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HAMILTONIAN STABILITY OF THE GAUSS IMAGES
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HYPERSURFACES. I
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Abstract

The image of the Gauss map of any oriented isoparametric
hypersurface in the standard unit sphere Sn+1(1) is a minimal
Lagrangian submanifold in the complex hyperquadric Qn(C). In
this paper we show that the Gauss image of a compact oriented
isoparametric hypersurface with g distinct constant principal cur-
vatures in Sn+1(1) is a compact monotone and cyclic embedded
Lagrangian submanifold with minimal Maslov number 2n/g. We
obtain the Hamiltonian stability of the Gauss images of homoge-
neous isoparametric hypersurfaces of classical type with g = 4.
Combining with our results in [25] and [27], we completely deter-
mine the Hamiltonian stability of the Gauss images of all homo-
geneous isoparametric hypersurfaces.

Introduction

In the 1990s, Oh instigated the study of Hamiltonian minimality and
Hamiltonian stability of Lagrangian submanifolds in Kähler manifolds
[33, 34, 35]. This provides a constrained volume variational problem
for Lagrangian submanifolds in Kähler manifolds under Hamiltonian
deformations. Thus it is natural to ask which Lagrangian submanifolds
in specific Kähler manifolds are Hamiltonian stable (See Section 1 for
the definitions). After Oh’s pioneering work, there has been extensive
research on Hamiltonian stability of minimal or Hamiltonian minimal
Lagrangian submanifolds in various Kähler manifolds, such as com-
plex Euclidean spaces, complex projective spaces, compact Hermitian
symmetric spaces, certain toric Kähler manifolds, and so on. (see e.g.,
[1, 9, 39, 41, 44, 51] and references therein.) In particular, a com-
pact minimal Lagrangian submanifold L in a compact homogeneous
Einstein–Kähler manifold with positive Einstein constant κ is Hamilton-
ian stable if and only if the first (positive) eigenvalue λ1 of the Laplacian
of L with respect to the induced metric equals to κ. Hence, in this case,
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to determine the Hamiltonian stability becomes a problem of calculat-
ing the first eigenvalue of the Laplacian, which is an important subject
in differential geometry. However, we do NOT know many examples of
compact Hamiltonian stable Lagrangian submanifolds yet.

A hypersurface immersed in the standard sphere is called isoparamet-
ric if it has constant principal curvatures. Isoparametric hypersurfaces
generalize geodesic spheres in the standard spheres. The theory was
started by Élie Cartan and has been well developed since then. Particu-
larly significant progress on the classification problem of isoparametric
hypersurfaces in spheres was made in the recent works of Cecil-Chi-
Jensen [10], Immervoll [20], Chi [11, 12] and Miyaoka [30]. As the most
fundamental result on isoparametric hypersurfaces in spheres, Münzner
[31, 32] showed that the number g of distinct principal curvatures of an
isoparametric hypersurface Nn in Sn+1(1) must be g = 1, 2, 3, 4, 6 and
their multiplicities satisfy m1 = m3 = · · · ≤ m2 = m4 = · · · . Moreover,
Nn is always real algebraic in the sense that Nn is defined by a certain
real homogeneous polynomial of degree g called the “Cartan–Münzner
polynomial.”

We observed that the Gauss image—that is, the image of the Gauss
map—of any compact oriented isoparametric hypersurface in the stan-
dard unit sphere is a smooth compact embedded minimal Lagrangian
submanifold in the complex hyperquadric, and the Gauss map is a cov-
ering map over the Gauss images with covering transformation group Zg

[25, 37]. Thus it can be expected that the Gauss images of isoparamet-
ric hypersurfaces in spheres provide a nice class of compact Lagrangian
submanifolds embedded in complex hyperquadrics and moreover they
should play certain roles in symplectic geometry. Note that the Gauss
image is orientable if and only if 2n/g is even [37]. In this paper we
show the following (see Theorem 2.1).

Theorem. The Gauss image of a compact oriented isoparametric
hypersurface with g distinct constant principal curvatures in Sn+1(1) is
a compact monotone and cyclic embedded Lagrangian submanifold with
minimal Maslov number 2n/g = m1 +m2.

Recall that all isoparametric hypersurfaces in the unit standard sphere
are classified as either homogeneous or nonhomogeneous. An isopara-
metric hypersurface Nn in the standard unit sphere Sn+1(1) is called
homogeneous if Nn can be obtained as an orbit of a compact Lie sub-
group of SO(n+ 2). Every homogeneous isoparametric hypersurface in
a sphere can be obtained as a principal orbit of a linear isotropy rep-
resentation of a compact Riemannian symmetric pair (U,K) of rank 2,
as shown by Hsiang and Lawson [18] and Takagi and Takahashi [46].
Only in the case of g = 4 are there known to exist non-homogeneous
isoparametric hypersurfaces, which were discovered first by Ozeki and



HAMILTONIAN STABILITY OF THE GAUSS IMAGES. I 277

Takeuchi [42, 43] and extensively generalized by Ferus, Karcher, and
Münzner [13]. So it is interesting to consider the following.

Problem. Investigate the Hamiltonian stability of those compact
minimal Lagrangian embedded submanifolds in Qn(C) obtained as the
Gauss images of isoparametric hypersurfaces in Sn+1(1).

This paper is a continuation of [25], where we have already treated the
cases of g = 1, 2, and 3. Let Nn be an oriented compact isoparametric
hypersurface embedded in Sn+1(1). In [44], Palmer showed that the
Gauss map G : Nn → Qn(C) is a minimal Lagrangian immersion and
that G is Hamiltonian stable if and only if Nn = Sn ⊂ Sn+1(1), which
corresponds to the case g = 1. In the case when g = 1, Nn = Sn is
a great or small sphere and the Gauss image G(Nn) ∼= Sn is totally
geodesic and strictly Hamiltonian stable. More strongly, it is stable as a
minimal submanifold [47]. When n is even, it is homologically volume
minimizing because it is a calibrated submanifold by an invariant n-form
[15]. The recent result of [21] implies that it is Hamiltonian volume
minimizing for general n. In the case when g = 2, Nn = Sm1 × Sm2

(n = m1 + m2, 1 ≤ m1 ≤ m2) is the Clifford hypersurface and the
Gauss image G(Nn) = Qm1+1,m2+1(R) = (Sm1 × Sm2)/Z2 ⊂ Qn(C)
is also totally geodesic. Then G(Nn) ⊂ Qn(C) is NOT Hamiltonian
stable if and only if m2 − m1 ≥ 3, where the spherical harmonics of
degree 2 on the sphere Sm1 ⊂ Rm1+1 of smaller dimension give volume
decreasing Hamiltonian deformation of G(Nn). Ifm2−m1 = 2, then it is
Hamiltonian stable but not strictly Hamiltonian stable. If m2−m1 < 2,
then it is strictly Hamiltonian stable. In the case when g = 3, the Gauss
image G(Nn) ⊂ Qn(C) is strictly Hamiltonian stable [25].

Using harmonic analysis on compact homogeneous spaces and fibra-
tions on homogeneous isoparametric hypersurfaces, we obtain the main
result as follows:

Theorem. Suppose that N is a homogeneous isoparametric hypersur-
face in Sn+1(1) given by the isotropy orbit of rank 2 Riemannian sym-
metric pair (U,K) of classical type. Then the Gauss image L = G(N)
is not Hamiltonian stable if and only if m2 −m1 ≥ 3.

Combining with our results in [27] on exceptional types, we obtain
the following.

Theorem. Suppose that (U,K) is not of type EIII; that is, (U,K) 6=
(E6, U(1) · Spin(10)). Then the Gauss image L = G(N) is not Hamil-
tonian stable if and only if m2 −m1 ≥ 3. Moreover, if (U,K) is of type
EIII—namely, g = 4 and (m1,m2) = (6, 9)—then L = G(N) is strictly
Hamiltonian stable.
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Hence we solve the above problem for ALL homogeneous isopara-
metric hypersurfaces, and our solution provides new examples of com-
pact Hamiltonian stable minimal Lagrangian submanifolds embedded in
Qn(C) and interesting relations between hypersurfaces in Sn+1(1) and
minimal Lagrangian submanifolds in Qn(C).

This paper is organized as follows: In Section 1 we review the no-
tions and basic properties of Hamiltonian minimality, Hamiltonian sta-
bility and strict Hamiltonian stability of Lagrangian submanifolds in
Kähler manifolds. In Section 2 we briefly explain properties of min-
imal Lagrangian submanifolds in complex hyperquadrics obtained as
the Gauss images of isoparametric hypersurfaces in spheres. In Section
3 we explain the method of eigenvalue computations of our compact ho-
mogeneous spaces that are the Gauss images of compact homogeneous
isoparametric hypersurfaces. The method is based on the fibrations on
homogeneous isoparametric hypersurfaces by lower dimensional homo-
geneous isoparametric hypersurfaces. In Sections 4–8, we determine the
strict Hamiltonian stability of the Gauss images of compact homoge-
neous isoparametric hypersurfaces with g = 4 obtained as principal
orbits of the isotropic representations of Riemannian symmetric spaces
of classical type.
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1. Hamiltonian minimality and Hamiltonian stability

Assume that (M,ω, J, g) is a Kähler manifold with the compatible
complex structure J and Kähler metric g. Let ϕ : L → M be a La-
grangian immersion, and let H denote the mean curvature vector field
of ϕ. The corresponding 1-form αH := ω(H, ·) ∈ Ω1(L) is called the
mean curvature form of ϕ. A smooth family of Lagrangian immersions
ϕt : L → M is called a Hamiltonian deformation with ϕ0 = ϕ, if the
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1-form αVt := ω(Vt, ·) is exact for each t, where Vt :=
∂ϕt

∂t is the varia-
tional vector field. For simplicity, throughout this paper we assume that
L is compact without boundary.

Definition 1.1. Let M be a Kähler manifold. A Lagrangian immer-
sion ϕ : L → M is called Hamiltonian minimal (briefly, H-minimal) or
Hamiltonian stationary if it is a critical point of the volume functional
for all Hamiltonian deformations {ϕt}.

The corresponding Euler–Lagrange equation is δαH = 0, where δ is
the co-differential operator with the respect to the induced metric on L.

Definition 1.2. An H-minimal Lagrangian immersion ϕ is called
Hamiltonian stable (briefly, H-stable) if the second variation of the vol-
ume is nonnegative under every Hamiltonian deformation {ϕt}.

The second variational formula is given as follows ([35]):

d2

dt2
Vol (L,ϕ∗

t g)|t=0

=

∫

L

(
〈∆1

Lα,α〉 − 〈R(α), α〉 − 2〈α ⊗ α⊗ αH, S〉+ 〈αH, α〉2
)
dv,

where ∆1
L denotes the Laplace operator of (L,ϕ∗g) acting on the vector

space Ω1(L) of smooth 1-forms on L and α := ω(V, ·) ∈ B1(L) is the
exact 1-form corresponding to an infinitesimal Hamiltonian deformation
V . Here

〈R(α), α〉 :=
n∑

i,j=1

RicM (ei, ej)α(ei)α(ej)

for a local orthonormal frame {ei} on L and

S(X,Y,Z) := ω(B(X,Y ), Z)

for each X,Y,Z ∈ C∞(TL), which is a symmetric 3-tensor field on L
defined by the second fundamental form B of L in M . The index of ϕ
is defined as the dimension of the maximal vector subspace of B1(L) on
which the second variation is negative definite.

For an H-minimal Lagrangian immersion ϕ : L → M , we denote by
E0(ϕ) the null space of the second variation on B1(L), or equivalently
the solution space to the linearized H-minimal Lagrangian submanifold
equation, and we call n(ϕ) := dimE0(ϕ) the nullity of ϕ.

If H1(M,R) = {0}, then any holomorphic Killing vector field on M
is a Hamiltonian vector field, and thus it generates a volume-preserving
Hamiltonian deformation of ϕ. Namely,

{ϕ∗αX | X is a holomorphic Killing vector field on M}
⊂ E0(ϕ) ⊂ B1(L).

Set nhk(ϕ) := dim{ϕ∗αX | X is a holomorphic Killing vector field on
M}, which is called the holomorphic Killing nullity of ϕ.



280 H. MA & Y. OHNITA

Definition 1.3. An H-minimal Lagrangian immersion ϕ is called
strictly Hamiltonian stable (briefly, strictly H-stable) if ϕ is Hamiltonian
stable and nhk(ϕ) = n(ϕ).

Note that if L is strictly Hamiltonian stable, then L has locally min-
imum volume under each Hamiltonian deformation.

In the case when L is a compact minimal Lagrangian submanifold
in an Einstein–Käher manifold M with Einstein constant κ, the second
variational formula becomes much simpler. We see that L is H-stable if
and only if the first (positive) eigenvalue λ1 of the Laplacian of L acting
on smooth functions satisfies λ1 ≥ κ [33]. On the other hand, it is known
that the first eigenvalue λ1 of the Laplacian of any compact minimal
Lagrangian submanifold L in a compact homogeneous Einstein–Kähler
manifold with positive Einstein constant κ has the upper bound λ1 ≤ κ
[38, 39]. In this case, L is H-stable if and only if λ1 = κ.

Assume that (M,ω, J, g) is a Kähler manifold and that G is an ana-
lytic subgroup of its automorphism group Aut(M,ω, J, g). A Lagrangian
orbit L = G · x ⊂ M of G is called a homogeneous Lagrangian subman-
ifold of M . An easy but useful observation can be given as follows.

Proposition 1.1. Any compact homogeneous Lagrangian submani-
fold in a Kähler manifold is Hamiltonian minimal.

Proof. Since αH is an invariant 1-form on L, δαH is a constant func-
tion on L. Hence by the divergence theorem we obtain δαH = 0. q.e.d.

Set
G̃ := {a ∈ Aut(M,ω, J, g) | a(L) = L}.

Then G ⊂ G̃ and G̃ is the maximal subgroup of Aut(M,ω, J, g) preserv-

ing L. Moreover, we have nhk(ϕ) = dim(Aut(M,ω, J, g)) − dim(G̃).

2. Gauss maps of isoparametric hypersurfaces in a sphere

2.1. Gauss maps of oriented hypersurfaces in spheres. Let Nn

be an oriented hypersurface immersed in the unit standard sphere
Sn+1(1) ⊂ Rn+2. Denote by x its position vector of a point p of N ,
and denote n the unit normal vector field of N in Sn+1(1). It is a fun-
damental fact in symplectic geometry that the Gauss map defined by

G : Nn ∋ p 7−→ x(p) ∧ n(p) ∼= [x(p) +
√
−1n(p)] ∈ G̃r2(R

n+2) ∼= Qn(C)

is always a Lagrangian immersion in the complex hyperquadric Qn(C).
Here the complex hyperquadric Qn(C) is identified with the real Grass-

mann manifold G̃r2(R
n+2) of oriented 2-dimensional vector subspaces

of Rn+2, which has a symmetric space expression SO(n+ 2)/(SO(2)×
SO(n)).

Let gstdQn(C) be the standard Kähler metric of Qn(C) induced from

the standard inner product of Rn+2. Note that the Einstein constant
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of gstdQn(C) is equal to n. Let κi (i = 1, · · · , n) denote the principal cur-

vatures of Nn ⊂ Sn+1(1), and let H denote the mean curvature vector
field of the Gauss map G. Palmer showed the following mean curvature
form formula [44]:

(2.1) αH = −d

(
n∑

i=1

arc cot κi

)
= d

(
Im

(
log

n∏

i=1

(1 +
√
−1κi)

))
.

Hence, if Nn is an oriented austere hypersurface in Sn+1(1), introduced
by Harvey and Lawson [17], then its Gauss map G : Nn → Qn(C) is a
minimal Lagrangian immersion. In particular, since any minimal surface
in S3(1) is austere, its Gauss map is a minimal Lagrangian immersion in
Q2(C) ∼= S2×S2 [9]. Note that more minimal Lagrangian submanifolds
of complex hyperquadrics can be obtained from Gauss maps of certain
oriented hypersurfaces in spheres through Palmer’s formula [22].

2.2. Gauss maps of isoparametric hypersurfaces in spheres.

Now suppose that Nn is a compact oriented hypersurface in Sn+1(1)
with constant principal curvatures—that is, an isoparametric hypersur-
face. By Münzner’s result [31, 32], the number g of distinct principal
curvatures must be 1, 2, 3, 4, or 6, and the distinct principal curvatures
have the multiplicities m1 = m3 = · · · , m2 = m4 = · · · . We may assume
thatm1 ≤ m2. It follows from (2.1) that its Gauss map G : Nn → Qn(C)
is a minimal Lagrangian immersion. Moreover, the “Gauss image”of G is
a compact minimal Lagrangian submanifold Ln = G(Nn) ∼= Nn/Zg em-
bedded in Qn(C) so that G : Nn → G(Nn) = Ln is a covering map with
the Deck transformation group Zg [25, 26, 37]. Note that the Gauss
image G(Nn) is orientable if and only if 2n/g is even ([37]).

Here we mention the following symplectic topological properties of
the Gauss images of isoparametric hypersurfaces.

Theorem 2.1. The Gauss image L = G(Nn) is a compact monotone
and cyclic Lagrangian submanifold embedded in Qn(C) and its minimal
Maslov number ΣL is given by

ΣL =
2n

g
=

{
m1 +m2, if g is even,
2m1, if g is odd.

We need to use the following result from H. Ono [38] which generalizes
Oh’s work [36].

Lemma 2.1 ([38]). Let M be a simply connected Kähler–Einstein
manifold with positive scalar curvature with a prequantization complex
line bundle E. Then any compact minimal Lagrangian submanifold L in
M is monotone and cyclic. Moreover, the minimal Maslov number ΣL

of L satisfies

(2.2) nLΣL = 2 γc1 ,
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where

γc1 := min{c1(M)(A) | A ∈ H2(M ;Z), c1(M)(A) > 0} ∈ Z

is called the index of a Kähler manifold M and

nL := min{k ∈ Z | k ≥ 1,⊗k(E,∇)|L is trivial}.

Using this lemma and the properties of isoparametric hypersurfaces
in a sphere, we shall prove Theorem 2.1.

Proof. It follows from Lemma 2.1 and the minimality of the Gauss
image L = G(Nn) that L is a monotone and cyclic Lagrangian sub-
manifold in Qn(C). Note that the index of Qn(C) is known as follows
[6]: γc1 = n if n ≥ 2 and γc1 = 2 if n = 1. So in order to find the
minimal Maslov number ΣL of L, we only need to compute nL. Let
Ñn be the Legendrian lift of Nn to the unit tangent sphere bundle
UTSn+1(1) = V2(R

n+2). Then π : V2(R
n+2)|L → L = G(Nn) is a

flat principal fiber bundle with structure group SO(2) and the covering

map π : Ñn → G(Nn) with Deck transformation group Zg coincides
with its holonomy subbundle with the holonomy group Zg. Let E be
a complex line bundle over Qn(C) associated with the principal fiber

bundle π : V2(R
n+2) → G̃r2(R

n+2) ∼= Qn(C) by the standard action of
SO(2) ∼= U(1) on C. Then E|L is a flat complex line bundle over G(Nn)
associated with the principal fiber bundle π : V2(R

n+2)|L → G(Nn) by
the standard action of SO(2) ∼= U(1) on C. The tautological complex
line bundle W over Qn(C) ⊂ CPn+1 is defined by Wx := C(a+

√
−1b)

for each [a +
√
−1b] ∈ Qn(C). Then E = W if n ≥ 2 and ⊗2E = W

if n = 1. Indeed, c1(W)(CP 1) = 1 if n ≥ 2. Here CP 1 denotes the set
of 1-dimensional complex vector subspaces in a 2-dimensional isotropic

vector subspace of Cn+2. For k = 1, · · · , g, the generator e
√
−1 2π

g of the

holonomy group Zg on E|L induces the multiplication by e
√
−1 2πk

g on

⊗kE|L. Thus the holonomy group of ⊗kE|L is generated by e
√
−1 2πk

g

of Zg. Hence ⊗kE|L has nontrivial holonomy for k = 1, · · · , g − 1, and
⊗gE|L has trivial holonomy. Therefore, nL = g if n ≥ 2 and nL = 2 if
n = 1. Thus the conclusion follows from (2.2). q.e.d.

A hypersurface Nn in Sn+1(1) is homogeneous if it is obtained as an
orbit of a compact connected subgroup G of SO(n+ 2). Obviously any
homogeneous hypersurface in Sn+1(1) is an isoparametric hypersurface.
It turns out that Nn is homogeneous if and only if its Gauss image
G(Nn) is homogeneous [25].

Consider

G : Nn ∋ p 7−→ x(p) ∧ n(p) ∈ G̃r2(R
n+2) ⊂

2∧
Rn+2.
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Here
∧2

Rn+2 ∼= o(n + 2) can be identified with the Lie algebra of all

(holomorphic) Killing vector fields on Sn+1(1) or G̃r2(R
n+2). Let k̃ be

the Lie subalgebra of o(n+2) consisting of all Killing vector fields tan-

gent to Nn or G(Nn), and let K̃ be a compact connected Lie subgroup

of SO(n+ 2) generated by k̃. Take the orthogonal direct sum

2∧
Rn+2 = k̃+ V,

where V is a vector subspace of o(n+ 2). The linear map

V ∋ X 7−→ αX |G(Nn) ∈ E0(G) ⊂ B1(G(Nn))

is injective, and nhk(G) = dimV. Then G(Nn) ⊂ V, and thus

G(Nn) ⊂ G̃r2(R
n+2) ∩ V.

Indeed, for each X ∈ k̃ and each p ∈ Nn, 〈X,x(p) ∧ n(p)〉 = 〈Xx(p),
n(p)〉 − 〈x(p),Xn(p)〉 = 2〈Xx(p),n(p)〉 = 0.

Note that G(Nn) is a compact minimal submanifold embedded in the
unit hypersphere of V and that by the theorem of Tsunero Takahashi
each coordinate function of V restricted to G(Nn) is an eigenfunction of
the Laplace operator with eigenvalue n. Then we observe the following.

Lemma 2.2. The number n is just the first (positive) eigenvalue of
G(Nn) if and only if G(Nn) ⊂ Qn(C) is Hamiltonian stable. Moreover
the dimension of the vector space V is equal to the multiplicity of the
(resp. first) eigenvalue n if and only if G(Nn) ⊂ Qn(C) is Hamiltonian
rigid (resp. strictly Hamiltonian stable).

Next we mention a relationship between the Gauss images G(Nn) of

isoparametric hypersurfaces and the intersection G̃r2(R
n+2)∩V. In [26]

we showed that if Nn is homogeneous, then G(Nn) = G̃r2(R
n+2) ∩ V.

Define a map µ : G̃r2(R
n+2) → ∧2

Rn+2 by

µ : G̃r2(R
n+2) ∋ [W ] 7−→ a ∧ b ∈

2∧
Rn+2 ∼= o(n+ 2) = k̃+ V.

The moment map of the action K̃ on G̃r2(R
n+2) is given by µ

k̃
:=

π
k̃
◦ µ : G̃r2(R

n+2) → k̃, where π
k̃
: o(n+ 2) → k̃ denotes the orthogonal

projection onto k̃. For any p ∈ Nn, we have

K̃(x(p) ∧ n(p)) ⊂ G(Nn) ⊂ G̃r2(R
n+2) ∩ V = µ−1

k̃
(0).

It is obvious that Nn is homogeneous if and only if K̃(x(p) ∧ n(p)) =

G(Nn). On the other hand, assume that G(Nn) = G̃r2(R
n+2)∩V. Then

K̃(x(p) ∧ n(p)) = G(Nn), that is, Nn is homogeneous. Therefore we
obtain (see [26]) that Nn is not homogeneous if and only if

K̃(x(p) ∧ n(p)) $ G(Nn) $ G̃r2(R
n+2) ∩ V = µ−1

k̃
(0).
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All isoparametric hypersurfaces in spheres are classified as either ho-
mogeneous or nonhomogeneous. By Hsiang and Lawson [17] and Takagi
and Takahashi [46], any homogeneous isoparametric hypersurface in a
sphere can be obtained as a principal orbit of the isotropy represen-
tation of a compact Riemannian symmetric pair (U,K) of rank 2 (see
Table 1).

Compact homogeneous minimal Lagrangian submanifolds obtained
as the Gauss images of homogeneous isoparametric hypersurfaces are
constructed in the following way (cf. [25]). Let u = k+p be the canonical
decomposition of u as a symmetric Lie algebra of a symmetric pair
(U,K) of rank 2, and let a be a maximal abelian subspace of p. Define
an AdU -invariant inner product 〈 , 〉u of u from the Killing–Cartan form
of u. Then the vector space p equipped with the inner product 〈 , 〉u can
be identified with the Euclidean space Rn+2 and Sn+1(1) denotes the
(n+1)-dimensional unit standard sphere in p. The linear isotropy action
Adp of K on p and thus on Sn+1(1) induces the group action of K on

G̃r2(p) ∼= Qn(C). For each regular element H of a ∩ Sn+1(1), we get a
homogeneous isoparametric hypersurface in the unit sphere

Nn = (AdpK)H ⊂ Sn+1(1) ⊂ p ∼= Rn+2.

Its Gauss image is

Ln = G(Nn) = K · [a] = [(AdpK)a] ⊂ G̃r2(p) ∼= Qn(C).

Here N and G(Nn) have homogeneous space expressions N ∼= K/K0

and G(Nn) ∼= K/K[a], where we define

K0 := {k ∈ K | Adp(k)(H) = H}
= {k ∈ K | Adp(k)(H) = H for each H ∈ a},

Ka := {k ∈ K | Adp(k)(a) = a},
K[a] := {k ∈ Ka | Adp(k) : a −→ a preserves the orientation of a}.

The deck transformation group of the covering map G : N → G(Nn) is
equal to K[a]/K0 = W (U,K)/Z2

∼= Zg, where W (U,K) = Ka/K0 is the
Weyl group of (U,K).

Since we know that AdpK is the maximal compact subgroup of
SO(n + 2) preserving N and/or G(Nn) [18, 25], in this case its nul-
lity is given as

nhk(G) = nhk(G(Nn)) = dimSO(n+ 2)− dimK.

3. The method of eigenvalue computations for our

compact homogeneous spaces

3.1. Basic results from harmonic analysis on compact homo-

geneous spaces. Now we review the basic theory of harmonic analysis
on general compact homogeneous spaces (cf. [48]). Let D(G) be the
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Table 1. Homogeneous isoparametric hypersurfaces in spheres

g Type (U,K) dimN m1, m2 K/K0

1 S1× (S1 × SO(n+ 2), SO(n+ 1)) n n Sn

BDII (n ≥ 1) [R⊕ A1]

2 BDII× (SO(p + 2) × SO(n+ 2− p), n p, n− p Sp × Sn−p

BDII SO(p+ 1)× SO(n+ 1− p))
(1 ≤ p ≤ n− 1) [A1 ⊕ A1]

3 AI2 (SU(3), SO(3)) [A2] 3 1, 1
SO(3)
Z2+Z2

3 a2 (SU(3) × SU(3), SU(3)) [A2] 6 2, 2
SU(3)

T2

3 AII2 (SU(6), Sp(3)) [A2] 12 4, 4
Sp(3)

Sp(1)3

3 EIV (E6, F4) [A2] 24 8, 8 F4

Spin(8)

4 b2 (SO(5)× SO(5), SO(5)) [B2] 8 2, 2 SO(5)
T2

4 AIII2 (SU(m+ 2), S(U(2) × U(m))) 4m − 2 2, S(U(2)×U(m))
S(U(1)×U(1)×U(m−2))

(m ≥ 2) [BC2](m ≥ 3), [B2](m = 2) 2m− 3

4 BDI2 (SO(m+ 2), SO(2)× SO(m)) 2m − 2 1,
SO(2)×SO(m)
Z2×SO(m−2)

(m ≥ 3) [B2] m− 2

4 CII2 (Sp(m+ 2), Sp(2)× Sp(m)) 8m − 2 4,
Sp(2)×Sp(m)

Sp(1)×Sp(1)×Sp(m−2)

(m ≥ 2) [BC2](m ≥ 3), [B2](m = 2) 4m− 5

4 DIII2 (SO(10), U(5)) [BC2] 18 4, 5 U(5)
SU(2)×SU(2)×U(1)

4 EIII (E6, U(1) · Spin(10)) [BC2] 30 6, 9 U(1)·Spin(10)
S1·Spin(6)

6 g2 (G2 ×G2, G2) [G2] 12 2, 2 G2

T2

6 G (G2, SO(4)) [G2] 6 1, 1
SO(4)
Z2+Z2

complete set of all inequivalent irreducible unitary representations of a
compact connected Lie group G. For a maximal abelian subalgebra t of
g, let Σ(G) be the set of all roots of g and Σ+(G) be its subset of all
positive root α ∈ Σ(G) relative to a linear order fixed on t. Set

Γ(G) := {ξ ∈ t | exp(ξ) = e},
Z(G) := {Λ ∈ t∗ | Λ(ξ) ∈ 2πZ for each ξ ∈ Γ(G)},
D(G) := {Λ ∈ Z(G) | 〈Λ, α〉 ≥ 0 for each α ∈ Σ+(G)}.

Then there is a bijective correspondence between D(G) ∋ Λ 7−→
(VΛ, ρΛ) ∈ D(G), where (VΛ, ρΛ) denotes an irreducible unitary rep-
resentation of G with the highest weight Λ equipped with a ρΛ(G)-
invariant Hermitian inner product 〈 , 〉VΛ

. Let 〈 , 〉g be an AdG-invariant
inner product of g. For a compact Lie subgroup H of G with Lie sub-
algebra h, we take the orthogonal direct sum decomposition g = h+m

relative to 〈 , 〉g. Set

(3.1) D(G,H) := {Λ ∈ D(G) | (VΛ)H 6= {0}},

where

(3.2) (VΛ)H := {w ∈ VΛ | ρΛ(a)w = w (∀a ∈ H)}.
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Let Λ ∈ D(G,H). For each w̄⊗v ∈ (VΛ)
∗
H⊗VΛ, we define a real analytic

function fw̄⊗v on G/H by

(3.3) (fw̄⊗v)(aH) := 〈v, ρΛ(a)w〉VΛ

for all aH ∈ G/H. By virtue of the Peter–Weyl theorem and the Frobe-
nius reciprocity law, we have a linear injection

(3.4) (VΛ)
∗
H ⊗ VΛ ∋ w̄ ⊗ v 7−→ fw̄⊗v ∈ C∞(G/H,C)

and the decomposition

(3.5) C∞(G/H,C) =
⊕

Λ∈D(G,H)

(VΛ)
∗
H ⊗ VΛ

in the sense of C∞-topology. Via the natural homogeneous projection
π : G → G/H, the vector space C∞(G/H,C) of all complex val-
ued smooth functions on G/H can be identified with the vector space
C∞(G,C)H of all complex valued smooth functions on G invariant un-
der the right action of H. Let U(g) be the universal enveloping algebra
of Lie algebra g, which is identified with the algebra of all left-invariant
linear differential operators on C∞(G,C). Let

U(g)H := {D ∈ U(g) | Ad(h)D = Rh ◦D ◦Rh−1 = D for each h ∈ H}

be the subalgebra of U(g) consisting of elements fixed by the adjoint

action of H. Here (Rhf̃)(u) := f̃(uh) for f̃ ∈ C∞(G,C). For each D ∈
U(g)H , we have D(C∞(G,C)H) ⊂ C∞(G,C)H . The Casimir operator
CG/H,〈 , 〉g of (G,H) relative to 〈 , 〉g is defined by C = CG/H,〈 , 〉g :=∑n

i=1(Xi)
2, where {Xi | i = 1, · · · , n} is an orthonormal basis of m with

respect to 〈 , 〉g. Then CG/H,〈 , 〉g ∈ U(g)H and by the AdG-invariance of
〈 , 〉g and Schur’s Lemma there is a nonpositive real constant c(Λ, 〈 , 〉g)
such that

(3.6) CG/H,〈 , 〉g(fw̄⊗v) = c(Λ, 〈 , 〉g)fw̄⊗v

for each w̄⊗ v ∈ (VΛ)
∗
H ⊗ VΛ. The eigenvalue c(Λ, 〈 , 〉g) is given by the

Freudenthal’s formula

(3.7) c(Λ, 〈 , 〉g) = −〈Λ,Λ + 2δ〉g,

where 2δ =
∑

α∈Σ+(G) α.

Now we shall consider our compact homogeneous spaces Nn = K/K0

and Ln = G(Nn) = K/K[a] ([25]). Let Σ(U,K) be the set of (restricted)

roots of (u, k), and let Σ+(U,K) be its subset of positive roots. We have
the following root decompositions of k and p as follows:

k = k0 +
∑

γ∈Σ+(U,K)

kγ , p = a+
∑

γ∈Σ+(U,K)

pγ ,
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where

k0 :={X ∈ k | [X, a] ⊂ a}
={X ∈ k | [X,H] = 0 for each H ∈ a},

kγ :={X ∈ k | (adH)2X = (γ(H))2X for each H ∈ a},
pγ :={Y ∈ p | (adH)2Y = (γ(H))2Y for each H ∈ a}.

For each γ ∈ Σ+(U,K), set m(γ) := dim kγ = dim pγ . Define

(3.8) m :=
∑

γ∈Σ+(U,K)

kγ and a⊥ :=
∑

γ∈Σ+(U,K)

pγ .

Then the tangent vector spaces TeK0(K/K0) and TeK[a]
(K/K[a]) can be

identified with the vector subspacem of k. We can choose an orthonormal
basis of m and a⊥ with respect to 〈 , 〉u

{Xγ,i ∈ kγ | γ ∈ Σ+(U,K), i = 1, 2, · · · ,m(γ)}
and

(3.9) {Yγ,i ∈ pγ | γ ∈ Σ+(U,K), i = 1, 2, · · · ,m(γ)}
such that

(3.10) [H,Xγ,i] =
√
−1γ(H)Yγ,i, [H,Yγ,i] = −

√
−1γ(H)Xγ,i

for each H ∈ a. Let 〈 , 〉 denote the Adm(K0)-invariant inner product
of m corresponding to the induced metric G∗gstdQn(C) on K/K0. Thus we

know (see [25]) that
{

1

‖γ‖u
Xγ,i | γ ∈ Σ+(U,K), i = 1, 2, · · · ,m(γ)

}

is an orthonormal basis of m relative to 〈 , 〉.
The Laplace operator ∆0

Ln = δd acting on C∞(K/K0,C) with respect

to the induced metric G∗gstdQn(C) corresponds to the linear differential op-

erator −CLn on C∞(K,C)K0 , where CLn ∈ U(k) is the Casimir operator
relative to the Adm(K0)-invariant inner product 〈 , 〉 of m defined by

(3.11) CLn :=
∑

γ∈Σ+(U,K)

m(γ)∑

i=1

1

||γ||2u
(Xγ,i)

2.

Note that CLn ∈ U(k)K0 because of the Adm(K0)-invariance of 〈 , 〉.
Suppose that Σ(U,K) is irreducible. Let γ0 denote the highest root

of Σ(U,K). For g = 3, 4, or 6, the restricted root system Σ(U,K) is of
type A2, B2, BC2, or G2. Then we know that for each γ ∈ Σ+(U,K),

‖γ‖2u
‖γ0‖2u

=





1 if Σ(U,K) is of type A2,

1 or 1/3 if Σ(U,K) is of type G2,

1 or 1/2 if Σ(U,K) is of type B2,

1, 1/2 or 1/4 if Σ(U,K) is of type BC2.
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Set

(3.12) Σ+
1 (U,K) := {γ ∈ Σ+(U,K) | ‖γ‖2u = ‖γ0‖2u}.

Define a symmetric Lie subalgebra (u1, k1) by

k1 := k0 +
∑

γ∈Σ+
1 (U,K)

kγ , p1 := a+
∑

γ∈Σ+
1 (U,K)

pγ ,

u1 := k1 + p1.

Let K1 and U1 denote connected compact Lie subgroups of K and U
generated by k1 and u1.

Suppose that Σ+(U,K) is of type BC2. Define

(3.13) Σ+
2 (U,K) := {γ ∈ Σ+(U,K) | ‖γ‖2u = ‖γ0‖2u or ‖γ0‖2u/2}.

Define a symmetric Lie subalgebra (u2, k2) by

k2 := k0 +
∑

γ∈Σ+
2 (U,K)

kγ , p2 := a+
∑

γ∈Σ+
2 (U,K)

pγ ,

u2 := k2 + p2.

Let K2 and U2 denote connected compact Lie subgroups of K and U
generated by k2 and u2. We have the following subgroups of K in each
case:

K0 ⊂ K, if Σ(U,K) is of type A2,
K0 ⊂ K1 ⊂ K, if Σ(U,K) is of type B2 or G2,
K0 ⊂ K1 ⊂ K2 ⊂ K, if Σ(U,K) is of type BC2.

Set

CK/K0,〈 , 〉u :=
∑

γ∈Σ+(U,K)

m(γ)∑

i=1

(Xγ,i)
2,

CK1/K0,〈 , 〉u :=
∑

γ∈Σ+
1 (U,K)

m(γ)∑

i=1

(Xγ,i)
2,

CK2/K0,〈 , 〉u :=
∑

γ∈Σ+
2 (U,K)

m(γ)∑

i=1

(Xγ,i)
2.

(3.14)

Then CK/K0
, CK1/K0

, CK2/K0
∈ U(k)K0 , and the Casimir operator CLn

can be decomposed as follows:
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Lemma 3.1.

CLn =





1

‖γ0‖2u
CK/K0,〈 , 〉u if Σ(U,K) is of type A2,

3

‖γ0‖2u
CK/K0,〈 , 〉u − 2

‖γ0‖2u
CK1/K0,〈 , 〉u if Σ(U,K) is of type G2,

2

‖γ0‖2u
CK/K0,〈 , 〉u − 1

‖γ0‖2u
CK1/K0,〈 , 〉u if Σ(U,K) is of type B2,

4

‖γ0‖2u
CK/K0,〈 , 〉u − 2

‖γ0‖2u
CK2/K0,〈 , 〉u − 1

‖γ0‖2u
CK1/K0,〈 , 〉u

if Σ(U,K) is of type BC2.

Moreover, by direct computations we obtain the following.

Lemma 3.2. The Casimir operators CK/K0
, CK1/K0

(and CK2/K0
)

commute with each other.

See also Theorem 1.5 and Theorem 3.6 in [5] for more general results.
The commuting property implies the existence of simultaneous eigen-
functions for the Casimir operators. The choice of such eigenfunctions
will be performed concretely in our settings.

3.2. Fibrations on homogeneous isoparametric hypersurfaces

by homogeneous isoparametric hypersurfaces. For g = 4 or 6,
(U,K) is of type G2, B2, or BC2 as indicated in the 3rd column of
Table 1.

In the case when (U,K) is of type B2 or G2, we have one fibration as
follows:

K1/K0

Nn = K/K0

❄

K/K1

In the case when (U,K) is of type BC2, we have the following two
fibrations:
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K/K0

K1/K0 K2/K0

K/K2

✲Nn = K/K0

=

❄ ❄

K/K1

K2/K1
✲

3.2.1. In the case g = 6 and (U,K) = (G2, SO(4)), (m1,m2) =
(1, 1).

K1/K0 = SO(3)/(Z2 + Z2)

N6 = K/K0 = SO(4)/(Z2 + Z2)

❄

K/K1 = SO(4)/SO(3) ∼= S3

Here U1/K1 = SU(3)/SO(3) is a maximal totally geodesic submanifold
of U/K = G2/SO(4). K/K0 = SO(4)/(Z2 + Z2) is a homogeneous
isoparametric hypersurface with g = 6, m1 = m2 = 1, and K1/K0 =
SO(3)/(Z2 +Z2) is a homogenous isoparametric hypersurface with g =
3, m1 = m2 = 1.

Remark ([24]). Maximal totally geodesic submanifolds embedded
in G2/SO(4) are classified as SU(3)/SO(3), CP 2, S2 · S2.

3.2.2. In the case g = 6 and (U,K) = (G2 × G2, G2), (m1,m2) =
(2, 2).

K1/K0 = SU(3)/T 2

N12 = K/K0 = G2/T
2

❄

K/K1 = G2/SU(3) ∼= S6

Here U1/K1 = (SU(3) × SU(3))/SU(3) is a maximal totally geodesic
submanifold of U/K = (G2 × G2)/G2. K/K0 = G2/T

2 is a homoge-
nous isoparametric hypersurface with g = 6, m1 = m2 = 2, and
K1/K0 = SU(3)/T 2 is a homogenous isoparametric hypersurface with
g = 3, m1 = m2 = 2.
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Remark ([24]). Maximal totally geodesic submanifolds embedded
in G2 are classified as G2/SO(4), SU(3), S3 · S3.

3.2.3. In the case g = 4 and (U,K) = (SO(5) × SO(5), SO(5)),
(m1,m2) = (2, 2).

K1/K0 = SO(4)/T 2

N8 = K/K0 = SO(5)/T 2

❄

K/K1 = SO(5)/SO(4) ∼= S4

Here U1/K1 = (SO(4) × SO(4))/SO(4) ∼= SO(4) ∼= S3 · S3 is a maxi-
mal totally geodesic submanifold of U/K = (SO(5)× SO(5))/SO(5) ∼=
SO(5). K/K0 = SO(5)/T 2 is a homogeneous isoparametric hypersur-
face with g = 4, m1 = m2 = 2, and K1/K0 = SO(4)/T 2 ∼= S2 × S2 is a
homogeneous isoparametric hypersurface with g = 2, m1 = m2 = 2.

Remark ([24]). Maximal totally geodesic submanifolds embedded

in Sp(2) ∼= Spin(5) are classified as G̃r2(R
5), S1 · S3, S3 × S3, S4.

3.2.4. In the case g = 4 and (U,K) = (SO(10), U(5)), (m1,m2) =
(4, 5).

N18 = U(5)
SU(2)×SU(2)×U(1)

=
//

K1/K0
∼=S1×S1

��

K/K0 = U(5)
SU(2)×SU(2)×U(1)

K2/K0
∼= U(4)

SU(2)×SU(2)
��

K/K1 = U(5)
U(2)×U(2)×U(1)

K2/K1
∼=Gr2(C4)

// K/K2 = U(5)
U(4)×U(1)

Here U2/K2 = SO(8)×SO(2)
U(4)×U(1)

∼= SO(8)
U(4)

∼= SO(8)
SO(2)×SO(6)

∼= G̃r2(R
8) is a

maximal totally geodesic submanifold of U/K = SO(10)/U(5), but

U1/K1 = SO(4)×SO(4)×SO(2)
U(2)×U(2)×U(1)

∼= G̃r2(R
4) is not a maximal totally geo-

desic submanifold of U2/K2. Notice that K/K0 = U(5)
SU(2)×SU(2)×U(1) is a

homogeneous isoparametric hypersurface with g = 4, (m1,m2) = (4, 5),

K2/K0 = U(4)×U(1)
SU(2)×SU(2)×U(1)

∼= SO(2)×SO(6)
Z2×SO(4) is a homogeneous isopara-

metric hypersurface with g = 4, (m1,m2) = (1, 4), and K1/K0 =
U(2)×U(2)×U(1)

SU(2)×SU(2)×U(1)
∼= U(2)

SU(2) ×
U(2)
SU(2)

∼= S1 × S1 is a homogeneous isopara-

metric hypersurface with g = 2, (m1,m2) = (1, 1).
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Remark ([24]). Maximal totally geodesic submanifolds embedded

in
SO(10)

U(5)
are classified as G̃r2(R

8), Gr2(C
5), SO(5), S2×CP 3, CP 4.

Remark ([24]). Maximal totally geodesic submanifolds embedded

in G̃r2(R
8) are classifed as G̃r2(R

7), Sp · Sq (p+ q = 6), CP 3.

3.2.5. In the case g = 4 and (U,K) = (SO(m+2), SO(2)×SO(m)) (m ≥ 3),
(m1,m2) = (1,m− 2).

K1/K0 =
SO(2)×SO(2)×SO(m−2)

Z2×SO(m−2)
∼= SO(2)×SO(2)

Z2

∼= S1 × S1

N2m−2 = K/K0 =
SO(2)×SO(m)
Z2×SO(m−2)

❄

K/K1 =
SO(2)×SO(m)

SO(2)×SO(2)×SO(m−2)
∼= SO(m)

SO(2)×SO(m−2)
∼= G̃r2(R

m)

Here U1/K1 =
SO(4)×SO(m−2)

SO(2)×SO(2)×SO(m−2)
∼= G̃r2(R

4) ∼= S2×S2 is not a maxi-

mal totally geodesic submanifold of U/K = SO(m+2)
SO(2)×SO(m)

∼= G̃r2(R
m+2).

Notice that K/K0 = SO(2)×SO(m)
Z2×SO(m−2) is a homogeneous isoparametric hy-

persurface with g = 4, (m1,m2) = (1,m − 2), and K1/K0 =
SO(2)×SO(2)×SO(m−2)

Z2×SO(m−2)
∼= SO(2)×SO(2)

Z2

∼= S1×S1 is a homogeneous isopara-

metric hypersurface with g = 2, (m1,m2) = (1, 1).

Remark ([24]). Maximal totally geodesic submanifolds embedded

in G̃r2(R
m+2) (m ≥ 3) are classified as G̃r2(R

m+1), Sp ·Sq(p+ q = m),

CP [m
2
].

3.2.6. In the case g = 4 and (U,K) = (SU(m + 2), S(U(2) ×
U(m)) (m ≥ 2), (m1,m2) = (2, 2m − 3).

(i) m = 2, (U,K) = (SU(4), S(U(2) × U(2)), (m1,m2) = (2, 1)

K1/K0 =
S(U(1)×U(1)×U(1)×U(1))

S(U(1)×U(1))
∼= S1 × S1

N6 = K/K0 =
S(U(2)×U(2))
S(U(1)×U(1))

❄

K/K1 =
S(U(2)×U(2))

S(U(1)×U(1)×U(1)×U(1))
∼= S2 × S2

Here U1/K1 = S(U(2)×U(2))
S(U(1)×U(1)×U(1)×U(1))

∼= S2 × S2 is not a maximal

totally geodesic submanifold in U/K = SU(4)
S(U(2)×U(2))

∼= Gr2(C
4) ∼=

G̃r2(R
6). Notice that K/K0 = S(U(2)×U(2))

S(U(1)×U(1)) is a homogeneous
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isoparametric hypersurface with g = 4, (m1,m2) = (2, 1), and
K1/K0

∼= S1 × S1 is a homogeneous isoparametric hypersurface
with g = 2, (m1,m2) = (1, 1).

(ii) m ≥ 3

N4m−2 = K
K0

= S(U(2)×U(m))
S(U(1)×U(1)×U(m−2))

=
//

K1
K0

∼=S(U(1)×U(1)×U(1)×U(1))
S(U(1)×U(1))

��

K
K0

= S(U(2)×U(m))
S(U(1)×U(1)×U(m−2))

K2
K0

∼=S(U(2)×U(2))
S(U(1)×U(1))

��

K
K1

= S(U(2)×U(m))
S(U(1)×U(1)×U(1)×U(1)×U(m−2))

K2
K1

∼=CP 1×CP 1

// K
K2

= S(U(2)×U(m))
S(U(2)×U(2)×U(m−2))

Here U2/K2
∼= Gr2(C

4) is not a maximal totally geodesic sub-

manifold of U/K = SU(m+2)
S(U(2)×U(m))

∼= Gr2(C
m+2) and U1/K1 =

S(U(2)×U(2)×U(m−2))
S(U(1)×U(1)×U(1)×U(1)×U(m−2))

∼= CP 1×CP 1 is not a maximal to-

tally geodesic submanifold of U2/K2. Notice that K/K0 =
S(U(2)×U(m))

S(U(1)×U(1)×U(m−2)) is a homogeneous isoparametric hypersurface

with g = 4, (m1,m2) = (2, 2m − 3), K2/K0
∼= S(U(2)×U(2))

S(U(1)×U(1)) is

a homogeneous isoparametric hypersurface with g = 4, (m1,m2)
= (2, 1), and K1/K0

∼= S1 × S1 is a homogeneous isoparametric
hypersurface with g = 2, (m1,m2) = (1, 1).

Remark. ([24]) Maximal totally geodesic submanifolds embedded in
Gr2(C

m+2) (m ≥ 3) are classified as Gr2(C
m+1), Gr2(R

m+2), CP p ×
CP q (p+ q = m), HP [m

2
].

3.2.7. In the case g = 4 and (U,K) = (Sp(m+2), Sp(2)×Sp(m)) (m ≥
2), (m1,m2) = (4, 4m− 5).

(i) In the case g = 4 and (U,K) = (Sp(4), Sp(2) × Sp(2)) (m = 2),
(m1,m2) = (4, 3)

K1/K0 =
Sp(1)×Sp(1)×Sp(1)×Sp(1)

Sp(1)×Sp(1)
∼= S3 × S3

N14 = K/K0 =
Sp(2)×Sp(2)
Sp(1)×Sp(1)

❄

K/K1 =
Sp(2)×Sp(2)

Sp(1)×Sp(1)×Sp(1)×Sp(1)
∼= HP 1 ×HP 1 ∼= S4 × S4

Here U1/K1 =
Sp(2)×Sp(2)

Sp(1)×Sp(1)×Sp(1)×Sp(1)
∼= HP 1×HP 1 is a maximal

totally geodesic submanifold of U/K = Sp(4)
Sp(2)×Sp(2)

∼= Gr2(H
4).
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Notice that K/K0 = Sp(2)×Sp(2)
Sp(1)×Sp(1) is a homogeneous isoparamet-

ric hypersurface with g = 4, (m1,m2) = (4, 3), and K1/K0 =
Sp(1)×Sp(1)×Sp(1)×Sp(1)

Sp(1)×Sp(1)
∼= S3 × S3 is a homogeneous isoparametric

hypersurface with g = 2, (m1,m2) = (3, 3).

(ii) m ≥ 3

N8m−2 = K
K0

= Sp(2)×Sp(m)
Sp(1)×Sp(1)×Sp(m−2)

=
//

K1
K0

∼=Sp(1)×Sp(1)×Sp(1)×Sp(1)
Sp(1)×Sp(1)

��

K
K0

= Sp(2)×Sp(m)
Sp(1)×Sp(1)×Sp(m−2)

K2
K0

∼=Sp(2)×Sp(2)
Sp(1)×Sp(1)

��

K
K1

= Sp(2)×Sp(m)
Sp(1)×Sp(1)×Sp(1)×Sp(1)×Sp(m−2)

K2
K1

∼=HP 1×HP 1

// K
K2

= Sp(2)×Sp(m)
Sp(2)×Sp(2)×Sp(m−2)

Here U2/K2 = Sp(4)×Sp(m−2)
Sp(2)×Sp(2)×Sp(m−2)

∼= Gr2(H
4) is not a maximal

totally geodesic submanifold of U/K = Sp(m+2)
Sp(2)×Sp(m)

∼= Gr2(H
m+2),

but U1/K1 = Sp(2)×Sp(2)×Sp(m−2)
Sp(1)×Sp(1)×Sp(1)×Sp(1)×Sp(m−2)

∼= HP 1 × HP 1 is

a maximal totally geodesic submanifold of U2/K2. Notice that

K/K0 = Sp(2)×Sp(m)
Sp(1)×Sp(1)×Sp(m−2) is a homogeneous isoparametric hy-

persurface with g = 4, (m1,m2) = (4, 4m−5),K2/K0
∼= Sp(2)×Sp(2)

Sp(1)×Sp(1)

is a homogeneous isoparametric hypersurface with g = 4, (m1,m2)
= (4, 3), and K1/K0

∼= S3 × S3 is a homogeneous isoparametric
hypersurface with g = 2, (m1,m2) = (3, 3).

Remark. ([24]) Maximal totally geodesic submanifolds embedded in
Gr2(H

4) are classified as Sp(2), HP 2, S1 · S5, S4 × S4, Gr2(C
4).

Maximal totally geodesic submanifolds embedded inGr2(H
m+2) (m ≥

3) are classified as Gr2(H
m+1), Gr2(C

m+2), HP p ×HP q (p + q = m).

3.2.8. In the case g = 4 and (U,K) = (E6, U(1)·Spin(10)), (m1,m2) =
(6, 9).

N30 = K
K0

= U(1)·Spin(10)
S1·Spin(6)

=
//

K1
K0

=
S1·(Spin(2)·(Spin(2)·Spin(6)))

S1·Spin(6)
��

K
K0

= U(1)·Spin(10)
S1·Spin(6)

K2
K0

=U(1)·(Spin(2)·Spin(8))

S1·Spin(6)
��

K
K1

= U(1)·Spin(10)
S1·(Spin(2)·(Spin(2)·Spin(6)))

K2
K1

∼=G̃r2(R8)
// K
K2

= U(1)·Spin(10)
U(1)·(Spin(2)·Spin(8))



HAMILTONIAN STABILITY OF THE GAUSS IMAGES. I 295

Here U2/K2 = U(1)·Spin(10)
U(1)·(Spin(2)·Spin(8))

∼= G̃r2(R
10) is a maximal totally geo-

desic submanifold of U/K = E6
U(1)·Spin(10) , but U1/K1 =

S1·Spin(4)·Spin(6)
S1·(Spin(2)·Spin(2)·Spin(6))

∼= S2 × S2 is not a maximal totally geodesic

submanifold in U2/K2. Notice that K/K0 = U(1)·Spin(10)
S1·Spin(6) is a homo-

geneous isoparametric hypersurface with g = 4, (m1,m2) = (6, 9),

K2/K0 = U(1)·(Spin(2)·Spin(8))
S1·Spin(6)

∼= Spin(2)·Spin(8)
Spin(6)

∼= SO(2)×SO(8)
Z2×SO(6) is a ho-

mogeneous isoparametric hypersurface with g = 4, (m1,m2) = (1, 6),

and K1/K0 = S1·(Spin(2)·(Spin(2)·Spin(6)))
S1·Spin(6)

∼= S1 × S1 is a homogeneous

isoparametric hypersurface with g = 2, (m1,m2) = (1, 1).

Remark ([24]). Maximal totally geodesic submanifolds embedded
in E6/U(1) · Spin(10) are classified as Gr2(H

4)/Z2, OP 2, S2 × CP 2,

SO(10)/U(5), Gr2(C
6), G̃r2(R

10).

The cases described in 3.2.1, 3.2.2, and 3.2.8 are treated in [27].

4. The case (U,K) = (SO(5)× SO(5), SO(5))

Now (U,K) is of type B2, and U = SO(5) × SO(5), K = {(x, x) ∈
U | x ∈ SO(5)}. Let u = k + p be the canonical decomposition, where
u = o(5) ⊕ o(5), k = {(X,X) | X ∈ o(5)} ∼= o(5), and p = {(X,−X) |
X ∈ o(5)}. Let a be a maximal abelian subspace of p given by

a =




(H,−H) | H = H(ξ1, ξ2) =




0 −ξ1 0 0 0
ξ1 0 0 0 0
0 0 0 −ξ2 0
0 0 ξ2 0 0
0 0 0 0 0




, ξ1, ξ2 ∈ R





∼= t = {H(ξ1, ξ2) | ξ1, ξ2 ∈ R} ⊂ o(5).

Then the centralizer K0 of a in K is given by

K0 =







A 0 0
0 B 0
0 0 1


 | A,B ∈ SO(2)





∼= T 2,

which is a maximal torus of SO(5), and N = K/K0
∼= SO(5)/T 2 is a

maximal flag manifold of dimension n = 8. Moreover, K[a] is described
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as

K[a] =



I2 0 0
0 I2 0
0 0 1


 · T 2 ∪




1 0
0 1

1 0
0 −1

−1




· T 2

∪




1 0
0 −1

1 0
0 −1

1




· T 2 ∪




1 0
0 −1

1 0
0 1

−1




· T 2.

The deck transformation group of the covering map G : N8 → G(N8) is
equal to K[a]/K0

∼= Z4.

4.1. Description of the Casimir operator. Choose 〈X,Y 〉k :=
−tr(XY ) for each X,Y ∈ k = so(5). The restricted root system Σ(U,K)
of type B2, can be described as follows (cf. [7]):

Σ(U,K) ={±(ǫ1 − ǫ2) = ±α1,±ǫ2 = ±α2,±(ǫ1 + ǫ2) = ±(α1 + 2α2),

± ǫ1 = ±(α1 + α2)}.
Then the square length of each γ ∈ Σ(U,K) relative to 〈 , 〉k is

‖γ‖2u =





1

4
if γ is short,

1

2
if γ is long.

In this case, K = SO(5) ⊃ K1 = SO(4) ⊃ K0 = T 2. The Casimir
operator CL of Ln relative to the induced metric from gstdQn(C) becomes

CL =
2

‖γ0‖2u
CK/K0,〈 , 〉u −

1

‖γ0‖2u
CK1/K0,〈 , 〉u

= 4 CK/K0,〈 , 〉u − 2 CK1/K0,〈 , 〉u
= 2 CK/K0

− CK1/K0

= CK/K0
+ CK/K1

,

(4.1)

where CK/K0
and CK1/K0

denote the Casimir operators of K/K0 and
K1/K0 relative to 〈 , 〉k and 〈 , 〉k|k1 , respectively.
4.2. Descriptions of D(K) and D(K1). Since the maximal abelian
subalgebra t of k can be given by

t =








0 −ξ1
ξ1 0

0 −ξ2
ξ2 0

0




| ξ1, ξ2 ∈ R





⊂ k1 ⊂ k,
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we have

Γ(K) = Γ(K1)

=




ξ =




0 −ξ1
ξ1 0

0 −ξ2
ξ2 0

0




| ξ1, ξ2 ∈ 2πZ





.

Denote by εi (i = 1, 2) a linear function ǫi : t ∋ ξ 7→ ξi ∈ R. Then

D(K) = D(SO(5)) = {Λ = k1ǫ1 + k2ǫ2 | k1, k2 ∈ Z, k1 ≥ k2 ≥ 0},
D(K1) = D(SO(4)) = {Λ = k1ǫ1 + k2ǫ2 | k1, k2 ∈ Z, k1 ≥ |k2|}.

4.3. Branching law of (SO(5), SO(4)).

Lemma 4.1 (Branching law of (SO(5), SO(4)) [19]). Let Λ = k1ǫ1+
k2ǫ2 ∈ D(SO(5)) be the highest weight of an irreducible SO(5)-module
VΛ, where k1, k2 ∈ Z and k1 ≥ k2 ≥ 0. Then VΛ contains an irreducible
SO(4)-module WΛ′ with the highest weight Λ′ = k′1ǫ1+k′2ǫ2 ∈ D(SO(4)),
where k′1, k

′
2 ∈ Z, k′1 ≥ |k′2|, if and only if

(4.2) k1 ≥ k′1 ≥ k2 ≥ |k′2|.

4.4. Descriptions of D(K,K0) and D(K1,K0). Define an Ad(K)-
invariant inner product of k by 〈X,Y 〉k := −tr(XY ) (X,Y ∈ k = o(5)).

Let {α′
1 = ǫ1 − ǫ2, α

′
2 = ǫ1 + ǫ2} be the fundamental root system of

SO(4), and let {Λ′
1 = 1

2(ǫ1 − ǫ2),Λ
′
2 = 1

2(ǫ1 + ǫ2)} be the fundamental
weight system of SO(4). Then:

Lemma 4.2 ([52]).

D(K1,K0) = D(SO(4), T 2)

=
{
Λ′ = k′1ǫ1 + k′2ǫ2 = m′

1Λ
′
1 +m′

2Λ
′
2 = p′1α

′
1 + p′2α

′
2 |

k′i ∈ Z, k′1 ≥ |k′2|,m′
i ∈ Z,m′

i ≥ 0, p′i ∈ Z, p′i ≥ 1,

m′
1 = k′1 − k′2 = 2p′1 ≥ 0,m′

2 = k′1 + k′2 = 2p′2 ≥ 0
}
.

(4.3)

The eigenvalue formula of the Casimir operator CK1/K0
relative to

〈X,Y 〉k|k1 is

−cΛ′ =
1

2
((k′1)

2 + (k′2)
2 + 2k′1),

for each Λ′ = k′1ǫ1 + k′2ǫ2 ∈ D(K1,K0).

Let {α1 = ǫ1−ǫ2, α2 = ǫ2} be the fundamental root system of SO(5),
and let {Λ1 = ǫ1,Λ2 = 1

2(ǫ1+ ǫ2)} be the fundamental weight system of
SO(5). Then:
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Lemma 4.3 ([52]).

D(K,K0) = D(SO(5), T 2)

=
{
Λ = k1ǫ1 + k2ǫ2 = m1Λ1 +m2Λ2 = p1α1 + p2α2 |
ki ∈ Z, k1 ≥ k2 ≥ 0, mi ∈ Z, mi ≥ 0, pi ∈ Z, pi ≥ 1,

m1 = 2p1 − p2 ≥ 0, m2 = −2p1 + 2p2 ≥ 0, p1 = k1, p2 = k1 + k2

}
.

(4.4)

The eigenvalue formula of the Casimir operator CK/K0
with respect to

the inner product 〈X,Y 〉k is

−cΛ =
1

2
(k21 + k22 + 3k1 + k2),

for each Λ = k1ǫ1 + k2ǫ2 ∈ D(K,K0).

4.5. Eigenvalue computation. By Lemmas 4.2 and 4.3, we have the
following eigenvalue formula for CL:

−cL = − 2cK/K0
+ cK1/K0

= (k21 + k22 + 3k1 + k2)−
1

2
((k′1)

2 + (k′2)
2 + 2k′1).

Since
−CL = −CK/K0

− CS4 ≥ −CK/K0
,

the condition −cL ≤ n = 8 implies that −cΛ ≤ 8. We have the following.

Lemma 4.4. Λ = k1ǫ1 + k2ǫ2 ∈ D(SO(5), T 2) has eigenvalue −cL ≤
8 if and only if (k1, k2) is one of {(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2)}.

Proof. Assume that −cΛ = 1
2(k

2
1 + k22 +3k1+ k2) ≤ 8. Then it follows

from Lemma 4.3 that k1 ≤ 2. Moreover, if k1 = 1, then k2 = 0 or 1. If
k1 = 2, then k2 = 0, 1 or 2. q.e.d.

Suppose that (k1, k2) = (1, 0). Then dimC VΛ = 5. It follows from
Lemma 4.1 that (k′1, k

′
2) = (0, 0) or (1, 0). By Lemma 4.2, we have

(p′1, p
′
2) = (0, 0) or (12 ,

1
2), but Λ′|(p′1,p′2)=(0,0), Λ′|(p′1,p′2)=( 1

2
, 1
2
) 6∈

D(SO(4), T 2). Hence Λ = (1, 0) 6∈ D(SO(5), T 2) = D(K,K0).
Suppose that (k1, k2) = (1, 1). Then dimCVΛ = 10, VΛ

∼= o(5,C)
and K[a]/K0 acts on (VΛ)K0

∼= (t2)C ∼= aC via the action of Weyl
group W (U,K). Thus it must be (VΛ)K[a]

= {0}. Hence Λ|(k1,k2)=(1,1) 6∈
D(K,K[a]).

Suppose that (k1, k2) = (2, 0). Then (m1,m2) = (2, 0) and dimCV2Λ1 =
14. It follows from Lemma 4.1 that (k′1, k

′
2) = (0, 0), (1, 0), or (2, 0).

By Lemma 4.2, we have (p′1, p
′
2) = (0, 0), (12 ,

1
2), or (1, 1). Note that

Λ′|(p′1,p′2)=(0,0), Λ
′|(p′1,p′2)=( 1

2
, 1
2
) 6∈ D(SO(4), T 2). If (p′1, p

′
2) = (1, 1), then

(m′
1,m

′
2) = (2, 2) and −cΛ = 5, −cΛ′ = 4, and thus

−cL = −2cΛ + cΛ′ = 10− 4 = 6 < 8.
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On the other hand, we observe that

V2Λ1
∼=Sym0(C

5)

=C ·
(
−1

4I4 0
0 1

)
⊕
{(

X 0
0 0

)
| X ∈ Sym0(C

4)
}

⊕
{(

0 Z
tZ 0

)
| Z ∈ M(4, 1;C)

}

=W|Λ′=0 ⊕W2Λ′
1+2Λ′

2
⊕WΛ′

1+Λ′
2
,

and

(V2Λ1)K0 =







c1I2

c2I2
c3


 | c1, c2, c3 ∈ C, 2c1 + 2c2 + c3 = 0



 .

As 


0 0 1 0 0
0 0 0 −1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 −1






c1I2

c2I2
c3







0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 −1 0 0 0
0 0 0 0 −1




=



c2I2

c1I2
c3


 ,

we get

(V2Λ1)K[a]
=

{(
− c

4I4
c

)
| c ∈ C

}
= W|Λ′=0.

Thus
W ′

2Λ′
1+2Λ′

2
∩ (V2Λ1)K[a]

= {0}.
Suppose that (k1, k2) = (2, 1). Then (m1,m2) = (2, 1) and

dimC V2Λ1+Λ2 = 35. It follows from Lemma 4.1 that (k′1, k
′
2) = (1, 0),

(1,−1), (1, 1), (2, 0), (2,−1), or (2, 1)—that is, (m′
1,m

′
2) = (1, 1), (2, 0),

(0, 2), (2, 2), (3, 1), or (1, 3), and thus

V2Λ1+Λ1 = WΛ′
1+Λ′

2
⊕W2Λ′

1
⊕W2Λ′

2
⊕W2Λ′

1+2Λ′
2
⊕W3Λ′

1+Λ′
2
⊕WΛ′

1+3Λ′
2
.

By Lemma 4.3, we have (p′1, p
′
2) = (12 ,

1
2 ), (1, 0), (0, 1), (1, 1), (

3
2 ,

1
2), or

(12 ,
3
2). Then by Lemma 4.2 we see that Λ′|(p′1,p′2)=( 1

2
, 1
2
), Λ

′|(p′1,p′2)=(1,0),

Λ′|(p′1,p′2)=(0,1), Λ
′|(p′1,p′2)=( 3

2
, 1
2
), Λ

′|(p′1,p′2)=( 1
2
, 3
2
) 6∈ D(SO(4), T 2). If (p′1, p

′
2) =

(1, 1)—that is, (m′
1,m

′
2) = (2, 2)—then −cΛ = 6, −cΛ′ = 4, and thus

−cL = −2 cΛ + cΛ′ = 12 − 4 = 8.

So we need to determine the dimension of (W2Λ′
1+2Λ′

2
)K[a]

6= {0}.
Since W2Λ′

1+2Λ′
2

∼= sl(2,C) ⊠ sl(2,C) and

(W2Λ′
1+2Λ′

2
)K0

∼= (sl(2,C) ⊠ sl(2,C))K0 = C⊠C,
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we have dimC(W2Λ′
1+2Λ′

2
)K0 = 1. Let ∧2R10 = so(10) = adp(so(5))+V.

Then ∧2C10 = (∧2R10)C = so(10,C) = ad(so(5))C + VC ∼= so(5,C) +
VC, where {0} 6= VC ⊂ V2Λ1+Λ2 . By the irreducibility of V2Λ1+Λ2 , we
see that VC = V2Λ1+Λ2 . Since

{0} 6= (VC)K[a]
= (W2Λ′

1+2Λ′
2
)K[a]

⊂ (W2Λ′
1+2Λ′

2
)K0

and dimC(W2Λ′
1+2Λ′

2
)K0 = 1, we get

{0} 6= (VC)K[a]
= (W2Λ′

1+2Λ′
2
)K[a]

= (W2Λ′
1+2Λ′

2
)K0

and dimC(W2Λ′
1+2Λ′

2
)K[a]

= 1. Hence 2Λ1 + Λ2 ∈ D(K,K[a]) and its
multiplicity is equal to 1.

Suppose that (k1, k2) = (2, 2). It follows from Lemma 4.1 that (k′1, k
′
2) =

(2, 0), (2, 1), (2, 2), (2,−1), or (2,−2). By Lemma 4.2, we have (p′1, p
′
2) =

(1, 1), (12 ,
3
2 ), (0, 2), (

3
2 ,

1
2), or (2, 0), and thus Λ′|(p′1,p′2)=( 1

2
, 3
2
), Λ

′|(p′1,p′2)=(0,2),

Λ′|(p′1,p′2)=( 3
2
, 1
2
), Λ

′|(p′1,p′2)=(2,0) 6∈ D(SO(4), T 2). If (p′1, p
′
2) = (1, 1), then

−cΛ = 8, −cΛ′ = 4, and hence

−cL = −2cΛ + cΛ′ = 16− 4 = 12 > 8.

Now we obtain that the Gauss image L8 = G(SO(5)/T 2) ⊂ Q8(C) is
Hamiltonian stable. Moreover, it also follows that

n(L8) = dimC(V2Λ1+Λ2) = 35 = dim(SO(10))−dim(SO(5)) = nhk(L
8).

Hence the Gauss image L8 = G(SO(5)/T 2) ⊂ Q8(C) is Hamiltonian
rigid.

From theses results we conclude the following.

Theorem 4.1. The Gauss image L8 = G(SO(5)/T 2) = SO(5)
T 2·Z2

⊂
Q8(C) is strictly Hamiltonian stable.

5. The case (U,K) = (SO(10), U(5))

In this case, (U,K) is of BC2 type and K = U(5) ⊂ U = SO(10).

Here each A+
√
−1B ∈ U(5) can be identified with an element

(
A −B
B A

)
∈

SO(10) with A,B ∈ gl(5,R). The canonical decomposition u = k+ p of
u and a be a maximal abelian subspace of p are given by u = so(10),

k =

{(
X −Y
Y X

)
∈ so(10) | −Xt = X,Y t = Y

}

∼= u(5) =
{
T = X +

√
−1Y ∈ gl(5,C) | T ∗ = −T

}
,

p =

{(
X Y
Y −X

)
∈ so(10) | X,Y ∈ so(5)

}
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and

a =





(
H1 0
0 −H1

)
| H1 =




0 −ξ1
ξ1 0

0 −ξ2
ξ2 0

0




ξ1, ξ2 ∈ R





.

Then the centralizer K0 of a in K is as follows:

K0

=








a11 + ib11 a12 + ib12 0 0 0
−a12 + ib12 a11 − ib11 0 0 0

0 0 a22 + ib22 a21 + ib21 0
0 0 −a21 + ib21 a22 − ib22 0
0 0 0 0 a33 + ib33




∈ U(5)} ∼= SU(2) × SU(2)× U(1),

and N = K/K0
∼= U(5)/SU(2) × SU(2) × U(1) is of dimension 18.

Moreover,

K[a] =K0 ∪




1 0
0 1

1 0
0 −1

1




·K0 ∪




1
−1

1
−1

1




·K0

∪




1 0
0 −1

1 0
0 1

1




·K0.

This means that the deck transformation group of the covering map
G : N → G(N18) is equal to K[a]/K0

∼= Z4.

5.1. Description of the Casimir operator. Choose 〈X,Y 〉u :=
−tr(XY) for eachX,Y ∈ u = so(10). The restricted root system Σ(U,K)
of type BC2 can be given as follows ([7]):

Σ(U,K)

={±ǫ2 = ±α1,±(ǫ1 − ǫ2) = ±α2,±ǫ1 = ±(α1 + α2),

± (ǫ1 + ǫ2) = ±(2α1 + α2),±2ǫ1 = ±(2α1 + 2α2),±2ǫ2 = ±2α1}.

Then the square length of each γ ∈ Σ(U,K) relative to 〈 , 〉u is

‖γ‖2u =
1

4
,
1

2
, or 1.
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Hence the Casimir operator CL of Ln with respect to the induced metric
from gstdQn(C) can be expressed as follows:

CL =
4

‖γ0‖2u
CK/K0,〈 , 〉u −

1

‖γ0‖2u
CK1/K0,〈 , 〉u −

2

‖γ0‖2u
CK2/K0,〈 , 〉u

= 4 CK/K0,〈 , 〉u − CK1/K0,〈 , 〉u − 2 CK2/K0,〈 , 〉u

= 2 CK/K0
− CK2/K0

− 1

2
CK1/K0

,

(5.1)

where CK/K0
, CK2/K0

, and CK1/K0
denote the Casimir operator of K/K0,

K2/K0, and K1/K0 relative to 〈 , 〉|k, 〈 , 〉|k2 , and 〈 , 〉|k1 , respectively.
Here, 〈X,Y 〉 := −tr(Re(XY )) for all X,Y ∈ k = u(5).

5.2. Descriptions of D(K),D(K1) and D(K2). Using a maximal
abelian subalgebra t of k given by

t =





√
−1




y1 0 0 0 0
0 y2 0 0 0
0 0 y3 0 0
0 0 0 y4 0
0 0 0 0 y5




| y1, y2, y3, y4, y5 ∈ R





⊂ k,

we have

Γ(K) = Γ(K2) = Γ(K1) = Γ(K0)

=




ξ =

√
−1




ξ1 0 0 0 0
0 ξ2 0 0 0
0 0 ξ3 0 0
0 0 0 ξ4 0
0 0 0 0 ξ5




| ξ1, ξ2, ξ3, ξ4, ξ5 ∈ 2πZ





,

Γ(C(K)) = 2πZI5.

Then D(K), D(K1), and D(K2) are given as follows:

D(K) =D(U(5))

={Λ = p1y1 + · · ·+ p5y5 | p1, · · · , p5 ∈ Z, p1 ≥ p2 ≥ p3 ≥ p4 ≥ p5},
D(K2) =D(U(4) × U(1))

={Λ = p1y1 + · · ·+ p5y5 | p1, · · · , p5 ∈ Z, p1 ≥ p2 ≥ p3 ≥ p4},
D(K1) =D(U(2) × U(2)× U(1))

={Λ = p1y1 + · · ·+ p5y5 | p1, · · · , p5 ∈ Z, p1 ≥ p2, p3 ≥ p4}.

5.3. Branching laws of (U(m+ 1), U(m) × U(1)).
The branching laws for (SU(m+ 1), S(U(1) × U(m))) was shown by

Ikeda and Taniguchi [19]. It can be reformulated to the branching laws
for (U(m+ 1), U(m) × U(1)) as follows:
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Lemma 5.1 (Branching laws for (U(m + 1), U(m) × U(1))). Let
Λ = p1y1+· · ·+pmym ∈ D(U(m)) be the highest weight of an irreducible
U(m)-module VΛ, where pi ∈ Z (i = 1, · · · ,m) and p1 ≥ p2 ≥ · · · ≥
pm. Then the irreducible decomposition of VΛ as a U(m)×U(1)-module
contains an irreducible U(m)×U(1)-module VΛ′ with the highest weight
VΛ′ = q1y1+ · · ·+qmym ∈ D(U(m)×U(1)), where qi ∈ Z and q1 ≥ q2 ≥
· · · ≥ qm, if and only if

p1 ≥ q1 ≥ p2 ≥ q2 ≥ p3 ≥ q3 ≥ · · · ≥ pm−1 ≥ qm−1 ≥ pm,
m∑

i=1

pi =
m∑

i=1

qi.

In particluar, the multiplicity of VΛ′ is 1.

In the next subsection we use the branching laws of (U(m+1), U(m)×
U(1)), and (U(m), U(2)×U(m−2)) in the case of m = 4. The branching
laws of (U(m), U(2)×U(m− 2)) are described in Lemma 7.1 of Section
7.

5.4. Descriptions of D(K,K0), D(K2,K0), and D(K1,K0).
Each Λ ∈ D(K) = D(U(5)) is expressed as

Λ = p1y1 + · · · p5y5,
where pi ∈ Z, p1 ≥ p2 ≥ p3 ≥ p4 ≥ p5. Then by Lemma 5.1 in the case
of m = 4, VΛ can be decomposed into irreducible U(4)× U(1)-modules
as

VΛ =

s⊕

i=1

V ′
Λ′
i
=

s⊕

i=1

W ′
Λ′
1i
⊠ Uq5y5 ,

where Λ′
i = q1y1+ q2y2+ q3y3+ q4y4+ q5y5 ∈ D(K2) = D(U(4)×U(1)),

Λ′
1i = q1y1 + q2y2 + q3y3 + q4y4 ∈ D(U(4)), q5y5 ∈ D(U(1)), and qi ∈

Z (i = 1, 2, 3, 4, 5) satisfy

p1 ≥ q1 ≥ p2 ≥ q2 ≥ p3 ≥ q3 ≥ p4 ≥ q4 ≥ p5,

5∑

i=1

pi =

5∑

j=1

qj.

By the branching law for (U(4), U(2)×U(2)) in Lemma 7.1, each W ′
Λ′
1i

can be decomposed as

W ′
Λ′
1i
=
⊕

W ′′
Λ′′ =

⊕
W ′′

Λ̃σ
⊠W ′′

Λ̃ρ
,

where Λ′′ = k1y1 + k2y2 + k3y3 + k4y4 ∈ D(U(2) × U(2)), Λ̃σ = k1y1 +

k2y2 ∈ D(U(2)), Λ̃ρ = k3y3 + k4y4 ∈ D(U(2)), and ki ∈ Z (i = 1, 2, 3, 4)
satisfy

(i)
∑4

i=1 ki =
∑4

i=1 qi;
(ii) q1 ≥ k1 ≥ q3, q2 ≥ k2 ≥ q4;
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(iii) in the finite power series expansion inX of

∏3
i=1(X

ri+1 −X−(ri+1))

(X −X−1)2
,

where ri(i = 1, 2, 3) are defined by

r1 :=q1 −max(k1, q2),

r2 :=min(k1, q2)−max(k2, q3),

r3 :=min(k2, q3)− q4,

the coefficient of Xk3−k4+1 does not vanish. Moreover the value of
this coefficient is the multiplicity of the U(2)×U(2)-module W ′′

Λ′′ .

By the branching law of (U(2), SU(2)) (see Section 7), as SU(2)-
modules they become

W ′′
Λ̃σ

= W ′′
Λσ

, W ′′
Λ̃ρ

= W ′′
Λρ
,

where Λσ =
k1 − k2

2
(y1 − y2) ∈ D(SU(2)), Λρ =

k3 − k4
2

(y3 − y4) ∈
D(SU(2)).

Hence one can decompose a K-module VΛ into the irreducible K0-
modules

VΛ =
⊕⊕

W ′′
Λσ

⊠W ′′
Λρ

⊠ Uq5y5 .

Now assume that Λ ∈ D(K,K0). Then there exists at least one
nonzero trivial irreducible K0-module in the above decomposition for
some σ and ρ. So in this case, we have

k1 − k2 = 0, k3 − k4 = 0, q5 = 0.

So we know that

2k1 + 2k3 =
4∑

i=1

qi =
5∑

j=1

pj,

q2 ≥ k1 = k2 ≥ q3,

r1 = q1 − q2,

r2 = k1 − k2 = 0,

r3 = q3 − q4,

and in the finite power series expansion in X of

(Xq1−q2+1 −X−(q1−q2+1))(Xq3−q4+1 −X−(q3−q4+1))

X −X−1
,

the coefficient of X does not vanish. Moreover, the value of this coeffi-
cient is the multiplicity of the U(2)× U(2)-module.

Therefore, in the above notations for each Λ ∈ D(K,K0) given by
Λ = p1y1+p2y2+p3y3+p4y4+p5y5, where p1, · · · , p5 ∈ Z, p1 ≥ p2 ≥ p3 ≥
p4 ≥ p5, each Λ′ ∈ D(K2,K0) is given by Λ′ = q1y1+ q2y2+ q3y3+ q4y4,

where q1, · · · , q4 ∈ Z, q1 ≥ q2 ≥ q3 ≥ q4,
∑5

i=1 pi =
∑4

j=1 qj. Moreover,
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each Λ′′ ∈ D(K1,K0) is given by Λ′′ = k1y1 + k2y2 + k3y3 + k4y4, where

k1, · · · , k4 ∈ Z, k1 = k2, k3 = k4, 2k1 + 2k3 =
∑4

j=1 qj .

5.5. Eigenvalue computation. For each Λ = p1y1 + p2y2 + p3y3 +
p4y4 + p5y5 ∈ D(K,K0), with pi ∈ Z, p1 ≥ p2 ≥ p3 ≥ p4 ≥ p5, the
eigenvalue formula of the Casimir operator CK/K0

with respect to the
inner product 〈X,Y 〉k = −Tr(Re(XY)) for any X,Y ∈ k = u(5) is given
by

−cΛ = p21 + p22 + p23 + p24 + p25 + 4p1 + 2p2 − 2p4 − 4p5.

For each Λ′ = q1y1 + q2y2 + q3y3 + q4y4 ∈ D(K2,K0) with qi ∈ Z

and q1 ≥ q2 ≥ q3 ≥ q4, the eigenvalue formula of the Casimir operator
CK2/K0

with respect to the inner product 〈 , 〉k|k2 is given by

−cΛ′ = q21 + q22 + q23 + q24 + 3q1 + q2 − q3 − 3q4.

For each Λ′′ = k1y1 + k2y2 + k3y3 + k4y4 ∈ D(K1,K0) with k1 = k2
and k3 = k4, the eigenvalue formula of the Casimir operator CK1/K0

with respect to the inner product 〈 , 〉k|k1 is given by

−cΛ′′ =k21 + k22 + k23 + k24 + k1 − k2 + k3 − k4

=k21 + k22 + k23 + k24 .

Hence we have the following eigenvalue formula:

−cL = − 2cΛ + cΛ′ +
1

2
cΛ′′

= 2(p21 + p22 + p23 + p24 + p25 + 4p1 + 2p2 − 2p4 − 4p5)

− (q21 + q22 + q23 + q24 + 3q1 + q2 − q3 − 3q4)

− 1

2
(k21 + k22 + k23 + k24).

(5.2)

Lemma 5.2. Λ = p1y1 + p2y2 + p3y3 + p4y4 + p5y5 ∈ D(K,K0) has
eigenvalue −cL ≤ 18 if and only if (p1, p2, p3, p4, p5) is one of
{
0, (0,−1,−1,−1,−1), (1, 1, 1, 1, 0), (1, 1, 0, 0, 0), (0, 0, 0,−1,−1),

(1, 0, 0, 0,−1), (2, 1, 1, 0, 0), (0, 0,−1,−1,−2), (1, 1, 0,−1,−1)
}
.

Proof. Since

−CL = −1

2
CK/K0

− CK/K2
− 1

2
CK/K1

≥ −1

2
CK/K0

,

the condition −cL ≤ n = 18 implies that −cΛ ≤ 36. From

−cΛ = (p1 + 2)2 + (p2 + 1)2 + p23 + (p4 − 1)2 + (p5 − 2)2 − 10 ≤ 36,

it follows that |pi| ≤ 2. Using the eigenvalue formula (5.2), we obtain
the result. q.e.d.
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Denote by ω1, ω2, ω3, ω4 the fundamental weight system of SU(5).
Suppose that Λ = (1, 1, 1, 1, 0). Then dimVΛ = 5. By the branching

law of (U(5), U(4)×U(1)), Λ′ = (1, 1, 1, 1, 0) or (1, 1, 1, 0, 1), where Λ′ =
(1, 1, 1, 1, 0) ∈ D(K2,K0). By the branching law of (U(4), U(2)×U(2)),
Λ′′ = (1, 1, 1, 1) ∈ D(K1,K0). Thus −cΛ = 8, −cΛ′ = 4, −cΛ′′ = 4, and
−cL = −2cΛ + cΛ′ + 1

2cΛ′′ = 10 < 18.

On the other hand, Λ = Λ0 + ω4, where Λ0 = 4
5

∑5
i=1 yi. The group

K = U(5) = C(U(5)) · SU(5) acts on dimVΛ = 5 and VΛ
∼= C⊗ C̄5 by

ρΛ0 ⊠ µ̄5, where µ̄5 denotes the conjugate representation of the standard
representation of SU(5) on C5. For each element

g0 =




A
B

e
√
−1θ


 ∈ K0

and each element u⊗w ∈ C⊗ C̄5, where A,B ∈ SU(2) and θ ∈ R,

ρΛ(g0)(u⊗w) =ρΛ0(e
√

−1
5

θI5)(u)⊗ ρω4(e
−

√
−1
5

θg0)w

= e
4
√

−1
5

θu⊗




e
√

−1
5

θĀ

(
w1

w2

)

e
√

−1
5

θB̄

(
w3

w4

)

e−
4
√

−1
5

θw5




.

Hence (VΛ)K0 = spanC{1⊗




0
0
0
0
1



}.

For a generator g =




1 0
0 1

1 0
0 −1

1




∈ K[a] ⊂ K2 in Z4,

ρΛ(g)(u⊗ e5) = ρΛ0(e
√
−1π

5 I5)(u)⊗ ρω4(e
−
√
−1π

5 g)(e5)

= e
√
−1 4π

5 u⊗ e
√
−1π

5 e5 = −u⊗ e5.

So (VΛ)K[a]
= {0}, that is, Λ = (1, 1, 1, 1, 0) 6∈ D(K,K[a]). Similarly, we

get Λ = (0,−1,−1,−1,−1) 6∈ D(K,K[a]).
Suppose that Λ = (1, 1, 0, 0, 0). Then dimVΛ = 10. By the branch-

ing law of (U(5), U(4) × U(1)), Λ′ = (1, 1, 0, 0, 0) or (1, 0, 0, 0, 1), where
Λ′ = (1, 1, 0, 0, 0) ∈ D(K2,K0). By the branching law of (U(4), U(2) ×
U(2)), Λ′′ = (1, 1, 0, 0), (0, 0, 1, 1), or (1, 0, 1, 0), where Λ′′ = (1, 1, 0, 0)
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or (0, 0, 1, 1) ∈ D(K1,K0). Thus −cΛ = 8, −cΛ′ = 6, −cΛ′′ = 2 and
−cL = −2cΛ + cΛ′ + 1

2cΛ′′ = 9 < 18.

On the other hand, Λ = Λ0 + ω2, where Λ0 = 2
5

∑5
i=1 yi. VΛ

∼=
C⊕∧2C5. Let {e1, e2, e3, e4, e5} be the standard basis of C5. For each
element g0 ∈ K0 expressed as above and each element u⊗ ei ∧ ej ∈ VΛ

(1 ≤ i < j ≤ 5),

ρΛ(g0)(u⊗ ei ∧ ej) = ρΛ0(e
√

−1
5

θI5)(u)⊗ ρω2(e
−

√
−1
5

θg0)(ei ∧ ej)

= e
√
−1 2

5
θu⊗ (e−

√
−1
5

θg0ei ∧ e−
√

−1
5

θg0ej).

It follows from this that (VΛ)K0 = spanC{1 ⊗ (e1 ∧ e2), 1 ⊗ (e3 ∧ e4)}.
For the generator g ∈ K[a] of Z4 given above, we have

ρΛ(g)(1 ⊗ e1 ∧ e2) = −1⊗ e3 ∧ e4,

ρΛ(g)(1 ⊗ e3 ∧ e4) = 1⊗ e1 ∧ e2.

Hence (VΛ)K[a]
= {0}, that is, Λ = (1, 1, 0, 0, 0) 6∈ D(K,K[a]). Similarly,

we get Λ = (0, 0, 0,−1,−1) 6∈ D(K,K[a]).
Suppose that Λ = (1, 0, 0, 0,−1). Then dimVΛ = 24. By the branch-

ing law of (U(5), U(4) × U(1)), Λ′ = (1, 0, 0, 0,−1), (1, 0, 0,−1, 0),
(0, 0, 0, 0, 0), or (0, 0, 0,−1, 1), where Λ′

1 = (1, 0, 0,−1, 0), Λ′
2 =

(0, 0, 0, 0, 0) ∈ D(K2,K0). By the branching law of (U(4), U(2)×U(2)),
Λ′′
1 = (1, 0, 0,−1), (1,−1, 0, 0), (0, 0, 0, 0), (0, 0, 1,−1), or (0,−1, 1, 0),

where Λ′′
1 = (0, 0, 0, 0) ∈ D(K1,K0). Also, Λ

′′
2 = (0, 0, 0, 0) ∈ D(K1,K0).

Thus −cΛ = 10, −cΛ′
1
= 8, −cΛ′′

1
= 0, −cL = −2cΛ + cΛ′ + 1

2cΛ′′ = 12 <
18 and −cΛ′

2
= 0, −cΛ′′

2
= 0, −cL = 20 > 18.

On the other hand, Λ = ω1 +ω4 corresponds to the adjoint represen-
tation of SU(5):

VΛ = C⊗
(
C ·
(
−1

4I4 0
0 1

)
⊕C ·

(
∗ 0
0 0

)

⊕C ·




∗
0

∗ 0 0


⊕C ·




0
∗

0 ∗ 0






= V ′
(0,0,0,0,0) ⊕ V ′

(1,0,0,−1,0) ⊕ V ′
(1,0,0,0,−1) ⊕ V ′

(0,0,0,−1,1);

(VΛ)K0 =







c1I2

c2I2
c3


 | c1, c2, c3 ∈ C, 2c1 + 2c2 + c3 = 0





⊂V ′
(0,0,0,0,0) ⊕ V ′

(1,0,0,−1,0).
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By direct calculations, we get that for a generator g ∈ K[a] ⊂ K2 in
Z4 as above,

Ad(g)



c1I2

c2I2
c3


 =



c2I2

c1I2
c3


 .

Hence

(VΛ)K[a]
=

{(
− c

4I4
c

)
| c ∈ C

}
= V ′

(0,0,0,0,0).

But this 1-dimensional fixed vector space corresponds to the larger
eigenvalue 20.

Suppose that Λ = (2, 1, 1, 0, 0). Then dimVΛ = 45. By the branch-
ing law of (U(5), U(4) × U(1)) that VΛ can be decomposed into the
irreducible K2 = U(4)× U(1)-submodules

VΛ = V ′
(2,1,1,0,0) ⊕ V ′

(1,1,1,0,1) ⊕ V ′
(2,1,0,0,1) ⊕ V ′

(1,1,0,0,2),

where Λ′ = (2, 1, 1, 0, 0) ∈ D(K2,K0). By the branching law of (U(4),
U(2)×U(2)), Λ′′ = (2, 1, 1, 0), (2, 0, 1, 1), (1, 1, 2, 0), (1, 1, 1, 1), or (1, 0, 2, 1),
where Λ′′ = (1, 1, 1, 1) ∈ D(K1,K0). Thus −cΛ = 16, −cΛ′ = 12,
−cΛ′′ = 4, −cL = −2cΛ + cΛ′ + 1

2cΛ′′ = 18.
On the other hand, since V ′

(1,1,1,0,1) ⊕ V ′
(2,1,0,0,1) ⊕ V ′

(1,1,0,0,2) has no

nonzero vectors fixed by K0, we see that (VΛ)K0 ⊂ V ′
(2,1,1,0,0). Note that

Λ′ = 2y1 + y2 + y3 =
∑4

i=1 yi + y1 − y4 ∈ D(K2,K0) corresponds to
the tensor product of C(U(4)) representation with the highest weight∑4

i=1 yi, the adjoint representation of SU(4) with the highest weight
y1 − y4, and the trivial representation of U(1). Then for each element
g0 ∈ K0 and each element u⊗X ⊗ v ∈ C⊗ su(4)⊗C ∼= VΛ′ ,

ρΛ′(g0)(u⊗X ⊗ v) = u⊗Ad

(
A

B

)
(X) ⊗ v.

Thus (VΛ)K0 = span{1⊗
(

I2
−I2

)
⊗ 1}. For the element g ∈ K[a] ⊂

K2,

ρΛ′(g)(u ⊗
(

I2
−I2

)
⊗ v) = e

√
−1πu⊗

(
−I2

I2

)
⊗ v.

It follows that (VΛ)K[a]
= (VΛ)K0 , that is, Λ = (2, 1, 1, 0, 0) ∈ D(K,K[a])

with multiplicity 1. Similarly, Λ = (0, 0,−1,−1,−2) ∈ D(K,K[a]) with
multiplicity 1 and it also gives the eigenvalue 18.

Suppose that Λ = (1, 1, 0,−1,−1). Then dimVΛ = 75. By the branch-
ing law of (U(4), U(2)×U(2)), VΛ can be decomposed into the irreducible
K1 = U(4)× U(1)-submodules:

VΛ = V ′
(1,1,0,−1,−1) ⊕ V ′

(1,1,−1,−1,0) ⊕ V ′
(1,0,0,−1,0) ⊕ V ′

(1,0,−1,−1,1),
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where Λ′
1 = (1, 1,−1,−1, 0) and Λ′

2 = (1, 0, 0,−1, 0) ∈ D(K2,K0). For
Λ′
2, by the branching law of (U(4), U(2) × U(2)), Λ′′

2 = (1, 0, 0,−1),
(1,−1, 0, 0), (0, 0,−1,−1), (0, 0, 0, 0), or (0,−1, 1, 0), where Λ′′

2 = (0, 0, 0, 0) ∈
D(K1,K0). Therefore, −cΛ = 16, −cΛ′

2
= 8, −cΛ′′

2
= 0, and −cL =

−2cΛ+cΛ′
2
+1

2cΛ′′
2
= 24 > 18. For Λ′

1, by the branching law of (U(4), U(2)×
U(2)), Λ′′ = (1, 1,−1,−1), (1, 0, 0,−1), (1,−1, 1,−1), (0, 0, 0, 0), (0,−1, 1, 0)
or (−1,−1, 1, 1), where Λ′′

11 = (1, 1,−1,−1), Λ′′
12 = (−1,−1, 1, 1), Λ′′

13 =
(0, 0, 0, 0) ∈ D(K1,K0). Thus −cΛ = 16, −cΛ′ = 12, −cΛ′′

11
= −cΛ′′

12
= 4,

−cΛ′′
13

= 0, −cL = −2cΛ + cΛ′ + 1
2cΛ′′ = 18, 18, or 20. Moreover, from

the above irreducible K2-decomposition of VΛ and eigenvalue calcula-
tions, we only need to determine dim(VΛ)K[a]

∩ (V ′′
11 ⊕ V ′′

12) since the
fixed vectors in this subspace by K[a] give the eigenvalue 18. Here we
set V ′′

11 := V ′′
Λ′′
11

and V ′′
12 := V ′′

Λ′′
12
.

Recall that the irreducible representation of SU(4) with the highest
weight Λ′

1 = y1 + y2 − y3 − y4 = 2ω2 can be described as follows ([14]):

Sym2(∧2C4) = I(Gr2(C
4))2 ⊕ V ′

Λ′
1
,

where I(Gr2(C
4))2, the ideal of the Grassmannian Gr2(C

4), denotes
the space of all homogeneous polynomials of degree 2 on P(∧2C4∗) that
vanish on Gr2(C

4). Here I(Gr2(C
4))2 ∼= ∧4C4 ∼= C can be written

down explicitly in terms of a basis {e1, e2, e3, e4} of C4:

I(Gr2(C
4))2 = span{(e1 ∧ e2) · (e3 ∧ e4) + (e1 ∧ e4) · (e2 ∧ e3)

− (e1 ∧ e3) · (e2 ∧ e4)}.
Thus a basis for V ′

Λ′
1
can be given explicitly. For any element g0 ∈ K0,

denote g′0 =

(
A

B

)
∈ SU(2) × SU(2) ⊂ U(4). The representation of

K0 on any element u⊗X ⊗ w ∈ C⊗ V ′
Λ′
1
⊗C is

ρΛ(g)(u ⊗X ⊗ w) = ρ0(1)(u) ⊗ ρΛ′
1
(g′0)(X) ⊗ ρ0(e

√
−1θ)(w).

By direct computations, we obtain

(VΛ)K0 ∩ V ′
Λ′
1
= spanC{ 1⊗ (e1 ∧ e2) · (e1 ∧ e2)⊗ 1,

1⊗ (e3 ∧ e4) · (e3 ∧ e4)⊗ 1, 1⊗ (e1 ∧ e2) · (e3 ∧ e4)⊗ 1},
where (e1 ∧ e2) · (e1 ∧ e2) ∈ V ′′

11, (e3 ∧ e4) · (e3 ∧ e4) ∈ V ′′
12 and (e1 ∧

e2) · (e3 ∧ e4) ∈ V ′′
13. For the generator g ∈ K[a] ⊂ K2, denote g′ =



1
1

1
−1


. The representation of g on u⊗X ⊗ w is

ρΛ(g)(u ⊗X ⊗ w) = ρ0(e
√

−1
4

πI4)(u)⊗ ρΛ′
1
(e−

√
−1
4

πg′)(X) ⊗ ρ0(1)(w).
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It follows that

(VΛ)K[a]
∩ V ′

Λ′
1
= spanC{1⊗ (e1 ∧ e2) · (e3 ∧ e4)⊗ 1,

1⊗ (e1 ∧ e2) · (e1 ∧ e2)⊗ 1− 1⊗ (e3 ∧ e4) · (e3 ∧ e4)⊗ 1}.

In particular, Λ = (1, 1, 0,−1,−1) ∈ D(K,K[a]) and

(VΛ)K[a]
∩ (V ′′

11 ⊕ V ′′
12)

= spanC{1⊗ (e1 ∧ e2) · (e1 ∧ e2)⊗ 1− 1⊗ (e3 ∧ e4) · (e3 ∧ e4)⊗ 1}
with dimension 1, which corresponds to the eigenvalue 18.

Now we obtain that the Gauss image L18 is Hamiltonian stable. More-
over,

n(L18) =dimV(0,0,−1,−1,−2) + dimV(2,1,1,0,0) + dimV(1,1,0,−1,−1)

=45 + 45 + 75 = 165 = dimSO(20) − dimU(5) = nhk(L
18).

Hence the Gauss image L18 is Hamiltonian rigid.
Therefore, we conclude that the Gauss image L18 is Hamiltonian sta-

ble.

Theorem 5.1. The Gauss image L18 = G
(

U(5)
(SU(2)×SU(2)×U(1))

)
=

U(5)
(SU(2)×SU(2)×U(1))·Z4

⊂ Q18(C) is strictly Hamiltonian stable.

6. The case (U,K) = (SO(m+ 2), SO(2) × SO(m)) (m ≥ 3)

.
In this case (U,K) is of type B2. The canonical decomposition u =

k+ p of u = o(m+ 2) and a maximal abelian subspace a of p are given
as

k =
{(

T1 0
0 T2

)
| T1 ∈ o(2), T2 ∈ o(m)

}
= o(2) + o(m),

p =
{( 0 −tX

X 0

)
| X ∈ M(m, 2;R)

}
,

a =
{
H = H(ξ1, ξ2) =



0 −tξ 0
ξ 0 0
0 0 0


 | ξ =

(
ξ1 0
0 ξ2

)
, ξ1, ξ2 ∈ R

}
.

Then

K0 =

{(
±I4 0
0 T

)
| T ∈ SO(m− 2)

}

∼=Z2 × SO(m− 2).

Moreover

K[a]
∼= (Z2 × SO(m− 2)) · Z4
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consists of all elements

a =



A 0 0
0 B 0
0 0 B′


 ∈ K = SO(2)× SO(m),

where

(A,B) =

((
1 0
0 1

)
,

(
1 0
0 1

))
,

((
−1 0
0 −1

)
,

(
1 0
0 1

))
,

((
1 0
0 1

)
,

(
−1 0
0 −1

))
,

((
−1 0
0 −1

)
,

(
−1 0
0 −1

))
,

((
0 −1
1 0

)
,

(
0 1
1 0

))
,

((
0 1
−1 0

)
,

(
0 1
1 0

))
,

((
0 −1
1 0

)
,

(
0 −1
−1 0

))
,

((
0 1
−1 0

)
,

(
0 −1
−1 0

))
.

Here note that K[a] 6⊂ K1 = SO(2)×SO(2)×SO(m−2). Thus the deck

transformation group of the covering map G : N2m−2 → G(N2m−2) is
equal to K[a]/K0

∼= Z4. The element

g =




0 1
−1 0

0 1
1 0

B′




∈ K[a]

represents a generator of K[a]/K0
∼= Z4.

6.1. Description of the Casimir operator. Denote 〈X,Y 〉u :=
−1

2trXY for each X,Y ∈ u = o(m + 2). The restricted root system
Σ(U,K) of type B2 can be given as follows ([7]):

Σ+(U,K) = {ε1 − ǫ2 = α1, ε2 = α2, ε1 + ǫ2 = α1 + 2α2, ε1 = α1 + α2}.

Then, relative to the above inner product 〈 , 〉u, the square length of any
restrict root γ ∈ Σ(U,K) is ‖γ‖2u = 1 or 2. Hence the Casimir operator
CL of L with respect to the induced metric from Q2m−2(C) is given as
follows:

CL =
2

‖γ0‖2u
CK/K0,〈 , 〉u −

1

‖γ0‖2u
CK1/K0,〈 , 〉u

= CK/K0
− 1

2
CK1/K0

,

(6.1)

where K = SO(2) × SO(m) ⊃ K1 = SO(2) × SO(2) × SO(m − 2) ⊃
K0 = Z2×SO(m− 2) and CK/K0

, CK1/K0
denote the Casimir operators

of K/K0 and K1/K0 relative to 〈 , 〉u|k and 〈 , 〉u|k1 , respectively.
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6.2. Branching laws for (SO(n + 2), SO(2) × SO(n)). We need the
branching laws for (SO(n+ 2), SO(2) × SO(n)) by Tsukamoto [49].

Lemma 6.1 (Branching laws for (SO(2p+2), SO(2)×SO(2p)), p ≥ 1).
Let Λ = h0ε0 + h1ε1 + · · · + hp−1εp−1 + ǫhpεp ∈ D(SO(2p + 2)), where
ǫ = 1 or −1 and h0, h1, · · · , hp are integers satisfying

(6.2) h0 ≥ h1 ≥ · · · ≥ hp ≥ 0

and Λ′ = k0ε0 + k1ε1 + · · · + kp−1εp−1 + ǫ′kpεp ∈ D(SO(2)× SO(2p)),
where ǫ′ = 1 or −1 and k0, k1, · · · , kp are integers satisfying

(6.3) k1 ≥ · · · ≥ kp ≥ 0.

The irreducible decomposition of VΛ as a SO(2) × SO(2p)-module con-
tains an irreducible SO(2)× SO(2p)-module V ′

Λ′ if and only if

hi−1 ≥ ki ≥ hi+1 (1 ≤ i ≤ p− 1),

hp−1 ≥ kp ≥ 0,

and the coefficient of Xk0 in the finite power series

Xǫǫ′lp

p−1∏

i=0

X li+1 −X−li−1

X −X−1

does not vanish, where

l0 := h0 −max{h1, k1},
li := min{hi, ki} −max{hi+1, ki+1} (1 ≤ i ≤ p− 1),

lp := min{hp, kp}.
(6.4)

Moreover, the coefficient of Xk0 is equal to the multiplicity of V ′
Λ′ ap-

pearing in the irreducible decomposition.

Lemma 6.2 (Branching laws for (SO(2p+3), SO(2)× SO(2p+1)),
p ≥ 1). Let Λ = h0ε0 + h1ε1 + · · ·+ hp−1εp−1 + hpεp ∈ D(SO(2p+ 3)),
where h0, h1, · · · , hp are integers satisfying (6.2) and Λ′ = k0ε0+k1ε1+
· · · + kp−1εp−1 + kpεp ∈ D(SO(2)× SO(2p + 1)), where k0, k1, · · · , kp
are integers satisfying (6.3). The irreducible decomposition of VΛ as an
SO(2)×SO(2p+1)-module contains an irreducible SO(2)×SO(2p+1)-
module V ′

Λ′ if and only if

hi−1 ≥ ki ≥ hi+1, (1 ≤ i ≤ p− 1)

hp−1 ≥ kp ≥ 0,

and the coefficient of Xk0 in the finite power series
(

p−1∏

i=0

X li+1 −X−li−1

X −X−1

)
X lp+

1
2 −X−lp− 1

2

X
1
2 −X− 1

2
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does not vanish, where integers l0, l1, · · · , lp are defined by (6.4). More-

over, the coefficient of Xk0 is equal to the multiplicity of V ′
Λ′ appearing

in the irreducible decomposition.

6.3. Description of D(K,K0) and eigenvalue computations.

For m = 2p (p ≥ 2) or m = 2p + 1 (p ≥ 1), each Λ̃ ∈ D(K) =
D(SO(2)× SO(m)) can be expressed as

Λ̃ = k0ε0 + k1ε1 + · · ·+ kpεp,

where k0ε0 ∈ D(SO(2)), Λ := k1ε1 + · · · + kpεp ∈ D(SO(m)), and
k0, k1, · · · , kp ∈ Z satisfying

k1 ≥ k2 ≥ · · · ≥ kp−1 ≥ |kp| if m = 2p,

k1 ≥ k2 ≥ · · · ≥ kp−1 ≥ kp ≥ 0 if m = 2p+ 1.

Then we have

ṼΛ̃ = Uk0ε0 ⊗ VΛ.

Note that

D(K,K0) = D(SO(2)× SO(m),Z2 × SO(m− 2))

⊂ D(SO(2)× SO(m), SO(m− 2)),

D(K1,K0) = D(SO(2)× SO(2)× SO(m− 2),Z2 × SO(m− 2))

⊂ D(SO(2)× SO(2)× SO(m− 2), SO(m − 2)).

By applying Lemmas 6.1 and 6.2 to both cases (SO(2p), SO(2) ×
SO(2p−2)) and (SO(2p), SO(2)×SO(2p−1)), we can describeD(K,K0)
as follows:

Lemma 6.3. Assume that p ≥ 2. Let Λ̃ ∈ D(K). Then an irreducible

K-module ṼΛ̃ with the highest weight Λ̃ contains an irreducible K1-

module Ṽ ′
Λ̃′ with the highest weight Λ̃′ ∈ D(K1) satisfying (Ṽ ′

Λ̃′)K0 6= {0}
if and only if

Λ̃ = k0ε0 + k1ε1 + k2ε2 ∈ D(K),

Λ̃′ = k0ε0 + k′1ε1 ∈ D(K1),

where k0, k1, k2, k
′
1 ∈ Z, k1 ≥ k2 ≥ 0 satisfy the following conditions:

(i) The coefficient of Xk′1 in the finite series expansion

Xk1−k2+1 −X−(k1−k2+1)

X −X−1
of X does not vanish;

(ii) k0 + k′1 is even.

In particular, −(k1 − k2) ≤ k′1 ≤ (k1 − k2). Here the coefficient is equal

to the multiplicity of Ṽ ′
Λ̃′.
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6.3.1. The case m = 2p (p ≥ 2).
Suppose that m = 2p (p ≥ 2). For each

Λ̃ = k0ε0 + k1ε1 + k2ε2 ∈ D(K,K0)

= D(SO(2) × SO(2p),Z2 × SO(2p − 2))

with Λ̃′ = k0ε0 + k′1ε1 ∈ D(K1,K0) = D(SO(2) × SO(2) × SO(2p −
2),Z2×SO(2p−2)) as in Lemma 6.3, −CK/K0

and −CK1/K0
have eigen-

values

− cΛ̃ = k20 + k21 + k22 + 2(p − 1)k1 + 2(p − 2)k2,

− cΛ̃′ =
1

2
(k20 + k′21).

Hence by the formula (6.1) the corresponding eigenvalue of −CL is

−cL = −cΛ̃ +
1

2
cΛ̃′

= k20 + k21 + k22 + 2(p− 1)k1 + 2(p − 2)k2 −
1

2
(k20 + k′21).

(6.5)

Denote Λ̃ = k0ε0 + k1ε1 + k2ε2 ∈ D(K,K0) by Λ̃ = (k0, k1, k2).

For each Λ̃ = k0ε0 = (k0, 0, 0) ∈ D(K,K0), as k
′
1 = 0, k0 = k0 + k′1 is

even and −cL = 1
2k

2
0 , we see that

(6.6) −cL ≤ 2m− 2 = 4p − 2 if and only if k20 ≤ 4(2p − 1).

Since ṼΛ̃
∼= Uk0ε0 ⊗C ∼= Uk0ε0 , we have

ρk0ε0(g)(v ⊗ 1) = e
√
−1π

2
k0 (v ⊗ 1).

Hence

(6.7) (k0, 0, 0) ∈ D(K,K[a]) if and only if k0 ∈ 4Z.

(i) The case G(N6) ∼= SO(2)×SO(4)
(Z2×SO(2))·Z4

→ Q6(C) with p = 2.

Lemma 6.4. Λ̃ = k0ε0 + k1ε1 + k2ε2 ∈ D(K,K0) has eigenvalue
−cL ≤ 6 if and only if (k0, k1, k2) is one of

{0, (±2, 0, 0), (±1, 1, 0), (0, 1, 1), (±2, 1, 1), (0, 2, 0), (0, 1,−1), (±2, 1,−1)}.

Proof. Since −CL = −1
2CK/K0

− 1
2CK/K1

≥ −1
2CK/K0

, the condition
−cL ≥ 6 implies that −cΛ̃ = −cK/K0

≤ 12. Using the eigenvalue formula
(6.5), we obtain the result. q.e.d.

Suppose that Λ̃ = (±2, 0, 0). Then by (6.7) Λ̃ = (±2, 0, 0) 6∈ D(K,K[a]).

Suppose that Λ̃ = (±1, 1, 0). Then dim ṼΛ̃ = 4 and ṼΛ̃
∼= Uk0ε0 ⊗C4,

where Λ = ε1 ∈ D(K) corresponds to the matrix multiplication of
SO(4) on C4. It follows from the branching law (Lemma 6.1, p = 2) of
(SO(4), SO(2)×SO(2)) that k′1 = ±1. Hence −cL = 1

2k
2
0+

5
2 . Note that
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Uk0ε0 ⊗C4 can be decomposed into irreducible SO(2)×SO(2)×SO(2)-
modules as

Uk0ε0 ⊗C4 = (Uk0ε0 ⊗ (C2 ⊕ {0})) ⊕ (Uk0ε0 ⊗ ({0} ⊕C2)).

There is no nonzero fixed vector by Z2 × SO(2) in Uk0ε0 ⊗ ({0} ⊕C2).
Moreover, since

ρk0ε0+ε1



−I2

−I2
T


 (v ⊗




w1

w2

0
0


)

= e
√
−1πk0v ⊗




−w1

−w2

0
0


 = e

√
−1π(k0+1)v ⊗




w1

w2

0
0


 ,

it follows that (ṼΛ̃)K0 = (ṼΛ̃)Z2×SO(2) 6= {0} if and only if k0 is odd,

and then (ṼΛ̃)Z2×SO(2) = Uk0ε0 ⊗ (C2 ⊕ {0}). Let k0 be odd. However,
since

ρk0ε0+ε1(g)(v ⊗




w1

w2

0
0


) = e

√
−1π

2
k0v ⊗




w2

w1

0
0


 ,

Uk0ε0 ⊗ (C2 ⊕ {0}) has no nonzero fixed vector by (Z2 × SO(2)) · Z4,
and hence (k0, 1, 0) 6∈ D(K,K[a]). In particular, (±1, 1, 0) 6∈ D(K,K[a]).

Suppose that Λ̃1 = (k0, 1, 1) and Λ̃2 = (k0, 1,−1). Then dim ṼΛ̃1
=

dim ṼΛ̃2
= 3 and ṼΛ̃1

⊕ ṼΛ̃2

∼= C⊗ ∧2C4. It follows from the branching

law (Lemma 6.1, p=2) (SO(4), SO(2) × SO(2)) that

ṼΛ̃1
= Ṽ ′

(k0,1,1)
⊕ Ṽ ′

(k0,−1,−1) ⊕ Ṽ ′
(k0,0,0)

,

where (k0, 0, 0) ∈ D(K1,K0). Thus −cL = 1
2k

2
0 + 4, which is equal to 4

when k0 = 0 and 6 when k0 = ±2.
Let {e1, e2, e3, e4} be the standard basis of C4. Then we have

ṼΛ̃1
= span{e1 ∧ e2, e1 ∧ e3 − e2 ∧ e4, e1 ∧ e4 + e2 ∧ e3},

ṼΛ̃2
= span{e3 ∧ e4, e1 ∧ e3 + e2 ∧ e4, e1 ∧ e4 − e2 ∧ e3}.

Since e1 ∧ e2 ∈ ∧2C4 is fixed by the representation of SO(2) × SO(2)

with respect to the highest weight Λ̃1,

(ṼΛ̃1
)K0 = span{1⊗ (e1 ∧ e2)}.

Moreover,

ρΛ̃1
(g)(v ⊗ (e1 ∧ e2)) = e

√
−1π

2
k0v ⊗ (e2 ∧ e1).
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Hence Λ̃1 = (0, 1, 1) 6∈ D(K,K[a]) but Λ̃1 = (±2, 1, 1) ∈ D(K,K[a]) and

(ṼΛ̃1
)K[a]

∼= C⊗C{e1 ∧ e2} for k0 = 2 or −2, both of which give eigen-

value 6. Similarly, Λ̃2 = (0, 1,−1) 6∈ D(K,K[a]) but Λ̃2 = (±2, 1,−1) ∈
D(K,K[a]) and (ṼΛ̃2

)K[a]
∼= C ⊗ C{e3 ∧ e4} for k0 = 2 or −2, both of

which give eigenvalue 6.
Suppose that Λ̃ = (0, 2, 0). Then dim ṼΛ̃ = 9 and ṼΛ̃

∼= C ⊗ S20(C
4),

where the corresponding representation of SO(4) is just the adjoint
representation on S20(C

4). It follows from the branching law of (SO(4),

SO(2)×SO(2)) that k′1 = 0,±2. Thus −cL = 8− 1
2k

′
1
2. When k′1 = ±2,

−cL = 6; otherwise, −cL = 8 > 6. On the other hand, S20(C
4) can be

decomposed into the following SO(2)× SO(2)-modules:

V2ε1
∼= S20(C

4) = S20(C
2)⊕ S20(C

2)⊕M(2, 2;C) ⊕C

(
I2

−I2

)
.

Thus S20(C
2)⊕C

(
I2

−I2

)
is fixed by {−I2}×SO(2) and dim(ṼΛ̃)K0 =

3. Moreover,

ρΛ̃(g)(v ⊗



a b
b −a

0


) = v ⊗



−a b
b a

0


 ,

ρΛ̃(g)(v ⊗
(
I2

−I2

)
) = v ⊗

(
I2

−I2

)
.

Hence

(ṼΛ̃)K[a]
= C⊗C



0 1
1 0

0


⊕C⊗C

(
I2

−I2

)
.

Notice that the first summand lies in the SO(2)×SO(2)×SO(2)-module
V ′
2ε1

⊕ V ′
−2ε1

, which gives eigenvalue 6 and the second summand lies in
the SO(2) × SO(2) × SO(2)-module with respect to weight (0, 0, 0) ∈
D(K1,K0), which gives eigenvalue 8 > 6. Therefore, Λ̃ = (0, 2, 0) ∈
D(K,K[a]) and the multiplicity corresponding to eigenvalue 6 is 1.

Now we know that G(N6) ⊂ Q6(C) is Hamiltonian stable. Since Λ̃ =
(2, 1, 1), (−2, 1, 1), (2, 1,−1), (−2, 1,−1), (0, 2, 0) ∈ D(K,K[a]) give the
smallest eigenvalue 6 with multiplicity 1 and

n(L6)

=dim Ṽ(2,1,1) + dim Ṽ(−2,1,1) + dim Ṽ(2,1,−1) + dim Ṽ(−2,1,−1) + dim Ṽ(0,2,0)

=3 + 3 + 3 + 3 + 9 = 21 = dimSO(8) − dim(SO(2) × SO(4)) = nhk(L
6).

Hence we obtain that G(N6) ⊂ Q6(C) is strictly Hamiltonian stable.

(ii) The case G(N4p−2) ∼= SO(2)×SO(2p)
(Z2×SO(2p−2))·Z4

→ Q4p−2(C) with p ≥ 3.
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Suppose that Λ̃ = (k0, 0, 0) and k0 ∈ 4Z \ {0}. Then k′1 = 0 and

by (6.6) Λ̃ ∈ D(K,K[a]). As p ≥ 3, we have 16 < 20 ≤ 4(2p − 1).
Hence by (6.7) we see that for every k0 ∈ 4Z \ {0} such that 16 ≤
k20 < 4(2p − 1) we have eigenvalue −cL = 1

2k
2
0 < 4p − 2. Therefore,

G(N4p−2) ∼= SO(2)×SO(2p)
(Z2×SO(2p−2))·Z4

→ Q4p−2(C) is not Hamiltonian stable if

p ≥ 3.

Theorem 6.1.

L4p−2 = (SO(2)× SO(2p))/(Z2 × SO(2p− 2))Z4 (p ≥ 2)

is not Hamiltonian stable if and only if (m − 2) − 1 = 2p − 3 ≥ 3. If
p = 2, then it is strictly Hamiltonian stable.

Remark. The index i(L4p−2) goes to ∞ as p → ∞.

6.3.2. The case m = 2p+ 1 (p ≥ 1).
Assume that m = 2p + 1 (p ≥ 2). For each

Λ̃ = k0ε0 + k1ε1 + k2ε2 ∈ D(K,K0)

= D(SO(2)× SO(2p + 1),Z2 × SO(2p− 1))

with Λ̃′ = k0ε0 + k′1ε1 ∈ D(K1,K0) = D(SO(2) × SO(2) × SO(2p −
1),Z2×SO(2p−1)) as in Lemma 6.3, −CK/K0

and −CK1/K0
have eigen-

values

− cΛ̃ = k20 + k21 + k22 + (2p − 1)k1 + (2p − 3)k2,

− cΛ̃′ = −1

2
(k20 + k′21).

Hence by the formula (6.1) the corresponding eigenvalue of −CL is

−cL = − cΛ̃ +
1

2
cΛ̃′

= k20 + k21 + k22 + (2p − 1)k1 + (2p− 3)k2 −
1

2
(k20 + k′21).

(6.8)

Denote Λ̃ = k0ε0 + k1ε1 + k2ε2 ∈ D(K,K0) by Λ̃ = (k0, k1, k2).

For each Λ̃ = k0ε0 = (k0, 0, 0) ∈ D(K,K0), as k
′
1 = 0, k0 = k0 + k′1 is

even and −cL = 1
2k

2
0 , we see that

(6.9) −cL ≤ 2m− 2 = 4p if and only if k20 ≤ 8p.

As ṼΛ̃
∼= Uk0ε0 ⊗C ∼= Uk0ε0 , we have

ρk0ε0(g)(v ⊗ 1) = e
√
−1π

2
k0 (v ⊗ 1).

Hence

(6.10) (k0, 0, 0) ∈ D(K,K[a]) if and only if k0 ∈ 4Z.

(i) The case G(N4) ∼= SO(2)×SO(3)
Z2·Z4

→ Q4(C) with p = 1.
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In this case, K = SO(2)×SO(3), K1 = SO(2)×SO(2), and K0 = Z2,

where Z2 is generated by

(
−I4 0
0 1

)
∈ U = SO(5). Let VΛ̃ be an

irreducible SO(2)× SO(3)-module with the highest weight Λ̃ = k0ε0 +
k1ε1 ∈ D(K) = D(SO(2) × SO(3)), where k0, k1 ∈ Z and k1 ≥ 0. It
follows from the branching law of (SO(3), SO(2)) that VΛ̃ contains an

irreducible SO(2) × SO(2)-module VΛ̃′ with the highest weight Λ̃′ =
k0ε0 + k′1ε1 ∈ D(K1) = D(SO(2) × SO(2)), where k′1 ∈ Z, if and only

if |k′1| ≤ k1. Then we see that Λ̃′ ∈ D(SO(2) × SO(2),Z2) if and only
if k0 + k′1 is even. By the formula (6.1) the corresponding eigenvalue of
the Casimir operator −CL is

(6.11) −cL = k20 + k21 + k1 −
1

2
(k20 + k′21) =

1

2
k20 + k21 + k1 −

1

2
k′21 .

Denote Λ̃ = k0ε0+k1ε1 ∈ D(SO(2)×SO(3),Z2) by Λ̃ = (k0, k1). Using
the eigenvalue formula (6.11), we compute the following.

Lemma 6.5. Λ̃ = k0ε0 + k1ε1 ∈ D(K,K0) has eigenvalue −cL ≤ 4
if and only if (k0, k1) is one of

{
0, (±2, 0), (±2, 1), (±1, 1), (0, 1), (0, 2)

}
.

Suppose that Λ̃ = (±2, 0). Notice that for any v⊗w ∈ Ṽk0ε0
∼= C⊗C,

ρk0ε0(g)(v ⊗ w) = e
√
−1k0

π
2 v ⊗ w,

Λ̃ = k0ε0 ∈ D(K,K[a]) if and only if k0 ∈ 4Z. Hence Λ̃ = (±2, 0) 6∈
D(K,K[a]).

Suppose that Λ̃ = (k0, 1). Then dim ṼΛ̃ = 3. The complex represen-

tation of K = SO(2) × SO(3) with the highest weight Λ̃ corresponds
to

ṼΛ̃ = Uk0ε0 ⊗ Vε1
∼= Uk0ε0 ⊗C3 = (Uk0ε0 ⊗C2)⊕ (Uk0ε0 ⊗C1).

For each v ⊗ w ∈ Uk0ε0 ⊗ C3 and diag(−I2,−I2, 1) ∈ K0, where w =
(w1, w2, w2)

t ∈ C3, the representation of K0 is given by

ρΛ̃(diag(−I2,−I2, 1))(v ⊗ w) = e
√
−1k0πv ⊗ (−w1,−w2, w3)

t.

Then (VΛ̃)K0 = C ⊗ C(0, 0, w3)
t ∼= C ⊗ C if k0 is even and (VΛ̃)K0 =

C⊗C(w1, w2, 0)
t ∼= C⊗C2 if k0 is odd. Moreover,

ρΛ̃(g)(v ⊗ w) = e
√
−1k0

π
2 v ⊗




w2

w1

−w3


 .

Thus Λ̃ ∈ D(K,K[a]) if and only if k0 ≡ 2mod 4 and its multiplic-

ity is 1. In particular, Λ̃ = (0, 1) or (±1, 1) 6∈ D(K,K[a]) and Λ̃ =

(±2, 1) ∈ D(K,K[a]). For Λ̃ = (±2, 1), it follows from the branching
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laws of (SO(3), SO(2)) that |k′1| ≤ k1 thus k′1 = 0 such that k0 + k′1 is
even. Hence −cL = 4.

Suppose that Λ̃ = (0, 2). Then dimC ṼΛ̃ = 5. It follows from the
branching law of (SO(3), SO(2)) that k′1 = 0 or ±2. If k′1 = ±2, then
−cL = 4. If k′1 = 0, then −cL = 6 > 4. On the other hand, Λ =
2ε1 ∈ D(SO(3)) corresponds to VΛ

∼= S20(C
3), and the representation of

SO(3) on S20(C
3) is just the complexified isotropy representation of a

symmetric pair (SU(3), SO(3)). Thus S20(C
3) can be decomposed into

irreducible SO(2)-modules as

V2ε1
∼= S20(C

3)

= S20(C
2)⊕

{


0 0 a
0 0 b
a b 0


 | a, b ∈ C

}
⊕C

(
I2

−2

)

= C

(
1

√
−1√

−1 −1

)
⊕C

(
1 −

√
−1

−
√
−1 −1

)

⊕C



0 0 1
0 0

√
−1

1
√
−1 0


⊕C



0 0 1
0 0 −

√
−1

1 −
√
−1 0


⊕C

(
I2

−2

)

= V ′
2ε1 ⊕ V ′

−2ε1 ⊕ V ′
ε1 ⊕ V ′

−ε1 ⊕ V ′
0 .

Using this expression, we can directly show that

(ṼΛ̃)K0
∼= (C⊗ S20(C

2))⊕
(
C⊗C

(
I2

−2

)
)

and (ṼΛ̃)K[a]
∼= C⊗C

(
0

√
−1√

−1 0

)
⊕ (C⊗C

(
I2

−2

))
.

Hence Λ̃ = (0, 2) ∈ D(K,K[a]) with multiplicity 2. Note that the first

summand of (ṼΛ̃)K[a]
lies in C⊗ (V ′

2ε1 ⊕V ′
−2ε1), which gives eigenvalue 4

with multiplicity 1 and the second summand of (ṼΛ̃)K[a]
lies in C⊗ V ′

0 ,

which gives eigenvalue 6(> 4) with multiplicity 1.
Now we obtain that G(N4) ⊂ Q4(C) is Hamiltonian stable. Moreover,

since

n(L4) = dim Ṽ(2,1) + dim Ṽ(−2,1) + dim Ṽ(0,2) = 3 + 3 + 5

= 11 = dimSO(6) − dim(SO(2) × SO(3)) = nhk(L
4),

L4 = G(N4) ⊂ Q4(C) is Hamiltonian rigid. Therefore, G(N4) ⊂ Q4(C)
is strictly Hamiltonian stable.

(ii) The case G(N8) ∼= SO(2)×SO(5)
(Z2×SO(3))·Z4

→ Q8(C) with p = 2.

Denote Λ̃ = k0ε0+k1ε1+k2ε2 ∈ D(K,K0) = D(SO(2)×SO(5),Z2×
SO(3)) by Λ̃ = (k0, k1, k2). Let Λ̃′ = k0ε0 + k′1ε1 ∈ D(K1,K0) =
D(SO(2)× SO(2)× SO(3),Z2 × SO(3)) as in Lemma 6.3. Then, using
the eigenvalue formula (6.8), we compute the following.
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Lemma 6.6. Λ̃ = k0ε0 + k1ε1 + k2ε2 ∈ D(K,K0) has eigenvalue
−cL ≤ 8 if and only if (k0, k1, k2) is one of

{ 0, (±4, 0, 0), (±1, 1, 0), (±3, 1, 0), (0, 1, 1), (±2, 1, 1), (0, 2, 0) }.

Suppose that Λ̃ = (±4, 0, 0). Then dim ṼΛ̃ = 1. It follows from the
branching law of (SO(5), SO(2)×SO(3)) that k′1 = 0. Thus−cL = 8. On

the other hand, it follows from (6.10) that Λ̃ = (±4, 0, 0) ∈ D(K,K[a]).

Suppose that Λ̃ = (k0, 1, 0). Then dim ṼΛ̃ = 5 and ṼΛ̃
∼= Uk0ε0 ⊗C5,

where Λ = ε1 ∈ D(K) corresponds to the matrix multiplication of
SO(5) on C5. It follows from the branching law of (SO(5), SO(2) ×
SO(3)) that k′1 = ±1. Hence −cL = 1

2k
2
0 + 7

2 . Notice that Uk0ε0 ⊗ C5

can be decomposed into the SO(2) × SO(3)-modules

Uk0ε0 ⊗C5 = (Uk0ε0 ⊗ (C2 ⊕ {0})) ⊕ (Uk0ε0 ⊗ ({0} ⊕C3)),

where Uk0ε0 ⊗ ({0} ⊕C3) has no nonzero fixed vector by Z2 × SO(3).
If k0 is odd, then

ρk0ε0+ε1



−I2

−I2
T


 (v⊗




w1

w2

0
0
0



) = e

√
−1πk0v⊗




−w1

−w2

0
0
0




= v⊗




w1

w2

0
0
0




,

that is, (ṼΛ̃)Z2⊗SO(3) = Uk0ε0 ⊗ (C2 ⊕ {0}) if k0 is odd. But since

ρk0ε0+ε1(g)(v ⊗




w1

w2

0
0
0



) = e

√
−1π

2
k0v ⊗




w2

w1

0
0
0




,

Uk0ε0 ⊗ (C2 ⊕ {0}) has no nonzero fixed vector by (Z2 × SO(3)) · Z4,
i.e., neither (±1, 1, 0) and (±3, 1, 0) is in D(K,K[a]).

Suppose that Λ̃ = (k0, 1, 1). Then dim ṼΛ̃ = 10 and ṼΛ̃
∼= C⊗∧2C5. It

follows from the branching law of (SO(5), SO(2)× SO(3)) that k′1 = 0.
Thus −cL = 1

2k
2
0 + 6. On the other hand, since e1 ∧ e2 ∈ ∧2C5 is fixed

by SO(2)× SO(3), v ⊗ (e1 ∧ e2) ∈ C⊗∧2C5 is fixed by Z2 × SO(3) ⊂
SO(2)× SO(2)× SO(3). Moreover,

ρk0ε0+ε1+ε2(g)(v ⊗ (e1 ∧ e2)) = e
√
−1π

2
k0v ⊗ (e2 ∧ e1).

Hence Λ̃ = (0, 1, 1) 6∈ D(K,K[a]) but Λ̃ = (±2, 1, 1) ∈ D(K,K[a]) and

(ṼΛ̃)K[a]
∼= C⊗C{e1∧e2} for k0 = 2 or −2, both of which give eigenvalue

8.
Suppose that Λ̃ = (0, 2, 0). Then dim ṼΛ̃ = 14 and ṼΛ̃

∼= C ⊗
Sym2

0(C
5), where Sym2

0 is the space of traceless symmetric matrices
and the representation of SO(5) with highest weight 2ε1 is just the
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adjoint representation on Sym2
0(C

5). It follows from the branching law

of (SO(5), SO(2) × SO(3)) that k′1 = 0,±2. Thus −cL = 10 − 1
2k

′
1
2.

When k′1 = ±2, −cL = 8; otherwise, −cL = 10 > 8. On the other
hand, Sym2

0(C
5) can be decomposed into the following SO(2)×SO(3)-

modules:

V2ε1
∼= Sym2

0(C
5)

= Sym2
0(C

2)⊕ Sym2
0(C

3)⊕M(2, 3;C)

⊕
{(

zI2
0 wI3

)
| z, w ∈ C, 2z + 3w = 0

}
.

Thus Sym2
0(C

2) is fixed by {−I2} × SO(3) and

(ṼΛ̃)K0
∼= C⊗ Sym2

0(C
2)⊕C⊗C

(
3I2

−2I3

)
.

Moreover,

ρ2ε1(g)(v ⊗



a b
b −a

0


) = v ⊗



−a b
b a

0


 .

Hence (ṼΛ̃)K[a]
= C⊗C·



0 1
1 0

0


⊕C⊗C

(
3I2

−2I3

)
. Therefore,

Λ̃ = (0, 2, 0) ∈ D(K,K[a]). Notice the first summand lies in Ṽ ′
(0,2,0) ⊕

Ṽ ′
(0,−2,0), which gives eigenvalue 8, and the second summand lies in

Ṽ ′
(0,0,0), which gives eigenvalue 10. Hence the multiplicity correspond-

ing to eigenvalue 8 is 1.
Since Λ̃ = (4, 0, 0), (−4, 0, 0), (2, 1, 1), (−2, 1, 1), (0, 2, 0) ∈ D(K,K[a])

give the smallest eigenvalue 8 with multiplicity 1 and

n(L8) = dim Ṽ(4,0,0) + dim Ṽ(−4,0,0) + dim Ṽ(2,1,1) + dim Ṽ(−2,1,1)

+ dim Ṽ(0,2,0)

= 1 + 1 + 10 + 10 + 14 = 36

> 34 = dimSO(10)− dimSO(2)× SO(5) = nhk(L
8),

G(N8) ⊂ Q8(C) is not Hamiltonian rigid. Therefore, G(N8) ⊂ Q8(C) is
Hamiltonian stable but not strictly Hamiltonian stable.

(iii) The case G(N4p) ∼= SO(2)×SO(2p+1)
(Z2×SO(2p−1))·Z4

→ Q4p(C) with p ≥ 3.

Suppose that Λ̃ = (k0, 0, 0) and k0 ∈ 4Z \ {0}. Then k′1 = 0 and by

(6.9) Λ̃ ∈ D(K,K[a]). As p ≥ 3, we have 16 < 24 ≤ 8p. Hence by (6.10)

we see that for every k0 ∈ 4Z \ {0} such that 16 ≤ k20 < 8p we have

eigenvalue −cL = 1
2k

2
0 < 4p. Therefore, G(N4p) ∼= SO(2)×SO(2p+1)

(Z2×SO(2p−1))·Z4
→

Q4p−2(C) is not Hamiltonian stable if p ≥ 3.
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Therefore, we obtain the following.

Theorem 6.2. The Gauss image L4p = SO(2)×SO(2p+1)
(Z2×SO(2p−1))Z4

→ Q4p(C)

(p ≥ 1) is not Hamiltonian stable if and only if (m−2)−1 = 2p−2 ≥ 3.
If p = 1, then it is strictly Hamiltonian stable. If p = 2, then it is
Hamiltonian stable but not strictly Hamiltonian stable.

Remark. The index i(L4p) goes to ∞ as p → ∞.

7. The case (U,K) = (SU(m+ 2), S(U(2) × U(m))) (m ≥ 2)

In this case, U = SU(m+ 2) and K = S(U(2) × U(m)) with m ≥ 2.
Then (U,K) is of B2 type for m = 2 and BC2 type for m ≥ 3.

In this case, we use the formulation by the unitary group U(m) rather
than one by the special unitary groups SU(m). It seems to work more
successfully in our argument of applying the branching laws. Here we
will also indicate the relations between both formulations. Let Ũ :=
U(m + 2), K̃ := U(2) × U(m), K̃2 := U(2) × U(2) × U(m − 2), K̃1 :=

U(1)×U(1)×U(1)×U(1)×U(m−2), and K̃0 := U(1)×U(1)×U(m−2).

Then Ũ = C(Ũ) · U , K̃ = C(Ũ) ·K, K̃2 = C(Ũ) ·K2, K̃1 = C(Ũ) ·K1,

and K̃0 = C(Ũ) ·K0, where C(Ũ) is the center of Ũ .

Let u = k+ p and ũ = k̃+ p be the canonical decomposition of u and
ũ corresponding to (U,K) and (Ũ , K̃), respectively. Let a be a maximal
abelian subspace of p, where

a =

{(
0 H12

−H̄t
12 0

)
| H12 =

(
ξ1 0 0 · · · 0
0 ξ2 0 · · · 0

)
, ξ1, ξ2 ∈ R

}
.

Then the centralizer K̃0 of a in K̃ is given as follows:

K̃0 =




P =




eis

eit

eis

eit

T




| T ∈ U(m− 2)





∼=U(1)× U(1)× U(m− 2).

Moreover,

K̃[a] = K̃0 ∪ (Q · K̃0) ∪ (Q2 · K̃0) ∪ (Q3 · K̃0),

where

Q =




0 1
−1 0

0 −1
−1 0

Im−2




∈ K̃2 ⊂ K̃.

Thus the deck transformation group of the covering map G : N8m−2 →
G(N4m−2) (m ≥ 2) is equal to K[a]/K0

∼= K̃[a]/K̃0
∼= Z4. Remark that
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we will use P and Q to denote the element in K̃0 and the generator of
Z4 in K̃[a] throughout this section.
7.1. Description of the Casimir operator.

Define an inner product 〈X,Y 〉u := −trXY for each X,Y ∈ u =
su(m+2) or for each X,Y ∈ ũ = u(m+2) . The restricted root system
Σ(U,K) is of type B2 for m = 2 and type BC2 for m ≥ 3. Then the
square length of each restricted roots with respect to 〈 , 〉u, is given by

‖γ‖2u =

{
1 or 2, m = 2,
1
2 , 1 or 2, m ≥ 3.

Hence the Casimir operator CL of L with respect to the induced metric
from gstdQ4m−2(C) can be expressed as follows:

(7.1) CL =

{
CK/K0

− 1
2 CK1/K0

, m = 2,

2CK/K0
− CK2/K0

− 1
2CK1/K0

, m ≥ 3,

where CK/K0
, CK2/K0

, and CK1/K0
denote the Casimir operator of K/K0,

K2/K0, and K1/K0 relative to 〈 , 〉u|k, 〈 , 〉u|k2 and 〈 , 〉u|k1 , respec-
tively.
7.2. Descriptions of D(Ũ), D(U) and etc.

D(Ũ), D(C(Ũ)), and D(U) are described as follows:

D(Ũ) = D(U(m+ 2)) =
{
Λ̃ = p̃1y1 + · · ·+ p̃m+2ym+2 | p̃1, . . . , p̃m+2 ∈ Z,

p̃i − p̃i+1 ≥ 0 (i = 1, . . . ,m+ 1)
}
,

D(C(Ũ )) = D(C(U(m+ 2))) =
{
Λ = p0(y1 + · · ·+ ym+2) | p0 ∈ 1

m+ 2
Z
}
,

D(U) = D(SU(m+ 2)) =
{
Λ = p1y1 + · · ·+ pm+2ym+2 |

m+2∑

i=1

pi = 0,

pi − pm+2 ∈ Z, pi − pi+1 ≥ 0 (i = 1, . . . ,m+ 1)
}
.

Each Λ̃ = p̃1y1+ · · ·+ p̃m+2ym+2 ∈ D(U(m+ 2)) can be decomposed as

Λ̃ = Λ0 + Λ, where

Λ0 =

(
1

m+ 2

m+2∑

i=1

p̃i

)(
m+2∑

i=1

yi

)
∈ D(C(U(m+ 2)))

and

Λ = (p̃1−
1

m+ 2

m+2∑

i=1

p̃i)y1+· · ·+(p̃m+2−
1

m+ 2

m+2∑

i=1

p̃i)ym+2 ∈ D(SU(m+ 2)).

Note that this projection D(Ũ) → D(U), Λ̃ 7→ Λ is surjective.

D(K̃) = D(U(2) × U(m))

={Λ̃ = q̃1y1 + q̃2y2 + q̃3y3 + · · ·+ q̃m+2ym+2 |
q̃i ∈ Z (i = 1, . . . ,m+ 2), q̃1 − q̃2 ≥ 0, q̃i − q̃i+1 ≥ 0 (i = 3, . . . ,m+ 1)},
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D(K) = D(S(U(2) × U(m)))

={Λ = q1y1 + q2y2 + q3y3 + · · · + qm+2ym+2 |
m+2∑

i=1

qi = 0, qi − qj ∈ Z

(i, j = 1, 2, . . . ,m+ 2), q1 − q2 ≥ 0, qi − qi+1

≥ 0 (i = 3, 4, . . . ,m+ 1)},
D(K̃2) = D(U(2)× U(2) × U(m− 2))

={Λ̃ = q̃1y1 + q̃2y2 + q̃3y3 + q̃4y4 + q̃5y5 + · · ·+ q̃m+2ym+2 |
q̃i ∈ Z (i = 1, . . . ,m+ 2),

q̃1 − q̃2, q̃3 − q̃4, q̃i − q̃i+1 ≥ 0 (i = 5, . . . ,m+ 1)},
D(K2) = D(S(U(2) × U(2)× U(m− 2)))

={Λ = q1y1 + q2y2 + q3y3 + q4y4 + q5y5 + · · ·+ qm+2ym+2 |
m+2∑

i=1

qi = 0,

qi − qj ∈ Z (i, j = 1, 2, . . . ,m+ 2), q1 − q2, q3 − q4, qi − qi+1

≥ 0 (i = 5, . . . ,m+ 1)},
D(K̃1) = D(U(1) × U(1)× U(1)× U(1)× U(m− 2))

={Λ̃ = q̃1y1 + q̃2y2 + q̃3y3 + q̃4y4 + q̃5y5 + · · · + q̃m+2ym+2 |
q̃i ∈ Z (i = 1, . . . ,m+ 2), q̃i − q̃i+1 ≥ 0 (i = 5, . . . ,m+ 1) },

D(K1) = D(S(U(1) × U(1)× U(1) × U(1)× U(m− 2)))

=
{
Λ = q1y1 + q2y2 + q3y3 + q4y4 + q5y5 + · · ·+ qm+2ym+2 |

m+2∑

i=1

qi = 0,

qi − qj ∈ Z (i, j = 1, . . . ,m+ 2), qi − qi+1 ≥ 0 (i = 5, . . . ,m+ 1)
}
,

D(K̃0) = D(U(1) × U(1)× U(m− 2))

={Λ̃ = q̃1y1 + q̃2y2 + q̃3y3 + q̃4y4 + q̃5y5 + · · · + q̃m+2ym+2 |

q̃3 = q̃1 ∈
1

2
Z, q̃4 = q̃2 ∈

1

2
Z, q̃i ∈ Z (i = 5, . . . ,m+ 2),

q̃i − q̃i+1 ≥ 0 (i = 5, 6, . . . ,m+ 1)},
D(K0) = D(S(U(1) × U(1)× U(m− 2)))

={Λ = q1y1 + q2y2 + q3y3 + q4y4 + q5y5 + · · ·+ qm+2ym+2 |
m+2∑

i=1

qi = 0, qi − qj ∈ Z (i, j = 1, . . . ,m+ 2),

q3 = q1, q4 = q2, qi − qi+1 ≥ 0 (i = 5, . . . ,m+ 1)}.
The natural maps D(K̃) −→ D(K), D(K̃2) −→ D(K2), D(K̃1) −→
D(K1) and D(K̃0) −→ D(K0) are also surjective.
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7.3. Branching laws of (U(m), U(2)×U(m−2)). The branching laws
for (SU(m), S(U(m) × U(2))) given in [29] can be reformulated to the
branching laws for (U(m), U(2) × U(m− 2)) as follows:

Lemma 7.1 (Branching law of (U(m), U(2)×U(m− 2))). For each

Λ̃ = p̃1y1+ · · ·+ p̃mym ∈ D(U(m)), an irreducible U(m)-module VΛ̃ with

the highest weight Λ̃ can be decomposed into the direct sum of irreducible
U(2)× U(m− 2)-modules as follows:

VΛ̃ =
⊕

Λ̃′∈D(U(2)×U(m−2))

V ′
Λ̃′ .

Here VΛ̃ contains an irreducible U(2) × U(m − 2)-module V ′
Λ̃′ with the

highest weight Λ̃′ = q̃1y1 + · · · + q̃mym ∈ D(U(2) × U(m− 2)) if and
only if the following conditions are satisfied:

(i) q̃1 − p̃1 ∈ Z;
(ii) p̃i−2 ≥ q̃i ≥ p̃i (i = 3, . . . ,m);

(iii) in the finite power series expansion in X of

∏m
i=2(X

ri+1 −X−(ri+1))

(X −X−1)m−2
,

where

r2 := p̃1 −max(q̃3, p̃2),

ri := min(q̃i, p̃i−1)−max(q̃i+1, p̃i), (3 ≤ i ≤ m− 1),

rm := min(q̃m, p̃m−1)− p̃m,

the coefficient of X q̃1−q̃2+1 does not vanish. Moreover, the value of
this coefficient is equal to the multiplicity of the irreducible U(2)×
U(m− 2)-module V ′

Λ̃′.

7.4. Branching law of (U(3), U(2) × U(1)). Now following Lemma
5.1 the branching law of (U(3), U(2) × U(1)) is described as follows.

Lemma 7.2. Let ṼΛ̃ be an irreducible U(3)-module with the highest

weight Λ̃ = p̃1y1+ p̃2y2+ p̃3y3 ∈ D(U(3)), where p̃i ∈ Z (i = 1, 2, 3) and

p̃1 ≥ p̃2 ≥ p̃3. Then ṼΛ̃ can be decomposed into irreducible U(2)×U(1)-
modules as

Ṽp̃1y1+p̃2y2+p̃3y3 =

p̃1−p̃2⊕

α=0

p̃2−p̃3⊕

β=0

Ṽ ′
(p̃1−α)y1+(p̃2−β)y2+(p̃3+α+β)y3

.

7.5. Descriptions of D(K̃, K̃0), D(K̃2, K̃0), D(K̃1, K̃0). Let

Λ̃ = p̃1y1 + p̃2y2 + p̃3y3 + · · ·+ p̃m+2ym+2 ∈ D(K̃) = D(U(2)× U(m)),

where p̃1, . . . , p̃m+2 ∈ Z, p̃1 ≥ p̃2, p̃3 ≥ · · · ≥ p̃m+2. Thus Λσ = p̃1y1 +
p̃2y2 ∈ D(U(2)), Λτ = p̃3y3 + · · · + p̃m+2ym+2 ∈ D(U(m)) and

ρ̃Λ̃ = σ ⊠ τ ∈ D(K̃) = D(U(2) × U(m)),
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where σ ∈ D(U(2)), τ ∈ D(U(m)).
By Lemma 7.1, an irreducible U(m)-module Vτ with the highest

weight Λτ can be decomposed into the direct sum of irreducible U(2)×
U(m− 2)-modules as

Vτ =
⊕

V ′
Λ̃′
τ
,

where Λ̃′
τ =

∑m+2
i=3 q̃iyi ∈ D(U(2) × U(m − 2)) with q̃3, . . . , q̃m+2 ∈ Z,

q̃i − q̃i+1 ≥ 0 (i = 3, 5, . . . ,m + 1). Note that setting Λς := q̃3y3 +
q̃4y4 ∈ D(U(2)) and Λγ := q̃5y5 + · · ·+ q̃m+2ym+2 ∈ D(U(m− 2)), VΛ̃ is

decomposed into the direct sum of irreducible K̃2-modules as

VΛ̃ =
⊕

ς,γ

(Vσ ⊠ Vς ⊠ Vγ).

By the branching law of (U(2), U(1) × U(1)) (see Lemma 5.1),

Vσ = Vp̃1y1+p̃2y2 =

p̃1−p̃2⊕

α=0

V ′
(p̃1−α)y1+(p̃2+α)y2

,

Vς = Vq̃3y3+q̃4y4 =

q̃3−q̃4⊕

β=0

V ′
(q̃3−β)y3+(q̃4+β)y4

.

Thus VΛ̃ is decomposed into the direct sum of irreducible K̃1-modules as

VΛ̃ =
⊕ p̃1−p̃2⊕

α=0

q̃3−q̃4⊕

β=0

(V ′
(p̃1−α)y1+(p̃2+α)y2

⊠ V ′
(q̃3−β)y3+(q̃4+β)y4

⊠ Vq̃5y5+···+q̃m+2ym+2).

Since as a U(1)× U(1)-module

V ′
(p̃1−α)y1+(p̃2+α)y2

⊠ V ′
(q̃3−β)y3+(q̃4+β)y4

=V ′′
1
2
(p̃1+q̃3−α−β)(y1+y3)+

1
2
(p̃2+q̃4+α+β)(y2+y4)

,

VΛ̃ is decomposed into the direct sum of irreducible K̃0-modules:

VΛ̃

=
⊕

ς,γ

(Vp̃1y1+p̃2y2 ⊠ Vq̃3y3+q̃4y4 ⊠ Vq̃5y5+···+q̃m+2ym+2)

=
⊕

ς,γ

p̃1−p̃2⊕

α=0

q̃3−q̃4⊕

β=0

(V ′
(p̃1−α)y1+(p̃2+α)y2

⊠ V ′
(q̃3−β)y3+(q̃4+β)y4

⊠ Vq̃5y5+···+q̃m+2ym+2)

=
⊕

ς,γ

p̃1−p̃2⊕

α=0

q̃3−q̃4⊕

β=0

V ′′
1
2
(p̃1+q̃3−α−β)(y1+y3)+

1
2
(p̃2+q̃4+α+β)(y2+y4)

⊠ Vq̃5y5+···+q̃m+2ym+2 .
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Thus we obtain that Λ̃ ∈ D(K̃, K̃0) if and only if there exist α, β ∈ Z

with 0 ≤ α ≤ p̃1 − p̃2 and 0 ≤ β ≤ q̃3 − q̃4 such that

V ′′
1
2
(p̃1+q̃3−α−β)(y1+y3)+

1
2
(p̃2+q̃4+α+β)(y2+y4)

⊠ Vq̃5y5+···+q̃m+2ym+2

is a trivial K̃0-module, that is,




p̃1 + q̃3 − α− β = 0,

p̃2 + q̃4 + α+ β = 0,

q̃5 = · · · = q̃m+2 = 0.

Hence we have the following.

Lemma 7.3. Λ̃ ∈ D(K̃, K̃0) if and only if

p̃5 = p̃6 = · · · = p̃m = 0,

p̃3 ≥ p̃4 ≥ 0, p̃m+2 ≤ p̃m+1 ≤ 0,

p̃1 + p̃2 + p̃3 + p̃4 + p̃m+1 + p̃m+2 = 0.

If m ≥ 4, then each Λ̃ ∈ D(K̃, K̃0) is expressed as

Λ̃ = p̃1y1 + p̃2y2 + p̃3y3 + p̃4y4 + p̃m+1ym+1 + p̃m+2ym+2,

where p̃i ∈ Z, p̃1 ≥ p̃2, p̃3 ≥ p̃4 ≥ 0 ≥ p̃m+1 ≥ p̃m+2,

p̃1 + p̃2 + p̃3 + p̃4 + p̃m+1 + p̃m+2 = 0.

If m = 3, then each Λ̃ ∈ D(K̃, K̃0) is expressed as

Λ̃ = p̃1y1 + p̃2y2 + p̃3y3 + p̃4y4 + p̃5y5,

where p̃i ∈ Z, p̃1 ≥ p̃2, p̃3 ≥ p̃4 ≥ p̃5, p̃3 ≥ 0, p̃5 ≤ 0,

p̃1 + p̃2 + p̃3 + p̃4 + p̃5 = 0.

If m = 2, then each Λ̃ ∈ D(K̃, K̃0) is expressed as

Λ̃ = p̃1y1 + p̃2y2 + p̃3y3 + p̃4y4,

where p̃i ∈ Z, p̃1 ≥ p̃2, p̃3 ≥ p̃4, p̃1 + p̃2 + p̃3 + p̃4 = 0.
Correspondingly, each Λ̃′ ∈ D(K̃2, K̃0) is expressed as Λ̃′ = p̃1y1 +

p̃2y2 + q̃3y3 + q̃4y4, where p̃1, p̃2, q̃3, q̃4 ∈ Z, p̃1 ≥ p̃2, q̃3 ≥ q̃4, p̃1 + p̃2 +
q̃3+ q̃4 = 0; in other words, p̃1+ p̃2+ p̃3+ p̃4+ p̃m+1+ p̃m+2 = 0 if m ≥ 4,
p̃1 + p̃2 + p̃3 + p̃4 + p̃5 = 0 if m = 3. Each Λ̃′′ ∈ D(K̃1, K̃0) is expressed

as Λ̃′′ = q̃′1y1 + q̃′2y2 + q̃′3y3 + q̃′4y4, where q̃′1, q̃
′
2, q̃

′
3, q̃

′
4 ∈ Z, q̃′1 + q̃′3 = 0,

q̃′2 + q̃′4 = 0, q̃′1 = −α+ p̃1, q̃
′
2 = α+ p̃2 for some α = 0, . . . , p̃1 − p̃2, and

q̃′3 = −β + q̃3, q̃
′
4 = β + q̃4 for some β = 0, . . . , q̃3 − q̃4.
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Moreover, the coefficient of X q̃3−q̃4+1 in

1

X −X−1
(X p̃3−p̃4+1 −X−(p̃3−p̃4+1))

(X p̃m+1−p̃m+2+1 −X−(p̃m+1−p̃m+2+1))

=

p̃3−p̃4∑

i=0

(X(p̃3−p̃4)+(p̃m+1−p̃m+2)−2i+1 −X(p̃3−p̃4)−(p̃m+1−p̃m+2)−2i−1)

is equal to the multiplicity of the K̃2-module with the highest weight
Λ̃′ = Λσ + Λ̃′

τ = p̃1y1 + p̃2y2 + q̃3y3 + q̃4y4 ∈ D(K̃2, K̃0).

7.6. Eigenvalue computation when m = 2. For each Λ̃ = p̃1y1 +
p̃2y2 + p̃3y3 + p̃4y4 ∈ D(K̃, K̃0) and Λ̃′′ = q̃′1y1 + q̃′2y2 + q̃′3y3 + q̃′4y4 ∈
D(K̃1, K̃0) defined as above, the corresponding eigenvalue of −CL is

−cL =− cΛ̃ +
1

2
cΛ̃′′

= p̃21 + p̃22 + p̃23 + p̃24 + (p̃1 − p̃2) + (p̃3 − p̃4)

− 1

2
((q̃′1)

2 + (q̃′2)
2 + (q̃′3)

2 + (q̃′4)
2).

(7.2)

Since

−CL = −1

2
CK/K0

− 1

2
CK/K1

≥ −1

2
CK/K0

,

the first eigenvalue of −CL, −cL ≤ n = 6 implies −cΛ̃ ≤ 12. Notice that

−cΛ̃ = p̃21 + p̃22 + p̃23 + p̃24 + (p̃1 − p̃2) + (p̃3 − p̃4) ≥ 2(p̃22 + p̃24);

we know p̃22+ p̃24 ≤ 6, which follows that the possible choice for p̃2 and p̃4
is |p̃2| = 0, 1 or 2 and |p̃4| = 0, 1 or 2. Taking into account

∑4
i=1 p̃i = 0

and using the eigenvalue formula (7.2), we obtain the following.

Lemma 7.4. Λ̃ = p̃1y1+p̃2y2+p̃3y3+p̃4y4 ∈ D(K̃, K̃0) has eigenvalue
−cL ≤ 6 if and only if (p̃1, p̃2, p̃3, p̃4) is one of
{
(0, 0, 0, 0), (1, 1,−1,−1), (1, 0, 0,−1), (1,−1, 0, 0), (1,−1, 1,−1),

(1, 1, 0,−2), (2, 0,−1,−1), (0,−1, 1, 0), (0, 0, 1,−1),

(0,−2, 1, 1), (−1,−1, 2, 0), (−1,−1, 1, 1)
}
.

Denote Λ̃ = p̃1y1+p̃2y2+p̃3y3+p̃4y4 ∈ D(K̃, K̃0) by Λ̃ = (p̃1, p̃2, p̃3, p̃4).

Suppose that Λ̃ = (1, 1,−1,−1). Then dimC VΛ̃ = 1. By the branch-

ing law of (U(2), U(1)×U(1)), (q̃′1, q̃
′
2, q̃

′
3, q̃

′
4) = (1, 1,−1,−1) ∈ D(K̃1, K̃0).

Then −cΛ̃ = 4, −cΛ̃′′ = 4, −cL = −cΛ̃ + 1
2cΛ̃′′ = 2 < 6. On the other

hand, VΛ̃ = C ⊠C, which is fixed by the ρΛ̃|K̃0
-action. But for a gen-

erator Q of Z4 in K̃[a], ρΛ̃(Q) = −Id on VΛ̃. Hence Λ̃ = (1, 1,−1,−1) 6∈
D(K̃, K̃[a]). Similarly, Λ̃ = (−1,−1, 1, 1) 6∈ D(K̃, K̃[a]).
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Suppose that Λ̃ = (1, 0, 0,−1). Then dimC VΛ̃ = 4. It follows from
the branching law of (U(2), U(1) × U(1)) that (q̃′1, q̃

′
2) = (1, 0) ⊕ (0, 1)

and (q̃′3, q̃
′
4) = (0,−1) or (−1, 0). Then (q̃′1, q̃

′
2, q̃

′
3, q̃

′
4) = (1, 0,−1, 0) or

(0, 1, 0,−1) ∈ D(K̃1, K̃0). Hence −cΛ̃ = 4, −cΛ̃′′ = 2, −cL = −cΛ̃ +
1
2cΛ̃′′ = 3 < 6.
Recall that the complete set of all inequivalent irreducible unitary

representations of SU(2) is given by

D(SU(2)) = {(Vm, ρm) | m ∈ Z,m ≥ 0},
where Vm denotes the complex vector space of complex homogeneous
polynomials of degree m with two variables z0, z1 and the representation
ρm of SU(2) on Vm is defined by (ρm(g)f)(z0, z1) = f((z0, z1)g) for each
g ∈ SU(2). Set

(7.3) v
(m)
k (z0, z1) :=

1√
k!(m− k)!

zm−k
0 zk1 ∈ Vm (k = 0, 1, . . . ,m),

and define the standard Hermitian inner product of Vm invariant under

ρm(SU(2)) such that {v(m)
0 , . . . , v

(m)
m } is a unitary basis of Vm. Then

VΛ̃ = (W ′
1
2
(y1+y2)

⊗ V1)⊠ (W ′
− 1

2
(y1+y2)

⊗ V1).

The representation of K̃0 on v
(1)
i ⊗ v

(1)
j ∈ VΛ̃ (i, j = 0, 1) is given by

ρΛ̃(P )(v
(1)
i ⊗ v

(1)
j )

=

[
ρ1

(
e

√
−1(s−t)

2

e−
√

−1(s−t)
2

)]
(v

(1)
i )

⊗
[
ρ1

(
e

√
−1(s−t)

2

e−
√

−1(s−t)
2

)]
(v

(1)
j )

=e
√
−1(s−t)[1−(i+j)]v

(1)
i ⊗ v

(1)
j .

Then (VΛ̃)K̃0
= spanC{v

(1)
1 ⊗v

(1)
0 , v

(1)
0 ⊗v

(1)
1 }. But for diag(1, 1,−1,−1) ∈

K̃[a] and i, j = 0, 1, ρΛ̃(diag(1, 1,−1,−1))(v
(1)
i ⊗ v

(1)
j ) = −v

(1)
i ⊗ v

(1)
j .

So (VΛ̃)K̃[a]
= {0} and Λ̃ = (1, 0, 0,−1) /∈ D(K̃, K̃[a]). Similarly, Λ̃ =

(0,−1, 1, 0) /∈ D(K̃, K̃[a]).

Suppose that Λ̃ = (1,−1, 0, 0). Then dimC VΛ̃ = 3. It follows from
the branching law of (U(2), U(1) × U(1)) that (q̃′1, q̃

′
2) = (1,−1), (0, 0),

or (−1, 1) and (q̃′3, q̃
′
4) = (0, 0). Then (q̃′1, q̃

′
2, q̃

′
3, q̃

′
4) = (0, 0, 0, 0) ∈

D(K̃, K̃0). Hence −cΛ̃ = 4, −cΛ̃′′ = 0, −cL = −cΛ̃ + 1
2cΛ̃′′ = 4 < 6. On

the other hand, VΛ̃
∼= V2⊠C. The representation of K̃0 on v

(2)
i ⊗w ∈ VΛ̃

is given by

ρΛ̃(P )(v
(2)
i ⊗ w) = e

√
−1(s−t)(1−i)v

(2)
i ⊗ w.
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Then (VΛ̃)K̃0
= spanC{v

(2)
1 ⊗ w}. But for the generator Q ∈ K̃[a],

ρΛ̃(Q)(v
(2)
1 ⊗ w) = −v

(2)
1 ⊗ w.

So (VΛ̃)K̃[a]
= {0} and Λ̃ = (1,−1, 0, 0) /∈ D(K̃, K̃[a]). Similarly, Λ̃ =

(0, 0, 1,−1) /∈ D(K̃, K̃[a]).

Suppose that Λ̃ = (1,−1, 1,−1). Then dimC VΛ̃ = 9. It follows from
the branching laws of (U(2), U(1)×U(1)) that (q̃′1, q̃

′
2) = (1,−1) or (0, 0)

and (q̃′3, q̃
′
4) = (1,−1) or (0, 0). Then (q̃′1, q̃

′
2, q̃

′
3, q̃

′
4) = (1,−1,−1, 1),

(−1, 1, 1,−1), or (0, 0, 0, 0) ∈ D(K̃, K̃0). When (q̃′1, q̃
′
2, q̃

′
3, q̃

′
4) = (0, 0, 0, 0),

−cΛ̃ = 8, −cΛ̃′′ = 0, −cL = −cΛ̃ + 1
2cΛ̃′′ = 8 > 6. When (q̃′1, q̃

′
2, q̃

′
3, q̃

′
4) =

(1,−1,−1, 1) or (−1, 1, 1,−1), −cΛ̃ = 8, −cΛ̃′′ = 4, −cL = −cΛ̃+
1
2cΛ̃′′ =

6. On the other hand, VΛ̃
∼= V2 ⊠ V2. The representation of K̃0 on

v
(2)
i ⊗ v

(2)
j ∈ VΛ̃ (i, j = 0, 1, 2) is given by

ρΛ̃(P )(v
(2)
i ⊗ v

(2)
j )

=

[
ρ2

(
e

√
−1(s−t)

2

e−
√

−1(s−t)
2

)]
(v

(2)
i )

⊗
[
ρ2

(
e

√
−1(s−t)

2

e−
√

−1(s−t)
2

)]
(v

(2)
j )

=e
√
−1(s−t)[2−(i+j)]v

(2)
i ⊗ v

(2)
j .

Hence (VΛ̃)K̃0
= spanC{v

(2)
0 ⊗ v

(2)
2 , v

(2)
1 ⊗ v

(2)
1 , v

(2)
2 ⊗ v

(2)
0 }. Moreover, the

action of the generator Q of Z4 in K̃[a] on v
(2)
i ⊗ v

(2)
j is given by

ρΛ̃(Q)(v
(2)
i ⊗ v

(2)
j ) = (−1)3−iv

(2)
2−i ⊗ v

(2)
2−j .

Therefore, (VΛ̃)K̃[a]
= span{v(2)0 ⊗ v

(2)
2 − v

(2)
2 ⊗ v

(2)
0 , v

(2)
1 ⊗ v

(2)
1 } and Λ̃ =

(1,−1, 1,−1) ∈ D(K̃, K̃[a]). Note that the K̃[a]-fixed vector v
(2)
1 ⊗ v

(2)
1 ∈

V ′
0 , which corresponds eigenvalue 8, and the K̃[a]-fixed vector v

(2)
0 ⊗v

(2)
2 −

v
(2)
2 ⊗ v

(2)
0 ∈ V ′

y1−y2−y3+y4 ⊕ V ′
−y1+y2+y3−y4 , which gives eigenvalue 6.

Suppose that Λ̃ = (2, 0,−1,−1). Then dimC VΛ̃ = 3. It follows from
the branching law of (U(2), U(1) × U(1)) that (q̃′1, q̃

′
2) = (2, 0), (1, 1),

or (0, 2) and (q̃′3, q̃
′
4) = (−1,−1). Then (q̃′1, q̃

′
2, q̃

′
3, q̃

′
4) = (1, 1,−1,−1) ∈

D(K̃, K̃0). Hence −cΛ̃ = 8, −cΛ̃′′ = 4, −cL = −cΛ̃ + 1
2cΛ̃′′ = 6. On the

other hand,

VΛ̃
∼= (V2 ⊗C)⊠C.
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The representation of K̃0 on v
(2)
i ⊗ w ∈ VΛ̃ (i = 0, 1, 2) is given by

ρΛ̃(P )(v
(2)
i ⊗ w)

= e
√
−1(s+t)

[
ρ2

(
e

√
−1(s−t)

2

e−
√

−1(s−t)
2

)]
(v

(2)
i )⊗ e−

√
−1(s+t)w

= e
√
−1(s−t)(1−i)v

(2)
i ⊗ w.

Hence (VΛ̃)K̃0
= spanC{v

(2)
1 ⊗ 1}. Moreover, the action of the generator

Q of Z4 in K̃[a] on v
(2)
i ⊗w is given by ρΛ̃(Q)(v

(2)
i ⊗1) = (−1)1−iv

(2)
2−i⊗1.

Therefore, (VΛ̃)K̃[a]
= span{v(2)1 ⊗1} and Λ̃ = (2, 0,−1,−1) ∈ D(K̃, K̃[a]),

which gives eigenvalue 6. Similarly, Λ̃ = (−1,−1, 2, 0), (1, 1, 0,−2),

(0,−2, 1, 1) ∈ D(K̃, K̃[a]), which give eigenvalue 6 and with multiplicity
1, respectively.

Moreover, we observe that

n(L6) =dimC V(2,0,−1,−1) + dimC V(−1,−1,2,0) + dimC V(1,1,0,−2)

+ dimC V(0,−2,1,1) + dimC V(1,−1,1,−1) = 3 + 3 + 3 + 3 + 9

=21 = dimSO(8)− dimS(U(2) × U(2)) = nhk(L
6).

Therefore, we obtain that L6 = G(S(U(2)×U(2))
S(U(1)×U(1)) ) ⊂ Q6(C) is strictly

Hamiltonian stable.

7.7. Eigenvalue computation when m = 3. For each Λ̃ = p̃1y1 +
p̃2y2 + p̃3y3 + p̃4y4 + p̃5y5 ∈ D(K̃, K̃0), Λ̃

′ = p̃1y1 + p̃2y2 + q̃3y3 + q̃4y4 ∈
D(K̃2, K̃0), and Λ̃′′ = q̃′1y1+ q̃′2y2+ q̃′3y3+ q̃′4y4 ∈ D(K̃1, K̃0) given as in
Subsection 7.5, the corresponding eigenvalue of −CL is

−cL =− 2cΛ̃ + cΛ̃′ +
1

2
cΛ̃′′

= p̃21 + p̃22 + 2(p̃23 + p̃24 + p̃25) + (p̃1 − p̃2) + 4(p̃3 − p̃5)

− (q̃23 + q̃24)− (q̃3 − q̃4)−
1

2
((q̃′1)

2 + (q̃′2)
2 + (q̃′3)

2 + (q̃′4)
2).

(7.4)

Since −CL ≥ −1
2CK/K0

, the condition −cL ≤ n = 10 implies that −cΛ̃ ≤
20. Notice that

−cΛ̃ = p̃21 + p̃22 + p̃23 + p̃24 + p̃25 + (p̃1 − p̃2) + 2(p̃3 − p̃5) ≥ 2p̃22 + 3p̃25,

and we have 



2p̃22 + 3p̃25 ≤ 20,

p̃i ∈ Z,
∑5

i=1 p̃
2
i ≤ 20,∑5

i=1 q̃i = 0, p̃1 ≥ p̃2, p̃3 ≥ p̃4 ≥ p̃5.

Then by the similar calculations we obtain the following.
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Lemma 7.5. Λ̃ = p̃1y1 + p̃2y2 + p̃3y3 + p̃4y4 + p̃5y5 ∈ D(K̃, K̃0) has
eigenvalue −cL ≤ 10 if and only if (p̃1, p̃2, p̃3, p̃4, p̃5) is one of

{
(0, 0, 0, 0, 0), (1,−1, 1, 0,−1), (2, 0, 0,−1,−1), (0,−2, 1, 1, 0),

(1, 1, 0, 0,−2), (−1,−1, 2, 0, 0), (1,−1, 0, 0, 0), (1, 0, 0, 0,−1),

(0,−1, 1, 0, 0), (1, 1, 0,−1,−1), (−1,−1, 1, 1, 0), (0, 0, 1, 0,−1)
}
.

Suppose that Λ̃ = (1,−1, 1, 0,−1). Then dimC VΛ̃ = 24. It follows
from Lemma 7.2 that (q̃3, q̃4, q̃5) = (1,−1, 0) or (0, 0, 0). When
(q̃3, q̃4, q̃5) = (0, 0, 0), by the branching law of (U(2), U(1) × U(1)),
(q̃′1, q̃

′
2, q̃

′
3, q̃

′
4, q̃

′
5) = (0, 0, 0, 0, 0). Hence −cL = −2cΛ̃+cΛ̃′ +

1
2cΛ̃′′ = 16 >

10. When (q̃3, q̃4, q̃5) = (1,−1, 0), by the branching law of (U(2), U(1)×
U(1)), (q̃′1, q̃

′
2, q̃

′
3, q̃

′
4, q̃

′
5) = (1,−1,−1, 1, 0), (0, 0, 0, 0, 0), or

(−1, 1, 1,−1, 0) ∈ D(K̃, K̃0), respectively. Hence −cL = −2cΛ̃ + cΛ̃′ +
1
2cΛ̃′′ = 10, 12, or 10, respectively. On the other hand, now

(ṼΛ̃)K̃0
⊂ (Wy1−y2 ⊠Wy3−y4 ⊠W0)⊕ (Wy1−y2 ⊠W0 ⊠W0)

∼= (V2 ⊠ V2 ⊠C)⊕ (V2 ⊠C⊠C),

where the latter is a K̃2-module. The representation ρΛ̃ of K̃0 on ui ⊗
vj ⊗ w ∈ V2 ⊠ V2 ⊠C (i, j = 0, 1, 2) is given by

ρΛ̃(P )(v
(2)
i ⊗ v

(2)
j ⊗ w)

= ρy1−y2

(
e
√
−1s

e
√
−1t

)
(v

(2)
i )⊗ ρy3−y4

(
e
√
−1s

e
√
−1t

)
(v

(2)
j )⊗w

= e
√
−1(s−t)(2−i−j)v

(2)
i ⊗ v

(2)
j ⊗ w.

The representation ρΛ̃ of K̃0 on v
(2)
i ⊗ v ⊗ w ∈ V2 ⊠C⊠C (i = 0, 1, 2)

is given by

ρΛ̃(P )(v
(2)
i ⊗ v ⊗ w) =ρy1−y2

(
e
√
−1s

e
√
−1t

)
(v

(2)
i )⊗ v ⊗ w

=e
√
−1(s−t)(1−i)v

(2)
i ⊗ v ⊗ w.

Thus (ṼΛ̃)K̃0
= spanC{v

(2)
2 ⊗v

(2)
0 ⊗w, v

(2)
0 ⊗v

(2)
2 ⊗w, v

(2)
1 ⊗v

(2)
1 ⊗w, v

(2)
1 ⊗

v ⊗w}. Moreover, the action of the generator Q of Z4 in K̃[a] on v
(2)
i ⊗

v
(2)
2−i ⊗ w is given by

ρΛ̃(Q)(v
(2)
i ⊗ v

(2)
2−i ⊗ w) = ρ2

(
0 1
−1 0

)
(v

(2)
i )

⊗ ρ2

(
0

√
−1√

−1 0

)
(v

(2)
2−i)⊗ w

= (−1)1−iu2−i ⊗ v
(2)
i ⊗ w,
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and the action on v
(2)
i ⊗ v ⊗ w is given by

ρΛ̃(Q)(v
(2)
i ⊗ v ⊗ w) = ρ2

(
0 1
−1 0

)
(v

(2)
i )⊗ v ⊗ w

= (−1)2−iv
(2)
2−i ⊗ v ⊗ w.

Therefore, (ṼΛ̃)K̃[a]
= spanC{v

(2)
2 ⊗v

(2)
0 ⊗w−v

(2)
0 ⊗v

(2)
2 ⊗w, v

(2)
1 ⊗v

(2)
1 ⊗

w} and Λ̃ = (1,−1, 1, 0,−1) ∈ D(K̃, K̃[a]). Notice that the K̃[a]-fixed

vector v
(2)
1 ⊗ v

(2)
1 ⊗ w ∈ VΛ̃′′ , which corresponds eigenvalue 12, where

Λ̃′′ = 0. And the K̃[a]-fixed vector v
(2)
2 ⊗ v

(2)
0 ⊗ w − v

(2)
0 ⊗ v

(2)
2 ⊗ w ∈

VΛ̃′′
1
⊕ VΛ̃′′

2
, which gives eigenvalue 10, where Λ̃′′

1 = (1,−1,−1, 1, 0) and

Λ̃′′
2 = (−1, 1, 1,−1, 0).

Suppose that Λ̃ = (2, 0, 0,−1,−1). Then dimC VΛ̃ = 9. It follows from
the branching law of (U(3), U(2) × U(1)) that (q̃3, q̃4, q̃5) = (0,−1,−1)
or (−1,−1, 0). When (q̃3, q̃4, q̃5) = (−1,−1, 0), by the branching law of
(U(2), U(1) × U(1)), (q̃′1, q̃

′
2, q̃

′
3, q̃

′
4, q̃

′
5) = (1, 1,−1,−1, 0). Hence −cL =

−2cΛ̃ + cΛ̃′ +
1
2cΛ̃′′ = 10. On the other hand,

(ṼΛ̃)K̃0
⊂ (W2y1 ⊠W−(y3+y4) ⊠W0) ∼= V2 ⊠C⊠C,

and the representation ρΛ̃ of K̃0 on v
(2)
i ⊗v⊗w ∈ V2⊠C⊠C (i = 0, 1, 2)

is given by

ρΛ̃(P )(v
(2)
i ⊗ v ⊗ w)

=ρ2y1

(
e
√
−1s

e
√
−1t

)
(v

(2)
i )⊗ ρ−y3−y4

(
e
√
−1s

e
√
−1t

)
(v)⊗ w

=e
√
−1(s−t)(1−i)v

(2)
i ⊗ v ⊗ w.

Thus (ṼΛ̃)K̃0
= spanC{v

(2)
1 ⊗ v⊗w}. Moreover, the action of the gener-

ator Q of Z4 in K̃[a] on v
(2)
i ⊗ v ⊗ w is given by

ρΛ̃(Q)(v
(2)
i ⊗ v ⊗ w) = ρ2y1

(
0 1
−1 0

)
(v

(2)
i )

⊗ ρ−(y3+y4)

(
0 −1
−1 0

)
(v) ⊗ w

= (−1)1+i v
(2)
2−i ⊗ v ⊗ w.

Therefore, (ṼΛ̃)K̃[a]
= spanC{v

(2)
1 ⊗v⊗w}, where dimC(ṼΛ̃)K̃[a]

= 1 and

Λ̃ = (2, 0, 0,−1,−1) ∈ D(K̃, K̃[a]), which gives eigenvalue 10. Similarly,

Λ̃ = (0,−2, 1, 1, 0) ∈ D(K̃, K̃[a]), which gives eigenvalue 10 and with
multiplicity 1 and dimension 9.
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Suppose that Λ̃ = (1, 1, 0, 0,−2). Then dimC VΛ̃ = 6. It follows from
Lemma 7.2 that (q̃3, q̃4, q̃5) = (0, 0,−2), (0,−1,−1), or (0,−2, 0). When
(q̃3, q̃4, q̃5) = (0,−2, 0), by the branching law of (U(2), U(1) × U(1)),
(q̃′1, q̃

′
2, q̃

′
3, q̃

′
4, q̃

′
5) = (1, 1,−1,−1, 0). Hence −cL = −2cΛ̃ + cΛ̃′ +

1
2cΛ̃′′ =

10. On the other hand,

(ṼΛ̃)K̃0
⊂ W0 ⊠W−2y4 ⊠W0

∼= C⊠ V2 ⊠C,

and the representation ρΛ̃ of K̃0 on u⊗v
(2)
i ⊗w ∈ C⊠V2⊠C (i = 0, 1, 2)

is given by

ρΛ̃(P )(u⊗ v
(2)
i ⊗ w)

=ρy1+y2

(
e
√
−1s

e
√
−1t

)
(u)⊗ ρ−2y4

(
e
√
−1s

e
√
−1t

)
(v

(2)
i )⊗w

=e
√
−1(s−t)(1−i)u⊗ v

(2)
i ⊗ w.

Thus (ṼΛ̃)K̃0
= spanC{u ⊗ v

(2)
1 ⊗ w}. Moreover, the action of the gen-

erator Q of Z4 in K̃[a] on u⊗ v
(2)
i ⊗ w is given by

ρΛ̃(Q)(u⊗ v
(2)
i ⊗ w)

=ρy1+y2

(
0 1
−1 0

)
(u)⊗ ρ−2y4

(
0 −1
−1 0

)
(v

(2)
i )⊗ w = u⊗ v

(2)
2−i ⊗ w.

Therefore, (ṼΛ̃)K̃[a]
= spanC{u ⊗ v

(2)
1 ⊗ w}, where dimC(ṼΛ̃)K̃[a]

= 1

and Λ̃ = (1, 1, 0, 0,−2) ∈ D(K̃, K̃[a]), which gives eigenvalue 10. Sim-

ilarly, Λ̃ = (−1,−1, 2, 0, 0) ∈ D(K̃, K̃[a]), gives eigenvalue 10 and has
multiplicity 1 and dimension 6.

Suppose that Λ̃ = (1,−1, 0, 0, 0). Then (q̃1, q̃2, q̃3, q̃4, q̃5) = (1,−1, 0, 0, 0).
It follows from the branching law of (U(2), U(1)×U(1)), (q̃′1, q̃

′
2, q̃

′
3, q̃

′
4, q̃

′
5) =

(0, 0, 0, 0, 0) ∈ D(K̃1, K̃0). Hence −cL = −2cΛ̃ + cΛ̃′ +
1
2cΛ̃′′ = 4 < 10.

On the other hand, ṼΛ̃ = Wy1−y2⊠W0
∼= V2⊠C, and the representation

ρΛ̃ of K̃0 on ui ⊗w ∈ V2 ⊠C (i = 0, 1, 2) is given by

ρΛ̃(P )(ui ⊗ w) = ρ2

(
e
√
−1 s−t

2

e−
√
−1 s−t

2

)
(ui)⊗ w

= e
√
−1(s−t)(1−i)ui ⊗ w.

Thus (ṼΛ̃)K̃0
= spanC{u1⊗w}. Moreover, the action of the generator Q

of Z4 in K̃[a] on u1⊗w is given by ρΛ̃(Q)(u1⊗w) = −u1⊗w. Therefore,

(ṼΛ̃)K̃[a]
= {0} and Λ̃ = (1,−1, 0, 0, 0) 6∈ D(K̃, K̃[a]).

Suppose that Λ̃ = (1, 0, 0, 0,−1). It follows from Lemma 7.2 that
(q̃3, q̃4, q̃5) = (0, 0,−1) or (0,−1, 0). When (q̃3, q̃4, q̃5) = (0,−1, 0), by
the branching law of (U(2), U(1) × U(1)), (q̃′1, q̃

′
2, q̃

′
3, q̃

′
4, q̃

′
5) =
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(1, 0,−1, 0, 0) or (0, 1, 0,−1, 0) ∈ D(K̃1, K̃0). Hence, −cL = −2cΛ̃+cΛ̃′+
1
2cΛ̃′′ = 5, 5 < 10. On the other hand, (ṼΛ̃)K̃0

⊂ Wy1 ⊠ W−y4 ⊠ W0
∼=

V1 ⊠ V1 ⊠C, where the latter is the K̃2 = U(2)× U(2)× U(1)-module.

The representation ρΛ̃ of K̃0 on v
(1)
i ⊗v

(1)
j ⊗w ∈ V1⊠V1⊠C (i, j = 0, 1)

is given by

ρΛ̃(P )(v
(1)
i ⊗ v

(1)
j ⊗ w) = e

√
−1(s−t)(1−i−j) v

(1)
i ⊗ v

(1)
j ⊗ w.

Thus (ṼΛ̃)K̃0
= spanC{v

(1)
1 ⊗ v

(1)
0 ⊗ w, u0 ⊗ v

(1)
1 ⊗ w}. Moreover, the

action of the generator Q of Z4 in K̃[a] on v
(1)
i ⊗ v

(1)
1−i ⊗ w (i = 0, 1) is

given by

ρΛ̃(Q)(v
(1)
i ⊗ v

(1)
1−i ⊗ w) = (−1)1−i v

(1)
1−i ⊗ v

(1)
i ⊗ w.

Therefore, (ṼΛ̃)K̃[a]
= {0} and Λ̃ = (1, 0, 0, 0,−1) 6∈ D(K̃, K̃[a]). Simi-

larly, Λ̃ = (0,−1, 1, 0, 0) 6∈ D(K̃, K̃[a]).

Suppose that Λ̃ = (1, 1, 0,−1,−1). It follows from Lemma 7.2 that
(q̃3, q̃4, q̃5) = (0,−1,−1) or (−1,−1, 0). For the element (p̃1, p̃2, q̃3, q̃4, q̃5) =

(1, 1,−1,−1, 0) in D(K̃2, K̃0), by the branching law of (U(2), U(1) ×
U(1)), (q̃′1, q̃

′
2, q̃

′
3, q̃

′
4) = (1, 1,−1,−1) ∈ D(K̃1, K̃0). Hence−cL = −2cΛ̃+

cΛ̃′ +
1
2cΛ̃′′ = 6 < 10. On the other hand, (ṼΛ̃)K̃0

⊂ Wy1+y2 ⊠W−y3−y4 ⊠

W0
∼= C ⊠ C ⊠ C, where the latter is the K̃2 = U(2) × U(2) × U(1)-

module. The representation ρΛ̃ of K̃0 on u⊗ v⊗w ∈ C⊠C⊠C is given
by

ρΛ̃(P )(u⊗ v ⊗ w) = e
√
−1(s+t)u⊗ e−

√
−1(s+t)v ⊗w = u⊗ v ⊗ w.

It follows that (ṼΛ̃)K̃0
= spanC{1⊗ 1⊗ 1}. Moreover, the action of the

generator Q of Z4 in K̃[a] on u⊗ v ⊗ w is given by

ρΛ̃(Q)(u⊗ v ⊗ w) = −u⊗ v ⊗ w.

Therefore (ṼΛ̃)K̃[a]
= {0} and Λ̃ = (1, 1, 0,−1,−1) 6∈ D(K̃, K̃0). Simi-

larly, Λ̃ = (−1,−1, 1, 1, 0) 6∈ D(K̃, K̃0).

Suppose that Λ̃ = (0, 0, 1, 0,−1). It follows from the branching law
of (U(3), U(2)×U(1)) that (q̃3, q̃4, q̃5) = (1, 0,−1), (0, 0, 0), (1,−1, 0) or

(0,−1, 1). For the element (p̃1, p̃2, q̃3, q̃4, q̃5) = (0, 0, 0, 0, 0) inD(K̃2, K̃0),
by the branching law of (U(2), U(1)×U(1)), (q̃′1, q̃

′
2, q̃

′
3, q̃

′
4) = (0, 0, 0, 0) ∈

D(K̃1, K̃0). Hence −cL = −2cΛ̃+ cΛ̃′ +
1
2cΛ̃′′ = 12 > 10. For the element

(p̃1, p̃2, q̃3, q̃4, q̃5) = (0, 0, 1,−1, 0) in D(K̃2, K̃0), by the branching laws

of (U(2), U(1) × U(1)), (q̃′1, q̃
′
2, q̃

′
3, q̃

′
4) = (0, 0, 0, 0) ∈ D(K̃1, K̃0). Hence

−cL = −2cΛ̃ + cΛ̃′ +
1
2cΛ̃′′ = 8 < 10. On the other hand, (ṼΛ̃)K̃0

⊂
Ṽ ′
(0,0,0,0,0) ⊕ Ṽ ′

(0,0,1,−1,0). We are concerned with only Ṽ ′
(0,0,1,−1,0) since it

corresponds to the smaller eigenvalue 8. Note that Ṽ ′
(0,0,1,−1,0) = W0 ⊠
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Wy3−y4 ⊠W0
∼= C⊠ V2 ⊠C, which is a K̃2-module. The representation

ρΛ̃ of K̃0 on u⊗ v
(2)
i ⊗ w ∈ Ṽ ′

(0,0,1,−1,0) (i = 0, 1, 2) is given by

ρΛ̃(P )(u⊗ v
(2)
i ⊗ w) = e

√
−1(s−t)(1−i)u⊗ v

(2)
i ⊗ w.

Thus (ṼΛ̃)K̃0
= spanC{1⊗ v1 ⊗ 1} ⊕ Ṽ ′

(0,0,0,0,0). Moreover, the action of

the generator Q of Z4 in K̃[a] on u⊗ v
(2)
1 ⊗ w is given by

ρΛ̃(Q)(u⊗ v
(2)
1 ⊗ w)

=u⊗ ρ2(

(
0

√
−1√

−1 0

)
)v1 ⊗ w = −u⊗ v

(2)
1 ⊗ w.

Therefore, 1⊗ v
(2)
1 ⊗ 1 6∈ (ṼΛ̃)K̃[a]

and (ṼΛ̃)K̃[a]
= Ṽ ′

(0,0,0,0,0), which gives

a larger eigenvalue 10.
Moreover,

n(L10) =dimC V(1,−1,1,0,−1) + dimC V(2,0,0,−1,−1) + dimC V(0,−2,1,1,0)

+ dimC V(1,1,0,0,−2) + dimC V(−1,−1,2,0,0)

=24 + 9 + 9 + 6 + 6 = 54

=dimSO(12) − dimS(U(2) × U(3)) = nhk(L
10).

Therefore we obtain that L10 = G( S(U(2)×U(3))
S(U(1)×U(1)×U(1)) ) ⊂ Q10(C) is strictly

Hamiltonian stable.

7.8. Eigenvalue computation when m ≥ 4. For each Λ̃ = p̃1y1 +
p̃2y2 + p̃3y3 + p̃4y4 + p̃m+1ym+1 + p̃m+2ym+2 ∈ D(K̃, K̃0), Λ̃

′ = p̃1y1 +

p̃2y2 + q̃3y3 + q̃4y4 ∈ D(K̃2, K̃0), and Λ̃′′ = q̃′1y1 + q̃′2y2 + q̃′3y3 + q̃′4y4 ∈
D(K̃1, K̃0) given as in Section 7.5, the corresponding eigenvalue of −CL
is given by

−cL =− 2cΛ̃ + cΛ̃′ +
1

2
cΛ̃′′

= p̃21 + p̃22 + 2(p̃23 + p̃24 + p̃2m+1 + p̃2m+2)

+ (p̃1 − p̃2) + 2(m− 1)(p̃3 − p̃m+2) + 2(m− 3)(p̃4 − p̃m+1)

− (q̃23 + q̃24)− (q̃3 − q̃4)−
1

2
((q̃′1)

2 + (q̃′2)
2 + (q̃′3)

2 + (q̃′4)
2).

In case Λ̃ = (p̃1, p̃2, p̃3, p̃4, p̃m+1, p̃m+2) = (p̃1, p̃2, 0, 0, 0, 0) ∈ D(K̃, K̃0),
since p̃3 = p̃4 = p̃m+1 = p̃m+2 = 0, we have q̃3 = q̃4 = q̃5 = · · · =
q̃m+2 = 0 and thus q̃′3 = q̃′4 = 0. Since p̃1+p̃2 = 0, by the branching law of
(U(2), U(1)×U(1)) we have q̃′1 = −α+p̃1, q̃

′
2 = α+p̃2 = α−p̃1 = −q̃′1 for

some α = 0, 1 . . . , p̃1− p̃2 = 2p̃1. Λ̃ ∈ D(K̃, K̃0) implies that q̃′1 = q̃′2 = 0
since q̃′1 + q̃′3 = 0 and q̃′2 + q̃′4 = 0. Then −cL = 2p̃1(p̃1 + 1).
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Now Λ̃ = p̃1y1+p̃2y2 = 2p̃1
1
2(y1−y2). Set ℓ := 2p̃1. Then ṼΛ̃

∼= Vℓ⊠C.

The representation ρΛ̃ of K̃0 on v
(ℓ)
i ⊗ w ∈ ṼΛ̃ is given by

ρΛ̃(P )(v
(ℓ)
i ⊗w) =

[
ρℓ

(
e
√
−1(s−t)/2 0

0 e−
√
−1(s−t)/2

)]
(v

(ℓ)
i )⊗w

=e
√

−1(s−t)
2

(ℓ−2i) v
(ℓ)
i ⊗ w.

Hence (ṼΛ̃)K̃0
= spanC{v

(ℓ)
p̃1

⊗w}. On the other hand, the action of the

generator Q of Z4 in K̃[a] is given by

ρΛ̃(Q)(v
(ℓ)
p̃1

⊗ w) =

[
ρℓ

(
0 1
−1 0

)]
(v

(ℓ)
p̃1

)⊗ w = (−1)p̃1 v
(ℓ)
p̃1

⊗ w.

Therefore, (ṼΛ̃)K̃[a]
= spanC{v

(ℓ)
p̃1

⊗ w} for p̃1 is even. As m ≥ 4, for

every even number p̃1 ≥ 2 such that 12 ≤ 2p̃1(p̃1 + 1) < 4m − 2,

Λ̃ = p̃1(y1 − y2) ∈ D(K̃, K̃[a]) has eigenvalue 12 ≤ −cL = 2p̃1(p̃1 + 1) <

4m−2. This means that L4m−2 ⊂ Q4m−2(C) is NOT Hamiltonian stable
for m ≥ 4.

From these results we conclude the following.

Theorem 7.1. The Gauss image L4m−2 = S(U(2)×U(m))
S(U(1)×U(1)×U(m−2))·Z4

⊂
Q4m−2(C) (m ≥ 2) is not Hamiltonian stable if and only if m ≥ 4. If
m = 2 or 3, it is strictly Hamiltonian stable.

Remark. The index i(L4m−2) goes to ∞ as m → ∞.

8. The case (U,K) = (Sp(m+ 2), Sp(2) × Sp(m)) (m ≥ 2)

In this case, K = Sp(2)× Sp(m) ⊂ U = Sp(m+2), (U,K) is of type
B2 for m = 2 and type BC2 for m ≥ 3. Let u = k+ p be the canonical
decomposition of u and a be a maximal abelian subspace of p, where

u =sp(m+ 2)

=
{(

A B
−B̄ Ā

)
| A ∈ u(m+ 2), B ∈ M(m+ 2,C), Bt = B

}

⊂ u(2m+ 4),

k = sp(2) + sp(m)

=

{



A11 0 B11 0
0 A22 0 B22

−B̄11 0 Ā11 0
0 −B̄22 0 Ā22




| A11 ∈ u(2), B11 ∈ M(2,C), Bt
11 = B11,

A22 ∈ u(m), B22 ∈ M(m,C), Bt
22 = B22

}
,
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p =

{



0 A12 0 B12

−Āt
12 0 Bt

12 0
0 −B̄12 0 Ā12

−B̄t
11 0 −At

12 0




| A12 ∈ M(2,m;C), B12 ∈ M(2,m;C)

}
,

a =

{



0 H12 0 0
−H̄t

12 0 0 0
0 0 0 H̄12

0 0 −Ht
12 0




| H12 =

(
ξ1 0 0 · · · 0
0 ξ2 0 · · · 0

)
, ξ1, ξ2 ∈ R

}
.

Then the centralizer K0 of a in K is given as follows:

K0 =Sp(1)× Sp(1)× Sp(m− 2)

=

{




a1 0 b1 0
0 a2 0 b2

a1 0 b1 0
0 a2 0 b2

A11 A12

−b̄1 0 ā1 0
0 −b̄2 0 ā2

−b̄1 0 ā1 0
0 −b̄2 0 ā2

A21 A22




|

(
a1 b1
−b̄1 ā1

)
,

(
a2 b2
−b̄2 ā2

)
∈ Sp(1) = SU(2),

(
A11 A12

A21 A22

)

∈ Sp(m− 2)

}
.

Moreover,

K[a] = K0 ∪ (Q ·K0) ∪ (Q2 ·K0) ∪ (Q3 ·K0),

where

D =




0 1
1 0

0 1
−1 0

Im−2




and Q :=

(
D 0
0 D

)
.

Thus the deck transformation group of the covering map G : N8m−2 →
G(N8m−2) (m ≥ 2) is equal to K[a]/K0

∼= Z4.
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8.1. Description of the Casimir operator.

Denote 〈X,Y 〉u := −1
2trXY for each X,Y ∈ sp(m+ 2) ⊂ u(2m+ 4).

Then the square length of each restricted root relative to the above inner
product 〈 , 〉u, is given by

‖γ‖2u =

{
1 or 2, m = 2,
1
2 , 1 or 2, m ≥ 3.

Hence the Casimir operator CL of L, with respect to the induced metric
from gstdQ8m−2(C) can be expressed as follows:

(8.1) CL =

{
CK/K0

− 1
2 CK1/K0

, m = 2,

2 CK/K0
− CK2/K0

− 1
2 CK1/K0

, m ≥ 3,

where CK/K0
, CK2/K0

, and CK1/K0
denote the Casimir operator of K/K0,

K2/K0, and K1/K0 relative to 〈 , 〉u|k, 〈 , 〉u|k2 , and 〈 , 〉u|k1 , respec-
tively.

8.2. Descriptions of D(Sp(m)) and D(Sp(2) × Sp(m)).
Let G = Sp(m) and K = Sp(2)×Sp(m− 2) in this subsection. Their

Lie algebras are g and k, respectively.

t = {ξ =
√
−1diag(ξ1, . . . , ξm,−ξ1, . . . ,−ξm) | ξ1, . . . , ξm ∈ R}

is a maximal abelian subalgebra in both g and k. Let yi : ξ 7→ ξi be
a linear form on t. Then the fundamental root system of g relative
to t is given by {α1 = y1 − y2, . . . , αm−1 = ym−1 − ym, αm = 2ym},
and the fundamental root system of k relative to t can be given by
{α′ = y1−y2, α

′ = 2y2, α
′
3 = y3−y4, . . . , α

′
m−1 = ym−1−ym, α

′
m = 2ym}.

Thus each Λ ∈ D(G) for G = Sp(m) relative to t is uniquely expressed as
Λ = p1y1+ · · ·+pmym with p1, . . . , pm ∈ Z and p1 ≥ p2 ≥ · · · ≥ pm ≥ 0.
And also each Λ ∈ D(K) for K = Sp(2) × Sp(m − 2) relative to t is
uniquely expressed as Λ′ = q1y1 + · · · + qmym with q1, . . . , qm ∈ Z and
q1 ≥ q2 ≥ 0, q3 ≥ · · · ≥ qm ≥ 0.

8.3. Branching law of (Sp(2), Sp(1) × Sp(1)).

Lemma 8.1 (Branching law of (Sp(2), Sp(1)×Sp(1)) [23, 49]). Let
VΛ be an irreducible Sp(2)-module with the highest weight Λ = p1y1 +
p2y2 ∈ D(Sp(2)), where p1, p2 ∈ Z and p1 ≥ p2 ≥ 0. Then VΛ contains
an irreducible Sp(1) × Sp(1)-module VΛ′ with the highest weight Λ′ =
q1y1 + q2y2 ∈ D(Sp(1) × Sp(1)), where q1, q2 ∈ Z and q1 ≥ 0, q2 ≥ 0, if
and only if

(i) p1 ≥ q2 ≥ 0, and

(ii) in the finite power series expansion in X of
∏1

i=0(X
ri+1−X−(ri+1))
X−X−1 ,

where ri(i = 0, 1) are defined as

r0 := p1 −max(p2, q2), r1 := min(p2, q2),

the coefficient of Xq1+1 does not vanish.
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Here that coefficient is equal to the multiplicity of a Sp(1)×Sp(1)-module
VΛ′ in VΛ.

8.4. Descriptions of D(K,K0) and D(K1,K0) when m = 2.
For each Λ = p1y1 + p2y2 + p3y3 + p4y4 ∈ D(K) = D(Sp(2)× Sp(2))

with p1, . . . , p4 ∈ Z and p1 ≥ p2 ≥ 0, p3 ≥ p4 ≥ 0, we know that
p1y1+p2y2 ∈ D(Sp(2)), p3y3+p4y4 ∈ D(Sp(2)) and VΛ = Wp1y1+p2y2 ⊠

Wp3y3+p4y4 . By Lemma 8.1, Wp1y1+p2y2 and Wp3y3+p4y4 can be decom-
posed into irreducible Sp(1)× Sp(1)-modules as

Wp1y1+p2y2 =
⊕

q1,q2

W ′
q1y1+q2y2 , Wp3y3+p4y4 =

⊕

q3,q4

W ′
q3y3+q4y4 ,

where q1, q2 and q3, q4 vary as in Lemma 8.1. Thus we have a decomposi-
tion of VΛ into the direct sum of irreducible Sp(1)×Sp(1)×Sp(1)×Sp(1)-
modules:

VΛ =
⊕

q1,q2

⊕

q3,q4

(W ′
q1y1+q2y2 ⊠W ′

q3y3+q4y4).

Further, by the Clebsch–Gordan formula it can be decomposed into the
sum of irreducible Sp(1)× Sp(1)-modules as

VΛ =
⊕

q1,q2

⊕

q3,q4

(
q3⊕

i=1

Uq1+q3−2i

)
⊠




q4⊕

j=0

Uq2+q4−2j


 .

Here we assume that q1 ≥ q3 ≥ 0 and q2 ≥ q4 ≥ 0. Hence we have the
following.

Lemma 8.2. Λ ∈ D(K,K0) if and only if there exist i, j ∈ Z with
0 ≤ i ≤ q3 and 0 ≤ j ≤ q4 such that Uq1+q3−2i ⊠ Uq2+q4−2j is a trivial
Sp(1)× Sp(1)-module. Then it must be that (q1, q2) = (q3, q4).

8.5. Eigenvalue computation when m = 2. For Λ = p1y1 + p2y2 +
p3y3+p4y4 ∈ D(K,K0) and Λ′ = q1y1+ q2y2+ q3y3+ q4y4 ∈ D(K1,K0)
with q1 = q3, q2 = q4 as in Lemma 8.2, the corresponding eigenvalue of
−CL is

−cL = − cΛ +
1

2
cΛ′

=
( 4∑

i=1

p2i + 4p1 + 2p2 + 4p3 + 2p4

)
−
(
q21 + q22 + 2q1 + 2q2

)
.

(8.2)

Denote Λ = p1y1+p2y2+p3y3+p4y4 ∈ D(K,K0) by Λ = (p1, p2, p3, p4).
Since −CL ≥ −1

2CK/K0
, the eigenvalue of −CL, −cL ≤ n = 14 implies

−cΛ ≤ 28. Notice that

−cΛ =

4∑

i=1

p2i + 4p1 + 2p2 + 4p3 + 2p4 ≥ 2(p22 + p24) + 6(p2 + p4),
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we have 



p22 + p24 + 3(p2 + p4) ≤ 14,

p̃i ∈ Z,
∑4

i=1 p
2
i ≤ 28,

p1 ≥ p2 ≥ 0, p3 ≥ p4 ≥ 0.

Then by the similar calculations using the eigenvalue formula (8.2), we
obtain the following.

Lemma 8.3. Λ = p1y1+p2y2+p3y3+p4y4 ∈ D(K,K0) has eigenvalue
−cL ≤ 14 if and only if (p1, p2, p3, p4) is one of

{ (0, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1), (1, 0, 1, 0), (1, 1, 1, 1),
(1, 1, 2, 0), (2, 0, 1, 1) }.

Suppose that Λ = (1, 1, 0, 0). Then dimCVΛ = 5. It follows from
Lemma 8.1 that (q1, q2) = (0, 0) or (1, 1) and (q3, q4) = (0, 0). Then
(q1, q2, q3, q4) = (0, 0, 0, 0) ∈ D(K1,K0). Hence −cΛ = 8, −cΛ′ = 0,
−cL = −cΛ + 1

2cΛ′ = 8 < 14. On the other hand, there is a dou-
ble covering π : Sp(2) → SO(5), and π(Sp(1) × Sp(1)) = SO(4).
Let λ5 denote the standard representation of SO(5), and let 1 de-
note the trivial representation of SO(5). Then the complex represen-
tation of K = Sp(2) × Sp(2) with the highest weight (1, 1, 0, 0) is
(λ5 ⊗ 1) ⊗C and VΛ = C5. It is easy to see that (VΛ)K0 = Ce1, where
e1 = (1, 0, 0, 0, 0)t ∈ C5. However, for

a =




0 1
1 0

0 1
−1 0

0 1
1 0

0 1
−1 0




∈ K[a] ⊂ K, a 6∈ K0,

π(a) = diag(−1, 1,−1,−1,−1) 6∈ SO(4) and π(a)e1 = −e1 6= e1.
Therefore, (VΛ)K[a]

= {0} and Λ = (1, 1, 0, 0) 6∈ D(K,K[a]). Similarly,

Λ = (0, 0, 1, 1) 6∈ D(K,K[a]).
Suppose that Λ = (1, 0, 1, 0). Then dimCVΛ = 16. The irreducible rep-

resentation with the highest weight Λ is just the complexified isotropy
representation Adp(K)C. Hence, Λ 6∈ D(K,K[a]).

Suppose that Λ = (1, 1, 1, 1). Then dimCVΛ = 25. By Lemma 8.1,
(q1, q2) = (1, 1) or (0, 0) and (q3, q4) = (1, 1) or (0, 0). Then
(q1, q2, q3, q4) = (1, 1, 1, 1) or (0, 0, 0, 0) ∈ D(K1,K0). If (q1, q2, q3, q4) =
(1, 1, 1, 1), then −cL = 10 < 14. If (q1, q2, q3, q4) = (0, 0, 0, 0), then
−cL = 16 > 14. On the other hand, V(1,1,1,1) is explicitly given as

V(1,1,1,1) = C5
⊠C5 ∼= M(5,C).
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There are doubly covering homomorphisms

π : K = Sp(2)× Sp(2) −→ SO(5)× SO(5),

π|K1 : K1 = Sp(1)× Sp(1)× Sp(1)× Sp(1) −→ SO(4)× SO(4),

π|K0 : K0 = Sp(1)× Sp(1) −→ SO(4).

The representation of K on VΛ is realized as the action of π(K) =
SO(5) × SO(5) on M(5,C) in the following way: For each (A,B) ∈
SO(5) × SO(5), X ∈ M(5,C) is mapped to AXB−1 ∈ M(5,C). Then
as a K1-module,

M(5,C) =

{(
0 0
∗ 0

)}
⊕
{(

0 ∗
0 0

)}
⊕
{(

∗ 0
0 0

)}
⊕
{(

0 0
0 ∗

)}

= W(1,1,0,0) ⊕W(0,0,1,1) ⊕W(0,0,0,0) ⊕W(1,1,1,1).

K0 acts on M(5,C) by the adjoint action as a diagonal subgroup of K1.
Hence

(M(5,C))K0 =
{(

x 0
0 yI4

)
| x, y ∈ C

}
,

(M(5,C))K[a]
= C

(
1 0
0 0

)
= W (0, 0, 0, 0).

Though Λ = (1, 1, 1, 1) ∈ D(K,K[a]), by the preceding computation
(in case (q1, q2, q3, q4) = (0, 0, 0, 0)), we see that a nonzero element in
(M(5,C))K[a]

= W (0, 0, 0, 0) gives eigenvalue −cL = 16 > 14.

Suppose that Λ = (1, 1, 2, 0). Then dimCVΛ = 50. It follows from
Lemma 8.1 that (q1, q2) = (1, 1) or (0, 0) and (q3, q4) = (0, 2), (1, 1), or
(2, 0). Thus

VΛ = (W(1,1) ⊠ U(0,2))⊕ (W(1,1) ⊠ U(1,1))⊕ (W(1,1) ⊠ U(2,0))

⊕ (W(0,0) ⊠ U(0,2))⊕ (W(0,0) ⊠ U(1,1))⊕ (W(0,0) ⊠ U(2,0)).

Here only (q1, q2, q3, q4) = (1, 1, 1, 1) (W(1,1)⊠U(1,1)) belongs toD(K1,K0),
and the corresponding eigenvalue is −cL = 14. On the other hand, the
representation of K with highest weight Λ = (1, 1, 2, 0) is λ5 ⊠ AdCsp(2).

Set Λ1 = (p1, p2) = (1, 1) ∈ D(Sp(2)). Then

VΛ1
∼= C5 = Ce1 ⊕ spanC{e2, e3, e4, e5} = W(0,0) ⊕W(1,1).

Using the quaternionic representation

sp(2) = {X ∈ M(2,H) | X∗ +X = 0},
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we chose the following basis of sp(2):

E1 :=

(
0 1
−1 0

)
, E2 :=

(
0 i
i 0

)
, E3 :=

(
0 j
j 0

)
, E4 :=

(
0 k
k 0

)
,

E5 :=

(
i 0
0 0

)
, E6 :=

(
j 0
0 0

)
, E7 :=

(
k 0
0 0

)
,

E8 :=

(
0 0
0 i

)
, E9 :=

(
0 0
0 j

)
, E10 :=

(
0 0
0 k

)
,

where {i, j, k} denote the unit pure quaternions.
Set Λ2 = (p3, p4) = (2, 0) ∈ D(Sp(2)). Then

VΛ2
∼= spanC{E1, E2, E3, E4} ⊕ spanC{E5, E6, E7} ⊕ spanC{E8, E9, E10}
= W(1,1) ⊕W(2,0) ⊕W(0,2).

By a direct computation, we get that

(VΛ)K0 = spanC{e2 ⊗ E1 + e3 ⊗ E2 + e4 ⊗ E3 + e5 ⊗ E4}
= (VΛ)K[a]

⊂ W(1,1) ⊗ U(1,1).

Therefore, Λ = (1, 1, 2, 0) ∈ D(K,K[a]), which gives eigenvalue 14 with
multiplicity 1. Similarly, we can show that Λ = (2, 0, 1, 1) ∈ D(K,K[a]),
which gives eigenvalue 14 with multiplicity 1.

Moreover, we observe that

n(L14) = dimC V(1,1,2,0) + dimC V(2,0,1,1) = 100

= dimSO(16) − dimSp(2)× Sp(2) = nhk(L
14).

From these results we obtain that L14 = G(Sp(2)×Sp(2)
Sp(1)×Sp(1)) ⊂ Q14(C) is

strictly Hamiltonian stable.

8.6. Eigenvalue computation when m ≥ 3. For each

Λ = p1y1 + p2y2 + p3y3 + · · · + pm+2ym+2 ∈ D(K,K0)

with pi ∈ Z, p1 ≥ p2, p3 ≥ p4 ≥ · · · ≥ pm+2 ≥ 0,

Λ′ = q1y1 + q2y2 + q3y3 + q4y4 + q5y5 + · · · + qm+2ym+2 ∈ D(K2,K0),

with qi ∈ Z, q1 ≥ q2 ≥ 0, q3 ≥ q4 ≥ 0, q5 ≥ · · · ≥ qm+2 ≥ 0, q1 = p1,
q2 = p2, and

Λ′′ = k1y1 + k2y2 + k3y3 + k4y4 + k5y5 + · · ·+ km+2ym+2 ∈ D(K1,K0)

with ki ∈ Z, ki ≥ 0 for 1 ≤ i ≤ 4, k5 ≥ k6 ≥ · · · ≥ km+2 ≥ 0, kj = qj
for 5 ≤ j ≤ m+ 2, the corresponding eigenvalue of −CL is expressed as
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follows:
(8.3)

−cL = − 2cΛ + cΛ′ +
1

2
cΛ′′

= 2
(m+2∑

i=1

p2i + 4p1 + 2p2 + 2mp3 + (2m− 2)p4 + · · ·+ 2pm+2

)

−
(m+2∑

i=1

q2i + 4q1 + 2q2 + 4q3 + 2q4 + (2m− 4)q5 + · · ·+ 2qm+2

)

− 1

2

(m+2∑

i=1

k2i + 2k1 + 2k2 + 2k3 + 2k4 + (2m− 4)k5 + · · ·+ 2km+2

)
,

where qi = ki for 5 ≤ i ≤ m+2, p1 = q1, p2 = q2, and k1 = k3, k2 = k4.
Suppose that Λ = (p1, p2, . . . , pm+2) = (2, 2, 0, . . . , 0) ∈ D(K). Then

by using the branching law of (Sp(2), Sp(1) × Sp(1)), we see that Λ ∈
D(K,K0), Λ

′ = (q1, q2, . . . , qm+2) = (2, 2, 0, . . . , 0) ∈ D(K2,K0) and
Λ′′ = (k1, k2, . . . , km+2) = (0, 0, 0, . . . , 0) ∈ D(K1,K0). Hence by (8.3)
the corresponding eigenvalue is −cL = 20 < 8m − 2 for m ≥ 3. On
the other hand, the irreducible representation of K with the highest
weight Λ = (2, 2, 0, . . . , 0) is a 14-dimensional representation ρSym2

0(C
5)⊠

I of Sp(2) × Sp(m), where ρSym2
0(C

5) is the composition of the natural

surjective homomorphism Sp(2) → SO(5) and the traceless symmetric
product representation of SO(5) on Sym2

0(C
5) := {X ∈ M(5;C) | Xt =

X, trX = 0}. Here each A ∈ SO(5) acts on Sym2
0(C

5) by Sym2
0(C

5) ∋
X 7→ AXAt ∈ Sym2

0(C
5). So

Sym0(C
5) =C ·

(
1 0
0 −1

4I4

)
⊕
{(

0 0
0 X ′

)
| X ′ ∈ Sym0(C

4)
}

⊕
{( 0 Z

Zt 0

)
| Z ∈ M(1, 4;C)

}

=C⊕ Sym0(C
4)⊕C4

and

(Sym0(C
5))SO(4) = C ·

(
1 0
0 −1

4I4

)
∼= C.

Under the natural surjective homomorphism Sp(2)(⊂ SU(4)) → SO(5),
the element 



0 1
1 0

0 1
1 0


 ∈ Sp(2)

corresponds to diag(−1, 1,−1,−1,−1) ∈ SO(5), denoted by Q′. By a di-
rect computation, we know that (Sym0(C

5))Q′·SO(4)∩(Sym0(C
5))SO(4) =
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(Sym0(C
5))SO(4). Thus

(VΛ=(2,2,0,...,0))K0 = C ·
(
1 0
0 −1

4I4

)
⊠C

and, moreover,

(VΛ=(2,2,0,...,0))K[a]
= C ·

(
1 0
0 −1

4I4

)
⊠C.

This means that Λ = (2, 2, 0, . . . , 0) ∈ D(K,K[a]) has multiplicity 1,

which corresponds to eigenvalue 20 < 8m − 2. Therefore, L8m−2 ⊂
Q8m−2(C) is not Hamiltonian stable.

From our results of this section we conclude the following.

Theorem 8.1. The Gauss image L = Sp(2)×Sp(m)
(Sp(1)×Sp(1)×Sp(m−2))·Z4

⊂
Q8m−2(C) (m ≥ 2) is not Hamiltonian stable if and only if m ≥ 3.
If m = 2, it is strictly Hamiltonian stable.
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