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Abstract

A well-known conjecture of Yau states that the first eigen-
value of every closed minimal hypersurface Mn in the unit sphere
Sn+1(1) is just its dimension n. The present paper shows that
Yau conjecture is true for minimal isoparametric hypersurfaces.
Moreover, the more fascinating result of this paper is that the first
eigenvalues of the focal submanifolds are equal to their dimensions
in the non-stable range.

1. Introduction

One of the most important operators acting on C∞ functions on a
Riemannian manifold is the Laplace-Beltrami operator. Over several
decades, research on the spectrum of the Laplace-Beltrami operator has
always been a core issue in the study of geometry. For instance, the
geometry of closed minimal submanifolds in the unit sphere is closely
related to the eigenvalue problem.

Let (Mn, g) be an n-dimensional compact connected Riemannian
manifold without boundary and ∆ be the Laplace-Beltrami operator
acting on a C∞ function f on M by ∆f = − div(∇f), the negative
of divergence of the gradient ∇f . It is well known that ∆ is an elliptic
operator and has a discrete spectrum

{0 = λ0(M) < λ1(M) ≤ λ2(M) ≤ · · · ≤ λk(M), · · · , ↑ ∞}
with each eigenvalue repeated a number of times equal to its multiplicity.
As usual, we call λ1(M) the first eigenvalue ofM . WhenMn is a minimal
hypersurface in the unit sphere Sn+1(1), it follows from Takahashi’s
theorem that λ1(M) is not greater than n.

In this connection, S.T. Yau posed in 1982 the following conjecture:

Yau conjecture ([Yau]). The first eigenvalue of every closed minimal

hypersurface Mn in the unit sphere Sn+1(1) is just n.
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The most significant breakthrough to this problem was made by Choi
and Wang ([CW]). They showed that the first eigenvalue of every (em-
bedded) closed minimal hypersurface in Sn+1(1) is not smaller than
n
2 . As is well known, the calculation of the spectrum of the Laplace-
Beltrami operator, even of the first eigenvalue, is rather complicated
and difficult. Up to now, Yau’s conjecture is far from being solved.

In this paper, we consider a more restricted problem: the Yau con-
jecture for closed minimal isoparametric hypersurfaces Mn in Sn+1(1).
As one of the main results of this paper, we show

Theorem 1.1. Let Mn be a closed minimal isoparametric hypersur-

face in Sn+1(1). Then

λ1(M
n) = n.

Recall that a hypersurface Mn in the unit sphere Sn+1(1) is called
isoparametric if it has constant principal curvatures (cf. [Car1], [Car2],
[CR]). Let ξ be a unit normal vector field along Mn in Sn+1(1), g the
number of distinct principal curvatures of M , cot θα (α = 1, . . . , g; 0 <
θ1 < · · · < θg < π) the principal curvatures with respect to ξ, and mα

the multiplicity of cot θα. Using an elegant topological method, Münzner
proved the remarkable result that the number g must be 1, 2, 3, 4, or 6;
mα = mα+2 (indices mod g); θα = θ1 +

α−1
g
π (α = 1, . . . , g); and when

g is odd, m1 = m2 (cf. [Mün]).
Attacking the Yau conjecture, Muto-Ohnita-Urakawa ([MOU]), Kotani

([Kot]), and Solomon ([Sol1, Sol2]) made a breakthrough for some of
the minimal homogeneous (automatically isoparametric) hypersurfaces.
More precisely, they verified Yau conjecture for all the homogeneous
minimal hypersurfaces with g = 1, 2, 3, 6. However, when it came to the
case g = 4, they were only able to deal with the cases (m1,m2) = (2, 2)
and (1, k). As a matter of fact, by classification of the homogeneous hy-
persurfaces with four distinct principal curvatures, the pairs (m1,m2)
are (1, k), (2, 2k − 1), (4, 4k − 1), (2, 2), (4, 5), or (6, 9). They explained
in [MOU] that “it seems to be difficult to compute their first eigen-

value because none of the homogeneous minimal hypersurfaces in the

unit sphere except the great sphere and the generalized Clifford torus is

symmetric or normal homogeneous.”
Furthermore, another breakthrough made by Muto ([Mut]) showed

that Yau’s conjecture is also true for some families of nonhomogeneous
minimal isoparametric hypersurfaces with four distinct principal curva-
tures. His remarkable result does not depend on the homogeneity of the
isoparametric hypersurfaces. However, his conclusion covers only some
isoparametric hypersurfaces with min(m1,m2) ≤ 10. Roughly speaking,
the generic families of the isoparametric hypersurfaces in the unit sphere
with four distinct principal curvatures have min(m1,m2) > 10.
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Based on all results mentioned above and the classification of isopara-
metric hypersurfaces in Sn+1(1) (cf. [CCJ], [Imm], [Chi], [DN], and
[Miy]), we show our Theorem 1.1 by establishing the following

Theorem 1.2. Let Mn be a closed minimal isoparametric hypersur-

face in the unit sphere Sn+1(1) with four distinct principal curvatures

and m1,m2 ≥ 2. Then
λ1(M

n) = n.

Remark 1.1. Cartan classified isoparametric hypersurfaces in the
unit spheres with g = 1, 2, 3 to be homogeneous (cf. [Car1], [Car2]);
Dorfmeister- Neher ([DN]) and Miyaoka ([Miy]) showed that they are
homogeneous for g = 6. Thus the results of [MOU], [Kot] and [Sol1],
[Sol2] complete the proof of Theorem 1.1 in cases g = 1, 2, 3, 6. More-
over, Takagi ([Tak1]) asserted that the isoparametric hypersurface with
g = 4 and multiplicities (1, k) must be homogeneous. By virtue of
[MOU], Theorem 1.1 is true for the case (1, k). Therefore, Theorem
1.2 completes in a direct way the proof of Theorem 1.1.

Remark 1.2. For isoparametric hypersurfaces with g = 4, Cecil-
Chi-Jensen ([CCJ]), Immervoll ([Imm]), and Chi ([Chi]) proved a far
reaching result that they are either homogeneous or of OT-FKM type
except possibly for the case (m1,m2) = (7, 8). Actually, Theorem 1.2
depends only on the values of (m1,m2), but not on the homogeneity.
Besides, our method is also applicable to the case g = 6.

Remark 1.3. Chern conjectured that a closed, minimally immersed
hypersurface in Sn+1(1), whose second fundamental form has constant
length, is isoparametric (cf. [GT]). If this conjecture is proven, we would
have settled Yau conjecture for the minimal hypersurface whose second
fundamental form has constant length, which gives us more confidence
in Yau conjecture.

The more fascinating part of this paper is the determination of the
first eigenvalues of the focal submanifolds in Sn+1(1), which relies on
the deeper geometric properties of the isoparametric foliation.

To state our Theorem 1.3 clearly, let us start with some preliminaries.
A well-known result of Cartan states that isoparametric hypersurfaces
come as a family of parallel hypersurfaces. To be more specific, given an
isoparametric hypersurface Mn in Sn+1(1) and a smooth field ξ of unit
normals to M , for each x ∈ M and θ ∈ R, we can define φθ : Mn →
Sn+1(1) by

φθ(x) = cos θ x+ sin θ ξ(x).

Clearly, φθ(x) is the point at an oriented distance θ to M along the
normal geodesic through x. If θ 6= θα for any α = 1, . . . , g, φθ is a
parallel hypersurface to M at an oriented distance θ, which we will
denote by Mθ henceforward. If θ = θα for some α = 1, . . . , g, it is easy
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to find that for any vector X in the principal distributions Eα(x) =
{X ∈ TxM | AξX = cot θαX}, where Aξ is the shape operator with

respect to ξ, (φθ)∗X = (cos θ − sin θ cot θα)X = sin(θα−θ)
sin θα

X = 0. In
other words, if cot θ = cot θα is a principal curvature of M , φθ is not an
immersion, but is actually a focal submanifold of codimension mα + 1
in Sn+1(1).

Münzner asserted that regardless of the number of distinct principal
curvatures of M , there are only two distinct focal submanifolds in a
parallel family of isoparametric hypersurfaces, and every isoparametric
hypersurface is a tube of constant radius over each focal submanifold.
Denote by M1 the focal submanifold in Sn+1(1) at an oriented distance
θ1 along ξ from M with codimension m1 + 1, and by M2 the focal
submanifold in Sn+1(1) at an oriented distance π

g
− θ1 along −ξ from

M with codimension m2 +1. In view of Cartan’s identity, one sees that
the focal submanifolds M1 and M2 are minimal in Sn+1(1) (cf. [CR]).

Another main result of the present paper concerning the first eigen-
values of focal submanifolds in the non-stable range (cf. [HH]) is stated
as follows.

Theorem 1.3. Let M1 be the focal submanifold of an isoparametric

hypersurface with four distinct principal curvatures in the unit sphere

Sn+1(1) with codimension m1 + 1. If dimM1 ≥ 2
3n+ 1, then

λ1(M1) = dimM1

with multiplicity n + 2. A similar conclusion holds for M2 under an

analogous condition.

Recall the classification results of [CCJ] [Chi] which stated that ex-
cept for the case (m1,m2) = (7, 8), the isoparametric hypersurfaces in
Sn+1(1) with four distinct principal curvatures are either homogeneous
with (m1,m2) = (2, 2), (4, 5) or of OT-FKM type. Fortunately, as a sim-
ple application of Theorem 1.3, we obtain immediately that each focal
submanifold with g = 4, (m1,m2) = (4, 5) or (7, 8) has its dimension as
the first eigenvalue. Subsequently, we will look into the focal submani-
folds of OT-FKM type and give their first eigenvalues.

We now recall the construction of the isoparametric hypersurfaces of
OT-FKM type. For a symmetric Clifford system {P0, · · · , Pm} on R

2l—
i.e., Pi’s are symmetric matrices satisfying PiPj+PjPi = 2δijI2l—Ferus,

Karcher, and Münzner ([FKM]) constructed a polynomial F on R
2l:

F : R
2l → R

F (x) = |x|4 − 2
m∑

i=0

〈Pix, x〉2.(1)

It turns out that each level hypersurface of f = F |S2l−1 , i.e., the
preimage of some regular value of f , has four distinct constant principal
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curvatures. Choosing ξ = ∇f
|∇f | , we find M1 = f−1(1), M2 = f−1(−1),

which have codimensions m1 + 1 and m2 + 1 in Sn+1(1), respectively.
The multiplicity pairs (m1,m2) of the OT-FKM type are (m, l−m−1),
provided m > 0 and l−m−1 > 0, where l = kδ(m) (k = 1, 2, 3, . . .) and
δ(m) is the dimension of an irreducible module of the Clifford algebra
Cm−1. In the following, we list the values of δ(m) corresponding to m:

m 1 2 3 4 5 6 7 8 · · · m+8
δ(m) 1 2 4 4 8 8 8 8 16δ(m)

First, we focus on the focal submanifoldM2. If 3 dimM2 ≥ 2n+3, or
equivalently, m1 ≥ 1

2(m2 + 3), Theorem 1.3 gives λ1(M2) = dimM2 =
2m1+m2. The assumption 3 dimM2 ≥ 2n+3 is essential. For instance,
Solomon ([Sol3]) constructed an eigenfunction on the focal submanifold
M2 of OT-FKM-type, which has 4m as an eigenvalue. It follows that
λ1(M2) ≤ 4m. Therefore, in the stable range 3 dimM2 < 2(n + 1) − 2,
i.e., m1 <

1
2m2, λ1(M2) < 2m1 +m2 = dimM2. Only three cases are

left to estimate: m1 = 1
2m2, m1 = 1

2(m2 + 1), and m1 = 1
2 (m2 + 2),

which are actually (m1,m2) = (1, 1), (1, 2), (2, 3), (3, 4), (4, 7), (5, 10),
and (8, 15).

Next, we will be concerned with the focal submanifold M1. Fortu-
nately, the condition in Theorem 1.3 is almost always satisfied. Actually,
the first eigenvalue of the focal submanifold M1 of those OT-FKM type
can be determined completely. By analyzing the conditions m1 ≥ 1,
m2 ≥ 1, and m2 <

1
2 (m1 + 3), we find that there are only five cases

left, that is, (m1,m2) = (1, 1), (2, 1), (4, 3), (5, 2), and (6, 1). In view
of [FKM], the families for multiplicities (2, 1), (5, 2), (6, 1), and one of
the (4, 3)-families are congruent to those with multiplicities (1, 2), (2, 5),
(1, 6), and (3, 4), respectively, and the focal submanifolds interchange.
For the case (2, 5), an effective estimate can be given by [Sol3], while
for the cases (1, 2) and (1, 6), the following proposition determines the
first eigenvalues.

Proposition 1.1. LetM2 be the focal submanifold of OT-FKM type
defined before with (m1,m2) = (1, k). The following equality is valid:

λ1(M2) = min{4, 2 + k}.

As mentioned before, Takagi ([Tak1]) asserted that the isoparametric
hypersurface with g = 4 and multiplicity (1, k) must be homogeneous.
Thus the corresponding focal submanifold of isoparametric hypersur-
face with four distinct principal curvatures and min{m1,m2} = 1 has
min{4, 2 + k} as its first eigenvalue.

At last, we would like to propose a problem on the first eigenvalue of
the minimal submanifolds with dimensions in the non-stable range in
Sn+1(1), which could be regarded as an extension of Yau conjecture.
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Problem: Let Md be a closed minimal submanifold in the unit sphere

Sn+1(1) with d ≥ 2
3n+ 1. Is it true that

λ1(M
d) = d ?

Acknowledgments. The authors would like to thank Professor T. Ce-
cil for his helpful comments on OT-FKM isoparametric foliation. We
also express our gratitude to Professor W. P. Zhang for valuable discus-
sions and Professors Q. M. Cheng and Y. Ohnita for their interest.

This project is partially supported by the NSFC (No. 11071018) and
the Program for Changjiang Scholars and Innovative Research Team in
University.

2. The first eigenvalue of the minimal isoparametric
hypersurface

Let φ : Mn → Sn+1(1)(⊂ R
n+2) be a closed isoparametric hypersur-

face with g distinct principal curvatures in Sn+1(1) and ξ be a smooth
field of unit normals to M . Again, denote by Eα (α = 1, . . . , g) the
principal distribution on M , i.e., the eigenspace of the shape operator
Aξ corresponding to the eigenvalue cot θα (0 < θ1 < · · · < θg < π). The
parallel hypersurface Mθ at an oriented distance θ from φ is defined by
φθ :M

n → Sn+1(1) (−π < θ < π, cot θ 6= cot θα),

φθ(x) = cos θ x+ sin θ ξ(x).

At first, let us prepare some formulae:
For X ∈ Eα, it is easy to see

(2) (φθ)∗X =
sin(θα − θ)

sin θα
X̃,

where X̃ // X are vectors in R
n+2.

Let H be the mean curvature of Mn in Sn+1(1) with respect to ξ.
Clearly,

nH =

g∑

α=1

mα cot θα(3)

=





m1g cot(gθ1) for g odd

m1g

2
cot

gθ1
2

− m2g

2
tan

gθ1
2

for g even

In order to estimate the eigenvalues of M , we would recall a theorem
that will play a crucial role in our work as Muto did in [Mut].

Theorem (Chavel and Feldman [CF], Ozawa [Oza]) Let V be

a closed, connected smooth Riemannian manifold and W a closed sub-

manifold of V . For any sufficiently small ε > 0, set W (ε) = {x ∈
V : dist(x,W ) < ε}. Let λDk (ε) (k = 1, 2, . . .) be the k-th eigenvalue of
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the Laplace-Beltrami operator on V −W (ε) under the Dirichlet boundary

condition. If dimV ≥ dimW + 2, then for any k = 1, 2, . . .

(4) lim
ε→0

λDk (ε) = λk−1(V ).

We will apply this theorem to the case V = Sn+1(1) and W =M1 ∪
M2, the union of the focal submanifolds. By estimating the eigenvalue
λk(M

n) from below, we can prove Theorem 1.2.

Theorem 1.2. Let Mn be a closed minimal isoparametric hypersurface

in the unit sphere Sn+1(1) with four distinct principal curvatures and

m1,m2 ≥ 2. Then
λ1(M

n) = n.

Proof. For sufficiently small ε > 0, set

M(ε) =
⋃

θ∈[−π

4
+θ1+ε, θ1−ε]

Mθ.

Clearly,M(ε) is a domain of Sn+1(1) obtained by excluding ε-neighborhoods
of M1 and M2 from Sn+1(1). Alternatively, it can also be regarded as a
tube around the minimal isoparametric hypersurface M . According to
the theorem of Chavel, Feldman, and Ozawa,

(5) lim
ε→0

λDk+1(M(ε)) = λk(S
n+1(1)),

we need to estimate λDk+1(M(ε)) from above in terms of λk(M
n).

Let
{
ẽα,i | i = 1, . . . ,mα, α = 1, . . . , 4, ẽα,i ∈ Eα

}
be a local or-

thonormal frame field on M . Then{
∂

∂θ
, eα,i | eα,i =

sin θα
sin(θα − θ)

(φθ)∗ẽα,i, i = 1, . . . ,mα,

α = 1, . . . , 4, θ ∈ [−π
4
+ θ1 + ε, θ1 − ε]

}

is a local orthonormal frame field on M(ε). From the formula (2), we
derive immediately that the volume element of M(ε) can be expressed
in terms of the volume element of M :

(6) dM(ε) =
sinm1 2(θ1 − θ) cosm2 2(θ1 − θ)

sinm1 2θ1 cosm2 2θ1
dθdM.

Following [Mut], let h be a nonnegative, increasing smooth function
on [0,∞) satisfying h = 1 on [2,∞) and h = 0 on [0, 1]. For sufficiently
small η > 0, let ψη be a nonnegative smooth function on [η, π2 − η]
satisfying

(i) ψη(η) = ψη(
π
2 − η) = 0,
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(ii) ψη is symmetric with respect to x = π
4 ,

(iii) ψη(x) = h(x
η
) on [η, π4 ].

Let fk (k = 0, 1, . . .) be the k-th eigenfunctions on M which are orthog-
onal to each other with respect to the square integral inner product on
M and Lk+1 = Span{f0, f1, . . . , fk}.

For each fixed θ ∈ [−π
4 + θ1+ ε, θ1− ε], denote π = πθ = φ−1

θ :Mθ →
M . Then any ϕ ∈ Lk+1 onM can give rise to a function Φε :M(ε) → R

by

Φε(x) = ψ2ε(2(θ1 − θ))(ϕ ◦ π)(x),
where θ is characterized by x ∈ Mθ, θ ∈ [−π

4 + θ1 + ε, θ1 − ε]. It
is evident to see that Φε is a smooth function on M(ε) satisfying the
Dirichlet boundary condition and square integrable.

By the min-max principle, we have:

(7) λDk+1(M(ε)) ≤ sup
ϕ∈Lk+1

‖∇Φε‖22
‖Φε‖22

.

In the following, we will concentrate on the calculation of
‖∇Φε‖22
‖Φε‖22

. Ob-

serving that the normal geodesic starting from M is perpendicular to
each parallel hypersurface Mθ, we obtain

‖∇Φε‖22 =
∫

M(ε)
4(ψ′

2ε)
2ϕ(π)2dM(ε) +

∫

M(ε)
ψ2
2ε|∇ϕ(π)|2dM(ε).

On the other hand, a simple calculation leads to

‖Φε‖22 =

∫

M(ε)
ψ2
2ε(2(θ1 − θ))ϕ(π(x))2dM(ε)

=

∫

M

∫ θ1−ε

−π

4
+θ1+ε

ψ2
2ε(2(θ1 − θ))

sinm1 2(θ1 − θ) cosm2 2(θ1 − θ)

sinm1 2θ1 cosm2 2θ1
ϕ(π(x))2dθdM

=
‖ϕ‖22

2 sinm1 2θ1 cosm2 2θ1

( ∫ π

2
−2ε

2ε
ψ2
2ε(x) sin

m1 x cosm2 x dx
)
.

For the sake of convenience, let us decompose

(8)
‖∇Φε‖22
‖Φε‖22

= I(ε) + II(ε),

with

I(ε) =

∫
M(ε) 4(ψ

′
2ε)

2ϕ(π)2dM(ε)
∫
M(ε)(ψ2ε)2ϕ(π)2 dM(ε)

(9)

=
4
∫ π

2
−2ε

2ε (ψ′
2ε(x))

2 sinm1 x cosm2 x dx
∫ π

2
−2ε

2ε ψ2
2ε(x) sin

m1 x cosm2 x dx
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and

(10) II(ε) =

∫
M(ε) ψ

2
2ε|∇ϕ(π)|2dM(ε)

∫
M(ε) ψ

2
2εϕ(π)

2dM(ε)
.

We shall take the first step by claiming that

(11) lim
ε→0

I(ε) = 0.

In fact, for the smooth function h, we have a positive number C such
that |h′| ≤ C. It follows immediately that |ψ′

η(x)| = | 1
η
h′(x

η
)| ≤ 1

η
C for

x ∈ [η, π4 ]. Under the assumption min{m1,m2} ≥ 2, we deduce
∫ π

2
−2ε

2ε
(ψ′

2ε(x))
2 sinm1 x cosm2 x dx

≤
∫ 4ε

2ε
(ψ′

2ε(x))
2 sin2 x dx+

∫ π

2
−2ε

π

2
−4ε

(ψ′
2ε(x))

2 cos2 x dx

≤ C2

4

∫ 4ε

2ε

sin2 x

ε2
dx+

C2

4

∫ π

2
−2ε

π

2
−4ε

cos2 x

ε2
dx,

from which it follows that the numerator of I(ε) in (9) approaches 0
as ε goes to 0. On the other hand, the denominator of I(ε) approaches
a non-zero number as ε goes to 0. Thus the claim (11) is established.
q.e.d.

Next, we turn to the estimation of II(ε).
Decompose ∇ϕ = Z1 + Z2 + Z3 + Z4 ∈ E1 ⊕ E2 ⊕ E3 ⊕ E4, and set

kα = sin(θα−θ)
sin θα

for α = 1, . . . , 4. Using the following identity,

(12) 〈∇ϕ(π),X〉 = 〈∇ϕ, π∗X〉, for any X ∈ TxMθ,

we have

(13)





|∇ϕ|2 = |Z1|2 + |Z2|2 + |Z3|2 + |Z4|2

|∇ϕ(π)|2 =
1

k21
|Z1|2 +

1

k22
|Z2|2 +

1

k23
|Z3|2 +

1

k24
|Z4|2.

Moreover, for simplicity, for α = 1, . . . , 4, define

Kα :=

∫ θ1

−π

4
+θ1

sinm1 2(θ1 − θ) cosm2 2(θ1 − θ)

k2α
dθ(14)

= sin2 θα

∫ π

4

0

sinm1 2x cosm2 2x

sin2(α−1
4 π + x)

dx,

G :=

∫ π

2

0
sinm1 x cosm2 x dx(15)

= 2

∫ π

4

0
sinm1 2x cosm2 2x dx.
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Let K = max
α

{Kα}. Then combining with (8), (9), (10), (11), (13), (14),

and (15), we arrive at

(16) lim
ε→0

‖∇Φε‖22
‖Φε‖22

=

∑
αKα‖Zα‖22
‖ϕ‖22 · 1

2G
≤ 2K

G
· ‖∇ϕ‖

2
2

‖ϕ‖22
,

Therefore, putting (5), (7), and (16) together, we see that
(17)

λk(S
n+1(1)) = lim

ε→0
λDk+1(M(ε)) ≤ lim

ε→0
sup

ϕ∈Lk+1

‖∇Φε‖22
‖Φε‖22

≤ λk(M
n)

2K

G
.

Comparing the leftmost side with the rightmost side of (17), it is suf-
ficient to complete the proof of Theorem 1.2, if we can verify the in-
equality

(18) K <
n+ 2

n
G.

Since then, λn+3(S
n+1(1)) = 2(n+2) < λn+3(M

n)· 2(n+2)
n

, which implies
immediately that λn+3(M

n) > n. Recall that n is an eigenvalue of Mn

with multiplicity at least n + 2. Therefore, the first eigenvalue of Mn

must be n with multiplicity n+ 2.
We are now in a position to verify the inequality (18), which is equiv-

alent to

(19) Kα <
n+ 2

n
G, for each α = 1, 2, 3, 4.

First, we observe that the certifications for K2 and K3 are similar; so
are those for K1 and K4. Thus we just need to give two verifications.

(i) Given 0 < x < π
4 , since 0 < θ1 <

π
4 , it follows straightforwardly

that

K2 < 2 sin2 θ2

∫ π

4

0
sinm1 2x cosm2 2x dx < 2

∫ π

4

0
sinm1 2x cosm2 2x dx = G.

Similarly, we have

K3 < 2 sin2 θ3

∫ π

4

0
sinm1 2x cosm2 2x dx < 2

∫ π

4

0
sinm1 2x cosm2 2x dx = G.

(ii) Express K1 and G in terms of the beta function B(x, y) =

2
∫ π

2

0 sinx θ cosy θ dθ:

K1 = sin2 θ1

∫ π

4

0

sinm1 2x cosm2 2x

sin2 x
dx(20)

=
1

2
sin2 θ1

[
B(

m1 − 1

2
,
m2 + 1

2
) +B(

m1 − 1

2
,
m2 + 2

2
)
]
,

(21) G =

∫ π

2

0
sinm1 x cosm2 x dx =

1

2
B(

m1 + 1

2
,
m2 + 1

2
).
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Using the properties of the beta function and the gamma function:

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
and Γ(x+ 1) = xΓ(x) for any x > 0,

it follows from (20) and (21) that

K1

G
= sin2 θ1 ·

m1 +m2

m1 − 1
·
(
1 +

Γ(m2+2
2 )Γ(m1+m2

2 )

Γ(m2+1
2 )Γ(m1+m2+1

2 )

)
.

Define

S(m1,m2) :=
Γ(m2+2

2 )Γ(m1+m2

2 )

Γ(m2+1
2 )Γ(m1+m2+1

2 )

and

A(m1,m2) :=
n+ 2

n

1

sin2 θ1

m1 − 1

m1 +m2
.

Then it is clear that

(22) K1 <
n+ 2

n
G ⇐⇒ 1 + S(m1,m2) < A(m1,m2).

We conclude this section by establishing two inequalities S(m1,m2) <
1 and A(m1,m2) ≥ 2.

Lemma 2.1. The multiplicities m1,m2 of the principal curvatures of
isoparametric hypersurfaces with four distinct principal curvatures with
m1,m2 ≥ 2 satisfy

S(m1,m2) < 1.

Proof. Recall a well-known result that when g = 4,m1 andm2 cannot
both be even except for (2, 2) (cf. [Mün], [Abr], [Tan]). It suffices to
estimate S(m1,m2) in the following three cases.
Case 1: When (m1,m2) = (2, 2),

S(2, 2) :=
Γ(2)Γ(2)

Γ(32 )Γ(
5
2)

=
8

3π
< 1.

Case 2: When m1 = 2p + 1, it is obvious that

S(m1,m2) =
m2+1

2 · (m2+1
2 + 1) · · · (m2+1

2 + p− 1)
m2+2

2 · (m2+2
2 + 1) · · · (m2+2

2 + p− 1)
< 1.

Case 3: When m1 = 2p, m2 = 2q + 1, for simplicity, we define

T (p, q) := S(m1,m2) =
(2q + 1)!!(2p + 2q − 1)!! · π

q!(p + q)! · 2p+2q+1
.

It is straightforward to see that T (p, q) is strictly decreasing with p for
a fixed q, and strictly increasing with q for a fixed p. It follows that

T (p, q) < T (p− 1, q) < · · · < T (1, q) < T (1, q + 1) < · · · < T (1,∞).
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Using the Stirling Formula:

lim
n→∞

n!√
2πn(n

e
)n

= 1,

we obtain that

T (1,∞) = lim
q→∞

[(2q + 1)!]2π

(q!)3(q + 1)!24q+2

= lim
q→∞

(2q + 1)3q+
3

2

(2q)3q+
3

2

· (2q + 1)q+
3

2

(2q + 2)q+
3

2

· 1
e

= e
3

2 · 1

e
1

2

· 1
e

= 1.

This completes the proof of Lemma 2.1. q.e.d.

Lemma 2.1 reduces the proof of (19) for K1 to proving that
A(m1,m2) ≥ 2.

SinceMn is the minimal isoparametric hypersurface in Sn+1(1), from

Formula (3), we derive that sin2 θ1 =
1
2(1−

√
m2√

m1+m2
). On the other hand,

in our case g = 4, we have n = g
2 (m1 +m2) = 2(m1 +m2); thus

A(m1,m2) =
m1 − 1

m1 +m2
· m1 +m2 + 1

m1 +m2
· 2

1−
√
m2√

m1+m2

.

A simple calculation shows

A(m1,m2) ≥ 2 ⇐⇒ m2(m1 +m2)
3 ≥ (m2

2 +m1m2 +m2 + 1)2.

It is not difficult to see that the following three inequalities guarantee
the right hand of the equivalence above.





3m1 ≥ 2m1 + 2
3m1

2 ≥ m2
1 + 2m1 + 3

m3
1 ≥ 2m1 + 3

Fortunately, the last three inequalities are satisfied simultaneously if
m1 ≥ 2. Thus 1 + S(m1,m2) < 2 ≤ A(m1,m2) under the assumption
min{m1,m2} ≥ 2; equivalently, the inequality K1 <

n+2
n
G we required

holds true.
Similarly, K4 <

n+2
n
G.

The proof of Theorem 1.2 is now complete. ✷

3. The first eigenvalue of the focal submanifolds

At the beginning of this section, we should investigate the multiplicity
of the dimension n −mi as an eigenvalue of the focal submanifold Mi

(i = 1, 2) of an isoparametric hypersurface with g distinct principal
curvatures. For this purpose, we first prepare the following lemma.
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Lemma 3.1. Both M1 and M2 are fully embedded in Sn+1(1) if
g ≥ 3; namely, they cannot be embedded into a hypersphere.

Proof. We are mainly concerned with the proof forM1; the other case
is verbatim with obvious changes on index ranges.

Suppose M1 is not fully embedded in Sn+1(1); then we can find a
point q ∈ Sn+1(1) such that 〈x, q〉 = 0 for any x ∈ M1. For any p ∈
Sn+1(1), define the spherical distance function Lp :M1 → R by:

Lp(x) = cos−1〈p, x〉.
Since Lp is a Morse function on M1 when p ∈ Sn+1(1)− (M1 ∪M2) (cf.
[CR], p. 285), we need only to deal with the two remaining cases:

(1) p ∈M1. Since the function 〈x, p〉 can achieve 1 at x = p, the point
q cannot lie in M1.

(2) p ∈ M2. If Lp is a constant, then from each point x ∈ M1, there
exists one normal geodesic (normal to M1 at x, normal to M2 at p,
geodesic in Sn+1(1)), which connects x and p. Thus we can define a
smooth map f from the unit normal space of M2 at p to M1 by:

f : S(T⊥
p M2) −→M1

ξ 7−→ x

where x is the first intersection point of M1 and the normal geodesic
starting from p along the initial direction ξ after ξ passes through
the isoparametric hypersurface M . Under our assumption, f would
be surjective. According to Sard’s theorem, this implies an inequality
m2 ≥ g

2 (m1+m2)−m1. Obviously, this inequality holds true only when
g ≤ 2.

This completes the proof of Lemma 3.1. q.e.d.

Remark 3.1. The assumption g ≥ 3 in Lemma 3.1 is essential. For
instance, for g = 2, both the focal submanifolds of the isoparametric
hypersurface (generalized Clifford torus) are not full, but are actually
totally geodesic.

As a direct result of Lemma 3.1, the dimension n−m1 (resp. n−m2)
of M1 is an eigenvalue of M1 (resp. M2) with multiplicity at least n+2.

Now, we are ready to prove Theorem 1.3.

Theorem 1.3. Let M1 be the focal submanifold of an isoparametric

hypersurface with four distinct principal curvatures in the unit sphere

Sn+1(1) with codimension m1 + 1. If dimM1 ≥ 2
3n+ 1, then

λ1(M1) = dimM1

with multiplicity n + 2. A similar conclusion holds for M2 under an

analogous condition.
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Proof. For sufficiently small ε > 0, set

M1(ε) := Sn+1(1)−Bε(M2) =
⋃

θ∈[0,π
4
−ε]

Mθ

where Bε(M2) = {x ∈ Sn+1(1) | dist(x,M2) < ε}, and Mθ is the
isoparametric hypersurface with an oriented distance θ fromM1. Notice
that the notation Mθ here is different from that we used before.

Given θ ∈ (0, π4 −ε], let {eα,i | i = 1, . . . ,mα, α = 1, . . . , 4, eα,i ∈ Eα}
be a local orthonormal frame field on Mθ and ξ be the unit normal field
of Mθ toward M1. After a parallel translation from any point x ∈Mθ to
a point p = φθ(x) ∈ M1 (where φθ : Mθ → M1 is the focal map, whose
meaning is a little different from that in the last section), ξ is still a
unit normal vector at p, which we also denote by ξ; e1,i (i = 1, . . . ,m1)
become normal vectors on M1, while the others are still tangent vectors
on M1, which we will denote by {ẽ1,i, ẽ2,i, ẽ3,i, ẽ4,i} determined by x.

We can decompose any X ∈ TxMθ as X = X1 + X2 + X3 + X4 ∈
E1⊕E2⊕E3⊕E4. Identify the principal distribution Eα(x) (α = 2, 3, 4,
x ∈ Mθ) with its parallel translation at p = φθ(x) ∈ M1. The shape

operator Aξ at p is given in terms of its eigenvectors X̃α (the parallel
translation of Xα, α = 2, 3, 4) by (cf. [Mün]):

AξX̃2 = cot(θ2 − θ1)X̃2 = X̃2,

AξX̃3 = cot(θ3 − θ1)X̃3 = 0,(23)

AξX̃4 = cot(θ4 − θ1)X̃4 = −X̃4.

Namely, X̃2, X̃3, X̃4 belong to the eigenspaces E(1), E(0), E(−1) of Aξ,
respectively.

On the other hand, for a fixed θ, define ρ = φθ : Mθ → M1. For any
point p ∈ M1, at a point x ∈ ρ−1(p), we have a distribution E1 ⊕ E2 ⊕
E3 ⊕ E4. Among them, the first one is projected to be 0 under ρ∗; for
the others, we have

ρ∗eα,i =
sin(θα − θ)

sin θα
ẽα,i =

sin α−1
4 π

sin(α−1
4 π + θ)

ẽα,i

:= k̃α−1ẽα,i, i = 1, . . . ,mα, α = 2, 3, 4.

Denote by {θα,i | α = 1, 2, 3, 4, i = 1, . . . ,mα} the dual frame of eα,i.
We then conclude that (up to a sign)

(24) dMθ =

mα∏

j=1

4∏

α=2

θα,j ∧
m1∏

i=1

θ1,i =
1

k̃m2

1 k̃m1

2 k̃m2

3

ρ∗(dM1) ∧
m1∏

i=1

θ1,i.

Notice that here the submanifold M1 may be non-orientable, but the
notation dM1 still makes sense locally, up to a sign.
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Let h be the same function as in Section 2. For sufficiently small

η > 0, define ψ̃η to be a nonnegative smooth function on [0, π2 − η] by

ψ̃η(x) :=

{
1, x ∈ [0, π4 ]

h(
π

2
−x

η
), x ∈ [π4 ,

π
2 − η]

Let fk (k = 0, 1, . . .) be the k-th eigenfunctions on M1 which are or-
thogonal to each other with respect to the square integral inner product
on M1 and Lk+1 = Span{f0, f1, . . . , fk}. Then any ϕ ∈ Lk+1 on M1 can

give rise to a function Φ̃ε :M1(ε) → R by:

Φ̃ε(x) = ψ̃2ε(2θ)(ϕ ◦ ρ)(x).

Evidently, similarly as in the last section, Φ̃ε is a smooth function on
M1(ε) satisfying the Dirichlet boundary condition and square integrable
on M1(ε).

As in Section 2, the calculation of ‖∇Φ̃ε‖22 is closely related to |∇ϕ(ρ)|2.
According to the decomposition (23), in the tangent space of M1 at p,
we can decompose ∇ϕ as ∇ϕ = Z1 + Z2 + Z3 ∈ E(1) ⊕ E(0) ⊕ E(−1).
Thus we have

(25)

{
|∇ϕ|2p = |Z1|2 + |Z2|2 + |Z3|2

|∇ϕ(ρ)|2x = k̃21|Z1|2 + k̃22 |Z2|2 + k̃23 |Z3|2

In the following, we will investigate the change of |∇ϕ(ρ)|2 along with
the point x in the fiber sphere at p. For this purpose, we recall
Lemma (see, for example, [CCJ]) Let Mn be an isoparametric hy-

persurface in the unit sphere Sn+1(1). Then the curvature distributions

are completely integrable. Their integral submanifolds corresponding to

cot θj are totally geodesic in Mn and have constant sectional curvature

1 + cot2 θj .
Denote by Sm1( 1√

1+cot2 θ
) ⊂ Mθ the fiber sphere at p. Clearly, for

any pair of antipodal points x, x′ ∈ ρ−1(p) = Sm1( 1√
1+cot2 θ

), we have

ξ(x′) = −ξ(x) by the parallel translations from x and x′ to p, respec-
tively. Denote by E′(1), E′(0), E′(−1) the eigenspaces of Aξ(x′) at p.

Then we can also decompose ∇ϕ as ∇ϕ = Z3 + Z2 + Z1 ∈ E′(1) ⊕
E′(0)⊕ E′(−1) with respect to x′. In other words,

{
|∇ϕ(ρ)|2x = k̃21 |Z1|2 + k̃22|Z2|2 + k̃23|Z3|2
|∇ϕ(ρ)|2x′ = k̃23|Z1|2 + k̃22 |Z2|2 + k̃21 |Z3|2.

Thus, at the pair of two antipodal points x and x′, we have

1

2

(
|∇ϕ(ρ)|2x + |∇ϕ(ρ)|2x′

)
=
k̃21 + k̃23

2

(
|Z1|2 + |Z3|2

)
+ k̃22 |Z2|2.



536 Z. TANG & W. YAN

Set K̃ := max{ k̃
2
1 + k̃23
2

, k̃22} for θ ∈ (0, π4 − ε]. It is clear to see K̃ =

1
cos2 2θ

by the definition of k̃α−1. Since the assumption 3 dimM1 ≥ 2n+3

implies m2 ≥ 2, this guarantees that lim
ε→0

1

ε2

∫ π

4
−ε

π

4
−2ε

cosm2 2θdθ = 0. Then

a similar discussion to that in Section 2 leads to

lim
ε→0

∫

M1(ε)
(ψ̃′

2ε(2θ))
2ϕ(ρ)2dM1(ε) = 0.

Hence

lim
ε→0

‖∇Φ̃ε‖22 = lim
ε→0

∫

M1(ε)

(ψ̃2ε(2θ))
2|∇(ϕ ◦ ρ)|2dM1(ε)

=

∫ π

4

0

(∫

Mθ

|∇(ϕ ◦ ρ)|2

k̃m2

1 k̃m1

2 k̃m2

3

ρ∗(dM1)dS
m1(

1√
1 + cot2 θ

)
)
dθ(26)

≤
∫ π

4

0

(∫

Mθ

|∇ϕ|2ρ∗(dM1)dS
m1(

1√
1 + cot2 θ

)
)
· K̃

k̃m2

1 k̃m1

2 k̃m2

3

dθ

=

∫ π

4

0

(∫

M1

|∇ϕ|2dM1

)
· Vol(Sm1(

1√
1 + cot2 θ

)) · K̃

k̃m2

1 k̃m1

2 k̃m2

3

dθ

= ‖∇ϕ‖22 ·
Cm1

2m1+1

∫ π

2

0

sinm1 θ cosm2−2 θ dθ

= ‖∇ϕ‖22 ·
Cm1

2m1+2
· B(

m1 + 1

2
,
m2 − 1

2
),

where Vol(Sm1( 1√
1+cot2 θ

)) = Cm1
·sinm1 θ; Cm1

is the volume of Sm1(1).

Besides, with a simple calculation, we get

lim
ε→0

‖Φ̃ε‖22 =

∫ π

4

0

1

k̃m2

1 k̃m1

2 k̃m2

3

∫

M1

∫

Sm1 ( 1√
1+cot2 θ

)
ϕ(ρ)2dSm1dM1dθ

= ‖ϕ‖22 ·
∫ π

4

0

1

k̃m2

1 k̃m1

2 k̃m2

3

Vol(Sm1) dθ(27)

= ‖ϕ‖22 ·
Cm1

2m1+2
· B(

m1 + 1

2
,
m2 + 1

2
).

Consequently, combining (26) and (27), we arrive at

lim
ε→0

‖∇Φ̃ε‖22
‖Φ̃ε‖22

≤ ‖∇ϕ‖22
‖ϕ‖22

· B(m1+1
2 , m2−1

2 )

B(m1+1
2 , m2+1

2 )
=

‖∇ϕ‖22
‖ϕ‖22

· m1 +m2

m2 − 1
.

A similar argument as in Section 2 leads us to

(28) λk(S
n+1(1)) ≤ λk(M1)

m1 +m2

m2 − 1
.

This inequality connects the eigenvalues of Sn+1(1) and that of the focal
submanifold M1 in a concise manner. It contains rich information. Now
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we take k = n+ 3. The inequality (28) becomes

2(n+ 2)(m2 − 1)

m1 +m2
≤ λn+3(M1).

Based on this inequality, in order to complete the proof of Theorem 1.3,
we just need to establish the following inequality:

(29) dimM1 = m1 + 2m2 <
2(n + 2)(m2 − 1)

m1 +m2
.

Due to the relation n = 2(m1 + m2), we get a sufficient condition on
the positive integers m1, m2 which is almost optimal for the inequality
(29) to hold:

m2 ≥
1

2
(m1 + 3).

At last, combining with Lemma 3.1, we can conclude that

λ1(M1) = dimM1 = m1 + 2m2, with multiplicity n+ 2,

provided m2 ≥
1

2
(m1 + 3)

as we required. q.e.d.

Remark 3.2. When g = 1, the focal submanifolds are just two
points. When g = 2, as is well known, the isoparametric hypersurface in

Sn+1(1) is isometric to the generalized Clifford torus Sp(
√

p
n
)×Sq(

√
q
n
)

(p + q = n). The focal submanifolds are isometric to Sp(1) and Sq(1).
Clearly, their first eigenvalues are their dimensions. When g = 3, E.
Cartan asserted that m1 = m2 = 1, 2, 4 or 8. The focal submanifolds in
the unit sphere S4(1), S7(1), S13(1), and S25(1) are the Veronese em-
bedding of RP 2, CP 2, HP 2, and OP 2, respectively. The induced metric
of this RP 2 minimally embedded in S4(1) differs from the standard
metric of constant Gaussian curvature K = 1 by a constant factor such
that K = 1

3 ; thus λ1(RP
2) = 2. As for CP 2, HP 2, and OP 2, these

are minimally embedded in the unit spheres S7(1), S13(1), and S25(1),
respectively, while the induced metric differs from the symmetric space
metric by a constant factor such that 1

3 ≤ Sec ≤ 4
3 . By [Str] and [Mas],

the first eigenvalues of the focal submanifolds CP 2, HP 2, and OP 2 are
equal to their dimensions, respectively.

Therefore, for g = 2, 3,

λ1(Mi) = dimMi, i = 1, 2.

✷

We conclude this paper with a proof of Proposition 1.1.

Proposition 1.1. Let M2 be the focal submanifold of OT-FKM type

defined before with (m1,m2) = (1, k). The following equality is valid:

λ1(M2) = min{4, 2 + k}.
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Proof. When m1 = 1, m2 = k, the OT-FKM-type polynomial can be
written as

F : R2k+4 −→ R

F (x) = |x|4 − 2(〈P0x, x〉2 + 〈P1x, x〉2).
By orthogonal transformations, we can always choose P0 and P1 to be

P0 =

(
I 0
0 −I

)
, P1 =

(
0 I
I 0

)
.(30)

Writing any point x ∈ S2k+3(1) as x = (z, w) ∈ R
k+2 × R

k+2, the focal
submanifold M2 = f−1(−1) (f = F |S2k+3(1)) can be characterized as

Mk+2
2 = {(z, w) ∈ S2k+3(1) | z // w}.

Define a map

Ψ : S1(1)× Sk+1(1) −→ Mk+2
2 ⊂ R

2k+4

eiθ, x = (x1, . . . , xk+2) 7→ (eiθx1, . . . , e
iθxk+2).

It satisfies Ψ(θ + π,−x) = Ψ(θ, x). In this way, we can identify M2

isometrically with the metric induced from S2k+3(1) as

Mk+2
2

∼= S1(1)× Sk+1(1)
/
(θ, x) ∼ (θ + π,−x).

The eigenfunctions of M2 are those products of eigenfunctions from
S1(1) and Sk+1(1) which take the same values at (θ, x) and (θ+π,−x).
Hence λ1(M

k+2
2 ) = min{4, k + 2}, as we claimed. q.e.d.
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