
j. differential geometry

96 (2014) 223-240

MANIFOLDS WITHOUT CONJUGATE POINTS

AND THEIR FUNDAMENTAL GROUPS

Sergei Ivanov & Vitali Kapovitch

Abstract

We show that in the fundamental groups of closed manifolds
without conjugate points, centralizers of all elements virtually
split.

1. Introduction

It is a classical consequence of Rauch comparison that manifolds of
nonpositive curvature have no conjugate points. While the converse need
not hold even for closed manifolds [11], the following question remains
unanswered in dimensions above 2.

Question 1.1. Does every closed Riemannian manifold without con-
jugate points admit a metric of nonpositive curvature?

While the answer to this is likely negative, it has been shown that
fundamental groups of closed manifolds without conjugate points sat-
isfy many properties that are known to hold for nonpositively curved
manifolds. In particular, Croke and Schroeder [8] proved that if a closed
manifold M̄ admits an analytic metric without conjugate points then
every abelian subgroup of π1(M̄ ) is straight (i.e., quasi-isometrically
embedded in π1(M̄)) and every solvable subgroup of π1(M̄ ) is virtu-
ally abelian. Both of these properties are known to hold for groups that
act isometrically, properly, and co-compactly on CAT(0)-spaces (we re-
fer to such groups as CAT(0)-groups) or, more generally, for the semi-
hyperbolic groups (which is a strictly bigger class of groups; see e.g., [1]
or [5] for the definition). Our main result is that the following known
property of CAT(0)-groups (see e.g., [5, Theorem 6.12]) also holds for
fundamental groups of closed manifolds without conjugate points.

Theorem A. Let M̄ be a closed manifold that admits a C∞ Rie-
mannian metric without conjugate points. Then for every nontrivial el-
ement γ ∈ π1(M̄ ), its centralizer Z(γ) < π1(M̄) virtually splits over γ.

This means that there exists a finite index subgroup G < Z(γ) that
is isomorphic to a direct product Z × G′ so that γ corresponds to the
generator of the Z factor.
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Actually, we prove an equivalent but more convenient property of the
centralizer (Corollary 4.3): the image of γ inH1(Z(γ)) = Z(γ)/[Z(γ), Z(γ)]
is a non-torsion element.

There are examples of manifolds that can be shown not to admit
metrics without conjugate points by Theorem A but not by previously
known results. We construct such examples in Section 5.

The proof of Theorem A builds upon the already mentioned work of
Croke and Schroeder [8]. The main result of [8] (i.e., the straightness of
abelian subgroups) by itself does not imply the assertion of Theorem A,
but some intermediate results in [8] do. We remove the analyticity as-
sumption from one of those results (see Proposition 3.1 below) and
deduce Theorem A from it.

Remark 1.2. Kleiner (unpublished) and Lebedeva [14] found simpler
proofs of the main result of [8] that work without analyticity. These
proofs go via a different route that does not yield Theorem A.

Remark 1.3. Our proof requires C∞ regularity of the metric or,
more precisely, Cr regularity for some r depending on n = dimM . This
is needed in Lemma 3.3. We do not know whether Theorem A is true
for Cr metrics for any fixed r.

Examples constructed in [6] show that Lemma 3.3 and an analogue
of Proposition 3.1 (in a similar but not identical context) fail if n ≫ r.
However, it might be possible that some features of metrics without
conjugate points (e.g., the fact that displacement functions do not have
critical points other than minima) can be used to squeeze more regular-
ity out of the problem.

Remark 1.4. A straightforward modification of the proof shows that
Theorem A holds for Finsler metrics as well, but we do not bother the
reader with this generalization.

Organization of the paper. In Section 2 we provide necessary back-
ground material on the properties of universal covers of closed manifolds
without conjugate points. In Section 3 we prove the key technical result
Proposition 3.1, which allows us to remove the analyticity assumption
from the arguments in [8]. In Section 4 we prove Theorem A. In Section 5
we construct new examples of manifolds not admitting metrics without
conjugate points. In Section 6 we prove that fundamental groups of
closed manifolds without conjugate points have solvable word and con-
jugacy problems (Theorem 6.1). In Section 7 we consider an analogue of
Question 1.1 for metrics without focal points and prove that the answer
is affirmative in dimension 3 (Theorem 7.1).

Lastly, in Section 8 we discuss a number of open problems concerning
manifolds without conjugate points.
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2. Preliminaries

In this section we collect the necessary preliminaries, borrowed mainly
from [8].

Let M̄ be a compact Riemannian manifold without conjugate points
and M its universal cover. We represent the fundamental group π1(M̄ )
as the group Γ of deck transformations of M . This group acts on M by
isometries and M̄ = M/Γ. We fix the notation M̄ , M , and Γ for the
rest of the paper.

Since the metric has no conjugate points, every geodesic in M is
minimizing, expx : TxM → M is a diffeomorphism for every x ∈ M , and
the Riemannian distance function d : M ×M → R+ is smooth outside
the diagonal. All geodesics throughout the paper are parametrized by
arc length.

Fix a nontrivial element γ ∈ Γ. The displacement function dγ : M →
R+ is defined by

dγ(x) = d(x, γx), x ∈ M.

A complete geodesic c : R → M is called an axis of γ if γ translates c
forward along itself, i.e., there is a constant L > 0 such that γc(t) =
c(t + L) for all t ∈ R. Note that if c is an axis of γ, then the reverse
geodesic t 7→ c(−t) is an axis of γ−1. Let Aγ ⊂ M denote the union of
all axes of γ.

The following lemma summarizes several results from [8] that we will
need in what follows.

Lemma 2.1. In the above notation, the following holds.

1) The function dγ assumes a positive minimum, min dγ . The set of
points x ∈ M where dγ(x) = min dγ , is equal to Aγ.

2) The isometry γ translates all its axes by the same amount, namely
min dγ. That is, if c is an axis of γ then γ(c(t)) = c(t + min dγ)
for all t ∈ R.

3) min dγm = m ·min dγ for every integer m ≥ 1.
4) Aγ is equal to the set of critical points of dγ . In particular dγ has

no critical points outside its minimum set.

Proof. See [8, Lemma 2.1] and remarks there. q.e.d.
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The following lemma is proved in [8, Lemma 2.4], however it is not
made very clear there that the proof does not depend on analyticity of
the metric. Therefore we include a proof (essentially the same one) here.

Lemma 2.2. The set Aγ is connected.

Proof. Consider the centralizer Z(γ) ⊂ Γ of γ. It is easy to see that
the action of Z(γ) on M preserves dγ , hence dγ induces a well defined
function d̄γ on M/Z(γ). Furthermore, d̄γ is proper (see [8, Lemma 2.2])
and by Lemma 2.1(4) it has no critical point outsize its minimum set
Āγ . Therefore by Morse theory every sublevel set

Ūε = {x ∈ M/Z(γ) : d̄γ(x) ≤ min d̄γ + ε}, ε > 0,

is a strong deformation retract ofM/Z(γ). Since the projection π : M →
M/Z(γ) is a covering map, it follows that the set

Uε := π−1(Ūε) = {x ∈ M : dγ(x) ≤ min dγ + ε}

is a strong deformation retract of M . Hence Uε is connected. Since
Aγ =

⋂

ε>0 Uε, it follows that Aγ is connected as well. q.e.d.

Remark 2.3. The proof of Lemma 2.2 implies that Z(γ) is finitely
generated and finitely presented since it shows thatM/Z(γ) is homotopy
equivalent to Ūε, which is a compact manifold with boundary.

The Busemann function of a (minimizing) geodesic c : R → M is a
function bc : M → R defined by

bc(x) = lim
t→+∞

d(x, c(t)) − t.

The triangle inequality implies that the function t 7→ d(x, c(t)) − t is
non-increasing, hence bc(x) is well defined and bc(x) ≤ d(x, c(t)) − t for
all t ∈ R. Note that bc(c(t)) = −t for all t ∈ R.

Clearly Busemann functions are 1-Lipschitz. Busemann functions are
naturally translated by isometries; namely, if α : M → M is an isometry
then bc(x) = bαc(αx) for all x ∈ M . Changing the origin of a geodesic
adds a constant to its Busemann function; namely, if c1(t) = c(t + L),
where L is a constant, then bc1(x) = bc(x) + L.

Lemma 2.4. Let c and c1 be axes of γ. Then

1) bc(γx) = bc(x)−min dγ for all x ∈ M .
2) bc decays at unit rate along c1, that is bc(c1(t+ t1)) = bc(c1(t))− t1

for all t, t1 ∈ R.

Proof. Let L = min dγ . Then bc(γx) = bγ−1c(x) = bc(x) − L since

γ−1c(t) = c(t − L) by Lemma 2.1(2). This proves the first assertion. It
implies that

bc(c1(t+mL)) = bc(γ
mc1(t)) = bc(c1(t))−mL

for all m ∈ Z. Since bc is 1-Lipschitz, the second assertion follows. q.e.d.
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3. Busemann functions of axes of isometries

The goal of this section in to prove the following.

Proposition 3.1. Let γ ∈ Γ \ {e}, and let c and c1 be axes of γ.
Then bc − bc1 is constant on M .

This proposition was proved in the analytic case in [8, Proposition
2.5]. The analyticity assumption is used in [8] to ensure some regularity
of the set Aγ , namely it implies that this set is locally rectifiably path
connected (see [8] for the definition). This property and local analysis
of Busemann functions on Aγ yields the result. We do not know if Aγ

is locally rectifiably path connected if the metric is only C∞. We work
around this issue by more delicate analysis of the behavior of Busemann
functions in a neighborhood of Aγ (Lemma 3.2).

For a geodesic c in M , denote by b−c the Busemann function of the
reverse geodesic t 7→ c(−t) and let b0c = bc + b−c . The definition of a
Busemann function and the triangle inequality imply that b0c(x) ≥ 0 for
all x ∈ M .

Lemma 3.2. Let c be an axis of γ and L = min dγ . Define f(x) =
dγ(x)− L for x ∈ M . Then there exists C > 0 such that

(3.1) |b0c(x)− b0c(y)| ≤ C
(

d(x, y)2 + f(x) + f(y)
)

for all x, y ∈ M .

Proof. Note that |b0c(x)− b0c(y)| ≤ 2d(x, y) since Busemann functions
are 1-Lipschitz. Therefore we may assume that d(x, y) is small; more
precisely, d(x, y) ≤ L/2. Indeed, if d(x, y) > L/2 then |b0c(x) − b0c(y)| ≤
2d(x, y) ≤ 4L−1d(x, y)2, so (3.1) is satisfied for any C ≥ 4L−1. We may
also assume that f(x) ≤ 1 and f(y) ≤ 1, otherwise

|b0c(x)− b0c(y)| ≤ 2d(x, y) ≤ L ≤ L(f(x) + f(y)),

so (3.1) is satisfied for any C ≥ L.
Let x+ = γx and x− = γ−1x. Then

d(x, x+) = d(x, x−) = dγ(x) = L+ f(x).

By Lemma 2.4(1), we have bc(x) = bc(x+)+L and b−c (x) = b−c (x−)+L.
Since Busemann functions are 1-Lipschitz, it follows that

bc(y)− bc(x) = bc(y)− bc(x+)− L ≤ d(y, x+)− L

and

b−c (y)− b−c (x) = bc(y)− b−c (x−)− L ≤ d(y, x−)− L.

Summing these two inequalities yields

(3.2) b0c(y)− b0c(x) ≤ d(y, x+) + d(y, x−)− 2L.

Our plan is to estimate the right-hand side of this inequality.
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For p, q ∈ M , denote by −→pq the initial velocity vector of the unique
geodesic connecting p to q. That is, −→pq is the unit vector in TpM posi-
tively proportional to exp−1

p (q). Let v+ = −−→xx+, v− = −−→xx− and z ∈ M be
any point such that d(x, z) ≤ L/2. Then, by the first variation formula
and the second order Taylor formula,

d(z, x±) ≤ d(x, x±)− 〈−→xz, v±〉 · d(x, z) + C1d(x, z)
2

= L+ f(x)− 〈−→xz, v±〉 · d(x, z) + C1d(x, z)
2

and therefore
(3.3)
d(z, x+) + d(z, x−) ≤ 2L+2f(x)− 〈−→xz, v+ + v−〉 · d(x, z) + 2C1d(x, z)

2,

where C1 > 0 is a constant depending only on M and L. (This constant
is just an upper bound for the second derivative of the distance to x±
on the geodesic segment [x, z]. It is uniform in x because M admits a
co-compact action by isometries and L ≤ d(x, x±) ≤ L+ 1.)

For z = y, (3.2) and (3.3) imply that

(3.4)
b0c(y)− b0c(x) ≤ 2f(x)− 〈−→xy, v+ + v−〉 · d(x, y) + 2C1d(x, y)

2

≤ 2f(x) + σ · d(x, y) + 2C1d(x, y)
2,

where σ = |v+ + v−|.
It remains to estimate σ. Consider a point z = expx(t0v), where

v ∈ TxM is the unit vector positively proportional to v+ + v− (or any

unit vector if v+ + v− = 0) and t0 =
√

f(x)/C1. We may assume that
C1 is sufficiently large so that t0 ≤ L/2 (recall that f(x) ≤ 1). For the
so-defined z, (3.3) takes the form

d(z, x+) + d(z, x−) ≤ 2L+ 2f(x)− σt0 + 2C1t
2
0.

On the other hand,

d(z, x+) + d(z, x−) ≥ d(x+, x−) = dγ2(x−) ≥ min dγ2 = 2L

by the triangle inequality and Lemma 2.1(3) (recall that x+ = γ2x−).
Hence

0 ≤ 2f(x)− σt0 + 2C1t
2
0 = −σ

√

f(x)/C1 + 4f(x),

or, equivalently, σ ≤ 4
√

C1f(x). Therefore

σ · d(x, y) ≤ 4
√

C1f(x)d(x, y)2 ≤ 2f(x) + 2C1d(x, y)
2.

Plugging this into (3.4) yields

b0c(y)− b0c(x) ≤ 4f(x) + 4C1d(x, y)
2

and, by switching the roles of x and y,

b0c(x)− b0c(y) ≤ 4f(y) + 4C1d(x, y)
2.

Therefore (3.1) is satisfied for C ≥ max{4C1, 4}. q.e.d.
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The following lemma is purely analytic and local. It does not use the
assumption that M is co-compact and free of conjugate points.

Lemma 3.3. Let M be any Riemannian manifold, f ∈ C∞(M) and
g : M → R a continuous function such that

(3.5) |g(x)− g(y)| ≤ C
(

d(x, y)2 + |f(x)|+ |f(y)|
)

for some constant C > 0 and all x, y ∈ M . Let X = f−1(0). Then the
set g(X) ⊂ R has zero Lebesgue measure.

Proof. We argue by induction in n = dimM . The case n = 0 is trivial.
Assume that n ≥ 1 and the lemma holds for all (n − 1)-dimensional
manifolds.

Since M can be covered by countably many coordinate neighbor-
hoods, we may assume that M is an open ball in R

n and f extends to
a smooth function on a compact set. Let Z be the set of points in X
where all derivatives of f vanish, and let Y = X \ Z.

The set Y is contained in a countable union of (n − 1)-dimensional
smooth submanifolds. Indeed, for each multi-index I = (i1, . . . , ik) ∈

{1, . . . , n}k, k ≥ 0, consider the partial derivative fI =
∂kf

∂x1...∂xk
. Let ΣI

be the set of points in M where the function fI vanishes but its first
derivative does not. Since fI ∈ C∞, ΣI is a smooth (n− 1)-dimensional
submanifold, and Y is contained in the union of all such submanifolds.

Applying the induction hypothesis to ΣI in place of M yields that
g(X ∩ ΣI) is a set of measure zero for every multi-index I. Therefore
g(Y ) has measure zero.

It remains to handle the set g(Z). Since f and all its derivatives up
to the order 2n vanish on Z and are bounded on M , there is a constant
C1 > 0 such that

(3.6) |f(x)| = |f(x)− f(z)| ≤ C1|x− z|2n

for all x ∈ M and z ∈ Z. We are going to show that

(3.7) |g(z) − g(z′)| ≤ C2|z − z′|n+1

for some constant C2 > 0 and all z, z′ ∈ Z such that |z − z′| ≤ 1. Let
δ = |z − z′| and pick a positive integer N such that δ1−n ≤ N ≤ 2δ1−n.
Divide the segment [z, z′] into N segments [xi−1, xi], i = 1, . . . , N , of
equal lengths. Note that

|xi − xi−1| = δ/N ≤ δn

by the choice of N , and

|f(xi)|+ |f(xi−1)| ≤ C1|xi − z|2n + C1|xi−1 − z|2n ≤ 2C1δ
2n

by (3.6). Substituting xi and xi−1 for x and y in (3.5) yields that

|g(xi)−g(xi−1)| ≤ C(|xi−xi−1|
2+ |f(xi)|+ |f(xi−1)|) ≤ C(1+2C1)δ

2n.
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Hence

|g(z)−g(z′)| =
∣

∣

∑

g(xi)−g(xi−1)
∣

∣ ≤ C(1+2C1)δ
2nN ≤ 2C(1+2C1)δ

n+1.

Thus (3.7) holds for C2 = 2C(1 + 2C1).
The inequality (3.7) implies that

dimH(g(Z)) ≤
dimH(Z)

n+ 1
≤

dimH(M)

n+ 1
=

n

n+ 1
< 1

where dimH denotes the Hausdorff dimension. Hence the one-dimensional
measure of g(Z) is zero and the lemma follows. q.e.d.

Corollary 3.4. Let c be an axis of γ. Then b0c = 0 on Aγ .

Proof. Let L = min dγ . Then Lemma 3.2 asserts that the functions
f = dγ − L and g = b0c satisfy the assumptions of Lemma 3.3. Since
Aγ = f−1(0), Lemma 3.3 implies that b0c(Aγ) is a set of measure zero
in R. By Lemma 2.2, Aγ and hence b0c(Aγ) are connected. Since the set
b0c(Aγ) is connected and has measure zero, it is a single point on the
real line. This means that b0c is constant on Aγ . Since c(0) ∈ Aγ and
b0c(c(0)) = 0, this constant is zero. q.e.d.

Proof of Proposition 3.1. Let c and c1 be axes of γ. Changing the origin
of c1 we may assume that bc(c1(0)) = 0. Then we have to prove that
bc = bc1 .

First we show that the relation bc(c1(0)) = 0 is symmetric; i.e., it
implies that bc1(c(0)) = 0. Since c1(0) ∈ Aγ , we have b0c(c1(0)) = 0 by
Corollary 3.4; hence b−c (c1(0)) = 0. This means that

d(c1(0), c(−t)) = t+ ε(t),

where ε(t) → 0 as t → +∞. Since bc1(c(−t)) ≤ d(c(−t), c1(0)), it follows
that bc1(c(−t)) ≤ t+ ε(t). This and Lemma 2.4(2) imply that

bc1(c(0)) = bc1(c(−t)) − t ≤ ε(t)

for all t > 0. Therefore bc1(c(0)) ≤ 0. Similarly, b−c1(c(0)) ≤ 0 (recall
that b−c (c1(0)) = 0 so the argument applies to the reverse geodesics as
well). Both inequalities must turn to equalities because bc1 + b−c1 ≥ 0.
Thus bc1(c(0)) = 0 as claimed.

Let x ∈ M and ε > 0. By the definition of Busemann function, there
exists t1 ∈ R such that

d(x, c1(t1)) < bc1(x) + t1 + ε.

Since bc(c1(0)) = 0, Lemma 2.4(2) implies that bc(c1(t1)) = −t1; hence

d(c1(t1), c(t0)) < t0 − t1 + ε

for a sufficiently large t0 ∈ R. Therefore

d(x, c(t0)) ≤ d(x, c1(t1)) + d(c1(t1), c(t0)) < bc1(x) + t0 + 2ε

and hence bc(x) ≤ bc1(x) since ε is arbitrary.
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Swapping c and c1 in this argument yields that bc1(x) ≤ bc(x). Thus
bc = bc1 and the proposition follows. q.e.d.

4. Virtual splitting of centralizer

Lemma 4.1. Let α ∈ Z(γ) and c be an axis of γ. Then bc(αx)−bc(x)
does not depend on x ∈ M .

Proof. This is [8, Corollary 2.6] without the analyticity assumption.
Observe that α−1c is an axis of γ, indeed, if L = min dγ then

γα−1c(t) = α−1γc(t) = α−1c(t+ L).

Therefore bα−1c − bc is constant by Proposition 3.1. Since bα−1c(x) =
bc(αx), the lemma follows. q.e.d.

Corollary 4.2. There exists a homomorphism h : Z(γ) → R such
that h(γ) 6= 0.

Proof. Let c be an axis of γ. For α ∈ Z(γ), define

h(α) = bc(αx) − bc(x),

where x ∈ M is an arbitrary point. By Lemma 4.1, h(α) is well defined.
For α, β ∈ Z(γ) we have

h(αβ) = bc(αβx)−bc(x) = bc(αβx)−bc(βx)+bc(βx)−bc(x) = h(α)+h(β).

Thus h is a homomorphism. By Lemma 2.4(1), h(γ) = −min dγ 6= 0.
q.e.d.

Recall that H1(Z(γ)) = Z(γ)/[Z(γ), Z(γ)]. We denote by π the pro-
jection from Z(γ) to H1(Z(γ)).

Corollary 4.3. π(γ) is non-torsion (i.e., has infinite order) in
H1(Z(γ)).

Proof. Since R is commutative, the homomorphism h from Corol-
lary 4.2 factors as h = h̄◦π, where h̄ is a homomorphism from H1(Z(γ))
to R. Since h̄(π(γ)) 6= 0, π(γ) has infinite order. q.e.d.

Proof of Theorem A. Recall that by Remark 2.3, Z(γ) is finitely gener-
ated and hence so is H1(Z(γ)). By Corollary 4.3 and the classification
of finitely generated abelian groups, π(γ) belongs to a finite index sub-
group H < H1(Z(γ)) that is isomorphic to Z

k so that π(γ) is mapped
to (1, 0, . . . , 0) ∈ Z

k by this isomorphism. Let p : H ∼= Z
k → Z be first

coordinate projection. Then G := π−1(H) is a finite index subgroup of
Z(γ) and φ = p ◦ π : G → Z is a homomorphism sending γ to 1 ∈ Z.
The existence of such a homomorphism and the fact that γ belongs to
the center of G imply that G ∼= Z×G′, where the Z factor corresponds
to the subgroup generated by γ and G′ = ker φ. q.e.d.
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5. Examples

In this section we will give some new examples of manifolds that can
be shown not to admit metrics without conjugate points using Theo-
rem A.

Example 5.1. Let S2
g be a closed orientable surface of genus g > 1

equipped with any Riemannian metric. Let M̄3 = T 1S2
g be the unit tan-

gent bundle to S2
g . Then M̄3 does not admit a metric without conjugate

points.
Indeed, since the Euler class of S2

g is not equal to zero, π1(M̄) is a

nontrivial central extension 1 → Z → π1(M̄) → π1(S
2
g ) → 1. A nontriv-

ial central element γ ∈ π1(M̄ ) satisfies Z(γ) = π1(M̄ ), but there is no
virtual splitting of π1(M̄) over γ. By Theorem A it follows that M̄ does
not admit a metric without conjugate points. On the other hand, π1(M̄ )
is semi-hyperbolic [1] and therefore it satisfies the previously known re-
strictions on fundamental groups of manifolds without conjugate points
proved in [8], namely, every abelian subgroup of π1(M̄ ) is straight and
every solvable subgroup of π1(M̄ ) is virtually abelian.

Recall that the key step in the proof of Theorem A is Proposition 3.1.
It was proved in [8] under the assumption that Aγ is locally rectifiably
path connected. As was discussed earlier this can be guaranteed if the
metric is real analytic. Another condition that obviously ensures it is
if γ belongs to the center of π1(M̄ ). Indeed, if γ ∈ Z(π1(M̄)) then dγ
descends to a well-defined function on M and hence it is bounded above
and attains its maximum. By Lemma 2.1(4), this means that max dγ =
min dγ ; i.e., dγ is constant. That means that Aγ = M , which is obviously
rectifiably path connected. Therefore one can prove that M̄ admits no
metric without conjugate points without using Proposition 3.1.

Next we will give an example that has no finite index subgroups with
nontrivial center and requires the full strength of Proposition 3.1 and
Theorem A.

Example 5.2. Let S2
g be a closed orientable surface of genus g > 1,

M̄3 = T 1Sg and F = Sg#Sg. Our example is a 5-manifold N fibering
over M̄ with fiber F . We need some preliminaries before we carry out
the construction.

First let us recall some basic facts about diffeomorphism groups of
surfaces. The mapping class group Mod(F ) is defined as π0(Diff(F )).
It can be alternatively described as Diff(F )/Diff0(F )) where Diff0(F )
is the identity component of Diff(F ). By a classical result of Dehn and
Nielsen, Mod(F ) is isomorphic to the group

Out(π1(F )) = Aut(π1(F ))/ Inn(π1(F ))
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of outer automorphisms of π1(F ). For a once-punctured surface F \{pt},
we have Mod(F \ {pt}) ∼= Aut(π1(F )).

It is well known that Diff0(F ) is contractible [9].

Lemma 5.3. There exists a monomorphism ρ : π1(M̄ ) → Mod(F )
that admits a lift to a monomorphism ρ̄ : π1(M̄ ) → Mod(F \ {pt}).

Proof. Pick p ∈ Sg and v ∈ T 1
pSg. Let Diff(Sg, v) be the subgroup of

Diff(Sg) fixing v. Consider the fibration Diff(Sg, v) → Diff(Sg)
ev
→ M̄3,

where the last map is just the evaluation map on v. Look at the long
exact homotopy sequence of this fibration

. . . → π1(Diff(Sg)) → π1(M̄
3)

i
→ π0(Diff(Sg, v)) → π0(Diff(Sg))

As mentioned earlier, Diff0(Sg) is contractible; therefore π1(Diff(Sg))
= 1 and hence π1(M̄

3) injects as a subgroup into π0(Diff(Sg, v)). Next
choose an ε > 0 much smaller than the injectivity radius of Sg and let
S+ = Sg \ Bε(p). Then Diff(Sg, v) is naturally isomorphic to
Diff(S+, ∂S+), the group of diffeomorphisms of S+ fixing the bound-
ary ∂S+ pointwise. Let F = S+ ∪∂S+ S−, where S− is another copy of
S+ (i.e., F is the double of S+ along its boundary). Then Diff(S+, ∂S+)
naturally embeds into Diff(F ) by extending the diffeomorphisms to S−

by identity. This induces a map j : π0(Diff(S+, ∂S+)) → π0(Diff(F ))
that is also injective. Then ρ = j ◦ i : π1(M̄ ) → Mod(F ) is injective.

The above construction (originally due to Mess [16]) is borrowed from
[13, Section 4.1]; see also [2].

Next observe that if instead of gluing S− to S+ we glue S−\{pt}, the
same argument gives an embedding π1(M̄ ) → Mod(F \ {pt}) so that
the above map ρ : π1(M̄) → Out(π1(F )) lifts to a map ρ̄ : π1(M̄) →
Mod(F \ {pt}) and both of these are injections. q.e.d.

Let BDiff(F ) = E/Diff(F ) be the classifying space of Diff(F ) (here
E is contractible). Then the projection map p : E → BDiff(F ) factors
through the map

E → E/Diff0(F )
p̄
→ E/Diff(F ) = BDiff(F ),

where p̄ is just the quotient by Diff(F )/Diff0(F )) = Mod(F ). Since
Diff0(F ) is contractible then so is E/Diff0(F ) and therefore BDiff(F )
can be identified with BMod(F ), which we will do from now on. There-
fore, for any CW complex B any map f : B → BMod(F ) (which up to
homotopy is determined by the map on the fundamental groups) gives
rise to a pullback bundle Diff(F ) → X → B and its associated bundle
F → N → B coming from the natural action of Diff(F ) on F .

Now consider the map M̄ → BMod(F ) corresponding to the mono-
morphism ρ : π1(M̄ ) → Mod(F ) from Lemma 5.3 and pull back the
universal F bundle. This gives us a 5-manifold N fibering over M̄ with
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fiber F . Clearly N is aspherical and its fundamental groups fits into a
short exact sequence

1 → π1(F ) → π1(N) → π1(M̄) → 1.

Since ρ can be lifted to ρ̄ : π1(M̄) → Mod(F \ {pt}) ∼= Aut(π1(F )), this
exact sequence splits, i.e., π1(N) is isomorphic to the semidirect product
π1(F )⋊ρ̄ π1(M̄).

Since ρ̄ is injective, π1(N) has trivial center. On the other hand, it
contains π1(M̄) as a subgroup and therefore it has an element whose
centralizer does not virtually split. Therefore, N does not admit a met-
ric without conjugate points by Theorem A. Lastly note that since ρ is
injective, the whole group π1(N) injects into Aut(π1(F )) via the conju-
gation action. Also recall that Aut(π1(F )) ∼= Mod(F \ {pt}). It is well
known that mapping class groups of hyperbolizable surfaces satisfy the
property that all their abelian subgroups are straight (see [10] and [12,
Lemma 8.7]) and all their solvable subgroups are virtually abelian [3].
Of course the same is therefore true for all their subgroups and hence
it is true for π1(N).

6. Solvability of word and conjugacy problems

It is very well known that fundamental groups of manifolds of nonpos-
itive curvature have solvable word and conjugacy problems. We observe
that the same is true for fundamental groups of closed manifolds without
conjugate points.

Theorem 6.1. Let M̄ be a closed manifold with a Riemannian metric
without conjugate points. Then π1(M̄) has solvable word and conjugacy
problems.

Proof. The proof is a straightforward combination of known results.
The key is the following Lemma.

Lemma 6.2. Let c0, c1 : S
1 → M̄ be two freely homotopic rectifiable

loops with length L(ci) < C for i = 0, 1. Then there exists a free ho-
motopy F : S1 × [0, 1] → M̄ from c0 to c1 through loops ct such that
L(ct) < C for any t ∈ [0, 1].

Proof. Lifting the homotopy to the universal cover M we get a ho-
motopy between two curves c̃0, c̃1 : [0, 1] → M . Since the metric has
no conjugate points, it is easy to connect each c̃i, i = 1, 2, to the
(unique) geodesic segment [c̃i(0), c̃i(1)] by a homotopy fixing the end-
points and not increasing lengths. (For example, consider a family of
curves {c̃i,t}, t ∈ [0, 1], where c̃i,t is the concatenation of the geodesic
segment [c̃i(0), c̃i(t)] and the arc c̃i|[t,1] of c̃i.) Thus we may assume that
c̃0 and c̃1 are geodesics.

Let γ be the element of the deck transformation group such that
γ(c̃0(0)) = c̃0(1); then γ(c̃1(0)) = c̃1(1). Thus, by our assumption, both
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c̃0(0) and c̃1(0) belong to the set {dγ < C}. By Lemma 2.1(4) and the
proof of Lemma 2.2, the set {dγ < C} is path connected and therefore
we can find a path α : [0, 1] → {dγ < C} such that α(0) = c̃0(0) and
α(1) = c̃1(0). Connect α(s) to γ(α(s)) by shortest geodesics for all s ∈
[0, 1]. They are unique and vary continuously since M has no conjugate
points. Projecting this family of geodesics to M̄ produces a homotopy
with the desired properties. q.e.d.

We are indebted to Ilya Kapovich for providing the following argu-
ment that the property provided by Lemma 6.2 implies solvability of the
word problem in π1(M̄ ). Since the argument is apparently well-known
we only give a brief outline.

It is well-known that to prove solvability of the word problem in a
finitely presented group, it is enough to show that its Dehn function has
a recursive upper bound (see for example [4, Theorem 1.5.8, p. 104]).

We claim that Lemma 6.2 yields an exponential upper bound on the
Dehn function of π1(M̄).

Fix a finite presentation 〈F |R〉 of Γ = π1(M̄ , p) and a K-quasi-
isometry between M and the Caley graph of Γ with respect to that
presentation sending p to e.

Let F : S1× [0, 1] → M̄ be a homotopy between a constant loop c0 at
p and a loop c1. Let C = 2L(c1). Since we are only interested in large
scale estimates we can assume that C ≥ 2 diam M̄ . By Lemma 6.2 we
can change F to a free homotopy such that L(ct) ≤ C for any t.

Consider a sufficiently fine subdivision of [0, 1] given by 0 = t0 <
t1 < . . . < tN = 1. For every j = 0, . . . N , connect ctj (0) to the fixed
base point p = c0(0) by a shortest geodesic. For every j this produces a
nullhomotopic loop c′j based at p of length ≤ C+2diam(M̄ ). Look at the
corresponding curves in the Caley graph and the words they represent
in the presentation 〈F |R〉. They all have lengths ≤ K(C+2diam(M̄)) ≤
2KC. The ball of radius R in the Caley graph has at most exp(C2 · R)
vertices for some explicit constant C2 depending on |F |. Therefore the
loops c′j produce at most exp(2C2KC) distinct words in the group.
Therefore, if the original homotopy was “too long” we can cut out the
parts between repeating words and reduce its length. This produces a
homotopy in the Caley graph of area ≤ exp(C3 · C) for some easily
computable constant C3 = C3(C2,K, |F | + |R|). Therefore the Dehn
function grows at most exponentially.

Lastly, by [5, section 1.11, p. 446], if π1(M̄ ) has solvable word problem
and satisfies the conclusion of Lemma 6.2, then it also has solvable
conjugacy problem. q.e.d.

Remark 6.3. One can also prove the solvability of the word problem
in Γ as follows. Since M̄ is compact we have that |sec(M)| ≤ K for
some K > 0, which trivially implies that for any p ∈ M the exponential
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map expp : TpM → M is exp(C1R) Lipschitz on the R-ball BR(0) ⊂
TpM for some C1 > 0 and any R > 0. Using that geodesics in M
are globally distance minimizing, it is not hard to show that exp−1

p is
also exp(C2R) Lipschitz, which implies an exponential bound on the
isoperimetric function in M and hence the Dehn function of Γ also
grows at most exponentially.

It is well-known that Dehn functions of CAT (0)-groups grow at most
quadratically. It is reasonable to expect that the same should be true for
fundamental groups of closed manifolds without conjugate points but
we have been unable to prove it.

7. 3-manifolds without focal points

Recall that a Riemannian manifold M is said to have no focal points
if every embedded shortest geodesic c : (a, b) → M has no focal points
when viewed as a submanifold of M . The class of manifolds without
focal points is contained in the class of manifolds without conjugate
points and contains all nonpositively curved manifolds. It is therefore
natural to wonder if closed manifolds without focal points always admit
nonpositively curved metrics.

The main result of this section is the following theorem, which answers
this question affirmatively in dimension 3.

Theorem 7.1. Let M be a closed 3-manifold. Then M admits a
Riemannian metric without focal points if and only if it admits a Rie-
mannian metric of nonpositive sectional curvature.

One of the main technical tools in the proof is the following result
due to O’Sullivan [17].

Theorem 7.2 (Flat torus theorem). [17, Theorem 2] Let M be a
closed Riemannian manifold without focal points. Let A ≤ π1(M) be a
solvable subgroup. Then there exists a flat totally geodesically embedded
space form i : F k →֒ M such that i∗ : π1(F

k) → π1(M) is injective and
A is a finite index subgroup in i∗(π1(F

k)).

We also need the following result from the same paper.

Proposition 7.3. [17, Proposition 5] Let M̄ be a closed manifold
without focal points and γ a nontrivial element of the deck transforma-
tion group Γ ∼= π1(M̄ ). Then

1) The union of axes Aγ is convex and closed in the universal cover M .
2) Aγ is isometric to R × N , where N is a smooth submanifold of

M̄ , possibly with boundary. The action of γ preserves this splitting
and acts by translations by min dγ on the R-factors.

Proof of Theorem 7.1. To simplify the exposition we will only give the
proof for orientable manifolds. The non-orientable case is treated sim-
ilarly. Alternatively we can appeal to a result of M. Kapovich and



MANIFOLDS WITHOUT CONJUGATE POINTS 237

Leeb [13, Corollary 2.5] that given a finite cover M1 → M2 between
closed 3-manifolds, M1 admits a metric of nonpositive sectional curva-
ture if and only if M2 does.

Let M̄ be a closed orientable 3-manifold without focal points. Since
M̄ is aspherical it is prime. By the geometrization it admits a geometric
decomposition. By [8] or by Theorem 7.2, none of the geometric pieces
are sol or nil. Also, if M̄ is Seifert fibered then by Theorem A it is finitely
covered by a product S1×Sg, where Sg is a closed surface of genus ≥ 2.
All such manifolds obviously admit nonpositively curved metrics and
hence so does M̄ . Thus we may assume that M̄ is not Seifert fibered.
If its geometric decomposition contains at least one hyperbolic piece
then M̄ admits a metric of nonpositive curvature by [15]. Thus we may
assume that M̄ is orientable, aspherical, not Seifert fibered, and its
geometric decomposition has no nil or sol pieces. This means that M̄ is
a graph manifold and all its geometric pieces are modelled on H

2 × R.
Let us consider a single geometric piece E of M̄ . It is Seifert fibered

over a hyperbolizable 2-manifold with boundary. By Theorem 7.2 we can
assume that all the boundary tori of E (which are incompressible in M̄)
are flat and totally geodesic in M̄ . Let E′ → E be a finite normal cover
which is topologically a product S1×Σ, where Σ is a compact 2-manifold
with boundary. Let γ be a nontrivial element of π1(M̄) corresponding
to the S1 factor of E′. Let π : M → M̄ be the universal cover of M̄ and
let p : Ẽ → E be the universal cover of E. Since the inclusion E →֒ M̄
is π1-injective we can think of Ẽ as a subset of M .

Clearly, the preimages of the boundary tori of E in Ẽ belong to Aγ .

This easily implies that the whole Ẽ is contained in Aγ by essentially
the same argument as in Example 5.1. Indeed, since π1(E

′) ⊂ Z(γ) in

π1(M̄ ), dγ descends from Ẽ to a well-defined function d′γ on E′ and since
E′ is compact this function attains its maximum and minimum there.
The whole boundary of E′ belongs to the set of minima of d′γ and since

dγ has no critical points outside Aγ by Lemma 2.1(4) we get that d′γ is

constant on E′ and dγ is constant on Ẽ.

Therefore, by Proposition 7.3(2), Ẽ isometrically splits as a product.

More precisely, Ẽ is isometric to R × N2, where N is the universal
cover of Σ equipped with some Riemannian metric with totally geodesic
boundary. The isometric action of π1(E

′) = π1(S
1) × π1(Σ) on R × N

preserves this splitting; furthermore, the action of the π1(S
1) factor

preserves the R-fibers of R × N and the action of the π1(Σ) factor
descends to the action on N by deck transformations. Thus the metric
of N descends to a well defined Riemannian metric g0 on Σ. Note that
we do not claim that E′ itself is isometric to a product.

Let us apply the uniformization procedure to the double of Σ. It
produces a metric g1 of constant negative curvature in the same confor-
mal class as the original metric g0. Since the uniformization procedure
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commutes with isometries, the boundary of Σ remains totally geodesic.
Also, the isometric action (by deck transformations) of π1(Σ) on N with
respect to g̃0 remains isometric with respect to g̃1. Therefore the action
of π1(E) on Ẽ is isometric with respect not only to the original product
metric R× (N, g̃0) but also with respect to the new metric R× (N, g̃1),
which is nonpositively curved. Notice that the conformal change of g0 to
g1 may change the lengths of the boundary circles of Σ but we can easily
modify the metric g1 to g2 by rescaling and attaching tubular collars
near the boundary so that the g2 is still nonpositively curved and all
the boundary circles have the same lengths as in g0 and are still totally
geodesic. Moreover, we can can easily arrange that g2 is a product near
the boundary. This yields a metric on E that is nonpositively curved,
∂E is totally geodesic and isometric to the original boundary, and the
metric near ∂E is flat. Doing it on all geometric pieces of M̄ separately
and gluing the resulting metrics together yields a metric of nonpositive
curvature on M̄ . q.e.d.

8. Open problems

Themain open question concerning manifolds without conjugate points
is Question 1.1, which we restate here.

Question 8.1. Does every closed Riemannian manifold without con-
jugate points admit a nonpositively curved metric? The same can be
asked about manifolds without focal points.

While we suspect that this is likely false in general, it might be true
in dimension 3 (cf. Theorem 7.1). The main problem is to understand
which graph manifolds admit metrics without conjugate points. The cor-
responding question about nonpositively curved metrics is completely
understood by the work of Buyalo and Kobelski [7].

The simplest test case to understand is the following

Question 8.2. Let Σ = T 2 \ D2. Let M̄1 = M̄2 = Σ × S1. Let
M̄ = M̄1 ∪f M̄2, where f is a self diffeomorphism of the boundary
torus T 2 = ∂M̄1 whose action on Z

2 = π1(T
2) is given by a matrix

A ∈ SL(2,Z) with |trace(A)| > 2. Then it is easy to see that M̄ does
not admit a metric of nonpositive curvature (say, by Theorem 7.2 and
Proposition 7.3). Does M̄ admit a metric without conjugate points?

Question 8.3. One of the natural classes containing CAT(0)-groups
is the class of semi-hyperbolic groups. As was remarked in the introduc-
tion, it is known that in semi-hyperbolic groups all abelian subgroups
are straight and all solvable subgroups are virtually abelian. It is there-
fore natural to pose the following weaker version of Question 1.1.

Is the fundamental group of a closed manifold without conjugate points
semi-hyperbolic?
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Note however, that Theorem A does not hold for general semi-hyperbolic
groups with the fundamental groups of unit tangent bundles to surfaces
of genus > 1 providing the simplest counterexamples.

Lastly, let us note that it is easy to see that if M̄ has no focal
points then π1(M̄) is semi-hyperbolic. Indeed, the no focal points con-
dition implies that if c1(t), c2(t) are geodesics in M with c1(0) = c2(0)
then d(c1(t), c2(t)) is monotone increasing for t > 0 [17, Proposition
2]. This trivially implies that the canonical bicombing of M by short-
est geodesics satisfies the fellow traveller property and hence π1(M̄) is
semi-hyperbolic.

Question 8.4. Let M̄ be a closed manifold without conjugate points
and γ ∈ π1(M̄ ). Is it true that Z(γ) is straight in π1(M̄ )? This is easily
seen to be true if M̄ has no focal points, because in this case Aγ is convex
in the universal cover M and Aγ/Z(γ) is compact. More generally it is
known to be true for semi-hyperbolic groups [5].
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