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STRUCTURE OF HOMOGENEOUS RICCI SOLITONS

AND THE ALEKSEEVSKII CONJECTURE

Ramiro Lafuente & Jorge Lauret

Abstract

We bring new insights into the longstanding Alekseevskii con-
jecture, namely that any connected homogeneous Einstein mani-
fold of negative scalar curvature is diffeomorphic to a Euclidean
space, by proving structural results which are actually valid for
any homogeneous expanding Ricci soliton, and generalize many
well-known results on Einstein solvmanifolds, solvsolitons, and nil-
solitons. We obtain that any homogeneous expanding Ricci soliton
M = G/K is diffeomorphic to a product U/K × N , where U is
a maximal reductive Lie subgroup of G and N is the maximal
nilpotent normal subgroup of G, such that the metric restricted
to N is a nilsoliton. Moreover, strong compatibility conditions be-
tween the metric and the action of U on N by conjugation must
hold, including a nice formula for the Ricci operator of the metric
restricted to U/K. Our main tools come from geometric invariant
theory. As an application, we give many Lie theoretical character-
izations of algebraic solitons, as well as a proof of the fact that
the following a priori much stronger result is actually equivalent
to Alekseevskii’s conjecture: Any expanding algebraic soliton is
diffeomorphic to a Euclidean space.

1. Introduction

A major open question on homogeneous Einstein manifolds is known
as Alekseevskii’s conjecture (see [4, 7.57]); namely

Any connected homogeneous Einstein manifold of negative
scalar curvature is diffeomorphic to a Euclidean space.

Known examples so far are all isometric to a left-invariant metric on
a simply connected solvable Lie group. This is also the situation for
the broader class of homogeneous expanding Ricci solitons, i.e. Rc(g) =
cg + LXg for some c < 0 and vector field X. Such examples are called
solvsolitons in the literature (nilsolitons in the nilpotent case) and are
defined by having their Ricci operators equal to a scalar multiple of
the identity plus a derivation of the corresponding solvable Lie algebra.
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Solvsolitons may be viewed as a rare case in Ricci soliton theory, as they
are neither compact, nor gradient or Kähler.

In addition to their definition as a natural generalization of Einstein
metrics, Ricci solitons correspond to solutions of the Ricci flow that
evolve self-similarly, that is, only by scaling and pullback by diffeomor-
phisms, and they therefore play an important role in the singularity
behavior of the Ricci flow on any class of manifolds.

As a first step toward a possible resolution of the above conjecture, we
obtain in the present paper some structural results which are actually
valid for any homogeneous expanding Ricci soliton, and generalize the
results on Einstein solvmanifolds obtained in [13, 23], as well as those
on solvsolitons given in [24]. As in these works, the technology we use
here is derived from strong results in geometric invariant theory. The
approach is developed in Section 2 in the general setting of homogeneous
spaces, independently of the rest of the paper, since we believe it might
be useful to study, for instance, other questions on Ricci curvature of
homogeneous manifolds.

Our main result can be described as follows (see Theorem 4.6 and
Section 5 for more detailed statements).

Theorem 1.1. For any simply connected homogeneous expanding
Ricci soliton (M,g), say with Rc(g) = cg + LXg, there exist a presen-
tation (M,g) = G/K as an almost-effective homogeneous space and a
reductive decomposition g = k ⊕ p such that the following conditions
hold:

• g = u⊕ n is a semi-direct product of Lie algebras, with u reductive
and n nilpotent, such that h ⊥ n with respect to the inner product
on p determined by g, where

g =

u︷ ︸︸ ︷
k⊕ h⊕ n︸ ︷︷ ︸

p

.

• G ≃ U ⋉N and as a differentiable manifold,

M = U/K ×N,

where U and N are the respective connected Lie subgroups of G
with Lie algebras u and n.

• The metric restricted to N is a nilsoliton, with Ricci operator
RicN = cI +D1 for some D1 ∈ Der(n).

• The Ricci operator of the metric restricted to U/K, relative to the
reductive decomposition u = k ⊕ h, is given by RicU/K = cI + Ch,
where Ch is the positive semi-definite operator of h defined by

〈ChY, Y 〉 = 1
4 tr

(
adY |n + (adY |n)

t
)2
, ∀Y ∈ h.
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• The adjoint action of u on n and the metric satisfy the following
extra compatibility condition:

∑
[adYi|n, (ad Yi|n)

t] = 0, for any orthonormal basis {Yi} of h,

from which it follows that (adY |n)
t ∈ Der(n) for all Y ∈ u.

Conversely, if these conditions hold, then G/K is an expanding Ricci
soliton with Ricci operator

(1) Ric = cI + 1
2(Dp +Dt

p),

where

D =
[
0 0
0 Dp

]
= − adH +

[
0
0
D1

]
∈ Der(g),

and H ∈ p is defined by 〈H,X〉 = tr adX for all X ∈ p.

Remark 1.2. Regarding Alekseevskii’s conjecture, we note that M
is diffeomorphic to a Euclidean space if and only if U/K is so, which
is equivalent to K being a maximal compact subgroup of the reductive
Lie group U .

Condition (1) implies that the Ricci tensor equals Rc(g) = cg+LXD
g,

where XD is the vector field defined by the one-parameter subgroup of
equivariant diffeomorphisms ϕt ∈ Diff(G/K) determined by the auto-
morphisms etD ∈ Aut(g), and the Ricci flow starting at g evolves by
g(t) = (−2ct + 1)ϕ∗

s(t)g, t ∈ ( 1
2c ,∞), where s(t) = log(−2ct + 1)/c.

These homogeneous spaces are called semi-algebraic solitons, and actu-
ally any homogeneous Ricci soliton is semi-algebraic with respect to its
full isometry group G = I(M,g) (see [17]). If the derivation D above is
symmetric and hence Ric = cI+Dp, then G/K is said to be an algebraic
soliton, which is precisely the algebro-geometric notion generalizing to
any homogeneous space the definition of a solvsoliton (see [19, Section
3] for a recent overview on homogeneous Ricci solitons).

Geometrically speaking, algebraic solitons are characterized among
homogeneous Ricci solitons as those for which the Ricci flow solution
is simultaneously diagonalizable (see [19]). As a first application of our
structural results, we give many Lie theoretical characterizations of al-
gebraic solitons, as for instance adH being a normal operator, or also
Ric |h = cI (see Proposition 4.14).

In Section 6, we use the above theorem to prove that given any ex-
panding algebraic soliton (M,g) = G/K, with G non-unimodular, one
can modify the metric g in order to obtain a new homogeneous metric
g̃ on M which is Einstein with Rc(g̃) = cg̃. In the unimodular case the
Einstein metric is obtained on R×M . In any case, this implies that the
following a priori much stronger result is equivalent to the Alekseevskii
conjecture:
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Any expanding algebraic soliton G/K is diffeomorphic to a
Euclidean space (or equivalently, K is a maximal compact
subgroup of G).

Remark 1.3. The statement inside the parentheses is actually the
conclusion of Alekseevskii’s conjecture as originally stated in Besse’s
book [4, 7.57] (see Section 3 for an account of the conjecture and
its equivalent formulations). It is worth noticing that if G is a linear
group, then the maximality of K implies that G/K is isometric to a
left-invariant metric on a simply connected solvable Lie group (see [31,
Corollary 1,c]), i.e. a solvsoliton.

We obtain in addition a generalization of the link between Einstein
solvmanifolds and nilsolitons discovered in [20], to the case of homoge-
neous Einstein manifolds G/K of negative scalar curvature and unimod-
ular expanding algebraic solitons G0/K, which as differentiable mani-
folds satisfy G/K = R×G0/K (see Proposition 6.1).

Acknowledgments. This research was partially supported by grants
from CONICET, FONCYT and SeCyT UNC.

2. Algebraic aspects of homogeneous Riemannian manifolds

We consider in this section an ‘algebraic’ point of view to study ho-
mogeneous Riemannian manifolds, with special attention on the non-
compact case, which allows us to put to good use all the results from
geometric invariant theory described in Appendix 7.

A Riemannian manifold (M,g) is said to be homogeneous if its isome-
try group I(M,g) acts transitively on M . A homogeneous (Riemannian)
space is instead a differentiable manifold G/K, where G is a Lie group
and K ⊂ G is a closed Lie subgroup, endowed with a G-invariant Rie-
mannian metric. Both concepts are of course intimately related, though
not in a one-to-one way. To study a geometric problem on homogeneous
manifolds, it is often very useful and healthy to capture the relevant
algebraic information and present the hypotheses and the problem in
‘algebraic’ terms.

Given a connected homogeneous manifold (M,g), each transitive
closed Lie subgroup G ⊂ I(M,g) gives rise to a presentation of (M,g)
as a homogeneous space (G/K, g), where K is the isotropy subgroup of
G at some point o ∈ M . As K is compact, there always exists a reduc-
tive (i.e. Ad(K)-invariant) decomposition g = k ⊕ p, where g and k are
respectively the Lie algebras of G and K, and thus p can be naturally
identified with the tangent space p ≡ ToM = ToG/K, by taking the
value at the origin o = eK of the Killing vector fields corresponding to
elements of p (i.e. Xo = d

dt |0 exp tX(o)). Any G-invariant metric g on
G/K can therefore be identified with 〈·, ·〉 := g(o), an Ad(K)-invariant
inner product on p.
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We can extend 〈·, ·〉 to an Ad(K)-invariant inner product on g such
that 〈k, p〉 = 0. Let us call the data set (g = k⊕p, 〈·, ·〉) a metric reductive
decomposition.

In order to get a presentation (M,g) = (G/K, g) of a connected
homogeneous manifold as a homogeneous space, there is no need for
G ⊂ I(M,g) to hold, that is, to have an effective action. It is actually
enough to have a transitive action of G on M by isometries that is
almost-effective (i.e. the normal subgroup {g ∈ G : ghK = hK, ∀h ∈ G}
of K is discrete), along with a reductive decomposition g = k ⊕ p such
that the inner product 〈·, ·〉 on p defined by 〈·, ·〉 := g(o) is Ad(K)-
invariant. In this more general case, K might not be compact, but it
is easy to prove that Ad(K) is still compact in GL(g) and hence a
metric reductive decomposition (g = k⊕ p, 〈·, ·〉) can still be attached to
(G/K, g).

Moreover, since the Killing form B of g is always negative definite on
k (recall that the isotropy representation ad : k −→ End(p) is faithful by
almost-effectiveness), there is always a distinguished reductive decom-
position to choose, namely, the one where p is precisely the orthogonal
complement of k with respect to B (see e.g. [19, Lemma 2.1]).

Summarizing, a given homogeneous manifold (M,g) can always be
presented as a homogeneous space (G/K, g) with a metric reductive
decomposition (g = k ⊕ p, 〈·, ·〉), and it can always be assumed that
B(k, p) = 0. Any homogeneous space considered in this paper will be
assumed to be almost-effective and connected, unless otherwise stated.

Remark 2.1. When k = 0, a metric reductive decomposition consists
only of the pair (g, 〈·, ·〉), which is often referred to in the literature as
a metric Lie algebra and corresponds to a left-invariant metric on a Lie
group.

Let us fix a homogeneous space (G/K, g) together with a metric re-
ductive decomposition (g = k ⊕ p, 〈·, ·〉) for the rest of the section. We
consider

(2) p = h⊕ n,

the orthogonal decomposition with respect to 〈·, ·〉, where n is the nil-
radical of g (i.e. the maximal nilpotent ideal; recall that n ⊂ p as it is
contained in the kernel of B). Thus the p-component

[·, ·]p : p× p −→ p

of the Lie bracket [·, ·] of g restricted to p × p can be decomposed as a
sum of bilinear maps as follows:

[·, ·]p = λ0 + λ1 + η + µ,
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where

(3)
λ0 : h× h −→ h, η : h× n −→ n,
λ1 : h× h −→ n, µ : n× n −→ n.

We are using here that n is an ideal of g. Also note that λ0, λ1, and µ
are skew-symmetric, (n, µ) is a nilpotent Lie algebra, and by convention
[X,Y ] = −η(Y,X) for all Y ∈ h, X ∈ n.

In order to apply the results in Appendix 7, if dim n = n, then we
identify n with R

n via an orthonormal basis {e1, . . . , en} of n. In this
way, µ can be viewed as a point in the variety of nilpotent Lie algebras
N ⊂ V . If µ 6= 0, then µ belongs to some stratum Sβ with β ∈ t+ (see
Theorem 7.1), and we can define Eβ ∈ End(p) by

(4) Eβ :=
[
0
β+||β||2I

]
, i.e. Eβ|h = 0, Eβ|n = β + ||β||2I.

Remark 2.2. It is still unclear what would be the geometric meaning
of this diagonal n× n-matrix β associated to each metric reductive de-
composition, and consequently to any homogeneous manifold. However,
β will play a fundamental role in the proofs of most of the structural
results on homogeneous Ricci solitons obtained in the present paper.

On the other hand, we will also identify [·, ·]p with an element of
Λ2p∗ ⊗ p and use the notation introduced in Appendix 7 by replacing
R
n with p.
The following technical result will be crucial in the applications.

Lemma 2.3. If µ ∈ Sβ satisfies βµ = β, then

〈π(Eβ)[·, ·]p, [·, ·]p〉 ≥ 0.

Proof. We first note that π(Eβ) leaves invariant the subspaces of
Λ2p∗ ⊗ p that the λi’s, η, and µ belong to (for instance, λ0 ∈ Λ2h∗ ⊗ h,
λ1 ∈ Λ2h∗ ⊗ n, etc). These subspaces are orthogonal with respect to the
inner product 〈·, ·〉 defined in (49) and hence

〈π(Eβ)[·, ·]p, [·, ·]p〉 =〈π(Eβ)λ0, λ0〉+ 〈π(Eβ)λ1, λ1〉

+ 〈π(Eβ)η, η〉 + 〈π(Eβ)µ, µ〉.

Let {Yi} and {Xk} denote orthonormal bases of h and n, respectively.
It is easy to check that

〈π(Eβ)λ0, λ0〉 = 0,

and since Eβ |n is positive definite by (55), we have that

(5) 〈π(Eβ)λ1, λ1〉 =
∑

〈Eβλ1(Yi, Yj), λ1(Yi, Yj)〉 ≥ 0.
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If adη Y denote the derivation of (n, µ) defined by the adjoint action
of Y ∈ h on n, then

〈π(Eβ)η, η〉 = 2
∑

〈Eβη(Yi,Xj)− η(Yi, EβXj), η(Yi,Xj)〉

= 2
∑

〈[β, adη Yi](Xj), adη Yi(Xj)〉(6)

= 2
∑

〈[β, adη Yi], adη Yi〉.

It follows from (54) that 〈π(Eβ)η, η〉 ≥ 0. Finally, we have that

(7) 〈π(Eβ)µ, µ〉 =
〈
π
(
β + ||β||2I

)
µ, µ

〉
≥ 0

by (58), which concludes the proof of the lemma. q.e.d.

There is a unique element H ∈ g which satisfies

(8) 〈H,X〉 = tr adX, ∀X ∈ g.

We note that H ∈ p due to the ad k-invariance of 〈·, ·〉, and that H = 0
if and only if g is unimodular. Let Bg : g −→ g denote the symmetric
map defined by the Killing form of g relative to 〈·, ·〉, that is,

(9) 〈BgX,Y 〉 = tr adX adY , ∀X,Y ∈ g.

It follows that, relative to the decomposition g = k⊕ p, the operator Bg

has the form

(10) Bg =
[
B0 ∗
∗ Bp

]
, B0 < 0,

with ∗ = 0 if one is assuming that B(k, p) = 0.
The Ricci operator Ric of (G/K, g) with metric reductive decompo-

sition (g = k⊕ p, 〈·, ·〉) is given by (see [4, 7.38])

(11) Ric = M − 1
2Bp − S(adpH),

where adpH : p −→ p is defined by adp H(X) = [H,X]p for all X ∈ p,

(12) S(A) := 1
2(A+At)

is the symmetric part of an operator, and M : p −→ p is the symmetric
operator defined by

〈MX,Y 〉 =− 1
2

∑
〈[X,Xi]p,Xj〉〈[Y,Xi]p,Xj〉(13)

+ 1
4

∑
〈[Xi,Xj ]p,X〉〈[Xi,Xj ]p, Y 〉, ∀X,Y ∈ p,

where {Xi} is any orthonormal basis of (p, 〈·, ·〉).
It follows from (51) that this ‘anonymous’ map M in the formula of

the Ricci operator satisfies

(14) m([·, ·]p) =
4

||[·,·]p||2
M,
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where m : Λ2p∗ ⊗ p −→ sym(p) is the moment map for the natural
action of GL(p) on Λ2p∗ ⊗ p. In other words, M may be alternatively
defined by

(15) trME = 1
4〈π(E)[·, ·]p, [·, ·]p〉, ∀E ∈ End(p),

where we are considering [·, ·]p as a vector in Λ2p∗ ⊗ p, 〈·, ·〉 is the inner
product defined in (49), and π is the representation given in (48) (see
the notation in Appendix 7 and replace the vector space R

n by p).

Remark 2.4. In particular, M is orthogonal to any derivation of the
algebra (p, [·, ·]p).

Remark 2.5. It also follows that the moment map M commutes
with any derivation of the algebra (p, [·, ·]p) whose transpose is also a
derivation. Indeed, if E is such a derivation, then

tr [M,E]C =trM [E,C] = 1
4〈π([E,C])[·, ·]p , [·, ·]p〉

=1
4〈π(C)[·, ·]p, π(E

t)[·, ·]p〉 − 〈π(C)π(E)[·, ·]p , [·, ·]p〉 = 0,

for all C ∈ End(p).

Notice that the above two remarks are actually valid for any algebra
and its moment map value as considered in the appendix.

We now prove some technical results involvingH, Ric, and the adjoint
representation of k on p, which will be useful in the following sections.

Let p = h ⊕ n be the orthogonal decomposition defined in (2), and
consider [·, ·]p = λ0 + · · ·+ µ as in (3). Since n is the nilradical of g, we
have that H ⊥ n and n is in the kernel of the Killing form. Thus

H ∈ h,

and adpH and Bp have the form

(16) adp H =
[
adλ0 H 0

adλ1 H adη H

]
, Bp =

[
B1 0
0 0

]
,

where adλi
Y (Y ′) = λi(Y, Y

′) for all Y, Y ′ ∈ h, and analogously for η.
We recall that

g = k⊕ h⊕ n, [k, k] ⊂ k, [k, h] ⊂ h, [g, n] ⊂ n,

and thus the Lie bracket of g decomposes as

[·, ·] = ν0 + ν1 + ν2 + λ2 + [·, ·]p,

where

ν0 : k× k −→ k, λ2 : h× h −→ k.
ν1 : k× h −→ h,
ν2 : k× n −→ n,
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In all that follows, it will be very useful to have in mind the following
formulas for the adjoint operators relative to the decomposition g =
k⊕ h⊕ n. For Z ∈ k, Y ∈ h, and X ∈ n we have

adZ =

[
adν0 Z 0 0

0 adν1
Z 0

0 0 adν2
Z

]
, adY =

[
0 adλ2

Y 0

adν1 Y adλ0
Y 0

0 adλ1
Y adη Y

]
,

adX =

[ 0 0 0
0 0 0
0 0 0

adν2
X adη X adµ X

]
.

If u := k⊕h, then it is easy to see that [·, ·]u := ν0+ν1+λ5+λ0 satisfies the
Jacobi condition; moreover, (u, [·, ·]u) is a reductive (i.e. semisimple plus
a center) Lie algebra isomorphic to g/n. This implies that tr adλ0

Y =
tr adu Y = 0, as every reductive Lie algebra is unimodular, and so

(17) tr adY = 〈H,Y 〉 = tr adη Y , ∀Y ∈ h.

On the other hand, one obtains from the Jacobi identity for g that
adη [Z, Y ] = [adν2 Z, adη Y ], from which it follows that

〈[Z,H], Y 〉 = −〈H, [Z, Y ]〉 = − tr adη [Z, Y ] = 0, ∀Z ∈ k, Y ∈ h,

and therefore

(18) [k,H] = 0.

Since the Ricci tensor is ad k-invariant, one obtains that

(19) [adZ|p,Ric] = 0, ∀Z ∈ k.

We conclude this section with a technical lemma about the derivations
of g that leave k invariant.

Lemma 2.6. If we consider the reductive decomposition with B(k, p) =
0, and D ∈ Der(g) is a derivation such that Dk ⊆ k, then

Dp ⊆ p, Dn ⊆ n, trD|p = trD|n.

Proof. From Dk ⊆ k we get that D has the form

(20) D =
[
Dk C
0 Dp

]
.

On the other hand, etD ∈ Aut(g) and hence e−tDt
Bge

−tD = Bg for all
t, so differentiating at t = 0 yields

(21) BgD +DtBg = 0.

Now we use this formula along with the information from (10) and (20)
to obtain that B0C = 0, and therefore C = 0 since B0 is negative
definite. Thus Dp ⊂ p, and since n is the nilradical of g, we obtain that
Dn ⊂ n.

In order to prove the last assertion, we observe that since n ⊆ KerBg ⊆
p, we may assume without any loss of generality that there is an orthog-
onal decomposition h = h1 ⊕ a such that a ⊕ n = KerBg. Recall that
KerBg and n are both characteristic ideals of g, so that every derivation
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leaves them invariant. Moreover, every derivation of g carries KerBg into
n, as n is also the nilradical of the solvable Lie algebra KerBg (see e.g.
[10, Lemma 2.6]). Then, relative to the decomposition g = k⊕h1⊕a⊕n,
we see that Bg and D have the following forms:

(22) Bg =

[B0 0 0 0
0 B2 0 0
0 0 0 0
0 0 0 0

]
, D =

[
Dk 0 0 0
0 D1 0 0
0 ⋆ 0 0
0 ⋆ ⋆ Dn

]
.

It now follows from (21) that B2D1 +Dt
1B2 = 0, but since B2 is invert-

ible, we obtain that

Dt
1 = −B2D1B

−1
2 .

This implies that trD1 = 0, concluding the proof. q.e.d.

Remark 2.7. It follows from (21) that trBpDp = 0 for any
[
0 0
0 Dp

]
∈

Der(g). If in addition B(k, p) = 0, then this holds for any
[
0 ∗
∗ Dp

]
∈

Der(g).

3. Einstein and Ricci soliton homogeneous manifolds

Let M be a differentiable manifold. A Riemannian metric g on M is
called Einstein if its Ricci tensor Rc(g) satisfies

Rc(g) = cg, for some c ∈ R.

The scalar c is sometimes called the cosmological constant. A classi-
cal reference for Einstein manifolds is the book [4], and some updated
expository articles are [1], [26], [2, III,C] and [3, 11.4].

In the homogeneous case, the Einstein equation becomes a subtle
system of algebraic equations, and the following main general question
is still open in both the compact and noncompact cases:

Which homogeneous spaces G/K admit a G-invariant Ein-
stein Riemannian metric?

We refer to the surveys [30, 22] and the references therein for an
update in the compact and noncompact cases, respectively.

In the noncompact homogeneous case, the only known examples until
now are all of a very particular kind, namely solvable Lie groups en-
dowed with a left invariant metric (so called solvmanifolds). Moreover,
every known example is simply connected and consequently diffeomor-
phic to a Euclidean space. The following longstanding conjecture has
been attributed to Dmitrii Alekseevskii.

Alekseevskii’s conjecture [4, 7.57]. Let (G/K, g) be a ho-
mogeneous Riemannian space such that G ⊂ I(G/K, g) is a
closed Lie subgroup. If (G/K, g) is Einstein of negative scalar
curvature, then K is a maximal compact subgroup of G.

When G is a linear group, maximality of K implies that (G/K, g)
is isometric to a (simply connected) solvmanifold (see [31, Corollary
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1,c]). The conjecture is wide open, and it is known to be true only
for dim ≤ 5, a result which follows from the complete classification in
these dimensions given in [29]. In [28], many examples of noncompact
homogeneous spaces which do not admit an Einstein invariant metric
are given. However, many such examples do admit invariant metrics of
negative Ricci curvature. We refer to [8] and [9] for examples of left
invariant metrics of negative Ricci curvature on the Lie groups SLn(R),
n ≥ 3 and on any complex simple Lie group, respectively.

Proposition 3.1. Let (M,g) be a connected homogeneous Riemann-
ian manifold. Then the following conditions are equivalent:

(i) There is a closed connected Lie subgroup G ⊂ I(M,g) acting tran-
sitively on M such that its isotropy K is a maximal compact sub-
group of G.

(ii) M is diffeomorphic to a Euclidean space.
(iii) For any homogeneous Riemannian space (G/K, g) with G con-

nected and K compact which is isometric to (M,g), K is a maxi-
mal compact subgroup of G.

Proof. It is well known that if G is any connected Lie group and
K ⊂ G is a compact Lie subgroup, then G/K is diffeomorphic to a
Euclidean space if and only if K is a maximal compact subgroup of G
(see e.g. [16], [15] or the recent book [14, Sections 13.1–13.3]). Thus the
equivalence between part (ii) and any of the other two claims follows.
q.e.d.

The conjecture can therefore be rephrased in the following more trans-
parent way:

Alekseevskii’s conjecture. Any Einstein connected homo-
geneous Riemannian manifold of negative scalar curvature is
diffeomorphic to a Euclidean space.

It also follows from Proposition 3.1 that to prove that the conjecture
holds for a given homogeneous manifold, one is allowed to work with
any of its presentations as a homogeneous space.

Among the several important contributions of Ricci flow theory, the
following notion generalizing the Einstein condition has had a great
impact in differential geometry. A complete Riemannian manifold (M,g)
is said to be a Ricci soliton if

(23) Rc(g) = cg + LXg,

where c ∈ R is the so-called cosmological constant, as in the Einstein
case, and LXg is the usual Lie derivative of g in the direction of a
(complete) differentiable vector field X on M . If in addition X is the
gradient field of a smooth function on M , then g is called a gradient
Ricci soliton. A metric g is a Ricci soliton if and only if the solution to
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the Ricci flow starting at g, given by

∂
∂tg(t) = −2Rc(g(t)), g(0) = g,

evolves self-similarly, that is,

(24) g(t) = ctϕ
∗
t g,

for some scaling ct > 0 and one-parameter family ϕt of diffeomorphisms
of M . It is well known that one can always assume that ct = −2ct+ 1,
where c is the cosmological constant of the Ricci soliton g. We refer
to [6, 5, 7] and the references therein for further information on Ricci
solitons.

From results due to Ivey, Naber, Perelman, and Petersen-Wylie (see
[24, Section 2]), it follows that any nontrivial (i.e. non-Einstein and
not the product of an Einstein homogeneous manifold with a Euclidean
space) homogeneous Ricci soliton must be noncompact, expanding (i.e.
c < 0), and non-gradient. As for the Einstein case, any known example
so far of a nontrivial homogeneous Ricci soliton is isometric to a simply
connected solvmanifold.

The following is a natural way to consider a homogeneous Ricci soli-
ton ‘algebraic’, in the sense that the algebraic structure of some of its
presentations as a homogeneous space is strongly involved.

Definition 3.2. [17, Definition 1.4] A homogeneous space (G/K, g)
is called a semi-algebraic soliton if there exists a one-parameter family
ϕ̃t ∈ Aut(G) with ϕ̃t(K) = K such that

g(t) = ctϕ
∗
t g, g(0) = g,

is a solution to the Ricci flow for some scaling ct > 0, where ϕt ∈
Diff(G/K) is the equivariant diffeomorphism determined by ϕ̃t.

Remark 3.3. Let (G/K, g) be a semi-algebraic soliton. If K0 is the
connected component of K, then the cover (G/K0, g) is also a semi-
algebraic soliton since the automorphisms satisfy ϕ̃t(K0) = K0 and

the metrics are locally isometric. Similarly, (G̃/K̃, g) is a semi-algebraic

soliton, where q : G̃ −→ G is the simply connected cover and K̃ =

q−1(K), as each ϕ̃t can be lifted to an automorphism of G̃, making
the corresponding diagram commutative. The simply connected cover

(G̃/K̃0, g) of (G/K, g) is therefore a semi-algebraic soliton as well. In all
the above cases, the metric is canonically defined and has been denoted
by g.

In terms of a metric reductive decomposition, semi-algebraic solitons
are characterized as follows.

Proposition 3.4. [17, 19] If a homogeneous space (G/K, g) is a
semi-algebraic soliton, then for the metric reductive decomposition (g =
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k⊕ p, 〈·, ·〉) with B(k, p) = 0, the Ricci operator satisfies
(25)
Ric = cI + 1

2

(
Dp +Dt

p

)
, for some c ∈ R, D =

[
0 0
0 Dp

]
∈ Der(g).

Conversely, if (25) holds for some reductive decomposition and G/K is
simply connected, then (G/K, g) is a semi-algebraic soliton.

In the case when the derivation D in formula (25) is symmetric, and
hence Ric = cI + Dp, the homogeneous space (G/K, g) is called an
algebraic soliton. Actually, all known examples of nontrivial homoge-
neous Ricci solitons are isometric to a left-invariant algebraic soliton on
a simply connected solvable Lie group, the so-called solvsolitons.

The strong presence of the algebraic side of homogeneous manifolds
in regard to Ricci soliton theory becomes evident in the following result.

Theorem 3.5. [17, Proposition 2.2] Any homogeneous Ricci soliton
(M,g) is a semi-algebraic soliton with respect to its full isometry group
G = I(M,g).

For a recent account of homogeneous Ricci solitons, we refer the
reader to [19, Section 3].

4. Structure of semi-algebraic solitons

In this section, we study the algebraic structure of metric reductive
decompositions of semi-algebraic solitons. It will be shown that quite
restrictive Lie theoretic conditions must hold. The main structural re-
sult is Theorem 4.6. Our main tools will be the technical results given
in Section 2, most of them obtained by using the stratification from
geometric invariant theory described in Appendix 7.

Those readers only interested in Einstein homogeneous manifolds may
just set D = 0 everywhere, although it is worth mentioning that the ef-
fort required to understand the proof of Theorem 4.6 for either Einstein
metrics or semi-algebraic solitons is practically the same.

Let (G/K, g) be a homogeneous space, and consider the metric reduc-
tive decomposition (g = k ⊕ p, 〈·, ·〉) such that B(k, p) = 0. We deduce
from Proposition 3.4, (11), and (15) that (G/K, g) is a semi-algebraic
soliton, say with Ric = cI + S(Dp) (see (25)), if and only if

(26) tr
(
cI + 1

2Bp + F )
)
E = 1

4〈π(E)[·, ·]p, [·, ·]p〉, ∀E ∈ End(p),

where

F := S(adp H +Dp).

It follows from Lemma 2.6 that the derivation D ∈ Der(g) has the
following form relative to the decomposition g = k⊕ h⊕ n:

(27) D =

[
0 0 0
0 Dh 0
0 Dhn Dn

]
, Dn ∈ Der(n), trDh = 0.
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We are now in a position to prove the first structural result, which
starts to show that the structure of (g = k⊕p, 〈·, ·〉) is far from arbitrary
under the semi-algebraic soliton condition.

Proposition 4.1. Let (G/K, g) be a homogeneous space, and con-
sider the metric reductive decomposition (g = k ⊕ p, 〈·, ·〉) such that
B(k, p) = 0. Assume that (G/K, g) is an expanding semi-algebraic soli-
ton, say with Ric = cI +S(Dp), c < 0, and consider the decompositions
p = h⊕n and [·, ·]p = λ0+ · · ·+µ defined as in (2) and (3), respectively.
Then

[h, h]p ⊂ h,

or equivalently, λ1 = 0. Moreover, if µ 6= 0 and βµ = β for the β ∈ t+

such that µ ∈ Sβ (see Theorem 7.1), then

(i) β + ||β||2I ∈ Der(n).

(ii) [β, ad h|n] = 0.

(iii) S(adp H + Dp) = tEβ for t = ||H||2+trDn

−1+||β||2 dim n
(see (4)), or equiva-

lently, the following conditions hold:
(a) S(adλ0

H +Dh) = 0.
(b) adλ1

H = Dhn = 0.
(c) S(adpH|n +Dn) = t(β + ||β||2I), for some t ≥ 0.

For µ = 0 one has that S(adp H+Dp) =
[
0 0
0 tI

]
, where t = ||H||2+trDn

dim n
.

Proof. In order to apply the results in the appendix (Section 7), we
identify n with R

n via an orthonormal basis {e1, . . . , en} of n. In this
way, µ can be viewed as an element of N ⊂ V . If µ 6= 0 then µ ∈ Sβ

for some β ∈ B ⊂ t+, and there exists h ∈ O(n) such that µ̃ := h · µ
satisfies βµ̃ = β; consequently, many extra nice properties of µ̃ related

to β hold. Let h̃ : g −→ g be the map defined by h̃|k⊕h = I, h̃|n = h,
and let g̃ denote the Lie algebra with underlying vector space g and Lie
bracket

h̃ · [·, ·] = h̃[h̃−1·, h̃−1·].

It is easy to check that (g̃ = k ⊕ p, 〈·, ·〉) is also a metric reductive
decomposition. Since the condition λ1 = 0 holds for (g̃ = k ⊕ p, 〈·, ·〉) if
and only if it does so for (g = k⊕ p, 〈·, ·〉), we can assume from now on
that βµ = β, and thus we can use in the proof all the properties stated
in Theorem 7.1 and Lemma 2.3.

Lemma 4.2. Under the same hypotheses of the proposition, we have
that

(28) c trF + trF 2 = 0,

where F = S(adp H +Dp).
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Remark 4.3. This lemma actually holds without assuming that
c < 0.

Proof. By letting E = adpH +Dp in (26), we get

(29) c trF+ 1
2 trBp(adpH +Dp)+trF 2 = 1

4〈π(adpH+Dp)[·, ·]p, [·, ·]p〉.

According to (18), Lemma 2.6, and (27), we have that

Ẽ :=
[
0 0
0 adp H+Dp

]
= adH +D ∈ Der(g).

Thus adp H + Dp is a derivation of the algebra (p, [·, ·]p), and so the
right hand side of (29) vanishes and from Remark 2.7 we obtain that
trBp(adpH +Dp) = 0. This concludes the proof of the lemma. q.e.d.

Let us first assume that µ = 0, and apply (26) to E ∈ End(g) defined
by E|h = 0, E|n = I. Recall that trF |n = trF thanks to Lemma 2.6.
We therefore obtain from (26) that

1
4 ||λ1||

2 = cn+ trF.

If n = 0, the claim is trivial. Otherwise, since c < 0, we must have that
trF > 0, and so from (28) we get

1
4 ||λ1||

2 =cn+ trF = − trF 2

trF n+ trF = trF 2

trF

(
(trF )2

trF 2 − n
)

≤ trF 2

trF

(
(trF |n)2

tr (F |n)2
− n

)
≤ trF 2

trF

(
(f1+···+fn)2

f2

1
+···+f2

n
− n

)
≤ 0,

where f1, . . . , fn are the eigenvalues of F |n. Thus λ1 = 0, and we get in
addition that F |h = 0 (since trF 2 = tr (F |n)

2) and also that F |n = tI

for some t ∈ R, which must satisfy t = trF |n
n = ||H||2+trDn

n .
We now consider the case µ 6= 0. Recall that we can assume that µ

satisfies βµ = β, and thus the right hand side of (26) applied to Eβ (see
(4)) is ≥ 0 by Lemma 2.3. We therefore obtain from (26) that

(30) c trEβ + trFEβ ≥ 0.

In particular, we have that F 6= 0 since c < 0 and trEβ > 0 (see

(55)), which implies that trF > 0 and c = − trF 2

trF by (28). Recall that
tr β = −1 and hence

trE2
β =tr(β2 + ||β||4I + 2||β||2β) = ||β||2(1 + n||β||2 − 2)(31)

=||β||2(−1 + n||β||2) = ||β||2 trEβ.

On the other hand, we have by (57) that

(32) trFEβ = trF |n(β + ||β||2) = ||β||2 trF.

We now use (28), (30), (31), and (32) to obtain by a straightforward
manipulation that

trF 2 trE2
β ≤ (trFEβ)

2,

a ‘backwards’ Cauchy-Schwartz inequality. This implies that F = tEβ

for some t > 0, and so part (iii) follows (recall that conditions (a)–(c)
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hold by (16) and (27)). But we also get that equality holds in (30),
which turns all the inequalities obtained in the proof of Lemma 2.3 into
equalities. In particular, λ1 = 0 follows from (5), and part (i) does so
from (7) and (58).

Finally, by using (6) and (54) one obtains part (ii), concluding the
proof of the proposition. q.e.d.

According to Proposition 4.1, if (g = k⊕ p, 〈·, ·〉) is a metric reductive
decomposition of an expanding semi-algebraic soliton, then the matrices
of the adjoint maps and D have the following simpler forms:

(33) adH =

[
0 0 0
0 adλ0 H 0

0 0 adη H

]
, D =

[
0 0 0
0 Dh 0
0 0 Dn

]
,

and for all Y ∈ h,

(34) adY =

[
0 adλ2

Y 0

adν1
Y adλ0

Y 0

0 0 adη Y

]
.

After the structural results obtained in Proposition 4.1, we can now
see what is the formula for M , the most complicated term of Ric.

Lemma 4.4. Let (G/K, g〈·,·〉) be a homogeneous space with any met-
ric reductive decomposition (g = k ⊕ p, 〈·, ·〉), and consider the decom-
positions p = h ⊕ n and [·, ·]p = λ0 + · · · + µ defined in (2) and (3),
respectively. Suppose that [h, h] ⊆ k⊕ h (i.e. λ1 = 0). Then the symmet-
ric operator M defined in (13) is given for all Y ∈ h, X ∈ n by

〈MY,Y 〉 = 〈Mλ0
Y, Y 〉 − 1

2 tr adη Y (adη Y )t,

〈MX,X〉 = 〈MµX,X〉 + 1
2

∑
〈[adη Yi, (adη Yi)

t]X,X〉,

〈MY,X〉 = −1
2 tr adη Y (adµX)t,

where Mλ0
and Mµ are defined as in (13) by replacing [·, ·]p with the

brackets λ0 : h × h −→ h and µ : n × n −→ n, respectively, and {Yi} is
any orthonormal basis of h.

Remark 4.5. The lemma actually holds for any direct sum decom-
position p = h⊕ n in subspaces such that [h, h]p ⊂ h and [p, n]p ⊂ n.
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Proof. Let {Xi} be an orthonormal basis of n. Since λ1 = 0, the
computation of M for Y ∈ h, X ∈ n can be done as follows:

〈MY,Y 〉 =− 1
2

∑
〈λ0(Y, Yi), Yj〉

2 − 1
2

∑
〈η(Y,Xi),Xj〉

2

+ 1
4

∑
〈λ0(Yi, Yj), Y 〉2

=〈Mλ0
Y, Y 〉 − 1

2

∑
〈adη Y (Xi), adη Y (Xi)〉

=〈Mλ0
Y, Y 〉 − 1

2

∑
〈(adη)

tY adη Y (Xi),Xi〉

=〈Mλ0
Y, Y 〉 − 1

2 tr (adη Y )t adη Y ,

〈MX,X〉 =− 1
2

∑
〈[X,Yi],Xj〉

2 − 1
2

∑
〈µ(X,Xi),Xj〉

2

+ 1
2

∑
〈η(Yi,Xj),X〉2 + 1

4

∑
〈µ(Xi,Xj),X〉2

=〈MµX,X〉 − 1
2

∑
〈η(Yi,X),Xj〉

2 + 1
2

∑
〈η(Yi,Xj),X〉2

=〈MµX,X〉 − 1
2

∑
〈adη Yi(X), adη Yi(X)〉

+ 1
2

∑
〈(adη Yi)

t(X), (adη Yi)
t(X)〉

=〈MµX,X〉 + 1
2

∑
〈[adη Yi, (adη Yi)

t]X,X〉,

〈MY,X〉 = −1
2

∑
〈η(Y,Xi),Xj〉〈µ(X,Xi),Xj〉

= −1
2 tr adη Y (adµX)t,

which concludes the proof of the lemma. q.e.d.

We are finally prepared to prove the main structural result of this
paper.

Theorem 4.6. Let (G/K, g) be a homogeneous space, and consider
the metric reductive decomposition (g = k⊕p, 〈·, ·〉) such that B(k, p) = 0.
Also consider the orthogonal decomposition p = h ⊕ n, where n is the
nilradical of g. If (G/K, g) is an expanding semi-algebraic soliton with
cosmological constant c < 0, then the following conditions hold:

(i) [h, h] ⊂ k⊕ h. In particular, u = k⊕ h is a reductive Lie subalgebra
of g and g = u⋉ n (semidirect product).

(ii) Ricu = cI +Ch, where Ricu is the Ricci operator of the metric re-
ductive decomposition (u = k⊕h, 〈·, ·〉|u×u) and Ch is the symmetric
map defined by

〈ChY, Y 〉 = trS(adY |n)
2, ∀Y ∈ h.
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(iii) Ricn = cI + D1, for some D1 ∈ Der(n), where Ricn denotes the
Ricci operator of the metric nilpotent Lie algebra (n, 〈·, ·〉|n×n) (i.e.
(n, 〈·, ·〉|n×n) is a nilsoliton).

(iv)
∑

[adYi|n, (adYi|n)
t] = 0, where {Yi} is any orthonormal basis of

h (in particular, (ad Y |n)
t ∈ Der(n) for all Y ∈ h).

(v) The Ricci operator of (G/K, g) is given by Ric = cI+S(Dp), where

D := − adH +
[
0
0
D1

]
∈ Der(g).

Conversely, if conditions (i)–(iv) hold for some metric reductive decom-
position (not necessarily with B(k, p) = 0) and G/K is simply connected,
then (G/K, g) is a semi-algebraic soliton with cosmological constant c
and derivation D as above.

Remark 4.7. In particular, these structural results apply to any Ein-
stein homogeneous space of negative scalar curvature, as such spaces are
all expanding semi-algebraic solitons with respect to any reductive de-
composition.

Remark 4.8. In part (ii), Ricu is defined as in (11) and it is actually
the Ricci operator of the homogeneous space U/K0 endowed with the
U -invariant metric determined by 〈·, ·〉|h×h, where U is the connected Lie
subgroup of G with Lie algebra u and K0 is the connected component
of the identity of K. We note that U/K0 is almost-effective if and only
if the kernel of the map k −→ End(h), Z 7→ adZ|h, does vanish.

Proof. We consider the metric reductive decomposition (g̃ = k ⊕
p, 〈·, ·〉) defined at the beginning of the proof of Proposition 4.1, for
which the corresponding µ̃ = h · µ (h ∈ O(n)) satisfies βµ̃ = β. The

Ricci operator of (g̃ = k ⊕ p, 〈·, ·〉) is given by R̃ic = hRich−1. More-
over, it is easy to see that

R̃icu = Ricu, ãdY |n = h ad Y |nh
−1, C̃h = Ch, R̃icn = hRicn h

−1,

for all Y ∈ h, from which follows that conditions (i)–(iv) hold for (g =
k ⊕ p, 〈·, ·〉) if and only if they do so for (g̃ = k ⊕ p, 〈·, ·〉). This allows
us to assume from now on that condition βµ = β holds for our µ if
nonzero and so we can use all the properties stated in Theorem 7.1 and
Lemma 2.3.

We first suppose that (G/K, g) is a semi-algebraic soliton as stated
in the theorem, say with Ric = cI + S(Dp), c < 0. Recall that some
restrictions on the form of D have already been proved (see (33)). The
notation introduced in Section 2 will be constantly used along the proof
of the theorem. Part (i) follows from Proposition 4.1. In order to prove
parts (iii) and (iv) we need the following result.
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Lemma 4.9. For any Y ∈ h, (ad Y |n)
t is a derivation of n.

Proof. For µ = 0 (i.e. n abelian), the assertion is trivially true. If
µ 6= 0 and µ ∈ Sβ, then we know from Proposition 4.1(iii),(c) that
F |n = t(β + ||β||2I), where F = S(adpH + Dp), and since F |n is a
derivation of n by Proposition 4.1(i), we get by (57) that

tr (F |n)
2 = t||β||2 trF |n,

But it follows from Proposition 4.1(iii) that trF |n = trF and tr (F |n)
2 =

trF 2, so we can use (28) to conclude that t = − c
||β||2

and thus

(35) F |n = − c
||β||2

β − cI.

Recall that F 6= 0 by (30), and consequently trF |n = trF > 0 by (26).
On the other hand, since Ric |n = cI +S(Dn), it follows from Lemma

4.4 (which we can use thanks to part (i)) that

Mµ + 1
2

∑[
adη Yi, (adη Yi)

t
]
− F |n = cI,

and hence (35) implies the following equality on n:

(36) Mµ + 1
2

∑[
adη Yi, (adη Yi)

t
]
+ c

||β||2
β = 0.

By taking trace in the above equality and using that trMµ = −1
4 ||µ||

2

and tr β = −1, we obtain that

(37) c = −1
4 ||β||

2||µ||2.

It also follows from (36) that

0 = trM2
µ + 1

2

∑
trMµ

[
adη Yi, (adη Yi)

t
]
+ c

||β||2 trMµβ.

Analogously to (15), we have that

trMµE = 1
4〈π(E)µ, µ〉, ∀E ∈ End(n),

or equivalently, m(µ) = 4
||µ||2Mµ for all µ ∈ V (see (51)). Thus, for all i,

trMµ[adη Yi, (adη Yi)
t] =1

4〈π([adη Yi|n, (adη Yi)
t])µ, µ〉

=1
4〈π(adη Yi)π((adη Yi)

t)µ, µ〉(38)

=1
4〈π((adη Yi)

t)µ, π((adη Yi)
t)µ〉

=1
4 ||π((adη Yi)

t)µ||2.

This and (37) give

0 = trM2
µ + 1

8

∑
||π((adη Yi)

t)µ||2 − ||µ||2

4 〈Mµ, β〉

=1
8

∑
||π((adη Yi)

t)µ||2 + ||µ||4

16

(
16

||µ||4
trM2

µ −
〈

4
||µ||2

Mµ, β
〉)

=1
8

∑
||π((adη Yi)

t)µ||2 + ||µ||4

16

(
||m(µ)||2 − 〈m(µ), β〉

)
.
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But since µ satisfies βµ = β, we obtain from (56) that

〈m(µ), β〉 ≤ ||m(µ)|| ||β|| ≤ ||m(µ)||2,

which implies that 1
8

∑
||π((adη Yi)

t)µ||2 = 0. Thus (adη Yi)
t ∈ Der(n)

for all i and the lemma follows. q.e.d.

Remark 4.10. By applying (38) to any metric Lie algebra, one ob-
tains that the transpose of any normal derivation is always a derivation
as well.

If µ = 0, then parts (iii) and (iv) follow directly from the fact that
F |n = tI (see Proposition 4.1) and the formula for Ric |n and M |n (see
Lemma 4.4). We also obtain that t = −c.

For µ 6= 0, we obtain from (36) and Lemma 4.9 that

Mµ + c
||β||2β = 0,

∑[
adη Yi, (adη Yi)

t
]
= 0,

as they are orthogonal maps by Remark 2.4 and (57). This implies part
(iv), and part (iii) follows from the first equation above, since by (35),

Mµ = − c
||β||2

β = cI + F |n.

Regarding (ii), we know from Lemma 4.4 that

(39) 〈Mλ0
Y, Y 〉 = 〈MY,Y 〉+ 1

2 tr adη Y (adη Y )t.

On the other hand, since u is unimodular as it is reductive, we have

(40) 〈Ricu Y, Y 〉 = 〈Mλ0
Y, Y 〉 − 1

2 tr (ad Y |u)
2, ∀Y ∈ h.

So, using that F |h = 0, Ric |h = cI and tr (ad Y )2 = tr (adY |u)
2 +

tr (adη Y )2, together with (39) and (40), yields the desired formula for
Ricu. This concludes the proof of the first part of the proposition.

Conversely, let us assume that conditions (i)–(iv) hold. We first recall
that (iv) implies that (adη Y )t is a derivation of n for any Y ∈ h, by
using (38). Also, since we have by (i) that λ1 = 0, we may use Lemma
4.4 and compute Ric as follows.

In the first place, (ii) and (40) tell us that

〈(M − 1
2Bp)Y, Y 〉 =〈Mλ0

Y, Y 〉 − 1
2 tr adη Y (adη Y )t − 1

2 tr (ad Y )2

=〈Ricu Y, Y 〉+ 1
2 tr (ad Y |u)

2 − 1
2 tr (adY )2

− 1
2 tr adη Y (adη Y )t

=〈Ricu Y, Y 〉 − 1
2 tr (adη Y )2 − 1

2 tr adη Y (adη Y )t(41)

=c‖Y ‖2,

for all Y ∈ h, by part (ii). Moreover, from (16) one gets

(42) 〈(M − 1
2Bp)Y,X〉 = −1

2 tr adη Y (adµX)t = 0, ∀Y ∈ h,X ∈ n,

since (adη Y )t is also a derivation of n and so if n = n1 ⊕ · · · ⊕ nr is
the orthogonal decomposition with [n, n] = n2 ⊕ · · · ⊕ nr, [n, [n, n]] =
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n3⊕· · ·⊕nr, and so on, then adη Y leave the subspaces ni invariant and
adµX(ni) ⊂ ni+1⊕]cdots ⊕ nr for all i. And also from (16) and (iv) we
obtain

(43) 〈(M − 1
2Bp)X,X〉 = 〈MµX,X〉 = 〈RicnX,X〉.

By putting (41), (42), and (43) together and by using (iii) we conclude
that

Ric = cI + S(Dp), for D = − adH + D̃1,

where D̃1 is defined by D̃1|k⊕h = 0, D̃1|n = D1. It only remains to show

that D̃1 ∈ Der(g), as we can then apply Proposition 3.4 to obtain that
(G/K, g) is a semi-algebraic soliton.

To do that, recall that D1 ∈ Der(n) and so it is easy to see that it
suffices to prove that

(44) [ad (Y + Z)|n,D1] = 0,

for all Y ∈ h, Z ∈ k. But D1 commutes with every derivation E of n
whose transpose is also a derivation since Mµ = cI +D1 (see Remark
2.5), and therefore (44) follows from the fact that (ad(Y )|n)

t ∈ Der(n)
and (adZ|n)

t = − adZ|n, for all Y ∈ h, Z ∈ k. This concludes the proof
of the theorem. q.e.d.

Corollary 4.11. Let (G/K, g) be an expanding semi-algebraic soliton
as in Theorem 4.6.

(i) If [h, h] = 0, then (G/K, g) is isometric to a solvsoliton. This in
particular holds when g is solvable.

(ii) If g is semisimple, then (G/K, g) is Einstein with Rc(g) = cg.

Remark 4.12. Part (iii) has already been proved in [17, Theorem
1.6].

Proof. We first prove part (i). It is easy to see that (G/K, g) is isomet-
ric to the left-invariant metric defined by 〈·, ·〉 on the connected solvable
Lie subgroup S of G with Lie algebra h ⊕ n, which is easily seen to
be a solvsoliton by using parts (ii)-(iv) of Theorem 4.6 and applying
[24, Proposition 4.3]. Recall that G can be assumed to be simply con-
nected without losing almost-effectiveness, and so S is simple connected
as G = K × S as differentiable manifolds. We note that if g is solvable,
then actually the whole Lie subalgebra u must be abelian.

Part (ii) follows from the fact that n = 0 and so Ch = 0 (see Theorem
4.6(ii)). q.e.d.

Along the proof of Theorem 4.6, the following extra structural prop-
erties have been obtained.

Proposition 4.13. Under the same hypothesis of Theorem 4.6, if say
Ric = cI + S(Dp) and F = S(adp H +Dp), then D1 = S(adH|n +D|n)
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and
[ad u|n,D1] = 0, [ad u|p, F ] = 0.

Also, the operator M leaves n invariant, and M |n = Mµ. Assume now
that n is not abelian, µ := [·, ·]|n×n ∈ Sβ and βµ = β, and define Eβ ∈
End(g) by

Eβ :=

[
0
0
β+||β||2I

]
, i.e. Eβ|k⊕h = 0, Eβ|n = β + ||β||2I.

Then the following conditions hold:

• Eβ ∈ Der(g) (or equivalently, [β, ad u|n] = 0 and β + ||β||2I ∈
Der(n)).

• S(adH +D) = − c
||µ||2Eβ.

• c = −1
4 ||µ||

2||β||2 and the moment map satisfies m(µ) = β.

In [19], algebraic solitons have been geometrically characterized among
homogeneous Ricci solitons as those for which the Ricci flow solution is
simultaneously diagonalizable with respect to a fixed orthonormal basis
of some tangent space. As a first application of Theorem 4.6, we now
give some structural characterizations of algebraic solitons.

Proposition 4.14. Under the same hypothesis of Theorem 4.6, as-
sume that (G/K, g) is an expanding semi-algebraic soliton with Ric =
cI + S(Dp), c < 0, D =

[
0 0
0 Dp

]
∈ Der(g). Then the following conditions

are equivalent:

(i) (G/K, g) is an algebraic soliton (i.e. S(D) ∈ Der(g)).
(ii) S(Dp) ∈ Der([·, ·]p).
(iii) S(adp H) ∈ Der([·, ·]p) (or equivalently, S(adH) ∈ Der(g)).
(iv) adpH is normal (or equivalently, adH is normal).
(v) S(D|h) = 0.
(vi) S(adH|h) = 0.
(vii) Ric |h = cI.

Proof. If one assumes part (i), then (ii) holds by S(D)p ⊂ p. Con-
versely, part (ii) together with the fact that [adZ|p, S(Dp)] = 0 for

all Z ∈ k (which follows from (19)), implies that S(D) =
[
0 0
0 S(Dp)

]
∈

Der(g).
The equivalence between part (iii) and S(adH) ∈ Der(g) follows as

above by using that S(adH)p ⊂ p (see (33)) and [ad k|p, S(adpH)] =
0 (see (18)). It follows from Proposition 4.13 that S(adpH + Dp) ∈
Der([·, ·]p), and thus parts (ii) and (iii) are equivalent. To see that (iii)
implies (iv), first observe that for all X ∈ p,

〈(adp H)tH,X〉 = 〈H, [H,X]p〉 = tr ad[H,X] = tr[adH, adX] = 0,

so (adp H)tH = 0. By using this and the fact that (adp H)t is a deriva-
tion (which is equivalent to part (iii), since adp H ∈ Der([·, ·]p)), we
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get

(adp H)t ([H,X]p) = [H, (adp H)tX]p,

and thus adpH is normal (adH is therefore normal by (33)). Conversely,
if part (iv) holds, then we can argue as in (38) to obtain

0 = trM [adp H, (adp H)t] = 1
4

∥∥π
(
(adp H)t

)
[·, ·]p

∥∥2 .

This implies that (adp H)t ∈ Der([·, ·]p), and thus part (iii) follows.
From Proposition 4.13 we have that S(adH|h +D|h) = 0; therefore

using that Ric |h = cI+S(D|h), it easily follows that parts (v), (vi), and
(vii) are pairwise equivalent.

Now if (vi) holds, then we use the fact that M |n = Mµ (see Proposi-
tion 4.13) to obtain

1
4

∥∥π
(
(adpH)t

)
[·, ·]p

∥∥2 =trM [adp H, (adp H)t]

= trMµ[adH|n, (adH|n)
t]

=1
4

∥∥π
(
(adH|n)

t)µ
∥∥2 = 0,

by Theorem 4.6(iv), from which part (iii) follows.

Conversely, assume that (adpH)t ∈ Der([·, ·]p). This implies that
[M, adpH] = 0 by Remark 2.5. On the other hand, recall thatM− 1

2Bp =
cI + F , and by Proposition 4.13, cI + F also commutes with adp H.
Hence, we must have that

[Bp, adpH] = 0.

Now if we decompose p = h1 ⊕ a ⊕ n as in the proof of Lemma 2.6,
then relative to that decomposition the operators Bp and adp H have
the form:

Bp =
[
B2 0 0
0 0 0
0 0 0

]
, adpH =

[
adH|h1 0 0

0 0 0
0 0 adH|n

]
.

Here, we are using (22) and the fact that (adH)t ∈ Der(g). Also, as in
the proof of Lemma 2.6, we obtain that

(adH|h1)
t = −B2 (adH|h1)B

−1
2 .

But [B2, adH|h1 ] = [Bp, adpH]|h1 = 0, hence (adH|h1)
t = − adH|h1

and part (vi) follows. This concludes the proof of the proposition. q.e.d.

5. Construction procedure for semi-algebraic solitons

Our aim in this section is to state Theorem 4.6 in a more transparent
way via a construction procedure.

First consider the following data set satisfying the following condi-
tions:
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(d1) (n, 〈·, ·〉n): a metric nilpotent Lie algebra with Ricci operator Ricn =
cI +D1, for some c < 0, D1 ∈ Der(n) (i.e. a nilsoliton (n, 〈·, ·〉n);
recall that D1 is always positive definite).

(d2) (u = k ⊕ h, 〈·, ·〉u): a metric reductive decomposition with u a re-
ductive Lie algebra.

(d3) θ : u −→ Der(n): a homomorphism of Lie algebras such that

(c1) θ(Z)t = −θ(Z) for all Z ∈ k.

(c2)
∑

[θ(Yi), θ(Yi)
t] = 0 for any orthonormal basis {Yi} of h (it

follows as in (38) that θ(Y )t ∈ Der(n) for any Y ∈ h).

(c3) The Ricci operator of (u = k⊕ h, 〈·, ·〉u) satisfies

Ricu = cI + Cθ, where 〈CθY, Y 〉 = trS(θ(Y ))2, ∀Y ∈ h.

Take now the corresponding semidirect product of Lie algebras,

g = u⊕ n,

and the metric reductive decomposition (g = k⊕p, 〈·, ·〉), where p := h⊕n

and the inner product 〈·, ·〉 is given by

〈·, ·〉|u×u = 〈·, ·〉u, 〈·, ·〉|n×n = 〈·, ·〉n,

and such that

g =

u︷ ︸︸ ︷
k⊕ h⊕ n︸ ︷︷ ︸

p

is an orthogonal decomposition. Define D : g −→ g by

D := −
[
adu H

θ(H)

]
+

[
0
D1

]
,

where H ∈ h is defined by 〈H,Y 〉 = tr θ(Y ) for all Y ∈ u (it easily
follows that [k,H] = 0). We have that D ∈ Der(g) since D1 ∈ Der(n)
(see (d1)) and [θ(u),D1] = 0 (see Remark 2.5).

It follows from the converse part of Theorem 4.6 that the Ricci oper-
ator of the reductive decomposition (g = k⊕ p, 〈·, ·〉) is given by

(45) Ric = cI + S(Dp) = cI +
[
−S(adu H|h)

−S(θ(H))+D1

]
.

We note that Ric = cI if and only if S(aduH) = 0 and D1 =
1
2(θ(H) +

θ(H)t). On the other hand, it is an algebraic soliton if and only if
S(aduH|h) = 0, if and only if aduH and θ(H) are both normal op-
erators (see Proposition 4.14).

We now rephrase the main part of Theorem 4.6 in simpler terms.
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Theorem 5.1. Any homogeneous expanding Ricci soliton is isomet-
ric to a homogeneous space (G/K, g) with a metric reductive decompo-
sition constructed as above.

Proof. According to Theorem 3.5, any homogeneous Ricci soliton is
isometric to a semi-algebraic soliton (G/K, g). Now consider the metric
reductive decomposition such that B(k, p) = 0. It follows from Theorem
4.6, parts (i)–(iv), that such decomposition is obtained by the construc-
tion procedure described above with θ(Y ) := adY |n for all Y ∈ u,
concluding the proof. q.e.d.

Let (G/K, g) be any connected homogeneous space with metric reduc-
tive decomposition (g = k⊕p, 〈·, ·〉) constructed as above, with g = u⊕n.
Assume that G is connected and take U,N ⊂ G, the connected Lie
subgroups with Lie algebras u and n, respectively. Note that if K is
connected, then K ⊂ U .

We have that UN is a subgroup of G as N is normal, and since
it contains a neighborhood of the identity (recall that the map g =
u ⊕ n −→ G, (Y,X) 7→ exp(Y ) exp(X) is a diffeomorphism between
some open neighborhoods of (0, 0) and e ∈ G, respectively), it follows
that G = UN . Now the function

q : U ⋉N −→ G, q(u, n) := un,

is an epimorphism of Lie groups whose derivative is the isomorphism of
Lie algebras given by dq|e(Y,X) = Y +X, for all Y ∈ u, X ∈ n. Recall
that on the external semi-direct product U ⋉ N the multiplication is
defined by (u, n) · (v,m) = (uv, v−1nvm). Thus q is a covering map and
its kernel is a discrete subgroup of the center of U⋉N , which is precisely
given by the anti-diagonal

Ker(q) = ∆(U ∩N) := {(x, x−1) : x ∈ U ∩N}.

Moreover, we obtain that G is isomorphic to (U ⋉ N)/∆(U ∩ N). In
particular, if G is simply connected, then G ≃ U ⋉ N , and so G is
diffeomorphic to the direct product U ×N , from which follows that U
and N are both simply connected as well.

Let us state some of these properties for future use.

Proposition 5.2. Let (G/K, g) be a homogeneous space with metric
reductive decomposition (g = k ⊕ p, 〈·, ·〉) constructed as above and as-
sume that G is simply connected and K connected. Then G ≃ U ⋉ N ,
the groups U and N are simply connected, and G/K is diffeomorphic to
the product of manifolds U/K ×N .

It follows from Theorem 5.1 that a given simply connected Einstein
(G/K, g) obeys the Alekseevskii’s conjecture if and only if U/K is diffeo-
morphic to a Euclidean space, or equivalently, K is a maximal compact
subgroup of U (see Section 3).
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6. Algebraic solitons and the Alekseevskii Conjecture

As another application of the given structural results, in this sec-
tion we prove a close link between Einstein homogeneous manifolds and
algebraic solitons. We obtain as a consequence that if the Alekseevskii
conjecture turns out to be true, then the following a priori much stronger
result also holds:

Any expanding algebraic soliton (G/K, g) is diffeomorphic to
a Euclidean space (or equivalently, K is a maximal compact
subgroup of G).

Assume that we have a metric reductive decomposition (g = k ⊕
p, 〈·, ·〉) such that g is non-unimodular. Thus the vector H ∈ p defined
in (8) is nonzero, and since [g, g] ⊥ H, it is clear that the subspace
g0 := {H}⊥ is in fact an ideal of codimension one in g. This implies
that

g = RH ⊕ g0

is a semidirect product of Lie algebras, with g0 a unimodular ideal.
In the following result we use the previous observation to prove that

one can get an Einstein metric reductive decomposition out of any al-
gebraic soliton, either by changing the adjoint action of H on g0, or by
adding a suitable one in the unimodular case.

Proposition 6.1. Let (g = k⊕ p, 〈·, ·〉) be a metric reductive decom-
position such that B(k, p) = 0, and assume that it is an algebraic soliton
with Ric = cI +Dp, D = S(D) ∈ Der(g), as in (45).

(i) If g is non-unimodular, consider the new Lie algebra g̃ with un-
derlying vector space g = RH ⊕ g0 and Lie bracket defined by
keeping the original Lie bracket on the ideal g0 and only replacing
the adjoint action of H on g0 by

adg̃H := α(S(adgH) +D) = α
[
0
0
D1

]
, α =

‖H‖

(trD1)1/2
.

Then the metric reductive decomposition (g̃ = k ⊕ p, 〈·, ·〉) is Ein-

stein with R̃ic = cI.
(ii) The metric reductive decomposition (g0 = k⊕p0, 〈·, ·〉|g0×g0), where

p0 := p ∩ {H}⊥, is also an algebraic soliton with

Ricg0 = cI +D′
p0
, where D′ := D|g0 + S(adH)|g0 ∈ Der(g0).

(iii) If g is unimodular, consider the semi-direct product g̃ = RA ⊕ g,
with

adg̃A := αD = α
[
0
0
D1

]
, α =

1

(trD1)1/2
.

Then the metric reductive decomposition (g̃ = k ⊕ p̃, 〈·, ·〉), where

p̃ := RA⊕ p and ‖A‖ = 1, 〈A, p〉 = 0, is Einstein with R̃ic = cI.
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Remark 6.2. Parts (i) and (ii) may be viewed as a generalization
of the link between Einstein solvmanifolds and nilsolitons discovered in
[20].

Proof. We first prove parts (i) and (ii). Let R̃ic, M̃ , B̃p, and H̃ ∈ RH
denote the corresponding tensors for the metric reductive decomposition
(g̃ = k⊕p, 〈·, ·〉), as defined in (8)–(13). Also, set p0 := {Y ∈ p : 〈Y,H〉 =
0}, so that

p = RH ⊕ p0

is an orthogonal decomposition. By applying Lemma 4.4 with the above
decomposition (see Remark 4.5 and use that H ⊥ [g, g]) to the metric
reductive decompositions (g = k ⊕ p, 〈·, ·〉) and (g̃ = k ⊕ p, 〈·, ·〉), we
obtain that

〈MX,X〉 = 〈M0X,X〉, 〈M̃X,X〉 = 〈M0X,X〉,

〈MX,H〉 = −1
2 tr adgX(adgH)t, 〈M̃X,H〉 = −1

2 tr adg̃X adg̃H,

〈MH,H〉 = −1
2 tr adgH(adgH)t, 〈M̃H,H〉 = −1

2 tr adg̃H adg̃H,

for all X ∈ p0, where M0 is the moment map operator corresponding to
the metric reductive decomposition (g0 = k⊕ p0, 〈·, ·〉|g0×g0) (and recall
from Proposition 4.14 that adgH and adg̃H are both normal operators).
This implies that the Ricci operator of (g0 = k⊕ p0, 〈·, ·〉|g0×g0) is given
by Ricg0 = cI +D|p0 + S(adp H|p0), and so part (ii) follows.

It is also clear that for X,X ′ ∈ p0,

〈(M̃ − 1
2B̃p)X,X ′〉 = 〈(M − 1

2Bp)X,X ′〉 = 〈(cI+Dp+S(adpH))X,X ′〉.

We know that H̃ = βH, for some β > 0 which is determined by

(46) αβ(‖H‖2 + trD) = tr adg̃ H̃ = ‖H̃‖2 = β2‖H‖2,

so the formula for R̃ic on p0 is given by

〈R̃icX,X ′〉 =〈
(
cI +Dp + S(adp H)− ãdpH̃

)
X,X ′〉

=〈
(
cI +Dp + S(adp H)− βα(S(adp H) +Dp)

)
X,X ′〉

=〈
(
cI + (1− αβ) (Dp + S(adpH))

)
X,X ′〉.

By taking α = β−1, which together with (46) yields the formula for α

given in the theorem, we obtain that R̃ic = cI on p0.
On the other hand, it follows from Remarks 2.4 and 2.7 and tr adp X =

tr adX = 0 that

〈R̃icX,H〉 =〈M̃ − 1
2B̃p)X,H〉 = − tr adg̃XS(adg̃H)

=− α tr adp X(S(adpH) +Dp)

=− α tr adp X(−cI +M − 1
2B) = 0.
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Finally, by using (28) we obtain that

〈R̃icH,H〉 =〈(M̃ − 1
2 B̃p)H,H〉 = − tr (ãdpH)2

=− α2 tr (S(adp H) +Dp)
2 = cα2 trS(adpH) +Dp = c‖H‖2,

concluding the proof of part (i).
We now prove part (iii) in a very similar way. It is easy to see that

H̃ = (trD1)
1/2A, and since

tr adA adX = α trDp adpX = α tr (M − 1
2B − cI) adp X = 0, ∀X ∈ p,

by unimodularity and Remarks 2.4 and 2.7, we have that

B̃p̃ =
[
(trD1)−1 trD2

1
0

0 Bp

]
.

By applying Lemma 4.4 to the decomposition p̃ = RA⊕ p (see Remark
4.5), we obtain that

〈M̃X,X〉 = 〈MX,X〉, 〈M̃X,A〉 = 0, 〈M̃A,A〉 = −1
2(trD1)

−1 trD2
1,

for all X ∈ p. Finally, we use Ricn = cI+D1 to get c = −(trD1)
−1 trD2

1

(see Remark 2.4), from which it easily follows that R̃ic = M̃ − 1
2B̃p̃ −

S(adp̃ H̃) = cI, concluding the proof of the proposition. q.e.d.

Theorem 6.3. Assume there exists an expanding algebraic soliton
which is not diffeomorphic to a Euclidean space. Then there is a coun-
terexample to the Alekseevskii conjecture.

Remark 6.4. This result was proved in [11] (see Remark 1.14 in
that paper) in the case of left-invariant metrics on Lie groups by using
entirely different methods. They study warped product structures of
Einstein manifolds. The preprint [11] has been replaced in arXiv by
[12], where a proof for the homogeneous case is included.

Proof. We know that such a soliton is isometric to an algebraic soli-
ton (G/K, g) with a metric reductive decomposition (g = k ⊕ p, 〈·, ·〉),
g = u⊕ n, constructed as in Section 5 and with Ricci operator given as
in (45), with D = S(D). We can also assume that G is simply connected
and K connected (see Remark 3.3). Consider the Einstein metric reduc-
tive decomposition (g̃ = k ⊕ p̃, 〈·, ·〉) provided by Proposition 6.1 out

of (G/K, g), and take the corresponding homogeneous space (G̃/K̃, g̃),

where G̃ is the simply connected Lie group with Lie algebra g̃ and K̃

the connected Lie subgroup of G̃ with Lie algebra k. The fact that K̃

is closed in G̃ will follow from the analysis below, and note that G̃/K̃

is almost-effective since the isotropy k̃-representation is faithful (by the
almost-effectiveness of G/K).

We first assume that g is non-unimodular. It follows from Proposition

5.2 that G/K and G̃/K̃ are respectively diffeomorphic to

U/K ×N, Ũ/K̃ × Ñ ,
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where U is the connected Lie subgroup of G with Lie algebra u (and

analogously for Ũ). Now if U0 is the connected Lie subgroup of G with

Lie algebra u0 := k ⊕ (h ∩ g0) (and analogously for Ũ0), then they are
respectively diffeomorphic to

R× U0/K ×N, R× Ũ0/K̃ × Ñ.

But U0 ≃ Ũ0 and N ≃ Ñ as they are simply connected and have

identical Lie algebras; and since K and K̃ are connected, we obtain that

U0/K is diffeomorphic to Ũ0/K̃. ThusG/K and G̃/K̃ are diffeomorphic,

as N and Ñ are nilpotent and hence diffeomorphic to a Euclidean space.

This implies that G̃/K̃ is not diffeomorphic to a Euclidean space either,

giving a counterexample to the Alekseevskii conjecture since R̃ic = cI,
c < 0, as was to be shown.

The case when g is unimodular can be proved in much the same way

as above. One obtains here that G̃/K̃ is diffeomorphic to R×G/K. This
concludes the proof of the theorem. q.e.d.

7. Appendix: Moment map stratification for the

variety of Lie algebras

We refer to the survey [22, Sections 3 and 7] for a more detailed
exposition on this subject.

Let us consider the space of all skew-symmetric algebras of dimension
n, which is parameterized by the vector space

V =Λ2(Rn)∗ ⊗ R
n

={µ : Rn ×R
n −→ R

n : µ bilinear and skew-symmetric}.

Then

N = {µ ∈ V : µ satisfies Jacobi and is nilpotent}

is an algebraic subset of V as the Jacobi identity and the nilpotency
condition can both be written as zeroes of polynomial functions. N is
often called the variety of nilpotent Lie algebras (of dimension n).

There is a natural linear action of GLn(R) on V given by
(47)
h.µ(X,Y ) = hµ(h−1X,h−1Y ), X, Y ∈ R

n, h ∈ GLn(R), µ ∈ V.

Recall that N is GLn(R)-invariant and the Lie algebra isomorphism
classes are precisely the GLn(R)-orbits. The representation of gln(R) on
V obtained by differentiation of (47) is given by

(48) π(α)µ = αµ(·, ·) − µ(α·, ·) − µ(·, α·), α ∈ gln(R), µ ∈ V.

We note that π(α)µ = 0 if and only if α ∈ Der(µ), the Lie algebra of
derivations of the algebra µ. The canonical inner product 〈·, ·〉 on R

n
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determines an O(n)-invariant inner product on V , also denoted by 〈·, ·〉,
as follows:

(49) 〈µ, λ〉 =
∑

〈µ(ei, ej), λ(ei, ej)〉,

and also the standard Ad(O(n))-invariant inner product on gln(R) given
by

(50) 〈α, β〉 = trαβt =
∑

〈αei, βei〉, α, β ∈ gln(R),

where {e1, . . . , en} denotes the canonical basis of R
n. We note that

π(α)t = π(αt) and (adα)t = adαt for any α ∈ gln(R), due to the
choice of these canonical inner products everywhere.

We can use gln(R) = so(n) ⊕ sym(n) as a Cartan decomposition,
where so(n) and sym(n) denote the subspaces of skew-symmetric and
symmetric matrices, respectively. It is proved in [21, Proposition 3.5]
that the moment map m : V \{0} −→ sym(n) for the action (47), which
is defined by 〈m(µ), α〉 = 1

||µ||2 〈π(α)µ, µ〉, for all α ∈ gln(R), µ ∈ V , is

given by

(51) 〈m(µ)X,X〉 = 1
||µ||2

(
−2

∑
〈µ(X, ei), ej〉

2 +
∑

〈µ(ei, ej),X〉2
)
,

for all X ∈ R
n.

Let t denote the set of all diagonal n × n matrices. If {e′1, . . . , e
′
n} is

the basis of (Rn)∗ dual to the canonical basis {e1, . . . , en}, then

{vijk = (e′i ∧ e′j)⊗ ek : 1 ≤ i < j ≤ n, 1 ≤ k ≤ n}

is a basis of weight vectors of V for the action (47), where vijk is actually
the bilinear form on R

n defined by vijk(ei, ej) = −vijk(ej , ei) = ek and

zero otherwise. The corresponding weights αk
ij ∈ t, i < j, are given by

(52) π(α)vijk = (ak−ai−aj)vijk = 〈α,αk
ij〉vijk, ∀α =

[ a1
. . .

an

]
∈ t,

where αk
ij = Ekk − Eii − Ejj and 〈·, ·〉 is the inner product defined in

(50). As usual, Ers denotes the matrix whose only nonzero coefficient is
1 at entry rs. Let us denote by µk

ij the structure constants of a vector

µ ∈ V with respect to the basis {vijk}:

µ =
∑

µk
ijvijk, µk

ij ∈ R, i.e. µ(ei, ej) =

n∑

k=1

µk
ijek, i < j.

Each nonzero µ ∈ V uniquely determines an element βµ ∈ t given by

βµ := mcc
{
αk
ij : µ

k
ij 6= 0

}
,

where mcc(X) denotes the unique element of minimal norm in the con-
vex hull CH(X) of a subset X ⊂ t. We note that βµ is always nonzero

since trαk
ij = −1 for all i < j and consequently tr βµ = −1.
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Let t+ denote the Weyl chamber of gln(R) given by

(53) t+ =

{[ a1
. . .

an

]
∈ t : a1 ≤ ... ≤ an

}
.

In [23], a GLn(R)-invariant stratification for V = Λ2(Rn)∗ ⊗ R
n has

been defined by adapting to this context the construction given in [18,
Section 12] for reductive group representations over an algebraically
closed field. We summarize in the following theorem the main properties
of the stratification, which has provided one of the main tools to study
the structure of homogeneous Ricci solitons in this paper.

Theorem 7.1. [23, 25] There exists a finite subset B ⊂ t+, and for
each β ∈ B a GLn(R)-invariant subset Sβ ⊂ V (a stratum) such that

V r {0} =
⋃

β∈B

Sβ (disjoint union),

and tr β = −1 for any β ∈ B. For µ ∈ Sβ we have that
(54)
〈[β,D],D〉 ≥ 0 ∀ D ∈ Der(µ) (equality holds ⇔ [β,D] = 0),

(55)
β + ||β||2I is positive definite for all β ∈ B such that Sβ ∩N 6= ∅, and

(56) ||β|| ≤ ||m(µ)|| (equality holds ⇔ m(µ) is conjugate to β).

If in addition, µ ∈ Sβ satisfies βµ = β, or equivalently,

min
{
〈β, αk

ij〉 : µ
k
ij 6= 0

}
= ||β||2,

which always holds for some g.µ, g ∈ O(n), then

(57) tr βD = 0 ∀ D ∈ Der(µ), and

(58)
〈
π
(
β + ||β||2I

)
µ, µ

〉
≥ 0,

where equality holds if and only if β + ||β||2I ∈ Der(µ).

This stratification is based on instability results and is strongly re-
lated to the moment map in many ways other than (56) (see [22]).
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