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Abstract

Let G be a connected Lie group. We show that all characteristic
classes of G are bounded—when viewed in the cohomology of the
classifying space of the group G with the discrete topology—if and
only if the derived group of the radical of G is simply connected
in its Lie group topology. We also give equivalent conditions in
terms of stable commutator length and distortion.

1. Introduction

Let G be a connected Lie group, and denote by Gδ be the underlying
group with the discrete topology. Let A be an abelian group endowed
with a metric. The identity map Gδ → G induces a natural ring homo-
morphism

H∗(BG,A) → H∗(BGδ, A),

from the (singular) cohomology of the classifying space BG of G to the
cohomology of BGδ. A class α in Hn(BGδ, A) = Hn(G,A) is bounded
if it can be represented by a cocycle c : Gn → A with bounded image.
We define a subadditive function on Hn(G,A) by

‖α‖∞ = inf
[c]=α

{sup{|c(g1, . . . , gn)|; g1, · · · , gn ∈ G}} ∈ R ∪ {∞}.

When A = R with its usual metric, it corresponds to Gromov’s semi-
norm [12, §1.1] and was first considered by Dupont [10] in degree 2. If
A is finitely generated, we use the word length with respect to a finite
symmetric generating set to define a metric. On Rr we consider the
Euclidean metric, and when A ∼= Zr ⊂ Rr is discrete we also consider
the restriction of the Euclidean metric to A.

The image of the natural map H∗(BG,R) → H∗(BGδ ,R) is gener-
ated as a ring by bounded classes together with the image in degree two
[8, Lemma 51, Theorem 54].

If a class α in the image of H2(BG,R) → H2(BGδ ,R) is bounded,
then for any continuous map φ : Σg → BGδ of a closed oriented surface
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of genus g ≥ 1, the characteristic number φ∗(α)([Σg]) ∈ R belongs to
a bounded set [−C,C] with C = C(α, g) depending only on α and g.
Indeed,

|φ∗(α)([Σg ])| ≤ ||α||∞ · ||[Σg]||1 = ||α||∞ · (4g − 4).

(For the classical bound C = g−1 on the Euler number of flat GL+
2 (R)-

bundles over a surface of genus g > 0, see Milnor [15]. See also Gromov
[12, 0.3 and 1.3] and Bucher and Monod [6], for bounds on the Euler class
of flat bundles in higher dimension, as well as Smillie [17] for examples
of flat manifolds M2n with non-zero Euler characteristics.) If, on the
contrary, there exists a sequence (φn : Σg → BGδ) of flat G-bundles
with

lim
n→∞

φ∗
n(α)([Σg ]) = ∞,

then α is unbounded. (A family of maps φn : S1 × S1 → BQδ, n ≥ 1,
where Q is the quotient of the three-dimensional Heisenberg group by an
infinite cyclic central subgroup, such that the sequence φ∗

n(α)([S
1×S1])

is unbounded, where α ∈ H2(BQδ,R) is the image of a generator of
H2(BQ,Z) ∼= Z, is given in Goldman [11].)

In the present work we give a necessary and sufficient condition on
G for the classes in the image of H∗(BG,R) → H∗(BGδ ,R) to be
bounded. Previously known sufficient conditions were: G is linear alge-
braic (Gromov [12, Theorem p. 23], resp. Bucher [5]), and the weaker
condition that the radical R of G is linear [8, Theorem 54]; the radical
of G is the largest connected, normal, solvable subgroup of G. It is well-
known that R is linear if and only if the closure of its derived subgroup
[R,R] is simply connected. Hence linearity of R is stronger than simple
connectedness of [R,R] (see the discussion after Theorem 2.1).

Our main theorem shows that simple connectedness of [R,R] is the
weakest possible condition implying boundedness of characteristic classes.

Theorem 1.1. Let G be a connected Lie group, and let R be its
radical. The following conditions are equivalent.

1) All elements in the image of H∗(BG,R) → H∗(BGδ,R) are
bounded.

2) The derived group [R,R] of the radical of G is simply connected.

In Section 2 we recall the definitions of stable commutator length and
of subgroup distortion; the equivalent conditions stated in the above
theorem can also be expressed in those terms (Theorem 2.2). We also
recall and discuss some background results about Borel cohomology
that are closely related to Theorem 2.2; we illustrate the discussion
with an example. Section 3 deals with the primary obstruction to the
existence of a global section of the universal G-bundle; this is the main
tool for what follows. In Section 4 we prove the existence of a non-zero
lower bound on the stable commutator length of all elements in the
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commutator subgroup of the universal cover of G that are central and
whose stable commutator length is non-zero; this is a key point in the
proof of Theorem 2.2. Section 5 is devoted to the proof of Theorem 2.2.
Theorem 1.1 is obtained as a corollary of Theorem 2.2.

We like to thank Jean Lafont for valuable discussions, and Étienne
Ghys for pointing out to us Bavard’s formula (see Remark 3.4, below).
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de Cornulier were partially supported by the ANR JC08-318197. Ch.
Pittet was partially supported by the CNRS.

2. Stable commutator length, distortion, Borel cohomology

Let G be a group and [G,G] < G its commutator subgroup (derived
subgroup). The commutator length cl(z) of z ∈ [G,G] is the smallest
number of commutators needed to express z. The commutator length
is subadditive, and the stable commutator length of z ∈ [G,G] is defined
as

sclG(z) = lim
n→∞

cl(zn)/n.

(We will drop the subscript and simply write scl(z), except when we
want to emphasize the reference to G.) It is subadditive on commuting
elements.

Let H be a group generated by a finite symmetric set S. The word
length |h| of h ∈ H is the smallest number of elements of S needed to
express h. If (G, d) is a group with a left-invariant metric d, a finitely
generated subgroup H of G is distorted in (G, d) if

inf
h∈H\{e}

d(e, h)

|h|
= 0.

Being distorted does not depend on the choice of the generating set S.
An element z ∈ G is distorted if the subgroup it generates is distorted
in (G, d). (Notice that torsion elements—including by convention the
identity element—are not distorted.) In the case G is a connected Lie
group and d is the geodesic metric on G induced by a left-invariant
Riemannian metric, a finitely generated subgroup H of G, which is
distorted with respect to d, is distorted with respect to any left-invariant
Riemannian metric.

A Borel n-cochain on a topological group G with values in Z is a map

c : Gn → Z,

such that the inverse image of any subset of Z is a Borel set (i.e., an
element of the σ-algebra generated by the open subsets of Gn endowed
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with its product topology). The usual differentials send Borel cochains
to Borel coboundaries. We denote by

H∗
B(G,Z)

the corresponding cohomology group (see [8, §3] for details and ref-
erences). A Borel class is an element of H∗

B(G,Z). A Borel class is
bounded if it can be represented by a Borel cocycle with bounded im-
age.

The fundamental group π1(G) of a connected Lie group G embeds

naturally in the universal cover G̃ of G. The following theorem gives a
necessary and sufficient condition in terms of integral Borel cohomology
of G for π1(G) to be undistorted in G̃.

Theorem 2.1 ([8, Theorem 1]). Let G be a connected Lie group. The
following conditions are equivalent.

1) Each Borel cohomology class of G with Z-coefficients can be rep-
resented by a Borel bounded cocycle.

2) The radical of G is linear.

3) The natural inclusion π1(G) → G̃ of the fundamental group of G
into the universal cover of G is undistorted.

Let us explain how each equivalent condition in the above theorem
can be weakened, and how this leads to the main statement of the paper.

About integral Borel cohomology, we recall that there is a com-
mutative square of natural morphisms

H∗
B(G,Z)

��

// H∗(BG,Z)

��

H∗
B(G

δ,Z) // H∗(BGδ,Z),

where the horizontal arrows are isomorphisms [19].
It may happen that a Borel cohomology class of a Lie group that

can’t be represented by a Borel bounded cocycle can, when viewed as a
cohomology class of the underlying discrete group, be represented by a
bounded group cocycle. It is not difficult to check that this is the case
with the class defined by the central extension

{0} → Z → S1 ×H → G → {1},

where G is the quotient of the product S1 × H of the circle with the
three-dimensional Heisenberg group by the central cyclic subgroup Z

generated by (θ, z), where θ ∈ S1 has infinite order and where z ∈ H is
central non-trivial.

About the radical R of G, notice that

π1 ([R,R]) ⊂ π1

(

[R,R]
)

,
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and hence the condition

π1 ([R,R]) = {0}

is weaker than the linearity of R, which is equivalent to

π1

(

[R,R]
)

= {0}.

The quotient G = (S1 × H)/Z defined above, which is solvable hence
coincides with its radical R has the property that

{0} = π1 ([R,R]) ( π1

(

[R,R]
)

∼= Z× Z.

About distortion, it may happen that a subgroup is distorted even
though each of its element is undistorted. This is the case with the
fundamental group of G = (S1 × H)/Z viewed as a subgroup of the
universal cover of G.

The proof of the following theorem, which is the main statement of
the paper, will be given in Section 5.

Theorem 2.2. Let G be a connected Lie group, and let G̃ be its
universal cover. Let R be the radical of G. The following conditions are
equivalent.

1) All elements in the image of H∗(BG,Z) → H∗(BGδ,Z) are bounded.
2) π1([R,R]) = {0}.

3) All elements z ∈ π1(G) are undistorted in G̃.

4) If z ∈ π1(G)∩ [G̃, G̃], then either sclG̃(z) > 0 or z has finite order.

In the statement of this theorem we used integer-valued group coho-
mology. It is well-known that all classes in the image of H∗(BG,R) →
H∗(BGδ ,R) are bounded if and only if all classes in the image of
H∗(BG,Z) → H∗(BGδ,Z) are bounded; we recall the proof for the
convenience of the reader. As the diagram of natural maps

H∗(BG,Z)

��

// H∗(BG,R)

��

H∗(BGδ,Z) // H∗(BGδ,R)

commutes and as H∗(BG,Z) ⊗ R ∼= H∗(BG,R), the boundedness of
integral classes implies the boundedness of the real ones. The converse
also holds true because an integral class is bounded if and only if it is
bounded when considered as a real class (apply [8, Lemma 29] to Gδ).
As a result, Theorem 2.2 implies Theorem 1.1.



44 I. CHATTERJI, Y. DE CORNULIER, G. MISLIN & C. PITTET

3. Primary obstruction in degree 2

Let G be a connected Lie group, and let π : P → B be a principal
G-bundle over a connected CW -complex B. We denote by

o(P ) ∈ H2(B,π1(G))

the primary obstruction to the existence of a section for π.
Let z ∈ π1(G) be an element of the commutator subgroup of the

universal cover of G. Let g = cl(z) be its commutator length, and let
x1, . . . , xg, y1, . . . , yg be in the universal cover such that

g
∏

n=1

[xn, yn] = z.

The 2g elements of G obtained by projecting x1, . . . , xg, y1, . . . , yg to
G define a homomorphisms π1(Σg) → G of the fundamental group of
the closed oriented surface Σg of genus g to G. Let P → Σg be the
associated flat G-bundle over Σg. By construction,

(1) o(P )([Σcl(z)]) = z

(see Milnor [15, Lemma 2] and Goldman [11]).
Let EG → BG be the universal G-bundle. Since G is connected,

BG is simply connected and therefore for any abelian group A there are
natural isomorphisms

H2(BG,A) ∼= Hom(H2(BG,Z), A)

∼= Hom(π2(BG), A)

∼= Hom(π1(G), A).

In the case of A = π1(G), the universal class o(EG) corresponds to
idπ1(G) ∈ Hom(π1(G), A).

Let oδ(EG) denote the image of o(EG) under the canonical map
H2(BG,π1(G)) → H2(BGδ, π1(G)).

Proposition 3.1. Let G be a connected Lie group. The following
conditions are equivalent.

1) The class oδ(EG) is bounded.
2) All classes in the image of H2(BG,Z) → H2(BGδ,Z)

are bounded.

Proof. Let x ∈ H2(BG,Z) ∼= Hom(π1(G),Z) with corresponding ho-
momorphisms φx : π1(G) → Z. By construction, the induced coefficient
homomorphism (φx)∗ : H2(BG,π1(G)) → H2(BG,Z) maps o(EG) to
x. If xδ denotes the image of x in H2(BGδ,Z), we conclude by nat-
urality that (φx)∗(o

δ(EG)) = xδ. Because φx maps bounded sets to
bounded sets, we conclude that (1) implies (2). Conversely, because
π1(G) is a finitely generated abelian group, (2) implies that all classes
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in the image of H2(BG,π1(G)) → H2(BGδ, π1(G)) are bounded, and
in particular, that the universal class oδ(EG) is bounded. q.e.d.

If x ∈ H∗(BGδ, A), we denote xR its image in H∗(BGδ, A⊗R). The
class oδ

R
(EG) lies in the subgroup H2(BGδ, π1([G,G]) ⊗R).

Proposition 3.2. Let p : G → Q be a finite homomorphic cover
of connected Lie groups. Then p∗ : H∗(BQδ,R) → H∗(BGδ ,R) is an
isomorphism and maps the subgroup of bounded classes of H∗(BQδ,R)
bijectively onto the subgroup of bounded classes in H∗(BGδ,R). As a
result, oδ(EG) is bounded if and only if oδ(EQ) is bounded.

Proof. Let F be the kernel of p. Since F is a finite group,Hn(BF,R) =
0 for n > 0 and therefore, p∗ : H∗(BQδ,R) → H∗(BGδ,R) is an iso-
morphism. Because F is amenable, the induced map of bounded co-
homology groups p∗b : H∗

b (Q
δ,R) → H∗

b (G
δ ,R) is an isomorphism too.

Thus p∗ induces an isomorphism between the subgroup of bounded ele-
ments in H∗(BQδ,R) and those in H∗(BGδ ,R), proving the first part
of the assertion. Let ι : π1(G)⊗R → π1(Q)⊗R be the quasi-isometric
isomorphism induced by the inclusion of π1(G) in π1(Q). Since

p∗oδR(EQ) = ι∗o
δ
R(EG),

one of the two is bounded if and only if the other one is. It follows that
oδ(EQ) is bounded if and only if oδ(EG) is. q.e.d.

The map H∗(BG,C) → H∗(BGδ, C) is injective for every cyclic
group C (see Milnor, [16]). Because π1(G) is a finitely generated abelian
group, it follows that H2(BG,π1(G)) → H2(BGδ, π1(G)) is injective
too. Therefore, oδ(EG) is zero if and only if G is simply connected.

Proposition 3.3. Assume oδ(EG) is bounded, and let z ∈ π1(G) be
an element of infinite order in the commutator subgroup of the universal
cover G̃ of G. Then

sclG̃(z) ≥
1

4‖oδ(EG)‖∞
lim
n→∞

|zn|

n
> 0.

Proof. An element of infinite order in a finitely generated abelian
group is undistorted; hence limn→∞ |zn|/n > 0. For any n 6= 0, g :=
cl(zn) ≥ 1. Representing Σg as the quotient of a 4g-gon in the usual
way and decomposing the 4g-gon into 4g − 2 triangles (by coning over
a vertex), Formula (1) yields

|zn| ≤ ‖oδ(EG)‖∞(4cl(zn)− 2).

The result then follows by dividing by n and taking limits. q.e.d.
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Remark 3.4. Proposition 3.3 above can also be deduced from Bavard’s
formula [2, Proposition 3.4]

scl(z) =
1

4
sup
f

limn→∞ |f(zn)|/n

‖df‖∞
,

which holds for any group E and any element z of the derived group
[E,E], and where the supremum is taken over all quasi-morphisms f :
E → R, such that ‖df‖∞ 6= 0. (In the case {1} → A → E → G → {1}
is a central extension such that A ∼= Z ⊂ [E,E] and with section σ
such that the associated cocycle cσ is bounded, then the relevant quasi-
morphism to consider is the retraction aσ(g) 7→ a.)

Because oδ(EG) is bounded for connected semisimple Lie groups G
([8, Proposition 47, Theorem 1]), we have the following corollary.

Corollary 3.5. Let G be a simply connected semisimple Lie group
and z ∈ G a central element of infinite order. Then scl(z) > 0.

Remark 3.6. A. Borel proved in [3] that cl is bounded on connected
semisimple Lie groups with finite center. Thus scl is the zero function
on such groups.

As an immediate consequence of Formula (1) we also obtain the fol-
lowing lemma.

Lemma 3.7. Let α ∈ H2(BGδ ,Z). Let g(α) denote the minimal
genus of a surface representing α (cf. Hopf [13, Satz IIa] or Thom [18]
or Calegari [7, 1.1.2 Example 1.4]). Then the element oδ(EG)(α) of
π1(G), viewed as an element of the universal cover of G, lies in the

commutator subgroup of G̃ and

cl(oδ(EG)(α)) ≤ g(α).

For an element x ∈ Hn(BGδ,R), we write ‖x‖1 for its ℓ1-seminorm
(cf. Gromov [12]).

Proposition 3.8. Let α ∈ H2(BGδ,Z), and let αR denote its image
in H2(BGδ,R). Then

scl(oδ(EG)(α)) ≤
‖αR‖1

4
.

Proof. Lemma 3.7 implies

scl(oδ(EG)(α)) = lim
n→∞

cl(oδ(EG)(nα))

n
≤ lim

n→∞

g(nα)

n
,

and from Barge-Ghys [1, Lemme 1.5] we infer that

lim
n→∞

g(nα)

n
=

‖αR‖1
4

,

finishing the proof. q.e.d.
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4. A lower bound for the stable commutator length

Proposition 4.1. Let G be a simply connected Lie group. There
exists a constant s > 0 such that if z ∈ [G,G] is central in G and
scl(z) < s, then scl(z) = 0.

Proof. Let G = RL be a Levi decomposition. Let z = rℓ with r ∈ R
and ℓ ∈ L. Because this decomposition of z is unique and R is normal
in G, ℓ is central in L and L centralizes r. First we show that r ∈ [R,R].
Case 1: R is commutative. In this case, we show that r = e. As L is
semisimple, r lies in a direct factor of G and, because ℓ ∈ L = [L,L], r
lies in [G,G]; thus r must be trivial.
Case 2: R is not commutative. Let p : RL → (R/[R,R])L be the
projection. Then p(z) = p(r)ℓ and by Case 1, p(r) = e, which implies
r ∈ [R,R].

Because the stable commutator length vanishes for connected solvable
Lie groups (cf. Bavard [2, p. 110]), we have

scl(r) ≤ sclR(r) = 0.

By subadditivity on commuting elements, it follows that scl(z) = scl(ℓ).
But scl(ℓ) = sclL(ℓ). The quotient Q of L by its center is a (linear)
semisimple group. Therefore, oδ(EQ) is bounded [8, Proposition 47,
Theorem 1]. Using Proposition 3.3, we obtain then an s > 0 such that
scl(z) ≥ s if scl(z) 6= 0, completing the proof of the proposition. q.e.d.

Proposition 4.2. Let G be a connected Lie group. The function
scl is continuous on any closed abelian subgroup of [G,G] and satisfies
scl(exp(tX)) = t · scl(exp(X)) for X in the Lie algebra of [G,G] and
t ≥ 0.

Proof. There is a compact neighborhood K of e ∈ [G,G] such that
for all k ∈ K, cl(k) ≤ N , where N is the dimension of the Lie algebra
of [G,G] (Bourbaki, [4, Chap. III, Exercise 10 of §9]). Therefore, cl is
bounded on compact subsets of [G,G]. Assume that x ∈ [G,G] < G lies
on a one-parameter subgroup exp(X) = x. Consider the fractional and
integer parts 1 < t = {t}+ ⌊t⌋. As limt→∞⌊t⌋/t = 1, and as

∣

∣

∣

∣

cl(exp(⌊t⌋X))

⌊t⌋
−

cl(exp(tX))

t

∣

∣

∣

∣

≤ 2 ·
cl(exp({t}X))

t
,

we deduce that

lim
t→∞

cl(exp(tX))

t
= lim

n→∞

cl(xn)

n
= scl(x).

Hence for all exp(X) ∈ [G,G], t ≥ 0, we have

scl(exp(tX)) = t · scl(exp(X)) .

As scl ≤ cl, scl is also bounded on compact sets. This implies that
scl is continuous at the identity. Subadditivity on commuting elements
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and continuity at the identity imply continuity on any closed abelian
subgroup of [G,G]. q.e.d.

Lemma 4.3. Let G be a simply connected Lie group. Let V ∼= Rr be
a closed subgroup of [G,G], and let A ∼= Zr be discrete in V and central
in G. Assume scl(a) > 0 for all 0 6= a ∈ A. Then there is a constant
ε > 0 such that for all a ∈ A, scl(a) ≥ ε|a|.

Proof. As scl is continuous on V and linear along one-parameter semi-
groups, it is enough to show that scl vanishes nowhere on the unit sphere
S of V . Assume there is z ∈ S with scl(z) = 0. As A is cocompact in
V , for each n ∈ N, there is an ∈ A \ {0} and tn > 0 such that

|an − tnz| < 1/n.

Hence
0 < scl(an) = scl(an − tnz) → 0,

contradicting Proposition 4.1. q.e.d.

5. Proof of the main theorem

We use the notation introduced at the beginning of Section 3.

Lemma 5.1. Let G be a connected Lie group. Let G̃ be its universal
cover. Assume that A = π1(G) ∩ [G̃, G̃] ∼= Zr is discrete in a closed

subgroup V ∼= Rr of [G̃, G̃]. If scl(a) > 0 for all a ∈ A \ {0}, then
oδ(EG) is bounded.

Proof. Let us denoteX = BGδ. Let C2(X,R) be the space of singular
2-chains, endowed with the ℓ1-norm. The free Z-module Z2(X,Z) of
integral cycles contains a basis of the R-vector space Z2(X,R) of cycles.
Hence there is a unique R-linear map c : Z2(X,R) → V such that for
all x ∈ Z2(X,Z), c(x) = oδ(EG)([x]). Let z ∈ Z2(X,Q), z =

∑

i riσi,
ri ∈ Q, σi a singular 2-simplex of X, |z|1 =

∑

i |ri|. Let m ∈ N, such
that mri ∈ Z for all i. Then, with ε > 0 as in Lemma 4.3,

|c(z)| =
1

m
|c(mz)| =

1

m
|oδ(EG)([mz])| ≤

scl(oδ(EG)([mz]))

mε
and because of Proposition 3.8,

scl(oδ(EG)([mz]))

mε
≤

‖[mz]R‖1
4mε

≤
|z|1
4ε

.

As Z2(X,Q) ⊂ Z2(X,R) is dense, the norm of the linear map c is
bounded by (4ε)−1. Hahn-Banach’s theorem provides a linear extension
ĉ of c to all of C2(X,R) with the same bound on the norm. Hence

[ĉ] = oδR(EG) ∈ H2(X,A ⊗R) ⊂ H2(X,π1(G)⊗R)

is bounded. Hence oδ(EG) ∈ H2(X,π1(G)) is bounded as well. q.e.d.
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We are ready for the proof of the main theorem.

Proof of Theorem 2.2. (1) implies (2):
Assume that π1([R,R]) 6= 0. Then according to Goldman [11], and
as we have seen at the beginning of Section 3, there exists a map
f : Σg → BRδ for some closed oriented surface of genus g ≥ 1 such

that (f∗oδ(ER))([Σg ]) ∈ π1([R,R]) is not zero. Because π1([R,R]) is

torsion-free, we conclude that the image oδ
R
(ER) ∈ H2(BRδ, π1(R)⊗R)

also satisfies (f∗oδ
R
(ER))([Σg ]) 6= 0. It follows that oδ

R
(ER) cannot be

bounded, because the bounded cohomology of the discrete amenable
group Rδ vanishes (cf. Johnson [14]). Denote by ι : π1(R) ⊗ R →
π1(G) ⊗R the natural isometric embedding, and let j : R → G be the
inclusion. Because

0 6= ι∗(o
δ
R(BR)) = j∗(oδR(BG)),

we see that oδ
R
(EG) is not bounded. It follows that oδ(EG) cannot be

bounded either.

(2) implies (3):

Assume that z ∈ π1(G) ⊂ G̃ is distorted in G̃ and hence of infinite order.

Then there is an n > 0 such that zn ∈ R̃, otherwise the projection of
z in G̃/R̃ would be a central distorted element, and this is impossible

[9, Lemma 6.3]. The distorted element zn ∈ R̃ ∩ π1(G) = π1(R) must

belong to [R̃, R̃], because otherwise its projection to

R̃/[R̃, R̃] ⊂ G̃/[R̃, R̃]

would span a central distorted line. But a line in R̃/[R̃, R̃] ∼= Rr that is

central in G̃/[R̃, R̃] is a direct factor because G̃/R̃ is semisimple. Hence
it cannot be distorted. We conclude that

zn ∈ [R̃, R̃] ∩ π1(G) = π1([R,R]),

contradicting (2).

(3) implies (4):

Let G̃ = R̃L be a Levi decomposition, and let z = rℓ ∈ π1(G) ∩ [G̃, G̃]

be of infinite order, r ∈ R̃ and ℓ ∈ L. Note that L = [L,L] and
scl(z) ≥ scl(ℓ) = sclL(ℓ). If ℓ has infinite order, Corollary 3.5 implies
that sclL(ℓ) > 0, and we conclude that scl(z) > 0. If ℓ has finite order,

there is an n > 0 such that zn = (rℓ)n = rn, and rn ∈ R̃ ∩ π1(G)

actually lies in [R̃, R̃], as we have seen in the course of the proof of 4.1.

Proposition 19 of [8] implies that z is distorted in R̃, and hence also in

G̃.

(4) implies (1):

Let K be a maximal compact subgroup of [G,G]. The universal cover of

K is a closed subgroup E×S of [G̃, G̃] where E ∼= Rr and S is compact
semisimple. Let p : E × S → S be the projection onto the second
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factor. The projection of π1(G) ∩ [G̃, G̃] = π1([G,G]) ⊂ E × S in S is
central and hence finite. Thanks to Proposition 3.2, we may replace G
by a finite homomorphic cover and hence assume that π1(G)∩ [G̃, G̃] ⊂
E. Applying Lemma 5.1 and Proposition 3.1 implies boundedness in
degree 2. Boundedness in higher degree then follows from [8, Lemma 51,
Theorem 54]. q.e.d.
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Université Paris-Sud 11
91405 Orsay, France

E-mail address: yves.cornulier@math.u-psud.fr

Department of Mathematics
ETH
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