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Abstract

The set of all error-correcting block codes over a fixed alphabet
with q letters determines a recursively enumerable set of ratio-
nal points in the unit square with coordinates (R, δ):= (relative
transmission rate, relative minimal distance). Limit points of this
set form a closed subset, defined by R ≤ αq(δ), where αq(δ) is
a continuous decreasing function called the asymptotic bound. Its
existence was proved by the first-named author in 1981 ([10]), but
no approaches to the computation of this function are known, and
in [14] it was even suggested that this function might be uncom-
putable in the sense of constructive analysis.

In this note we show that the asymptotic bound becomes com-
putable with the assistance of an oracle producing codes in the
order of their growing Kolmogorov complexity. Moreover, a natu-
ral partition function involving complexity allows us to interpret
the asymptotic bound as a curve dividing two different thermody-
namic phases of codes.

1. Introduction

In this article, we address again two related basic problems about as-
ymptotic bounds for codes, discussed recently in [14] and in [15]. The
first one is the problem of computability, or, more suggestively, plotta-
bility of the bound. The second one is the problem of interpretation of
this bound as a kind of phase-transition curve.

We start Section 2 below with precise definitions of the relevant no-
tions, and the reader may wish to turn to it immediately. Here we
restrict ourselves to some explanations on the intuitive level.

Consider all error-correcting block codes C in a fixed alphabet A with
q letters. Each such code determines its code point (R(C), δ(C)) in the
plane (R:= transmission rate, δ:= minimal relative Hamming distance).
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The asymptotic bound R = αq(δ) is a continuous curve in the plane
(R, δ) such that all limit points of the set of code points lie below or on
this bound, whereas all isolated code points lie above it.

Since 1981, when the existence of the asymptotic bound (and its ver-
sions for various structured codes, such as linear ones) was discovered
in [10], many estimates for it from above and from below were estab-
lished, but no exact formula was found. This led one of us to conjecture
in [14] that the function R = αq(δ) might be uncomputable (and its
graph unplottable) in the technical sense formalized in [5] and [3].

Here we treat codes assuming that an oracle is given that produces
them in the order of increasing Kolmogorov complexity, and show that
with the assistance of such an oracle R = αq(δ) becomes “plottable”
(Section 3), and that appropriate partition functions involving either
the Kolmogorov complexity or Levin’s prefix complexity ([7]) change
behavior across this asymptotic bound (Section 4). (At the end of [12]
it was argued that civilization is such a universal oracle.)

Slightly more precisely, it is known (see [4], [1], [18], and Section 2
below) that if one chooses first a natural enumeration of codes and then
generates error-correcting codes in the order of their “size” (actually,
any computable order rather than complexity), then the density of the
respective code points is concentrated below or near the bound (2.2)
(for linear codes (2.3)) that lies in turn strictly below the asymptotic
bound. Complexity is invoked here principally in order to identify typi-
cal random codes with codes whose complexity is comparable with their
size: cf. [19], [8], [9].

By contrast, we show that code points of codes generated in the order
of growing complexity, which puts a considerable amount of highly non-
random codes at the foreground, tend to be well distributed below the
asymptotic bound, with the bound itself appearing as a “silver lining”
of the cloud of code points.

The last Section (5) is dedicated to a sketch of a “quantization” of
the classical ensemble of codes.

2. Asymptotic bound as a non-statistical phenomenon

2.1. Codes and code points. Here we recall our main definitions and
results from previous works.

We choose and fix an integer q ≥ 2 and a finite set, the alphabet A, or
Aq, of cardinality q. An (unstructured) code C is defined as a nonempty
subset C ⊂ An of words of length n ≥ 1. Such C determines its code
point

PC = (R(C), δ(C))

in the (R, δ)-plane, where R(C) is called the transmission rate and δ(C)
is the relative minimal distance of the code. They are defined by the
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formulas

δ(C) :=
d(C)

n(C)
, d(C) := min {d(a, b) | a, b ∈ C, a 6= b}, n(C) := n,

(2.1) R(C) =
[k(C)]

n(C)
, k(C) := logq card(C),

where d(a, b) is the Hamming distance

d((ai), (bi)) := card{i ∈ (1, . . . , n) | ai 6= bi}.

In the degenerate case cardC = 1 we put d(C) = 0. We will call the
numbers k = k(C), n = n(C), d = d(C), code parameters and refer to
C as an [n, k, d]q-code. We denote by Codesq the set of all such codes,
and by cp : Codesq → [0, 1]2 ∩ Q2 the map C 7→ PC . The multiplicity
of a code point x is defined as cardinality of the fiber cp−1(x).

If q is a prime power, and Aq is endowed with a structure of a finite
field Fq, then a linear code is a linear subspace of An

q . The set of linear

codes is denoted Codeslinq .
Our starting point here will be the following characterization of the

set of all code points, first proved in its final form in [14]. Note that
the R-axis is traditionally drawn as a vertical one.

Theorem 2.1. There exists a continuous function αq(δ), δ ∈ [0, 1]
such that

(i) The set of code points of infinite multiplicity is exactly the set of
rational points (R, δ) ∈ [0, 1]2 satisfying R ≤ αq(δ). The curve
R = αq(δ) is called the asymptotic bound.

(ii) Code points x of finite multiplicity all lie above the asymptotic
bound and are isolated: for each such point there is an open neigh-
borhood containing x as the only code point.

(iii) The same statements are true for linear codes, with a possibly
different asymptotic bound R = αlin

q (δ).

2.2. Good codes. One characteristic of a good code is this: it max-
imizes simultaneously the transmission rate and the minimal distance.
From this perspective, good codes are isolated ones or lying close to the
asymptotic bound. Below we briefly describe known results showing
that “most” randomly chosen codes are not good. On the contrary, in
the next section we show that in order to recognize good codes one must
generate codes of low Kolmogorov complexity; that is, codes allowing
short programs producing them.

This is exactly what has happened historically, when algebraic geo-
metric codes, discovered by Goppa, were used by Tsfasman, Vladut,
and Zink in order to ameliorate the Gilbert–Varshamov bound: cf. an
early survey [16] and [18].
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In this sense, the moral of this note is just opposite to the title of [4]:
Only codes about which we can think can be good.

2.3. Shannon’s ensemble. We sketch here some well known argu-
ments and results (see e.g. [4], [1], [18] and references therein) showing
that most (unstructured) q-ary codes lie lower than or only slightly
above the curve

(2.2) R =
1

2
(1−Hq(δ))

where Hq(δ) for 0 < δ < 1 is the q-ary entropy function

Hq(δ) = δ logq(q − 1)− δ logq δ − (1− δ) logq(1− δ).

Notice that only the part of this curve for which 0 ≤ R ≤ 1/2 lies inside
[0, 1]2.

The Gilbert–Varshamov bound GV

(2.3) R = 1−Hq(δ)

plays a similar role for linear codes: cf. Remarks below.
In order to make the statements above precise, one introduces Shan-

non’s Random Code Ensemble RCEn of q-ary codes of block length n.
Each code in RCEn is a set of pairwise different words in An

q chosen

randomly and independently with uniform probability q−n.

Proposition 2.2. ([4], sec. V)

(i) For any ε > 0, the probability (in RCEn) that Hq(d/n) ≥ max(1−

2R, 0) + ε, where R = k/n, is bounded by q−εn(1+o(1)) as n → ∞.
(ii) Similarly, the probability that Hq(d/n) ≥ 1− R+ ε is bounded by

e−qεn(1+o(1))
as n → ∞.

Strategy of the proof. One easily sees that the number of words
at a (Hamming) distance ≤ d from any fixed word in An

q is

(2.4) Volq(n, d) =
d

∑

j=0

(

n

j

)

(q − 1)j .

As is well known (see [4]), one can estimate this quantity in terms of
the q-ary entropy:

q(Hq(δ)−o(1))n ≤ Volq(n, nδ) ≤ qHq(δ)n.

Following [4], sec. V, denote by X(d) the random variable on RCEn

whose value at a code is the number of unordered pairs of distinct code
words at a distance ≤ d from each other. Clearly, on codes of cardinality
qk, we have from (2.4)

E(X) =

(

qk

2

)
∑d

l=1

(n
l

)

(q − 1)l

qn − 1
= qn[Hq(d/n)−(1−2R)]+o(n).
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One can similarly calculate E(X2), and then use Chebyshev’s inequality
to prove (i). The last statement is obtained along the same lines. For
details, see [4].

2.4. Remarks. For unstructured code points (R, δ) with 1−Hq(δ) <
2R, the same reasoning shows that the average number of pairs at dis-
tance d is large.

In the case of linear codes, the relevant code points concentrate in an
exponentially narrow neighborhood of the GV bound.

Since linear codes have considerably smaller Kolmogorov complexity
than the general ones, this behavior is compatible with our discussion
in Section 3 below.

2.5. Spoiling operations as computable functions on codes. The
proof of existence of the asymptotic bound (essentially, the only known
one) is based upon the existence of three types of rather banal combina-
torial operations on (general, or linear) codes that produce from a given
code several codes with worse parameters. The subsequent combinato-
rial characterization of isolated code points as points of finite multiplic-
ity, and proof in [14] that any point with rational coordinates below
the asymptotic bound is a code point, crucially uses these operations as
well.

In each class, the result of the application of such an operation to a
given code is by no means unique. Here, using the discussion in [15],
sec. 1 (that reproduces several earlier sources), we will define three total
recursive spoiling maps

Si : Codesq → Codesq, i = 1, 2, 3,

that are compatible with the map C 7→ [n(C), k(C), d(C)]q and whose
effect on code parameters is summarized below:

S1 : [n, k, d]q 7→ [n+ 1, k, d],

(2.5) S2 : [n, k, d]q 7→ [n− 1, k, d − 1], (if n > 1, k > 0),

(2.6)
S3 : [n, k, d]q 7→ [n−1, k′, d], where k−1 ≤ k′ < k, (if n > 1, k > 1).

In order to make Si unambiguous, we simply choose the code with
minimal number with respect to some computable numbering from a
finite set of codes that can be obtained in this way, and define it to be
Si(C).

Another (minor) point is to decide what to do if the mild restrictions
in brackets in (2.5), (2.6) do not hold for C. The simplest solution that
we adopt is then to put Si(C) = C.
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2.6. Block length and distance between isolated codes. We will
now show that knowing the distance of an isolated code point x from its
closest neighboring code point, we can estimate from above the maximal
block length of a code mapping to x and hence also the multiplicity of
x. Distance in [0, 1]2 is defined here as dist((a, b), (c, d)) := max(|a −
c|, |b− d|).

Proposition 2.3. Let (R, δ) be an isolated code point and denote
by ρ its distance from the closest neighboring code point. Assume that
(R, δ) is the code point of some C ⊂ AN . In this case we have

N ≤ max

(

R− ρ

ρ
,
δ − ρ

ρ

)

.

Proof. If the code parameters of C are [N,K,D]q , then the code
parameters of S1(C) are [N + 1,K,D]q so that

dist(PC , PS1(C)) = max

(

[K]

N + 1
,

D

N + 1

)

≥ ρ.

This shows our result, because

R =
[K]

N
, δ =

D

N
.

3. Plotting the asymptotic bound with assistance of a

complexity oracle

3.1. A general setup. Let X be an infinite constructive world, in the
sense of [12]. This means that we have a set of structural numberings of
X: computable bijections Z+ → X, forming a principal homogeneous
space over the group of total recursive permutations Z+ → Z+.

Consider one such bijection ν = νX : Z+ → X. It defines an order
on X: x′ ≤ x iff ν−1(x′) ≤ ν−1(x). Equivalently, we can imagine such
a bijection as an order in which elements of X are generated: x is
generated at the ν(x)-th step.

Another important class of bijections that we have in mind consists
of (uncomputable) Kolmogorov orders defined and discussed in [12].
Namely, let u : Z+ → X be an optimal (in the sense of Kolmogorov and
Schnorr) partial recursive enumeration. Then Ku(x) := min {k |u(k) =
x} is the (exponential) Kolmogorov complexity, and the Kolmogorov
order ofX is the order of growing complexity. If we denote the respective
Kolmogorov order Ku(x), we have c1Ku(x) ≤ Ku(x) ≤ c2Ku(x) for
constants c1, c2 > 0 depending only on u. Similarly, another choice of
u produces another order differing from Ku by a permutation of linear
growth.

Let now X,Y be two infinite constructive worlds, νX , νY respective
structural bijections, u : Z+ → X, v : Z+ → Y two optimal enumera-
tions, and Ku,Kv the respective Kolmogorov complexities.
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Consider a totally recursive function f : X → Y .

Proposition 3.1. For each y ∈ f(X), there exists x ∈ X such that

(3.1) y = f(x), Ku(x) ≤ const · ν−1
Y (y)

where the constant can be calculated in terms of u, v, νX , νY .

Proof. Informally, this means that we can effectively generate all
elements of the (enumerable) image f(X) ⊂ Y in their structural order,
if an oracle generates for us all elements of X in the order of growing
Kolmogorov complexity.

In fact, denote by F : X → Y × Z+ the following map:

F (x) := (f(x), n(x)),

where

n(x) := card {x′ | ν−1
X (x′) ≤ ν−1

X (x), f(x′) = f(x)}.

In plain words, n(x) is the number of x in the set f−1(f(x)) with respect
to the order induced by νX .

Clearly, F is a (totally) recursive function. Hence the image E ⊂
Y × Z+ of F is an enumerable subset of Y × Z+.

For each m ∈ Z+, put

Xm := {x ∈ X |n(x) = m} ⊂ X, Ym := f(Xm) ⊂ Y.

Then Xm (resp. Ym) is an enumerable subset of X (resp. Y ), and
the restriction of f to Xm induces a bijection of these sets. Moreover,
f(X1) = f(X), so that we can define the partially recursive function
ϕ : Y → X, with domain f(X), which is f−1 on its domain.

Hence, for any x ∈ X1 such that f(x) = y, we will have

Ku(x) = Ku(ϕ(y)) ≤ cϕ Kv(y) ≤ c′ ν−1
Y (y)

for appropriate constants cϕ, c
′. Here and below we use some basic

inequalities involving complexities, proved e.g. in [13], VI.9.
This completes the proof.

3.2. Finite vs infinite multiplicity. We keep notation of the previ-
ous subsections, in particular, f : X → Y is a total recursive function.
For any y ∈ Y , call

mult (y) := card f−1(y)

the multiplicity of y. Proposition 3.1 shows that with assistance of a
complexity oracle for X we can generate consecutively elements of Y of
nonzero multiplicity. For applications to codes, we want to divide them
into two basic subsets: elements of finite multiplicity Yfin (they will
correspond to isolated code points) and elements of infinite multiplicity
Y∞. The latter will correspond to code points lying below or on the
asymptotic bound.
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From the definitions above, it is clear that

Y∞ ⊂ · · · ⊂ f(Xm+1) ⊂ f(Xm) ⊂ · · · ⊂ f(X1) = f(X),

and
Y∞ = ∩∞

m=1f(Xm), Yfin = f(X) \ Y∞.

We have the following extension of Proposition 3.1.

Proposition 3.2. For each y ∈ Y∞ and each m ≥ 1, there exists
unique xm ∈ X such that y = f(xm), n(xm) = m, and

(3.2) Ku(xm) ≤ const · ν−1
Y (y)m log(ν−1

Y (y)m)

where the constant does not depend on y,m and can be calculated in
terms of u, v, νX , νY .

Proof. Define the partial function

Φ : Y × Z+ → X

with domain
D(Φ) := { (y,m) |mult (y) ≥ m }

such that

Φ(y,m) := the mth element in the fiber f−1(y).

One easily sees that its graph is enumerable, hence Φ is partial recursive.
The element xm in the statement of the proposition is just Φ(y,m).
Therefore

Ku(xm) = Ku(Φ(y,m)) ≤ const ·K((ν−1
Y (y),m)),

where K is some chosen Kolmogorov complexity of pairs. One can get
various estimates of the Kolmogorov complexityK of the pair (νY (y),m)
by choosing different structural numberings of the product of two con-
structive worlds Y × Z+: cf. a more detailed discussion in Section 2.7–
2.10 of [13]. Here we use the standard estimate symmetric in both
arguments:

K((νY (y),m)) ≤ const ·K(νY (y))K(m) log(K(νY (y))K(m)).

This completes the proof, since complexity on Z+ is majorized by iden-
tical function.

Now, an oracle mediated process of generating sets Y∞, Yfin, can be
described by the following inductive procedure. Choose a sequence of
pairs of positive integers (Nm,m), m = 1, 2, 3 . . . , Nm+1 > Nm.

Step 1. Produce the list of all elements y ∈ f(X) such that ν−1
Y (y) ≤

N1. Denote this list A1, and put B1 = ∅.
If lists (subsets) Am, Bm ⊂ f(X) are already constructed at the m-th

step, go to
Step m+1. Produce the list of all elements y ∈ f(X) such that

ν−1
Y (y) ≤ Nm+1. Denote by Am+1 the subset of elements y in this list
for which there exists x ∈ X with f(x) = y, n(x) = m+1, and denote by
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Bm+1 the subset of remaining elements. According to (3.2), we will have
to ask the oracle to produce the list of x ∈ X with explicitly bounded
complexity, in order to be sure that this x with n(x) = m+ 1 appears
in this list, if it exists at all.

It is clear that Am ∪ Bm ⊂ Am+1 ∪ Bm+1, and that the union of
this sequence of sets is f(Y ). Moreover, Bm ⊂ Bm+1 and ∪∞

m=1Bm =
Yfin. The passage from Am to Am+1 generally involves both adding

new elements y (with Nm < ν−1
Y (y) ≤ Nm+1) and forwarding some of

the elements of Am to Bm+1 (whenever it turns out that in their fiber
no new element of X appears).

3.3. A structural numbering of q-ary codes. We will now explain
how the general procedure described above can be applied to codes.
More precisely, we will describe the constructive world of q-ary codes
X = Codesq, the constructive world of rational points Y = [0, 1]2 ∩Q2,
and the total recursive map f : X → Y, C 7→ cp(C).

We fix q and the alphabet A of cardinality q. We fix also a total
order on A, say, by identifying A with {0, 1, . . . , q − 1}. We then order
all words in An lexicographically.

Define now the following computable total order (or, equivalently,
computable bijective enumeration ν) of the set of all nonempty codes
Codesq with k > 0:

(a) If n1 < n2, all codes in An1 come before those in An2 .
(b) If k1 < k2, all [n, k1, d]q-codes come before [n, k2, d

′]q-codes.

(c) When (n, qk) are fixed, order all words in An lexicographically,
then consider the induced order on words in any code C ⊂ An,
and finally encode C by the concatenation of all its elements put

in lexicographic order. Such a word w(C) ∈ Anqk determines C
uniquely. Finally, order all [n, k, d]q-codes in the lexicographic
order of w(C).

Clearly, n(C), [k(C)] + 1 and d(C) become total recursive functions
Codesq → Z+ (the condition k(C) > 0 means that C contains at least
two different words the distance between which is therefore positive).

Finally, the function “code point”

cp(C) :=

(

[k]

n
,
d

n

)

is a total recursive map Codesq → [0, 1]2 ∩Q2.

3.4. Plotting the asymptotic bound. Now apply to the codes the
general procedure discussed above. Fix an enumeration νY of rational
points in the unit square in some natural way. To make the picture
visually transparent, choose the sequence Nm in such a way that the set
of points with ν−1

Y (y) ≤ Nm contains the subset Cm of all points with
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denominators of each coordinate dividing m!, and plot at the step m
only the points of Am, Bm contained in Cm.

Clearly, “pixels” in Cm form the vertices of the square lattice of radius
1/m!. Call a subset of Cm saturated if it is a union of sets of the form
Sa,b := {(x, y) |x ≤ a, y ≤ b}, (a, b) ∈ Cm. To motivate this definition,
recall that the subset of Cm lying under or on the asymptotic bound is
saturated. Hence it must be contained in the maximal saturated subset
Dm of Am ∩Cm.

The upper boundary Γm of this subset (consisting of horizontal and
vertical segments of the length 1/m! that connect neighboring points)
is our m-th approximation to the asymptotic bound.

Obviously, Bm is the subset of isolated codes constructed at the m-th
step.

The status of any point that is above Γm but not contained in Bm

will become clear only at a subsequent step.

4. Partition functions for codes and phase transition effects

4.1. Partition functions involving complexity. Let X be an infi-
nite constructive world. Following L. Levin ([7], [8]), we will consider
functions

p : X → R>0 ∪ {∞}

that are enumerable from below in the sense that the set

{(r, p(x)) | r < p(x)} ⊂ Q×X

is enumerable.
Furthermore, Levin introduces the notion of a quasinorm functional

on the set of enumerable from below functions and shows that for any
choice of such a functional N , the set of functions p with N(p) < ∞
admits a maximal one in the sense that it majorizes any other function
after multiplication by an appropriate positive constant.

We quote here two representative examples showing the relation of
this result to complexity:

Proposition 4.1. (i) Let

N(p) := sup (r · card {x | p(x) ≥ r}).

For this quasinorm functional p(x) := Ku(x)
−1 is a maximal function,

where Ku is a Kolmogorov complexity on X.
(ii) Let

N(p) :=
∑

x∈X

p(x).

For this quasinorm functional, p(x) := KPv(x)
−1 is a maximal function,

where KPv is an (exponential) prefix-free complexity on X depending on
the respective optimal “decompressor” v.
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The initial definition of prefix-free complexity involved the choice of
the world of binary words for X. However, Levin’s result of Propo-
sition 4.1(ii) gives a very natural independent characterization of this
complexity in terms of enumerable from below probability distributions
on X whose definition uses only the fact that X is a constructive world.

This construction shows that it is natural to consider at least two
types of partition functions on a constructive world X that endow ob-
jects of low complexity with higher weight: Z(X,β) =

∑

x∈X Ku(x)
−β

and ZP (X,β) =
∑

x∈X KPv(x)
−β where β is the inverse temperature.

Both absolutely converge for β > 1 and diverge for β < 1. The difference
is that the first one diverges at β = 1, whereas the second one converges
for β = 1 as well. Divergence is easily seen, if one replaces Kolmogorov
complexity by Kolmogorov order (see [12], formula (3.10)), in which
case the partition function becomes simply Riemann’s ζ(β).

In the following we will use versions of Z(X,β), in particular, because
the usual Kolmogorov complexity was extended to the nonconstructive
world of partial recursive functions (e.g. in [17] and in the first 1977
edition of [13]), and this allowed one to prove for it a number of useful
estimates. Here is the simplest one.

Lemma 4.2. Let Y be an infinite decidable subset of a constructive
world X. Endowing Y with the induced structure of the constructive
world, choose two exponential Kolmogorov complexities Ku(X, ∗), resp.
Kv(Y, ∗) of the objects in X, resp. in Y. Then the restriction of Ku(X, ∗)
to Y is equivalent to Kv(Y, ∗) in the sense that one of these functions
multiplied by a positive constant majorizes another one.

Proof. The embedding i : Y → X is a total recursive function.
Define the function j : X → Y as the identity on Y , and taking a
constant value y0 ∈ Y on the complement X \Y . Since this complement
is enumerable, j is total recursive as well. Hence Ku(i(y)) ≤ c1Kv(y),
Kv(j(x)) ≤ c2Ku(x).

4.2. Phase transition. Since the function αq(δ) is continuous and
strictly decreasing for δ ∈ [1, 1−q−1), the limit points domain R ≤ αq(δ)
can be equally well described by the inequality δ ≤ βq(R) where βq is
the function inverse to αq.

Fix now an R ∈ Q ∩ (0, 1). For ∆ ∈ Q ∩ (0, 1), put

(4.1) Z(R,∆;β) :=
∑

C:R(C)=R,∆≤δ(C)≤1

Ku(C)−β+δ(C)−1,

where Ku is an exponential Kolmogorov complexity on Codesq.

Theorem 4.3. (i) If ∆ > βq(R), then Z(R,∆;β) is a real analytic
function of β.

(ii) If ∆ < βq(R), then Z(R,∆;β) is a real analytic function of β for
β > βq(R) such that its limit for β − βq(R) → +0 does not exist.
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Proof. If ∆ > βq(R), then all codes in the summation domain of
(4.1) are isolated ones, and there is only a finite number of them; hence
Z(R,∆;β) is real analytic. Otherwise, this set of codes is an infinite
decidable subset of Codesq, and one can appeal to Lemma 4.2.

4.2.1. Comments. To embed the statement of Theorem 4.3 in a con-
ventional environment of thermodynamics, one should have in mind the
following analogies. The argument β in (4.1) is the inverse temperature,
the transmission rate R is a version of density ρ, so that our asymp-
totic bound transported into the (T = β−1, R)-plane as T = βq(R)−1

becomes the phase transition boundary in the (temperature, density)-
plane.

4.3. Measures and the asymptotic bound. We now show that the
plotting procedure described in Section 3 can be reformulated in terms
of measures on the space of codes defined by the partition functions
described above.

The partition function Z(X,β) =
∑

x∈X Ku(C)−β determines a one-
parameter family of probability measures on the space X of codes, for
β > 1, given by

Pβ(C) =
Ku(C)−β

Z(β)
.

Similarly, one obtains probability measures associated to the partition
functions ZP (X,β) and Z(R,∆;β), with the latter defined on the space
of codes with parameter R(C) = R and 1−∆ ≤ δ(C) ≤ 1.

Now consider again the oracle mediated process described in Sec-
tion 3, generating the sets Y∞ = Vq ∩ Uq and Yfin = Vq r (Vq ∩ Uq) of
code points below and above the asymptotic bound, and the inductively
constructed sets Am and Bm.

Proposition 4.4. The algorithm of Section 3 determines a sequence
of probability measures associated to the sets Am and Bm that converge
to probability measures on the space of codes with parameters in Yfin and
Y∞ and a sequence of measures Pm,β converging to a measure supported
on the asymptotic bound curve.

Proof. We work with the partition function Z(X,β). The argument
for ZP (X,β) is analogous. On each of the sets Bm constructed by
the oracle mediated algorithm of Section 3, one obtains an induced
probability measure PBm,β(C) = Ku(C)−βZ(cp−1(Bm), β)−1, where

Z(cp−1(Bm), β) =
∑

C∈cp−1(Bm)

Ku(C)−β.

Since all the code points in Yfin have finite multiplicity, and each Bm

contains finitely many code points, the ZBm(β) are finite sums for all
m ≥ 1. Since the sets Bm ⊂ Bm+1 are nested, in the limit m → ∞,
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the probability measures PBm,β(C) converge to the probability measure
supported on cp−1(Yfin) given by

Pfin,β(C) = Ku(C)−βZ(cp−1(Yfin), β)
−1

with Z(cp−1(Yfin), β) =
∑

C∈cp−1(Yfin)
Ku(C)−β.

In the case of the sets Am, one has Am = (Am∩Am+1)∪(Am∩Bm+1),
and one obtains the set Y∞ = Vq∩Uq of code points below the asymptotic
bound as

Y∞ =
⋃

m≥1

(
⋂

n≥0

Am+n).

Consider the sequence of sets EM,N = ∪M
m=1∩

N
n=0Am+n. ThenEM+1,N ⊃

EM,N and EM,N+1 ⊂ EM,N . Correspondingly, one has sequences of
probability measures

PEM,N
(C) =

Ku(C)−β

Z(cp−1(EM,N ), β)
,

with Z(cp−1(EM,N ), β) =
∑

C∈cp−1(EM,N )Ku(C)−β, that converge, as

M,N → ∞ to the probability measure

P∞,β(C) = Ku(C)−βZ(cp−1(Y∞), β)−1,

supported on codes in cp−1(Y∞) with

Z(cp−1(Y∞), β) =
∑

C∈cp−1(Y∞)

Ku(C)−β.

Consider then the sets Cm and Dm ⊂ Am ∩ Cm constructed as in
Section 3, and the upper boundary Γm of the set Dm approximating the
asymptotic bound. Denote by Fm ⊂ Dm the region bounded between
Γm and Dm ∩ Γm−1. Then the probability measures

PFm(C) =
Ku(C)−β

Z(cp−1(Fm), β)

with Z(cp−1(Fm), β) =
∑

C∈cp−1(Fm)Ku(C)−β converge to a probability

measure PΓ(C) = Ku(C)−βZ(Γ, β)−1, supported on the set of codes
whose code points fall on the asymptotic bound curve Γ = {(R, δ) |R =
αq(δ)} itself, with Z(Γ, β) =

∑

C∈cp−1(Γ)Ku(C)−β.

When using the partition function Z(R,∆;β) of (4.1), one has an
analogous statement, with code points restricted to the domain R(C) =
R and 1−∆ ≤ δ(C) ≤ 1, except for the last statement about a measure
supported at the asymptotic bound, because of the presence of a phase
transition for Z(R,∆;β) precisely along that curve.
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5. From classical to quantum systems

5.1. Computable functions as classical observables. In subsec-
tion 4.3 we have described a statistical mechanical system on the space
of codes, where observables are computable functions on the space X of
q-ary codes and the expectation values of observables are obtained by
integrating these functions against the probability measure defined by
the complexities,

〈f〉β =

∫

f(C) dPβ(C) =
1

Z(X,β)

∑

C∈X

f(C)Ku(C)−β,

or similarly with the measures defined by ZP (X,β) or Z(R,∆, β).
In this section we describe a quantized version of this statistical sys-

tem and explain the role of the asymptotic bound curve R = αq(β) in
this setting.

The quantization of the system is achieved by considering code words
as the possible independent degrees of freedom in an unstructured code,
and quantizing them as independent harmonic oscillators, with energy
levels that depend on the rate and the complexity of the code.

We then show that, while code points that lie below the asymptotic
bound give rise in this way to a bosonic field theory with infinitely many
degrees of freedom, the code points above the asymptotic bound produce
quantum mechanical systems with finitely many degrees of freedom.

The partition function of the resulting quantum statistical mechan-
ical system is different from the one we computed in Section 3 for the
classical system, but it is easily derived from it and displays similar
phase transition phenomena. We remind that the quantum partition
function is essentially Tr(e−βH) where H is the relevant Hamiltonian
operator.

We also show that the recursive algorithm of Section 2 provides a
good approximation by systems with finitely many degrees of freedom
for the quantum system associated to the set Y∞ of code parameters.

5.2. Quantum statistical mechanical system of a single code.

To make a single unstructured code C into a quantum system, we regard
the code words as the possible independent degrees of freedom and we
associate to each of them a creation and annihilation operator. This
means that we consider for each code word x ∈ C an isometry Tx, with
T ∗
xTx = 1 and such that the TxT

∗
x are mutually orthogonal projectors.

This means that we associate to a given code the Toeplitz algebra TC
on its set of code words. This is the same kind of code algebra as we
considered in our previous work [15].

The algebra TC is naturally represented on the corresponding Fock
space, namely the Hilbert space HC spanned by the orthonormal basis



KOLMOGOROV COMPLEXITY AND THE ASYMPTOTIC BOUND 105

ǫw with w = x1 . . . xN ranging over the set of finite sequences (of arbi-
trary length N) of the code words x ∈ C. In this representation, the
operator Tx acts by appending x as a prefix to a given string of code
words, Txǫw = ǫxw.

The dynamics of this quantum system is determined by a Hamiltonian
operator H on the Fock space, via the time evolution

T 7→ qitH T q−itH .

We can then assign energy levels that depend on the complexity of the
code in the following way.

Lemma 5.1. The time evolution σ : R → Aut(TC) given by σt(Tx) =
Ku(C)it Tx is generated by the Hamiltonian Hǫw = ℓ(w) logq Ku(C) ǫw,
with ℓ(w) the length of the word w, and has partition function

(5.1) Z(C, σ, β) =
1

1− qnRKu(C)−β
,

which is a real analytic function in the domain β > nR/ logq Ku(C).

Proof. The Hamiltonian implementing the time evolution σt(Tx) =
Ku(C)it Tx on the Fock space HC is the operator H on HC satisfying

σt(A) = qitHAq−itH , ∀A ∈ TC .

This is given by the operator Hǫw = m logq Ku(C) ǫw for all words
w = x1 . . . xm of length ℓ(w) = m. We then find

Z(C, σ, β) = Tr(q−βH) =
∑

m

(cardWm)q−βm logq Ku(C)

=
∑

m

qm (nR−β logq Ku(C)),

where the cardinality of the set Wm of words of length m is qmk, since
cardC = qk = qnR, with n(C) = n the length of the code and R(C) = R
the rate. This series converges to (5.1) for β > nR/ logq Ku(C).

To compare the behavior of this partition function to the Z(R,∆;β)
considered in Theorem 4.3, it is convenient to change variable in (5.1)
by β 7→ n(C)(β− δ(C)+1). Then, using the Singleton bound on codes,
we obtain the following.

Corollary 5.2. The function Z(C, σ, α), with α = n(β − δ + 1), is
real holomorphic for all β > 0 with

Z(C, σ, n(β − δ + 1)) ≤
1

1−Ku(C)−β
.
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Proof. The partition function Z(C, σ, α) is given by the sum
∑

m

qmn(R−(β−δ+1) logq Ku(C)) ≤
∑

m

qmn(R+δ−1)Ku(C)−βm

≤
∑

m

Ku(C)−βm,

where the first estimate uses Ku(C)δ−1 ≤ qδ−1 and the second estimate
uses the singleton bound for codes k ≤ n−d−1, which gives R+δ−1 ≤ 0.

5.3. Quantum statistical mechanical system at a fixed code

point. We can now consider quantum statistical mechanical systems
involving several codes. Again, the main idea is that different codes
with their degrees of freedom given by their code words are considered
as independent uncoupled systems, which means that the algebra of
observables describing the set X(R,δ) of q-ary codes with fixed code pa-
rameters (R, δ) becomes the tensor product of the Toeplitz algebras of
the individual codes,

(5.2) T(R,δ) = ⊗C∈X(R,δ)
TC

acting on the tensor product of the Fock spaces H(R,δ) = ⊗C∈X(R,δ)
HC

and with the product time evolution σ
(R,δ)
t = ⊗Cσ

C
t , with σC

t (Tx) =
Ku(C)itTx. The partition function becomes, correspondingly, the prod-
uct of the partition function for the independent systems. In particular,
for α = α(n, β, δ) = n(β − δ + 1) a variable inverse temperature as in
[15], we find that

Z(X(R,δ), σ, α) =
∏

C∈X(R,δ)

Z(C, σ, n(β − δ + 1))

is a finite product for (R, δ) ∈ Yfin and an infinite product for (R, δ) ∈
Y∞, whose convergence is controlled by the convergence of the infinite
product

∏

C∈X(R,δ)

(1−Ku(C)−β)−1.

This in turn converges whenever the series

Z(XR,δ, β) =
∑

C∈X(R,δ)

Ku(C)−β

converges, which is the classical partition function for a fixed code point.
This argument shows the role of the asymptotic bound from the point

of view of these quantized systems. In fact, recall that an infinite tensor
product of Toeplitz algebras is a standard way to describe the second
quantization of a bosonic field theory; see for instance [6] and also Sec-
tion 2 of [2]. However, a finite tensor product is a purely quantum
mechanical system, with only finitely many degrees of freedom. Thus,
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the asymptotic bound separates the region Yfin in the space of code
parameters where the quantum statistical system (T(R,δ), σt) is purely
quantum mechanical (first quantization) from the region Y∞ where it is
a second quantization of a bosonic field.

5.4. Oracle assisted QSM system construction. It is usually in-
teresting in quantum statistical mechanics to construct explicit approx-
imations to systems with infinitely many degrees of freedom by sys-
tems involving finitely many ones. The oracle mediated construction
described in Section 3 provides us with this kind of procedure. Con-
sider the sets Am and Bm described in Section 3. We can then consider
the algebras

Am = ⊗C∈cp−1(Am)TC , and Bm = ⊗C∈cp−1(Bm)TC ,

acting on the tensor product of the Fock spaces, and endowed with
the tensor product time evolution as above. Moreover, by denoting by
Fm (as in the previous section) the region between the curves Γm and
Dm ∩ Γm−1, one can consider the QSM system associated to the codes
with code points in Fm,

Fm = ⊗C∈cp−1(Fm)TC , σt = ⊗σC
t .

These give good approximations, by systems involving only finitely
many degrees of freedom, to the bosonic field theory associated to the
set Y∞ of code parameters and to the asymptotic bound Γ.
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