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GROMOV–WITTEN THEORY OF ROOT GERBES I:

STRUCTURE OF GENUS 0 MODULI SPACES
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Abstract

Let X be a smooth complex projective algebraic variety. Given
a line bundle L over X and an integer r > 1, one defines the stack
r

√
L/X of r-th roots of L. Motivated by Gromov–Witten theoretic

questions, in this paper we analyze the structure of moduli stacks
of genus 0 twisted stable maps to r

√
L/X. Our main results are

explicit constructions of moduli stacks of genus 0 twisted stable
maps to r

√
L/X starting from moduli stacks of genus 0 stable maps

to X . As a consequence, we prove an exact formula expressing
genus 0 Gromov–Witten invariants of r

√
L/X in terms of those

of X .

1. Introduction

Orbifold Gromov–Witten theory, constructed in symplectic category
by Chen-Ruan [18] and in algebraic category by Abramovich, Graber,
and Vistoli [3], [2], has been an area of active research in recent years.
Calculations of orbifold Gromov–Witten invariants in examples present
numerous new challenges; see [21], [19], [40], and [12] for examples.

Étale gerbes over a smooth base provide interesting examples of
smooth Deligne-Mumford stacks. Let X be a smooth Deligne-Mumford
stack and G a finite group scheme over X. Intuitively one can think of
a G-banded gerbe over X as a fiber bundle over X with its fiber the
classifying stack BG. A detailed definition of gerbes can be found in,
for example, [28], [15], [24]. We are interested in computing Gromov–
Witten theory of G-banded gerbes.

Physics considerations have suggested that the geometry of étale
gerbes possesses certain very intriguing structure. The so-called decom-
position conjecture [30] in physics may be interpreted mathematically
as a philosophy saying that the geometry of an étale gerbe is equivalent
to the geometry of certain disconnected space twisted by a U(1)-gerbe.
In-depth discussions on various mathematical aspects of this conjecture
can be found in [38].
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The Gromov–Witten theoretic version of the decomposition conjec-
ture, which can be formulated for arbitrary G-gerbes more general than
G-banded gerbes, states that Gromov–Witten theory of the G-gerbe is
equivalent to certain twists of the Gromov–Witten theory of some étale
cover of the base. A detailed discussion of the conjecture in full general-
ity can be found in [38]. For G-banded gerbes this conjecture states that
the Gromov–Witten theory of a G-banded gerbe over X is equivalent to
(certain twists of) the Gromov–Witten theory of the disjoint union of
|Conj(G)| copies of X after a change of variables. Here Conj(G) is the
set of conjugacy classes of G. Computations of Gromov–Witten invari-
ants of étale gerbes are thus intimately connected to the decomposition
conjecture.

The simplest examples of G-gerbes are trivial gerbes. The trivial G-
gerbe over a Deligne-Mumford stack X is the product X × BG. In [7]
the computation of Gromov–Witten invariants of X×BG is handled as
a special case of a general product formula for orbifold Gromov–Witten
invariants of product Deligne-Mumford stacks X×Y. As a consequence
the decomposition conjecture is proven for trivial G-gerbes.

An interesting class of non-trivial gerbes is provided by root gerbes
associated to line bundles. This is the first of two papers in which we
study Gromov–Witten theory of root gerbes of line bundles over smooth
projective varieties, with the decomposition conjecture in mind. The
present paper is devoted to studying the genus 0 Gromov–Witten theory
of root gerbes.

Let X be a smooth complex projective variety and L → X a line
bundle. Given an integer r > 0, let

G := r
√

L/X → X

be the stack of r-th roots of L over X. It can be shown that G → X
is a µr-banded gerbe over X. Such a gerbe is called a root gerbe. Con-
structions and properties of root gerbes are briefly reviewed in Section
2.2. In order to study the Gromov–Witten theory we consider moduli
spaces K0,n(G, β) of genus 0 twisted stable maps to G. By composing a
twisted stable map to G with the structure map G → X, one can define
a morphism

(1) K0,n(G, β) →M0,n(X,β),

where M0,n(X,β) is a moduli space of genus 0 stable maps to X. The
main idea used in our approach to Gromov–Witten theory of root gerbes
is to compare Gromov–Witten invariants of G with Gromov–Witten
invariants of the base X using the morphism (1). In the present paper,
this idea is realized by our main results, Theorems 3.19 and 3.20, on
the structures of the moduli spaces K0,n(G, β). Roughly speaking, these
structure results state that components of K0,n(G, β) are µr-gerbes over

certain base stacks constructed from M0,n(X,β) using log geometry.
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More details can be found in Sections 3.4 and 3.5. Our results extends
a result of [12] for the gerbe Bµr. Our proofs are based on a detailed
analysis of the moduli spaces K0,n(G, β), and use heavily the results of
[35] and [37].

As a consequence of our main structure results, Theorems 3.19 and
3.20, we prove a comparison result between virtual fundamental classes
of K0,n(G, β) and M0,n(X,β); see Theorem 4.3. This comparison result
yields an explicit computation of genus 0 Gromov–Witten invariants of G
in terms of genus 0 Gromov–Witten invariants of X, which is Theorem
4.4. A reformulation of Theorem 4.4 in terms of generating functions
confirms the decomposition conjecture for genus 0 Gromov–Witten the-
ory of G; see Theorem 4.6.

The paper is organized as follows. Section 2 contains discussions on
some preparatory materials. In Section 3 we carry out the needed anal-
ysis on the structure of the moduli spaces of twisted stable maps to root
gerbes. In Section 4 we prove results on virtual fundamental classes and
Gromov–Witten invariants, in particular the decomposition conjecture
in genus 0. In Appendix A we discuss extensions of our results to banded
abelian gerbes.

Conventions. Unless otherwise mentioned, we work over C throughout
this paper. By an algebraic stack we mean an algebraic stack over C in
the sense of [10]. By a Deligne-Mumford stack we mean an algebraic
stack over C in the sense of [23]. We assume moreover all stacks (and
schemes) are quasi-separated, locally noetherian, locally of finite type.
From time to time we use the notation x ∈ X to indicate that x is a geo-
metric point of X. Following [33], logarithmic structures are considered
on the étale site of schemes. For the extension of logarithmic structures
to stacks, see [36]. Given a scheme (or a stack) X, a geometric point x
of X, and a sheaf of sets F on X, according to the standard notation
we denote by Fx the stalk of F at x in the étale topology. A gerbe is an
algebraic stack as in [34], Definition 3.15.

Acknowledgments. We thank D. Abramovich, A. Bayer, K. Behrend,
B. Fantechi, P. Johnson, A. Kresch, F. Nironi, E. Sharpe, Y. Ruan, and
A. Vistoli for valuable discussions. H.-H. T. is grateful to T. Coates, A.
Corti, H. Iritani, and X. Tang for related collaborations. Y. J. and H.-H.
T. thank Mathematical Sciences Research Institute for hospitality and
support of a visit in spring 2009 during which part of this paper was
written. H.-H. T. is supported in part by NSF grant DMS-0757722.

2. Preliminaries

2.1. Twisted stable maps. We recall the definition of twisted curves
here; see [3], [2], [5] for more details.
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Definition 2.1 ([5], Definition 4.1.2). A twisted nodal n-pointed
curve over a scheme S is a morphism C → S together with n closed
substacks σi ⊂ C such that

• C is a tame Deligne-Mumford stack, proper over S, and étale lo-
cally is a nodal curve over S;

• σi ⊂ C are disjoint closed substacks in the smooth locus of C → S;
• σi → S are étale gerbes;
• the map C → C to the coarse moduli space C is an isomorphism
away from marked points and nodes.

By definition the genus of a twisted curve C → S is the genus of its
coarse moduli space C → S.

Throughout this paper we will always assume that twisted curves
are balanced, i.e. at any twisted node, the local group acts on the two
branches by opposite characters.

Let S be a noetherian scheme and let X/S be a proper Deligne-
Mumford stack over S with projective coarse moduli space X → S. We
fix an ample invertible sheaf OX(1) over X. Let Kg,n(X, β) be the fibered
category over S which to any S-scheme T associates the groupoid of the
following data:

• a twisted n-pointed curve (C/T, {σi}) over T ;
• a representable morphism f : C → X such that the induced mor-
phism f̄ : C → X between coarse moduli spaces is an n-pointed
stable map of degree β ∈ H+

2 (X,Z) (i.e. f̄∗[C] = β).

According to [5], Theorem 1.4.1, the fibered category Kg,n(X, β) is a
Deligne-Mumford stack proper over S.

As discussed in [2], there exist evaluation maps

evi : K0,n(X, β) → Ī(X), 1 ≤ i ≤ n

taking values in the rigidified inertia stack Ī(X) of X. These maps are
obtained as follows. The rigidified inertia stack Ī(X) may be defined as
the stack of cyclotomic gerbes in X, i.e. representable morphisms from
cyclotomic gerbes to X. The evaluation map evi is defined to map a
twisted stable map f : (C/T, {σi}) → X to its restriction to the i-th
marked gerbe,

f |σi : σi → X,

which is an object of Ī(X).
The rigidified inertia stack Ī(X) has an alternative description. Define

the inertia stack of X to be the fiber product over the diagonal:

IX := X×X×SX X.

By definition, objects of IX are pairs (x, g) where x is an object of X and
g is an element of the automorphism group of x. The rigidified inertia
stack Ī(X) is obtained from IX by applying the rigidification procedure
([1], [4]). More details can be found e.g. in [3].
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2.2. Root gerbes. We recall the notion of root gerbes. Let X be a
smooth projective variety and let L be a line bundle over X corre-
sponding to a morphism φL : X → BC∗. For an integer r > 0 let
θr : BC∗ → BC∗ be the morphism induced by the r-th power homo-

morphism C∗ (·)r→ C∗. The composite morphism θr ◦ φL : X → BC∗

corresponds to L⊗r.

Definition 2.2. The stack r
√

L/X of r-th roots of L is defined as

r
√

L/X := X ×φL,BC∗,θr BC
∗.

Explicitly it can be described as the X-groupoid whose objects over
(Y, f : Y → X) are pairs (M,ϕ), with M a line bundle over Y and
φ :M⊗r → f∗L an isomorphism. An arrow from (M,ϕ) to (N,ψ) lying
over anX-morphism h : (Y, f) → (Z, g) is an isomorphism ρ :M → h∗N
such that ϕ fits in the following commutative diagram:

M⊗r ρ⊗r

//

ϕ

��

h∗N⊗r

h∗ψ
��

f∗L ∼=
// h∗g∗L,

where the bottom arrow is the canonical isomorphism.

The following proposition follows easily from the definition.

Proposition 2.3. The stack r
√

L/X is the quotient stack [L×/C∗],
where L× is the principal C∗-bundle obtained by deleting the zero section
of L, and C∗ acts on L× via λ · z = λrz, λ ∈ C∗, z ∈ L×. In particular
r
√

L/X is a Deligne-Mumford stack.

Proof. It is enough to observe that the following diagram is 2-
cartesian:

L×

��

//

�

r
√

L/X //

��
�

X

��
pt // BC∗ θr // BC∗.

q.e.d.

Remark 2.4. The morphism θr : BC
∗ → BC∗ is a µr-gerbe, because

of the Kummer exact sequence

1 → µr → C∗ (·)r→ C∗ → 1.

Hence r
√

L/X → X is a µr-gerbe.

Remark 2.5. The stack r
√

L/X may also be constructed as a toric
stack bundle [32].
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It is also possible to take roots of “line bundles with sections.” Let
L be a line bundle over X and let σ be a section of L. The data (L, σ)
correspond to a morphism φL,σ : X → [A1/C∗]. Let θr : [A1/C∗] →
[A1/C∗] be the morphism induced by the r-th power morphisms on A1

and C∗. The morphism θr ◦ φL,σ corresponds to the pair (L⊗r, σr). The
stack r

√
(L, σ)/X of r-th roots of L with the section σ is defined as

r
√

(L, σ)/X := X ×[A1/C∗],θr [A
1/C∗].

The stack constructed in this way is isomorphic to X outside the van-
ishing locus Z(σ) ⊂ X of σ, while the reduced substack of the closed
substack mapping to Z(σ) is a µr-gerbe over Z(σ). Note that given a
divisor D ⊂ X there is an associated line bundle with a canonical sec-
tion which vanishes on D. Therefore in the following we will also talk
about roots of divisors.

2.3. Line bundles over twisted curves. We recall some results
about line bundles over twisted curves. In [16] there is an explicit
description of the Picard group of a smooth twisted curve. Let C be
a smooth twisted curve over SpecC. Let C be the coarse curve and
Di ∈ C, 1 ≤ i ≤ n the marked points. It is known that C can be con-
structed from its coarse curve C by applying the ri-th root construction
to the divisor Di, for all 1 ≤ i ≤ n. (Here ri ∈ N.) Let Ti, 1 ≤ i ≤ n
be the tautological line bundles associated by the root construction and
τi, 1 ≤ i ≤ n their tautological sections.

Lemma 2.6 ([16], Corollary 2.12). Let L be an invertible sheaf on C.
Then there exists an invertible sheaf L on C and integers ki satisfying
0 ≤ ki ≤ ri − 1 such that

L ≃ π∗L⊗
n∏

i=1

T
ki
i .

Moreover the integers ki are unique, and L is unique up to isomorphism.

There is an analogous description for the global sections of invertible
sheaves on C.

Lemma 2.7 ([16], Corollary 2.13). Given the decomposition in

Lemma 2.6, every global section of L is of the form π∗s ⊗ τk11 ... ⊗ τknn
for a unique global section s of L, where τi is the tautological section of
Ti.

Lemma 2.6 can be rephrased as saying that PicC is an extension of
PicC by a finite abelian group, namely

1 → PicC → PicC → ⊕n
i=1Zri → 1,

where ri are the orders of the stabilizers of stack points.
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Remark 2.8. The same description of PicC holds when C is not
smooth but has only untwisted nodes.

The Picard groups of nodal twisted curves over SpecC admit a similar
description. This is shown e.g. in [17]. We sketch the argument for the
reader’s convenience.

Lemma 2.9 (see [17], Theorem 3.2.3). Let C be an unmarked twisted
curve with nodes e1, . . . , es. Let γj be the order of the stabilizer of the
node ej . Then the following exact sequence holds:

1 → PicC → PicC →
s∏

j=1

Z/γjZ → 1.

Proof. Let π : C → C be the map to the coarse curve. Consider the
exact sequence of complexes over C given by

1 → π∗Gm → Rπ∗Gm → Rπ∗Gm/π∗Gm → 1.

Notice that π∗µr = µr and π∗Gm = Gm. Therefore they are complexes
concentrated in degree zero. The long hypercohomology exact sequence
gives

1 → H1(C,Gm) → H1(C,Gm) → H1(Rπ∗Gm/π∗Gm) → 1.

This sequence is exact on the left because Ep,q2 :=
Hp(C,Hq(Rπ∗Gm/Gm)) abuts to Hp+q(C,Rπ∗Gm/Gm). The sheaf
Hq(Rπ∗Gm/Gm) is equal to R

qπ∗Gm and does not vanish for q > 0. By
[1], Proposition A.0.1, the stalk of Rqπ∗Gm is canonically isomorphic
to Hq(Aut(p),Gm,p) where p is a geometric point of C. This sequence
is exact on the right because H2(C,Gm) = 0 for C a genus zero nodal
curve. The result follows by observing that Hq(µr,Gm) = Z/rZ for q
odd and is trivial for q even. q.e.d.

Remark 2.10. The above proof generalizes to nodal marked twisted
curves.

Normalization of twisted curves. It is very useful to describe a

twisted stable map over a point f̃ : C → G in terms of the induced

morphism f̃ ◦ ν : C̃ → G, where C̃ is the normalization of C. This mor-
phism is still a twisted stable map (with possibly disconnected domain).
According to [41] the normalization of a reduced stack X is defined in

the following way. Let R⇒ U be a presentation of X. Let R̃ and Ũ be the
normalizations of R and U . It is possible to lift the structure morphisms

of the groupoid R ⇒ U in such a way that R̃ ⇒ Ũ is also a groupoid.

Moreover, the diagonal R̃ → Ũ × Ũ is separated and quasi-compact.
Therefore the groupoid defines an algebraic stack, which is the normal-

ization of X. In particular the normalization morphism ν : X̃ → X is
representable.
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Smooth twisted curves admit line bundles whose fibers carry faith-
ful representations of the stabilizer groups of the points in the special
locus. Those are the tautological line bundles obtained from root con-
structions. Singular twisted curves over a point also admit line bundles
with fibers carrying faithful representations of the stabilizer group of
the nodes. This is the content of Lemma 2.9. In this case it is easy to
describe those line bundles in terms of tautological line bundles on the
normalization of the curve. Assume without loss of generality that C is
a nodal twisted curve with only one node E of order γ. Let e be the
image of the node in the coarse moduli space C. We have the following
commutative diagram:

1

1 // Pic C̃

OO

// Pic C̃ // ⊕2
i=1〈Ti〉 // 1

1 // PicC //

ν∗

OO

PicC

ν̃∗

OO

// PicE //

OO

1

1 // Õ∗
e/O

∗
e

OO

// Õ∗
E
/O∗

E
//

OO

0

OO

1

OO

1

OO

where Oe, resp. OE, is the local ring at the node e, resp. at the twisted

node E, and Õe, resp. ÕE, is its integral closure. Note that E ≃ Bµγ .
Here 〈Ti〉 is the group generated by Ti under tensor products. The
line bundle carrying a representation of the stabilizers group of the
node corresponding to an element ζk of µγ , where ζ is the standard
generator, is mapped by the pullback along the normalization morphism

ν̃ : C̃ → C to the pair of line bundles (Tk+,T
−k
− ), where T+, T− are the

tautological line bundles associated to the preimages of the node in the
normalization.

2.4. Logarithmic geometry and twisted curves. We recall here
some basic facts about logarithmic geometry, which is the natural lan-
guage to describe twisted curves. We will use logarithmic geometry to

construct the auxiliary stack Y
~g
0,n,β in Section 3.3.

Logarithmic structures have been introduced by Fontaine and Illusie
and further studied by Kato [33]. A generalization to algebraic stacks
can be found in [36]. We will consider log structures on the étale site of

schemes and on the Lisse-Étale site ([34] 12.1.2 (i)) of algebraic stacks
(see [36], Definition 5.1).
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Given a scheme X, a pre-logarithmic structure, often called pre-log
structure, consists of a sheaf of monoids M endowed with a morphism
of monoids α : M → OX , where the structure sheaf is considered as
a monoid with the multiplicative structure. Given a monoid or a sheaf
of monoids M , we denote by M∗ the submonoid or the subsheaf of
invertible elements.

When the natural morphism α−1(O∗
X) → O∗

X is an isomorphism, a
pre-log structure is called a log structure. The quotient M/α−1(O∗

X) is

usually denoted by M , and called the characteristic or the ghost sheaf.
There is a canonical way to associate a log structure to a pre-log struc-
ture. Given a pre-log structure α : M → OX , the associated log struc-
ture, denoted Ma, is defined as the pushout in the category of sheaves
of monoids as in the following diagram:

α−1(O∗
X)

//

α

��

M

��
O∗
X

// Ma.

The morphism to the structure sheaf αa : Ma → OX is induced by
the pair of morphisms (α, ι), where ι : O∗

X →֒ OX is the canonical
inclusion. A scheme endowed with a log structure (X,MX) is called a
log scheme. Log schemes form a category. A morphism between two log
schemes (f, f b) : (X,MX ) → (Y,MY ) is a pair consisting of a morphism
of schemes f : X → Y and a morphism of sheaves of monoids f b :
f∗MY → MX compatible with the morphisms to the structure sheaf.
The pullback of a log structure is defined as the log structure associated
to the pre-log structure obtained by taking the inverse image.

A log structure MX over X is called locally free if for any geometric
point x ∈ X we have MX,x ≃ Nr for some integer r, whereMX,x denotes
the stalk in the étale topology. A morphism between free monoids φ :
P1 → P2 is called simple if P1 and P2 have the same rank, and for every
irreducible element of p1 ∈ P1 there exists a unique element p2 ∈ P2

and an integer b such that b · p2 = φ(p1). A morphism of locally free log
structures is called simple if it induces simple morphisms on the stalks.

Let D be a reduced normal crossing divisor on a scheme X. According
to [33], there is a locally free log structure canonically associated to D
in the following way. Let U := X \D and let i : U →֒ X be the inclusion.
Then

MD := i∗(O
∗
U ) ∩ OX → OX

defines a locally free log structure over X. Let x be a geometric point
of X. The induced morphism

MD,x → OX,x



10 E. ANDREINI, Y. JIANG & H.-H. TSENG

is of the form Nr → OX,x for some integer r. In other words, every

irreducible element of the monoid MD,x corresponds to an irreducible
component of the pullback of D to SpecOX,x. Roughly speaking, étale
locally a normal crossing divisor becomes a simple normal crossing di-
visor; namely it is a union of smooth irreducible components. This con-
struction generalizes to stacks.

The construction of Matsuki-Olsson. Let X be a smooth variety
and let D = ∪i∈IDi ⊂ X be an effective Cartier divisor with normal
crossing support. Let {ri}i∈I be a collection of positive integers. By [35],
there exists a smooth Deligne-Mumford stack X with a normal crossing
divisor D = ∪i∈IDi ⊂ X satisfying the following properties:

1) The smooth variety X is the coarse moduli space of X.
2) The canonical map π : X → X is quasi-finite and flat, and is an

isomorphism over X \D.
3) π∗OX(−Di) = OX(−riDi).

Such a stack is defined as a category fibered in groupoids as follows.
Objects over an X-scheme f : T → X are simple morphisms of log
structures φ : f∗MD → M such that for any geometric point t ∈ T with
image x = f(t) ∈ X, the induced morphism on the stalks of the ghost
sheaves is of the following form:

MD,x

≀
��

// Mt

≀
��⊕

Di
N

⊕(×ri)//⊕
Di

N

(2)

According to [35], if locally X = Spec(k[x1, · · · , xn]) and locally the
divisor Di = Z(xi) for 1 ≤ i ≤ m, then X is canonically isomorphic to
the quotient stack

[Spec(k[y1, · · · , yn])/µr1 × · · · × µrm ],

where k[y1, · · · , yn] is a k[x1, · · · , xn]-algebra via

xi 7→
{
yrii , i ≤ m

yi, i > m,

and the action of µr1 × · · · × µrm is given by

(u1, · · · , um) · yi =
{
uiyi, i ≤ m,

yi, i > m.

We compare this construction with the root construction. For a
smooth scheme X, an effective Cartier divisor D ⊂ X, and a positive
integer r, there exists (see [3], [16]) a smooth Deligne-Mumford stack
X(D,r) satisfying the following properties:
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1) The preimage ofD is an infinitesimal neighborhood of the µr-gerbe
D over D.

2) There is a canonical map π : X(D,r) → X which is an isomorphism
over X \D. Every point in X(D,r) lying over D has stabilizer µr.

This is the r-th root construction of X with respect to the divisor D
and r.

Let D := (D1, · · · ,Dn) be an n-tuple of Cartier divisors and ~r =
(r1, · · · , rn) be an n-tuple of positive integers. Let X(D,~r) be the stack
obtained by iterating the root constructions over X and the sequence
of divisors. One can see that if the divisor D = ∪iDi has simple nor-
mal crossing, then X ≃ X(D,~r). However, if components of D have self-
intersections, then along such self-intersections X has more automor-
phisms than X(D,~r).

The stack of twisted curves. In [37] the stack of twisted curves Mtw
g,n

is constructed using logarithmic geometry. The stack Mtw
g,n is a smooth

Artin stack which has a natural map to the stack of prestable curves
Mg,n introduced in [13]. Such a map is defined by sending a marked
twisted curve (C, {σi}) to its coarse moduli space with marked points
induced by the σi.

The notion of log twisted curve is introduced in [37].

Definition 2.11 ([37], Definition 1.7). An n-pointed log twisted curve
over a scheme S is a collection of data

(C/S, {σi, ai}, l : MS → M′
S),

where C/S is an n-pointed prestable curve, σi : S → C are sections
(marked points), ai, i = 1, . . . , n are integer-valued locally constant
functions on S such that for each s ∈ S the integer ai(s) is positive and
invertible in the residue field k(s), and l : MS →֒ M′

S is a simple mor-
phism of log structures over S, where MS is the canonical log structure
associated to C/S.

Log twisted curves turn out to be equivalent to usual twisted curves.

Theorem 2.12 ([37], Theorem 1.9). For any scheme S, there is
a natural equivalence of groupoids between the groupoid of n-pointed
twisted curves over S and the groupoid of n-pointed log twisted curves
over S. Moreover, the equivalence is compatible with base change
S′ → S.

Using this equivalence Mtw
g,n can be seen as the stack over Z which to

any S associates the groupoid of n-marked genus g log twisted curves

(C/S, {σi, ai}, l : MS →֒ M′
S). For an n-tuple of integer numbers ~b =

(b1, . . . , bn), let M
tw
g,n(

~b) be the substack of Mtw
g,n classifying log twisted

curves with ai = bi for all i. There is a decomposition in open and closed
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components

Mtw
g,n ≃

∐

~b

Mtw
g,n(

~b).(3)

All the components Mtw
g,n(

~b) are isomorphic with each other. The bound-

ary ofMtw
g,n(

~b) is a normal crossing divisorD. Then there is an associated

log structure that we denote by MD. For any ~b, M
tw
g,n(

~b) is the stack over
Mg,n whose fiber over any f : T → Mg,n is the groupoid of simple ex-
tensions of log structures f∗MD →֒ MT such that for any geometric
point t ∈ T with f(t) = x, Coker(M

gp
D,x → M

gp
T,t) is invertible in k(t).

From the construction just described, we see that Mtw
g,n(

~b) and Mg,n are
locally isomorphic outside of the boundary locus, while over the locus

of singular curves Mtw
g,n(

~b) acquires more automorphisms due to twisted
nodes.

Given a log twisted curve (C/S, {σi, ai}, l : MS → M′
S), the corre-

sponding twisted curve C/S can be reconstructed as follows. It is the
category fibered in groupoids whose fiber over any h : T → S is the
groupoid of data consisting of a morphism s : T → C over h together
with a commutative diagram of locally free log structures on T :

h∗MS
l //

��

h∗M′
S

τ

��
s∗MC

k // M′
C ,

(4)

where

1) the morphism k is simple and for any geometric point t of T ,

the map M
′
S,t → M

′
C,t is either an isomorphism, or of the form

Nr → Nr+1 mapping ei to ei for i < r and er to either er or
er + er+1, and

2) for every 1 ≤ i ≤ n and geometric point t of T with image s = s(t)
in σi(S) ⊂ C, the group

Coker(M
′gp
S,t ⊕M

gp
C,t → M

′gp
C,t)

is a cyclic group of order ai.

3. Moduli of twisted stable maps to root gerbes

Let X be a smooth projective variety over C, L a line bundle over
X, and r ≥ 1 an integer. The purpose of this section is to study the
structure of the moduli stack K0,n(G, β) of genus 0 twisted stable maps

to a root gerbe G := r
√

L/X . More precisely, we study components (i.e.,

unions of connected components) K0,n(G, β)
~g of K0,n(G, β) indexed by

what we call β-admissible vectors (Definition 3.3). The main results of
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this section, Theorems 3.19 and 3.20, exhibit the structure ofK0,n(G, β)
~g

over the moduli stack M0,n(X,β) of stable maps to X. We always as-

sume that M0,n(X,β) is non-empty.

3.1. Components of moduli stack. We begin with some useful lem-
mas.

Lemma 3.1. Let G be a finite group, and let G → X be a G-banded
gerbe. To give a lift C → G of a map to the coarse moduli space C → X
is equivalent to giving a map C → G×X C.

Proof. Consider the following diagram:

C

π
##●

●
●
●
●
●
●
●
●
●
f

//

f̃

))
G×X C //

��
�

G

��
C

f // X.

(5)

To give a lift f̃ of f means to give the outer square in diagram (5),

namely the pair (f̃ , π). Due to the universal property of the fiber prod-
uct, this is equivalent to giving a map f : C → G×X C. Moreover, f is

representable if and only if f̃ is. q.e.d.

Lemma 3.2 (c.f. [16]). Let (C, {σi}) be an n-pointed smooth twisted
curve with stack points σi, 1 ≤ i ≤ n. Let µri be the isotropy group
of the stack point σi. Denote by π : (C, {σi}) → (C, {pi}) the coarse

curve. Let f̃ : C → r
√

L/X be a morphism and f : C → X its induced

map between coarse moduli spaces. Suppose f̃ is given by a line bundle
M = π∗L ⊗⊗n

i=1 T
mi

i over C (with 0 ≤ mi < ri) and an isomorphism

ψ :M⊗r ≃ π∗f∗L. Then f̃ is representable if and only if for 1 ≤ i ≤ n,
we have ri|r and mi and ri are co-prime.

Proof. By [5], Lemma 4.4.3, it suffices to study the homomorphism

(6) Aut(σi) → Aut(f̃(σi)),

induced by f̃ on stack points. Here by σi we mean a morphism h̃i :
SpecK → C from an algebraically closed field K to C with image in the
special locus. By the root construction description of C (see e.g. [16],
Example 2.7, and [3], Section 4.2), the stack point σi is equivalent to the
data (hi,Mi, ti, φi), where hi : SpecK → C with image pi, Mi is a line

bundle over SpecK, φi :M
⊗ri
i

∼→ h∗iO(pi), ti is a section ofMi such that
φi(t

ri
i ) = h∗i si (si is the section of O(pi) defined by pi). Hence ti = 0. The

image f̃(σi) is given by h̃∗iM and h̃∗iψ : h̃∗iM
⊗r ≃ h̃∗i π

∗f∗L. Note that

h̃∗i Ti is naturally isomorphic toMi. An automorphism ǫ ∈ Aut(σi) ≃ µri
is mapped to ǫmi ∈ Aut(f̃(σi))) ≃ µr since M = π∗L⊗⊗n

i=1 T
mi

i . This
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homomorphism is injective if and only if ri|r and mi and ri are coprime.
q.e.d.

Admissible vectors. The inertia stack IG admits a decomposition

IG = ∪g∈µrGg
indexed by elements of µr. An object of Gg over h : T → X is a col-
lection ((M,φ), g) where (M,φ) is an object of G over T (i.e. M is a
line bundle over T and φ : M⊗r → h∗L is an isomorphism) and g is
an automorphism of (M,φ) defined by multiplying fibers of M by g.
The identification of µr with the group of r-th roots of 1 ∈ C∗ allows
us to identify g ∈ µr with complex numbers. We use this to make sense
of the multiplication. In what follows we use this identification without
explicit reference.

Definition 3.3. Let Ī(G)g ⊂ Ī(G) be the image of Gg under the
natural map IG → Ī(G). Let ~g := (g1, . . . , gn) ∈ µ×nr be a vector of
elements of µr. Set

K0,n(G, β)
~g := ∩ni=1ev

−1
i (I(G)gi).(7)

The vector ~g is called β-admissible if K0,n(G, β)
~g is nonempty.

Remark 3.4. Note that the definition of β-admissible vectors de-
pends on a choice of the class β.

Let [f̃ : (C, {σi}) → G] ∈ K0,n(G, β)
~g(C). By definition the morphism

f̃ |σi : Bµri ≃ σi → G is equivalent to an injective homomorphism

µri →֒ µr, exp(2π
√
−1/ri) 7→ gi.

The argument in the proof of Lemma 3.2, applied to the irreducible
component of C containing σi, shows that we may write

(8) gi = exp(2π
√
−1

mi

ri
), with 0 ≤ mi < ri, and (mi, ri) = 1.

Furthermore, if L1/r is the universal r-th root of L over G, then

f̃ |∗σiL1/r is the µri-representation on which the standard generator

exp(2π
√
−1/ri) ∈ µri acts by multiplication by exp(2π

√
−1mi/ri). In

other words,

(9) ageσi(f̃
∗L1/r) =

mi

ri
.

Lemma 3.5. Suppose ~g = (g1, . . . , gn) ∈ µ×nr is a β-admissible vec-
tor. Then

(10)

n∏

i=1

gi = exp

(
2π

√
−1

r

∫

β
c1(L)

)
.
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Proof. Let [f̃ : (C, σ1, . . . , σn) → r
√

L/X ] ∈ K0,n(G, β)
~g(C) be a

twisted stable map. Let L1/r be the universal r-th root of L over
G = r

√
L/X . By Riemann-Roch for twisted curves (see e.g. [3], The-

orem 7.2.1),

χ(f̃∗L1/r) = 1 + deg f̃∗L1/r −
n∑

i=1

ageσi(f̃
∗L1/r),(11)

which is an integer. Clearly

deg f̃∗L1/r =
1

r

∫

β
c1(L).

By (8) and (9) we have

gi = exp(2π
√
−1 ageσi(f̃

∗L1/r)).

The result follows. q.e.d.

Proposition 3.6. Let G = r
√

L/X → X be a root gerbe. Let

[f : (C, p1, . . . , pn) → X] be an object of M0,n(X,β)(C). Then for a
vector ~g = (g1, . . . , gn) ∈ µ×nr satisfying (10) there exists, up to iso-

morphisms, a unique twisted stable map f̃ : (C, σ1, . . . , σn) → G in
K0,n(G, β)

~g lifting f .

Proof. We first assume that C is smooth. Associate to ~g the numbers
ri and mi, 1 ≤ i ≤ n as in (8). Let (C, σ1, . . . , σn) be the smooth twisted
curve obtained by applying the ri-th root construction to the divisor
pi ⊂ C for 1 ≤ i ≤ n. Denote by Ti, 1 ≤ i ≤ n the tautological sheaves
and by π : C → C the natural map. By (10) we have

1

r
degπ∗f∗L−

∑

1≤i≤n

mi

ri
∈ Z.

Pick L ∈ Pic(C) such that degL = 1
rdegπ

∗f∗L−∑1≤i≤n
mi

ri
. Set

M := π∗L⊗
⊗

1≤i≤n
T
mi

i .

Then degM⊗r = degπ∗f∗L, so there exists an isomorphism M⊗r ≃
π∗f∗L, which defines a map f̃ : C → G. By construction f̃ is a lifting of f .

By Lemma 3.2 f̃ is representable. Also, f̃ is unique up to isomorphisms
since the line bundle L on C ≃ P1 is determined up to isomorphisms by
its degree. This proves the proposition in case C is smooth.

We treat the general case by induction on the number of irreducible
components of C. The case of one irreducible component is proven
above. We now establish the induction step. Let C1 ⊂ C be an irre-
ducible component containing only one node x, and C2 := C \ C1. In
other words, C1 is an irreducible component meeting the rest of the
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curve C2 at the node x. Let T ⊂ [n] := {1, 2, . . . , n} be the marked
points that are contained in C1. Restrictions of f yield two stable maps

f1 : (C1, {pi|i ∈ T} ∪ {x}) → X, f2 : (C2, {pi|i ∈ TC} ∪ {x}) → X.

Here TC := [n] \ T . Set β1 := f1∗[C1] and define mx, rx ∈ Z by

mx

rx
:= 〈−

∑

i∈T

mi

ri
+

1

r

∫

β1

c1(L)〉, (mx, rx) = 1.

Here 〈−〉 denotes the fractional part. Note that rx|r since ri|r for i ∈ T .
Therefore we may define gx := exp(2π

√
−1mx

rx
) ∈ µr.

By the smooth case there exists a lifting

f̃1 : (C1, {σi|i ∈ T} ∪ {σx}) → G

of f1 associated to the collection {gi|i ∈ T} ∪ {gx}. By induction there
exists a lifting

f̃2 : (C2, {σi|i ∈ TC} ∪ {σ′x}) → G

of f2 associated to the collection {gi|i ∈ TC} ∪ {g−1
x }. By our choices of

the actions of isotropy groups at σx and σ′x we see that C1 and C2 glue
along σx, σ

′
x to form a balanced twisted curve C, and the morphisms

f̃1, f̃2 define a morphism f̃ : (C, σ1, . . . , σn) → G which is representable
and is a lifting of f .

By restricting to irreducible components, we see that uniqueness of
lifting follows from uniqueness of lifting in the smooth case. This com-
pletes the proof. q.e.d.

Remark 3.7. Lemma 3.5 and Proposition 3.6 combined show that
β-admissible vectors (for a fixed class β) are completely characterized by
the condition (10). This condition can be viewed as a generalization of
the monodromy condition which is required to hold for genus 0 twisted
stable maps to Bµr.

In what follows we prove that each open-and-closed component
K0,n(G, β)

~g of K0,n(G, β) is a gerbe over a base stack that can be con-

structed overM0,n(X,β) by using logarithmic geometry. This base stack

is isomorphic toM0,n(X,β) over the (possibly empty) locus correspond-
ing to twisted stable maps with smooth domain curve. Along the bound-
ary it has more automorphisms, corresponding to the fact that singular
twisted curves carry additional automorphisms associated to the stacky
nodes. In order to describe the gerbe structure ofK0,n(G, β)

~g and its base
stack we will need an auxiliary stack parametrizing weighted prestable
curves.

3.2. The stacks Mg,n,β and Mtw
g,n,β. We describe a stack introduced in

[22], Section 2. It parametrizes weighted prestable curves with a stability
condition. Denote by Mg,n the stack of genus g prestable curves with n
marked points.
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Let g, n ∈ Z≥0 and β ∈ H+
2 (X,Z). A triple (g, n, β) is called stable if

either β 6= 0 or β = 0 and 2g− 2+n > 0. For a triple (g, n, β) the stack
Mg,n,β over Mg,n is defined inductively in the following way:

1) If (g, n, β) is unstable, then Mg,n,β is empty.
2) If (g, n, β) is stable, an object of Mg,n,β over T is

a) an object (C, {si}) of Mg,n(T ), namely a genus g prestable
curve over T with n sections in the smooth locus;

b) a constructible function f : Cgen → H+
2 (X,Z), where Cgen →

T is the complement of the nodes and the sections in C. The
function f must be locally constant on the geometric fibers of
Cgen → T .

3) If T 0 ⊂ T is the open subscheme parametrizing nonsingular curves
C0 → T 0 , then f : C0

gen → H+
2 (X,Z) must be constant with value

β.
4) f has to satisfy two kinds of gluing conditions along the boundary

of Mg,n:
a) Suppose that there is a decomposition g = g′ + g′′ and [n] =

{1, . . . , n} = T
∐
T c, with |T | = n′ and |T c| = n′′ and a map

S → T such that the composite map S → Mg,n factors into

S → Mg′,T
∐

{s′} ×Mg′′,TC
∐

{s′′} → Mg,n,

where the second map is obtained by gluing the marked sections
s′ and s′′. Let C ′

V ∈ Mg′,n′(S) and C ′′
V ∈ Mg′′ ,n′′(S) be the

associated families of curves. We require that the pulled back
constructible functions f ′ : C ′

V → H+
2 (X,Z) and f ′′ : C ′′

V →
H+

2 (X,Z) define a morphism

S →
∐

β′+β′′=β

Mg′,T,β′ ×Mg′′,T c,β′′ .

b) Suppose that there is a map S → T such that the composite
map S → Mg,n factors into

S → Mg−1,n
∐{s′,s′′} → Mg,n.

Then the associated genus g− 1 family of curves CS → S with
the pulled back constructible function f : CSgen → H+

2 (X,Z)
has to define a morphism

S → Mg−1,n
∐
{s′,s′′},β.

The constructible function f : Cgen → H+
2 (X,Z) will be called the

weight. An object (C, f) of Mg,n,β is called an H+
2 (X,Z)-weighted

prestable curve, and its total weight is by definition β.
Note that in this definition it is important that H+

2 (X,Z) is a semi-
group with indecomposable zero and any of its elements has a finite
number of decompositions.

We quote some properties of the stack Mg,n,β.
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Proposition 3.8 ([22], Proposition 2.0.2). The map Mg,n,β → Mg,n

defined by forgetting the weights is étale, and relatively a scheme of finite
type. Therefore the stack Mg,n,β is a smooth algebraic stack.

Proposition 3.9 ([22], Proposition 2.1.1). The natural morphism
Mg,n+1,β → Mg,n,β defined by forgetting the (n + 1)-st marked point is
the universal family over Mg,n,β.

Boundary of M0,n,β. Boundary divisors ofM0,n are indexed by subsets
T of [n] := {1, 2, . . . , n}. Each T corresponds to the boundary divisor
DT which parametrizes curves C = C1 ∪ C2 meeting at a node such
that marked points indexed by T are contained in C1 and other marked
points are contained in C2.

Boundary divisors in M0,n,β can be similarly described.

Definition 3.10. Given (T, β′), where T is a not necessarily proper
subset of [n] and β′ ∈ H+

2 (X,Z) such that β′ ≤ β, define DT
β′ ⊂ M0,n,β

to be the divisor which parametrizes curves C = C1 ∪ C2 meeting at a
node such that

1) marked points indexed by T are contained in C1, and marked
points indexed by TC := [n] \ T are contained in C2;

2) f |C1 = β′ and f |C2 = β − β′.

Note that DT
β′ = DTC

β−β′ . Let hn : M0,n+1,β → M0,n,β be the map that

forgets the (n+ 1)-th marked point. Then

(12) h−1
n DT

β′ = DT
β′ ∪DT∪{n+1}

β′ .

Lemma 3.11. The boundary divisors DT
β′ are normal crossing divi-

sors.

Proof. Consider the natural map ln : M0,n,β → M0,n that forgets the
weights. The following relation holds:

l−1
n DT =





∪0<β′≤βDT
β′ if |T | < 2;

∪0≤β′≤βDT
β′ if 2 ≤ |T | ≤ n− 2;

∪0≤β′<βD
T
β′ if |T | > n− 2.

Since DT are normal crossing divisors in M0,n and the morphism ln is
étale, the result follows. q.e.d.

Log structure on M0,n,β. Let ID be the set of pairs (T, β′) with T ⊂
[n], n /∈ T , such that one of the following holds:

1) 0 < β′ < β;
2) β′ = 0 and |T | ≥ 2;
3) β′ = β and |T | ≤ n− 2.



ROOT GERBES I: STRUCTURE OF GENUS 0 MODULI SPACES 19

The union of boundary divisors

(13)
⋃

(T,β′)∈ID

DT
β′ ⊂ M0,n,β

is a reduced normal crossing divisor. We want each divisorDT
β′ to appear

only once in this union i.e., the pairs (T, β′), (TC , β−β′) shouldn’t both
occur. The requirement n /∈ T is a way to select only one of them. The
divisor (13) defines a locally free log structure over M0,n,β which we
denote by Mn

D. This follows from a general construction we described
in Section 2.4 (see page 9), following [33].

Let Mtw
g,n be the stack of genus g twisted curves with n marked points

introduced in Section 2.4. Define

Mtw
g,n,β := Mg,n,β ×Mg,n Mtw

g,n.

The stack Mtw
g,n,β parametrizes H+

2 (X,Z)-weighted genus g twisted
curves with n marked points and total weight β.

3.3. The stack Y
~g
0,n,β. We will define a stack over M0,n,β using the

log structure Mn
D and some additional data coming from a β-admissible

vector ~g, following [35].
Fix a β-admissible vector ~g = (g1, . . . , gn) ∈ µ×nr . We define a col-

lection of triples of integers {(ρi, ri,mi)|1 ≤ i ≤ n} as follows. Each
gi, 1 ≤ i ≤ n may be identified with a root of unity

gi = exp(2π
√
−1θi), where θi ∈ Q ∩ [0, 1),

which defines the rational numbers θi, 1 ≤ i ≤ n. The characterizing
relation of β-admissible vectors (10) reads

n∏

i=1

exp
(
2π

√
−1θi

)
= exp

(
2π

√
−1

r

∫

β
c1(L)

)
.

For 1 ≤ i ≤ n, define

(14) ρi := rθi, ri :=
r

gcd(r, ρi)
, mi :=

ρi
gcd(r, ρi)

.

Let (T, β′) be an index of the boundary divisors of M0,n,β as in Def-
inition 3.10. Define

θT,β′ :=

〈
1

r

∫

β′

c1(L)−
∑

i∈T
θi

〉
, rT,β′ :=

r

gcd(r, rθT,β′)
,

mT,β′ :=
rθT,β′

gcd(r, rθT,β′)
.(15)

Here 〈−〉 again denotes the fractional part. This definition makes sense
since

∫
β′ c1(L)−

∑
i∈T rθi is an integer.
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Definition 3.12. Let Y
~g
0,n,β be the stack obtained by applying the

construction of [35], Theorem 4.1, recalled in Section 2.4, to the stack
M0,n,β, the normal-crossing divisor (13), and the collection of positive
integers {rT,β′ |(T, β′) ∈ ID}.

Let Y
~g∪{1}
0,n+1,β be the stack obtained in the same way from the stack

M0,n+1,β and the β-admissible vector ~g∪{1} := (g1, . . . , gn, 1) ∈ µ×n+1
r .

As in the proof of [35], Theorem 4.1, the stack Y
~g
0,n,β is defined as

a category fibered in groupoids whose objects over a M0,n,β-scheme
f : S → M0,n,β are simple morphisms of log structures

f∗Mn
D → MS

such that for every geometric point s → S of S with x = f(s) there is
a commutative diagram

⊕
(Ti,βi)

N
⊕(×rTi,βi) //

≀
��

⊕
(Ti,βi)

N

≀
��

f−1M
n
D,x

// MS,s,

(16)

where the sum is taken over pairs (Ti, βi) ∈ ID labelling the irreducible
components of the pullback of D to SpecOS,s. Note that the (Ti, βi)
may have repetitions.

Remark 3.13. Note that property (2) listed in the construction
of Matsuki-Olsson in Section 2.4 implies that the structure morphism

Y
~g
0,n,β → M0,n,β is quasi-finite and flat.

Proposition 3.14. The stack Y
~g
0,n,β parametrizes H+

2 (X,Z)-

weighted genus 0 twisted curves such that

• the i-th marked gerbe is banded by µri;
• the nodes are stack points of orders {rT,β′}.

In particular Y
~g
0,n,β is an open substack of Mtw

0,n,β.

Proof. By definition a morphism f̃ : S → Y
~g
0,n,β consists of the fol-

lowing data:

1) a morphism f : S → M0,n,β, corresponding to a weighted curve
(C/S, {si}) with marked sections si;

2) a simple morphism of log structures l : f∗Mn
D →֒ MS inducing di-

agram (16), with coefficients associated to irreducible components
of D as in (15);

3) an n-tuple of integer numbers {ri}ni=1, determined by ~g and β
according to (14).
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The above data are equivalent by definition to a log twisted curve; see
Definition 2.11. The corresponding twisted curve C is determined as
in [37], Section 4 (see page 12 of this article). Consider a morphism
U → C. Let u → U be a geometric point mapping to the marked point
si of C. Let t be an element in OC,u locally defining si. According to
[37], Section 4.2, étale locally C is isomorphic to

(17) [Spec (OC,u[z]/(z
ri − t))/µri ] ,

where µri acts by multiplication on z. Let u→ C map to a node. Such a

node corresponds to an irreducible component DTi
βi

of the boundary divi-

sor D on M0,n,β. Let us consider the pullback of DTi
βi

to SpecOU,u. If the

curve C has k nodes of type (Ti, βi), the pulled back divisor will have k ir-
reducible components corresponding to irreducible elements ei1 , . . . , eik
of the monoid f−1M

n
D,u ≃ Nr, where r is some integer number. The in-

duced morphism lu : f−1M
n
D,u → MS,u acts on the submonoid generated

by ei1 , . . . , eik as the multiplication by rTi,βi . According to [37], Section
4.3, after choosing an étale morphism C → SpecOS,u[x, y]/(xy − t), the
étale local description of C is

(18) [Spec (OC,u[z, w]/(zw − t′, zrTi,βi = x,wrTi,βi = y))/µrTi,βi ],

where the action of µrTi,βi is the usual balanced action. q.e.d.

Lemma 3.15. The natural morphism Y
~g
0,n,β → M

tw,~g
0,n,β is étale.

Proof. This is immediate from the proof of Proposition 3.14 and [37],
Lemma 5.3. q.e.d.

By Proposition 3.14 the stack Y
~g
0,n,β is the moduli stack of certain

weighted twisted curves. Its universal family can be described as follows.

Proposition 3.16. There exists a natural morphism

(19) Y
~g∪{1}
0,n+1,β → Y

~g
0,n,β,

which is the universal family of genus 0 twisted curves with n marked

gerbes over Y
~g
0,n,β. In particular for 1 ≤ i ≤ n, the i-th marked gerbe is

banded by the group µri.

Proof. By the construction of Y~g
0,n,β, it has a normal crossing divisor

D =
⋃

(T,β′)∈ID

DT
β′ ,

such that π∗nOM0,n,β
(−DT

β′) = O
Y

~g
0,n,β

(−rT,β′DT
β′), where πn : Y~g

0,n,β →
M0,n,β is the natural map. Let Mn

D
be the locally free log structure
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associated to D. By construction of Y~g
0,n,β there is a universal simple

morphism

(20) ln : π∗nM
n
D → Mn

D

of log structures over Y
~g
0,n,β, where Mn

D is the log structure defined by

the divisor (13).
Let hn : C0,n,β → M0,n,β be the universal family of weighted curves

over M0,n,β. By Proposition 3.9, C0,n,β can be identified with M0,n+1,β.

Let h′n : C′ → Y
~g
0,n,β be the pullback of hn via the natural map πn :

Y
~g
0,n,β → M0,n,β, i.e. there is a 2-cartesian diagram

C′ π′
n+1 //

h′n
��

�

C0,n,β

hn

��
Y
~g
0,n,β πn

// M0,n,β.

The data

(21) (h′n : C′ → Y
~g
0,n,β, {ri = order(gi)}1≤i≤n, ln : π∗nM

n
D → Mn

D)

is a log twisted curve. The universal twisted weighted curve C
~g
0,n,β →

Y
~g
0,n,β over Y~g

0,n,β is obtained from (21) by applying the construction of

[37], Section 4 (see page 12 of this article for a summary).
Note that over C′ there is the following diagram of log structures:

h′∗n π
∗
nM

n
D

h′∗n ln //

π′∗
n+1h

b
n

��

h′∗nM
n
D

π∗n+1M
n+1
D ,

(22)

where the vertical arrow is the pullback of the morphism hbn : h∗nM
n
D →

Mn+1
D induced by (12). Consider the morphism

(23) M
n
D,p → M

n+1
D,q ,

which is induced by hbn for any geometric point q ∈ M0,n+1,β with
p = hn(q). Let Cp = h−1

n (p). The morphism (23) has the following
properties:

1) if q ∈ Cp is a nodal point, i.e. q ∈ DTi
βi

∩ D
Ti∪{n+1}
βi

for some i,

then, up to isomorphism, it is of the form Nr → Nr+1, mapping ei
to ei, i < r and er to er + er+1;

2) if q is a marked point, i.e. q ∈ D
{j,n+1}
0 for some 1 ≤ j ≤ n, it is

of the form Nr → Nr+1 mapping ei to ei for i ≤ r;
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3) if q is a smooth point, it is of the form Nr → Nr, mapping ei to ei
for i = 1, . . . , r.

An object of C~g0,n,β over S is given by a morphism f : S → C′ and by a

simple morphism f∗π∗n+1M
n+1
D → M′

S completing (22) to a commutative
diagram

f∗h′∗n π
∗
nM

n
D

//

��

f∗h′∗nM
n
D

��
f∗π∗n+1M

n+1
D

// M′
S

(24)

satisfying conditions (1), (2) listed on page 12. Let s be a geometric point
of S mapping to q ∈ M0,n+1,β and assume that p = hn(q) belongs to

DT1
β1

∩ · · · ∩DTr
βr
. Consider the diagram obtained from (24) by taking the

stalk at s of the associated ghost sheaves. There is a bijection between
the divisors DTi

βi
containing the point p and irreducible elements of the

monoid M
n
D,s. If s maps to the j-st marked point of Cp, i.e. if q ∈

DT1
βi

∩ · · · ∩DTr
βr

∩DTr+1

βr+1
, with Tr+1 = {j, n + 1} and βr+1 = 0, we get

the following diagram:

⊕r
i=1N

⊕(×rTi,βi) //

��

⊕r
i=1N

��

⊕r+1
i=1N ⊕(×αi)

// ⊕r+1
i=1N,

(25)

where the vertical arrows map ei to ei, i = 1, . . . , r. By condition (1) on
page 12, we must have αi = rTi,βi for i = 1, . . . , r, and by condition (2)
on page 12, αr+1 = rj , we must have the order of the j-th marked point

of twisted curves parametrized by Y
~g
0,n,β.

Suppose that s maps to a nodal point of Cp. In this case q belongs

to DT1
β1

∩ · · · ∩DTr
βr

∩DTr+1

βr+1
, where Tr+1 = Tr ∪ {n + 1} and βr+1 = βr

for some Tr, βr. Note that we abuse the notation by using the same
symbol for divisors in M0,n,β and M0,n+1,β. In this case we again get
a diagram as in (25), with vertical arrows mapping ei to ei, i < r and
mapping er to er + er+1. Commutativity of the diagram implies that
αr = αr+1 = rTr ,βr .

From the above discussion we see that an object of C~g0,n+1,β over S en-

codes a morphism f : S → M0,n+1,β and a simple morphism of log struc-

tures f∗Mn+1
D → M′

S as in [35], with coefficients αT,β′ , T ⊂ {1, . . . , n},
β′ ≤ β, associated to the irreducible components of the boundary divisor
DT
β′ as follows:

• αT,β′ = αT∪{n+1},β′ = rT,β′ , (T, β′) ∈ ID;
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• α{i,n+1},0 = ri, i = 1, . . . , n;

where the rT,β′ are the integer numbers determined as in (15) for the
β-admissible vector ~g and the class β. Observe that the collection of
the coefficients αT,β′ coincides with the collection of coefficients rT,β′

associated to the β-admissible vector ~g ∪ {1} and to the class β. In

other words, there is a natural morphism C
~g
0,n,β → Y

~g∪{1}
0,n+1,β.

On the other hand, it is not hard to see that there is a morphism

Y
~g∪{1}
0,n+1,β → C

~g
0,n,β. We start by showing that there is a morphism h̃n :

Y
~g∪{1}
0,n+1,β → Y

~g
0,n,β inducing a morphism fn+1 : Y

~g∪{1}
0,n+1,β → C′. Consider

the universal simple morphism of log structures ln+1 : π∗n+1M
n+1
D →

Mn+1
D

over Y
~g∪{1}
0,n+1,β, where πn+1 : Y

~g∪{1}
0,n+1,β → M0,n+1,β is the natural

map, and Mn+1
D

is the log structure associated to the divisor D on

Y
~g∪{1}
0,n+1,β by construction ofY

~g∪{1}
0,n+1,β. There is a natural sub-log structure

MD′n of Mn+1
D

which is associated to the divisor

D′n :=
⋃

(T,β′)∈ID
T⊆[n]

DT
β′ .

The composite morphism

π∗n+1h
∗
nM

n
D → π∗n+1M

n+1
D → Mn+1

D

factors through MD′n and π∗n+1h
∗
nM

n
D → MD′n is a simple morphism of

log structures. This defines the morphism h̃n. By construction MD′n is

the pullback of Mn
D

along h̃n. We conclude by observing that the pair
(fn+1, ln+1) satisfies diagram (24) with fn+1 in place of f , giving the

morphism Y
~g∪{1}
0,n+1,β → C

~g
0,n,β.

It is not hard to check that the two maps between Y
~g∪{1}
0,n+1,β and C

~g
0,n,β

are inverse to each other.
We use [37], Lemma 5.3, to conclude thatY

~g∪{1}
0,n+1,β is an open substack

of Mtw
0,n+1,β. q.e.d.

Remark 3.17. An argument similar to the proof of Proposition 3.16
can be used to characterize the universal weighted twisted curve over
Mtw

g,n,β as an open substack of Mtw
g,n+1,β.

Let [f : C → G] ∈ K0,n(G, β)
~g. By forgetting f and keeping degrees of the

restrictions of f on irreducible components of C, we obtain a morphism

K0,n(G, β)
~g → Mtw

0,n,β.

Lemma 3.18. There exists a natural morphism

s : K0,n(G, β)
~g → Y

~g
0,n,β.
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Proof. Let [f : (C, {σi}) → G] be an object of K0,n(G, β)
~g(C). The

pushforward f∗ defines the weight function Cgen → H+
2 (X,Z). The

domain (C, {σi}) is a genus 0 twisted curve whose i-th marked gerbe
(1 ≤ i ≤ n) is banded by µri . Let x ∈ C be a node which separates C

into two connected components C = C1 ∪ C2. Put f∗[C1] = β′ and let
T ⊂ [n] be the set of marked points contained in C1. Since f is repre-
sentable, Lemma 3.2 and equation (15) imply that x is a stack point of

order rT,β′ . This defines an object of Y~g
0,n,β. Because indices of nodes

are locally constant, extension to objects over general base schemes is
straightforward. q.e.d.

3.4. Gerbe structures on components. We continue to fix a β-
admissible vector ~g = (g1, . . . , gn) ∈ µ×nr . Consider the following dia-
gram:

K0,n(G, β)
~g

s %%❑
❑❑

❑❑
❑❑

❑❑
❑

p

,,

t
// P~gn

r′
//

��
�

P

q′

��

r
//

�

M0,n(X,β)

q

��
Y
~g
0,n,β

// Mtw
0,n,β

�s′

��

// M0,n,β

s′′

��
Mtw

0,n
// M0,n.

(26)

Here the morphism p : K0,n(G, β)
~g → M0,n(X,β) is defined by send-

ing a twisted stable map to its associated map between coarse mod-

uli spaces. The morphism Y
~g
0,n,β → Mtw

0,n,β is defined by Proposition

3.14. The stacks P and P~gn are defined as fiber products. The morphism

t : K0,n(G, β)
~g → P~gn is evidently defined.

The goal of this subsection is to prove the following

Theorem 3.19. Let G = r
√

L/X → X be an r-th root gerbe. Let ~g

be a β-admissible vector for G and a choice of β ∈ H+
2 (X,Z). Then the

morphism t : K0,n(G, β)
~g → P~gn exhibits K0,n(G, β)

~g as a µr-gerbe over

P~gn .

Proof. We will prove that t : K0,n(G, β)
~g → P~gn is a gerbe by showing

that the structure morphism and the relative diagonal are epimorphisms
in the sense of [34], Definition 3.6. We know by Proposition 3.6 that the
morphism is bijective on geometric points; hence to prove the first claim

it is enough to show that K0,n(G, β)
~g → P~gn is étale. For the notion of

étale non-representable morphisms between algebraic stacks we refer to
[34], Definition 4.14. Since the stacks involved are of finite type we can
use Proposition 4.15 (ii) of [34]. Moreover, since we assume the stacks
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are noetherian, it is enough to prove that the lifting criterion of [34],
Proposition 4.15, holds for morphisms from artinian local rings (cfr.
[26], 17.5.4 and [25], 0, Prop. 22.1.4.) Consider a square zero extension
of artinian local rings:

(27) 1 → I → B → A→ 1.

We need to show that given the outer commutative diagram

SpecA //

��

K0,n(G, β)
~g

��

SpecB //

99r
r

r
r

r
r

P~gn ,

the morphism SpecA → K0,n(G, β)
~g factors through SpecB. Given a

twisted stable map f̃A : CA → G over SpecA together with a lifting
CA →֒ CB of the domain curve to SpecB and a lift fB : CB → X of the

coarse map fA : CA → X to SpecB, we claim that f̃A lifts to SpecB
uniquely. To show this, first note that the exact sequence

H1(I) → H1(O∗
CB

) → H1(O∗
CA

) → H2(I)

arising from the extension (27) gives an isomorphism PicCA ≃ PicCB .
Indeed, H1(I) vanishes because the curves have arithmetic genus zero,

andH2(I) vanishes by dimensional reasons. The morphism f̃A is defined
by a line bundle NA satisfying N⊗r

A ≃ π∗Af
∗
AL, where πA : CA → CA is

the map to the coarse curve. The isomorphism PicCA ≃ PicCB yields
a line bundle NB on CB which satisfies Nr

B ≃ π∗Bf
∗
BL. (Again πB :

CB → CB denotes the map to the coarse curve.) This defines the desired

extension f̃B : CB → G.
It remains to show that the relative diagonal morphism

K0,n(G, β)
~g → K0,n(G, β)

~g ×
P~g
n
K0,n(G, β)

~g

is locally surjective, namely that any two local sections are locally iso-

morphic. Let T → P~gn be a morphism which gives rise to the twisted
curve CT over T with coarse curve πT : CT → CT and stable map
fT : CT → X. Consider the base-change

(28) K0,n(G, β)
~g ×

P~g
n
T → T.

Sections of (28) are twisted stable maps CT → G which induce fT . Such
maps are defined by line bundles N on CT satisfying N⊗r ≃ π∗T f

∗
TL.

Two sections are isomorphic if and only if their defining line bundles
are isomorphic.

Let f and f ′ be two sections of (28) with line bundles N and N′.
Note that the line bundle N⊗N′∨ is a pullback from the coarse moduli
space CT since it carries trivial representations of the special points of
any geometric fiber of CT . This is due to the fact that N and N′ induce
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twisted stable maps with the same β-admissible vector. Note moreover
that (N ⊗N′∨)⊗r is trivial:

(N ⊗N′∨)⊗r ≃ π∗T f
∗
TL⊗ π∗T f

∗
TL

∨ ≃ OCT
.

As a consequence, N ⊗ N′∨ restricts to a trivial line bundle over any
irreducible component of any geometric fiber of CT . By the Theorem on
Cohomology and Base Change, N⊗N′∨ is isomorphic to the pullback of
a line bundle from the base T . Every line bundle over a scheme is locally
trivial; therefore up to base change by an étale morphism T ′ → T the
two line bundles N and N′ are isomorphic.

For any object ξ of K0,n(G, β)
~g over some x ∈ P~gn(T ) the sheaf of

relative automorphisms Autx(ξ) is a sheaf of abelian groups. Therefore

K0,n(G, β)
~g → P~gn is a gerbe banded by a sheaf of abelian groups ([28],

Proposition IV 1.2.3 (i)). For any ξ in K0,n(G, β)
~g, there is a natural

identification Autx(ξ) ≃ (µr)T . Indeed automorphisms of ξ leaving x
fixed are automorphisms of a line bundle over a twisted curve p : C → T
whose r-th power is the identity. The claim follows since for a family of
twisted curves p∗OC ≃ OT . Such a collection of natural identifications is
compatible with restrictions and isomorphisms. This means by definition
that the K0,n(G, β)

~g is banded by (µr)P~g
n
([28], IV, Definition 2.2.2).

q.e.d.

3.5. Root gerbe structures on components. Consider the follow-
ing diagram:

(29) P
~g∪{1}
n+1

v
��

//

�

M 0,n+1(X,β)

��

//

�

M 0,n(X,β)

��
Y
~g∪{1}
0,n+1,β

// M0,n+1,β
// M0,n,β.

The stack P
~g∪{1}
n+1 is defined by the cartesian square on the left. The

square on the right is cartesian by Proposition 3.9. The existence of the

morphism Y
~g∪{1}
0,n+1,β → Y

~g
0,n,β implies that the outer square in (29) is

equivalent to the outer square of the following diagram:

(30) P
~g∪{1}
n+1

v
��

φ // P~gn

��

//

�

M0,n(X,β)

��
Y
~g∪{1}
0,n+1,β

// Y
~g
0,n,β

// M0,n,β.

Since (29) and the right side of (30) are cartesian, the left part of (30)
is also cartesian.

By construction the stack P~gn parametrizes the data

((C, σ1, . . . , σn), (f : (C, p1, . . . , pn) → X))
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where (C, σ1, . . . , σn) is an n-pointed twisted curve with isotropy group
at σi being µri , (C, p1, . . . , pn) is the coarse curve, and [f ] ∈M0,n(X,β)

is a stable map. The universal twisted curve over P~gn is given by the

morphism P
~g∪{1}
n+1 → P~gn , and the universal stable map is obtained from

the composition

u : P
~g∪{1}
n+1 →M0,n+1(X,β)

evn+1−→ X.

The purpose of this subsection is to prove the following refinement of
Theorem 3.19:

Theorem 3.20. K0,n(G, β)
~g is a root gerbe over the stack P~gn .

Proof. We construct a line bundle over P~gn and show that the stack
of its r-th roots admits a representable morphism to K0,n(G, β)

~g which

covers the identity map on P~gn .
Recall that for a β-admissible vector ~g = (g1, . . . , gn) we have defined

triples (ρi, ri,mi), 1 ≤ i ≤ n of integers in (14). For 1 ≤ i ≤ n we choose
di ∈ Z such that

(31) gi = exp

(
2π

√
−1

ri
di

)
and

n∑

i=1

di
ri

=
1

r

∫

β
c1(L).

This is possible because of (10). Note that di depends on β.
Associated to a pair (T, β′) which indexes a boundary divisor of

M0,n,β, we have defined a triple (θT,β′ , rT,β′ ,mT,β′) of integers in (15).
We define another integer dT,β′ such that

(32)
∑

i∈T

di
ri

+
dT,β′

rT,β′
=

1

r

∫

β′

c1(L).

Note that (32) implies dT,β′ = −dTC ,β−β′ and 〈dT,β′

rT,β′
〉 = θT,β′.

For 1 ≤ i ≤ n, let Si ⊂ Y
~g∪{1}
0,n+1,β denote the pullback of the i-th

marked section divisor from M0,n+1,β. Define a line bundle over Y
~g∪{1}
0,n+1,β

as follows:

(33) LY := O
Y

~g∪{1}
0,n+1,β


 ∑

1≤i≤n

di
ri
Si −

∑

(T,β′)∈ID

dT,β′

rT,β′
D
T∪{n+1}
β′


 .

Here ID is the set of pairs (T, β′) defined on page 18.

Lemma 3.21. There exists a line bundle L2 over P~gn such that

(34) (v∗LY)
⊗r ⊗ (u∗L)−1 ≃ φ∗L2.

Proof. As in [12], it suffices to check that the degree of the line bundle
(v∗LY)

⊗r ⊗ (u∗L)−1 restricted to any component of any fiber of φ is
zero. The argument works because (v∗LY)

⊗r ⊗ (u∗L)−1 is in fact a
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pullback from M0,n+1,β. Indeed L is a line bundle over a scheme and
(v∗LY)

⊗r carries trivial representations of the automorphism groups of

stacky points of Y
~g∪{1}
0,n+1,β relative to M0,n+1,β. Let C be a fiber of φ, with

coarse curve C. Denote by f : C → X the corresponding stable map to
X. Let C0 ⊂ C be an irreducible component with coarse curve C0. Let
x1, . . . , xm be nodes of C that are contained in C0. Let Tj ⊂ [n], 1 ≤ j ≤
m be the marked points contained in the subcurves Cj ⊂ C which are
connected to C0 at xj , and T0 the marked points contained in C0. Then
[n] = T0 ∪ T1 ∪ . . . ∪ Tm. Put β0 := f∗[C0] and βj := f∗[Cj] (here Cj is
the coarse curve of Cj).

We need some properties about restrictions of these line bundles.

Claim. Consider the line bundle L(T,β′) := O
Y

~g∪{1}
0,n+1,β

( 1
rT,β′

D
T∪{n+1}
β′ ).

Let C be a geometric fiber of Y
~g∪{1}
0,n+1,β → Y

~g
0,n,β.

• If there is no node e in C such that the two connected components
of the normalization of C at e have degrees β′, resp. β′′ (such that
β′ + β′′ = β), and contain marked points with indices in T , resp.

TC , then L(T,β′)|C is trivial.
• If there is such a node, let C1 and C2 be the two connected compo-
nents of the partial normalization at the node. Suppose that the
preimages of the marked gerbes with indices in T are contained in
C1. Let C1 ⊂ C1 and C2 ⊂ C2 be the two irreducible components
in C1 and C2 containing the node e. Then
1) L(T,β′)|

C1
≃ O

C1
(− 1

rT,β′
);

2) L(T,β′)|
C2

≃ O
C2
( 1
rT,β′

).

3) the restriction of L(T,β′) to any other component C′ of C is
trivial.

Proof of Claim. The first property follows since C misses D
T∪{n+1}
β′ . For

the second property, first note that C1 = C ∩ DT∪{n+1}
β′ and C2 = C ∩

DTC

β′′ . Therefore C2 ∩DT∪{n+1}
β′ is one point and (2) above follows. (3)

for any component C′ ⊂ C2 also follows. Moreover, since O( 1
rT,β′

(DT
β′ ∪

D
T∪{n+1}
β′ )) over Y

~g∪{1}
0,n+1,β is the pullback of O( 1

rT,β′
DT
β′) over Y

~g
0,n,β,

its restriction to geometric fibers has to be trivial. This implies that
O
Y

~g∪{1}
0,n+1,β

( 1
rT,β′

DT
β′)|C2

≃ O
C2
(− 1

rT,β′
). Statements (1) and (3) for C′ ⊂ C1

follow by symmetry. q.e.d.
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Notice that the following diagram

P
~g∪{1}
n+1

��

v // Y
~g∪{1}
0,n+1,β

��

P~gn // Y
~g
0,n,β

(35)

is cartesian; hence the fibers of P
~g∪{1}
n+1 → P~gn are isomorphic to the

fibers of Y
~g∪{1}
0,n+1,β → Y

~g
0,n,β. Applying the above claim and the fact that

dT,β′ = −dTC ,β−β′ , we find

v∗LY|C0 = OC0


∑

i∈T0

di
ri
Si −

∑

1≤j≤m

dTj ,βj
rTj ,βj

xj


 .(36)

By (32) we have

∑

i∈Tj

di
ri

+
dTj ,βj
rTj ,βj

=
1

r

∫

βj

c1(L).

By (31) we have

∑

i∈T0

di
ri

+
∑

1≤j≤m

∑

i∈Tj

di
ri

=
1

r

∫

β
c1(L).

Since β = β0 +
∑

1≤j≤m βj , we find that the degree of v∗LY|C0 is

∑

i∈T0

di
ri

−
∑

1≤j≤m

dTj ,βj
rTj ,βj

=


1

r

∫

β
c1(L)−

∑

1≤j≤m

∑

i∈Tj

di
ri


−

∑

1≤j≤m


1

r

∫

βj

c1(L)−
∑

i∈Tj

di
ri




=
1

r

∫

β0

c1(L).

Thus the degree of (v∗LY)
⊗r ⊗ (u∗L)−1|C0 is zero, as desired. q.e.d.

Let P~gn =
r

√
L2/P

~g
n be the stack of r-th roots of L2. Denote by πPn :

P
~g
n → P~gn . Consider the pullback of P

~g∪{1}
n+1 → P~gn to P

~g
n via πPn :

(37) P
~g∪{1}
n+1

φ′

��

πPn+1 // P
~g∪{1}
n+1

φ
��

u // X

P
~g
n

πPn // P~gn .
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Lemma 3.22. There exists a family of twisted stable maps

(38) P
~g∪{1}
n+1

��

// r
√

L/X

P
~g
n.

Proof. Let L
1/r
2 be the universal r-th root line bundle of π∗Pn

L2 over

P
~g
n. In (37) we calculate

π∗Pn+1
u∗L ≃π∗Pn+1

((v∗LY)
⊗r ⊗ (φ∗L2)

−1) by (34)

≃(π∗Pn+1
v∗LY)

⊗r ⊗ (φ′∗π∗Pn
L2)

−1

≃(π∗Pn+1
v∗LY ⊗ φ′∗(L1/r

2 )−1)⊗r.

The line bundle LP := π∗Pn+1
v∗LY ⊗ φ′∗(L1/r

2 )−1 defines a morphism

(39) P
~g∪{1}
n+1 → r

√
L/X.

Since φ′ : P~g∪{1}n+1 → P
~g
n is a family of twisted curves, to show that the

morphism (39) is a family of twisted stable maps we need to check that
it is representable. For this purpose it suffices to work on geometric
fibers of φ′.

Let (C, {σi}) be a geometric fiber of φ′, with coarse curve (C, {pi})
and a given stable map f̄ : (C, {pi}) → X of degree β. The restriction
of (39) to C is given by the line bundle LP|C, and fits into the following
diagram:

C
f̃ //

��

r
√

L/X

��
C

f̄ // X.

By the choices of di, 1 ≤ i ≤ n as in (31), the action of the stabilizer
group of σi on LP|σi is given by the element gi ∈ µr. This is due to the
fact that by construction Aut(σi) only acts non-trivially on the fibers of
LY. By the choice of rT,β′ , dT,β′ as in (15) and (32), on the restriction of
LP|C to a node x ∈ C, the action of the stabilizer group of x is given by

exp(2π
√
−1

dT,β′

rT,β′
) = exp(2π

√
−1

mT,β′

rT,β′
) (when LP|C is viewed as a line

bundle on one of the branches meeting at x). Since by constructionmT,β′

and rT,β′ are co-prime, it follows from Lemma 3.2 that the restriction

of f̃ to any irreducible component of C is representable. Therefore f̃ is
representable. Hence (39) gives the family (38) of twisted stable maps
we want. q.e.d.
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As observed in the proof of Lemma 3.22, the family (38) induces a

morphism P
~g
n → K0,n(G, β). The choice of di ensures that actions of

isotropy groups at marked points are given by the β-admissible vector
~g. In other words, (38) gives a morphism

(40) P~gn → K0,n(G, β)
~g,

which fits into the following diagram:

(41) P
~g
n

//

��

K0,n(G, β)
~g

��

P~gn
id // P~gn .

It is straightforward to check that the diagram is commutative. Indeed,

an object g : T → P
~g
n is given by

(42) πg : C → T, f : C → X, N,

where πg : C → T is a family of twisted curves, f : C → X is a stable
map from the coarse moduli space of C to X, and N is a line bundle
over T together with an isomorphism N⊗r ≃ g∗π∗Pn

L2. Note that C → T

is obtained as the pullback of φ′ : P~g∪{1}0,n+1,β → P
~g
0,n,β via g : T → P

~g
0,n,β;

hence there is a morphism gC : C → P
~g∪{1}
0,n+1,β.

In (41), the morphism P
~g
n → P~gn just forgets the line bundle N. The

morphism P
~g
n → K0,n(G, β)

~g takes an object (42) to a twisted stable
map C → G defined by the line bundle g∗

C
v∗LY⊗π∗gN

−1. The morphism

K0,n(G, β)
~g → P~gn retains πg : C → T and f : C → X. Hence (41) is

commutative.
An easy analysis on automorphism groups of (42) and twisted sta-

ble maps shows that the morphism (40) is representable. By [28], IV,
Proposition 2.2.6, a representable morphism between two gerbes banded

by the same group is an isomorphism. Since both P
~g
n and K0,n(G, β)

~g

are gerbes banded by the group µr (c.f. Theorem 3.19), (40) is an iso-
morphism. This completes the proof of Theorem 3.20. q.e.d.

4. Gromov–Witten invariants

4.1. Virtual fundamental class. The moduli space M0,n(X,β) has
a perfect obstruction theory relative to M0,n which is given by

E• := Rπ∗(f
∗ΩX ⊗ ωπ) → LM0,n(X,β)/M0,n

,
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where

C

π
��

f // X

M0,n(X,β)

is the universal stable map. Notice that since the morphism s′′ in di-
agram (26) is étale, E• is also a perfect obstruction theory relative to
M0,n,β.

Consider the universal twisted stable map to the gerbe G:

C

π̃
��

f̃ // G

K0,n(G, β).

According to [2] the moduli stack K0,n(G, β) has a perfect obstruction

theory Ẽ• relative to Mtw
0,n given by

Ẽ• := Rπ̃∗(f̃
∗ΩG ⊗ ωπ̃) → LK0,n(G,β)/Mtw

0,n
.

Since the morphismY
~g
0,n,β → Mtw

0,n,β is étale (Lemma 3.15), we can view

Ẽ• as a perfect obstruction theory relative to Y
~g
0,n,β.

The complex Ẽ• turns out to be the pullback of E• as an object in
DCoh(K0,n(G, β)).

Lemma 4.1. There is a natural isomorphism of objects in
DCoh(K0,n(G, β)),

p∗E• ∼−→ Ẽ•.

Proof. We will prove the statement for Ẽ∨• = Rπ̃∗f̃∗TG and E∨• =
Rπ∗f∗TX . Consider the complex Lp∗Rπ∗f∗TX in Dcoh(K0,n(G, β)). It

suffices to show that Lp∗Rπ∗f∗TX ≃ Rπ̃∗f̃∗TG. For this we consider the
diagram

C

ρ

$$■
■
■■

■■
■■

■■

π̃

��✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻

**❱❱❱
❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱

f̃ // G

ǫ

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

p∗C

π1
��

p1 // C

π
��

f // X

Kg,n(G, β)
p // M0,n(X,β).

Observe that ǫ∗TX ≃ TG. Also we have Rρ∗Lρ∗ ≃ Id because the map ρ
is the relative coarse moduli space for the map π̃. The arrow p is flat, as
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follows from Remark 3.13 and from the gerbe structure of Kg,n(G, β)
~g

over P~gn for any β-admissible vector ~g. The arrow π is flat because it
is the structure morphism of the universal curve. Moreover, the square
in the above diagram is cartesian; hence we calculate (based on [34],
Proposition 13.1.9)

Lp∗Rπ∗f
∗TX ≃ Rπ1∗Lp

∗
1f

∗TX

≃ Rπ1∗Rρ∗Lρ
∗Lp∗1f

∗TX

≃ Rπ1∗Rρ∗f̃
∗ǫ∗TX

≃ Rπ1∗Rρ∗f̃
∗TG

≃ Rπ̃∗f̃
∗TG.

Since p∗ is exact, we write p∗ for Lp∗. q.e.d.

Remark 4.2. The composite morphism

p∗E• → p∗LM0,n(X,β)/M0,n

∼→ LK0,n(G,β)~g/Mtw
0,n

in DCoh(K0,n(G, β)
~g) is the same as E∨• → LK0,n(G,β)~g/Mtw

0,n
. This follows

from functorial properties of the cotangent complex ([31], Ch. 2, Sect.
1 and 2). The relative obstruction theories E• and E∨• are built from
functorial morphisms between the cotangent complexes of the target
scheme or stack and of the universal objects (cfr. [14], Sect. 6).

Theorem 4.3. Let G → X be the stack of r-th roots of a line bundle
on X. Let ~g be a β-admissible vector. Then the following relation between
the virtual fundamental classes holds:

p∗[K0,n(G, β)
~g ]vir =

1

r
[M 0,n(X,β)]

vir .(43)

Proof. Consider the diagram (26) again. Observe that the following
hold:

• M0,n,β and Y
~g
0,n,β are smooth Artin stacks of the same pure di-

mension.
• The morphism Y

~g
0,n,β → M0,n,β is of Deligne-Mumford type and

of pure degree.
• The morphism r′ ◦ r is proper (because being proper is preserved
by base change).

• M0,n(X,β) → M0,n,β has a perfect relative obstruction theory E•

inducing a perfect relative obstruction theory on P~gn → Y
~g
0,n,β.

Therefore we can apply Theorem 5.0.1 of [22] and conclude that (r′ ◦
r)∗[P

~g
n ]vir = [M0,n(X,β)]

vir , where the multiplicative factor is 1 because

by construction ([35], Theorem 4.1) Y~g
0,n,β → M0,n,β is an isomorphism

outside a locus of codimension 1, and hence its base change has virtual
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degree equal to 1. Since t is étale, [K0,n(G, β)
~g ]vir = deg(t) · [P~gn ]vir.

Since, by Theorem 3.19 or 3.20, t is of degree 1
r , (43) follows. q.e.d.

4.2. Genus 0 invariants. Let

ǫ : G = r
√

L/X → X

be a µr-root gerbe. Then the inertia stack admits the following decom-
position,

IG =
∐

g∈µr
Gg,

where Gg is a root gerbe isomorphic to G. Let ǫg : Gg → X be the induced
morphism. On each component there is an isomorphism between the
rational cohomology groups

ǫ∗g : H
∗(X,Q)

≃−→ H∗(Gg,Q).

Let ~g = (g1, . . . , gn) be a β-admissible vector. There are evaluation
maps

evi : K0,n(
r
√

L/X, β)~g → Ī(G)gi ,

where Ī(G)gi is a component of the rigidified inertia stack Ī(G) =
∪g∈µr Ī(G)g. Although the evaluation maps evi do not take values in
IG, as explained in [2], Section 6.1.3, one can still define a pullback map
at cohomology level,

ev∗i : H
∗(Ggi ,Q) → H∗(K0,n(

r
√

L/X, β)~g,Q).

Given δi ∈ H∗(Ggi ,Q) for 1 ≤ i ≤ n and integers ki ≥ 0, 1 ≤ i ≤ n, one
can define descendant orbifold Gromov–Witten invariants

〈δ1ψ̄k11 , · · · , δnψ̄knn 〉G0,n,β :=

∫

[K0,n(
r
√

L/X,β)~g ]vir

n∏

i=1

ev∗i (δi)ψ̄
ki
i ,

where ψi are the pullback of the first Chern classes of the tautological
line bundles overM0,n(X,β) (which by abuse of notation we also denote
by ψ̄i).

For classes δi ∈ H∗(Ggi ,Q), set δi = (ǫ∗gi)
−1(δi). Descendant Gromov–

Witten invariants 〈δ1ψ̄k11 , · · · , δnψ̄knn 〉X0,n,β of X are similarly defined.
Theorem 4.3 implies the following comparison result.

Theorem 4.4.

〈δ1ψ̄k11 , . . . , δnψ̄knn 〉G0,n,β =
1

r
〈δ1ψ̄k11 , · · · , δnψ̄knn 〉X0,n,β.

Moreover, if ~g is not β-admissible, then the Gromov–Witten invariants
of G vanish.
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Proof. Denote by evi : M 0,n(X,β) → X the i-th evaluation map.

Using the definition of ev∗i one can check that ev∗i (δi) = p∗ev∗i (δi). Note
also that p∗ψ̄i = ψ̄i. Thus using Theorem 4.3 we have

〈δ1ψ̄k11 , . . . , δnψ̄knn 〉G0,n,β =

∫

[K0,n(G,β)~g ]vir

n∏

i=1

ev∗i (δi)ψ̄
ki
i

=

∫

[K0,n(G,β)~g ]vir

n∏

i=1

p∗ev∗i (δi)ψ̄
ki
i

=

∫

[K0,n(G,β)~g ]vir

n∏

i=1

p∗(ev∗i (δi)ψ̄
ki
i )

=
1

r

∫

[M0,n(X,β)]vir

n∏

i=1

ev∗i (δi)ψ̄
ki
i

=
1

r
〈δ1ψ̄k11 , · · · , δnψ̄knn 〉X0,n,β.

q.e.d.

In the following we use complex numbers C as coefficients for the
cohomology. For α ∈ H∗(X,C) and an irreducible representation ρ of
µr, we define

αρ :=
1

r

∑

g∈µr
χρ(g

−1)ǫ∗g(α),

where χρ is the character of ρ. The map (α, ρ) 7→ αρ clearly defines an
additive isomorphism

(44)
⊕

[ρ]∈µ̂r
H∗(X)[ρ] ≃ H∗(IG,C),

where µ̂r is the set of isomorphism classes of irreducible representations
of µr, and for [ρ] ∈ µ̂r we define H∗(X)[ρ] := H∗(X,C).

Theorem 4.4 together with orthogonality relations of characters of µr
implies the following

Theorem 4.5. Given α1, . . . , αn ∈ H∗(X,Q) and integers
k1, . . . , kn ≥ 0, we have

〈α1ρ1ψ̄
k1
1 , . . . , αnρnψ̄

kn
n 〉G0,n,β

=





1
r2
〈α1ψ̄

k1
1 , · · · , αnψ̄knn 〉X0,n,β

×χρ(exp(
−2π

√
−1

∫
β
c1(L)

r )) if ρ1 = ρ2 = . . . . = ρn =: ρ,

0 otherwise .
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Proof. By our definition we have

〈α1ρ1 ψ̄
k1
1 , . . . , αnρnψ̄

kn
n 〉G0,n,β

=
1

rn

∑

g1,...,gn∈µr

n∏

i=1

χρi(g
−1
i )〈

n∏

i=1

ǫ∗gi(αi)ψ̄
ki
i 〉G0,n,β.

The term associated to ~g := (g1, . . . , gn) in the above sum
vanishes unless ~g is a β-admissible vector. This implies that
∏n
i=1 gi = exp(

2π
√
−1

∫
β
c1(L)

r ). We rewrite this equation as g−1
n =

exp(
−2π

√
−1

∫
β
c1(L)

r )
∏n−1
i=1 gi. Substitute this into the above equation

and use Theorem 4.4 to get

〈α1ρ1ψ̄
k1
1 , . . . , αnρnψ̄

kn
n 〉G0,n,β

=
1

rn

∑

g1,...,gn−1∈µr
χρn

(
exp

(
−2π

√
−1
∫
β c1(L)

r

))

(
n−1∏

i=1

χρi(g
−1
i )χρn(gi)

)
1

r

〈
n∏

i=1

αiψ̄
ki
i

〉X

0,n,β

.

Applying the orthogonality condition

1

r

∑

g∈µr
χρ(g

−1)χρ′(g) = δρ,ρ′ ,

we find

〈α1ρ1ψ̄
k1
1 , . . . , αnρnψ̄

kn
n 〉G0,n,β

=
1

r
χρn

(
exp

(
−2π

√
−1
∫
β c1(L)

r

))

(
n−1∏

i=1

δρi,ρn

)
1

r

〈
n∏

i=1

αiψ̄
ki
i

〉X

0,n,β

.

The result follows. q.e.d.

We now reformulate this in terms of generating functions. Let

{φi | 1 ≤ i ≤ rankH∗(X,C)} ⊂ H∗(X,C)

be an additive basis. According to the discussion above, the set

{φiρ | 1 ≤ i ≤ rankH∗(X,C), [ρ] ∈ µ̂r}
is an additive basis of H∗(IG,C). Recall that the genus 0 descendant
potential of G is defined to be

F0
G
({tiρ,j}1≤i≤rankH∗(X,C),ρ∈µ̂r ,j≥0;Q) :=

∑
n≥0,β∈H2(X,Z)

i1,...,in;ρ1,...,ρn;j1,...,jn

Qβ

n!

∏n
k=1 tikρk,jk〈

∏n
k=1 φikρk ψ̄

jk
k 〉G0,n,β.(45)



38 E. ANDREINI, Y. JIANG & H.-H. TSENG

The descendant potential F0
G

is a formal power series in variables
tiρ,j, 1 ≤ i ≤ rankH∗(X,C), ρ ∈ µ̂r, j ≥ 0 with coefficients in the

Novikov ring C[[NE(X)]], where NE(X) is the effective Mori cone of
the coarse moduli space of G. Here Qβ are formal variables labeled by
classes β ∈ NE(X). See e.g. [40] for more discussion on descendant
potentials for orbifold Gromov–Witten theory.

Similarly the genus 0 descendant potential of X is defined to be

F0
X({ti,j}1≤i≤rankH∗(X,C),j≥0;Q) :=

∑

n≥0,β∈H2(X,Z)

i1,...,in;j1,...,jn

Qβ

n!

n∏

k=1

tik,jk

〈
n∏

k=1

φik ψ̄
jk
k

〉X

0,n,β

.(46)

The descendant potential F0
X is a formal power series in variables

ti,j, 1 ≤ i ≤ rankH∗(X,C), j ≥ 0 with coefficients in C[[NE(X)]] and

Qβ is (again) a formal variable. Theorem 4.5 may be restated as follows.

Theorem 4.6.

F0
G({tiρ,j}1≤i≤rankH∗(X,C),ρ∈µ̂r ,j≥0;Q)

=
1

r2

∑

[ρ]∈µ̂r
F0
X({tiρ,j}1≤i≤rankH∗(X,C),j≥0;Qρ),

where Qρ is defined by the following rule:

Qβρ := Qβχρ

(
exp

(
−2π

√
−1
∫
β c1(L)

r

))
,

and χρ is the character associated to the representation ρ.

Theorem 4.6 confirms the decomposition conjecture for genus 0
Gromov–Witten theory of G.

We have another reformulation of Theorem 4.6. Consider a new set
of variables

{qiρ,j|1 ≤ i ≤ rankH∗(X,C), [ρ] ∈ µ̂r, j ≥ 0}
defined by dilaton shifts

qiρ,j =

{
tiρ,j if (i, j) 6= (1, 1)

t1ρ,1 − 1 if (i, j) = (1, 1).

We view F0
G
as functions in the variables qiρ,j:

F0
G = F0

G({qiρ,j};Q).

Each term in the right-hand side of Theorem 4.6 can also be viewed
as a function of the new variables qiρ,j for a fixed ρ ∈ µ̂r:
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F0
X({qiρ,j};Qρ).

By dilaton equation, we have

1

r2
F0
X({qiρ,j};Qρ) = F0

X({q̄iρ,j};Qρ)

where q̄iρ,j := rqiρ,j. Let Mρ denote the Frobenius structure
on H∗(X)[ρ] = H∗(X) obtained using the potential function

F0
X({q̄iρ,j};Qρ) and the Poincaré pairing on X. The following is a re-

statement of Theorem 4.6.

Theorem 4.7. Under the isomorphism (44), the Frobenius structure
defined by the genus 0 Gromov–Witten theory of G is isomorphic to
⊕ρMρ.

Remark 4.8. It is natural to ask for a generalization of Theorem
4.6 to higher genus Gromov–Witten theory. Suppose that the Frobe-
nius structure associated to the genus 0 Gromov–Witten theory of X
is generically semi-simple; then one can prove certain generalizations of
Theorem 4.6 to higher genus ancestor invariants by using Givental’s for-
mula [29], [39] to reduce the question to genus 0. In [8] we will study the
higher genus generalization of Theorem 4.6 in general (namely without
assuming semi-simplicity).

Appendix A. Banded abelian gerbes

Let X be a smooth projective variety over C. Let G be a finite abelian
group. The purpose of this appendix is to explain (see Section A.1) how
the results in the main part of the paper can be extended to banded
G-gerbes G over X which are essentially trivial.

We begin with some preliminary materials. Recall the following well-
known structure result for finite abelian groups:

Lemma A.1. Let G be a finite abelian group of order N . Then there
exists a decomposition

G ≃
k∏

j=1

µr(j) , where

k∏

j=1

r(j) = N.(47)

Throughout this appendix we fix such a decomposition (47) of G.
Observe that the inertia stack IG admits a decomposition

(48) IG = ∪g∈GGg,
indexed by elements in G. Let Ī(G)g ⊂ Ī(G) be the image of Gg under
the natural map IG → Ī(G) to the rigidified inertia stack. A vector of
elements

~g := (g1, . . . , gn) ∈ G×n
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is called β-admissible if the locus

K0,n(G, β)
~g := ∩ni=1ev

−1
i (Ī(G)gi)

is non-empty. Note that for 1 ≤ i ≤ n we may write

gi := (g
(1)
i , . . . , g

(k)
i ) ∈

k∏

j=1

µr(j) = G.

A.1. Essentially trivial abelian gerbes. By definition a G-gerbe
over X is essentially trivial if it becomes trivial after a contracted prod-
uct with the trivial O∗

X -gerbe. In this section, let G → X be an essentially
trivial G-banded gerbe over X. The following result is known (see e.g.
[27], Proposition 6.9).

Lemma A.2. Let G → X be an essentially trivial G-banded gerbe
over X, with G finite and abelian. Then there exist line bundles
L(1), . . . ,L(k) over X and positive integers r(1), . . . , r(k), such that

(49) G ≃ r(1)
√

L(1)/X ×X
r(2)
√

L(2)/X ×X · · · ×X
r(k)
√

L(k)/X.

Proof. Let [G] ∈ H2
et(X,G) be the class of the gerbe G. Fix a de-

composition of G as in (47). Denote by pj : G → µr(j) the pro-
jection to the j-th factor. For 1 ≤ j ≤ k, the induced morphism
pj∗ : H2

et(X,G) → H2
et(X,µr(j)) maps the class of a G-banded gerbe

G to the class of the µr(j)-gerbe obtained from G by taking the con-
tracted product with the trivial µr(j)-gerbe. This is the same as taking

the rigidification of G by the subgroup of the inertia G := G/µr(j) . The
composition of pj with the standard embedding µr(j) → C∗ yields a
homomorphism φj : G→ C∗. Clearly the composition

G
φj−→ C∗ (·)r(j)−→ C∗

is trivial.
Associated to the Kummer sequence

1 −→ µr(j) −→ C∗ (·)r(j)−→ C∗ −→ 1

there is a long exact sequence

. . . → Ȟ1
ét(X,C

∗) → Ȟ2
ét(X,µr(j)) → Ȟ2

ét(X,C
∗) → Ȟ2

ét(X,C
∗) → . . .

The map φj induces a homomorphism φj∗ : Ȟ2
ét(X,G) → Ȟ2

ét(X,C
∗)

mapping the class pj∗[G] of the µr(j)-gerbe obtained from G by the
homomorphism pj : G → µr(j) to the class of its contracted prod-
uct with the trivial O∗

X -gerbe. Since G is essentially trivial, the class

φj∗([G]) ∈ Ȟ2
ét(X,C

∗) is zero by definition. By the exact sequence above

this means that there exists a line bundle L(j) over X such that the
µr(j)-gerbe of class pj∗[G] is isomorphic to the root gerbe r(j)

√
L(j)/X .
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We can prove the claim by induction on the number k of cyclic groups
appearing in the decomposition of G. For k = 1 the claim is true by
definition. Assume it is true for k = n− 1. Let G be a G-banded gerbe,
where G ≃∏n

j=1 µr(j) . Consider the group homomorphisms induced by
the rigidification

Ȟ2
ét(X,G) → Ȟ2

ét(X,G)⊕ Ȟ2
ét(X,µr(n)),

where G ≃ G/µr(n) . We denote the corresponding gerbes by G and Gk.
We have a commutative diagram

G

��❃
❃

❃

❃

��

  

G̃

��

//

�

G

��
Gk // X,

(50)

where the dotted arrow is induced by the universal property of the fiber
product. The morphism G → G×Gk is representable and factors through

G → G̃, which is therefore representable. We conclude by observing that
a representable morphism between two gerbes banded by the same group
is an isomorphism. q.e.d.

In view of Lemma A.2 we assume that the gerbe G is of the form (49).
We call this gerbe a multi-root gerbe. Recall that to give a morphism
Y → G is the same as giving a morphism f : Y → X and line bundles

M1, . . . ,Mk over Y together with isomorphisms φj : M⊗r(j)
j ≃ f∗L(j),

1 ≤ j ≤ k.
The constructions in Section 3 can be easily modified to treat the

multi-root gerbe G. Arguments proving Lemma 3.5 and Proposition 3.6
easily yield the following

Proposition A.3.

1) A vector ~g is β-admissible (with respect to a class β ∈ H+
2 (X,Z))

if and only if

(51)

n∏

i=1

g
(j)
i = exp

(
2π

√
−1

r(j)

∫

β
c1(L

(j))

)
, 1 ≤ j ≤ k.

2) Given a vector ~g satisfying (51) and a stable map [f :
(C, p1, . . . , pn) → X] ∈ M0,n(X,β)(C), there exists, up to iso-

morphisms, a unique twisted stable map f̃ : (C, σ1, . . . , σn) → G in
K0,n(G, β)

~g lifting f .

Remark A.4. The n-tuple (g
(j)
1 , . . . , g

(j)
n ) is a β-admissible vector

for the root gerbe r(j)
√

L(j)/X as in Definition 3.3.
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Next we define some numbers.

Definition A.5. 1) For 1 ≤ i ≤ n, let ri be the order of gi in G.

Each g
(j)
i , 1 ≤ i ≤ n may be identified with a root of unity

g
(j)
i = exp(2π

√
−1θ

(j)
i ), where θ

(j)
i ∈ Q ∩ [0, 1),

which defines the rational numbers θ
(j)
i , 1 ≤ i ≤ n. For 1 ≤ i ≤ n

and 1 ≤ j ≤ k, define

(52) ρ
(j)
i := r(j)θ

(j)
i , r

(j)
i :=

r(j)

gcd(r(j), ρ
(j)
i )

, m
(j)
i :=

ρ
(j)
i

gcd(r(j), ρ
(j)
i )

.

Note that r
(j)
i divides ri, and r

(j)
i is the order of g

(j)
i in µr(j) .

2) For a pair (T, β′) indexing the boundary divisors of M0,n,β as in
Definition 3.10, define

θ
(j)
T,β′ :=

〈
1

r(j)

∫

β′

c1(L
(j))−

∑

i∈T
θ
(j)
i

〉
, r

(j)
T,β′ :=

r(j)

gcd(r(j), r(j)θ
(j)
T,β′)

,

m
(j)
T,β′ :=

r(j)θ
(j)
T,β′

gcd(r(j), r(j)θ
(j)
T,β′)

.(53)

3) Define

g
(j)
T,β′ := exp(2π

√
−1θ

(j)
T,β′) ∈ µr(j) , gT,β′ := (g

(1)
T,β′ , . . . , g

(k)
T,β′) ∈ G.

And let rT,β′ be the order of gT,β′ in G.

With the numbers defined above, the constructions and results in
Sections 3.3 and 3.4 are valid for the multi-root gerbe G. The proofs are
straightforward modifications. In particular we still have the diagram
(26).

Moreover Theorem 3.20 admits a generalization to multi-root gerbes:

Theorem A.6. K0,n(G, β)
~g is a multi-root gerbe over P~gn .

To prove Theorem A.6 it suffices to repeat the arguments in the
proof of Theorem 3.20 multiple times. The key point is to construct a
collection of line bundles, generalizing the one in (33):
(54)

L
(j)
Y := O

Y
~g∪{1}
0,n+1,β


 ∑

1≤i≤n

d
(j)
i

r
(j)
i

Si −
∑

(T,β′)∈ID

d
(j)
T,β′

r
(j)
T,β′

D
T∪{n+1}
β′


 , 1 ≤ j ≤ k.

Here the set ID is defined on page 18, and we use the following definition:
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Definition A.7. 1) For 1 ≤ i ≤ n and 1 ≤ j ≤ k we define

d
(j)
i ∈ Z by requiring

(55) g
(j)
i = exp(

2π
√
−1

r
(j)
i

d
(j)
i ) and

n∑

i=1

d
(j)
i

r
(j)
i

=
1

r(j)

∫

β
c1(L

(j)).

2) To a pair (T, β′) which indexes a boundary divisor of M0,n,β, we

associate integers d
(j)
T,β′ such that

(56)
∑

i∈T

d
(j)
i

r
(j)
i

+
d
(j)
T,β′

r
(j)
T,β′

=
1

r(j)

∫

β′

c1(L
(j)), 1 ≤ j ≤ k.
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