F ]. To
prove the claim we consider the wall and chamber decomposition of
Amp(S) determined by v. Let {Uα}α∈A be the set of open chambers
whose closure contains D, and let U be the interior of ∪α∈AUα. For
every H ′ belonging to U there is a regular map σ : Pv,H′ → Pv,D

(typically one expects, for this map, a positive dimensional fiber over
the point [F ]). Suppose H does not belong to U . For each α ∈ A we
choose a point Hα ∈ Uα ⊂ U and a point [Fα] ∈ Pv,Hα mapping to [F ]
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under a rational map σα : Pv,Hα ��� Pv,D. We may then choose a path
from H to Hα which only crosses walls not passing through [F ]. Each
of these crossings correspond to a birational map which is defined in a
neighborhood of [Fα]. q.e.d.

Notice that from the proof of Theorem 5.2, it follows that if ν =
1, then the singularity is canonical and moreover the blow up of the
singularity is a (local) crepant resolution. In particular, the pullback of
the symplectic form is non-degenerate along that divisor. This case will
be studied in the next section.

Remark 5.3. It was proved by Kaledin [17] and by Namikawa [36]
that if w : X → Y is a birational projective morphism from a smooth
projective symplectic n-fold X to a normal variety Y , then w is a
semi-small map, i.e. if Yi denotes the set of points y ∈ Y such that
dimw−1(y) = i, then dimYi ≤ n − 2i. This, in particular, implies
that if Y is Q-factorial then codimSing(Y ) ≤ 2. From this observation
it follows that if we knew by other means that P (notation as above)
were normal and Q-factorial at a general singular point, then we could
conclude that P has no symplectic resolution.

6. The hyperelliptic case

In this section, we will prove that the degree zero relative Prym vari-
ety of a hyperelliptic linear system is birational to a hyperkähler man-
ifold, and we will highlight the cases in which it is a smooth compact
hyperkähler manifold and the ones in which it admits a symplectic res-
olution. The hyperkähler manifolds arising from degree zero relative
Prym varieties are all of K3[n] type. As in the preceding sections we
will use the following notation (see (3.24)):

M =Mv,H , τ : M ��� M , P = Pv,H

where v = (0, [D],−h + 1), and where now |D| is a hyperelliptic linear
system which is the pull-back, via f : S → T , of a hyperelliptic linear
system |C| = |ne1+e2| on T (see Appendix A for the relevant definitions
and notation).
The first result we want to prove is that, in the hyperelliptic case, the

Prym involution τ on M comes from a bona fide involution on S.

Proposition 6.1. Let f : S → T and ι : S → S be as in (2.1) and
(2.2). Let |C| = |ne1+ e2| be a hyperelliptic linear system on T , and let
|D| = |f∗(C)|. Set v = (0, [D],−h + 1), h = g(D). Then there exists a
symplectic involution

k : S → S,

such that, for any ι∗-invariant polarization H, the birational involution

τ :M ��� M
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defined in Section 3 concides with the birational involution

k∗ : M ��� M

F �→ k∗F.

The proof of this proposition consists in defining the involution k. In
Appendix A we recall the notation and some basic results regarding the
geometry of hyperelliptic linear systems on Enriques and K3 surfaces.
Let us then consider a hyperelliptic linear system

|C| := |ne1 + e2|,

where e1 and e2 are two primitive elliptic curves such that e1 · e2 = 1.
The linear system has two simple base points (Proposition 4.5.1 of [9])
and defines a degree two map of T onto a degree n − 1 surface in Pn.
The two base points are

(6.1) e1 ∩ e′2, and e′1 ∩ e2, if n is odd,

or

(6.2) e1 ∩ e2, and e′1 ∩ e′2, if n is even.

Following the notation in Appendix A, we have

Ei = f−1(ei), and E′i = f−1(e′i), i = 1, 2.

Set h = 2n + 1. The genus h linear system |D| = |nE1 + E2| is also
hyperelliptic, with the g12 cut out by the elliptic pencil |E1|. As in (A.1)
consider the morphism

ϕ = ϕD : S → R ⊂ Ph

attached to the linear system |D|. It is a degree two morphism onto a
rational normal scroll of degree h− 1. Let us denote by

� : S → S

the anti-symplectic involution defined by ϕ. Notice that any curve in
|D| is �-invariant, and that � induces the hyperelliptic involution on
every smooth member of the linear system. In particular, we notice the
well known fact that if D is smooth, �∗ acts as −id on Pic0(D).
Finally, observe that the sub-linear system

(6.3) W = f∗|C| ⊂ |D|

has 4 simple base points that are the inverse image of (6.1) or of (6.2).
By the same reasoning, the sub-linear system W ′ = f∗|C ′| ⊂ |D| has 4
simple base points that are the inverse image of (6.2) or of (6.1) respec-
tively. Denote by {w1, . . . , w4} the base points ofW and by {w′1, . . . , w

′
4}

the base points of W ′.
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Lemma 6.2. The two involutions � and ι commute and their com-
position

(6.4) k = ι ◦ �

is a symplectic involution with eight fixed points:

(6.5) {w1, . . . , w4, w
′
1, . . . , w

′
4}.

Proof. It is sufficient to prove that for any smooth ι-invariant curve
Γ in |D|, the identity k2|Γ = idΓ holds. But this is clear, since �∗ = −id

on Pic0(Γ) and hence (k2)∗ is the identity on Pic0(Γ).
Since k is the composition of two anti-symplectic involutions, it is

symplectic. As such, k has eight fixed points which we readily describe.
For simplicity, let us focus our attention on the two points {p, q} =
E′1∩E2. By construction, we know that ι(p) = q. Notice, however, that
we can choose a smooth curve D in the linear system |nE1+E2| passing
through those two points so that D ∩ E1 = {p, q}. Since |E1| induces
the g12 on D, it follows that �(p) = q and thus

k(p) = p and k(q) = q.

We can now argue in the same way for the remaining points of (6.5).
q.e.d.

This lemma, together the fact that �∗ = −1 on Pic0(D) for a smooth
curve D, shows that τ = k∗ on a dense open subset of M , thus proving
Proposition 6.1.

Remark 6.3. If we choose H = D, so that τ is a morphism, then
so is k∗. In fact, in this case, the linear system |D| is k∗-invariant, and
hence pulling back via k respects D-stability.

Recall from Section 3, Proposition 3.16, that it is not possible to
choose H such that M = Mv,H is smooth and the assignment F �→
Ext1(F,O(−D)) respects stability. It is therefore natural to ask whether
there are choices of H such that Mv,H(S) is smooth and at the same
time k∗ is a regular morphism. Equivalently, we ask whether there exists
a k∗-invariant ample class which is also v-generic.
To describe the v-generic polarizations, we need to identify the walls.

Lemma 6.4. The equations defining the walls relative to a primitive
Mukai vector v = (0,D, χ), with D = nE1 + E2, are of the form

(6.6)
sE1 · x+ εE2 · x

nE1 · x+ E2 · x
χ = m,

with m ranging in a finite sets of integers, ε ∈ {0, 1} and s = 0, . . . , n−1.

Proof. Since by assumption D is primitive in NS(S), and since χ �= 0,
the finiteness of the number of walls is proved in Section 1.4 of Yoshioka’s
paper [52]. Each subcurve of |D| belongs to a linear subsystem of type
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|sE1 + εE2|, with s ranging from 0 to n, and ε ∈ {0, 1}. Up to passing
to a residual series, we may assume that ε = 1. Clearly, equations (6.6)
are satisfied by strictly semistable sheaves F with [c1(F )] = [sE1 +
E2] and χ(F ) = m. Notice, however, that the above equations are
also sufficient for the existence of strictly semistable sheaves. Indeed,
consider a smooth curve Γ ∈ |sE1 + E2| and a smooth curve Γ ∈ |E1|.
If equation (6.6) holds for some ample class H = x and some integer
m, then we can choose a torsion free H-stable sheaf FΓ on Γ with Euler
characteristic equal to m, and an H-semistable sheaf FΓ of rank (n− s)

on Γ such that χ(FΓ) = χ−m. The sheaf F = FΓ ⊕ FΓ is then strictly
H-semistable. Since the above are all the possible subcurves of |D|,
there are no other walls. q.e.d.

We now turn to the question regarding the k∗-invariance of the po-
larization. With this in mind, we describe the action of k∗ on NS(S).
Notice that since the involutions ι, �, and k commute, the induced ac-
tions on the Néron-Severi group are compatible. For a lattice Λ and
an involution ε acting on Λ, we denote by Λε and by Λ−ε the invariant
and anti-invariant sub-lattices, respectively. Note that Λε and Λ−ε are
primitive in Λ.
Recall that NS(T ) ∼= U⊕E8(−1) and that f

∗NS(T ) is a primitive 10-
dimensional sub-lattice of H2(S,Z). By Proposition A.5, it follows that
NS(R) ∼= U and that ϕ∗NS(R) = 〈E1, E2〉 is also primitive in H2(S,Z).
For simplicity we will indicate by NS(T ) and by NS(R) their respective
pull-backs in NS(S).

Lemma 6.5. NS(S)k
∗
= 〈E1, E2〉 ⊕ (NS(T )⊥)k

∗
, so that if T is a

general Enriques surface then NS(S)k
∗
= 〈E1, E2〉.

Proof. Since NS(S)�
∗
= NS(R) = 〈E1, E2〉 ⊂ NS(T ), we have

〈E1, E2〉 = NS(T )�
∗ ∼= NS(S)�

∗
. Moreover, by [38], [30], [51],

H2(S,Z)k
∗ ∼= U⊕3 ⊕ E8(−2) and H2(S,Z)−k

∗ ∼= E8(−2).

Since k∗ preserves the (2, 0) part of the Hodge decomposition, we have

H2(S,Z)−k
∗
⊂ H1,1(S) ∩H2(S,Z) = NS(S) .

In particular, since 〈E1, E2〉 = NS(T )�
∗
= NS(T )k

∗
, we have

NS(S)k
∗
= 〈E1, E2〉 ⊕ (NS(T )⊥)k

∗
.

It follows that if the K3 surface satisfies NS(S) = NS(T ), then NS(S)k
∗

is spanned by the classes of E1 and E2. This certainly happens if T is
general (but if the Picard number of S is strictly greater than 10, then
there may be k∗ invariant classes that do not come from T ). �

Corollary 6.6. Let T be an Enriques surface. Let Wv ⊂ Amp(S) be
the union of all the walls of v = (0,D, χ). Then

Amp(S) ∩NS(S)k
∗
\ Wv ∩NS(S)

k∗
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is non-empty.

Proof. Since there are finitely many walls, it is sufficient to check that
none of the equations (6.6) vanish identically on NS(S)k

∗
= 〈E1, E2〉.

To this aim, consider H ∈ Amp(S)∩〈E1, E2〉. Then H = aE1+ bE2 for
some positive integers a and b, so that the restrictions of the equations
to Amp(S) ∩NS(R) are

(6.7)
bk + εa

bn+ a
χ = m,

and these are not identically zero. q.e.d.

Proposition 6.7. Keeping the notation of Theorem 6.1, we can al-
ways find an ample divisor H which is k∗-invariant and v-generic. In
other words, there exists a polarization H such that Mv,H is smooth and
such that

k∗ :Mv,H −→Mv,H

is a regular involution. In particular, if H ∈ NS(R) \ Wv ∩ NS(R), the
a priori birational involution τ : Mv,H ��� Mv,H extends to a regular
morphism and the relative Prym variety Prymv,H(D/C) is smooth and
symplectic.

Proof. It is sufficient to consider H ∈ Amp(S) ∩ NS(S)k
∗
\ Wv ∩

NS(S)k
∗
which is non-empty by the above corollary. q.e.d.

Since changing the polarization H does not change the birational
class of the relative Prym variety and the above proposition ensures
the existence of smooth Prym varieties, we can sum up the results we
obtained so far in the following:

Theorem 6.8. Let T be an Enriques surface and f : S → T the
universal covering. Let |C| = |ne1 + e2| be a hyperelliptic linear system
on T and let |D| = |f∗(C)|. Set v = (0, [D],−h + 1), h = g(D). For

any polarization H on S, the relative Prym variety Pv,H = Fix0(τ) =

Fix0(k∗) is birational to a projective hyperkähler manifold.

Corollary 6.9. The singular symplectic variety Pv,D admits a sym-
plectic resolution.

Proof. First, recall that D is not v-generic. In fact, since the genus
h of D is odd, χ = −h + 1 is even, and hence D lies on the wall with
equation

E2 · x

nE1 · x+ E2 · x
χ = 2.

It is possible to choose an ample H as in Proposition 6.7 and such that,
moreover, it lies in a v-chamber adjacent to the wall (or the intersection
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of walls) where D lies. Under these assumptions, there is a natural
projective birational morphism

ε : Mv,H →Mv,D,

which is a resolution of the singularities of Mv,D. Since ε commutes
with both k∗ : Mv,H →Mv,H and τ : Mv,D →Mv,D, there is an induced
proper morphism

ε : Pv,H → Pv,D,

which is still birational. Since Pv,H is smooth and symplectic, it is a
symplectic resolution of the singularities of Pv,D. q.e.d.

Now, the natural question is to determine the deformation class of
these smooth relative Pryms. As one can expect they are birational,
and thus by what Huybrechts proves in [15] deformation equivalent, to
some moduli spaces of sheaves on the minimal resolution of the quotient
of S by k.
To fix notation, let

ρ : S → S := S/〈k〉

be the quotient morphism. Then S is a singular K3 surface with 8
rational double points and we let

η : Ŝ → S

be its minimal resolution. It is well known that Ŝ is a K3. Observe
that a divisor in |D| is k-invariant if and only if it is ι-invariant. In
particular, any D in W is k-invariant so that if we set D = D/k there
is an obvious bijection W ∼= |D|. The general curve D in W does not
contain the points {w′1, . . . , w

′
4} so that for D ∈ W , the double cover

D → D ramifies only in {w1, . . . , w4} and

g(D) =
h− 1

2
= g − 1.

Moreover, if D ∈ W is smooth, then so is D. In this case, the proper
transform

D̂ := η−1∗ (D) ⊂ Ŝ

is also smooth and isomorphic to D. Consider now the following com-
mutative diagram:

Zk̂ ��
ρ̂ ��

η̂

��

Ŝ

η
��

Sk �� ρ
�� S = S/k ,
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where Z → S is the blow up of the surface at the 8 fixed points of

the involution, and Z → Ŝ is the double cover ramified along the eight
exceptional curves of η. We denote by

k̂ : Z → Z

the lift of k to Z so that k̂ is an involution on Z whose fixed locus is
the union of the exceptional divisors. Let R1, . . . , R4 be the exceptional
divisors mapping to ρ(w1), . . . , ρ(w4), and R′1, . . . , R

′
4 the exceptional

divisors mapping to ρ(w′1), . . . , ρ(w
′
4). Since the general curve in |D|

does not pass through w′1, . . . , w
′
4 and is smooth,

(6.8) D̂ ·Ri = 1,

and D̂ ·R′i = 0.

The general curve Γ in ρ̂ ∗|D̂| is a smooth double cover of a curve

in |D̂|, and, via η̂, maps isomorphically to its image in S. Indeed, η̂
induces an isomorphism

(6.9) |Γ| ⊃ ρ̂ ∗|D̂| ∼=W ⊂ |D|.

Theorem 6.10. Set w = (0, D̂,−g + 2), and let H and Ĥ be two

ample line bundles on S and Ŝ respectively. There is a rational map

(6.10)
ψ : Mw,Ĥ(Ŝ ) ��� Mv,H(S),

F �→ η̂∗ρ̂
∗F,

defined on the open set of Mw,Ĥ(Ŝ ) parametrizing sheaves supported on

irreducible curves. This map factors via the inclusion Pv,H ⊂Mv,H(S),
and the induced map

(6.11) φ :M
w,Ĥ

(Ŝ ) ��� Pv,H

is birational.

Proof. For our purposes, it is enough to restrict our attention to the

open subset of Mw,Ĥ(Ŝ) parametrizing sheaves with smooth support.

Let F be a family of pure sheaves of dimension one on S with Mukai
vector w, supported on smooth curves, and parametrized by a scheme
B. Then η̂B∗ρ̂

∗
BF is a flat family of H-stable sheaves. Clearly, ρ̂ ∗BF is

flat over B and by formula (6.8) the support Γb of ρ̂
∗Fb is smooth. If

E is any flat family, parametrized by B, of pure dimension one sheaves
on Z, with support on smooth curves belonging to |Γ|, then η̂B∗E is
a flat family of H-stable sheaves with support in W . This defines the

rational map (6.10). Since k̂ is a lift of k, the two involutions coincide

where η̂ is an isomorphism. Let [F ] be a point in M
w,Ĥ

(Ŝ ); since ρ̂ ∗F

is k̂∗-invariant, it follows that

η̂∗ρ̂
∗F ∈ Fix(k∗).



232 E. ARBARELLO, G. SACCÀ & A. FERRETTI

Hence ψ factors through the inclusion Pv,H ⊂Mv,H(S). The last asser-

tion to prove is that the induced map φ :Mw,H̃(S̃) ��� Pv,H is birational.

As above, we assume that Supp(F ) is smooth. First, we show that φ is
a local isomorphism at [F ]. We claim that the induced map on tangent
space

(6.12) dψ : Ext1
Ŝ
(F,F )→ Ext1Z(ρ̂

∗F, ρ̂ ∗F ) ∼= Ext1S(η̂∗ρ̂
∗F, η̂∗ρ̂

∗F )

is injective. In fact, given a non-trivial extension 0→ F → G→ F → 0,
we can pull it back to Z to obtain a short exact sequence

(6.13) 0→ ρ̂ ∗F → ρ̂ ∗G→ ρ̂ ∗F → 0.

If this sequence were split, the same would be true for

0→ ρ̂∗ρ̂
∗F → ρ̂∗ρ̂

∗G→ ρ̂∗ρ̂
∗F → 0.

However, this sequence is the direct sum of (6.13) and of

0→ ρ̂ ∗F ⊗ L→ ρ̂ ∗G⊗ L→ ρ̂ ∗F ⊗ L→ 0,

where4

L :=
1

2
O

S̃
(−

∑
Ri −

∑
R′i).

Since these two exact sequences are non-split by assumption, we get a
contradiction. Hence, the induced map (6.12) is injective and φ is a
local isomorphism. To end the proof of the theorem, we just need to
prove that the degree of φ is one. It is enough to prove that if F1 and

F2 are two sheaves on Ŝ with Mukai vector w, then

ρ̂ ∗F1 ∼= ρ̂ ∗F2, if and only if F1 ∼= F2.

This follows from the projection formula. In fact, if ρ̂ ∗F1 ∼= ρ̂ ∗F2, then

F1 ⊕ (F1 ⊗ L) ∼= ρ̂∗ρ̂
∗F1 ∼= ρ̂∗ρ̂

∗F2 ∼= F2 ⊕ (F2 ⊗ L).

Since, for i = 1, 2, both Fi and Fi⊗L are stable and since degFi⊗L �=
degFj , i, j = 1, 2, we must have an isomorphism F1 ∼= F2.

q.e.d.

Corollary 6.11. Let D = f∗C and v = (0, [D],−h + 1). If |C| is
a hyperelliptic linear system, and H is v-generic and k∗-invariant, the
symplectic variety Pv,H is an irreducible holomorphic symplectic mani-

fold of type Hilbg−1(K3).

Corollary 6.12. Let D = f∗C, v = (0, [D],−h + 1), and let H be a
non-v-generic polarization. If |C| is a hyperelliptic linear system, then
any crepant resolution of Pv,H is an irreducible holomorphic symplectic

manifold that is of type Hilbg−1(K3).

4Recall that
∑

Ri +
∑

R′
i is divisible by two in NS(S̃).
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The surface case. In [44], the case of the relative Prym variety associ-
ated to a genus 2 linear system |C| = |e1+ e2| on an Enriques surface T
is studied in greater detail. Here we report the results of that analysis.
Recall that in this case |C| ∼= P1, and that the linear system has two

simple base points. If we assume the pair (T,C) to be general (cf. [45]),
the linear system |C| = P1 has exactly 16 irreducible curves with one
single node, and 2 reducible curves e1+e2 and e′1+e′2 that are the union
of two smooth elliptic curves meeting transversally in one point.
As usual we look at the 2-sheeted K3 cover f : S → T and we set

|D| = |f∗C| and v = (0, [D],−2). We also choose a v-generic polariza-
tion H. We consider the involution τ = τ−D : Mv,H → Mv,H and our
goal is to describe Pv,H . The following theorem holds.

Theorem 6.13. The relative Prym variety Pv,H is an elliptic K3
surface whose singular fibers consist in 16 irreducible curves with one
node, and two fibers of type I4 (i.e. a closed chain of 4 rational curves
R1, . . . , R4 with Ri · R1+1 = 1, i = 1, . . . , 3, and R4 ·R1 = 1).

Proof. The fact that there exist 16 irreducible rational nodal curves
follows from Corollary 3.14. To show that there are two fibers of type
I4 we proceed as follows. From Proposition 3.15, applied to Pv,D, there
are two fibers that are the union of two rational curves meeting at two
points. These points of intersection correspond to polystable sheaves of
type F1 ⊕ F2 and by the analysis carried out in Section 5, the resulting
singularities are of type A1. The proof follows from the fact that Pv,H →
Pv,D is a resolution of singularities. q.e.d.

7. The fundamental group

Let T be a general Enriques surface and f : S → T its universal
covering. Let C ⊂ T be a smooth, primitive curve of genus g ≥ 2 and
set D = f−1(C). Consider the Mukai vector v = (0, [D],−h + 1), with
h = g(D) = 2g − 1.
From Section 6, we know that if |C| is hyperelliptic, then Pv,H is

either an irreducible symplectic manifold, and thus simply connected,
or else has a resolution which is such. We can thus restrict our attention
to the non-hyperelliptic case.

Theorem 7.1. Let |C| be a non-hyperelliptic system on a general
Enriques surface. Let Pv,H be the relative Prym variety associated to

|C| (cf. (3.24)). Any resolution P̃v,H of the singularities of Pv,H is
simply connected.

We set

(7.1) M =Mv,H , P = Pv,H .
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Consider the support morphism

(7.2) π : M −→ |D|

and look at its restriction to P :

η : P → |C| ∼= Pg−1.

Let U ′ be the locus of irreducible curves in |C|, Z = |C|� U ′, and set

P ′ = η−1(U).

Let γ : P̃ → P be any resolution of singularities. Since P ′ is contained
in the smooth locus of P , by [12] 0.7.B (cf. also [22] Proposition 2.10),

the natural morphism π1(P
′)→ π1(P̃ ) is surjective and hence to prove

the theorem it is enough to prove that

π1(P
′) = {1}.

Notice that the same reasoning applies to show the simple connectivity
of the normalization of P .
We will deduce Theorem 7.1 from the simple connectivity of M =

Mv,D and from Picard-Lefschetz theory. Similarly to what is done in
[27], we will use a theorem of Leibman [26] which we state in a form
directly suited to our needs.

Theorem 7.2 (Leibman). Let p : E → B be a surjective morphism
of connected smooth manifolds. Assume p has a section s. Let W ⊂ B
be a closed submanifold of real codimension at least two. Set U = B \W
and EU = p−1(U) and assume that EU → U is a locally trivial fibration
with fiber F . Consider the exact sequence

(7.3) 1→ π1(F )
j∗
→ π1(EU )

s∗
� π1(U)→ 1.

Set H = ker(π1(U) → π1(B)). Via j∗, consider π1(F ) as a normal
subgroup of π1(EU ) and let R = [π1(F ),H] be the commutator subgroup
of π1(F ) and H in π1(EU ). Then there is an exact sequence

(7.4) 1→ R→ π1(F )→ π1(E)
s∗
� π1(B)→ 1.

Notice that the left exactness of (7.3) is a consequence of the existence
of the section s. The commutator subgroup R of the statement of the
theorem should be understood as generated by elements of type

(7.5) c−1λ̃−1cλ̃,

where c ∈ π1(F ) and λ̃ = s∗(λ) is a lifting of λ ∈ π1(U) to π1(EU ).
Before proving Theorem 7.1, let us apply right away Liebman’s The-

orem to the support morphism

(7.6) π :M −→ |D|.
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To be more precise, we let ΔD ⊂ |D| be the discriminant locus, V =
|D|�ΔD the locus of smooth curves, and V ′ ⊃ V the locus of irreducible
curves. We set

MV = π−1(V )

(and similarly for MV ′). We restrict π to MV ′ . Over V ′ the rational
section s of (3.9) is defined, and we apply Liebman’s Theorem in this
context. Recall that the complements of V ′ in |D| and of MV ′ in M
have codimension greater than or equal to two.
In this situation both E = MV ′ and B = V ′ are simply connected

and, by the above theorem, we get R = π1(J(D0)) where D0 is a smooth
curve in |D|. To unravel what this means, we first observe that, given
λ ∈ π1(U), the element λ̃−1cλ̃ is the result of applying the Picard-
Lefschetz transformation, attached to the loop λ, to the cycle c:

(7.7)
PL : π1(U,u) −→ Aut(H1(D0,Z)) = Aut(π1(J(D0,Z)))

[λ] �→ {c �→ λ̃−1cλ̃}.

To visualize π1(V ), take a generic two plane Σ ⊂ |D| and consider the
discriminant curve Γ = ΔD ∩ E. By a classical theorem of Zariski,
π1(Σ � Γ) = π1(V ) ([10, Theorem 4.1.17]). Generators for π1(Σ � Γ)
can be obtained by fixing a smooth point z on the discriminant curve
Γ and taking the boundary of a small one-dimensional disk contained
in |D| and meeting Γ only in z and transversally there. The family of
curves parametrized by this disk is a family of smooth curves acquiring
a simple node. Let αλ be the vanishing cycle of this family. It is a
classical result that the Picard-Lefschetz homomorphism (7.7) is given
by (see, for instance, [3, Section X.9])

(7.8) PLλ(c) = c+ (c · αλ)αλ.

Going back to (7.5) and using additive notation (since π1(J(C)) =
H1(C,Z)), we get

(7.9) c−1λ̃−1cλ̃ = −c+ PLλ(c) = (c · αλ)αλ.

Thus, the simple connectivity of M , i.e. the equality R = π1(J(D0)),
simply means that π1(J(D0)) is generated by vanishing cycles, as ex-
pected.

Proof of Theorem 7.1. Recall that V ′ ⊂ |D| and U ′ ⊂ |C| denote the
loci of irreducible curves. We also set

WD = V ′ \ V = V ′ ∩ΔD, W = U ′ � U = Δ ∩ U ′.

We want to apply Theorem 7.2 to the morphism

η : P ′ −→ U ′

(throughout, when there is no confusion, we use the same symbol for a
morphism and its restrictions). Recall that η : P ′ → U ′ has a section
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induced by s : V ′ → MV ′ . As usual, via f : S → T , we consider |C|
as a linear subspace of |D|. Pick a point u ∈ U corresponding to an
unramified two-sheeted cover

f : D0 → C0,

where C0 ⊂ T is a smooth member of |C| while D0 = f−1(C0) ⊂ S is a
smooth member of |D|. We also set

P0 = Prym(D0/C0).

In the present case the sequence (7.3) is given by

0→ π1(P0, 0)→ π1(PU , 0)→ π1(U, u)→ 0,

where PU = η−1(U) is the restriction to the smooth locus.
By Proposition A.9, Z is of codimension ≥ 2 in |C| and hence the

complement U ′ is simply connected. Thus, to prove the simple connec-
tivity of P ′ it suffices to prove that

(7.10) π1(P0, 0) = [π1(P0, 0), π1(U, u)].

It will be useful to identify the first homotopy group of P0 with the
ι-anti-invariant subspace of H1(D,Z):

π1(P0, 0) = H1(D0,Z)−.

To prove (7.10) we must make explicit the conjugation action of π1(U
′, u)

on π1(P0, 0). We have a commutative diagram

(7.11) 0 �� π1(P0, 0)

��

j∗ �� π1(PU , 0)

��

�� π1(U, u)

��

��

s′∗
��

0

0 �� π1(J(D0), 0)
j∗ �� π1(MV , 0) �� π1(V, u) ��

s∗
		

0.

Let us look at a simple closed loop γ in U going around one of the
smooth branches of W . First of all we want to determine the image of
[γ] in π1(V, u). Let Wγ be the local branch of W around which γ goes.
A general point p in Wγ corresponds to an irreducible curve Cp on the
Enriques surface T having one node and no other singularities. It also
corresponds to an ι-invariant curve Dp on the K3 surface having exactly
two nodes a and b as singularities which, by Lemma A.1, is irreducible.
These two nodes are exchanged by the involution; in fact Cp = Dp/ι.
Smoothing the node a or the node b corresponds to moving away from
p on two smooth local branches of WD meeting transversally along Wγ .
These two branches are exchanged by the involution ι.
Intersecting with a 2-dimensional transversal ι-invariant plane Σ, we

may assume that locally we have

WD ∩ Σ =
loc
{(x, y) ∈ C2 | |x| < ε , |y| < ε , xy = 0}
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while Wγ is the origin. Notice that the restriction of ι to Σ locally
interchanges the x and y axes. We may think that the image of γ in V
is given by γ(t) = (ε0e

2πit, ε0e
2πit). In

V ∩Σ =
loc
{(x, y) ∈ C2 | |x| < ε , |y| < ε , xy �= 0}

γ is homotopic to the composition of one loop λ going around the x-axis
and one loop μ going around the y-axis. Since the two branches of WD

meeting in Wγ are exchanged by the involution, we may as well assume
that μ = ιλ.
In conclusion, there is a system of generators {[γs]}s∈K for π1(U, u)

such that, for each s, γs is a simple closed loop having the property
that, under the inclusion j : U ↪→ V , one has

(7.12) j∗([γs]) = [λs][ιλs]

where λs is a simple closed loop. We claim that the elements {λs, ιλs}s∈K
generate π1(U, u). To prove this first observe that, if l is a line in U ′

meeting W transversally, then there is a surjection π1(l \ l ∩W,u) →
π1(U, u). Now move the line l in |D| to get a line m, very close to l, and
meeting W transversally. Set l ∩W = {x1, . . . , xN} where N = degW .
Then we may set m ∩WD = {y1, . . . , y2N}. Moreover we may assume
that, for s = 1, . . . , N , y2s and y2s−1 belong each to one of the two local
branches of WD meeting in the branch of W to which xs belongs. The
claim follows from observing that also π1(m \m∩WD, u)→ π1(V, u) is
surjective.
Going back to diagram (7.11) we may now identify the action of [γ]

on π1(P0, 0) as the action of [λ][ιλ] on the ι-anti-invariant subspace
H1(D,Z)− ⊂ H1(D,Z) = π1(J(C), 0). Let α be a vanishing cycle on
D0 such that (7.8) holds. Recalling that (α · ια) = 0, we have, as in
(7.9),
(7.13)

c−1(λ̃·ι̃λ)−1c(λ̃·ι̃λ) = −c+PλPιλ(c) = (c·ια)ια+(c·α)α = (c·α)(α−ια).

Let now {λs, ιλs}s∈K be as in (7.12) and let αs be the vanishing cycle
on D0 corresponding to λs. Since this is a set of generators for π1(V, u)
and since J is simply connected, we may assume that {αs, ιαs}s∈K gen-
erate π1(J(D0), 0) = H1(D0,Z). In conclusion [π1(U, u), π1(P0, 0)] is
generated by elements of the form

(c · αs)(αs − ιαs) , s ∈ K,

where c runs in H1(D,Z)− = π1(P0, 0). Since {αs, ιαs}s∈K generate
H1(D0,Z), the set {αs− ιαs}s∈K generates H1(D0,Z)−. Thus, in order
to prove (7.10), it suffices to prove that for each s ∈ K there exists
cs ∈ H1(D,Z)− such that (cs · αs) = 1. For this it suffices to find, for
each s ∈ K, a simple closed loop βs on D such that ((βs− ιβs) ·αs) = 1;
we will find one such that (βs · αs) = 1 and (βs · ιαs) = 0. Both αs and
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ιαs are vanishing cycles and by construction there is a curve C0 ∈ |H|,
having exactly two nodes, resulting from the vanishing of αs and ιαs,
and no other singularities than the two nodes. But C0 is irreducible and
therefore C \ {αs, ιαs} is connected and βs can be readily constructed.

q.e.d.

8. Computation of h2,0

From the last corollary of the preceding section we deduce that, in
the hyperelliptic case, the h2,0-number of any desingularization of the
relative Prym variety Pv,H is equal to 1.
We next examine the non-hyperelliptic case. Fix a general Enriques

surface T with its universal cover f : S → T . Fix a non-hyperelliptic
genus g system |C| on T and let D = f∗(C), χ = −h+1 = −2g+2 and
v = (0,D, χ). In this section we set

P = Pv,H .

Theorem 8.1. Suppose that g is odd. Let P̃ be any desingularization

of P . Then h2,0(P̃ ) = 1.

Proof. We first show that h2,0(P̃ ) ≤ 1. Following an idea already
used in [27], we construct a dominant rational map

(8.1) φ : Hilbg−1(S) ��� P.

Set V = H0(C,OS(D)
∨. As S is unodal, the linear system |D| is very

ample (cf. Theorem 6.1, (iii) of [46]), so that S ⊂ PV ∼= P2g−1. After
choosing a linearization, the involution ι induces a decomposition V =
V+ ⊕ V− into ±1 eigenspaces. The Enriques surface T is contained in
PV− ∼= Pg−1. We may think of the double cover f : S → T as obtained by
projecting from P2g−1 to Pg−1 with the (g−1) linear subspace Λ = PV+
as its center. Consider the open subset U of Hilbg−1(S) consisting of
the (g − 1)-tuples {p1, . . . , pg−1} of distinct points on S, such that:
a) The linear span Σ = 〈p1, . . . , pg−1〉 is (g − 2)-dimensional.
b) Σ ∩ Λ = ∅.
d) If HΣ ⊂ P2g−1 is the linear span of Λ and Σ—which, by b), is a

hyperplane—then D := HΣ ∩ S is a smooth curve.
We have a natural fibration

β : U −→ PV ∨−

{p1, . . . , pg−1} �→ HΣ ∩ PV−.

Moreover, we set C = f(D) and we observe that a point {p1, . . . , pg−1}
∈ U ⊂ Hilbg−1(S) uniquely defines a divisor Δ = p1 + · · · + pg−1 on D
and therefore, since g is odd, by (3.12), the point [Δ− ιΔ] belongs to P .
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Thus one may define a morphism

(8.2)
φ : U −→ P

{p1, . . . , pg−1} �→ [Δ− ιΔ].

This is how the rational map (8.1) is defined. We claim that the rational
map φ is dominant.
By the way it is defined, the morphism φ defined in (8.2) commutes

with the two fibrations β : U → PV ∨− and p : P → PV ∨− . Moreover,

Hilbg−1(S) and P have the same dimension. Thus it suffices to show
that the morphism

(8.3)
ψ : Dg−1 −→ P

{p1, . . . ,pg−1} �→ [Δ − ιΔ],

where D = p1+ · · ·+pg−1, is dominant. In order to do this we show that
the differential is an isomorphism at one point. Here, as usual, Dg−1

stands for the (g − 1)-fold symmetric product of D. The morphism
ψ is the composition of the Abel-Jacobi morphism u : Dg−1 → J(D)
and the projection 1 − ι : J(D) → P . If ω1, . . . , ω2g−1 is a basis of
H0(D,ωD) and if the points p1, . . . , pg−1 are distinct, the rank of u∗ at
the point D = p1 + · · · + pg−1 is the rank of the Brill-Noether matrix
(ωi(pj)), i = 1, . . . , 2g − 1, j = 1, . . . , g − 1. Let us now assume, as
we may, that ω1, . . . , ωg are ι-invariant while ωg+1, . . . , ω2g−1 are ι-anti-
invariant. Then the rank of ψ∗ at D is nothing but the rank of the
(g − 1)× (g − 1) matrix (ωi(pj)), i = g +1, . . . , 2g − 1, j = 1, . . . , g − 1.
But this matrix must be of maximal rank; otherwise the linear span Σ
of the points p1, . . . , pg−1 would intersect the vertex Λ = PV+ contrary
to the assumptions. The existence of a dominant rational map from

Hilbg−1(S) implies that, if γ : P̃ → P is any desingularization of P ,
then

(8.4) h2,0(P̃ ) ≤ h2,0(Hilbg−1(S)) = 1.

Let σ be the holomorphic 2-form defined on Preg. In order to prove
that (8.4) is an equality, it is enough to show that the pull-back of σ

to γ−1(Preg) extends to P̃ . Let ν : P̂ → P be the normalization, and
let σ̂ be the pull-back of σ to ν−1(Preg). Using Proposition 3.10 and

Hartog’s theorem we extend σ̂ to P̂reg. We reach the conclusion, using
again Proposition 3.10 and a theorem of Flenner [11] which guarantees

that, given a normal variety X, a resolution of singularities α : X̃ → X,

and a holomorphic 2-form ω on Xreg, then α∗(ω) extends to X̃ as soon
as codimX Xsing ≥ 4.

Remark 8.2. As Voisin pointed out to us, we do not need to use
Flenner’s theorem to prove that the symplectic form σ extends to any

resolution P̃ of P . Indeed the isomorphism betweenH2,0(S) andH2,0(M)
is induced, up to a multiplicative constant, by the correspondence Γ ∈
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CH2(S×M), where Γ is the second Chern character of a semi-universal

family (see [40]). This correspondence induces one in CH2(S×P̃ ) giving

a non-zero homomorphism from H2,0(S) to H2,0(P̃ ). q.e.d.

9. The discriminant

This section is devoted to the discussion of a numerological curiosity.
The starting point of the story is Hitchin and Sawon’s study [14], [47]

of the Rozanski-Witten invariant of a compact hyperkähler manifold and
the discovery of the following remarkable formula linking the L2-norm of
the Riemann curvature tensor R of an irreducible compact hyperkähler
manifold X of real dimension 2n = 4k with the characteristic number

of
√
Â[X] coming from the square root of the Â-polynomial:

1

(192π2k)k
||R||2k

(vol(X)k−1
=

√
Â[X].

In [49], [48], Sawon considers the case of a compact hyperkähler mani-
fold of complex dimension n which is a Lagrangian fibration ν : X → Pn

by principally polarized abelian varieties and looks at the discriminant
Δ ⊂ Pn (i.e. the set of points where ν is not a smooth morphism).
The fibration should have good singular fibers, meaning that the generic
singular fiber Xt for t ∈ Δsm = Δ�Δsing is obtained by gluing together
the zero and infinity sections of a P1-bundle over a principally polarized
abelian variety of dimension n − 1, i.e. a rank one degeneration of an
abelian variety. He then proves another remarkable formula:

degΔ = 24
(
n!
√
Â[X]

) 1

n

,

which makes the degree of the discriminant into a deformation invariant
(this formula can be generalized to the case of non-principal polariza-
tions). He then proceeds to compute this invariant in the two classical
cases considered by Beauville. The first case is the Beauville-Mukai in-
tegrable system Xn = J(|Γ|)→ Pn where |Γ| is an n-dimensional linear
system on K3 surface

degΔXn = 6(n + 3).

Using Lefschetz pencils, this is an easy Euler-Poincarè characteristic
computation. The second case is the generalized Kummer variety Kn,
introduced by Beauville, and here the degree of the discriminant is given
by

degΔKn = 6(n+ 1).

We now come to our (singular) Prym Lagrangian fibrations

Pn → Pn

Here as usual we start with an Enriques surface T and its universal
covering f : S → T . We take an irreducible curve C of genus g = n+ 1
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on T and letD = f−1(C), h = g(D), and v = (0,D,−h+1). We letH be
a polarization, and consider the relative Prym variety Pn = Prymv,H,N

for some line bundle N . We also assume that |C| contains a Lefschetz
pencil. Under these hypotheses we have:

Proposition 9.1. a) If |C| is non-hyperelliptic then

degΔPn = 6(n + 2).

b) If |C| = |ne1 + e2| is hyperelliptic then

degΔPn = 6(n + 3).

Proof. Part a) follows once we prove the claim that, under our as-
sumptions, the discriminant locus of ν coincides with the discriminant
locus Δ|C| of the linear system |C| (recall that since we are assuming
the existence of a Lefschetz pencil, the discriminant locus of the linear
system is reduced). Indeed, if this is the case, an easy Euler charac-
teristic calculation shows that degΔ|C| = 6(g + 1), so that substituting
n = g − 1 we get our result. The claim follows from the fact that there
are no reducible curves in codimension one, and from Corollary 3.14.
As far as part b) is concerned, from Section 6 the relative Prym

Pn is smooth and of K3[n]-type. The statement follows then directly
from Sawon’s result. However, it is interesting to compute, by geomet-
rical means, the degree of the discriminant ΔPn in this case. This is
done in [44]. Here we only give a sketch of this analysis. As proved
in Proposition A.10, the discriminant locus in the hyperelliptic case is
the union of four irreducible components. One must then describe the
fibers of Pn = Prymv,H,N → |C| over the general point of each of these
components. This is done under the assumption that H is a general
polarization. Over the general point of Δ1 and Δ2, the Prym variety
consists in a closed chain of four irreducible components R1, . . . , R4,
each meeting the successive one (in a cyclic order) transversally along
an abelian variety. Since Δ1 and Δ2 are hyperplanes, their contribution
to the degree of the discriminant is equal to 8. Over the general point
of Δ3, the Prym variety is the union of two irreducible components
meeting transversally along two abelian varieties. Since the degree of
Δ3 is n − 1, its contribution to the degree of the discriminant is equal
to 2(n− 1). Finally, over the general point of Δ4 the Prym variety is a
rank one degeneration of an abelian variety; therefore the contribution
of Δ4 to the degree of the discriminant is equal to its degree, i.e. to
4n+ 12. Summing up, we get 6(n+ 3). q.e.d.

10. Further remarks

1) It should be remarked that, in the non-hyperelliptic case and for
sufficiently high value of the genus, the Prym varieties in the fibers of
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Pv,H → |C| are definitely not Jacobians. In fact, to make sure that this
is so, according to Mumford’s Theorem in section 7 of [33], we only
have to make sure that C is neither trigonal nor a double cover of an
elliptic curve. On the other hand, Corollary 1 in Knutsen and Lopez
[21] of tells us that the gonality of a general member of |C| is equal to
2φ(|C|). One can choose the linear system |C| to make this number as
large as one wishes.
2) Singular points of moduli spaces of sheaves have been extensively

studied by Kaledin, Lehn, Sorger, and Zhang, among others [19], [18],
[25], [53]. These authors are, by and large, interested in the case of
sheaves of rank ≥ 1. The way they carry out their analysis consists in
two basic techniques (with the notation of Section 4):
a) prove that the Kuranishi family is formal which implies that B =

Q, or else
b) prove directly that there is a local isomorphism M ⊃ U ∼= Q/G.
This reduces the local study of M to the study of quotients Q/G;

these are far more transparent objects, which are often similar to the
quiver varieties of Nakajima [34], [35].
In a forthcoming paper [4], the authors will study the local structure

of moduli of rank zero sheaves by settling the question of formality in
some cases and by establishing that in some of these cases the quotients
Q/G turn out to be exactly the quiver varieties of Nakajima.
In the present paper, we only needed to examine Kuranishi families

B, which are hypersurfaces in Ext1(F,F ). In these cases, relations (4.7)
and (4.8) hold and, as we saw in Section 4, the local analysis is quite
straightforward.
3) When τ is regular, it is natural to look at the quotient M/τ and

to ask if it admits a symplectic resolution. It does not. Indeed it is
enough to check that Mreg/τ has no symplectic resolution. By Lemma
2.11 in Kaledin’s paper [17] a symplectic resolution Z →Mreg/τ would
be semismall and this can not be the case since Mreg/τ is Q-factorial
and the codimension of its singular locus is equal to 2g ≥ 4, when g ≥ 2.
When g = 1, the moduli space M is a K3 surface and τ is a symplectic
involution with 8 fixed points.
4) The techniques developed in this paper and in [4] can be used to

describe Prym fibrations also for quotients S → X = S/α, where S is
a K3 surface and α an anti-symplectic involution with non-empty fixed
point set.

Appendix A. Curves on K3 and Enriques surfaces

We keep the notation and the assumptions of Section 2. We start
with the following lemma:



RELATIVE PRYM VARIETIES 243

Lemma A.1. Let T be a general Enriques surface, and let C ⊂ T be
an irreducible curve. If the class of C is not divisible by two in NS(T ),
then D = f−1(C) is irreducible.

Proof. This follows immediately from the fact that, by assumption,
NS(S) = f∗NS(T ). q.e.d.

Let A and B be two effective classes on T , or on S. By the Hodge
index theorem it follows that (cf. [20]) if A2, B2 ≥ 0, then A · B ≥ 0.
Moreover, A · B = 0, if and only if ZA = ZB in NS(T ) and A2 =
B2 = 0. By the Nakai-Moishezon-Kleiman criterion and the Hodge
index theorem, it follows that if S and T are unodal, then

Amp(T ) = Q+
T and Amp(S) = Q+

S ,

where Q+
T (and Q+

S ) is the connected component of the cone of classes
with positive self intersection in NS(T ) and NS(S) respectively, contain-
ing one ample class. Moreover, for both surfaces the cone of effective
curves is equal to the closures of Q+

T and Q+
S in NS(T ) and NS(S) re-

spectively.
Unless otherwise specified, we will denote by e or by ei primitive

elliptic curves on T . Notice that e′ and e′i are also primitive elliptic
curves on T . The curves e and e′ are called the half-fibers of the elliptic
pencil |2e| = |2e′|. The Kodaira classification of the singular fibers of an
elliptic fibration implies that e and e′ are either smooth or isomorphic
to a closed chain of b ≥ 0 smooth rational curves. It follows that if T
is general, then this forces e and e′ to be smooth. We will denote by E
and Ei, respectively, their preimages in S.
The following two definitions play an important role in the whole

paper.

Definition A.2 ([7]). Let m be a positive integer. An effective divisor
C ⊂ T is said to be m-connected, if for every decomposition C = C1+C2
into the sum of two effective divisors we have C1 · C2 ≥ m. A linear
system |L| is said to be m-connected if all its members are m-connected.

Definition A.3 ([46]). A linear system |L| on a K3 or an Enriques
surface is said to be hyperelliptic if L2 = 2 or if the associated morphism
ϕL is of degree 2 onto a rational normal scroll of degree n− 1 in Pn.

We now proceed to state a characterization of hyperelliptic linear
systems on K3 or Enriques surfaces. We start with the following propo-
sition (cf. Proposition 4.5.1 of [9]).

Proposition A.4 ([9]). Let T be an Enriques surface, and let C ⊂ T
be an irreducible curve with C2 ≥ 2. The following are equivalent:

1) |C| is a hyperelliptic curve;
2) |C| has base points;
3) there exists a primitive elliptic curve e such that C · e = 1.
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By Corollary 4.5.1 of [9] it follows that the general member of a hy-
perelliptic linear system is a smooth hyperelliptic curve. The following
proposition is a collection of results from [46].

Proposition A.5. Let S be a K3 surface and let D ⊂ S be an irre-
ducible curve, with D2 ≥ 4. The following are equivalent:

1) |D| is a hyperelliptic;
2) the general member of |D| is a smooth hyperelliptic curve;
3) there exists an elliptic pencil |E1| such that C · E1 = 2.

Suppose, moreover, that S is unodal. If one of the above conditions is
satisfied, then there exist an integer n ≥ 1 and a primitive elliptic curve
E2 such that

D = nE1 +E2, with E1 ·E2 = 2.

Moreover, the morphism

(A.1) ϕD : S → R ⊂ P2n+1

is of degree two and maps S onto a rational normal scroll R of degree 2n
in P2n+1, and R is isomorphic to a quadric surface whose two rulings
are the images under ϕD of the elliptic pencils |E1| and |E2|.

Thus, if |C| is hyperelliptic, so is |D|. In particular, if T is general,
the class of any hyperelliptic curve C on T is of the form

ne1 + e2,

with n ≥ 1 and e1 · e2 = 1. And hence we see that a hyperelliptic linear
system is 1-connected. It turns out that also the converse holds.

Proposition A.6. Let T be a general Enriques surface and let L be
an effective line bundle on T , with L2 > 0. Then |L| contains a member
that is the union of two smooth curves meeting transversally in ν ≥ 1
points. Moreover, ν = 1 if and only if |L| is hyperelliptic.

Proof. This follows from Corollary 3.2.2 and Proposition 4.3.4 of [9],
and the fact that since T is general any linear system with positive self
intersection is ample and has no base component. q.e.d.

Corollary A.7. Let T be a general Enriques surface and let L be a
line bundle on T . The linear system |L| is hyperelliptic if and only if it
is 1-connected.

Corollary A.8. Let T be a general Enriques surface, and let C ⊂ T
be an irreducible curve. Set D = f−1(C). Then, there is a member
of f∗|C| ⊂ |D| that is a union of two smooth ι-invariant curves D1

and D2 meeting in 2ν points. Moreover, we have ν ≥ 2, unless |D| is
hyperelliptic, in which case ν = 1.
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Proof. Keeping the notation in the proof of the previous proposition,
it is enough to check that the curves D1 = f−1(C1) and D2 = f−1(C2)
are connected. This, however, follows from the fact that in Proposition
A.6 one can choose, for i = 1, 2, the curve Ci such that either C

2
i > 0

or Ci is a primitive elliptic curve. q.e.d.

Finally, we have the following proposition.

Proposition A.9. Let X be a general Enriques surface or a K3 sur-
face covering a general Enriques surface, and let L be a line bundle on
X with L2 > 0. Then |L| has reducible members in codimension one if
and only if |L| is hyperelliptic.

Proof. We will prove the proposition when X is an Enriques surface;
the proof for K3 surfaces is analogous. Since the irregularity of the sur-
face is zero, any component of the discriminant parametrizing reducible
curve is birational to a product of linear systems. Consider a reducible
member C1 + C2, and set ν = C1 · C2. For i = 1, 2, letting gi be the
arithmetic genus of Ci, we have

g = g1 + g2 + ν − 1.

First assume that if, for some i = 1, 2, the genus gi is equal to one, the
corresponding curve Ci is a primitive elliptic curve. Then dim |Ci| =
gi−1, dim |C| = dim |C1|+dim |C2|+ν, and codim(|C1|×|C2|, |C|) = ν.
From Corollary A.7 it follows that ν ≥ 1 and that ν = 1 if and only if
C is hyperelliptic.
Next, consider the case C1 ∈ |se1| = P�

s
2

 for some primitive elliptic

curve e1 and some integer s ≥ 2. Then dim |C| = g2 − 1 + ν. Thus, if
g2 ≥ 2, we have dim |C1| × |C2| = �

s
2�+ g2 − 1, while dim |C1| × |C2| =

� s2�+ �
t
2�, if C2 = te2 with t ≥ 1. It follows that

codim(|C1| × |C2|, |C|) =

⎧⎪⎨⎪⎩
ν − �

s

2
�, if g2 ≥ 2,

ν − �
s

2
� − �

t

2
�, if g2 = 1.

In the first case, since ν = sν ′, with ν ′ ≥ 1 we are done, unless s = 2
and ν ′ = 1. However if s = 2 and ν ′ = 1, the curve C2 is hyperelliptic
of the form νe1+ e2, with e1 · e2 = 1, and hence L = OT ((ν + s)e1+ e2)
is hyperelliptic.
As for the second case, we can set ν = stν ′ and thus we are done

unless ν ′ = 1, s = 2, and t = 1. This means that C2 = e2, with
e1 · e2 = 1 and, again, L = 2e1 + e2 is hyperelliptic. q.e.d.

Proposition A.10. Let T be an Enriques surface, and let |C| =
|ne1+e2| be a genus g = n+1 ≥ 3 hyperelliptic linear system on T . The
discriminant locus Δ ⊂ |C| is the union of four irreducible components
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Δ1,Δ2,Δ3,Δ4. The first two are hyperplanes and their general point
parametrizes curves that are the union of two smooth curves meeting
transversally in one point. The third component, whose general point
parametrizes curves that are the union of two smooth curves meeting
transversally in two points, is of degree n − 1. The fourth component
is of degree 4n+ 12 and it parametrizes singular but irreducible curves.
Moreover, its general point corresponds to an irreducible curve with a
single node.

Proof. First of all, via a straightforward Euler characteristic count,
one shows that the degree of Δ is equal to 6(n+ 2). It is clear that the
two hyperplanes,

Δ1 := [e1]× |(n− 1)e1 + e2| and Δ2 := [e′1]× |(n− 1)e1 + e′2|,

constitute two components of the discriminant locus, and also that they
parametrize curves of the form e1 ∪ Γ with Γ ∈ |(n − 1)e1 + e2| (resp.
e′1 ∪ Γ with Γ ∈ |(n− 1)e1 + e′2|. Secondly, the natural map

φ : P1 × Pn−2 = |2e1| × |(n − 2)e1 × e2| → Δ ⊂ Pn

is just the composition of the Segre embedding P1×Pn−2 → P2n−3 with
the projection P2n−3 → Pn induced by the natural map

H0(T,O(2e1))⊗H0(T,O((n − 2)e1 + e2))→ H0(T,O(ne1 + e2)).

It follows that

P1 × Pn−2 → φ(P1 × Pn−2)

is finite and generically one to one, and that Δ3 := φ(P1 × Pn−2) is a
degree n − 1 component of Δ whose general point parametrizes curves
as in the statement of the theorem. We just need to prove that the
remaining part Δ4 of the discriminant is irreducible. Recall that by
definition the rational map φ|C| associated to the linear system maps
T generically 2 : 1 onto a degree n − 1 rational surface R ⊂ Pn, and
contracts the curves e1 and e′1. A curve in |C| is singular in the following
three cases: if it covers a singular (hence reducible) hyperplane section
of R, if it covers a smooth curve that is tangent to the ramification
curve, or else if its image contains one of the two points P and Q to
which either e1 or e

′
1 is contracted. The ramification curve is described

in Theorem 4.5.2 of [9]. It consists of the union of two lines �1 and �2
belonging to the ruling that is the image of |2e1| and of an irreducible
curve B ⊂ R. The irreducible curve B has two tacnodes in P and Q and
is otherwise non-singular (we are in the unodal case). The preimages,
under φ|C|, of the lines through P and Q are the curves in Δ1 and Δ2,
respectively. The set of hyperplane sections of R passing through �1 or
�2 form a set of codimension 2, whereas the set of hyperplane sections of
R that are tangent to B form an irreducible divisor Δ4 ⊂ Pn. Moreover,
the general hyperplane in this component is tangent to B in just one
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point and thus corresponds to curves in |C| with only one node and no
other singularity. q.e.d.
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