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ISOMETRIC EMBEDDINGS VIA HEAT KERNEL

Xiaowei Wang & Ke Zhu

Abstract

For any n-dimensional compact Riemannian manifold M with
smooth metric g, we construct a canonical t-family of isometric
embeddings It : M → R

q(t), with t > 0 sufficiently small and
q (t) >> t−

n
2 . This is done by intrinsically perturbing the heat

kernel embedding introduced in [BBG]. As t → 0+, asymptotic
geometry of the embedded images is discussed.

1. Introduction

Given an n-dimensional Riemannian manifold (M,g), one seeks for
the embeddings u : M → R

q for some q such that the induced metric is
g, i.e., u∗gcan = g, where gcan is the standard Euclidean metric in R

q.
This is called the isometric embedding problem and has long history,
with contributions from many people (see, e.g., [G2], [HH] for survey).
In a celebrated paper [N2] in 1956, Nash proved the existence of global
isometric embeddings of class Cs for g ∈ Cs, with s ≥ 3 or s = ∞, and
dimension qc = 3

2n (n+ 1) + 4n in the compact case, q = (n+ 1) qc in
the noncompact case.

Nash’s proof used the so-called hard implicit function theorem, or
Nash–Moser technique, which involves smoothing operators in the New-
ton iteration to preserve the differentiability of approximate solutions
of the isometric problem. Günther (1989, [G1]) significantly simplified
Nash’s proof by inventing a new iteration scheme for the isometric em-
bedding problem, such that there is no loss of differentiability in the
iteration so the usual contracting mapping theorem is enough. A good
exposition of his method can be found in [G2].

Nash and Günther’s isometric embedding is very flexible. One can
start with any short embedding as the approximate solution, i.e., any
embedding u : M → R

q such that the induced metric is less than or
equal to g, to produce an isometric embedding (Nash’s method was
generalized in [Gr1]). On the other hand, such great flexibility of the
initial embeddings usually makes the resulting isometric embeddings
noncanonical. Their methods require one to perturb f : M → R

q to a
free map, i.e., the vectors {∂if (x) , ∂j∂kf(x)}1≤i,j,k≤n, j≤k are linearly
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independent at every x on M (see Definition 13), and to estimate the
right inverse of the matrix spanned by these vectors in order to apply
the implicit function theorem.

Motivated by Kähler geometry and conformal geometry, one would
like to find a canonical isometric embedding of a Riemannian manifold
into Sq−1or Rq for q ≫ 1, such that the corresponding geometry of the
underlying Riemannian manifold is reflected via the symmetry groups
on Sq−1 or Rq (cf. [Wa]). To achieve that, one first has to construct such
canonical embeddings. In 1994, Bérard, Besson, and Gallot [BBG] made
progress by constructing an “asymptotically isometric embedding” of
compact Riemannian manifolds M into ℓ2, the space of real-valued and
square summable series, using the normalized heat kernel embedding for
t > 0 :

(1.1) Ψt : x →
√
2 (4π)n/4 t

n+2
4 ·

{
e−λjt/2φj (x)

}
j≥1

,

where λj is the jth eigenvalue of the Laplacian ∆g of (M,g) and {φj}j≥0

is the L2 orthonormal eigenbasis of ∆g. The advantage is that the em-
beddings Ψt : M → ℓ2 are canonical, in the sense that they are uniquely
determined by the spectral geometry of (M,g). Moreover, when t → 0+
the embedding Ψt tends to an isometry in the following sense:

(1.2) Ψ∗
t gcan = g +

t

3

(
1

2
Sg · g −Ricg

)
+O

(
t2
)
,

where gcan is the standard Euclidean metric in ℓ2, Sg and Ricg are scalar
and Ricci curvatures of (M,g), respectively, and the convergence is in
the Cr sense for any r ≥ 0 (see [BeGaM, p. 213]). However, for any
given t > 0, Ψt usually is only asymptotically isometric (with an error
of order O (t) ).

So we are in the following situation: Nash’s embedding is isometric
but far from being canonical, and the heat kernel embedding is canonical
but only asymptotically isometric. In this paper, we are able to produce
a canonical isometric embedding into R

q for q ≫ 1 by modifying the
almost isometric embedding Ψt in [BBG] to a better approximation
with error bounded by O

(
tl
)
for any given l ≥ 2, and then perturbing

it to an isometry by Günther’s theory ([G2]). Fixing two constants ρ > 0
and 0 < α < 1 throughout our paper, we have our main theorem, as
follows.

Theorem 1. Let (M,g) be a smooth n-dimensional compact Rie-
mannian manifold without boundary. g is a smooth Riemannian metric
on M . Then:

1) For any integer l ≥ 1, there exist a canonical family of almost

isometric embeddings Ψ̃t : M → ℓ2 such that

Ψ̃∗
t gcan = g +O

(
tl
)
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as t → 0+, where the above convergence is in Cr-norm for any
r ≥ 0.

2) For any integer k ≥ 2 satisfying k + α < l + 1
2 , there exists a

constant t0 > 0 depending on k, α, l, ρ, and g, such that for 0 <
t ≤ t0, we can truncate Ψ̃t to R

q(t) ⊂ ℓ2 and perturb it to a unique
Ck,α isometric embedding

It : M → R
q(t),

where dimension q (t) ≥ t−
n
2
−ρ or q (t) = ∞, and

∥∥∥It − Ψ̃t

∥∥∥
Ck,α(M)

= O
(
tl+

1
2
− k+α

2

)
.

The isometric embedding It is canonical in the sense that our Ψ̃t :
M → ℓ2 is canonically constructed from Ψt in [BBG] (see Section 2)
and our implicit function theorem only uses the intrinsic information
of (M,g). More precisely, the smoothing operator needed in Günther’s
iteration scheme was constructed directly from g. The iteration attempts
to adjust Ψ̃t to the nearest isometric embedding in each step with a
unique minimal movement.

Our method has the following advantages. The heat kernel embedding
Ψt : M → R

q(t) is automatically a free mapping for small t. Furthermore,
the row vectors {∂iΨt (x)}ni=1 and {∂i∂jΨt (x)}1≤i≤j≤n span a matrix

P (Ψt) with an explicit right inverse bound (Corollary 31) on the whole

M . (These nice properties are inherited to Ψ̃t as well.) There is no need
of sophisticated perturbation arguments in local charts to achieve the
right inverse bound as was done in Nash and Günther’s method.

We have good control of the second fundamental form and mean
curvature of the embedded images Ψt (M) and It (M) in R

q(t). For sim-
plicity, we only state the mean curvature part:

Proposition 2. Let M be a smooth n-dimensional compact Rie-
mannian manifold with smooth metric. For any x on M , let H (x, t) be
the mean curvature vector at Ψt (x) (or It (x)) in R

q(t). Then, as t → 0+,

√
t |H (x, t)| →

√
n+ 2

2n
.

The second fundamental form also has certain normal form as t → 0+.
(See Corollary 38, Remark 39 and its following paragraph).

Finally, we make a few remarks about our approach. First, in [BBG]
the authors also constructed the heat kernel embedding into the infinite
dimensional unit sphere S∞ ⊂ ℓ2, by

Kt : x →
{
e−λjt/2φj (x)

}
j≥1

/(
Σj≥1e

−λjtφ2
j (x)

)1/2
,
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with the asymptotic behavior K∗
t gcan = 1

2t

(
g − t

3Ricg +O
(
t2
))

as t →
0+, where gcan is the standard metric in ℓ2. There is a parallel version of
Theorem 1 for Sq(t) provable by our method; i.e., we can truncate and
perturb Kt to Υt : (M,g) → Sq(t) ⊂ R

q(t)+1 such that Υ∗
t gcan = 1

2tg.

But for the sake of simplicity, we write only the one for R
q(t). In the

sequel to this paper, we will extend our method to construct a canonical
conformal embedding Θt : (M,g) → Sq ⊂ R

q+1 that keeps more infor-
mation of Kt. It will be interesting to see the relation to the conformal
volume defined in [LY2]. Second, we want to point out that it is not our

main emphasis to optimize the dimension q (t) ≥ t−
n
2
−ρ, since the lower

the dimension of embedding is, the less canonical the map is. Third,
it will not make too much difference if one uses the heat kernel for a
perturbation of the Laplacian operator (cf. [Gil]), but we choose to use
the canonical one. Last, we only deal with compact Riemannian mani-
folds, while it is likely that our method can be extended to Riemannian
manifolds with boundary or even complete Riemannian manifolds (with
suitable condition at infinity). We leave these to future investigation. We
notice there are several related works on embeddings of compact Rie-
mannian manifolds by eigenfunctions (with various weights) and heat
kernels recently, e.g., [Ni], [Wu], [P], and [Po].

The organization of the paper is follows: In Section 2 we review the
heat kernel embedding Ψt : M → ℓ2 in [BBG]. Then we modify Ψt to
get improved error to isometry, and truncate the embedding to R

q ⊂ ℓ2

and estimate the remainder. In Section 3 we recall the matrix E (u) that
appeared in the linearization of the isometric embedding problem, and
we review Günther’s iteration scheme and the implicit function theo-
rem. In Section 4 we give higher derivative estimates of Ψt using the
off-diagonal heat kernel expansion method, and establish the crucial uni-
form linear independence property of the matrix E (Ψt). Then we give
the operator norm estimate of E (Ψt). In Section 5 we establish the uni-
form quadratic estimate of the nonlinear operator Q (u) in the isometric
embedding problem for all Rq. In Section 6 we apply Günther’s implicit
function theorem to the modified Ψt to obtain isometric embeddings
It : (M,g) → R

q(t). The geometry of It (M) is close to that of Ψt (M)
by our error estimate. In Section 7 we derive the asymptotic formulae
of the second fundamental form and mean curvature of the embedded
images Ψt (M) as t → 0+. In Section 8 we illustrate our method by
explicit calculations on M = S1. In the appendix we make the constant
in Günther’s implicit function theorem explicit and discuss the minimal
embedding dimension of our method.

Convention: In this paper, unless otherwise remarked, the constant
C only depends on (M,g), its dimension n, and k, α in the Ck,α-Hölder
norm, but not on t and q of Rq. In a sequence of inequalities, the con-
stant C in successive appearances can be assumed to increase. The two
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constants ρ > 0 and 0 < α < 1 are fixed throughout the paper. The
constant k in the Ck,α-norm and the constant l in the error term O

(
tl
)

should not be confused with the indices k, l (1 ≤ k, l ≤ n) in partial
derivatives like ∂k and ∂k∂l.
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correspondence, and Jiaping Wang for helpful discussions. Both authors
would like to thank Professor S.-T. Yau for his influence on canonical
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Baosen Wu, and Qingchun Ji for discussions on the embedding problem
in wider contexts. The work of K. Zhu is partially supported by a grant
of Professor Clifford Taubes from the National Science Foundation. The
work of X. Wang is partially supported by a Research Council Grant
from Rutgers University and a Collaboration Grant for Mathematicians
from the Simons Foundation.

2. The heat kernel embedding into ℓ2 and modifications

Let ℓ2 be the Hilbert space of real series {ai}i≥1 such that
∑∞

i=1 a
2
i <

∞, and gcan be the standard metric in ℓ2. Let (M,g) be an n-dimensional
compact Riemannian manifold with smooth metric g, and let {φj (x)}j≥0

⊂ C∞ (M) be a L2-orthonormal basis of real eigenfunctions of the Lapla-
cian of M , i.e., for eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ · · · , ∆gφj = λjφj ,
and

∫
M φiφjdvolg = δij for ∀i, j. The heat kernel of (M,g) is

H (t, x, y) = Σ∞
s=1e

−λstφs (x)φs (y)

for x, y ∈ M and t > 0.

Definition 3. We call the family of maps

Φt :
M −→ ℓ2

x 7−→
{
e−λjt/2φj (x)

}
j≥1

for t > 0

the heat kernel embeddings, and call Ψt =
√
2 (4π)n/4 t

n+2
4 · Φt the nor-

malized heat kernel embeddings.

From the definition, we clearly have H (t, x, y) = 〈Φt (x) ,Φt (y)〉,
where 〈, 〉 is the standard inner product in ℓ2.

In [BBG], Bérard, Besson, and Gallots introduced the above maps
and proved the following.

Theorem 4 ([BBG] Theorem 5). As t → 0+, there is an expansion

(2.1) Ψ∗
t gcan = g +

l∑

i=1

tiAi (g) +O
(
tl+1

)
,
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with

A1 =
1

3

(
1

2
Sg · g −Ricg

)
,

where the Ai’s are universal polynomials of the covariant differentia-
tions of the metric g and its curvature tensors up to order 2i, and the
convergence in (2.1) is in the Cr sense for any r ≥ 0.

As a direct consequence, we have the following singular perturbation
result parallel to Theorem 26 in [Don]. Denote the space of symmetric
2-tensors on M by Γ

(
Sym⊗2 (T ∗M)

)
.

Proposition 5. For any l ≥ 1, there are hi ∈ Γ
(
Sym⊗2 (T ∗M)

)

(1 ≤ i ≤ l − 1) such that for the family of metrics

g (s) = g +
l−1∑

i=1

sihi,

the induced metric from the heat kernel embeddings Ψ∗
t,g(s) : (M,g (s)) →

ℓ2 satisfies the estimate

(2.2)
∥∥∥Ψ∗

t,g(t)gcan − g
∥∥∥
Cr(g)

≤ C (g, l, r) tl,

for any r ≥ 0, where the constant C (g, l, r) depends only on l, r and the
geometry of (M,g).

Proof. Let us assume that

(2.3) g (s) = g +

l−1∑

i=1

sihi with hi ∈ Γ
(
Sym⊗2 (T ∗M)

)
,

where the hi’s are to be determined. Then by (2.1), for metric g (s) we
have

(2.4) G (s, t) := Ψ∗
t,g(s)gcan = g (s) + tA1 (g (s)) + t2A2 (g (s)) + · · ·

with Ai’s universal polynomials of the covariant differentiations of any
metric and its curvature tensors up to order 2i. Using the Taylor expan-
sion of Ai (g (s)) at s = 0, we have

Ai (g (s)) = Ai (g) +
∞∑

j=1

Ai,j (h1, · · · hj) sj ,

where each

Ai,j (h1, · · · hj) :=
∂j

∂sj

∣∣∣∣
s=0

1

j!
Ai (g (s))

is a universal polynomial of the covariant differentiations of the metric
g and its curvature tensors and is multi-linear in h1, · · · hj by the chain
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rule. Putting this into (2.1), we have in the Cr norm convergence

G (t, t) =
(
g + th1 + t2h2 + · · ·

)

+t
(
A1 (g) +A1,1 (h1) t+A1,2 (h1, h2) t

2 + · · ·
)

+t2
(
A2 (g) +A2,1 (h1) t+A2,2 (h1, h2) t

2 + · · ·
)
+ · · ·

(2.5) +tl
(
Al−1 (g) +Al−1,1 (h1) t+Al−1,2 (h1, h2) t

2 + · · ·
)
+O

(
tl
)
.

Now we let h1 = −A1 (g), h2 = −A1,1 (h1)−A2 (g), and in general let

hj :=−A1,j−1 (h1, · · · , hj−1)−A2,j−2 (h1, · · · , hj−2)

− · · ·Aj−1,1 (h1)−Aj (g)

inductively for 1 ≤ j ≤ l − 1. Then we are able to construct a curve
g (s) ⊂ Γ

(
Sym⊗2 (T ∗M)

)
by (2.3) such that

Ψ∗
t,g(t)gcan = G (t, t) = g +O

(
tl
)

in the Cr sense for any r ≥ 0, as we claimed. q.e.d.

Definition 6 (Modified heat kernel embedding). We call the Ψt,g(t) :

M → ℓ2 constructed above the modified heat kernel embedding, and
denote

(2.6) Ψ̃t := Ψt,g(t).

To get the embedding into R
q, let

(2.7) Πq : ℓ
2 −→ R

q

be the projection of ℓ2 to the first q components. To get a finite-
dimensional isometric embedding, we introduce the truncated embed-
ding

Ψ
q(t)
t := Πq ◦Ψt : (M,g) −→ ℓ2

Πq−→ R
q(t).

Remark 7. Since the metrics g (s) constructed in (2.3) depend on s
analytically, given any µ0 > 0 not in the spectrum of ∆g, there exists
δ0 > 0, such that for ∆gs with 0 ≤ s < δ0, for their eigenvalues 0 = λ0 ≤
λ1 (s) ≤ · · · ≤ λj0 (s) < µ0, the total multiplicity j0 is independent on
s and each λj (s) (0 ≤ j ≤ j0) depends on s analytically. Furthermore,
we can choose the eigenfunctions φj (s, x) of ∆gs associated with these
λj (s) such that they are orthonormal in L2 (M,gs) and depend on s
analytically (see [A, Lemma 2.1] and earlier [R]). Therefore, for 0 ≤
t < δ0, the truncated heat kernel mapping Ψj0

t : M → R
j0 can be made

depending on t analytically.

In order to estimate the truncated tail, we recall the following well-
known derivative estimates of eigenfunctions φj and extend it to the
Hölder derivative setting.
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Lemma 8. For any integer k ≥ 0 and 0 < α < 1, we have
∥∥∥∇(k)φj

∥∥∥
C0(M)

≤ C (k, g)λ
n+2k

4
j ,(2.8)

‖φj‖Ck,α(M) ≤ C (k, α, g) λ
n+2k+2α

4
j(2.9)

for some positive constants C (k, g) and C (k, α, g).

Proof. The estimate (2.8) is in Theorem 17.5.3 of [H2] and Theorem
1 of [X] (when k = 0 in earlier [H1] and [S], and k = 1 in [LY1]). We
only prove (2.9). Since λj → +∞ as j → ∞, starting from some j we

must have λ
− 1

2
j less than the injective radius of (M,g). Without loss of

generality we assume this holds from j = 1. We consider two cases:

For x, y ∈ M with d (x, y)≤ λ
− 1

2
j , we have

∣∣∣∣∣
∇(k)φj (x)−∇(k)φj (y)

(d (x, y))α

∣∣∣∣∣ =

∣∣∣∣∣
∇(k)φj (x)−∇(k)φj (y)

d (x, y)

∣∣∣∣∣ (d (x, y))
1−α

≤ C (g)
∣∣∣∇(k+1)φj

∣∣∣
C0(M)

λ
− 1−α

2
j

(by (2.8) ) ≤ C (g)C (k + 1, g) λ
n+2k+2α

4
j ,

where the constant C (g) only depends on g.

For x, y ∈ M with d (x, y)≥ λ
− 1

2
j , we have

∣∣∣∣∣
∇(k)φj (x)−∇(k)φj (y)

(d (x, y))α

∣∣∣∣∣ ≤
2
∣∣∇(k)φj

∣∣
C0(M)

λ
−α

2
j

(by (2.8) )

≤ 2C (k, g) λ
n+2k+2α

4
j .

Combining the two cases and letting

C (k, α, g) := max {C (g)C (k + 1, g) , 2C (k, g)} ,
we obtain (2.9). q.e.d.

Proposition 9. Let {gs}s∈K be a compact family of smooth metrics
on a compact n-dimensional Riemannian manifold M , where gs depends
on s smoothly. Given x ∈ M , let

{
xk
}
1≤k≤n

be the normal coordinates

in its neighborhood. Then for any multiple-indices −→α and
−→
β , and q (t) ≥

t−(
n
2
+ρ),

(2.10) Σj≥q(t)+1e
−λjtD

−→α φj (x)D
−→
β φj (x) ≤ C exp

(
t−

ρ
n

)

for any l ≥ 1. The convergence is uniform for x ∈ M and s ∈ K in the
Cr-norm for any r ≥ 0.
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Proof. We first prove the proposition when K consists of a single
metric g. By Lemma 8 we have for any multi-index −→α ,

(2.11)
∥∥∥D

−→α φj

∥∥∥
C0(M)

≤ C (−→α , g)λ
n+2|−→α |

4
j

for some constant C (−→α , g), with |−→α | being the degree of −→α . Combin-
ing Weyl’s asymptotic formula ([Ch, p. 9]) for eigenvalues on compact
manifolds (M,g) that

(2.12) λj ∼
4π2

(ωnV ol(M))
2
n

j
2
n ≥ A (g) j

2
n

for some constant A := A (g) as j → ∞ (where ωn is the volume of the
unit ball in R

n), we have
∣∣∣Σj≥q(t)e

−λjtD
−→α φj (x)D

−→
β φj (x)

∣∣∣

≤ CΣj≥q(t)

(
j

2
n

)n+|−→α |+|−→β |
2

e−Aj
2
n t ≤ C

∫ ∞

q(t)
j

n+|−→α |+|−→β |
n e−Aj

2
n tdj

≤ Ct
−
(

2n+|−→α |+|−→β |
2

)

∫ ∞

A(q(t))
2
n t

µ
2n+|−→α |+|−→β |−2

2 e−µdµ (µ = Aj
2
n t)

≤ C exp
(
t−

ρ
n

)
,

where we have used q (t) ≥ t−(
n
2
+ρ) and µσ = o

(
e

µ
2

)
as µ → ∞ for any

fixed σ > 0. Therefore, we have proved (2.10) in the C0-convergence.
The Cr-convergence of (2.10) follows by the Leibniz rule, adding the

indices −→α and
−→
β by −→γ with |−→γ | ≤ r in the above argument.

For a compact family of metrics {gs}s∈K smoothly depending on s,
notice the constant C (−→α , gs) in (2.11) has a uniform upper bound and
the constant A (gs) in (2.12) has a uniform positive lower bound for
all s ∈ K, because they are determined by the following geometric
quantities continuously depending on s: the dimension, the curvature
bound, the diameter, and volume of (M,gs) (see Remark 11). So the
truncation estimate (2.10) can be made uniform for all s ∈ K. q.e.d.

Corollary 10. Given any l ≥ 1, for q = q (t) ≥ Ct−(
n
2
+ρ), the

truncated modified heat kernel embedding Ψ̃
q(t)
t : (M,g) → R

q(t) still
satisfies the asymptotic formula

(
Ψ̃

q(t)
t

)∗
gcan = g +O

(
tl
)

in the Cr-sense for any r ≥ 0.
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Proof. From Proposition 5 we have in the Cr-sense
(
Ψ̃t

)∗
gcan = g +O

(
tl
)
.

To see it still holds after truncating Ψ̃t to Ψ̃
q(t)
t , let D

−→α = ∇i, D
−→
β = ∇j

for local normal coordinates, let {gs}s∈[0,t0] be the compact family of

metrics defined in (2.3), and then apply the above proposition. q.e.d.

Remark 11. To get an effective truncation of ℓ2 to R
q, it is useful

to have an estimate of the jth eigenvalue λj of M in terms of geo-
metric quantities of (M,g), since the Weyl asymptotic formula (2.12)
does not tell how fast the λj converges to its limit in (2.12). Given a
real number Λ, for all n-dimensional compact Riemannian manifolds
(M,g) satisfying Ricci curvature Ricg ≥ Λg and diameter bounded by

D, there exists a constant A (n,Λ,D) > 0 such that λj ≥ A (n,Λ,D) j
2
n

([SY, Gr2, BBG]). (Similar lower bound of λj was established ear-
lier in [LY1] under stronger assumptions). The upper bound λj ≤
B (n,Λ,D) j

2
n was established in [LY1].

The estimate of ‖φj‖Ck,α(M) for k ≥ 2 can be reduced to ‖φj‖C1(M)

by inductively using the elliptic estimate

‖φj‖Ck,α(M) ≤ Ce

(
‖∆gφj‖Ck−1,α(M) + ‖φj‖C0(M)

)
,

where the constant Ce depends on n,D, V ol (M), and the sectional cur-

vature bound K. In ‖φj‖C1(M) ≤ C (1, g) λ
n+1
2

j , the constant C (1, g)

depends on the these quantities too (e.g. [WaZh]). Hence n,K,D, and
V ol (M) determine C (k, α, g).

Remark 12. Recently, [Po] studied a similar almost isometric em-
bedding of compact Riemannian manifolds into Euclidean spaces via
heat kernel plus certain recording points on M , with a weaker regular-
ity assumption on g. The embedding dimension is controlled by similar
geometric quantities in Remark 11.

3. Günther’s iteration for isometric embedding

3.1. The perturbation problem and free mappings. To solve the

isometric embedding problem du·du = g, Nash studied the perturbation
problem d (u+ v) · d (u+ v) = du · du+ f for small symmetric 2-tensors
f . In local coordinates {xi}n1=1, the perturbation v : M → R

q should
satisfy ∂iu · ∂jv + ∂ju · ∂iv + ∂iv · ∂jv = fij. Imposing the condition
∂iu · v = 0, the equation becomes the system

(3.1) ∂iu · v = 0, ∂j∂iu · v = −1

2
fij −

1

2
∂iv · ∂jv.
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The linear part of the system is determined by a matrix whose row

vectors are the n(n+3)
2 vectors ∂iu (x) and ∂j∂ku (x) in R

q. This motivates
the following definition.

Definition 13 (Free mapping). A C2 map u : M → R
q (including

ℓ2, if q = ∞) is called a free mapping if the n(n+3)
2 vectors {∂iu (x) ,

∂j∂ku(x)}1≤i,j,k≤n, j≤k in R
q are linearly independent at any x ∈ M ,

where ∂i is the derivative with respect to a coordinate {xi}ni=1 of M
near x. (Note this property is independent of choice of coordinates).

3.2. Ck,α norms for R
q-valued functions. We first define the Ck,α

norms for R
q-valued functions for any integer k ≥ 0 and α ∈ (0, 1).

Since our q = q (t) ≥ Ct−
n
2
−ρ → ∞ as t → 0+, several equivalent Ck,α

norms for any fixed q will diverge from each other as q → ∞. To get
the uniform quadratic estimate for all q, we will carefully choose the
definition of the Ck,α norm.

Definition 14. Let f : M → R
q (or ℓ2, if q = ∞) be a R

q-valued
function f = (f1, · · · , fq), where each fj : M → R. We let |·| be the
standard Euclidean norm in R

q, ∇ be the covariant derivative of (M,g),
β ≥ 0 be an integer, and let

∥∥∥∇βf
∥∥∥
C0(M,Rq)

= sup
x∈M

(
Σq
j=1

∣∣∣∇βfj (x)
∣∣∣
2
)1/2

,

‖f‖Ck(M,Rq) = Σ0≤β≤k

∥∥∥∇βf
∥∥∥
C0(M,Rq)

,

[f ]α,M ;Rq = sup
x 6=y∈M

|f (x)− f (y)|
dist (x, y)α

,

‖f‖Ck,α(M,Rq) = ‖f‖Ck(M,Rq) +
[
∇kf

]
α,M ;Rq

.(3.2)

Then we have the following.

Lemma 15. Let · be the standard inner product in R
q (including ℓ2).

For f and g in Ck,α (M,Rq), we have

(3.3) ‖f · g‖Ck,α(M) ≤ C (k, α,M) ‖f‖Ck,α(M,Rq) ‖g‖Ck,α(M,Rq) ,

where the constant C (k, α,M) = nk is uniform for all q.

Proof. The inequality already appeared in [G1]. We adapt it to R
q-

valued functions and further observe that the constant C (k, α,M) is

uniform for any dimensional Rq. This is becauseD
−→γ (f · g) with |−→γ | ≤ k

produces at most nk inner product terms, and the Cauchy–Schwartz
inequality |a · b| ≤ |a|

Rq |b|Rq is valid for all Rq with coefficient 1 on the
right-hand side. q.e.d.



508 X. WANG & K. ZHU

3.3. Günther’s implicit function theorem. Given a free mapping
u : M → R

q (or ℓ2, if q = ∞) and (h, f) ∈ Cs,α(M,T ∗M ⊕ Sym⊗2

(T ∗M)) with s ≥ 2 and 0 < α < 1, let v (x) ∈ Cs,α (M,Rq) be the
unique solution to the system

(3.4) P (u) · v :=

[
∇u
∇2u

]
v =

[
h
f

]
, and v (x)⊥ kerP (u) (x) ,

where

∇u = (∇u1, · · · ,∇uq) ∈ Cs,α (M,T ∗M ⊗ R
q) ,

∇2u =
(
∇2u1, · · · ,∇2uq

)
∈ Cs,α

(
M,Sym⊗2 (T ∗M)⊗ R

q
)
,

P (u) : Cs,α (M,Rq) → Cs,α
(
M,T ∗M ⊕ Sym⊗2 (T ∗M)

)
,

and ∇uk and ∇2uk are the gradient and Hessian of uk, respectively, for
1 ≤ k ≤ q. (Here we identify T ∗M ≃ TM by the metric g, so ∇uk
can be regarded in T ∗M). If u is a free mapping, then (3.4) is always
solvable for any (h, f). We define the right inverse of P (u) as

(3.5) E (u) :
Cs,α

(
M,T ∗M ⊕ Sym⊗2 (T ∗M)

)
−→ Cs,α (M,Rq)

(h, f) 7−→ v
.

By viewing E (u) as a section of Cs,α(M,Hom(T ∗M ⊕ Sym⊗2(T ∗M),
R
q)), the Cs,α (M)-norm of E (u) is induced from the Riemannian and

Euclidean metrics g and gcan. By linear algebra, there is an explicit
expression

(3.6) E (u) (x) = P T (u)
[
P (u)P T (u)

]−1
(x) ,

where “T” is the transpose. For an orthonormal frame field {Vi}1≤i≤n
near x on M , we have

(3.7) P (u) (x) ≃
[

{∇u (Vi) (x)}T{
∇2u (Vj,Vk) (x)

}T

]

1≤i,j,k≤n,j≤k

,

and E (u) (x) is the unique right inverse of P (u) (x) with its column
vectors orthogonal to kerP (u) (x). The Cs,α (M)-norm of E (u) is the
maximum of the Cs,α (M)-norms of its column vectors, each viewed as
an R

q-valued function, defined in finitely many charts covering M by
(3.2).

Theorem 16 ([G2]). Let u : (Mn, g) → R
q be a C∞-free embedding

(cf. Definition 13). For f ∈ Cs,α
(
M,Sym⊗2 (T ∗M)

)
with s ≥ 2 or

s = ∞, and 0 < α < 1, there is a positive number θ (independent of
u, s, and f) with the following property: If

(3.8) ‖E (u)‖C2,α(M) ‖E (u) (0, f)‖C2,α(M) ≤ θ,

then there exists a v = v (u, f) ∈ Cs,α (M,Rq) solving d (u+ v)·d (u+ v) =
du · du+ f .
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Remark 17. As will be seen in Section 5 and Section 9, Günther’s
implicit function theorem has a uniform quadratic estimate in R

q for all
q, so the constant θ is independent on q, including q = ∞.

To obtain the v ∈ Cs,α (M,Rq) for 2 ≤ s ≤ ∞, Günther’s theorem
only requires to verify the C2,α-condition (3.8). This makes it easier to
apply his theorem, but there appears no explicit control of the Cs,α-
norm of v, especially when s > 2. For our purpose, it is useful to know
how close the isometric embedding map It is to the “canonical” heat
kernel embedding map Ψt in the Cs,α-norm for any given s ≥ 2, so we
will prove a stronger inequality,

‖E (u)‖Cs,α(M) ‖E (u) (0, f)‖Cs,α(M) ≤ θ

in our case and give the estimate of ‖v‖Cs,α(M).

3.4. Günther’s iteration scheme. The difficulty of applying the usual
Banach space fixed point theorem to system (3.1) lies in the quadratic
terms ∂iv · ∂jv, which lose one order of differentiability after each itera-
tion of v. Günther ([G1]) invented a new iteration scheme with no loss
of differentiability, which we will recall in the following.

Let ∆(1) and ∆(2) be the Lichnerowicz Laplacian for vector fields
and symmetric covariant 2-tensors on (M,g), respectively, i.e., in local
coordinates

∆(1)ti : = ∆ti −Rl
i.tl, ∆ := ∇l∇l,

∆(2)tij : = ∆tij −Rkl
i.j.tkl −Rl

i.tij −Rl
j.til.

Fix a constant Λ0 6∈ Spec
(
∆(r)

)
, the spectrum of ∆(r) on (M,g) for

r = 1, 2. We introduce the smoothing operator
(
∆(r) − Λ0

)−1
,

(
∆(1) − Λ0

)−1
: Cs−2,α (M,T ∗M) → Cs,α (M,T ∗M) ,

(
∆(2) − Λ0

)−1
: Cs−2,α

(
M,Sym⊗2 (T ∗M)

)
→ Cs,α

(
M,Sym⊗2 (T ∗M)

)
,

with the operator norm denoted by
∥∥∥
(
∆(r) − Λ0

)−1
∥∥∥
op

and let

(3.9) σ (Λ0, α,M) := max
r=1,2

∥∥∥
(
∆(r) − Λ0

)−1
∥∥∥
op

.

Given a free mapping u ∈ Cs,α (M,Rq) and f ∈ Cs,α
(
M,Sym⊗2 (T ∗M)

)
,

let the vector field N (v) and symmetric 2-tensor fields L (v) and M (v)
be
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Ni (v) = −∆v · ∇iv,

Lij (v) = 2∇l∇iv · ∇l∇jv − 2∆v · ∇i∇jv

−2Rkl
i.j.∇kv · ∇lv − Λ0∇iv · ∇jv,

Mij (v) =
1

2
Lij (v)

+
(
∇iR

l
j. +∇jR

l
i. −∇lRij

)((
∆(1) − Λ0

)−1
N (v)

)
l

(3.10)

in local coordinates, where the Einstein summation convention is used.
Günther defined the iteration Υu : Cs,α (M,Rq) → Cs,α (M,Rq) by

(3.11) Υu (v) := E (u)

(
0,−1

2
f

)
+Q (u) (v, v) ,

where

Q (u) (v, v) :=E (u)
((

∆(1) − Λ0

)−1
N (v) ,

(
∆(2) − Λ0

)−1
M (v)

)

∈ Cs,α (M,Rq) .(3.12)

For later reference, we denote the components

Qi (v) : =
((

∆(1) − Λ0

)−1
N (v)

)
i
,

Qjk (v) : =
((

∆(2) − Λ0

)−1
M (v)

)
jk

for 1 ≤ i, j, k ≤ n.

4. Uniform linear independence property of P (Ψt)

Recall that the (un-normalized) heat kernel embedding Φt : (M,g) →
ℓ2 in [BBG] is

Φt : x ∈ M →
(
e−

λ1
2
tφ1 (x) , e

−λ2
2
tφ2 (x) , · · · , e−

λq
2
tφq (x) , · · ·

)
∈ ℓ2.

For any x ∈ M we take an orthonormal frame field {Vi}1≤i≤n in its

neighborhood. Following our notation P (u) for a smooth map u : M →
R
q, we consider the following n(n+3)

2 ×∞ matrix P (Φt) (with q = ∞)
consisting of the n first derivatives of Φt and the n (n+ 1) /2 second
covariant derivatives (i.e., Hessian) of Φt with respect to {Vi}1≤i≤n:

P (Φt) =




· · · · · · · · · · · · · · ·
e−

λ1
2
t∇iφ1 e−

λ2
2
t∇iφ2 · · · e−

λq
2
t∇iφq · · ·

· · · · · · · · · · · · · · ·
e−

λ1
2
t∇j∇kφ1 e−

λ2
2
t∇j∇kφ2 · · · e−

λq
2
t∇j∇kφq · · ·

· · · · · · · · · · · · · · ·



.
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We will prove that as t → 0+ , P (Φt) (x) has full rank for any x on
M , so Φt is a free mapping. For this we will compute the inner products
of the row vectors of P (Φt). The following uniform freeness result of Φt

will be proved in this section.

Theorem 18 (Uniform linear independence). As t → 0+, we have
the following asymptotic formulae:

〈∇iΦt,∇jΦt〉
|∇iΦt| |∇jΦt|

= δij +O (t) ,
〈∇i∇jΦt,∇kΦt〉
|∇i∇jΦt| |∇kΦt|

= O (t) ,

and

〈∇i∇jΦt,∇k∇lΦt〉
|∇i∇jΦt| |∇k∇lΦt|

= O (t) +





1, {i, j} = {k, l} as sets,
1/3, i = j and k = l, but i 6= k
0, otherwise,

,

where 〈, 〉 is the standard inner product in ℓ2. The above convergence is
uniform for all x on M in the Cr-norm for any r ≥ 0. Moreover, if we
truncate Φt : M → R

q ⊂ ℓ2 for q = q (t) ≥ t−
n
2
−ρ with sufficiently small

t > 0, the above results still hold.

4.1. The Minakshisundaram–Pleijel expansion. As in [BBG], we
have the Minakshisundaram–Pleijel expansion of the heat kernel

(4.1) H (t, x, y) =
1

(4πt)n/2
e−

r2

4t U (t, x, y) ,

where r = r (x, y) is the distance function for points x and y on M and

(4.2) U (t, x, y) = u0 (x, y) + tu1 (x, y) + · · ·+ tpup (x, y) +O
(
tp+1

)
,

in the Cr sense for any r ≥ 0 (see [BeGaM, p. 213]).

It is known that u0 (x, y) = [θ (x, y)]−1/2 (for x and y close enough)
and
(4.3)

θ (x, y) =
volume density at y read in the normal coordinate around x

rn−1

with r = r (x, y) ([BeGaM, p. 208]), in particular

(4.4) θ (x, x) = 1 = u0 (x, x) .

From this we immediately see that

(4.5) 〈Φt,Φt〉 (x) = H (t, x, x) =
1

(4πt)n/2
(1 +O (t)) .

We also have

(4.6) ∂iU |x=y = ∂iu0 (x, y) |x=y + t∂iu1 (x, y) |x=y +O
(
t2
)
= O (t) ,
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where ∂iu0 (x, y) |x=y = 0 in (4.6) is due to

u0 (x, 0) = [θ (x (s) , 0)]−
1
2 =

[
1− Ric (ẋ (s) , ẋ (s))

s2

3!
+O

(
|s|3
)]− 1

2

= 1 +
1

12
Ric (ẋ (s) , ẋ (s)) s2 +O

(
|s|3
)
.

We recall the following useful lemma.

Lemma 19. Let r = r (x, y) be the shortest distance between x and y
on M . For x and y that are close enough to each other, r : M ×M → R

is smooth. Using the normal coordinates
{
xi
}
1≤i≤n

near x, we have

∂x
i r

2 (x, y) |x=y = ∂y
i r

2 (x, y) |x=y = 0,(4.7)

∂x
i ∂

x
j r

2 (x, y) |x=y = −∂x
i ∂

y
j r

2 (x, y) |x=y = 2δij ,(4.8)

∂x
k∂

x
i ∂

x
j r

2 (x, y) |x=y = ∂y
k∂

x
i ∂

x
j r

2 (x, y) |x=y = 0,(4.9)

where the notation ∂x
i (resp. ∂y

i ) means the derivative is taken with
respect to the variable in the first (resp. second) component of M ×M .

The first two identities are proved in [BBG]. The third identity can
be computed in the normal coordinates near x (see e.g., [De, Chapter
16, p. 282]), using the Taylor expansion of the metric g near x (e.g., [T,
Proposition 3.1, p. 41])

gij(x) = δij +
1

3
Rikljx

kxl +
1

6
Riklj,sx

kxlxs

+

(
1

20
Riklj,st +

2

45
ΣmRiklmRjstm

)
xkxlxsxt +O

(
r5
)
,

where r is the distance to the base point x0.

4.2. Derivative estimates of the heat kernel embedding Ψt. Us-
ing Lemma 19 and the Minakshisundaram–Pleijel expansion (4.1), we

will derive-higher derivative estimates of D
−→αΦt (x). Let

−→γ =
(−→α ,

−→
β
)

be a multi-index, with −→α and
−→
β being the multi-indices in x and y

variables of M ×M , respectively. Let D
−→γ be the corresponding multi-

derivative operator. From the heat kernel expression H (t, x, y) =
Σ∞
s=1e

−λstφs (x)φs (y), it is easy to check that

(4.10)
〈
D

−→αΦt (x) ,D
−→
β Φt (x)

〉
= D

−→γ H (t, x, y) |x=y.

Proposition 20. As t → 0+, there exists a constant C > 0 such that

∣∣∣D
−→γ H (t, x, y) |x=y

∣∣∣ ≤ Ct
−n

2
−
[

|−→γ |
2

]

,(4.11)
∣∣∣D

−→αΦt (x)
∣∣∣
2

≤ Ct−
n
2
−|−→α |,
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where [b] is the largest integer less than or equal to a given real number b.

Proof. We write H (t, x, y) = 1

(4πt)n/2 e
− r2

4t U (t, x, y), and

(4.12) D
−→γ H (t, x, y) =

1

(4πt)n/2
e−

r2

4t P−→γ (t, x, y) ,

where P−→γ (t, x, y) is a polynomial in D
−→µj

(
r2(x,y)

t

)
and D

−→ηkU (t, x, y) for

multi-indices −→µj and
−→ηk by the Leibniz rule. For example, when −→γ = ∂xi ,

P−→
i
(t, x, y) = −1

4
∂i

(
r2 (x, y)

t

)
U (t, x, y) + ∂iU (t, x, y) .

We have the following
1. Each summand of P−→γ (x, t) is of the form

(4.13)

(
Πs

j=1D
−→µj

(
r2 (x, y)

t

))∣∣∣∣
x=y

· D−→η U (t, x, y)
∣∣∣
x=y

with

(4.14) Σs
j=1 |−→µj |+ |−→η | = |−→γ | .

There are only finitely many terms in P−→γ (x, t); we denote the total

number by n (−→γ ).
2. As t → 0+, the terms involving the highest possible power of 1

t
must have −→µj’s with |−→µj| = 2 as many as possible. This is because of the
total degree condition (4.14) and Lemma 19. So if there are more than
one −→µj with |−→µj| ≥ 3, the summand (4.13) loses the potential to have

the maximal number of factors 1
t , which is

[
|−→γ |
2

]
by (4.14).

Therefore, from (4.12) we have

∣∣∣D
−→γ H (t, x, y) |x=y

∣∣∣ ≤ C
1

(4πt)n/2
· t

−
[

|−→γ |
2

]

,

∣∣∣D
−→αΨt (x)

∣∣∣
2

=
∣∣∣D

−→α
x D

−→α
y H (t, x, y) |x=y

∣∣∣ ≤ C
1

(4πt)n/2
· t

−
[

2|−→α |
2

]

= C
1

(4πt)n/2
· t−|−→α |.

The constant C can be taken as C = n (−→α ) sup ‖U (t, x, y)‖
C|−→α |(M×M)

,

where the sup is taken for t > 0 in the range of the Minakshisundaram–
Pleijel expansion (4.1) and (x, y) ∈ M ×M with dist(x, y) less than the
injective radius of M . q.e.d.

We can get precise asymptotic formulae if we are more careful in item
2 of the above argument, as in the following.
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Proposition 21. For any x on M , let
{
xi
}n
i=1

be the normal coor-
dinates near x. Then as t → 0+, we have

〈∂iΦt, ∂jΦt〉 (x) = (2t)−1 (4πt)−
n
2 (δij +O (t)) ,

〈∂i∂jΦt, ∂kΦt〉 (x) = t−
n
2 · O (1) ,

〈∂j∂iΦt, ∂m∂kΦt〉 (x)
= (2t)−2 (4πt)−

n
2 (δijδkm + δimδjk + δikδjm +O (t))(4.15)

for 1 ≤ i, j, k,m ≤ n. The convergence is uniform for all x on M in the
Cr-norm for any r ≥ 0. The coefficients of O (t) and O (1) are deter-
mined by the covariant differentiations of the metric g and its curvature
tensors.

Proof. The first asymptotic formula is in [BBG]. We will prove the re-
maining two. For simplicity, we let ∂x

i = ∂i and ∂y
k = ∂k̄ from now on (the

bar notation in “k” means that the derivative is taken with respect to
the y variable for (x, y) ∈ M ×M). We will compute D

−→γ H (t, x, y) |x=y

for multi-indices −→γ in the following two cases and observe the summands
(4.13) in P−→γ (t, x, y) (4.12) of leading order:

1) −→γ = (∂j∂i, ∂k̄): By (4.14), Σs
j=1 |−→µj | + |−→η | = 3. So the highest

possible power of
(
1
t

)
in P−→γ (t, x, y) is

[
3
2

]
= 1, with s = 1, |−→µ1| =

2, |−→η | = 1. The term in P−→γ (t, x, y) containing 1
t is

∂k∂j

(
−r2

4t

)
∂iU + ∂j∂i

(
−r2

4t

)
∂kU + ∂k∂i

(
−r2

4t

)
∂jU

∣∣∣∣
x=y

= − 1

2t

(
−δkj∂iU + δij∂kU − δik∂jU

)
= O (1) ,

we have used (4.6). Since we have used∇U |x=y = O (t) to decrease
the

(
1
t

)
power by 1, we must also consider the term in P−→γ (t, x, y)

with s = 0 and |−→η | = 3, but clearly ∂j∂i∂k̄U |x=y = O (1). Hence,

|〈∂i∂jΦt, ∂kΦt〉 (x)| = ∂k̄∂j∂iH (t, x, y)|x=y = t−n/2 ·O (1) .

2) −→γ = (∂j∂i, ∂m̄∂k̄): By (4.14), Σs
j=1 |−→µj | + |−→η | = 4. So the highest

possible power of
(
1
t

)
in P−→γ (t, x, y) is

[
4
2

]
= 2, with s = 2, |−→µ1| =

|−→µ2| = 2, |−→η | = 0. The term in P−→γ (t, x, y) containing
(
1
t

)2
is

(
− 1

4t

)2 [
∂m̄∂k̄

(
r2
)
∂j∂i

(
r2
)
+ ∂k∂j

(
r2
)
∂m̄∂i

(
r2
)

+∂m̄∂j
(
r2
)
∂k∂i

(
r2
)]

U
∣∣
x=y

=

(
1

2t

)2

(δijδkm + δimδjk + δikδjm +O (t)) .
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Hence,

〈∂j∂iΦt, ∂m∂kΦt〉 (x) = ∂m̄∂k̄∂j∂iH (t, x, y) |x=y

=

(
1

2t

)2 1

(4πt)n/2
(δijδkm + δimδjk + δikδjm +O (t)) .

The coefficients of O (t) and O (1) in the above argument are deter-
mined by the covariant differentiations of the metric g and its curva-
ture tensors, because of (4.10) and the heat kernel expansion of D

−→γ H
(t, x, y) |x=y, similar to the expansion of H (t, x, x) (e.g., [Gil]). q.e.d.

Remark 22. In the expansion of ∂m̄∂k̄∂j∂iH (t, x, y), the term
∂m̄∂k∂j∂i(r

2)
4t U involves the curvature tensors on M (see, e.g., [De, Chap-

ter 16, p. 282],), but it is a lower-order term (order t−1 v.s. leading order
t−2) and so does not affect the asymptotic behavior.

Remark 23. Propositions 20 and 21 with precise coefficients C (such
that the inequalities become equalities as t → 0+) were also obtained
in [Ni] in the context of random function theory by different argu-
ment. For the purpose of our paper we do not need that general result,
prefering to give a self-contained derivation. [Ni] also proved the almost
isometric embeddings by eigenfunctions and a wide class of weights. Po-
tentially, some of them may be perturbed to isometric embeddings by
our method.

For later applications, we need to estimate the Hölder derivatives
of D

−→αΨt (x). This can be done by interpolating between estimates of
the integral exponent obtained in Proposition 20. Then we have the
following.

Proposition 24. As t → 0+, the Hölder derivatives satisfy
[
D

−→αΦt (x)
]
α;M

≤ Ct−
n
4
−|−→α |+α

2 ,

‖Φt (x)‖Ck,α(M) ≤ Ct−
n
4
− k+α

2

for some constant C > 0.

4.3. Uniform linear independence property of P (Ψt).

Proof of Theorem 18. For any x ∈ M , we choose the normal coordi-
nates

{
xi
}
1≤i≤n

near x such that
{

∂
∂xi

}
1≤i≤n

agree with the frame field

{Vi}1≤i≤n at x. Then ∇iΦt (x) = ∂iΦt (x), ∇j∇kΦt (x) = ∂j∂kΦt (x).
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From Proposition 21 we have as t → 0+,

|∇iΦt (x)|2 = (2t)−1 (4πt)−n/2 · (1 +O (t)) ,(4.16)

〈∇iΦt,∇jΦt〉
|∇iΦt| |∇jΦt|

(x) = δij +O (t) .

From (4.15) we have

〈∇j∇iΦt,∇m∇kΦt〉 (x) = (2t)−2 (4πt)−n/2 · (δijδkm
+δimδjk + δikδjm +O (t)) .

In particular, for i 6= j and {k,m} 6= {i, j} as sets, we have

〈∇i∇iΦt,∇i∇iΦt〉 (x) = (2t)−2 (4πt)−n/2 · (3 +O (t)) ,

〈∇j∇iΦt,∇j∇iΦt〉 (x) = (2t)−2 (4πt)−n/2 · (1 +O (t)) ,(4.17)

〈∇i∇iΦt,∇j∇jΦt〉 (x) = (2t)−2 (4πt)−n/2 · (1 +O (t)) ,

〈∇j∇iΦt,∇m∇kΦt〉 (x) = (2t)−2 (4πt)−n/2 · (0 +O (t)) ,

So we conclude that

〈∇i∇jΦt,∇k∇lΦt〉
|∇i∇jΦt| |∇k∇lΦt|

(x)

=





0 +O (t) , if {i, j} 6= {k, l} and {i, k} 6= {j, l} as sets,
1/3 +O (t) , if i = j and k = l , but i 6= k,
1 +O (t) , if {i, j} = {k, l} as sets.

(4.18)

By (4.17) |∇j∇iΦt|2 → Ct−
n
2
−2, combining Proposition 21 we have

|〈∇i∇jΦt,∇kΦt〉|
|∇i∇jΦt| |∇kΦt|

(x)(4.19)

=
t−n/2 ·O (1)

[
(2t)−2 (4πt)−n/2 · (1 +O (t)) · (2t)−1 (4πt)−n/2 · (1 +O (t))

]1/2

= O
(
t3/2
)
.

By Proposition 9, the above inner product results pass to the truncated
map Φt : (M,g) → R

q(t) as well.
The linear independence of the row vectors follows from (4.16), (4.18),

(4.19), and taking

αi = ∇i∇iΦt (x) for i = 1, · · · , n

in the following linear algebra lemma. q.e.d.
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Lemma 25. For n vectors α1, · · · , αn in a real linear space V equipped

with an inner product 〈, 〉, if there is a constant σ ∈
(
− 1

n−1 , 1
)
such that

〈αi, αj〉
|αi| |αj |

= σ, for all i 6= j,

then {αi}1≤i≤n are linearly independent.

Proof. We will find an explicit invertible linear transform L0 : V → V
to change the angle cos−1 σ between αi and αj to π

2 . Without loss of
generality, we can assume all αi are unit vectors. Let

α0 =
α1 + · · ·+ αn

n
, c = c (σ, n) =

√
1 + (n− 1) σ

1− σ
(note σ > − 1

n− 1
),

α̃i = α0 + c (αi − α0) := L0αi, for i = 1, · · · , n;
then α̃i is nonzero by checking the orthogonal relation 〈α0, αi − α0〉 = 0.
We also have for i 6= j,

〈α̃i, α̃j〉 = |α0|2 + c2 (αi − α0) (αj − α0)

=
(n− 1) σ + 1

n
+

1 + (n− 1) σ

1− σ

(
σ − (n− 1) σ + 1

n

)
= 0,

and so {α̃i}1≤i≤n is an orthogonal set. Since {α̃i}1≤i≤n is obtained from

linear combinations of {αi}1≤i≤n, {αi}1≤i≤n must be linearly indepen-
dent. q.e.d.

Corollary 26. Let σ ∈
(
− 1

n−1 , 1
)
. Then the n× n matrix

(4.20) Ξn (σ) := [θij]1≤i,j≤n

with θii = 1 and θij = σ (i 6= j) is invertible.

Proof. Let P be the matrix whose row vectors are the above unit
vectors αi (1 ≤ i ≤ n). Then P is a matrix of full rank, and PP T =
Ξn (σ). q.e.d.

4.4. Operator norm estimate of E (Ψt). We start with the following
elementary linear algebra lemmas.

Lemma 27. Let A be an m×n matrix. Regarding A as a linear map
from R

n to R
m, the operator norm ‖A‖ of A, defined as

‖A‖ = sup
v∈Rn, |v|=1

|Av|
|v| ,

is less than or equal to
√
n times the length of its longest column vector.

If the column vectors are orthogonal to each other, then ‖A‖ is equal to
the length of the longest column vector.
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Lemma 28. Let Ai (t) be mi × mi symmetric, invertible matrices

with operator norm
∥∥∥(Ai (t))

−1
∥∥∥ ≤ ρ0 for i = 1, 2 and t ∈ (0, t0], and

let b (t) be an m2 × m1 matrix with ‖b (t)‖ → 0 as t → 0+. Then for

sufficiently small t > 0, the inverse matrix for

[
A1 (t) bT (t)
b (t) A2 (t)

]
is

[
A−1

1 (t) cT (t)

c (t) A−1
2 (t)

][ (
Im1 + bT (t) c (t)

)−1
0

0
(
Im2 + b (t) cT (t)

)−1

]
,

where c (t) is the m2 ×m1 matrix given by c (t) = A−1
2 (t) b (t)A−1

1 (t).
In particular,

‖c (t)‖ ≤
∥∥∥(A2 (t))

−1
∥∥∥ ‖b (t)‖

∥∥∥(A1 (t))
−1
∥∥∥ .

From now on we consider the normalized heat kernel embedding Ψt =√
2 (4π)n/4 t

n+2
4 Φt. Theorem 18 still holds if we replace Φt by Ψt, for

they only differ by a scaling factor
√
2 (4π)n/4 t

n+2
4 .

Corollary 29. The matrix P (Ψt) (x) has a right inverse E (Ψt) (x)

with uniform operator norm bound C for all q ≥ t−
n
2
−ρ and all x ∈ M

as t → 0+.

Proof. Since Ψt =
√
2 (4π)n/4 t

n+2
4 Φt, by Proposition 21, as t → 0+

we have in the Cr-sense (for any r ≥ 0)

P (Ψt)P
T (Ψt) (x)

=




In +O (t) O (t)

O (t) 1
2t ·
([

In(n−1)
2

0

0 Ξn

(
1
3

)
]
+O (t)

)

 ,(4.21)

where In corresponds to 〈∇iΨt,∇jΨt〉, In(n−1)
2

corresponds to 〈∇i∇jΨt,

∇k∇lΨt〉 for i 6= j and k 6= l, and Ξn

(
1
3

)
(defined in Corollary 26)

corresponds to 〈∇i∇iΨt,∇k∇kΨt〉 for 1 ≤ i, j, k, l ≤ n. By Proposition

9, (4.21) still holds when we truncate Ψt from ℓ2 to R
q(t) with q (t) ≥

t−
n
2
−ρ. Therefore as t → 0+, by Lemma 28 we have

[
P (Ψt)P

T (Ψt)
]−1

(x)

=




In +O (t) O (t)

O (t) 2t ·
([

In(n−1)
2

0

0
(
Ξn

(
1
3

))−1

]
+O (t)

)

(4.22)

in the Cr-sense. By Lemma 27, for the right inverse

(4.23) E (Ψt) = P T (Ψt)
[
P (Ψt)P

T (Ψt)
]−1

,
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its operator norm is controlled by the length of its longest column vector.
From Proposition 21, |∇iΨt| → 1 and |∇j∇kΨt| → 1√

2t
in the Cr-sense

as t → 0+, so plugging this and (4.22) into (4.23), we then have

‖E (Ψt) (x)‖ ≤ C sup
1≤i,j,k≤n

(‖∇iΨt (x)‖+ t ‖∇j∇kΨt (x)‖) ≤ C.

q.e.d.

Proposition 30. For any multi-index −→α with |−→α | = k and 0 < α <

1, for any x ∈ M , the operator norms of the linear maps D
−→αE (Ψt) (x)

and
[
D

−→αE (Ψt)
]
α,M

(x) : R
n(n+3)

2 → R
q(t) satisfy

∥∥∥D
−→αE (Ψt) (x)

∥∥∥ ≤ Ct−
k
2 ,

∥∥∥∥
[
D

−→αE (Ψt)
]
α,M

(x)

∥∥∥∥ ≤ Ct−
k+α
2 ,(4.24)

respectively, for all q (t) ≥ t−
n
2
−ρ as t → 0+.

Proof. In each chart U of M where we use the orthonormal frame field
{Vi}1≤i≤n to trivialize P (Ψt), the O (t)’s in (4.22) are smooth functions

on U with the Cr-norm of order O (t). So for any multi-index −→γ and
real number γ ∈ [0, 1) with |−→γ |+ γ > 0, by (4.22) we have

(4.25)
[
D

−→γ [P (Ψt)P
T (Ψt)

]−1
]
γ
(x) = O (t)

in the Cr-sense for any r ≥ 0. Therefore, for any multi-index −→α with
|−→α | = k, applying D

−→α to (4.23), using the Leibniz rule, and noticing
Lemma 27 and (4.25), we have

∥∥∥D
−→αE (Ψt) (x)

∥∥∥

≤ CΣ−→
β ∪−→γ =−→α

∥∥∥D
−→
β P T (Ψt) (x) ·D

−→γ [P (Ψt)P
T (Ψt)

]−1
(x)
∥∥∥

≤ C
(∣∣∣∇k+1Ψt (x)

∣∣∣+
∣∣∣∇k+2Ψt (x)

∣∣∣ ·O (t)
)
≤ Ct−

k
2 ,

∥∥∥∥
[
D

−→αE (Ψt)
]
α,M

(x)

∥∥∥∥

≤ C
(∥∥∥
[
D

−→αP T (Ψt) (x)
]
α
·
[
P (Ψt)P

T (Ψt)
]−1

(x)
∥∥∥

+
∥∥∥D

−→αP T (Ψt) (x) ·
[[
P (Ψt)P

T (Ψt)
]−1

(x)
]
α

∥∥∥
)

≤ C
(
t−

k
2
−α

2 + t−
k
2 ·O (t)

)
≤ Ct−

k+α
2 ,

where in both inequalities we have used Proposition 20 and Proposition
24 for the derivative estimates of Ψt (x). q.e.d.
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Corollary 31. For q ≥ Ct−
n
2
−ρ, ‖E (Ψt)‖Ck,α(M) is of order t−

k+α
2 ,

and so is the operator norm ‖E (Ψt)‖op of

E (Ψt) : C
k,α (M,T ∗M)× Ck,α

(
M,Sym⊗2 (T ∗M)

)
→ Ck,α (M,Rq) ,

i.e.,

(4.26) ‖E (Ψt)‖Ck,α(M) , ‖E (Ψt)‖op ≤ Ct−
k+α
2

for a constant C > 0.

Proof. Taking the supremum for x ∈ M in the inequalities in (4.24),
we obtain

(4.27) ‖E (Ψt)‖Ck,α(M) ≤ Ct−
k+α
2 .

Now we estimate the operator norm ‖E (Ψt)‖op. For any section ϕ ∈
Ck,α (M,T ∗M)×Ck,α

(
M,Sym⊗2 (T ∗M)

)
, using Proposition 30, by the

Leibniz rule we have
∣∣∣∣
[
D

−→α (E (Ψt) (x)ϕ (x))
]
α,M

∣∣∣∣ ≤ Ct−
k+α
2 ‖ϕ‖Ck,α(M)

for any multi-index −→α with |−→α | = k. (In a local trivialization of TM ,

ϕ : M → R
n(n+3)

2 . The Ck,α-norm for vector-valued functions is given in
Section 3.2). Taking the supremum for x ∈ M in the above inequalities,
we have

‖E (u)ϕ‖Ck,α(M,Rq) ≤ Ct−
k+α
2 ‖ϕ‖Ck,α(M,Rq) ,

so the operator norm ‖E (Ψt)‖op is of order Ct−
k+α
2 . Note this operator

norm agrees with the Ck,α-Hölder norm of E (u) by (4.27). q.e.d.

Definition 32 (The constant CE). Due to the importance of the
operator norm of E (Ψt), we denote the maximum of the constants
C appeared in the coefficients of the above estimates of ‖E (Ψt) (x)‖,
‖E (Ψt)‖, ‖E (Ψt)‖Ck,α(M,Rq),

∥∥∥D−→αΨt

∥∥∥
Ck,α(M,Rq)

in Proposition 24, O (t)

in (4.22), and 2
∥∥∥
(
Ξ
(
1
3

))−1
∥∥∥ by CE, where “E” indicates E (Ψt).

5. Uniform quadratic estimate of Q (u)

For any given map u ∈ Ck,α (M,Rq), the quadratic estimate of Q (u)
was established in [G1, Lemma 4]. In this section we show the constant
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in the quadratic estimate is uniform for all Rq. This is essentially due
to Lemma 15, where the constant C (k, α,M) is uniform for all q.

Proposition 33. For any v ∈ Ck,α (M,Rq), we have

‖Qi (v, v)‖Ck,α(M,Rq) ≤ Γ (Λ0, k, α, ‖R‖C1) ‖v‖2Ck,α(M,Rq) ,

‖Qij (v, v)‖Ck,α(M,Rq) ≤ Γ (Λ0, k, α, ‖R‖C1) ‖v‖2Ck,α(M,Rq) ,

‖Q (Ψt) (v, v)‖Ck,α(M,Rq) ≤ CEΓ (Λ0, k, α, ‖R‖C1) t
− k+α

2 ‖v‖2Ck,α(M,Rq) ,

where the constant Γ (Λ0, k, α, ‖R‖C1) is uniform for all q, where ‖R‖C1

is the C1-norm of the Riemannian curvature tensor R on M . (The con-
stants σ (Λ0, α,M), C (k, α,M), and CE are in (3.9), Lemma 15 and
Definition 32 respectively).

Proof. For brevity, we write Ck,α (M,Rq) as Ck,α (M). Let “·” be
the standard inner product in R

q. Recall that Qi (v, v) =((
∆(1) − Λ0

)−1
(N (v))

)
i
and Qij (v, v) =

((
∆(2) − Λ0

)−1
(M (v))

)
ij
in

Section 3.4, where

Ni (v) = −∆v · ∇iv,

Lij (v) = 2∇l∇iv · ∇l∇jv − 2∆v · ∇i∇jv − 2Rkl
i.j.∇kv · ∇lv

− Λ0∇iv · ∇jv,

Mij (v) =
1

2
Lij (v) +

(
∇iR

l
j. +∇jR

l
i. −∇lRij

)((
∆(1) − Λ0

)−1
N (v)

)
l
.

By the definition of the operator norm
∥∥∥
(
∆(r) − Λ0

)−1
∥∥∥
op

and (3.9), we

have

‖Qij (v, v)‖Ck,α(M)(5.1)

≤ σ (Λ0, α,M)

(
1

2
‖Lij (v)‖Ck−2,α(M)

+ ‖∇R‖C0(M) σ (Λ0, α,M) ‖N (v)‖Ck−2,α(M)

)
.
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For Lij (v), by (3.3) we have

‖Lij (v)‖Ck,α(M)

≤ 2C (k, α,M)

(∥∥∥∇l∇iv
∥∥∥
Ck−2,α(M)

‖∇l∇jv‖Ck−2,α(M)

+ ‖∆v‖Ck−2,α(M) ‖∇i∇jv‖Ck−2,α(M)

+ ‖R‖C0(M) ‖∇kv‖Ck−2,α(M) ‖∇lv‖Ck−2,α(M)

+

∣∣∣∣
Λ0

2

∣∣∣∣ ‖∇iv‖Ck−2,α(M) ‖∇jv‖Ck−2,α(M)

)

≤ 2C (k, α,M)
(
‖v‖2Ck,α(M) + ‖v‖2Ck,α(M)+

‖R‖C0(M) ‖v‖
2
Ck−1,α(M) +

∣∣∣∣
Λ0

2

∣∣∣∣ ‖∇iv‖2Ck−1,α(M)

)

≤ 2C (k, α,M)

(
2 + ‖R‖C0(M) +

∣∣∣∣
Λ0

2

∣∣∣∣
)
‖v‖2Ck,α(M) .

Similarly,

‖Ni (v)‖Ck−2,α(M) ≤ ‖∆v‖Ck−2,α(M) ‖∇iv‖Ck−2,α(M) ≤ ‖v‖2Ck,α(M) .

Putting these into (5.1), we have

‖Qij (v, v)‖Ck,α(M)(5.2)

≤ σ (Λ0, α,M)C (k, α,M)

(
2 + ‖R‖C0(M) +

∣∣∣∣
Λ0

2

∣∣∣∣
)
‖v‖2Ck,α(M)

+σ2 (Λ0, α,M) ‖∇R‖C0(M) ‖v‖
2
Ck,α(M)

= Γ (Λ0, k, α, ‖R‖C1) ‖v‖2Ck,α(M) ,

where the constant

Γ (Λ0, k, α, ‖R‖C1)(5.3)

: = σ (Λ0, α,M)C (k, α,M)

(
2 + ‖R‖C0(M) +

∣∣∣∣
Λ0

2

∣∣∣∣
)

+σ2 (Λ0, α,M) ‖∇R‖C0(M) .

Similarly,

‖Qi (v, v)‖Ck,α(M) ≤ σ (Λ0, α,M)C (k, α,M) ‖v‖2Ck,α(M)

≤ Γ (Λ0, k, α, ‖R‖C1) ‖v‖2Ck,α(M) .

Finally, since

Q (u) (v, v) = E (u) ([Qi (u) (v, v)] , [Qij (u) (v, v)])

and the operator norms of

E (Ψt) : C
k,α (M,T ∗M)×Ck,α

(
M,Sym⊗2 (T ∗M)

)
→ Ck,α (M,Rq)
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is of order CEt
− k

2
−α

2 by Corollary 31, we have

‖Q (Ψt) (v, v)‖Ck,α(M)(5.4)

≤ Γ (Λ0, k, α, ‖R‖C1) ‖E (Ψt)‖Ck,α(M) ‖v‖2Ck,α(M)

≤ CEΓ (Λ0, k, α, ‖R‖C1) t−
k+α
2 ‖v‖2Ck,α(M) ,

where the constant CEΓ (Λ0, k, α, ‖R‖C1) is uniform for all q. q.e.d.

6. The implicit function theorem: isometric embedding

In previous sections we have considered the n(n+3)
2 ×∞ matrix P (Ψt)

and its right inverse E (Ψt). If we truncate ℓ2 to R
q(t) with q (t) ≥

Ct−
n
2
−ρ and consider the modified heat kernel embedding map Ψ̃t : M →

R
q(t), then E

(
Ψ̃t

)
is a q (t)× n(n+3)

2 matrix. For each fixed t, the mod-

ified Ψ̃t = Ψt,g(t) is the heat kernel embedding map in [BBG] for the
modified metric gt. The modified metrics {gs}0≤s≤t0

are a compact fam-
ily and depend on s smoothly. By Proposition 9 and Proposition 24,

E
(
Ψ̃t

)
still has the operator bounds as in Proposition 30 and Corol-

lary 31 for E (Ψt). This is because from our construction of E
(
Ψt,g(s)

)

(4.23),
∥∥E
(
Ψt,g(s)

)∥∥
Ck,α(M)

is determined by the (derivatives of) inner

products of the row vectors ∂iΨt,g(s) and ∂i∂jΨt,g(s) (1 ≤ i ≤ j ≤ n) for
the parameter s, which is in a compact interval [0, t0].

Now we are ready to give the proof of Theorem 1. We divide the proof
into two propositions: isometric immersion and one-to-one map.

Proposition 34 (Isometric immersion)). Under the conditions of
Theorem 1, there exists t0 > 0 depending on (g, ρ, α), such that for the

integer q = q (t) ≥ t−
n
2
−ρ and 0 < t ≤ t0, the modified heat kernel

embedding Ψ̃t can be truncated to

Ψ̃t : M → R
q ⊂ ℓ2

and can be perturbed to an isometric embedding It : M → R
q, with the

perturbation of Ψ̃t of order O
(
t
k+1
2

−α
2

)
in the Ck,α-norm.

Proof. Given the truncated heat kernel embedding u = Ψ̃t : M →
R
q(t) with q = q (t) ≥ t

n
2
−ρ and the error f :=

(
Ψ̃t

)∗
gcan − g to the

isometric embedding, we consider the nonlinear functional

(6.1) F : Ck,α (M,Rq) → Ck,α (M,Rq) ,

F (v) = v−E
(
Ψ̃t

)
(0, f)+E

(
Ψ̃t

)([
Qi

(
Ψ̃t

)
(v, v)

]
,
[
Qjk

(
Ψ̃t

)
(v, v)

])
.

We stress that this iteration is coordinate free and is defined on the
whole M , as it is the coordinate expression of the iteration of tensors



524 X. WANG & K. ZHU

(see equations (12)–(21) in [G1]). We want to find the zeros of F . By
the general implicit function theorem (e.g., Proposition A.3.4. in [MS]),
the operator norm estimate in Corollary 31, and the uniform quadratic
estimates in Proposition 33, it is enough to verify that

∥∥∥E
(
Ψ̃t

)∥∥∥
Ck,α(M)

∥∥∥E
(
Ψ̃t

)
(0, f)

∥∥∥
Ck,α(M,Rq)

→ 0

as t → 0+. By Corollary 31 we have
∥∥∥E
(
Ψ̃t

)∥∥∥
Ck,α(M)

≤ CEt
− k+α

2 .

By Theorem 10 we have f =
(
Ψ̃t

)∗
gcan− g = O

(
tl
)
in the Ck+1 norm,

so for small t,

(6.2) ‖f‖Ck,α(M,Sym⊗2(T ∗M)) ≤ Gtl

for the constant

(6.3) G := C (g, l, k + 1)

in Proposition 5 (when k = l = 2, we have partial estimate of G by
curvature terms in Section 9.2). By our construction in (4.23) and (4.22),
we have

E
(
Ψ̃t

)
(0, f) = P T

(
Ψ̃t

)



O (t) · f

2t ·
([

In(n−1)
2

0

0
(
Ξn

(
1
3

))−1

]
+O (t)

)
· f


.

When t is small,
∣∣∣∇iΨ̃t

∣∣∣ <<
∣∣∣∇j∇kΨ̃t

∣∣∣, so we have

∥∥∥E
(
Ψ̃t

)
(0, f)

∥∥∥
Ck,α(M,Rq)

=

∥∥∥∥∥

[(
∇j∇kΨ̃t

)T]

1≤j≤k≤n

·O (t) · f
∥∥∥∥∥
Ck,α(M,Rq)

≤ CE

(
t−

k+1
2

−α
2

)
· CEt ·Gtl

= C2
EGtl+

1
2
− k+α

2 ,(6.4)

where [·]1≤j≤k≤n is the notation for a matrix and we have used Propo-

sition 24 to estimate
∥∥∥∇j∇kΨ̃t

∥∥∥
Ck,α(M,Rq)

. Hence,

∥∥∥E
(
Ψ̃t

)∥∥∥
Ck,α(M)

∥∥∥E
(
Ψ̃t

)
(0, f)

∥∥∥
Ck,α(M,Rq)

≤ C3
EGt−

k+α
2 · tl+ 1

2
− k+α

2

= C3
EGtl+

1
2
−k−α → 0(6.5)

as t → 0+, for l +
1
2 > k + α by our assumption.

The same quadratic estimate still holds for Ψ̃t for 0 < t ≤ t0 and
is uniform for all q (t) ≥ t

n
2
−ρ, by Corollary 31, Proposition 33, and
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our remark on
∥∥∥E
(
Ψ̃t

)∥∥∥
Ck,α(M)

in the beginning of this subsection, as

follows:
∥∥∥Q
(
Ψ̃t

)
(v, v)

∥∥∥
Ck,α(M,Rq)

=
∥∥∥E
(
Ψ̃t

)([
Qi

(
Ψ̃t

)
(v, v)

]
,
[
Qij

(
Ψ̃t

)
(v, v)

])∥∥∥
Ck,α(M,Rq)

≤
∥∥∥E
(
Ψ̃t

)∥∥∥
Ck,α(M)

· Γ (Λ0, k, α, ‖R‖C1) ‖v‖2Ck,α(M,Rq)

≤ CEΓ (Λ0, k, α, ‖R‖C1) t
− k

2
−α

2 ‖v‖2Ck,α(M,Rq) .

By Günther’s implicit function theorem we obtain a smooth map It :
M → R

q such that I∗t gcan = g. From this we immediately see It is an
isometric immersion. From the implicit function theorem we also see

the needed perturbation from Ψ̃t to It is of order O
(
tl+

1
2
− k+α

2

)
in the

Ck,α-norm (For readers interested in more details about this, see the
appendix). q.e.d.

Remark 35. The condition that ‖f‖Ck,α(M,Sym⊗2(T ∗M)) is of order

O
(
tl
)
with l + 1

2 > k + α is used in (6.5). Since k ≥ 2 we must have
l ≥ 2. This is the reason that we need to modify the Ψt in [BBG] for
higher-order (at least O

(
t2
)
) approximation to isometry. If we can make

the remainder terms in (6.2) explicit, then we can give the estimate of
the smallness of t in the above implicit function theorem. See Section
9.2 for partial results in this direction.

To show the map It : M → R
q(t) is one-to-one for small enough t > 0,

we prove the following proposition.

Proposition 36. Let (M,g) be a compact Riemannian manifold with
smooth metric g. Then there exists δ0 > 0, such that for 0 < t ≤ δ0 and

q (t) ≥ Ct−
n
2
−ρ, the truncated heat kernel mapping Ψ

q(t)
t : M → R

q(t)

can distinguish any two points on the manifold, i.e., for any x 6= y on

M , Ψ
q(t)
t (x) 6= Ψ

q(t)
t (y). The same is true for the isometric immersion

It : M → R
q(t).

Proof. The proof is adapted from Section 4 of [SZ]. If there is no such
δ0, then there is a sequence of tk → 0, and xk 6= yk on M , such that
(6.6)

Ψ
q(tk)
tk

(xk) = Ψ
q(tk)
tk

(yk) , i.e., φj (xk) = φj (yk) for 1 ≤ j ≤ q (tk) .

Therefore,

Σ
q(tk)
j=1 e−λjtkφj (xk)φj (yk) = Σ

q(tk)
j=1 e−λjtkφ2

j (xk) .
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By Proposition 9 and (4.5), letting k → ∞, we have

(6.7) lim
k→∞

(4πtk)
n/2 H (tk, xk, yk) = lim

k→∞
(4πtk)

n/2 H (tk, xk, xk) → 1.

Let rk = dist (xk, yk). From (6.7) we see limk→∞ rk = 0. Otherwise,
rk ≥ c0 > 0, by the compactness ofM we can assume xk and yk converge
to different limits x∞ 6= y∞ on M . So in the left-side of (6.7) we have
limk→∞H (tk, xk, yk) = limk→∞H (tk, x∞, y∞) = 0, a contradiction.
We further claim that when k is large,

(6.8) rk := dist (xk, yk) ≤ At
1
2
k

for some constant A > 0. Otherwise, rk → 0 and rk√
tk

→ +∞. By the

Minakshisundaram–Pleijel expansion,

lim
k→∞

(4πtk)
n/2 |H (tk, xk, yk)| = lim

k→∞
e
− r2k

4tk |U (tk, xk, yk)|

≤ e
limk→∞

(

− r2k
4tk

)

· 2 = 0,

contradicting (6.7).
By (6.8), for large k , we can write

yk = expxk

(
2
√
tkvk

)
, for 0 6= vk ∈ Txk

M , |vk| = O (1) ,

and ysk = expxk
(svk) for −1 ≤ s ≤ 2. We consider the function

fk (s) :=
(H (tk, xk, y

s
k))

2

H (tk, xk, xk)H
(
tk, y

s
k, y

s
k

) =
|〈Ψtk (xk) ,Ψtk (y

s
k)〉|

2

|Ψtk (xk)|2
∣∣Ψtk

(
ysk
)∣∣2 ,

− 1 ≤ s ≤ 2.

By the Cauchy–Schwartz inequality, 0 ≤ fk (s) ≤ 1. By the definition
of fk (s) and our assumption xk = yk, we have fk (0) = fk (1) = 1,
achieving the maximum of fk on [−1, 2]. So there exists some sk ∈ [0, 1],
f ′′
k (sk) = 0.
In the following we let z = (t, x, x), zk = (tk, xk, xk). By (4.1), we

have

(6.9) H (tk, xk, xk) = (4πtk)
−n/2 U (zk) ,

H (tk, y
s
k, y

s
k) = (4πtk)

−n/2

(6.10)

×
[
U (zk) + 2s

√
tkA (zk) (vk) + s2tkE (zk) (vk) +O

(
s3t

3
2
k |vk|3

)]
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in the C3-norm, where A (t, x, x) = ∂yU (t, x, y) |x=y and E (z) (v) is
quadratic in v. We also have

H (tk, xk, y
s
k)(6.11)

= (4πtk)
−n/2 e−s2|vk|2U (tk, xk, y

s
k)

= (4πtk)
−n/2

[
1− s2 |vk|2 +O

(
s4
)]

×
[
U (zk) + s

√
tkA (zk) (vk) + s2tkB (zk) (vk) +O

(
s3t

3
2
k |vk|3

)]
,

where B (z) (v) is quadratic in v. Therefore, as k → ∞, in the C3-norm
we have

fk (s) =
[
1− 2s2 |vk|2 +O

(
s4 |vk|4

)]

×

[
U (zk) + s

√
tkA (zk) (vk) + s2tkB (zk) (vk) +O

(
s3t

3
2

k |vk|3
)]2

U (zk)
[
U (zk) + 2s

√
tkA (zk) (vk) + s2tkE (zk) (vk) +O

(
s3t

3
2

k |vk|3
)]

=
[
1− 2s2 |vk|2 +O

(
s4 |vk|4

)]

×



1 + 2s

√
tkÃ (zk) (vk) + s2tkB̃ (zk) (vk) +O

(
s3t

3
2

k |vk|3
)

1 + 2s
√
tkÃ (zk) (vk) + s2tkẼ (zk) (vk) +O

(
s3t

3
2

k |vk|3
)




(Ã, B̃, and Ẽ are functions A, B, and E divided by U (zk) , respectively)

=
[
1− 2s2 |vk|2 +O

(
s4 |vk|4

)] [
1 + s2tkĈ (zk) (vk) +O

(
s3t

3
2
k |vk|3

)]

= 1 + s2 |vk|2
(
−2 + tkĈ (zk)

(
vk
|vk|

))
+O

(
s3t

3
2
k |vk|3

)
,

where the function Ĉ (z) is constructed from Ã, B̃, and Ẽ and Ĉ (z) (v)
is quadratic in v. Hence, as k → ∞,

0 = f
′′

k (sk) = 2 |vk|2 [−2 +O (tk)]+O

(
skt

3
2
k |vk|3

)
= 2 |vk|2 [−2 +O (1)] .

But by our assumption vk 6= 0, so the right-hand side will be nonzero
for large k, a contradiction.

The proof of the one-to-one property of It : M → R
q(t) is almost

identical to that of Ψt. This is because we have ‖It −Ψt‖Ck,α(M) ≤
Ctl+

1
2
− k+α

2 for k ≥ 2 from Proposition 34, so the function

fk (s) :=
|〈It (xk) , It (ysk)〉|

2

|It (xk)|2
∣∣It
(
ysk
)∣∣2

has the same properties as the above functions fk (s) for Ψt, up to the
second-order derivatives. This is because if we replace H (t, x, y) for Ψt
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by 〈It (x) , It (y)〉 for It in the key estimates (6.6), (6.7), (6.9), (6.10),
and (6.11), the argument still holds. The proposition follows. q.e.d.

Corollary 37. Let (M,g) be a compact Riemannian manifold with
smooth metric g. Then there exists an integer N0 > 0 depending on
g, such that the first N0 eigenfunctions {φj}N0

j=1 can distinguish any

two points on M , i.e., for any x 6= y on M , there exists some j0 ∈
{1, 2, · · ·N0}, such that φj0 (x) 6= φj0 (y).

Proof. Take N0 = q (δ0) in the above proposition, and note that

ΨN0
t (x) = ΨN0

t (y) ⇐⇒ φj (x) = φj (y) for 1 ≤ j ≤ N0. q.e.d.

7. Geometry of the embedded images in ℓ2 (and R
q(t))

In this section we study the geometry of the embedded images Ψt (M)
and It (M) in ℓ2. We first combine Theorem 18 and Proposition 21 to
give the following consequence on the second fundamental form and
mean curvature of the embedded image Ψt (M) ⊂ ℓ2.

Corollary 38. For any x ∈ M , let (x1, · · · , xn) be the normal coordi-
nates near x. The second fundamental form A (x, t) = Σ1≤i≤j≤nhij (x, t)
dxidxj of the submanifold Ψt (M) ⊂ ℓ2 can be written as

A (x, t) =
1√
2t

(
Σn
i=1

√
3aii (x, t)

(
dxi
)2

+Σ1≤j<k≤n2ajk (x, t) dx
jdxk

)
,

where ajk (x, t) (1 ≤ j ≤ k ≤ n) are vectors in ℓ2. Then as t → 0+, we
have the following:

1) For any two subsets {i, j} and {k, l} ⊂ {1, 2, · · · , n},

〈aij , aij〉 → 1,(7.1)

〈aij , akl〉 → 0, if {i, j} 6= {k, l} and {i, k} 6= {j, l} ,(7.2)

〈aii, ajj〉 → 1

3
, if i 6= j.(7.3)

2) The mean curvature vector H (x, t) = 1
nΣ

n
i=1hii (x, t), after scaled

by a factor
√
t, converges to constant length:

(7.4)
√
t |H (x, t)| →

√
n+ 2

2n
.

The convergence is uniform for all x on M in the Cr-norm for
any r ≥ 0.

Proof. From Proposition 21 we have

(7.5) |〈∇i∇jΦt,∇kΦt〉 (x)| = O
(
t−n/2

)
.



ISOMETRIC EMBEDDINGS VIA HEAT KERNEL 529

Therefore, for the normalized heat kernel embedding Ψt =
√
2 (4π)n/4

t
n+2
4 · Φt, its first derivative and second derivative vectors become or-

thogonal as t → 0+ by (7.5):

|〈∇i∇jΨt,∇kΨt〉 (x)| → 2 (4π)n/2 t
n+2
2 · t−n/2 · O (1) = Ct ·O (1) → 0.

So as t → 0+, the second fundamental form at Ψt (x) on Ψt (M) ⊂ ℓ2

is approximated by the second-order terms in the Taylor expansion of
Ψt : M → ℓ2 near x on M , i.e.,

lim
t→0+

[
A (x, t)−

(
Σ1≤i≤j≤n∇i∇jΨt (x, t) dx

idxj
)]

= 0.

From Proposition 21 we have

〈∇j∇iΨt,∇m∇kΨt〉 (x)(7.6)

→ 2 (4π)n/2 t
n+2
2 ·

(
1

2t

)2 1

(4πt)n/2
· (δijδkm + δimδjk + δikδjm)

=
1

2t
(δijδkm + δimδjk + δikδjm) .

In particular, as t → 0+,
∣∣∣∣

1√
2t

·
√
3aii (x, t)

∣∣∣∣ = |∇i∇iΨt| →
√
3√
2t
,

∣∣∣∣
1√
2t

· ajk (x, t)
∣∣∣∣ = |∇j∇kΨt| →

1√
2t

(j 6= k),

and so (7.1) follows. Similarly, (7.2) and (7.3) follow from (7.6). For the
mean curvature, we have

H (x, t) =
1

n
Σn
i=1hii (x, t) =

1

n

√
3√
2t

(Σn
i=1aii (x, t)) .

Using |aii| → 1 and 〈aii, ajj〉 → 1
3 as t → 0+, we have

|H (x, t)|2 → 1

n2

3

2t

(
n · 1 + n (n− 1) · 1

3

)
=

1

2t

n+ 2

n
,

so (7.4) follows. q.e.d.

Remark 39. In Corollary 38, we have the following:

1) It is unknown if limt→0+ ajk (x, t) exists, but limt→0+〈aij (x, t) , akl
(x, t)〉 exists. There exists isometry I (x, t) : ℓ2 → ℓ2, such that

ajk := lim
t→0+

I (x, t) · ajk (x, t) (1 ≤ j ≤ k ≤ n)

exists, and {ajk}1≤j≤k≤n is a fixed basis in R
n(n+1)

2 ⊂ ℓ2 satisfying

the inner product relations in item 1 of Corollary 38.
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2) The length of the mean curvature of Ψt (M) ⊂ ℓ2 converges to

constant on M , but the constant is large (of order t−
1
2 ) as t → 0+

by (7.4). Intuitively, this is because the embedding Ψt uses more
and more high-frequency eigenfunctions in its ℓ2 norm as t → 0+,
making the image Ψt (M) evenly oscillating at all x on M .

3) By Proposition 9, the above results still hold if we replace ℓ2 by

R
q(t), for q (t) ≥ Ct−

n
2
−ρ and sufficiently small t > 0.

As for our isometric embeddings It : M → R
q(t) (q (t) ≥ Ct−

n
2
−ρ or

q (t) = ∞), they are obtained by Ck,α-perturbation of Ψ̃t : M → R
q(t)

of order O
(
tl+

1
2
− k+α

2

)
, with k ≥ 2. Since the second fundamental form

and mean curvature of any embedding f : M → R
q are determined by

up to the second-order derivatives of f , the statements in Corollary 38
also hold for the isometric embedding image It (M) ⊂ R

q(t), noticing

that Ψ̃t := Ψt,g(t) is the heat kernel embedding map for the metric g (t)
on M . For the same reason, for any 0 ≤ r ≤ k, the r-jet relations of It as
t → 0+ are the same as those for Ψt in [Z]. This gives many constraints

of the image It (M) ⊂ R
q(t).

8. Example M = S1

As a concrete example, we write down P (u) and E (u) explicitly for
the case M = S1 ≃ [0, 2π] / ∼. Although the example is trivial, it
exhibits almost all features of general cases. We use it to illustrate the
proofs of our main results.

For the eigenvalue λ2k−1 = λ2k = k2, the L2 orthonormal eigenfunc-
tions are pairs φ2k−1 (x) =

1√
π
cos kx and φ2k (x) =

1√
π
sin kx. The heat

kernel embedding u : S1 → R
2q is

u (x) =

√
2

π
(4π)n/4 t

n+2
4

{(
e−

k2

2
t cos kx, e−

k2

2
t sin kx

)}

1≤k≤q

,

so the system (3.4) becomes

R1 (x) · v = h1 (x) , R2 (x) · v = f11 (x) ,

with the two row vectors R1 and R2 being

R1 (x) =

√
2

π
(4π)n/4 t

n+2
4

{(
−e−

k2

2
tk sin kx, e−

k2

2
tk cos kx

)}

1≤k≤q

,

R2 (x) =

√
2

π
(4π)n/4 t

n+2
4

{(
−e−

k2

2
tk2 cos kx,−e−

k2

2
tk2 sin kx

)}

1≤k≤q

.

It is easy to check that R1 (x) and R2 (x) are orthogonal, so the solution

v with minimal Euclidean norm is v (x) = h1(x)

|R1(x)|2
R1 (x)+

f11(x)

|R2(x)|2
R2 (x).
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Hence,

E (u) =

[
R1 (x) / |R1 (x)|2
R2 (x) / |R2 (x)|2

]
, E (u) (0, f11) =

f11 (x)

|R2 (x)|2
R2 (x) .

Recall the following well-known lemma.

Lemma 40. limt→0+ t
m+1

2 Σ∞
k=1k

me−k2t =
∫∞
0 µme−µ2

dµ, and Σ∞
k=1

kme−k2t ≤ Kt−
m+1

2 , where the constant K =
∫∞
0 µme−µ2

dµ.

For q large, using
∫∞
0 µ2e−µ2

dµ =
√
π
4 and

∫∞
0 µ4e−µ2

dµ = 3
√
π

8 , we
have

|R1 (x)|2 =
2

π
(4π)n/2 t

n+2
2 Σq

k=1k
2e−k2t

→ 2

π
(4π)1/2 t

3
2 · t− 3

2

∫ ∞

0
µ2e−µ2

dµ = 1,

|R2 (x)|2 =
2

π
(4π)n/2 t

n+2
2 Σq

k=1k
4e−k2t

→ 2

π
(4π)1/2 t

3
2 · t− 5

2

∫ ∞

0
µ4e−µ2

dµ =
3

2
t−1.

These agree with Ψ∗
t gcan → g in (1.2) and the mean curvature length

|H (x, t)| →
√

1+2
2·1 t

− 1
2 in Corollary 2, respectively. Thus, for q = q (t)

large, in C3 convergence we have

(8.1) E (u) →
[

R1 (x)
2
3 tR2 (x)

]
, E (u) (0, f11) →

2t

3
R2 (x) f11 (x) .

We have the C2 norm (according to Definition 14) for vector-valued
functions

‖R1 (x)‖C2(M) =

√
2

π
(4π)n/4 t

n+2
4

[
Σq
k=1e

−k2tk6
] 1

2 → Ct
3
4 t−

7
4 = Ct−1,

‖R2 (x)‖C2(M) =

√
2

π
(4π)n/4 t

n+2
4

[
Σq
k=1e

−k2tk8
] 1

2 → Ct
3
4 t−

9
4 = Ct−

3
2 ,

‖E (u)‖C2(M) =

√
2

π
(4π)n/4 t

n+2
4 ·

[
Σq
k=1e

−k2tk6 + t2 · Σq
k=1e

−k2tk8
]1/2

→ Ct−1.

Notice that for S1, the curvature tensor R ≡ 0, so Ricg − 1
2g ·Sg ≡ 0.

By [BBG, Theorem 5] we have f11 = Ψ∗
t gcan − g = O

(
t2
)
as t → 0+

(it may be of higher vanishing order O (tp) for some p > 2 , but here we
only use O

(
t2
)
to illustrate our method). So by (8.1) we have

‖E(u)(0, f11)‖C2(M) →
∥∥∥∥
2t

3
· t2R2(x)

∥∥∥∥
C2(M)

= Ct3·‖R2(x)‖C2(M) = Ct
3
2 .
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Then

‖E (u)‖C2(M) ‖E (u) (0, f11)‖C2(M) → Ct−1 · Ct
3
2 = Ct

1
2 ,

and similarly (using the interpolation technique in Lemma 8 to estimate
the C2,α-norm from the C2 and C3-norms),

‖E (u)‖C2,α(M) ‖E (u) (0, f11)‖C2,α(M) → Ct−1−α
2 ·Ct

3
2
−α

2 = Ct
1
2
−α → 0

for 0 < α < 1
2 . We see the estimates of the orders are exactly the same

as obtained by the off-diagonal expansion of heat kernel method.
By Günther’s implicit function theorem we obtain the isometric em-

beddings of S1 into R
q(t).

9. Appendix

9.1. The implicit function theorem. For the sake of completeness,
in this appendix we give a proof of Günther’s implicit function theo-
rem (Theorem 16) by applying Proposition A.3.4. in [MS] (which is
an abstract implicit function theorem) to the nonlinear function F :
Ck,α (M,Rq) → Ck,α (M,Rq) defined in Section 6. In particular, we ob-
tained a little more: First, the constant θ in Günther’s theorem is made
explicit in (9.2). Second, the needed perturbation of Ψt is shown to be

of order O
(
tl+

1
2
− k+α

2

)
in the Ck,α-norm.

Proposition 41 (Proposition A.3.4. of [MS]). Let X,Y be Banach
spaces, and let U be an open set inX. The map F : X → Y is continuous
differentiable. For x0 ∈ U, D := dF (x0) : X → Y is surjective and has
a bounded linear right inverse Q : Y → X, with ‖Q‖ ≤ c. Suppose that
there exists δ > 0 such that x ∈ Bδ(x0) ⊂ U

x ∈ Bδ(x0) ⊂ U =⇒ ‖dF (x)−D‖ ≤ 1

2c
.

Suppose ‖F (x0)‖ < δ
4c ; then there exists a unique x ∈ Bδ(x0) such that

F (x) = 0, x− x0 ∈ ImageQ, ‖x− x0‖ ≤ 2c ‖F (x0)‖ .
Applying the above proposition to our case, we have (following their

notations)

X = Ck,α (M,Rq) , Y = Ck,α (M,Rq) , F : X → Y,

F (v) = v − E
(
Ψ̃t

)
(0, f) + E

(
Ψ̃t

)([
Qi

(
Ψ̃t

)
(v, v)

]
,
[
Qjk

(
Ψ̃t

)
(v, v)

])
,

x0 = 0, x solution, F (x) = 0,

c =
∥∥∥(dF (0))−1

∥∥∥ =
∥∥∥(id)−1

∥∥∥ = 1,

‖F (0)‖ =
∥∥∥E
(
Ψ̃t

)
(0, f)

∥∥∥
Ck,α(M,Rq)

≤ C2
EGtl+

1
2
−

k+α
2 (by (6.4) ),

‖dF (v)− dF (0)‖ ≤
∥∥∥E
(
Ψ̃t

)∥∥∥
Ck,α(M)

· Γ (Λ0, k, α, ‖R‖C1) · ‖v‖Ck,α(M,Rq) ,
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where the last inequality is from (5.2). Since the δ should satisfy

‖v − 0‖ ≤ δ =⇒ ‖dF (v)− dF (0)‖ ≤ 1

2c
,

we can take

δ =
1

2
∥∥∥E
(
Ψ̃t

)∥∥∥
Ck,α(M)

· Γ (Λ0, k, α, ‖R‖C1)

≥ t
k+α
2

2CE · Γ (Λ0, k, α, ‖R‖C1)
(by (4.26) ).

The condition

(9.1) ‖F (0)‖ ≤ δ

4c

is translated to
∥∥∥E
(
Ψ̃t

)
(0, f)

∥∥∥
Ck,α(M,Rq)

≤ 1

4
· 1

2
∥∥∥E
(
Ψ̃t

)∥∥∥
Ck,α(M)

· Γ (Λ0, k, α, ‖R‖C1)
,

or
∥∥∥E
(
Ψ̃t

)
(0, f)

∥∥∥
Ck,α(M,Rq)

∥∥∥E
(
Ψ̃t

)∥∥∥
Ck,α(M)

≤ (8Γ (Λ0, k, α, ‖R‖C1))
−1 := θ.(9.2)

So the constant θ is essentially determined by Γ (Λ0, k, α, ‖R‖C1)
in (5.3), which in turn depends on ‖R‖C1 and σ (Λ0, α,M)

=
∥∥∥
(
∆(r) − Λ0

)−1
∥∥∥
op

of the smoothing operators (note C (k, α,M) = nk

in Lemma 15 is independent on g). In terms of t the condition (9.1) is

C2
EGtl+

1
2
− k+α

2 ≤ t
k+α
2

8CEΓ (Λ0, k, α, ‖R‖C1)
,

i.e.,

(9.3) t ≤
(
8C3

E · Γ (Λ0, k, α, ‖R‖C1) ·G
)− 1

(l+1/2)−(k+α) := t0.

So we see the smallness of t in our implicit function theorem depends
on the following:

1) the constant CE in (4.26) in the Ck,α-norm estimate for E
(
Ψ̃t

)

(essentially the derivative estimates of Ψ̃t);
2) the constant Γ (Λ0, k, α, ‖R‖C1) in (5.3) related to the smoothing

operators
(
∆(r) − Λ0

)−1
;

3) the constant G in (6.3) from the near diagonal expansion of the
heat kernel of (M,g).
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These constants are related to the dimension, diameter, volume, and
curvature bounds of (M,g). Since the exponent − 1

(l+1/2)−(k+α) in (9.3)

is negative, we see the smaller the constants CE , Γ (Λ0, k, α, ‖R‖C1),
and G are, the smaller the embedding dimension q (t0) is.

If we know t0, we can obtain the estimate of the minimal embedding

dimension q (t0) ≥ t
−n

2
−ρ

0 . From the above proposition the solution x

satisfies ‖x‖ ≤ 2c ‖F (0)‖, i.e., the perturbation of Ψ̃t is of order

‖x‖Ck,α(M,Rq) ≤ 2C2
EGtl+

1
2
− k+α

2 = O
(
tl+

1
2
− k+α

2

)
.

9.2. The quadratic remainder. We give the estimate of the constant
G in (6.3). To begin with, we state a refined version of (1.2) in [BBG].
The following lemma is well-known in physics literature.

Lemma 42. Same notations as in Theorem 4. Then as t → 0+, we
have

(Ψ∗
t gcan) (x) = g (x) +

t

3

(
1

2
Sg · g −Ricg

)

+t2
[
u2 (x, x) + Σn

i,j=12∂j̄∂iu1 (x, y) |x=y

]
dxidxj +O

(
t3
)
.(9.4)

Proof. From (4.1) we have

∂iH (t, x, y) =
1

(4πt)n/2
e−

r2

4t

[
−∂i

(
r2
)

4t
U + ∂iU

]
,(9.5)

∂j∂iH (t, x, y) =
1

(4πt)n/2
e−

r2

4t

[
−∂j

(
r2
)

4t

(
−∂i

(
r2
)

4t
U + ∂iU

)

+

(
−∂j∂i

(
r2
)

4t
U − ∂i

(
r2
)

4t
∂jU + ∂j∂iU

)]
.(9.6)

From Lemma 19 and (4.2), letting x = y, we have

∂j̄∂iH (t, x, y)
∣∣
x=y

=
1

(4πt)n/2

[
−
∂j̄∂i

(
r2
)

4t

(
u0 + tu1 + t2u2 +O

(
t2
))

−∂i
(
r2
)

4t
∂
j̄
U + ∂

j̄
∂i (u0 + tu1 +O (t))

]
.
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Letting i = j and using Lemma 19 in the above identity, we have for
Vi =

∂
∂xi ,

(Ψ∗
t gcan) (Vi,Vi) (x)

= 2 (4π)
n
2 t

n+2
2 · 1

(4πt)n/2

×
[
−∂ı̄∂i

(
r2
)

4t

(
u0 + tu1 + t2u2 +O

(
t2
))

+ ∂ı̄∂i (u0 + tu1 +O (t))

]∣∣∣∣∣
x=y

=

[
g − t

3

(
Ricg −

1

2
Sg · g

)]
(Vi,Vi) + t2[u2 (x, x)

+ 2∂ı̄∂iu1 (x, y) |x=y] +O
(
t3
)
.

Since (Ψ∗
t gcan) (V,W ) is bilinear in V and W , the proposition follows.

q.e.d.

Using the higher-order expansion of H (t, x, y) in terms of curvature
terms, it seems possible to make the quadratic terms in the above lemma
explicit. On pp. 224–225 of [BeGaM] and Theorem 3.3.1 of [Gil] there
is an explicit

u2 (x, x) =
1

180
|Rg (x)|2 −

1

180
|Ricg (x)|2 +

1

72
|Sg (x)|2 −

1

30
∆gSg (x) ,

where Rg is the Riemannian curvature tensor,

|Rg (x)|2 = Σ1≤i,j,k,l≤n |Rg (x) (Vi, Vj , Vk, Vl)|2

for the basis Vi = ∂
∂xi of normal coordinates

{
xi
}
1≤i≤n

near x, and

similarly for |Ricg (x)|2. It remains to compute ∂ı̄∂iu1 (x, y) |x=y. Physics
literature (e.g., [DeFo]) gives

∂
j̄
∂iu1 (x, y) |x=y

(9.7)

=

[
1

20
∂j∂iSg −

1

60
∆gRicg (Vj, Vi) +

1

36
SgRicg (Vj,Vi)

− 1

45
Σn
k=1Ricg (Vj , Vk)Ricg (Vi, Vk)

+
1

90
Σn
k,l=1

(
Ricg (Vk, Vl)R (Vk, Vj , Vl, Vi) + |R (Vk, Vl, Vj , Vi)|2

)]
(x) .

Let’s take l = 2 in (2.5). Then h1 = −A1 (g) = 1
3

(
Ricg − 1

2Sg · g
)
,

and hj = 0 for all j ≥ 2. We have

(9.8)
(
Ψ̃∗

t gcan

)
= G (t, t) = g + t2 [A1,1 (h1) +A2 (g)] +O

(
t3
)
,

where A2 (g) = u2 (x, x)+Σn
i,j=12∂j̄∂iu1 (x, y) |x=y by the above lemma,

and A1,1 (h1) (first-order variation of A1 (g) = 1
3

(
1
2Sg · g −Ricg

)
) can
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be computed by the formulae of the variation of curvature tensors (cf.
[Be, Theorem 1.174]):

Ric′gh =
1

2
∆(2)h− δ∗g (δgh)−

1

2
∇gd (trgh) ,

S′
gh = ∆g (trgh) + δg (δgh)− g (Ricg, h) ,

where δg is the divergence and δ∗g is the formal adjoint and the notation
“′” means the derivative with respect to the variation h of g.

If the derivation of (9.7) is rigorous, putting all these into (9.8), it
appears that we can control the constant G in (6.2) by

(9.9) G ≤ C (n)
(
‖Ricg‖C4,α(M) + ‖Rg‖2C2,α(M)

)

for small t > 0, with a constant C (n) only depending on n.
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[DeFo] Y. Décanini & A. Folacci, Off-diagonal coefficients of the DeWitt-Schwinger

and Hadamard representations of the Feynman propagator, Phys. Rev. D
(3) 73 (2006), no. 4, 044027, 38 pp., MR 2214994.

[De] B. DeWitt, The Global Approach to Quantum Field Theory, Vol. 114, The
International Series of Monographs on Physics, Oxford University Press,
2003, MR 1983836, Zbl 1044.81001.

[Don] S.K. Donaldson, Scalar curvature and projective embeddings, I. J. Differen-
tial Geom. 59 (2001), no. 3, 479–522, MR 1916953, Zbl 1052.32017.

[G1] M. Günther, On the perturbation problem associated to isometric embed-

dings of Riemannian manifolds, Ann. Global Anal. Geom. 7, (1989) no. 1,
69-77, MR 1029846, Zbl 0691.53006.

[G2] M. Günther, Isometric embeddings of Riemannian manifolds, Proceedings
of the International Congress of Mathematicians, Kyoto, Japan, 1990, MR
1159298, Zbl 0745.53031.

[Gil] P. Gilkey, Asymptotic Formulae in Spectral Geometry (Studies in Advanced
Mathematics), Chapman and Hall/CRC; 1st edition (December 17, 2003),
MR 2040963, Zbl 1080.58023.



ISOMETRIC EMBEDDINGS VIA HEAT KERNEL 537

[Gr1] M.L. Gromov, Partial differential relations, (1986), Springer-Verlag, Berlin,
MR 0864505, Zbl 0651.53001.

[Gr2] M.L. Gromov, Paul Levi’s Isoperimeter inequality, preprint, I.H.E.S., 1980.
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