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THE HARMONIC FIELD OF A
RIEMANNIAN MANIFOLD

Steve Halperin

Abstract

Sullivan’s construction of minimal models for topological spaces
is refined for the case of a simply connected closed Riemannian
manifold, (M,<,>), to define a unique finitely generated field
extension, k of Q, baptized the harmonic field of (M,<,>), and a
morphism, m : (ΛV, d) → ADR(M), from a Sullivan model defined
over k. The Sullivan model and the morphism are determined up to
isomorphism, and the natural extension ofH(m) to H(ΛV, d)⊗kR
is an isomorphism; in particular, (ΛV, d) is isomorphic to a rational
Sullivan model for M tensored with k. Examples are constructed
to show that every finitely generated extension field of Q occurs
as a harmonic field of such a Riemannian manifold.

1. Introduction

Let ADR(M) denote the commutative differential graded algebra of
differential forms on a simply connected closed smooth manifold, M ,
equipped with the exterior derivative. Then a classical theorem of

de Rham provides an isomorphism, H(M ;Q)⊗R
∼=
→ H(ADR(M)). We

denote the image of H(M ;Q) by HQ(ADR(M)). An open question is
whether this data alone is sufficient to determine the rational homotopy
type of M .

Recall that a Sullivan algebra defined over a ground field k of charac-
teristic zero is, in particular, a commutative differential graded algebra,
(C, d), in which C0 = k, C is a free graded commutative algebra ΛV ,
and in which d satisfies an additional “nilpotence” condition (which
automatically holds if C1 = 0). The Sullivan algebra is minimal if
Imd ⊂ C+ · C+. (For the theory of Sullivan algebras and models see
[2].)

Using the simplicial set of singular simplices (or alternatively, where
one exists, a triangulation), Sullivan [4] and [2], Sec.12, constructs for
every simply connected space a minimal Sullivan algebra defined over
Q, which determines its rational homotopy type. Thus the question is
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whether the Sullivan algebra, (CM , d), for M can be constructed just
from ADR(M) together with the de Rham isomorphism.

What is known ([4] and [2], Sec.12), is that there is a a morphism
µ : (CM , d) ⊗ R → ADR(M) such that H(µ) is an isomorphism of

the form HQ(µ) ⊗ R : H(C(M,d)) ⊗ R
∼=
→ H(M ;Q) ⊗ R. Moreover,

in [4] Sullivan provides a specific procedure, using Hodge theory for
a Riemannian metric on M , to construct a minimal Sullivan algebra,

(E, d), defined over R, and an isomorphism (E.d)
∼=
→ (CM , d)⊗R.

Our purpose here is to show that a refinement of this construction
determines a unique finitely generated extension field k of Q (to be
called the harmonic field of the Riemannian manifold), together with a
Sullivan algebra, (D, d), defined over k, and a morphism m : (D, d) →

ADR(M) inducing an isomorphism H(D, d)
∼=
→ HQ(ADR(M))⊗ k. The

Sullivan algebra, (D, d), to be called the harmonic Sullivan model, is
finite dimensional in each degree, but may not be minimal. However,
it and the quasi-isomorphism m are determined up to isomorphism by
the Riemannian metric. This contrasts with the classical theory of Sul-
livan models, where the quasi-isomorphisms are only determined up to
homotopy.

This result is in some sense analogous to that of an algebraic manifold
defined over a subfield k of C, where the de Rham cohomology has the
form H ⊗k C and H is computed via the Kahler differentials.

Our construction exhibits (D, d) as a tensor product (ΛV, d)⊗Λ(U, dU)

in which (ΛV, d) is a minimal Sullivan algebra and d : U
∼=
→ d(U). In

particular (cf. Theorem 1), (ΛV, d) ∼= (CM , d)⊗k and so is independent
of the metric. On the other hand, the harmonic field (and the Sullivan
model, (D, d)) are new invariants, depending only on the image of the
metric in the moduli space of metrics modulo the obvious action by the
group of diffeomorphisms.

In Sec. 4 we construct a manifold P which is a principal S3 fibre
bundle over S2 × S2 and show that its harmonic field is Q for all Rie-
mannian metrics. However (Theorem 3), the possible harmonic fields
for M = S3 × P are precisely all the extension fields of the form Q(λ),
where λ is an arbitrary real number. It follows (Corollary to Theorem 3)
that any field of the form Q(λ1, . . . λr) is the harmonic field for a suit-
able metric on M r. In particular, it follows that every finitely generated
extension of Q occurs as the harmonic field of a rationally elliptic ([2],
Sec. 32) manifold. Moreover, if M is a product of odd spheres, then the
harmonic field is Q for all Riemannian metrics, and the harmonic field
of a Riemannian symmetric space is Q.

This article leaves open a number of questions. As the examples in
Sec. 4 indicate, the harmonic field of a Riemannian manifold depends
on a combination of the analytic nature of the Hodge decomposition
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and the structure of the minimal rational Sullivan model. It would be
interesting to know more generally how knowledge of the rational model
limits the possibilities for the harmonic fields. For example, what can
be said if the manifold is formal in the sense of rational homotopy, or
at least in the case it is Kahler? Is there a bound, depending only on
the rational homotopy type of M , on the number of generators of a
harmonic field? Then, even absent knowledge of the rational homotopy
type, there are questions: Are there manifolds for which every finitely
generated extension of Q can occur? Are there manifolds for which Q
can never be a harmonic field? In another direction, do the eigenvalues
of the Laplacian give information about the harmonic field?

Additionally, the results of this paper introduce new questions about
homotopy periods. The minimal Sullivan model, (CM , d), determines via
Sullivan’s theory a natural isomorphism from the vector space C+

M/C
+
M ·

C+
M to the vector spaceHom(π∗(M),Q). The isomorphism C+

M⊗R/C+
M⊗

R ·C+
M⊗R with Hom(π∗(M),R) is then automatically compatible with

the underlying rational vector spaces. On the other hand, let k be the
harmonic field for M . Then the harmonic Sullivan model for M is the
tensor product of a minimal Sullivan algebra (B, d) and a contractible
one, and there is an inclusion (B, d) into (CM , d) ⊗R that induces an
isomorphism H(B, d) ∼= H(CM , d) ⊗ k. This inclusion also induces an
isomorphism

B+/B+ · B+ ⊗k R ∼= C+
M ⊗R/C+

M ⊗R · C+
M ⊗R.

For each p, the image of B+/B+ ·B+ in degree p will determine a finitely
generated extension field, lp of k, which may be thought of as the ”har-
monic homotopy periods” of M . The question of whether these can be
non-trivial remains one for future investigation. This is again analogous
to the situation described above of algebraic varieties defined over a sub-
field k of the complex numbers, whose cohomology with coefficients in k
may be computed via Kahler differentials, but who may have homotopy
periods not in k.

The reader will note that this article does not provide an answer to
the original question. There was some hope that Sullivan’s idea of using
a Riemannian metric would produce the rational model. As it turns
out, that idea does come within a finitely generated field extension of
succeeding, but does not in general produce the rational model. Since
even the addition of a Riemannian metric to the data seems insufficient,
it seems unlikely that the answer is positive. On the other hand, there
does not seem to be an obvious strategy to establish this.

Acknowledgments. The author is very grateful to the referees whose
many helpful suggestions (especially including the question about ho-
motopy periods) have significantly improved the paper.
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2. The harmonic Sullivan model of a harmonic decomposition

Throughout this article, and without further reference, all fields will
be assumed to have characteristic zero. In particular, in this section, K
will denote a fixed such field, and unless specified otherwise all vector
spaces will be defined over K.

Recall that a graded vector space has finite type if it is finite dimen-
sional in each degree, and that a commutative differential graded alge-
bra (cdga), (A, d), defined over K, is 1-connected if A is concentrated
in non-negative degrees, H0(A, d) = K, and H1(A, d) = 0. A (minimal)
Sullivan model for (A, d) is a quasi-isomorphism from a (minimal) Sul-
livan algebra, (ΛV, d) to (A, d), and we sometimes abuse langauage and
call (ΛV, d) a Sullivan model for (A, d). The minimal Sullivan models
for (A, d) are determined up to isomorphism.

Definition 1. Let (A, d) be a 1-connected cdga defined over K. A
rational homology structure for (A, d) is a graded algebra, HQ(A, d),

defined over Q, together with an isomorphism HQ(A, d)⊗K
∼=
→ H(A, d).

For any subfield, k, of K we write Hk(A, d) = HQ(A, d) ⊗ k. Then
a k-(minimal) Sullivan model for (A, d) is a morphism µ : (C, d) →
(A, d) from a (minimal) Sullivan algebra defined over k such that H(µ) :

H(C, d)
∼=
→ Hk(A, d).

The uniqueness of k-minimal Sullivan models for (A, d) follows from
[1] and Theorem 6.8 in [3]:

Theorem 1. Let (A, d) be a 1-connected cdga with homology of fi-
nite type, and equipped with a rational homology structure. If (C, d)

and (C
′

, d) are k-minimal Sullivan models for (A, d), then the isomor-

phism H(C, d) ∼= H(C
′

, d) determined by the homology isomorphisms

with Hk(A, d) can be realized by an isomorphism (C, d) ∼= (C
′

, d).

Proof. Both (C, d)⊗kK and (C
′

, d)⊗kK are minimal Sullivan models

for (A, d), and so there is an isomorphism ϕ : (C, d)⊗kK
∼=
→ (C

′

, d)⊗kK

for which H(ϕ) restricts to an isomorphism H(C, d)
∼=
→ H(C

′

, d). Now

[1] and Theorem 6.8 in [3] imply that (C, d) ∼= (C
′

, d). q.e.d.

Recall next that if (C, d) is a simply connected minimal Sullivan al-
gebra with homology of finite type, then C itself has finite type and
C1 = 0. Moreover, we may always write C = ΛW with

(1) W =W (0)⊕W (1),

where d(W (0)) = 0, d : W p(1)) → ΛW<p, and H(d) : W p(1)
∼=
→

ker[Hp+1(ΛW<p, d) → Hp+1(ΛW<p, d)]. In this case we say that (ΛW,d)
has normal form. Note that the integers dim W p(1) depend only on the
isomorphism class of the Sullivan algebra.
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Definition 2. Suppose (ΛW,d) is a minimal Sullivan model in nor-
mal form for a 1-connected cdga (A, d) with homology of finite type.
Then the critical degrees for (A, d) are the integers p for whichW p(1) 6=
0. The set of critical degrees will be denoted crit(A, d).

In what follows we shall need to consider (possibly finite) increas-
ing sequences of vector spaces and cdga’s defined over an increasing
sequence of subfields of K. Thus we make

Definition 3. Let l∗ = {lp}p≥2 be an increasing sequence of subfields
of K. An l∗-graded vector space (resp. an l∗-cdga, an l∗-Sullivan algebra)
is a sequence, Sp, of lp-graded vector spaces, cdga’s, or Sullivan algebras,
together with inclusions Sp ⊗lp lp+1 ⊂ Sp+1. A morphism, ϕ, in any of
these categories is a sequence of morphisms ϕp such that ϕp+1 extends
ϕp ⊗lp lp+1.

Finally, suppose S is a graded vector space over a subfield l of a
field K.

Definition 4. If T ⊂ S ⊗l K is an l-subspace then the extension
subfield for T is the minimum intermediate field l ⊂ L ⊂ K such that
T ⊂ S ⊗l L. The L-subspace L · T is the extension subspace of T .

Remark: Suppose {ti} is a basis of T and {sj} is a basis of S. Each
ti =

∑
j λijsj, and L is the extension field generated by the λij . In

particular, if dim T is finite then L is a finitely generated field extension
of l. In this case dim T ≥ dimL(L · T ) and equality holds if and only if
the obvious map T ⊗l L → L · T is an isomorphism.

We are now ready to define harmonic decompositions, which gener-
alize the classical Hodge decompositions to general 1-connected cdga’s,
and to construct the corresponding harmonic Sullivan models.

Definition 5. A harmonic decomposition of a 1-connected cdga,

(A, d), is a vector space direct sum A = H⊕X⊕Y , in which d : X
∼=
→ Y

and d(H) = 0. The projections on H, X, and Y will be denoted respec-
tively by ρH , ρX , and ρY .

For our construction, we fix a 1-connected cdga, (A, d), with homol-
ogy of finite type, defined over K, and equipped with a rational homol-

ogy structure HQ(A, d) ⊗K
∼=
→ H(A, d) and a harmonic decomposition

A = H ⊕X ⊕ Y . Identify the graded spaces H(A, d) and H via the ob-
vious isomorphism and identify any map into H(A, d) with a map into
H. Then for any subfield k ⊂ K the rational homology structure de-

termines a linear isomorphism Hk(A, d) ⊗k K
∼=
→ H, and we denote the

image of Hk(A, d) by Hk. Finally, let µ : (Λ(W (0)⊕W (1)), d) → (A, d)
be a minimal Sullivan model for (A, d) in normal form.

Now let q be the least positive integer in which (A, d) has non trivial
homology. We shall construct by induction:
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(i) an increasing sequence k∗ = {kp} of finitely generated extension
fields of Q such that kp = Q for p ≤ q;

(ii) a k∗-Sullivan algebra, {(Dp, d)} with each Dp of finite type; and
(iii) kp-linear morphisms mp : (Dp, d) → (A, d) compatible with the

inclusions and such that

(2) Im H≤p+2(mp) ⊂ Hkp
(A, d)

and

(3) H i(mp) is an isomorphism for i ≤ p and is injective for i = p+ 1;

all with certain other properties as specified below. In particular,
each (Dp, d) will have the form

(Dp, d) = (Λ(Vp(0)⊕ Vp(1)), d) ⊗kp
Λ(Up, d(Up)),

in which Vp(0)⊕ Vp(1) is concentrated in degrees ≤ p,

(Bp, d) = (Λ(Vp(0)⊕ Vp(1)), d)

is a minimal Sullivan algebra in normal form, and

d : Up

∼=
→ dUp.

Thus the inclusion (Bp, d) ⊂ (Dp, d) will be a quasi-isomorphism.

Then we shall set k = ∪pkp and m : (D, d) → (A, d) = ∪pmp :
(Dp, d) → (A, d): these will be, respectively, the harmonic field and the
harmonic Sullivan model of (A, d).

We proceed by constructing k∗ and k∗-graded vector spaces {V̂ p
p−1(0)},

{V̂ p
p−1(1)}, and {̂Up−1

p−1 } and set

Vp(0) = kp⊗((Vp−1(0)⊕V̂
p
p−1(0)), Vp(1) = kp⊗((Vp−1(1)⊕V̂

p
p−1(1)),

and Up = kp ⊗ ((Up−1 ⊕
̂Up−1
p−1 ); here the tensor products are over kp−1.

To begin, set kp = Q if p ≤ q, and set Dq−1 = Q. Set V≤q(1) = 0,
V<q(0) = 0, Vq(0) = Hq

Q, and U≤q = 0. Thus (Dq, d) = (ΛV q
q (0), 0).

Finally, define mq to be the morphism extending the identity V q(0) =
Hq

Q.
Now assume by induction that the constructions of the fields kp and

the morphisms mp : (Dp, d) → (A, d) have been carried out for p ≤ r,
and that (2) and (3) hold for p ≤ r.

For the inductive step, first observe from (2) and (3) that we may

choose ̂V r+1
r (0) ⊂ Hr+1

kr
(A, d) so that

(4) Hr+1
kr

(A, d) = Im Hr+1(mr)⊕
̂V r+1
r (0).

Let α : ̂V r+1
r (0) → Hr+1

kr
be the corresponding inclusion.
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Next, choose d : ̂V r+1
r (1) → Br+2

r to be a kr-linear map such that
d ◦ d = 0 and

(5) H(d) : ̂V r+1
r (1)

∼=
→ ker [H(mr) : H

r+2(Br, d) → Hr+2
kr

(A, d)].

Let β : ̂V r+1
r (1) → X be the unique kr-linear map such that

(6) d ◦ β = mr ◦ d : ̂V r+1
r (1) → A.

Let (ΛW,d) be a minimal model for (A, d). Then it follows from (2) and
(3) that K⊗kr

(Br, d) ∼= (ΛW≤r, d). In particular,

(7) ̂V r+1
r (1) = 0, if r + 1 /∈ crit(A, d).

Finally, let Û r
r ⊂ ρY ◦mr(D

r+1
r ) be a kr subspace such that

(8) ρY ◦mr(D
r+1
r ) = mr ◦ d(D

r
r)⊕ d ◦ γ(Û r

r ),

where γ is the inclusion.

Set d to be 0 in ̂V r+1
r (0). Then mr, α, β, and γ define a kr-linear

morphism:

m̂r : (D̂r, d) = Dr ⊗kr
Λ(̂V r+1

r (0) ⊕ ̂V r+1
r (1)) ⊗kr

Λ(Û r
r , dÛ

r
r ) → (A, d).

We now come to the key step in which the extension from kr to kr+1 is
defined. Regard H(m̂r) as a kr-linear map into H. As described above
its image, which is a kr-vectorspace in H, determines an extension field
kr+1. When r+1 /∈ crit(A, d) we define kr+1 to be the extension field of

(9) Im H≤r+3(m̂r).

When r+1 ∈ crit(A, d) we need a more technical definition: in this case
we define kr+1 to be the extension field of

(10) Im H≤r+3(m̂r)⊕ ρH ◦mr(D
r+1
r ).

Finally, extend m̂r to the kr+1-linear morphism,

mr+1 : (Dr+1, d) = kr+1 ⊗kr
(D̂r, d) → (A, d)

This completes the construction of mr+1 and (Dr+1, d).
By construction, Im H≤r+3(mr+1) = kr+1 · Im H≤r+3(m̂r), and so

(2) follows. On the other hand,

H≤r+2(m̂r) : H
≤r+2(Dr ⊕

̂V r+1
r (1)) ⊕ ̂V r+1

r (0) → Hkr
,

and it follows from the choice of kr+1 that

H≤r+2(mr+1) = kr+1 ⊗kr
[H≤r+2(m̂r) : H

≤r+2(D̂r) → Hkr
];

this establishes (3).
Finally, it is clear from the construction that Dr+1 has finite type

and so, given the Remark above, kr+1 is a finitely generated extension
of kr.
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This closes the induction. Note that

(11) mp : Vp(1) ⊕ Up → X and mp : Vp(0) → Hkp
.

q.e.d.

Definition 6. If k∗ and {̂V p+1
p (0)}, {̂V p+1

p (1)}, and {Ûp
p } satisfy (4)-

(10) then k = ∪pkp and m = ∪pmp : (D, d) = ∪p(Dp, d) → (A, d) will
be called, respectively, a harmonic field and a harmonic Sullivan model
for (A, d).

Given a harmonic Sullivan model as above we shall write
(12)
V (0) = ∪Vp(0), V (1) = ∪Vp(1), V = V (0)⊕ V (1), and U = ∪Up(0).

Proposition 1. Let m : (D, d) → (A, d) be a harmonic Sullivan
model. Then

(i) The linear maps in (11) are injections.
(ii) m : (B, d) = (ΛV, d) → (A, d) is a k-minimal Sullivan model in

normal form for (A, d), and (D, d) is a mininimal Sullivan algebra
if and only if U = 0.

(iii) D has finite type.
(iv) If H(A, d) is finite dimensional, then k is a finitely generated ex-

tension of Q.

Proof. Assertions (i) and (iii) are immediate from the construction,
and assertion (ii) follows from (2) and (3). Finally, if H>n(A, d) = 0,
then it follows from (9) and (10) that kr = kn for r ≥ n, and so k = kn.
This gives (iv). q.e.d.

Definition 7. The morphism m : (B, d) → (A, d) will be called the
minimal component of a harmonic Sullivan model for (A, d).

Lemma 1. Let m : (D, d) → (A, d) be a harmonic Sullivan model. If
p ∈ crit(A, d) then

(i) ρY ◦mp(D
p
p) = mp ◦ d(D

p−1
p ).

(ii) If Φ ∈ Dp
p and mp(Φ) is a cycle, then there is a cycle Ψ ∈ Dp

p such
that mp(Φ) = mp(Ψ).

Proof. (i) Evidently, mp◦d(D
p−1
p ) ⊂ ρY ◦mp(D

p
p). On the other hand,

Dp
p = kp⊗kp−1

Dp
p−1 ⊕V p

p ⊕ d(Up−1
p ), and ρY vanishes on mp(Vp). Thus

(i) follows from (8) with p = r + 1.
(ii) Write mp(Φ) = Φp−1 +Φ0 +Φ1 +Φ2 with the summands respec-

tively in Dp
p−1, V

p(0), V p(1), and dUp−1. Then 0 = ρY ◦ d ◦ mp(Φ) =

ρY (d(Φp−1 +Φ1)). In view of (11) and (5) it follows that Φ1 = 0, while
trivially ρH(Φ2) = 0. Thus ρH ◦mp(Φ) = ρH(Φp−1+Φ0) ∈ Hkp

, by (10).
Now by (2) and (3) there is a cycle Ψ0 ∈ Dp and an element x ∈ X such
that mp(Φ) = ρH ◦mp(Ψ0)+ dx. Thus dx ∈ ρY ◦mp(D

p
p), and it follows

from (i) that dx = mp(d(Ψ1)). Set Ψ = Ψ0 ⊕ d(Ψ1). q.e.d.
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The uniqueness of harmonic fields and harmonic Sullivan models is
established in

Theorem 2. Suppose m : (D, d) → (A, d) and m
′

: (D
′

, d) → (A, d)

are harmonic Sullivan models with harmonic fields k and k
′

. Then k =

k
′

, and there is an isomorphism ϕ : (D
′

, d)
∼=
→ (D, d) such that m ◦ ϕ =

m
′

. In particular, (B
′

, d) ∼= (B, d).

Proof. We shall show that {k
′

r} = {kr} and construct an isomorphism

{ϕr} : {(D
′

r, d)}
∼=
→ {(Dr, d)} such thatmr◦ϕr = m

′

r, both by induction.
To begin, when r = q we simply set ϕq = id.

Now assume for some r that for p ≤ r, kp = k
′

p and the ϕp have

been constructed. Then Im mr = Im m
′

r and it follows from (8) that

both (̂U r
r )

′ and Û r
r are complementary kr-subspaces of mr ◦ d(D

r
r) in

ρY ◦mr(D
r+1
r ). Thus there are bases, {u

′

i} of (̂U r
r )

′

and {ui} of Û r
r , and

elements Φi ∈ Dr
r such that d◦m̂′

r(u
′

i) = d◦m̂r(ui)+d◦mr(Φi). Extend
ϕr to the isomorphism

ψU : (D
′

r, d) ⊗ Λ((̂U r
r )

′ , d(̂U r
r )

′)
∼=
→ (Dr, d) ⊗ Λ(Ûr, dÛr)

that sends u
′

i to ui+Φi. (Here the tensor products are over kr.) Evidently

the restrictions of m̂r and m̂′

r satisfy m̂r ◦ ψU = m̂′

r.

Similarly we have Im H(mr) = Im H(m
′

r), and it follows from (4)

that there are bases {v
′

i} of ̂(V r+1
r+1 )

′

(0) and {vi} of ̂V r+1
r+1 (0) and cycles

Φi ∈ A representing classes in Im Hr+1(mr) such that

(13) m̂
′

r(v
′

i) = m̂r(vi) + Φi.

Now write Φi = mr(Ψi) + dxi with Ψi a cycle in Dr+1
r and xi ∈ X.

Then (10) gives ρY (mr(Ψi + dxi)) = 0. Thus dxi ∈ ρY (mr(Ψi)), and it

follows from (8) that dxi = d(m̂r(Ωi) for some Ωi ∈ Dr
r ⊕ Û r

r . Extend
ψU to the isomorphism

ψ0 : (D
′

r, d)⊗ Λ( ̂(V r+1
r )′ , 0)⊗ Λ((̂U r

r )
′ , d(̂U r

r )
′)

∼=
→ (Dr, d)⊗ Λ(̂V r+1

r , 0)⊗ Λ(Ûr, dÛr)

that sends v
′

i to vi+Ψi+Ωi. (Here again the tensor products are over kr.)

As above we have that the restrictions of m̂r and m̂′

r satisfy m̂r ◦ ψ0 =

m̂′

r.

If r + 1 /∈ crit(A, d), then ψ0 : (D̂
′

r+1, d)
∼=
→ (D̂r+1, d) and it follows

from (9) that k
′

r+1 = kr+1. In this case we set ϕr+1 = kr+1⊗kr
ψ0. Now

suppose r+1 ∈ crit(A, d). Use (6) to conclude that there are bases {w
′

i}
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of ̂(V r+1
r+1 )

′(1) and {wi} of ̂V r+1
r+1 (1) and elements Φi ∈ Dr+1

r such that

(14) ϕr(dw
′

i) = d(wi +Φi).

It follows that m̂′

r(w
′

i) − mr+1(wi + Φi) is a cycle and so m̂′

r(w
′

i) −
mr+1(wi + Φi) = ρH(mr+1(Φi)) + dxi. Now it follows from (10) that
ρH(m(Φi)) ∈ Hkr+1

. It then follows from (4) that ρH(m(Φi)) =

mr+1(Ψi)+dti, where Ψi is a cycle in (kr+1⊗kr
Dr+1

r )⊕V r+1
r+1 (0). Finally,

dti + dxi = ρY (m̂
′

r(w
′

i)−mr+1(wi +Φi − Ψi) = ρY ◦mr+1(Φi)−Ψi) ∈

mr+1(D
r+1
r+1). Now Lemma 1(i) asserts that dti + dxi = mr+1 ◦ d(Ωi),

where Ωi ∈ Dr
r+1. Thus m̂

′

r(w
′

i) = mr+1(wi +Φi −Ψi − d(Ωi)).

But Dr
r+1 = Dr

r⊕U
r
r , so that Φi−Ψi−d(Ωi)) ∈ (Dr, d)⊗Λ(̂V r+1

r , 0)⊗

Λ(Ûr, dÛr). Thus ψ0 extends to the isomorphism, ψ1 : kr+1⊗kr
D̂

′

r+1

∼=
→

Dr+1 that sends w
′

i to wi +Φi −Ψi − d(Ωi).

By construction,mr+1◦ψi = m̂r
′ : D̂

′

r+1 → A. Thus ImH≤r+3(m̂r′) ⊂

ImH≤r+3(mr+1) ⊂ H≤r+3
kr+1

(A, d). Moreover, by our induction hypothe-

sis, m
′

r((D
r+1
r )

′

) = mr(D
r+1
r ). Thus it follows from (10) that

ρH(m
′

r((D
′

)r+1
r ) ⊂ Hkr+1

(A, d) as well. Thus (10) (applied to (D
′

, d))

yields k
′

r+1 ⊂ kr+1. Reversing the roles of D
′

and D yields the reverse

inclusion and establishes that k
′

r+1 ⊂ kr+1.
We may therefore set ϕr+1 = ψ1, thereby closing the induction. q.e.d.

There is a well-defined notion of homotopy between morphisms from
a Sullivan algebra, [4] and [2].

Corollary 1. If (B
′

, d) and (B, d) are the minimal components of

harmonic Sullivan models for (A
′

, d) and (A, d) then ϕ induces an iso-

morphism ϕB : (B
′

, d)
∼=
→ (B, d) such that m ◦ ϕB ∼ m

′

: (B
′

, d) →
(A, d).

Remark: If (A, d) has a classical Sullivan model of the form µ :

(C, d)⊗K → (A, d) in which C is defined over Q and H(µ) : H(C, d)
∼=
→

HQ(A, d), then it follows from Theorem 1 that there is an isomorphism

ξ : (C, d)⊗k
∼=
→ (B, d). It is far from clear, however, that ξ can be chosen

so that m ◦ ξ ∼ µ.
Now suppose (A(1), d) and (A(2), d) are 1-connected cdga’s with ho-

mology of finite type and equipped with rational homology structures
and harmonic decompositions. Assume further that there is a quasi-
isomorphism ϕ : (A(1), d) → (A(2), d) that mapsHQ(1),X(1), and Y (1),
respectively, to HQ(2),X(2), and Y (2).

Proposition 2. With the hypotheses and notation above, (A(1), d)
and (A(2), d) have the same harmonic fields, and their harmonic Sulli-
van models (D(1), d) and (D(2), d) are isomorphic.
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Proof. Because ϕ is a quasi-isomorphisn it restricts to an isomorphism
from H(1) to H(2). Write X(1) = X

′

(1)⊕ ker ϕ ∩X(1). Then

(15) Y (1) = d(X
′

(1)) ⊕ ker ϕ ∩ Y (1).

In fact, it is obvious that Y (1) ⊃ d(X
′

(1))⊕ ker ϕ∩Y (1). On the other

hand, if dx ∈ Y (1) then ϕ(dx) = ϕdx1 for some x1 ∈ X
′

(1). Thus ϕ(x−
x1) is a cycle in A(2). Since ϕ preserves the harmonic decompositions,
ϕ(x− x1) = 0 and (15) is established.

Now extend ϕ to a surjective quasi-isomorphism, ψ : (A(1), d) ⊗

Λ(T, dT ) → (A(2), d), where d : T
∼=
→ dT . Then H(ker ψ) = 0, and

using (15) we may extend X(1) and Y (1) to a harmonic decomposition
H(1)⊕X⊕Y of (A(1), d)⊗Λ(T, dT ). Let k(1) be the harmonic field for
(A(1), d) and let m(1) : (D(1), d) → (A(1), d) be a harmonic Sullivan
model. Regard m(1) as a morphism into (A(1), d)⊗Λ(T, dT ), and note
that (4)–(10) are obviously satisfied. Thus k(1) is the harmonic field for
(A(1), d) ⊗ Λ(T, dT ) and (D(1), d) is its harmonic Sullivan model.

Next, let k(2) be the harmonic field for (A(2), d) and let m(2) :
(D(2), d) → (A(2), d) be a harmonic Sullivan model. We shall construct
a harmonic Sullivan model m : (D(2), d) → (A(1), d) ⊗ Λ(T, dT ) with
harmonic field k(2) and such that ψ ◦m = m(2). The proposition will
then follow from Theorem 2.

As earlier, let q be the first positive integer such that Hq(A(2), d) 6= 0,
and let m : V q

q (0) → H(1) be the isomorphism such that ϕ◦m = m(2) :
Dq(2) → A(2). Suppose next that m : (Dr(2) → (A(1), d) ⊗ Λ(T, dT )
has been constructed. It is straightforward to verify that the linear maps
α, β, and γ constructed earlier lift appropriately to definem inDr+1(2).

q.e.d.

3. The harmonic Sullivan model of a Riemannian manifold

Let M be a simply connected closed Riemannian manifold. The met-
ric determines an inner product on ADR(M) and a harmonic decom-
poaition of mutually orthogonal subspaces, ADR(M) = H ⊕ X ⊕ Y ,
in which H and X consist, respectively, of the harmonic and coclosed
forms, while the de Rham theorem endows ADR(M) with a rational ho-
mology structure. Note that while the sign of the adjoint of d depends
on the choice of an orientation, the harmonic decomposition does not.

Definition 8. The harmonic field k, the harmonic Sullivan model,
m : (D, d) → ADR(M) and the minimal component (B, d) of the har-
monic Sullivan model, all as determined by the data above, will be called
respectively the harmonic field and the harmonic Sullivan model and
the minimal component of the harmonic Sullivan model of the Riemann-
ian manifold.

From Theorem 1 and Proposition 1 we have:
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Proposition 3. Let M be a simply connected closed Riemannian
manifold with harmonic field k, minimal component (B, d) of a har-
monic Sullivan model, and rational minimal Sullivan model (CM , d).
Then

(i) k⊗ (CM , d) ∼= (B, d) and so, given k, is otherwise independent of
the choice of metric.

(ii) The Sullivan field, k, is a finitely generated field extension of Q.

Proposition 4. (i) The harmonic field of the Riemannian product
of two closed simply connected Riemannian manifolds M1 and M2

is the field generated by the harmonic fields of the two factors, and
the harmonic Sullivan model of the product is the tensor product
of the harmonic Sulivan models of the factors.

(ii) The harmonic field of a product of odd spheres with any Riemann-
ian metric is Q.

(iii) The harmonic field of a Riemannian symmetric space is Q.

Proof. (i) Consider the inclusion of ADR(M)⊗ADR(N) in ADR(M ×
N), and let Hi,Xi, Yi denote, respectively, the spaces of harmonic forms,
coclosed forms, and closed forms on Mi. Then H1 ⊗ H2 is the space
of harmonic forms on the product, while X1 ⊗ H2 and H1 ⊗ X2 are
coclosed forms on the product and Y1 ⊗ H2 and H1 ⊗ Y2 are closed
forms on the product. Thus the tensor product of the harmonic Sullivan
models satisfies the defining conditions for the harmonic Sullivan model
of the product, and a straightforward step by step check establishes the
assertion about the harmonic fields.

(ii) In this case there are no critical degrees. Thus V (1) = 0, and
we may choose m to map V (0) into HQ. It follows that H(m) maps
H(D, d) into HQ(ADR(M)), and so k = Q.

(iii) In this case HQ is a subalgebra of ADR(M) and the inclusion
R ⊗ HQ in ADR(M) is a quasi-isomorphism. Thus by Proposition 2
a harmonic Sullivan model for HQ (with X = Y = 0) is a harmonic
Sullivan model for M . q.e.d.

4. Examples of harmonic fields

We construct a manifold P that is a principal S3 fibre bundle over
S2 × S2, and establish

Theorem 3. For any Riemannian metric on P , the harmonic field
is Q. However, the possible harmonic fields for M = S3 ×P are all the
fields of the form Q(λ), where λ is any real number.

From Proposition 4(i) we have then the

Corollary 1. Any field of the form Q(λ1, . . . λr) is the harmonic field
for some Riemannian metric on M r.
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Proof of theorem 3. We adopt the convention that for principal bundles
the structure group acts on the right, and consider the classical principal
S1-fibre bundles ρk : S2k+1 → CP k. In particular the S1 action on S7

extends to an action by S3 and division by S3 gives the Hopf fibre
bundle ζ : S7 → S4. Thus ζ factors over ρ3 to define a fibre bundle
ρ : CP 3 → S4 with fibre S2.

Let ψ : S2 × S2 → CP 3 be a map which pulls back the fundamental
cohomology class α in H2(CP 3;Z) to the sum of the fundamental co-
homology classes of the two 2-spheres. Use ρ ◦ ψ to pull the fibration,
S7 → S4, back to a principal S3 fibre bundle, π : P → S2 × S2, and let
ϕ : P → S7 be the pull-back map. As with S7, the S3 action on P re-
stricts to an S1 action. Set N = P/S1; then π factors over ρP : P → N
to give a fibre bundle N → S2 × S2 with fibre S2. Finally, note that ϕ
factors to yield a map χ : N → CP 3, and that ζ ◦ χ = ψ ◦ ρP .

Lemma 2. The rational Sullivan minimal model for P has the form
Λ(y, yL, yR, aL, aR) in which aL, aR are cycles of degree 2 corresponding
to the left and right 2-spheres, and dyL = a2L, dyR = a2R, and dy =
2aLaR.

Proof. The rational Sullivan model for the Hopf bundle has the form
Λ(y, v, w), where v is a cycle mapping to a representative of the fun-
damental class, β, of S4, and dw = v2 and dy = v. It follows from
[2, Sec. 15] that the model for P has the form Λ(y, yL, yR, aL, aR) in
which aL, aR are cycles of degree 2 corresponding to the left and right
2-spheres, dyL = a2L, dyR = a2R, and dy is any cycle mapping to a repre-
sentative of H(ρ ◦ ψ)(β). Now it is a standard fact that H(ρ)(β) = α2.
Since H(ψ)(α) is the sum of the fundamental classes of the 2-spheres,
and since a2L and a2R are boundaries, we may take dy = 2aLaR. q.e.d.

It follows from Lemma 2 that the elements 1, aL, aR, yaL, yaR, and
yaLaR are cycles representing a basis of the rational cohomology of P .
In particular, H3(P ;Q) = 0. Thus for any metric on P the harmonic
Sullivan model (D, d) begins with a map m : aL, aR → θL, θR, where
θL, θR are harmonic forms representing the fundamental classes of the
left and right 2-spheres. In particular, D3

2 = 0 and so it follows from (8)

that Û2
2 = 0. Since three is the only critical degree, it follows that U = 0

and hence that the harmonic Sullivan model for P is the extension of
m to a morphism that sends y, yL, yR to the coclosed forms Ω,ΩL,ΩR

satisfying dΩ = 2θLθR, dΩL = θ2L, and dΩR = θ2R.
On the other hand, if µ : Λ(y, yL, yR, aL, aR) → ADR(P ) is the ratio-

nal model morphism of Sullivan then, because H3(P,Q) = 0, it follows
that the images under µ and m of y, yL, yR differ by elements in Imd.
It follows that µ and m are homotopic as morphisms, and hence that
H(µ) = H(m). Thus the harmonic field is indeed Q.
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We now turn attention to M = S3 × P , equipped with an arbitary
Riemannian metric. Here the rational Sullivan model may be chosen of
the form ν : Λ(z, y, yL, yR, aL, aR) → ADR(M) in which ν maps the cycle
z to the harmonic form Φ which represents the fundamental class of S3.
The same argument as above then shows that the harmonic Sullivan
model has the form

m : Λ(z, y, yL, yR, aL, aR) → ADR(M),

where m(z) = Φ and m sends the other variables either to harmonic
forms θL, θR on M or else to coclosed forms on M , all satisfying the
same conditions as above. However in this case we will have

m(y) = ν(y) + dβ + λΦ

where λ ǫ R. Then m−ν maps the cycles yaL, yaR and yaLaR to cycles
that differ from Imd by λΦθL, λΦθR and λΦθLθR. It follows that the
harmonic field for the metric is Q(λ).

It remains to show that any field of the formQ(λ) is the harmonic field
for a suitable Riemannian metric on M . Recall that any Riemannian
metric <,> defines a C∞(M) bilinear map,

<,>: Ak
DR(M)×Ak

DR(M) → C∞(M).

We will denote the corresponding inner product on Ak
DR(M) by

(Φ,Ψ) =

∫

M

< Φ,Ψ > volM .

We begin by observing that each S2k+1 admits a 1-form, ωk, invariant
under the action of S1, and whose restriction to each fibre is a nowhere
vanishing 1-form, and such that dωk ǫ A

2
DR(CP

k) and represents a gen-

erator of H2(CP k;Z). Moreover, ωk(dωk)
k represents a fundamental

class for S2k+1.
Now assign toN an arbitrary Riemannian metric and set ADR(ϕ)(ω3) =

ω. Then ω restricts to a nowhere vanishing 1-form on each fibre of ρP .
Thus the cotangent bundle, T ∗

P , is the direct sum of the canonical hori-
zontal subbundle, HP , and the trivial line bundle determined by ω. The
differential, dρP dualizes to isomorphisms T ∗

ρP (x)
∼= (HP )x, and so the

metric in N determines a metric in HP . Extend this to a metric in T ∗
P

by setting < ω,ω >= 1 and < ω,HP >= 0.
Next, assign S3 the standard metric and note that this is invariant

under the left and right actions of S3. Moreover, ω1 is invariant under
the left action of S3 , dω1 is a horizontal 2-form on S3 also invariant un-
der the left action of S3, and the horizontal subbundle is orthogonal to
the line bundle determined by ω1. Multiplying the metric by an appro-
priate constant, we arrange as well that < ω1, ω1 >= 1. In particular,
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< dω1, dω1 > is an S3-invariant function; i.e., it is a non-zero constant.
Set

< dω1, dω1 >= c.

Finally we define our metric in M = S3×P to restrict to the metrics
for each of S3 and P and to satisfy the following:

(i) The horizontal bundle for P (resp., the horizontal bundle for S3) is
orthogonal to the cotangent bundle for S3 (resp., to the cotangent
bundle for P ), and

(ii) < ω1, ω >= (σ/c)(< dω1, dω1 > + < dω, dω >),

where σ is a positive real number to be determined, but satisfying
(σ/c)(< dω1, dω1 > + < dω, dω) < 1.

Lemma 3. The harmonic form representing the fundamental class
of S3 is given by

Φ = ω1dω1 − σd(ω1ω)

Proof. As we recalled above, ω1(dω1) represents the fundamental class
of S3. Thus Φ = ω1dω1 − dγ, where dγ is the unique closed form such
that Φ is orthogonal to all closed forms. Elementary linear algebra then
implies that dγ is characterized by the equation

(ω1dω1, dγ) = (dγ, dγ).

But a straightforward check from the definitions above shows that
< ω1dω1, σd(ω1ω) >=< σd(ω1ω), σd(ω1ω) >. q.e.d.

Now let AI denote the subdifferential algebra of ADR(S
3 ×P ) of dif-

ferential forms invariant under the right action of S1 on P and invariant
under the actions on S3 of S3 from the left and S1 from the right. The
metric on M = S3 × P is invariant under the combined action, and
so integrating over the action shows that the harmonic decomposition
of ADR(S

3 × P ) restricts to one in AI . By Proposition 2 a harmonic
Sullivan model for AI is the harmonic Sullivan model for (S3×P,<,>).
On the other hand, a straightforward check shows that

AI = R(1, ω1, dω1)⊗ Λω ⊗ADR(N).

It follows in particular that every 2-cycle in AI is a linear combination
of dω1 and a closed 2-form in ADR(N). Since a harmonic cycle must be
orthogonal to dω1, the harmonic cycles θL, θR, representing the left and
right fundamental classes of the two 2-spheres, must belong to ADR(N).

Next, observe that ADR(ψ)(dω3) = dω ǫ A2
DR(N). Thus dω = θL +

θR + dΓ for some Γ ε A1
DR(N). It follows that

dω2 = 2θLθR + dθ

for some 3-form, θ, on N .
In particular, if m : Λ(z, y, yL, yR, aL, aR) → ADR(M) is the Sullivan-

Riemann model constructed in the first part of the proof we have that
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m(y)−ωdω+ θ = dΨ+ τΦ, for some constant τ . Then by the first part
of the proof, the Sullivan-Riemann field for the metric is Q(τ).

On the other hand, since m(y) is coclosed and Φ is harmonic, we
conclude that

(16) (ωdω − θ + τΦ,Φ) = 0.

But because θ is a 3-form on N we deduce from Lemma 3 that
< θ,Φ >= 0. Denote < dω1, dω1 > + < dω, dω > simply by f . Then a
simple computation from (16) gives

σ2
∫
(< dω, dω > f/c− τf) = −

∫
cτ.

Now in any field extension, Q(λ), we can find an arbitrarily small (possi-
bly positive or negative) rational multiple, τ , of λ such that the equation
above has a real solution for σ. Moreover for τ sufficiently small we will
have σ also arbitrarily small and so satisfying the requirement in the
definition of the metric. Thus Q(λ) is the harmonic field for the metric
determined by σ. q.e.d.
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