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DISPERSIONLESS INTEGRABLE SYSTEMS IN 3D
AND EINSTEIN–WEYL GEOMETRY

Eugene V. Ferapontov & Boris S. Kruglikov

Abstract

For several classes of second-order dispersionless PDEs, we show
that the symbols of their formal linearizations define conformal
structures that must be Einstein–Weyl in 3D (or self-dual in 4D)
if and only if the PDE is integrable by the method of hydrody-
namic reductions. This demonstrates that the integrability of these
dispersionless PDEs can be seen from the geometry of their formal
linearizations.

1. Introduction

Let

(1) F (xi, u, uxi , uxixj , . . . ) = 0

be a partial differential equation (PDE), where u is a (scalar) function
of the independent variables x1, . . . , xn. The formal linearization of (1)
results upon setting u→ u+ ǫv and keeping terms of the order ǫ. This
leads to a linear PDE for v,

(2) ℓF (v) = 0,

where ℓF is the operator of formal linearization,

ℓF = Fu + Fu
xi
Dxi + Fu

xixj
DxiDxj + . . . .

(here Dxi is the operator of total differentiation by xi). Note that, for
nonlinear F , the formal linearization depends on the solution u. For
instance, the linearization of the dispersionless Kadomtsev–Petviashvili
(dKP) equation, uxt− (uux)x−uyy = 0, reads as vxt− (uv)xx− vyy = 0.

The linearized equation (2) appears in a wide range of constructions
and applications:

• Stability analysis of a solution u is based on the investigation of the
spectrum of the linearized operator; this goes back to Lyapunov.

• Classical, contact, and higher symmetries of equation (1) corre-
spond to solutions of the linearized equation of the form v =
v(xi, u, uxi , uxixj , . . . ), which are required to satisfy (2) identically
modulo (1); this goes back to Lie [41, 44, 55].
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• Contact invariants of scalar ordinary differential equations can
be obtained from the Wilczynski invariants of the corresponding
linearized equations [14, 15].

• Generalized Laplace invariants of PDEs appearing in the context
of Darboux integrability can be obtained from the Laplace invari-
ants of linearized equations [71, 2, 43, 46, 45].

• Algebraic integrability of ordinary differential equations can be
seen from the structure of the differential Galois group of linearized
equations: it must be Abelian; see [52] and references therein.

In general, coefficients of a linear PDE have differential-geometric
meaning. In particular, its symbol can be interpreted as a symmetric
tensor field. The following natural question arises:

Can one read integrability of a given PDE off the geometry
of its formal linearization?

In this paper we answer this question in the affirmative for the four
particularly interesting classes of PDEs in 3D, namely

Equations of type I

(3) (a(u))xx+(b(u))yy+(c(u))tt+2(p(u))xy+2(q(u))xt+2(r(u))yt = 0.

This class was introduced in [18] in the context of the “central quadric
ansatz”; see the remark at the end of Section 3. The corresponding
integrability aspects were discussed in [32].

Equations of type II

(4) f11uxx + f22uyy + f33utt + 2f12uxy + 2f13uxt + 2f23uyt = 0.

Here the coefficients fij depend on the first-order derivatives ux, uy, ut
only. Equations of this type can be called quasilinear wave equations,
their integrability was analyzed in [8, and references therein].

Equations of type III

(5) F (uxx, uxy, uyy, uxt, uyt, utt) = 0.

Equations of this form are known as the dispersionless Hirota type or
Hessian type equations. Their integrability was studied in [56, 29].

Equations of type IV

(6) A(u)ux +B(u)uy +C(u)ut = 0.

Here u is a two-component column vector, and A,B,C are 2×2 matrices.
Equations of this form are known as systems of hydrodynamic type.
Their integrability was investigated in [27]. It was demonstrated in [54]
that coefficients of the generic integrable equations of the types (4), (5),
and (6) can be parametrized by generalized hypergeometric functions.

Equations (3)–(6) belong to the class of dispersionless PDEs. They
arise in a wide range of applications in mathematical physics, general
relativity, differential geometry, and the theory of integrable systems (as
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dispersionless limits of integrable soliton equations of the KP/Toda type
[70]; see Section 9). In the dispersionless limit, the familiar “solitonic”
integrability (based on Lax pairs, algebro-geometric techniques, etc.) re-
quires a modification. An adequate approach is provided by the method
of hydrodynamic reductions [26], which is based on the requirement of
the existence of special multi-phase solutions that can be viewed as dis-
persionless analogues of multi-soliton/multi-gap solutions. To make this
paper as self-contained as possible, in Section 9 we included an appendix
with a brief overview of this approach, and further references.

Solutions to equations (3)–(6) carry a canonical conformal structure
that can be defined as follows: The symbol of formal linearization is a
symmetric (2,0)-tensor g♯ ∈ Γ(S2TM) on the base manifold M with
coordinates (x1, x2, x3) = (x, y, t), which depends on a finite jet of the
solution u (in the case (6) we use the dispersion relation). This ten-
sor is only defined up to multiplication by a non-zero factor, which
makes our theory conformal. All considerations are local, and M will
be identified with an open domain of R3. We will always assume g♯ to
be non-degenerate; in this case, the inverse (0,2)-tensor g ∈ Γ(S2T ∗M)
defines a metric. In coordinates, g = gij dx

idxj where gij is the inverse

of the matrix of g♯. We will assume the Lorentzian signature of g; this
is equivalent to the requirement of hyperbolicity of the corresponding
PDE (see Section 9 for a discussion of the elliptic case). The conformal
class [g] of the metric g is the key invariant responsible for the lineariz-
ability/integrability of the equations under study. Our main results can
be summarized as follows:

• Equations (3)–(6) are linearizable (by a transformation from the
natural equivalence group specified in each particular case below)
if and only if the corresponding conformal structures g are confor-
mally flat on every solution (an extra condition is needed in the
case (6)). This provides a simple linearizability test based on the
vanishing of the corresponding Cotton tensor.

• Equations (3)–(6) are integrable by the method of hydrodynamic
reductions if and only if the corresponding conformal structures g
are Einstein–Weyl on every solution (again, an extra condition is
needed for (6)). Recall that an Einstein–Weyl structure consists of
a symmetric connection D and a conformal structure g such that
(a) the connection D preserves the conformal class, D[g] = 0, and
(b) the trace-free part of the symmetrized Ricci tensor of D van-
ishes.

In coordinates, this gives

(7) Dkgij = ωkgij , R(ij) = Λgij ,

where ω = ωkdx
k is a covector, R(ij) is the symmetrized Ricci ten-

sor of D, and Λ is some function [11]. In fact, one needs to specify
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g and ω only; then the first set of equations uniquely determines
D. We point out that for all examples considered in this paper,
the covector ω is expressed in terms of g by the universal explicit
formula

(8) ωk = 2gkjDxs(gjs) +Dxk(ln det gij).

Note that in 3D this formula is invariant under the transformation
g → λg, ω → ω + d ln λ, which is characteristic of the Einstein–
Weyl geometry.

We recall that the Einstein–Weyl equations (7) are integrable by
twistor-theoretic methods [39]. Thus, solutions of integrable PDEs carry
“integrable” geometry. Equivalently, one can say that second-order dis-
persionless integrable systems in 3D (having non-degenerate symbol)
can be viewed as reductions of the Einstein–Weyl conditions, which
therefore play the role of a universal “master-equation” [69]. Let us men-
tion that relations of dispersionless integrable systems to the Einstein–
Weyl geometry have been discussed in [68, 9, 10, 47, 20, 22, 23, 19, 36].

Given a class of integrable PDEs such as (4)–(6), the verification of
the Einstein–Weyl conditions (7) can be a formidable task, primarily
due to a rather intricate structure of the integrability conditions. A way
to bypass computational difficulties is to use the result of Cartan [11],
which says that the Einstein–Weyl property of a triple (D, g, ω) is
equivalent to the existence of a two-parameter family of surfaces that
are null with respect to the conformal structure g (that is, tangential
to the null cones of g) and totally geodesic in the Weyl connection D.
In the context of dispersionless integrable systems, such surfaces are
provided by the corresponding dispersionless Lax pairs: these consist of
λ-dependent vector fields X,Y that are required to commute modulo
the equation, identically in the “spectral parameter” λ (for all classes of
PDEs discussed in this paper, the existence of such Lax pairs is equiv-
alent to the integrability by the method of hydrodynamic reductions).
Note that X and Y may contain derivatives with respect to λ.

Taking integral surfaces of the distribution spanned byX,Y in the ex-
tended four-space with coordinates x, y, t, λ, and projecting them down
to the space of independent variables x, y, t, we obtain the required two-
parameter family of null totally geodesic surfaces. Computationally, this
approach has an advantage, allowing one to avoid working with the full
set of integrability conditions (the problem is to prove the existence of a
Lax pair, and this is where the integrability conditions are needed). In
this approach, the key object within the triple (D, g, ω) is the connec-
tion D, which is uniquely specified by the given two-parameter family
of null totally geodesic surfaces. Both Einstein–Weyl conditions (7) will
be satisfied automatically.
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Our main results relating linearizability/integrability to geometry of
formal linearizations are proved in Sections 3–6 (we find it more conve-
nient to treat the above four classes separately: explicit forms of the cor-
responding linearizability/integrability conditions are rather different).
Known integrable equations of types (3)–(6) provide an abundance of
Einstein–Weyl structures parametrized by elementary functions, ellip-
tic functions, modular forms, and Painlevé transcendents. Some further
examples are collected in Section 7. Most of the examples of Einstein–
Weyl structures exhibited in this paper are apparently new (otherwise,
a reference is given).

In Section 8 we discuss geometric aspects of integrability of second-
order dispersionless PDEs in 4D, indicating that the associated confor-
mal structures must be self-dual. This is in agreement with the fun-
damental fact that the Einstein–Weyl equations are reductions of the
equations of self-duality [42, 9, 10].

The method of hydrodynamic reductions, providing an efficient ap-
proach to the integrability of equations (3)–(6), is summarized in Section
9. Hydrodynamic reductions of elliptic PDEs are also discussed.

In calculations of the Cotton tensor and the Einstein–Weyl condi-
tions, we used symbolic packages of Maple. We shall omit unnecessary
lengthy formulae from the text. All relevant programs, including the
integrability conditions of equations (3)–(6) and details of proofs from
Sections 3–6, are available from arXiv:1208.2728v3.

Since the involved functions are rational differential expressions with
integer coefficients, the results are exact and the proofs are rigorous.

Conventions. All our considerations are micro-local, i.e., local for a
solution, with the size of neighbourhood also depending on (jet of) the
solution. We work either in the real smooth category or in the complex
holomorphic category. In the latter case we only assume non-degeneracy
of the symbol, while in the former we assume that the symbol is hyper-
bolic (see the next section for precise definition). As our approach to
the dispersionless integrability is based on the method of hydrodynamic
reductions, which generally refers to hyperbolic systems, we assume the
Lorentzian signature of g in 3D, and the neutral signature in 4D, but
this requirement can be removed without restricting the generality if
the PDE in question is analytic. In fact, one can treat the elliptic case
by the complexification approach; see Section 9 for more details.

Although results of this paper are local, we perceive that global ver-
sions may be available through the twistor theory.
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2. Preliminaries

In this section we discuss the necessary background material. For sim-
plicity we restrict to the case of a single partial differential equation E of
the second order. A scalar second-order differential operator is a func-
tion F ∈ C∞(J2M) on the space of 2-jets of the base manifold M , and
the equation E = {F = 0} is a submanifold in J2M . We shall assume,
as is customary, that the projection p2,1 : E → J1M is a submersion.
Then πE : E →M is also a submersion.

As described in the Introduction, the linearization operator ℓF is a
second-order linear differential operator defined modulo the equation E ,
which means that its coefficients, being functions of the finite-order jets
of u, are subject to this PDE. The important property of formal lin-
earization is its contact invariance, which ensures that contact transfor-
mations lift naturally to the tangent bundle (covering) of the equation.
To the best of our knowledge, this invariance was explored for the first
time in [2].

In this paper we need a simpler fact that the symbol σF of the lin-
earization operator ℓF , also called the symbol of F , is contact invariant.
The symbol is a bi-vector (section) σF ∈ C∞(E , π∗ES2TM) depending
on the 2-jet [u]2x ∈ E ; in local coordinates, σF = Fu

xixj
∂xi∂xj . Let us

briefly indicate the proof.
A contact transformation Φ : J1M → J1M lifts naturally to a trans-

formation Φ(1) : J2M → J2M (the latter is usually defined on an open
dense subset of J2M due to mixing of dependent and independent vari-
ables). The fibers of the projection π2,1 : J

2M → J1M are affine spaces

associated to the fibers of S2T ∗M . The prolongation Φ(1) is fiberwise
projective on them. Its symbol σΦ(1) : S2T ∗M → S2T ∗M (here and
below the bundles are pulled back to E via the natural projection πE) is
the differential of this projective transformation. Using the properties
of the symbol (cf. [44, 64]), we conclude

σ(Φ(1))∗(F ) = σF◦Φ(1) = σF ◦ σΦ(1) .

This is the required contact invariance of the symbol σF : S2T ∗M → R.
A non-zero covector p ∈ T ∗

xM is called characteristic for F at [u]2x ∈ E
if σF ([u]

2
x)(p, p) = 0. The projectivized (complexified) set of character-

istic covectors is called the (complex) characteristic variety Char(E)
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at [u]2x. The equation E is hyperbolic if its complex characteristic va-
riety Char(E) is the complexification of a real variety. The charac-
teristic variety is invariant under contact transformations. Indeed, let
gE = Ker(σF ) = TE ∩ Ker dπ2,1 ⊂ S2T ∗M be the symbol of E . Then
the claim follows from the fact [64] that a covector p is characteristic
whenever p2 = p · p ∈ gE .

The basic object of our study is the bi-vector σF = g♯, and when
this bi-vector is non-degenerate, we consider the dual (conformal) met-
ric g ∈ S2T ∗

xM , which depends only on [u]2x ∈ E (we point out that
the projectivized null cone of g is dual to the characteristic variety).
Together with the 1-form ω, the metric g uniquely defines the connec-
tion D by the first equation of (7), and the triple (D, g, ω) defines an
Einstein–Weyl structure if the second equation of (7) is satisfied.

We say that a certain tensor (Cotton, Einstein–Weyl, etc.), which de-
pends on higher-order jets of u, vanishes on every solution, if it vanishes
modulo the equation E , meaning again that jets of u are constrained
by the equation, and a finite number of its differential consequences. In
practice we eliminate, say, all higher-order derivatives of u containing
differentiation by t more than once (i.e., utt, uttt, uxtt, etc.), and equate
to zero terms at the remaining higher-order derivatives. Since all objects
depend on a finite-order jet of u, we do not rely upon smooth solvability
of the equation, and carry out calculations formally using the geometric
theory of PDEs.

Proposition 1. For an equation E, the properties for the conformal
metric g to have the Cotton tensor zero on every solution, or to satisfy
the Einstein–Weyl conditions on every solution, are contact invariant.

Proof. Let F ◦Φ(1) = F̃ be the transformed operator. Then the pro-
longed contact transformation maps σF̃ to σF , and consequently the
metric g is mapped to the corresponding metric g̃. Denote by ω̃ the
pullback of ω (higher prolongations of Φ are used at this step). The

contact map Φ sends a solution S̃ of Ẽ = {F̃ = 0}, considered as a Leg-
endrian submanifold in J1M , to a solution S of E , and the vanishing of
the Cotton tensor of g̃ on S̃ is equivalent to the same condition for g on
S. Similarly, the Einstein–Weyl property for (g̃, ω̃) on S̃ is equivalent to
the same property for (g, ω) on S.

Classical solutions (projecting diffeomorphically onto M) may be
mapped to multi-valued solutions (Legendrian submanifolds), but, lo-
cally most of them are mapped to classical solutions. More precisely, if
we consider (k + 1)-jets of solutions, then the prolongation Φ(k) is de-
fined on an open dense subset thereof. Thus, the vanishing of the Cotton
tensor, and the trace-freeness for the symmetrized Ricci tensor on every
solution of E , implies similar properties for almost all solutions of Ẽ .
The latter we quantify to hold on an open dense set of the prolonged
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equation Ẽ (k−1) ⊂ Jk+1M , and this by continuity implies the required
property for all solutions. q.e.d.

Thus, we obtain a covariant approach to integrability. Notice, how-
ever, that the integrability by the method of hydrodynamic reductions,
as well as the explicit form (8) of the covector ω, are coordinate-depen-
dent. More about this will be said in the concluding remarks.

The above discussion covers integrable PDE of types (3)–(5). For
systems of first-order PDEs, such as (6), the theory is similar: the only
difference is that, by virtue of the Lie–Bäcklund theorem, contact trans-
formations should be changed to point transformations, i.e., diffeomor-
phisms of J0(M,R2) =M × R

2.

3. Equations of type I

In this section we consider equations of the form (3),

(a(u))xx + (b(u))yy + (c(u))tt + 2(p(u))xy + 2(q(u))xt + 2(r(u))yt = 0.

Their integrability was investigated in [32] based on the method of
hydrodynamic reductions. This boils down to the requirement of the
existence of an infinity of multi-phase solutions, which imposes strong
constraints on the coefficients of the equation and provides an efficient
classification criterion (see Section 9 for a brief summary of the method).
To formulate the classification result, we introduce the symmetric ma-
trix

V (u) =





a′ p′ q′

p′ b′ r′

q′ r′ c′



 ,

where prime denotes differentiation by u. The classification is performed
modulo (complex) linear changes of the independent variables x, y, t, as
well as transformations u → ϕ(u), which constitute the equivalence
group of our problem.

Theorem 1 ([32]). Equation (3) is integrable by the method of hydro-
dynamic reductions if and only if the matrix V (u) satisfies the constraint

(9) V ′′ = (ln detV )′V ′ + k V,

for some scalar function k = k(u). Modulo equivalence transformations,
this leads to the five canonical forms of nonlinear integrable models:

uxx + uyy − (ln(eu − 1))yy − (ln(eu − 1))tt = 0,

uxx + uyy − (eu)tt = 0,

(eu − u)xx + 2uxy + (eu)tt = 0,

uxt − (uux)x − uyy = 0,

(u2)xy + uyy + 2uxt = 0.
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Examples 2 and 4 are the familiar Boyer–Finley (BF) and the dKP
equations.

We point out that the constraint (9), which implies V ′′ ∈ span{V, V ′},
means that the “curve” V (u) lies in a two-dimensional linear subspace
of the space of 3 × 3 symmetric matrices. The classification of normal
forms of such linear subspaces, which is equivalent to the classification of
pencils of conics, leads to the five canonical forms of Theorem 1. It was
pointed out by D. Calderbank that equations of the form (3) are related
to generalized Nahm equations with the gauge group SDiff(Σ2). In
this language, the five canonical forms of Theorem 1 correspond to the
five types of generalized Nahm equations obtained in [9]. For the dKP
equation, this correspondence was explicitly demonstrated in [18].

The linearized equation (3) is

a′(u)vxx+b
′(u)vyy+c

′(u)vtt+2p′(u)vxy+2q′(u)vxt+2r′(u)vyt+ · · · = 0,

where dots denote terms with lower-order derivatives of v. Its symbol
defines a conformal structure g = gij(u)dx

idxj where (x1, x2, x3) =
(x, y, t), and the matrix gij is the inverse of V . Our first result is as
follows.

Theorem 2. Equation (3) is linearizable by a transformation from
the equivalence group if and only if the conformal structure g is confor-
mally flat on every solution.

Proof. The condition responsible for conformal flatness in three di-
mensions is the vanishing of the Cotton tensor,

(10) ∇r(Rpq −
1

4
Rgpq) = ∇q(Rpr −

1

4
Rgpr),

where Rpq is the Ricci tensor, R is the scalar curvature, and ∇ denotes
covariant differentiation in the Levi–Civita connection of g. Calculat-
ing (10) and using (3) and its differential consequences to eliminate all
higher-order partial derivatives of u containing differentiation by t more
than once, we obtain expressions that have to vanish identically in the
remaining higher-order derivatives of u (without loss of generality, we
will assume that c(u) = u; this can be achieved by a transformation
from the equivalence group). Requiring the vanishing of coefficients at
the remaining derivatives of u, we obtain that all entries of the matrix
V must be constant, which leads to linear equations. q.e.d.

It turns out that conformal structures corresponding to all five inte-
grable models from Theorem 1 satisfy the Einstein–Weyl property. In
fact, this follows from the construction of [9], which provides Einstein–
Weyl structures from solutions of the gauge field equations with the
gauge group SDiff(Σ2) modeled on Riccati spaces; our goal here is to
present the explicit formulae. In addition, for all equations from Theo-
rem 1 we present dispersionless Lax pairs in the form [X,Y ] = 0, where
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X and Y are λ-dependent vector fields which commute modulo the equa-
tion. Projecting integral surfaces of the distribution spanned by X and
Y from the extended space of coordinates x, y, t, λ down to the space of
independent variables x, y, t, we obtain two-parameter families of null
totally geodesic surfaces of the corresponding Einstein–Weyl structures.

Here and in what follows we choose the “simplest” representative
metric g within the conformal class [g]. In all cases it is given by either
the inverse or the cofactor matrix of g♯.

Equation 1: uxx + uyy − (ln(eu − 1))yy − (ln(eu − 1))tt = 0.
Conformal structure: g = dx2 + (1− eu)dy2 + (e−u − 1)dt2.
Covector: ω = eu+1

eu−1uxdx− uydy + utdt.
Lax pair:

X = ∂y +
√
eu − 1 sinϕ ∂x +

(

eu

eu−1ut −
cosϕ√
1−e−u

ux

)

∂λ,

Y = ∂t +
√
1− e−u cosϕ ∂x +

(

1
1−euuy +

sinϕ√
eu−1

ux

)

∂λ,

here ϕ = − arctan(e−u/2 tanλ/2).

Equation 2: uxx + uyy − (eu)tt = 0 (BF equation).
Conformal structure: g = dx2 + dy2 − e−udt2.
Covector: ω = −uxdx− uydy + utdt.
This Einstein–Weyl structure was obtained in [68]; see also [47].
Lax pair:

X = ∂y − eu/2 sinλ ∂t −
1

2
(ux + eu/2ut cosλ)∂λ,

Y = ∂x − eu/2 cos λ ∂t +
1

2
(uy + eu/2ut sinλ)∂λ.

Equation 3: (eu − u)xx + 2uxy + (eu)tt = 0.
Conformal structure: g = 2dxdy + (1− eu)dy2 + e−udt2.
Covector: ω = −uxdx+ (2euux − uy)dy + utdt.
Lax pair:

X = ∂t − λ∂x + (λ2 + 1)ux∂λ,

Y = ∂y +
1

2
(eu(λ2 + 1)− 1)∂x −

1

2
eu(ut + λux)(λ

2 + 1)∂λ.

Equation 4: uxt − (uux)x − uyy = 0 (dKP equation).
Conformal structure: g = 4dxdt− dy2 + 4udt2.
Covector: ω = −4uxdt.
This Einstein–Weyl structure was obtained in [20].
Lax pair:

X = ∂y − λ∂x + ux∂λ, Y = ∂t − (λ2 + u)∂x + (uxλ+ uy)∂λ.

Equation 5: (u2)xy + uyy + 2uxt = 0.
Conformal structure: g = 2dxdt+ dy2 − 2udydt+ u2dt2.
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Covector: ω = 2uxdy + 2(uy − uux)dt.
Lax pair:

X = ∂y−λ∂x+2uxλ∂λ, Y = ∂t+(
1

2
λ2+uλ)∂x− (uxλ+uy+2uux)λ∂λ.

All of the above conformal structures g and covectors ω can be repre-
sented in terms of the matrix V = V (u) as follows (the symbol t denotes
the transposition):

(11)
g = (dx dy dt)V −1(dx dy dt)t,

ω = 2(dx dy dt)V −1V ′(ux, uy, ut)
t − d(ln detV ).

They satisfy the Einstein–Weyl equations (7) if and only if V (u) satisfies
the integrability condition (9). Setting (x, y, t) = (x1, x2, x3), one can
represent the components of ω = ωkdx

k by the formula (8). It turns out
that exactly the same formula holds for all other classes of dispersionless
PDEs discussed in this paper. The covector ω is related to the symbol
of formal linearization via the identity

gijvxixj = ∇i∇iv −
1

2
ωi∇iv,

where ∇i = gik∇k, ω
i = gikωk, and ∇ denotes covariant differentiation

in the Levi–Civita connection of the metric gij . Note that the right-hand
side of this identity can be interpreted as a special case of the Weyl wave
operator of weight 0 [22]. The second main result of this section is as
follows.

Theorem 3. Equation (3) is integrable by the method of hydrody-
namic reductions if and only if the corresponding conformal structure g
is Einstein–Weyl on every solution, with the covector ω given by (8).

Proof. Given an equation of the form (3), the conformal structure
of its formal linearization is g = (dx dy dt)V −1(dx dy dt)t; see (11).
We will seek a covector ω in the form ω = (dx dy dt)T (ux uy ut)

t

where T (u) is an unknown 3 × 3 matrix depending on u. Imposing
the Einstein–Weyl equations (7) and using (3) to eliminate the second-
order derivative utt (no higher-order derivatives of u will occur in this
calculation), we obtain a set of relations that have to vanish identically
in the remaining partial derivatives of u. Thus, equating to zero terms
at the second-order derivatives of u, we obtain T in terms of V ,

T = 2V −1V ′ − (ln detV )′E,

where E is the 3× 3 identity matrix. This is equivalent to the formulae
(11) and (8) for ω. The remaining terms vanish identically if and only
if V satisfies the constraint (9). q.e.d.

Remark 1. It was assumed in the proof of Theorem 3 that ω de-
pends linearly on the first-order derivatives of u. One can show that
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this assumption is unnecessary: even a rather general requirement that
ω depends on some finite-order jets of u is already sufficiently restrictive
and leads to the same formula (8) for ω.

Remark 2. Equations from Theorem 1 possess implicit solutions
u(x, y, t) of the form

(12) (x, y, t)M(u)(x, y, t)t = 1,

whereM(u) is a 3×3 symmetric matrix of u. The level surfaces of such
solutions, u = const, are central quadrics in the space of independent
variables x, y, t. This construction is known as the central quadric ansatz
[65, 18]. The equation for M(u) is

M ′ = sMVM/
√
detM,

s = const. It was demonstrated in [65, 18] that in the cases of BF and
dKP, this equation reduces to Painlevé transcendents P3-P1. It was
shown in [32] that other integrable models from Theorem 1 lead to the
remaining Painlevé equations P6-P4, with the full P6 corresponding to
the first equation. Thus, we obtain a whole variety of Einstein–Weyl
structures parametrized by Painlevé transcendents.

4. Type II: quasilinear wave equations

In this section we discuss geometric aspects of quasilinear wave equa-
tions (4),

f11uxx + f22uyy + f33utt + 2f12uxy + 2f13uxt + 2f23uyt = 0;

here the coefficients fij = fij(ux, uy, ut) are functions of the first-order
derivatives only. PDEs of this type were investigated in [8] based on
their correspondence with conformal structures in projective space. It
was pointed out that the moduli space of integrable equations is 20-
dimensional. In was shown in [54] that coefficients of the generic in-
tegrable equations of the form (4) can be parametrized by generalized
hypergeometric functions. We recall that the class of quasilinear wave
equations is invariant under the group SL(4) of linear transformations of
the variables xi, u, where (x1, x2, x3) = (x, y, t). These transformations
constitute the natural equivalence group of the problem.

The linearized equation has the form

fijvxixj + · · · = 0,

and it defines the conformal structure g = gijdx
idxj where the matrix

of gij is the inverse of fij . Here dots denote terms with lower-order
derivatives of v. Our first result is as follows.

Theorem 4. Equation (4) is linearizable by a transformation from
the equivalence group SL(4) if and only if the conformal structure g is
conformally flat on every solution.
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Proof. Let us first recall, following [8], the linearizability conditions
for equations of the form (4). Since the structure of these conditions is
the same in any dimension, we will consider the general n-dimensional
case,

fijuxixj = 0,

where fij are functions of the first-order derivatives uxk only, i, j, k =
1, . . . , n. Setting pk = uxk , we will write down a system of differen-
tial constraints for fij(p) which are necessary and sufficient for the lin-
earizability of the equation under study by a transformation from the
equivalence group SL(n+ 1). Let us introduce the object

aijk = ∂pkfij − (ck + 2sk)fij − sifkj − sjfki,

where

sk = f ij

(n+2)(1−n)

(

∂pkfij − n∂pjfik
)

,

ck = f ij

(n+2)(n−1)

(

(n+ 3)∂pkfij − 2(n + 1)∂pjfik
)

.

Then the linearizability is equivalent to the following two conditions:

• aijk = 0,
• ∂pjsi − sisj = 0.

Geometrically, these conditions are equivalent to the existence of a flat
connection ∇ (in p-coordinates) with Christoffel symbols Γi

jk = sjδ
i
k +

skδ
i
j such that ∇kfij = ckfij; see [8] for more details.

Let us now require that the conformal structure g = gijdx
idxj is

conformally flat on every solution. Calculating the Cotton tensor (10)
(now we set n = 3), and using (4) and its differential consequences to
eliminate all higher-order partial derivatives of u that contain differen-
tiation by t more than once, we obtain a complicated expression, which
has to vanish identically in the remaining higher-order derivatives of u.
In particular, requiring that coefficients at the remaining fourth-order
derivatives vanish identically (no higher-order derivatives of u will occur
in this calculation), we obtain the first linearizability condition aijk = 0.

There are two ways to proceed: Collecting terms at the lower-order
derivatives of u one can obtain the second set of linearizability conditions
(this, however, leads to quite complicated calculations). Another way is
to point out that the condition aijk = 0 alone is already sufficiently
restrictive [8, 61, 1] and implies that the PDE in question is either
linearizable or reducible to the equation for minimal hypersurfaces in a
(pseudo) Euclidean space,

[(∇u)2 − 1]△u− (∇u)H(∇u)t = 0,

where ∇u = (ux1 , . . . , uxn) is the gradient of u, △ is the Laplacian, and
H is the Hessian matrix of u. In the three-dimensional case we arrive



228 E. V. FERAPONTOV & B. S. KRUGLIKOV

at the equation

(u2y + u2t − 1)uxx + (u2x + u2t − 1)uyy + (u2x + u2y − 1)utt

− 2(uxuyuxy + uxutuxt + uyutuyt) = 0.

To complete the proof, it remains to point out that the correspond-
ing conformal structure g is not conformally flat on generic solutions;
furthermore, the equation itself is not linearizable (in fact, not even
integrable for n ≥ 3). q.e.d.

Remark 3. This proof, and the proof of Theorem 2, generalize to
any dimension n > 3, with the only change that one needs the Weyl
tensor of conformal curvature instead of the Cotton tensor. For non-
linearizable differential equations, the requirement of conformal flatness
singles out a subclass of exact solutions of a given PDE; see [49].

Our next goal is to prove that conformal structures corresponding
to formal linearizations of integrable equations of the form (4) give rise
to the Einstein–Weyl geometry. Let us begin with examples of known
integrable PDEs.

Example 1. The equation uxuyt + uyuxt + utuxy = 0 constitutes the
Euler-Lagrange equation for the Lagrangian density uxuyut that was ob-
tained in [30] in the classification of first-order integrable Lagrangians.
Conformal structure:

g = (uxdx+ uydy + utdt)
2 − 2u2xdx

2 − 2u2ydy
2 − 2u2t dt

2.

Covector: ω = −4
uxuyt

uyut
dx− 4

uyutx

utux
dy − 4

utuxy

uxuy
dt.

Example 2. The equation

(uyp(ut))x + (uxp(ut))y +
(

uxuyp
′(ut)

)

t
= 0

constitutes the Euler–Lagrange equation for the Lagrangian density
uxuyp(ut), which can be viewed as a deformation of Example 1. In this
case, the integrability conditions reduce to a single fourth-order ODE
for p,

p′′′′(p2p′′ − 2pp′2)− p2p′′′
2
+ 2pp′p′′p′′′ + 8p′

3
p′′′ − 9p′

2
p′′

2
= 0.

It was shown in [31] that the general solution to this ODE is a modular
form of weight 1 and level 3 known as the Eisenstein series E1,3.
Conformal structure:

g = (p′uxdx+ p′uydy + pdt)2 − 2p′2u2xdx
2

−2p′2u2ydy
2 − 2p2dt2 − 2pp′′uxuydxdy.
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Covector:

ω = 2
(pp′′2 − pp′p′′′ + p′2p′′

p(pp′′ − 2p′2)
uxutt − 2

p′ux
p uy

uty

)

dx

+ 2
(pp′′2 − pp′p′′′ + p′2p′′

p(pp′′ − 2p′2)
uyutt − 2

p′uy
p ux

utx

)

dy

+ 2
(pp′′′ − 3p′p′′

pp′′ − 2p′2
utt + 2

(utx
ux

+
uty
uy

)

)

dt.

This structure is Einstein–Weyl if and only if p satisfies the above fourth-
order ODE.

The second main result of this section is as follows:

Theorem 5. Equation (4) is integrable by the method of hydrody-
namic reductions if and only if the corresponding conformal structure g
is Einstein–Weyl on every solution, with the covector ω given by (8).

Proof. We will give two proofs of this result. The first one is com-
putational, based on the explicit calculation of the Einstein–Weyl con-
straints and the integrability conditions as derived in [8]. The second
proof utilises the fact that any integrable PDE of the form (4) possesses
a dispersionless Lax pair [8]. We demonstrate that the existence of a
Lax pair implies that the Weyl connection D, specified by the conformal
structure g = gijdx

idxj and the covector (8), possesses a two-parameter
family of null totally geodesic surfaces, the property known to be char-
acteristic of the Einstein–Weyl geometry [11].

The first proof can be summarized as follows. Given an equation
of the form (4), the conformal structure of its formal linearization is
g = gijdx

idxj, where gij is the inverse of fij. We will seek a covector

ω = ωkdx
k in the form ωk = T ij

k uxixj , where T
ij
k are certain functions of

the first-order derivatives of u. Imposing the Einstein–Weyl equations
(7) and using (4) and its differential consequences to eliminate all higher-
order derivatives of u that contain differentiation by t more than once
(maximum third-order derivatives of u will occur in this calculation), we
obtain a set of relations that have to vanish identically in the remaining
partial derivatives of u. Thus, equating to zero terms at the third-order
derivatives of u, we obtain the expression (8) for ω. The remaining
terms vanish identically if and only if the coefficients fij satisfy the set
of integrability conditions as derived in [8]. This finishes the first proof
of Theorem 5.

Let us now give a somewhat more conceptual (as well as less com-
putational) demonstration that the integrability is equivalent to the
Einstein–Weyl property. It is based on the fact that any integrable equa-
tion of the form (4) possesses a dispersionless Lax pair of the form

(13) St = f(Sx, ux, uy, ut), Sy = g(Sx, ux, uy, ut).
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This means that the consistency condition, Sty = Syt, is equivalent to
the equation (4). Lax pairs of this form are known to arise as disper-
sionless limits of solitonic Lax pairs in 2+1 dimensions [70]. Let us first
outline the general construction that leads from the Lax pair (13) to
totally geodesic null surfaces of the Weyl connection D. Differentiating
(13) by x and setting Sx = λ, ux = a, uy = b, ut = c, we obtain

(14) λt = fλλx + faax + fbbx + fccx, λy = gλλx + gaax + gbbx + gccx.

With this system we associate the vector fields

X =
∂

∂t
− fλ

∂

∂x
+ (faax + fbbx + fccx)

∂

∂λ
,

Y =
∂

∂y
− gλ

∂

∂x
+ (gaax + gbbx + gccx)

∂

∂λ
,

which live in the extended four-dimensional space with coordinates
x, y, t, λ. Note that the compatibility condition λty = λyt is equiv-
alent to the commutativity of these vector fields: [X,Y ] = 0. The
geometry behind this construction is as follows. Let us consider the
cotangent bundle Z of the solution u(x, y, t), with local coordinates
(x, y, t, Sx, Sy, St). Equations (13) specify a four-dimensional subman-
ifold M4 ⊂ Z parametrized by x, y, t and λ. The compatibility of the
equations (13) indicates that this submanifold is coisotropic. The vector
fields X,Y generate the kernel of the restriction toM4 of the symplectic
form dSx∧dx+dSy∧dy+dSt∧dt. Equations (14) mean that the vectors
X,Y are tangential to the hypersurface of M4 defined by the equation
λ = λ(x, y, t).

Projecting the two-parameter family of integral surfaces of the dis-
tribution spanned by X,Y to the space of independent variables x, y, t,
we obtain a two-parameter family of null totally geodesic surfaces of the
Weyl connection D. To see this we first project X and Y . This gives two
vector fields

X̂ =
∂

∂t
− fλ

∂

∂x
, Ŷ =

∂

∂y
− gλ

∂

∂x
,

which commute if and only if λ satisfies the equations (14). It remains

to show that X̂ and Ŷ form a null distribution (i.e., tangential to the

null cones of g), and that the covariant derivatives DX̂X̂, DX̂ Ŷ , DŶ X̂ ,

DŶ Ŷ belong to the span of X̂, Ŷ . Equivalently, one can introduce the

covector θ = dx+gλdy+fλdt that annihilates X̂, Ŷ , and verify that θ is
null, and that DX̂θ ∧ θ = DŶ θ ∧ θ = 0. This follows from the equations
satisfied by the functions f(λ, a, b, c) and g(λ, a, b, c) as derived in [8]:

fa = 2kf12 + gλkf22 + fλ(kf23 − p), gb = −kf23 + p,

ga = −2kf13 − fλkf33 − gλ(kf23 + p), fc = kf23 + p,(15)

fb = kf22, gc = −kf33,
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where p(λ, a, b, c) and k(λ, a, b, c) are yet another two auxiliary func-
tions. Furthermore, fλ and gλ satisfy the relation

(16) f11 + f22g
2
λ + f33f

2
λ + 2f12gλ + 2f13fλ + 2f23fλgλ = 0,

which means that the covector θ is null. To close the system (15)–(16),
one proceeds as follows. Calculating the consistency conditions for equa-
tions (15), fab = fba, gab = gba, etc., six conditions altogether, and dif-
ferentiating the relation (16) by a, b, c, and λ, one obtains ten relations
that can be solved for fλλ, gλλ and the first-order derivatives of k and
p. Modulo these relations, the conditions DX̂θ ∧ θ = DŶ θ ∧ θ = 0 are
satisfied identically. This finishes the second proof of Theorem 5. q.e.d.

5. Type III: dispersionless Hirota equations

In this section we discuss geometric aspects of PDEs (5) of the dis-
persionless Hirota type,

F (uxx, uxy, uyy, uxt, uyt, utt) = 0,

which were investigated in [56, 29], revealing a remarkable correspon-
dence with hypersurfaces of the Lagrangian Grassmanian. Geometric
aspects of GL(2) structures associated with such equations were stud-
ied in [63]. In was shown in [54] that the generic integrable equation of
the form (5) can be parametrized by generalized hypergeometric func-
tions. Recall that equations of the form (5) are invariant under the
group Sp(6) of linear symplectic transformations of the variables xi, uxi ,
where (x1, x2, x3) = (x, y, t). These transformations constitute the nat-
ural equivalence group of the problem.

The linearized equation has the form

Fijvxixj = 0

and defines a conformal structure g = gijdx
idxj where the matrix of gij

is the inverse of Fij = ∂F/∂uxixj . Our first result is as follows.

Theorem 6. Equation (5) is linearizable by a transformation from
the equivalence group Sp(6) if and only if the conformal structure g is
conformally flat on every solution.

Proof. Solving for utt (we can always bring our equation into the
form with a non-trivial dependence on utt due to the presence of a large
equivalence group), we can rewrite (5) in the form

(17) utt = f(uxx, uxy, uyy, uxt, uyt).

The corresponding linearized equation is

vtt = fuxxvxx + fuxyvxy + fuyyvyy + fuxtvxt + fuytvyt,
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with the associated conformal structure g♯ (with upper indices) defined
by the matrix

(18) P =













fuxx

1
2fuxy

1
2fuxt

1
2fuxy fuyy

1
2fuyt

1
2fuxt

1
2fuyt −1













.

We require this structure to be conformally flat for every background
solution u(x, y, t). Calculating the Cotton tensor (10) and using (17) and
its differential consequences to eliminate all higher-order derivatives of u
containing differentiation by t more than once, we obtain a complicated
expression that has to vanish identically in the remaining higher-order
derivatives of u (maximum fifth-order derivatives will appear in this
calculation). In particular, requiring that coefficients at the remaining
fifth-order derivatives of u vanish identically, we obtain nine second-
order differential constraints for f :

fuxxfuxtuxt + fuxxuxx = 0, fuyyfuytuyt + fuyyuyy = 0,

fuxtfuxtuxt + 2fuxtuxx = 0, fuytfuytuyt + 2fuytuyy = 0,

fuytfuxtuxt + 2(fuxtfuxtuyt + fuxtuxy + fuytuxx) = 0,

fuxtfuytuyt + 2(fuytfuxtuyt + fuytuxy + fuxtuyy) = 0,(19)

fuxyfuxtuxt + 2fuxxfuxtuyt + 2fuxxuxy = 0,

fuxyfuytuyt + 2fuyyfuxtuyt + 2fuyyuxy = 0,

fuyyfuxtuxt + fuxxfuytuyt + 2fuxyfuxtuyt + 2fuxxuyy + fuxyuxy = 0.

It was shown in [60, 6, 13] that these relations characterize symplectic
Monge–Ampère equations; i.e., PDEs (5) such that the left-hand side F
can be represented as a linear combination of all possible minors of the
Hessian matrix of u,

U =





uxx uxy uxt
uxy uyy uyt
uxt uyt utt



 .

Symplectic Monge–Ampère equations and differential constraints (19)
have a clear geometric interpretation. Let us consider the Lagrangian
Grassmannian Λ6 that can be (locally) parametrized by 3× 3 symmet-
ric matrices U . Minors of U define the Plücker embedding of Λ6 into
projective space P 13. We will identify Λ6 with the image of this pro-
jective embedding. Symplectic Monge–Ampère equations can be viewed
as hyperplane sections M5 of Λ6 ⊂ P 13. We point out that differential
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constraints (19) can be represented in compact form as

d2f = 2a0(dfduxy − duxtduyt) + 2a1(dfduyy − (duyt)
2)

+2a2(dfduxx − (duxt)
2) + 2b0(duxxduyy − (duxy)

2)(20)

+2b1(duxtduxy − duytduxx) + 2b2(duytduxy − duxtduyy).

Indeed, they follow from (20) by elimination of the coefficients ai, bi.
Here d2f is the symmetric differential of f . Notice that d2f and the
six quadratic expressions on the right-hand side of (20) are nothing
but second fundamental forms of the submanifold M5 ⊂ Λ6 ⊂ P 13

defined by (17). Furthermore, the six fundamental forms on the right-
hand side of (20) are the restrictions to M5 of the second fundamental
forms of Λ6 ⊂ P 13. Thus, (20) says that M5 has no nontrivial second
fundamental forms “of its own”; i.e., all its second fundamental forms
can be obtained as restriction of the second fundamental forms of Λ6.
This is an obvious necessary condition for a submanifold M5 ⊂ Λ6 ⊂
P 13 to be a hyperplane section. In the present case, it is also sufficient.
Calculating consistency conditions for (20), we obtain the system

da0 = a0ϕ− 2s du12, db0 = b0ϕ+ s df,

da1 = a1ϕ+ s du11, db1 = b1ϕ+ 2s du02,(21)

da2 = a2ϕ+ s du22, db2 = b2ϕ+ 2s du01, ds = sϕ.

Here ϕ = a0duxy + a1duyy + a2duxx, and s is yet another auxiliary
function. One can verify that dϕ = 0. Equations (20) and (21) consti-
tute an involutive differential system for f that characterizes symplectic
Monge–Ampère equations.

Once we know that our PDE is of symplectic Monge–Ampère type,
there are two ways to proceed. The first one is to use the fact that
linearizable Monge–Ampère equations correspond to special hyperplane
sections of Λ6 such that the corresponding hyperplane is tangential to
Λ6, i.e., belongs to the dual variety [29, 16]. Written in differential form,
this simple geometric property gives just one extra condition that can
be used to express s (via a cumbersome formula reflecting the fact the
the dual variety of Λ6 is a complicated quartic hypersurface):

s = −1
4 detP

(

a20fuxxfuyy + a21f
2
uxx

+ a22f
2
uyy

−a0a1fuxxfuxy − a0a2fuxyfuyy + a1a2(f
2
uxy

− 2fuxxfuyy)

−a0b0(fuxtfuyt + fuxy)− a0b1fuxtfuyy − a0b2fuytfuxx

+a1b0(f
2
uxt

+ 2fuxx) + a1b1(fuxtfuxy − fuytfuxx) + a1b2fuxtfuxx

+a2b0(f
2
uyt

+ 2fuyy) + a2b1fuytfuyy + a2b2(fuytfuxy − fuxtfuyy)

+b20 − b21fuyy − b22fuxx − b0b1fuyt − b0b2fuxt − b1b2fuxy

)

,

where the matrix P is given by (18).
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A direct calculation shows that the remaining coefficients of the
Cotton tensor vanish if and only if the above linearizability condition
holds. This, however, is a rather complicated calculation.

Another way is to use the fact that, in three dimensions, any non-
degenerate symplectic Monge–Ampère equation is either linearizable or
Sp(6)-equivalent to one of the three canonical forms [48, 3]

(22) Hess u = 1, Hessu = uxx+uyy+utt, Hessu = uxx+uyy−utt.

The first of these equations governs improper affine hyperspheres, while
the last two describe special Lagrangian 3-folds. One can verify by a
direct calculation that formal linearizations of the equations (22) are
not conformally flat for generic solutions. Thus, once again conformal
flatness proves to be equivalent to the linearizability. q.e.d.

As in the previous cases, formal linearizations of integrable equations
of the form (5) give rise to conformal structures satisfying the Einstein–
Weyl property.

Example 1. The equation eutt = euxx + euyy appeared in [29] in the
classification of integrable PDEs of the form F (uxx, uyy, utt) = 0.
Conformal structure: g = e−uxxdx2 + e−uyydy2 − e−uttdt2.
Covector: ω = 2(utttdt+ uxxxdx+ uyyydy)− d(utt + uxx + uyy).

Example 2. The equation utt =
uxy

uxt
+1

6η(uxx)u
2
xt appeared in [56] in the

classification of integrable hydrodynamic chains. Here the integrability
conditions reduce to the Chazy equation for η, η′′′ + 2ηη′′ = 3(η′)2.
Conformal structure:

g = 4uxtdxdy −
(

2

3
η′u4xt + s2

)

dy2 + 2sdydt− dt2, s =
1

3
ηu2xt −

uxy
uxt

.

Covector:

ω =
[

(19 u
3
txη η

′ + 2
3 u

3
txη

′′ − 1
3 uxyη

′)uxxx + (uxyu
−3
tx − 1

3 η)uxxy

+ (29 u
2
txη

2 + 8
3 u

2
txη

′ − u2xyu
−4
tx − 1

3 uxyu
−1
tx η)utxx

− 2u−1
tx utxy + (23 utxη + 4uxyu

−2
tx )uttx

]

dy

−
[

1
3η

′ utxuxxx − u−2
t,xuxxy + (uxyu

−3
tx + 2

3η)utxx − 2u−1
tx uttx

]

dt.

This structure is Einstein–Weyl if and only if η solves the Chazy equa-
tion.

The second main result of this section is as follows:

Theorem 7. Equation (5) is integrable by the method of hydrody-
namic reductions if and only if the corresponding conformal structure g
is Einstein–Weyl on every solution, with the covector ω given by (8).
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Proof. Given an equation of the form (5), the conformal structure
of its formal linearization is g = gijdx

idxj , where gij is the inverse of

Fij . We will seek a covector ω = ωkdx
k in the form ωk = T ijl

k uxixjxl ,

where T ijl
k are certain functions of the second-order derivatives of u.

Imposing the Einstein–Weyl equations (7) and using (5) and its differ-
ential consequences to eliminate all higher-order derivatives of u that
contain differentiation by t more than once (we use the representation
(17); maximum fourth-order derivatives of u will occur in this calcula-
tion), we obtain a set of relations which have to vanish identically in the
remaining partial derivatives of u. Thus, equating to zero coefficients at
the fourth-order derivatives of u, we obtain the expression (8) for ω.

With this expression, R − Λ g is purely quadratic in the third-order
derivatives uxixjxl . Choosing Λ in such a way that dt2 term disappears,
we get 5 · 28 = 140 coefficients at these quadratic terms that are third-
order differential polynomials in f . Note that these coefficients are lin-
ear in the third-order derivatives of f . Their vanishing is equivalent to
some 35 identities constituting an involutive closed system of third-order
PDEs for f . These are precisely the integrability conditions as derived
in [29]. q.e.d.

6. Type IV: systems of hydrodynamic type

In this section we discuss geometric aspects of integrable systems of
hydrodynamic type (6),

A(u)ux +B(u)uy +C(u)ut = 0,

where u = (u1, u2)t is a two-component column vector of the dependent
variables, and A(u), B(u), C(u) are 2 × 2 matrices. It will be assumed
that there is a matrix in the span of A,B,C that is hyperbolic. This
class is invariant under arbitrary changes of variables u1, u2, as well as
linear transformations of x, y, t, which constitute the natural equiva-
lence group of the problem. If C is non-degenerate, the multiplication
by C−1 brings the system into evolutionary form. The integrability of
systems of hydrodynamic type was investigated in [27]. In was shown in
[54] that generic integrable system of the form (6) can be parametrized
by generalized hypergeometric functions. The linearized system has the
form

A(u)vx +B(u)vy + C(u)vt + · · · = 0,

where dots denote terms which do not contain derivatives of v. The
corresponding dispersion relation (which coincides with the equation
for characteristic covectors) is given by the formula

det(λ1A(u) + λ2B(u) + λ3C(u)) = 0.

The left-hand side is a quadratic form Q in λ = (λ1, λ2, λ3): Q(λ) =
λ ·D · λt, where D = D(u) is a 3× 3 symmetric matrix. It defines the
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conformal structure g = gijdx
idxj , where the matrix of gij is the inverse

of D. Recall that (x1, x2, x3) = (x, y, t). Our first result is as follows:

Theorem 8. System (6) is linearizable by a transformation from
the equivalence group if and only if it is integrable and the conformal
structure g is conformally flat on every solution (note that conformal
flatness alone is no longer sufficient for the linearizability).

Proof. Without any loss of generality, one can assume that system
(6) is represented in the form

(23)





u1

u2





t

+





a 0

0 b









u1

u2





x

+





p q

r s









u1

u2





y

= 0

(multiply by C−1 and use a change of variables u1, u2 to make the ma-
trix C−1A diagonal: such diagonalization is always possible in the two-
component hyperbolic situation). Here the matrix elements a, b, p, q, r, s
are functions of u1, u2. The corresponding dispersion relation takes the
form

(24) (λ1a+ λ2p+ λ3)(λ1b+ λ2s+ λ3)− qr(λ2)2 = 0,

with the associated matrix

D(u) =













ab as+bp
2

a+b
2

as+bp
2 ps− qr p+s

2

a+b
2

p+s
2 1













.

This gives rise to the conformal structure g = gijdx
idxj , where the

matrix of gij is the inverse of D. We require g to be conformally flat
for every background solution u. Calculating the Cotton tensor (10)
and using (23) and its differential consequences to eliminate all higher-
order derivatives of u that contain differentiation by t, we obtain the
expression which has to vanish identically in the remaining higher-order
derivatives of u (maximum third-order derivatives will appear in this
calculation). In particular, requiring that coefficients at the remaining
third-order derivatives of u vanish identically, we obtain that a, b, p, s,
and qr must be constant (thus, all coefficients of the dispersion rela-
tion are constants). In this case, the rest of the Cotton tensor vanishes
identically. By a transformation from the equivalence group any such
system can be brought to the form

u1t = qu2y, u1y = qu2x,

where q is still an arbitrary function of u1, u2. For generic q, such sys-
tems are neither linearizable nor integrable. Imposing the integrabil-
ity conditions as derived in [27], we obtain just one extra constraint,
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(ln q)u1u2 = 0, which is equivalent to the existence of a change of vari-
ables u1 → ϕ1(u1), u2 → ϕ2(u2) bringing system (23) to a constant
coefficient form. q.e.d.

Formal linearizations of integrable systems of the form (6) give rise
to conformal structures satisfying the Einstein–Weyl property.

Example 1. Let us consider the system

u1t +
u1u1x + u2u2x
(u1)2 + (u2)2

+
u1u2y − u2u1y
(u1)2 + (u2)2

= 0,

u2t +
u2u1x − u1u2x
(u1)2 + (u2)2

+
u1u1y + u2u2y
(u1)2 + (u2)2

= 0,

which was obtained in [26] as the first-order form of the Boyer–Finley
equation: indeed, the expression ρ = (u1)2+(u2)2 satisfies the equation

ρtt = △ ln ρ,

△ = ∂2x + ∂2y . In this case, the dispersion relation is

(λ1)2 + (λ2)2

ρ
− (λ3)2 = 0.

The corresponding Einstein–Weyl structure takes the familiar form [68]:
Conformal structure: g = ρ(dx2 + dy2)− dt2.
Covector: ω = 2ρt

ρ dt.

Example 2. A class of Hamiltonian systems of hydrodynamic type can
be represented in the form

(25) vt + (Hv)y = 0, wx + (Hw)y = 0;

here H(v,w) is the Legendre transform of the Hamiltonian density. The
dispersion relation,

(λ2Hvv + λ3)(λ2Hww + λ1)− (λ2Hvw)
2 = 0,

gives rise to the conformal structure

g = (dy −Hwwdx−Hvvdt)
2 − 4H2

vwdxdt.

The corresponding covector ω is given by the formula (8),

H2
vwω =

(

Hww∆y + 2H2
vw(Hww)y +Hww

(

(Hvv)x + (Hww)t
)

)

dx

−
(

∆y + (Hvv)x + (Hww)t

)

dy

+
(

Hvv∆y + 2H2
vw(Hvv)y +Hvv

(

(Hvv)x + (Hww)t
)

)

dt;

here ∆ = HvvHww−2H2
vw. One can verify that g, ω satisfy the Einstein–

Weyl constraints if and only if the potential H(v,w) satisfies the set
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of integrability conditions as derived in [26] based on the method of
hydrodynamic reductions:

(26)

HvwHvvvv = 2HvvvHvvw,

HvwHvvvw = 2HvvvHvww,

HvwHvvww = HvvwHvww +HvvvHwww,

HvwHvwww = 2HvvwHwww,

HvwHwwww = 2HvwwHwww.

This system is in involution. It was shown in [33] that its generic solution
is given by the formula

(27) H(v,w) = Z(v + w) + ǫZ(v + ǫw) + ǫ2Z(v + ǫ2w);

here ǫ = e2πi/3, and Z ′′(s) = ζ(s), where ζ is the Weierstrass zeta-
function: ζ ′ = −℘, (℘′)2 = 4℘3 − g3 (equianharmonic case g2 = 0).
Degenerations of this solution correspond to

H(v,w) =
1

2
v2ζ(w), H(v,w) = (v + w) ln(v + w),

as well as the following polynomial potentials:

H(v,w) = v2w2, H(v,w) = vw2 +
α

5
w5, H(v,w) = vw +

1

6
w3.

The second main result of this section is as follows:

Theorem 9. System (6) with non-constant dispersion relation is in-
tegrable by the method of hydrodynamic reductions if and only if the
corresponding conformal structure g is Einstein–Weyl on every solution,
with the covector ω given by (8).

Proof. We will give two proofs of this result. The first one is com-
putational, based on the explicit calculation of the Einstein–Weyl con-
straints and the integrability conditions as derived in [27]. The second
proof utilizes the fact that any two-component integrable system of hy-
drodynamic type possesses a dispersionless Lax pair [27].

The first proof can be summarized as follows. We consider system
(6) represented in the form (23). The associated conformal structure is
g = gijdx

idxj, where gij is the inverse of D. We will seek a covector

ω = ωkdx
k in the form ωk = T i

kju
j
xi , where T

i
kj are certain functions of

u1, u2. Imposing the Einstein–Weyl equations (7) and using (23) and its
differential consequences to eliminate all higher-order derivatives of u
that contain differentiation by t (maximum second-order derivatives of
u will occur in this calculation), we obtain a set of relations that have to
vanish identically in the remaining partial derivatives of u. Thus, equat-
ing to zero coefficients at the second-order derivatives of u, we obtain the
expression (8) for ω. Equating to zero the remaining terms, we obtain
15 relations providing all second-order partial derivatives (in u1, u2) of
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the coefficients of the dispersion relation, i.e., of a, b, p, s, and qr. These
relations constitute part of the total set of 16 integrability conditions
as derived in [27]. To recover the missing condition, we calculate the
compatibility conditions for the 15 relations at hand. This leads to the
following two cases:

Case 1: All coefficients of the dispersion relation are constant, in this
case all of the 15 relations are satisfied identically. Any such system can
be brought to the form u1t = qu2y, u

1
y = qu2x, see the proof of Theorem

8. Although the Einstein–Weyl property is trivially satisfied, the system
does not need to be integrable for generic q(u1, u2). This is why we need
to eliminate the case of constant dispersion relation from the statement
of Theorem 9.

Case 2: One of the 15 relations—namely, the expression for the mixed
derivative (qr)u1u2 , splits into two separate expressions for qu1u2 and
ru1u2 . This gives all of the 16 integrability conditions as derived in [27]
based on the method of hydrodynamic reductions, thus finishing the
first proof.

As in Theorem 5, there exists another demonstration that the inte-
grability is equivalent to the Einstein–Weyl property. It is based on the
fact that any integrable system of hydrodynamic type, which we again
assume represented in the form (23), possesses a dispersionless Lax pair

(28) St = f(Sy, u
1, u2), Sx = g(Sy, u

1, u2).

This means that the consistency condition Stx = Sxt is equivalent to
the system (23). Differentiating (28) by y and setting Sy = λ, we obtain

(29) λt = fλλy + fu1u1y + fu2u2y, λx = gλλy + gu1u1y + gu2u2y.

With this system we associate the pair of vector fields

X =
∂

∂t
−fλ

∂

∂y
+(fu1u1y+fu2u2y)

∂

∂λ
, Y =

∂

∂x
−gλ

∂

∂y
+(gu1u1y+gu2u2y)

∂

∂λ
,

which live in the extended four-dimensional space with coordinates
x, y, t, λ. Note that the compatibility condition λtx = λxt is equivalent to
the commutativity of these vector fields. Projecting the two-parameter
family of integral surfaces of the distribution spanned by X,Y to the
space of independent variables x, y, t, we obtain a two-parameter family
of null totally geodesic surfaces of the Weyl connection D. This can be
seen as follows. Equations (29) mean that the vectors X,Y are tangen-
tial to the hypersurface λ = λ(x, y, t). Projecting X and Y to the space
of independent variables x, y, t, we obtain two vector fields

X̂ =
∂

∂t
− fλ

∂

∂y
, Ŷ =

∂

∂x
− gλ

∂

∂y
,

which commute if and only if λ satisfies the equations (29). It remains to

show that X̂ and Ŷ form a null distribution (i.e., tangential to the null
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cones of the conformal structure g), and that the covariant derivatives

DX̂X̂, DX̂ Ŷ , DŶ X̂, DŶ Ŷ belong to the span of X̂, Ŷ . Equivalently, one

can introduce the covector θ = gλdx+ dy + fλdt that annihilates X̂, Ŷ
and verify that θ is null, and that DX̂θ ∧ θ = DŶ θ ∧ θ = 0. This follows

from the equations satisfied by the functions f(λ, u1, u2) and g(λ, u1, u2)
as derived in [27]:

fu1 = −a gu1 , fu2 = −b gu2 ,

fλ =
b
(

p+r
g
u2

g
u1

)

−a
(

s+q
g
u1

g
u2

)

a−b , gλ =
s+q

g
u1

g
u2

−p−r
g
u2

g
u1

a−b ,

gu1u1 =
g
u1

(

g2
u2

(r(b
u1−a

u1 )+(a−b)r
u1 )+g

u1gu2((a−b)p
u1+(s−p)a

u1−ra
u2 )+qa

u1g
2
u1

)

(a−b)rg2
u2

,

gu1u2 = 1
b−a (au2 gu1 − bu1 gu2) ,

gu2u2 =
g
u2

(

g2
u1

(q(a
u2−b

u2 )+(b−a)q
u2 )+g

u1gu2((b−a)s
u2+(p−s)b

u2−qb
u1 )+rb

u2g
2
u2

)

(b−a)qg2
u1

.

Note that fλ and gλ satisfy the relation

(a gλ + p+ fλ)(b gλ + s+ fλ)− qr = 0,

which means that the covector θ is null in the conformal structure de-
fined by the dispersion relation (24). This finishes the second proof of
Theorem 9. q.e.d.

7. Further integrable examples in 3D

In this section we collect miscellaneous examples of dispersionless
integrable systems in 3D related to Einstein–Weyl geometry, which do
not fit into the classes discussed above.

Example 1. The following system was derived by Manakov and Santini
[51] as a two-component generalization of the dKP equation:

uxt−uyy+(uux)x+vxuxy−vyuxx = 0, vxt−vyy+uvxx+vxvxy−vyvxx = 0.

Its formal linearization results upon setting u → u+ ǫu1, v → v + ǫv1,
which gives

Lu1 + · · · = 0, Lv1 + · · · = 0;

here L = ∂x∂t − ∂2y + (u − vy)∂
2
x + vx∂x∂y, and dots denote terms that

do not contain second-order derivatives of u1 and v1. The symbol of L
gives rise to the conformal structure

g = (dy − vxdt)
2 − 4(dx− (u− vy)dt)dt,

which satisfies the Einstein–Weyl equations with the corresponding cov-
ector ω given by the formula (8):

ω = −vxxdy + (4ux − 2vxy + vxvxx)dt.

This Einstein–Weyl structure was obtained in [19].
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Example 2. The following system was proposed by Bogdanov [4] as a
two-component generalization of the BF equation:

(e−φ)tt = mtφxy −mxφyt, mtte
−φ = mxmyt −mtmxy.

Its formal linearization results upon setting φ→ φ+ǫφ1, m→ m+ǫm1,
which gives

Lφ1 + · · · = 0, Lm1 + · · · = 0;

here L = e−φ∂2t −mx∂y∂t +mt∂x∂y, and dots denote terms that do not
contain second-order derivatives of φ1 and m1. The symbol of L gives
rise to the conformal structure

g = (mxdx+mtdt)
2 + 4e−φmtdxdy,

which satisfies the Einstein–Weyl equations with the corresponding cov-
ector ω given by the formula (8):

ω =

(

mtt

m2
t

− 2
φt
mt

)

(mx dx+mt dt) + 2
myt

mt
dy.

Example 3. The equation

(30) mρ
tmtt = mxmyt −mtmxy

was obtained in [4] as a reduction of the two-component BF system
from Example 2: set φ = −ρ lnmt. Since this equation fits into the class
of quasilinear wave equations discussed in Section 4, it gives rise to the
Einstein–Weyl geometry with the corresponding conformal structure

g = (mxdx+mtdt)
2 + 4mρ+1

t dxdy,

and the covector ω given by (8):

ω = (2ρ+ 1)
mtt

m2
t

(mx dx+mt dt) + 2
myt

mt
dy.

Note that these g and ω result, via the substitution φ = −ρ lnmt, from
the formulae of Example 2. It was pointed out in [5] that, applying to
this equation the contact transformation defined as

(x, y, t,m,mx,my,mt) → (x, y, τ, F, Fx, Fy, Fτ ),

where τ = 1
2 lnmt and

F =
m− tmt√

mt
, Fx =

mx√
mt

, Fy =
my√
mt

, Fτ = −2t
√
mt −

m− tmt√
mt

,

one obtains the equation derived by Dunajski and Tod in the context
hyper-Kähler metrics with conformal symmetry [22],

(31) (Fy + Fyτ )(Fx − Fxτ )− (F − Fττ )Fxy = 4e2ρτ .

It was shown in [22] that this equation gives rise to the Einstein–Weyl
structure

g = (Fdτ + Fxdx− Fydy − dFτ )
2 + 16e2ρτdxdy,
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ω = 4ρdτ +
(2 + 4ρ)(Fx − Fxτ )dx+ (2− 4ρ)(Fy + Fyτ )dy

F − Fττ
.

One can verify that the Einstein–Weyl structure of the equation (31)
can be obtained from that of the equation (30) by applying the above
contact transformation (and an appropriate rescaling). Note that in the
last case the covector ω is no longer given by our formula (8) (unless
ρ = 0, in which case the equation becomes translationally invariant).
The reason for this is that, although the Einstein–Weyl property is
clearly contact-invariant, this is not the case for our formula for ω. We
recall that, given a conformal structure g, the problem of reconstruction
of the corresponding covector ω from the Einstein–Weyl constraints is
far from trivial [24]. What simplifies this problem in our case is that
ω should be given by a “universal” formula depending on finite-order
jets of a solution u. In any case, a fully contact-invariant approach to
dispersionless integrable systems in 3D is yet to be developed.

8. Integrability in 4D and self-duality

There are very few classification results in 4D. Here we consider the
case of symplectic Monge–Ampère equations, i.e., equations represented
as linear combinations of minors of the Hessian matrix of a function
u(x1, x2, x3, x4), which constitute a subclass of equations of type III (in
4D). Below, uij denotes uxixj .

Theorem 10 ([16]). Over the field of complex numbers, any in-
tegrable non-degenerate symplectic Monge–Ampère equation is Sp(8)-
equivalent to one of the following normal forms:

1) u11 − u22 − u33 − u44 = 0 (linear wave equation);
2) u13 + u24 + u11u22 − u212 = 0 (second heavenly equation [59]);
3) u13 = u12u44 − u14u24 (modified heavenly equation);
4) u13u24 − u14u23 = 1 (first heavenly equation [59]);
5) u11 + u22 + u13u24 − u14u23 = 0 (Husain equation [40]);
6) αu12u34 + βu13u24 + γu14u23 = 0 (general heavenly equation),

α+ β + γ = 0.

These heavenly-type equations are known to possess Lax pairs of the
form [X1,X2] = 0, where X1,X2 are parameter-dependent vector fields
that commute modulo the corresponding equations [59, 40, 16, 50]:

Second heavenly equation u13 + u24 + u11u22 − u212 = 0:

X1 = ∂4 + u11∂2 − (u12 − λ)∂1, X2 = ∂3 − (u12 + λ)∂2 + u22∂1.

Modified heavenly equation u13 = u12u44 − u14u24:

X1 = u14∂2 − u12∂4 + λ∂1, X2 = u44∂2 − (u24 − λ)∂4 − ∂3.

First heavenly equation u13u24 − u14u23 = 1:

X1 = u13∂4 − u14∂3 + λ∂1, X2 = −u23∂4 + u24∂3 − λ∂2.
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Husain equation u11 + u22 + u13u24 − u14u23 = 0:

X1 = ∂2 + u13∂4 − u14∂3 + λ∂1, X2 = ∂1 − u23∂4 + u24∂3 − λ∂2.

General heavenly equation αu12u34 + βu13u24 + γu14u23 = 0:

X1 = ∂1−
u13
u34

∂4+γλ
(

∂1−
u14
u34

∂3

)

, X2 =
u23
u34

∂4−∂2+βλ
(

∂2−
u24
u34

∂3

)

.

One can show that the distribution spanned by X1 and X2 is totally
null with respect to the conformal structure provided by the symbol of
formal linearization. The integrability of this distribution for any value
of the spectral parameter λ implies the existence of a three-parameter
family of null surfaces (α-surfaces), the property known to be equivalent
to self-duality. Another way to see this is to notice that the above Lax
pairs are linear in λ:

X1 = X + λY, X2 = P + λQ.

Furthermore, the corresponding formal linearizations can be written in
the form

(XQ− Y P )v + · · · = 0,

where the expression XQ− Y P is understood as a second-order differ-
ential operator and dots denote terms containing first-order derivatives
of v. According to [21, 37], this means that the symbols of formal lin-
earizations must be self-dual (in fact, hypercomplex, but this property
is known to imply self-duality). These and other examples support the
following conjectures relating the linearizability/integrability of four-
dimensional PDEs to conformal geometry of symbols of their formal
linearizations:

• A 4D second-order dispersionless PDE is linearizable (by a trans-
formation from the appropriate equivalence group) if and only if
the corresponding conformal structure is conformally flat on every
solution.

• A 4D second-order dispersionless PDE is integrable by the method
of hydrodynamic reductions if and only if the corresponding con-
formal structure is (anti) self-dual on every solution. Since the
equations of self-duality are known to be integrable by the twistor
construction [57], this supports the evidence that solutions to in-
tegrable PDEs must carry integrable geometry.

A convenient approach to the integrability of four-dimensional PDEs is
based on the requirement that all their traveling wave reductions to 3D
must be integrable. This necessary condition turns out to be very strong
indeed, and in many cases is already sufficient for integrability [16].
Since the integrability in 3D is related to the Einstein–Weyl condition,
this gives yet another confirmation of the well-known fact that symmetry
reductions of the self-duality equations lead to Einstein–Weyl geometry
[42, 9, 10].
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9. Appendix: the method of hydrodynamic reductions

As proposed in [26], the method of hydrodynamic reductions applies
to first-order quasilinear systems of the form

(32) A(u)ux +B(u)uy + C(u)ut = 0,

or equations transformable into this form by a suitable change of vari-
ables. Here u = (u1, . . . , um)t is an m-component column vector of the
dependent variables and A,B,C are l×m matrices where l, the number
of equations, is allowed to exceed the number of the unknowns, m. The
system (32) will be assumed involutive with the general solution depend-
ing on a certain number of arbitrary functions of two variables. Systems
of this type are referred to as 3D dispersionless PDEs. Typically, they
arise as dispersionless limits of integrable soliton equations: the canon-
ical example is the KP equation, ut − uux + ǫ2uxxx −wy = 0, wx = uy,
which assumes the form (32) in the limit ǫ→ 0.

It will be demonstrated below that equations of types (3)–(5) are
indeed within the class (32). The method of hydrodynamic reductions
consists of seeking N -phase solutions in the form

(33) u = u(R1, . . . , RN ),

where every “phase” Ri(x, y, t), 1 ≤ i ≤ N , is required to satisfy a pair
of consistent equations (no summation)

(34) Ri
y = µi(R)Ri

x, Ri
t = λi(R)Ri

x.

The variables Ri are also known as Riemann invariants. The compat-
ibility conditions Ri

yt = Ri
ty imply the following restrictions for the

characteristic speeds µi and λi:

(35)
∂jµ

i

µj − µi
=

∂jλ
i

λj − λi
, i 6= j, ∂i =

∂

∂Ri
.

Commuting systems of the form (34) can be solved by the general-
ized hodograph method [67]. Equations of the form (34) are known
as N -component systems of hydrodynamic type; their Hamiltonian and
geometric aspects have been thoroughly investigated in [17, 67].

We require that every solution of (34) gives rise to a solution of the
original system (32) via (33). In this case, equations (34) are said to
constitute an N -component hydrodynamic reduction of the original sys-
tem. Each hydrodynamic reduction can be viewed as a decomposition
of the original m-component 3D system into a pair of commuting N -
component 2D systems. It is remarkable that there exist 3D systems
possessing an infinity of such reductions.
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Definition ([26]). The system (32) is said to be integrable by the
method of hydrodynamic reductions if, for any N , it possesses infin-
itely many N -component hydrodynamic reductions parametrized by N
arbitrary functions of one variable.

One can show that the existence of 3-component reductions depend-
ing on three arbitrary functions of one variable is already sufficiently
restrictive, and implies the integrability. This is reminiscent of the well-
known 3-soliton condition in the Hirota bilinear approach. For a par-
ticular reduction, the corresponding solutions constitute only a very
narrow subclass of solutions of the original system (32). As N varies,
solutions coming from N -component hydrodynamic reductions form an
ever growing subset of solutions of the system (32) that is, in a sense,
locally dense (i.e., these solutions do not satisfy any finite-order dif-
ferential constraints other than the equation itself and its differential
consequences). Multi-phase solutions of this form originate from gas
dynamics [62, 7, 58, 38, see also references therein]. They are some-
times referred to as non-linear interactions of planar simple waves. For
N = 1, 2, they are called simple waves and double waves, respectively,
and belong to the class of solutions with a degenerate hodograph.

The above definition provides an efficient classification criterion. In
general, one proceeds as follows: substituting (33) into (32) and using
(34), one obtains

(36) (A+ µiB + λiC)∂iu = 0.

The condition of the non-trivial solvability of this linear system provides
the dispersion relation for the characteristic speeds µi and λi for any
i = 1, . . . , N . Namely, the pair λ, µ (more precisely, the covector dx +
µdy + λdt) is called characteristic if

rk(A+ µB + λC) < m.

We will assume that the dispersion relation defines an irreducible alge-
braic curve. For instance, in the case l = m this gives an algebraic curve
of degree m,

det(A+ µB + λC) = 0.

In the language of PDEs, this is the part of the characteristic variety of
our system [44] lying in an affine chart.

For all examples discussed in this paper, the dispersion relation re-
duces to a non-degenerate conic determined by the symbol of formal
linearization. Equations (35) and (36) form an overdetermined system
for the functions u(R) and the characteristic speeds µi(R), λi(R). The
requirement that they are consistent, with the general solution depend-
ing on N arbitrary functions of one variable, leads to the integrability
conditions in terms of the original matrices A,B,C. Let us illustrate



246 E. V. FERAPONTOV & B. S. KRUGLIKOV

the method of hydrodynamic reductions using the example of the dKP
equation, in which case all calculations can be verified by hand.

Example 1: hydrodynamic reductions of the dKP equation. Let
us write the dKP equation uxt − (uux)x − uyy = 0 in the form (32):

(37) ut − uux = wy, uy = wx.

Looking forN -phase solutions, u = u(R1, . . . , RN ), w = w(R1, . . . , RN ),
where the phases Ri satisfy Equations (34), one obtains the relations

(38) ∂iw = µi∂iu, λ
i = u+ (µi)2,

(the second one is the dispersion relation). The compatibility condition
∂i∂jw = ∂j∂iw implies the equations (1 ≤ i, j ≤ N)

(39) ∂i∂ju =
∂jµ

i

µj − µi
∂iu+

∂iµ
j

µi − µj
∂ju, i 6= j,

which, along with the commutativity conditions (35), result in the equa-
tions for u(R) and µi(R), known as the Gibbons–Tsarev system,

(40) ∂jµ
i =

∂ju

µj − µi
, ∂i∂ju = 2

∂iu∂ju

(µj − µi)2
, i 6= j,

first derived in [35] in the context of hydrodynamic reductions of the
Benney moment equations; see also [34].

For any solution µi, u of the system (40), one can reconstruct λi

and w by virtue of (38). The system (40) is compatible and its general
solution depends, modulo transformations Ri → f i(Ri), on N arbitrary
functions of one variable. This gives the required family of N -component
hydrodynamic reductions parametrized by N arbitrary functions of one
variable and establishes the integrability of dKP. We point out that
the compatibility conditions, ∂k∂jµ

i = ∂j∂kµ
i and ∂k∂i∂ju = ∂j∂i∂ku,

involve triples of indices i 6= j 6= k only. Thus, the consistency of the
system (40) for N = 3 implies its consistency for arbitrary N . This turns
out to be a general phenomenon: as mentioned above, the existence of
3-component reductions is already sufficient for the integrability.

Let us demonstrate that equations (3)–(6) can be brought into the
first-order quasilinear form (32).

Equations of type I:

axx + byy + ctt + 2pxy + 2qxt + 2ryt = 0.

Recall that a, b, c, p, q, r are functions of one and the same dependent
variable u. Consider the first-order system

ax + py + qt = −ϕt, by + px + rt = ψt, ct + qx + ry = ϕx − ψy,

which implies the above second-order PDE on elimination of the auxil-
iary potentials ϕ,ψ. This system is invariant under gauge transforma-
tions ϕ→ ϕ+ ηy, ψ → ψ+ ηx, where η is an arbitrary function of x, y.
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One can show that this gauge freedom can be eliminated by imposing
a compatible differential constraint

a′ψx + p′ψy + q′ψt + p′ϕx + b′ϕy + r′ϕt = 0.

This results in a system of the form (32), with u = (u, ϕ, ψ) and (l,m) =
(4, 3). It was investigated by the method of hydrodynamic reductions in
[32] (see Theorem 1 for the integrability conditions).

Equations of type II:

f11uxx + f22uyy + f33utt + 2f12uxy + 2f13uxt + 2f23uyt = 0.

Recall that fij are functions of the first-order derivatives of u only.
Setting ux = a, uy = b, ut = c, one obtains an equivalent first-order
representation,

ay = bx, at = cx, bt = cy,

f11ax + f22by + f33ct + 2f12ay + 2f13at + 2f23bt = 0,

where fij are now viewed as functions of a, b, c. This is again of the form
(32) with u = (a, b, c) and (l,m) = (4, 3). This type of equations was
investigated by the method of hydrodynamic reductions in [8].

Equations of type III:

F (uxx, uxy, uyy, uxt, uyt, utt) = 0.

Rewriting the equation in explicit form,

utt = f(uxx, uxy, uyy, uxt, uyt),

and setting uxx = a, uxy = b, uyy = c, uxt = p, uyt = q, utt =
f(a, b, c, p, q), one obtains a first-order quasilinear system by writing out
all possible consistency conditions among the second-order derivatives,

ay = bx, at = px, by = cx, bt = py = qx, ct = qy,

pt = f(a, b, c, p, q)x, qt = f(a, b, c, p, q)y .

This system is of the form (32), with u = (a, b, c, p, q) and (l,m) = (8, 5).
This type of equations was investigated by the method of hydrodynamic
reductions in [29].

Equations of type IV:

A(u)ux +B(u)uy +C(u)ut = 0.

This system is of the form (32), with (l,m) = (2, 2). It was investigated
by the method of hydrodynamic reductions in [27].

Remark 4 (hydrodynamic reductions of elliptic PDEs). Al-
though the method of hydrodynamic reductions was primarily designed
to deal with hyperbolic systems, it can be extended to elliptic PDEs.
The only difference is that, in the elliptic case, the dispersion curve
(characteristic variety) has no real points, so that the characteristic
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speeds µi, λi, as well as the variables Ri, must be complex. We will say
that an elliptic system (32) with real-analytic coefficients is integrable
by the method of hydrodynamic reductions if it possesses “infinitely
many” complex-valued solutions (33) where the complex phases Ri sat-
isfy the commuting systems (34). In this context, u, µi, λi are viewed as
complex-analytic functions of Ri. We would like to stress that the inte-
grability conditions for elliptic PDEs, as well as the procedure of their
derivation, are identically the same as in the hyperbolic case. Since the
integrability conditions are all we need to prove the Einstein–Weyl prop-
erty of the symbol of formal linearization, it will still hold for elliptic
integrable systems. On imposing appropriate “reality” constraints, the
above scheme can lead to elliptic reductions with real coefficients. Let
us demonstrate this using again the example of dKP.

Example 2: elliptic reduction of the dKP equation. Two-phase
solutions of the system (37) have the form u = u(R1, R2), w = w(R1, R2)
where the phases R1, R2 satisfy Equations (34). As shown in Example
1, one obtains the relations (38) for w and λi, along with the Gibbons–
Tsarev equations (40) for µi and u:

∂2µ
1 =

∂2u

µ2 − µ1
, ∂1µ

2 =
∂1u

µ1 − µ2
, ∂1∂2u = 2

∂1u∂2u

(µ2 − µ1)2
.

A particular solution of these equations (the so-called shallow water
reduction) is given by

µ1 = R2 + 3R1, µ2 = R1 + 3R2, u = (R1 −R2)2,

so that relations (38) imply

w = 2(R1 −R2)2(R1 +R2),

λ1 = 2(R1 +R2)2 + 8(R1)2, λ2 = 2(R1 +R2)2 + 8(R2)2.

Let us now allow R1 and R2 to be complex, such that R2 = R̄1. Setting
R1 = p+ iq, R2 = p− iq, we obtain u = −4q2, w = −16pq2 (both real!),
while equations (34) result, on separating real and imaginary parts, in
the following pair of two-component commuting elliptic systems with
real coefficients:

(

p
q

)

y

=

(

4p −2q
2q 4p

)(

p
q

)

x

,

(

p
q

)

t

=

(

16p2 − 8q2 −16pq
16pq 16p2 − 8q2

)(

p
q

)

x

.

Thus, we obtain a two-component elliptic reduction of dKP.

Remark 5 (hydrodynamic reductions in higher dimensions).
The method of hydrodynamic reductions generalizes to higher-dimensional
quasilinear systems, say,

A(u)ux +B(u)uy + C(u)uz +D(u)ut = 0.
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One again looks at N -phase solutions in the form

u = u(R1, . . . , RN ),

where the phases Ri(x, y, t) satisfy a triple of consistent equations

Ri
y = µi(R)Ri

x, R
i
t = λi(R)Ri

x, R
i
z = ηi(R)Ri

x;

see [25, 28] for further details.

10. Concluding remarks

(a) We have characterized the integrability of several classes of dis-
persionless PDEs in 3D by the Einstein–Weyl property of their formal
linearizations. It should be emphasized that the four types of equa-
tions under consideration, although invariant under certain equivalence
groups, are clearly not contact/point invariant. On the other hand, the
property for a second-order PDE to have Einstein–Weyl symbol of for-
mal linearization, is invariant under arbitrary contact (and more gener-
ally Lie–Bäcklund type) transformations. Although the covector ω will
no longer be given by the simple formula (8), it will still depend on
finite-order jets of the transformed equation. This suggests a contact-
invariant approach to the dispersionless integrability unifying all known
examples. The class of Monge–Ampère equations in 3D would be the
natural venue to develop a fully contact-invariant theory. We should
however, warn the reader that, in general, the Einstein–Weyl property
alone may not be sufficient for the dispersionless integrability: as we
saw in the proof of Theorem 8, the system u1t = qu2y, u

1
y = qu2x has a

conformally flat symbol but is not integrable for generic q(u1, u2).

(b) Solutions of dispersionless PDEs discussed in this paper, and the in-
duced Einstein–Weyl structures, are generally defined on open domains
in R

3. One cannot guarantee more, since the construction applies to
all solutions. We believe, however, that, for some particular solutions,
global aspects/singularities may come into play. As an illustration, let us
consider equations (5) of the dispersionless Hirota type. Geometrically,
an equation of this form specifies a hypersurface M5 in the Lagrangian
Grassmannian Λ6 [29]. For some particular integrable equations, such
as, e.g., the potential dKP equation uxt − u2xx − uyy = 0, this hyper-
surface is algebraic. Solutions of the equation correspond to Lagrangian
submanifolds in the six-dimensional symplectic space whose Gaussian
image belongs to M5. Some of them may give rise to algebraic 3-folds
in M5, with non-trivial global properties. The investigation of algebraic
solutions and the induced Einstein–Weyl structures is one of the inter-
esting problems left outside the scope of this paper.

(c) In the case of higher-order dispersionless PDEs in 3D, the symbol of
formal linearization defines a generalized conformal structure that sup-
plies each solution with a field of algebraic null cones. Furthermore, the



250 E. V. FERAPONTOV & B. S. KRUGLIKOV

Lax pair provides a two-parameter family of null surfaces. This suggests
that, in the spirit of [11], one can define the “generalized Einstein–
Weyl” property responsible for the integrability of higher-order PDEs.
We expect that our results will carry over to this more general context.

(d) Attempts to extend our results to dimensions higher than four meet
an immediate obstacle: all known integrable (non-linearizable) examples
in dimensions five and higher have degenerate symbols. Thus, their so-
lutions do not carry any conventional “geometry.” One possible way to
proceed is to require that non-degenerate traveling wave reductions of
such PDEs to 3D/4D give rise to Einstein–Weyl/self-dual geometries.

(e) Einstein–Weyl structures are known to be related to third-order
ODEs satisfying the so-called Wünschmann and Cartan relations [12,
66, 53]. Thus, every solution of a dispersionless integrable system has
a third-order ODE naturally associated with it (to be precise, a point
equivalence class of ODEs). The (complexified) space of the dependent
and independent variables of this ODE, which can be identified with the
space of null totally geodesic surfaces of the Einstein–Weyl structure,
is known as the “minitwistor” space [39, 65]. Solutions of this ODE
correspond to curves of totally geodesic surfaces passing through a fixed
point: these form a three-parameter family, and are known as “twistor
curves.” It would be of interest to develop an efficient procedure to
explicitly calculate this ODE for multi-phase solutions provided by the
method of hydrodynamic reductions.
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(1943), 1–16, MR 0014292, Zbl 0028.30802.

[12] E. Cartan, The geometry of differential equations of third order, Revista Mat.
Hisp.-Amer. 4 (1941), 3–33, MR 0004537, Zbl 0063.01955.

[13] A. Donato, U. Ramgulam & C. Rogers, The (3+1)-dimensional Monge–Ampère
equation in discontinuity wave theory: Application of a reciprocal transformation,
Meccanica 27 (1992), 257–262, Zbl 0764.35066.

[14] B. Doubrov, On a class of contact invariants of systems of ordinary differential
equations, Russian Math. (Iz. VUZ) 50, no. 1 (2006), 73–74, MR 2227551, Zbl
1176.53023.

[15] B. Doubrov, Generalized Wilczynski invariants for non-linear ordinary differen-
tial equations, in M. Eastwood and W. Miller (eds.), Symmetries and Overde-
termined Systems of Partial Differential Equations, IMA Vol. Math. Appl. 144
Springer, NY (2008), 25–40, MR 2384704, Zbl 1149.34026.

[16] B. Doubrov & E.V. Ferapontov, On the integrability of symplectic Monge–
Ampère equations, J. Geom. Phys. 60 (2010), 1604–1616, MR 2661158, Zbl
1195.35109.

[17] B.A. Dubrovin & S.P. Novikov, Hydrodynamics of weakly deformed soliton lat-
tices: differential geometry and Hamiltonian theory, Russian Math. Surveys, 44,
no. 6 (1989), 35–124, MR 1037010, Zbl 0712.58032.

[18] M. Dunajski & P. Tod, Einstein–Weyl spaces and dispersionless Kadomtsev-
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models and Painlevé reductions, J. Phys. A: Math. Theor. 45 (2012), 195–204,
MR 2924500, Zbl 1252.35017.

[33] E.V. Ferapontov, A. Moro & V. V. Sokolov, Hamiltonian systems of hydrody-
namic type in 2+1 dimensions, Comm. Math. Phys. 285, no. 1 (2009), 31–65,
MR 2453590, Zbl 1228.37041.

[34] J. Gibbons & Y. Kodama, A method for solving the dispersionless KP hierarchy
and its exact solutions. II, Phys. Lett. A 135, no. 3 (1989), 167–170, MR 0985513.

[35] J. Gibbons & S.P. Tsarev, Reductions of the Benney equations, Phys. Lett. A
211 (1996), 19–24, MR 1372470, Zbl 1072.35588; Conformal maps and reductions
of the Benney equations, Phys. Lett. A 258 (1999), 263–270, MR 1710008, Zbl
0936.35184.

[36] M. Godlinski & P. Nurowski, On three-dimensional Weyl structures with reduced
holonomy, Classical Quantum Gravity 23, no. 3 (2006), 603–608, MR 2202439,
Zbl 1087.53043.

[37] J.D.E. Grant & I.A.B. Strachan, Hypercomplex integrable systems, Nonlinearity
12, no. 5 (1999), 1247–1261, MR 1710101, Zbl 0934.35181.

[38] A. Grundland & R. Zelazny, Simple waves in quasilinear hyperbolic systems. I,
II. Riemann invariants for the problem of simple wave interactions, J. Math.
Phys. 24, no. 9 (1983), 2305–2328, MR 0715404, Zbl 0555.35080.

[39] N.J. Hitchin, Complex manifolds and Einstein’s equations, Twistor geometry
and nonlinear systems (Primorsko, 1980), 73–99, Lecture Notes in Math. 970,
Springer, Berlin/New York (1982), MR 0699802, Zbl 0507.53025.

[40] V. Husain, Self-dual gravity as a two-dimensional theory and conservation laws,
Classical Quantum Gravity 11, no. 4 (1994), 927–937, MR 1277228.

[41] N.Kh. Ibragimov, Transformation groups applied to mathematical physics
(translated from the Russian) Mathematics and its Applications (Soviet Series),
D. Reidel Publishing Co., Dordrecht, 1985, MR 0785566, Zbl 0558.53040.



INTEGRABLE DISPERSIONLESS PDE & EINSTEIN-WEYL GEOMETRY 253

[42] P.E. Jones & K.P. Tod, Minitwistor spaces and Einstein–Weyl spaces, Classical
Quantum Gravity 2, no. 4 (1985), 565–577, MR 0795102, Zbl 0575.53042.

[43] M. Juras & I. M. Anderson, Generalized Laplace invariants and the method of
Darboux, Duke Math. J. 89, no. 2 (1997), 351–375, MR 1460626, Zbl 0885.35075.

[44] I.S. Krasil’shchik, V.V. Lychagin & A.M. Vinogradov, Geometry of jet spaces
and nonlinear partial differential equations, Advanced Studies in Contemporary
Mathematics, 1. Gordon and Breach Science Publishers, New York, 1986, MR
0861121, Zbl 0722.35001.

[45] B. Kruglikov, Laplace transformation of Lie class ω = 1 overdetermined systems,
J. Nonlin. Math. Phys. 18, no. 4 (2011), 583–611, MR 2864633, Zbl 1243.35007.

[46] A. Kushner, Classification of Monge–Ampère equations, in B. Kruglikov, V. Ly-
chagin, E. Straume (eds.), Differential Equations: Geometry, Symmetries and In-
tegrability: The Abel Symposium 2008, Abel Symposia 5, Springer-Verlag, Berlin
(2009), MR 2562576, Zbl 1233.35005.

[47] C. LeBrun, Explicit self-dual metrics on CP2♯ · · · ♯CP2, J. Differential Geom. 34,
no. 1 (1991), 223–253, MR 1114461, Zbl 0725.53067.

[48] V.V. Lychagin, V.N. Rubtsov & I.V. Chekalov, A classification of Monge–
Ampère equations, Ann. Sci. Ecole Norm. Sup. 26, no. 4 (1993), 281–308, MR
1222276, Zbl 0789.58078.

[49] V.V. Lychagin & V. Yumaguzhin, Minkowski metrics on solutions of the
Khokhlov-Zabolotskaya equation, Lobachevskii J. Math. 30, no. 4 (2009), 333–
336, MR 2587855, Zbl 1225.35011.

[50] A.A. Malykh & M.B. Sheftel, General heavenly equation governs anti-self-dual
gravity, J. Phys. A 44, no. 15 (2011), 155201, MR 2783639, Zbl 1215.83026.

[51] S.V. Manakov & P.M. Santini, The Cauchy problem on the plane for the disper-
sionless Kadomtsev-Petviashvili equation, JETP Lett. 83 (2006), 462–466.

[52] J.J. Morales Ruiz, Differential Galois theory and non-integrability of Hamilton-
ian systems, Progress in Mathematics 179, Birkhäuser Verlag, Basel (1999), MR
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