
j. differential geometry

94 (2013) 267-300

GROWTH OF WEIL-PETERSSON VOLUMES
AND RANDOM HYPERBOLIC SURFACES

OF LARGE GENUS

Maryam Mirzakhani

Abstract

In this paper, we investigate the geometric properties of random
hyperbolic surfaces of large genus. We describe the relationship
between the behavior of lengths of simple closed geodesics on a
hyperbolic surface and properties of the moduli space of such sur-
faces. First, we study the asymptotic behavior of Weil-Petersson
volume Vg,n of the moduli spaces of hyperbolic surfaces of genus
g with n punctures as g → ∞. Then we discuss basic geometric
properties of a random hyperbolic surface of genus g with respect
to the Weil-Petersson measure as g → ∞.

1. Introduction

The moduli space Mg,n of complete hyperbolic surfaces of genus g
with n punctures is equipped with a natural notion of measure, which
is induced by the Weil-Petersson symplectic form ωg,n (§2). This is the
symplectic form of a Kähler noncomplete metric on Mg,n.

1.1. New results. First, we discuss the main results obtained in this
paper:

I): Asymptotic behavior of Weil-Petersson volumes. Peter Zograf
has developed a fast algorithm for calculating the Weil-Petersson volume
Vg,n of the moduli spaceMg,n, and made several conjectures on the basis
of the numerical data obtained by his algorithm [Z2].

Conjecture 1.1 (Zograf). For any fixed n ≥ 0,

Vg,n = (4π2)2g+n−3(2g − 3 + n)!
1√
gπ

(

1 +
cn
g

+O

(

1

g2

))

as g → ∞.

Here

Vg,n =

∫

Mg,n

ω3g−3+n
g,n /(3g − 3 + n)!.
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In §3, we show:

Theorem 1.2. For any n ≥ 0:

Vg,n+1

2gVg,n
= 4π2 +O(

1

g
),

and
Vg,n

Vg−1,n+2
= 1 +O(

1

g
)

as g → ∞.

These estimates imply that for any n ≥ 0 there exists m > 0 such
that

(1.1) g−m ≤ Vg,n
(4π2)2g+n−3(2g − 3 + n)!

≤ gm.

II): Geometric behavior of surfaces of high genus. To simplify the
notation, let Mg = Mg,0 and Vg = Vg,0. Given a function F : Mg → R,
let

E
g
X∼wp(F (X)) =

∫

Mg
F (X)dX

Vg
,

where the integral is taken with respect to the Weil-Petersson volume
form. Also,

Probgwp(F (X) ≤ C) = E
g
X∼wp(G(X)),

where G(X) = 1 iff F (X) ≤ C and G(X) = 0 otherwise. In §4, we prove
that as g → ∞ the following hold:

• The probability that a random Riemann surface has a short non-
separating simple closed geodesic is asymptotically positive (§4.2).
More precisely, let ℓsys(X) denote the length of the shortest simple
closed geodesic on X. Then for any small (but fixed) ǫ > 0, as
g → ∞,

Probgwp(ℓsys(X) < ǫ) ≍ ǫ2.

• However, separating simple closed geodesics tend to be much longer
(§4.3). Let ℓssys(X) denote the length of the shortest separating

simple closed geodesic on X. We show that

Probgwp(ℓ
s
sys(X) < a log(g)) = O(log(g)3g(a/2−1))),

and

E
g
X∼wp(ℓ

s
sys(X)) ≍ log(g)

as g → ∞. In fact, one can obtain upper bounds for the expected
length of the shortest simple closed geodesic of a given combina-
torial type. In particular, we prove that the shortest simple closed
geodesic separating the surface into two roughly equal areas has
length at least linear in g.
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• The Cheeger constant h(X) of a random Riemann surface X ∈
Mg is bounded from below by a universal constant (§4.5). More

precisely, given C < Ch = ln(2)
2π+ln(2) , we have

Probgwp(h(X) ≤ C) → 0

as g → ∞. By Cheeger’s theorem, the smallest positive eigenvalue
of the Laplacian on a generic point X ∈ Mg is asymptotically
≥ 1

4C
2.

• Finally, a generic hyperbolic surface in Mg has a small diameter,
with a large embedded ball (§4.6). More precisely, as g → ∞,

Probgwp(diam(X) ≥ Cd log(g)) → 0

and
E
g
X∼wp(diam(X)) ≍ log(g).

Also,
Probgwp(Emb(X) ≤ CE log(g)) → 0

and
E
g
X∼wp(Emb(X)) ≍ log(g),

where Emb(X) is the radius of the largest embedded ball in X.
Here CE = 1

6 , and Cd = 40.

We remark that none of the constants in these statements are sharp.

Notation. In this paper, f1(g) ≍ f2(g) means that there exists a con-
stant C > 0 independent of g such that

1

C
f2(g) ≤ f1(g) ≤ Cf2(g).

Similarly, f1(g) = O(f2(g)) means there exists a constant C > 0 inde-
pendent of g such that

f1(g) ≤ Cf2(g).

1.2. Moduli spaces of hyperbolic surfaces with geodesic bound-
ary components. The universal cover of Mg,n is the Teichmüller space
Tg,n. Every isotopy class of a closed curve on a hyperbolic surface X ∈
Tg,n contains a unique closed geodesic. Given a homotopy class of a
closed curve α on a topological surface Sg,n of genus g with n marked
points and X ∈ Tg,n, let ℓα(X) be the length of the unique geodesic
in the homotopy class of α on X. This defines a length function ℓα
on the Teichmüller space Tg,n. When studying the behavior of hyper-
bolic length functions, it proves fruitful to consider more generally bor-
dered hyperbolic surfaces with geodesic boundary components. Given
L = (L1, . . . , Ln) ∈ Rn

+, we consider the Teichmüller space Tg,n(L)
of hyperbolic structures with geodesic boundary components of length
L1, . . . , Ln. Note that a geodesic of length zero is the same as a punc-
ture. The space Tg,n(L) is naturally equipped with a symplectic form ωwp
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([Go], [W2]). The Weil-Petersson volume Vg,n(L) of Mg,n(L1, . . . , Ln)
is a polynomial in L2

1, . . . , L
2
n of degree 3g−3+n and Vg,n = Vg,n(0, . . . , 0)

[M2].
It is crucial for the applications in this paper to understand the be-

havior of Vg,1(L) as g → ∞. In section 3, we will discuss the asymptotics
of the coefficients of the volume polynomials Vg,n(L1, . . . , Ln) (see The-

orem 2.3); the coefficient of L2d1
1 . . . L2dn

n can be written in terms of
∫

Mg,n

ψd1
1 · · ·ψdn

n · ω3g−3+n−|d|,

where for 1 ≤ i ≤ n, ψi ∈ H2(Mg,n,Q) is the first Chern class of the tau-
tological line bundle corresponding to the i-th puncture on X ∈ Mg,n

(§2), and |d| = d1 + · · ·+ dn [M1]. In Section 3 we apply known recur-
sive formulas for these numbers and obtain estimates for the intersection
pairings of ψi classes on Mg,n as g → ∞. In section 4, we will prove
bounds on the integrals of certain geometric functions over Mg by in-
vestigating the asymptotics of the polynomials Vg,n(L) as g → ∞. Our
main tool in this section is the close relationship between the Weil-
Petersson geometry of Mg,n and the lengths of simple closed geodesics
on surfaces in Mg,n [M2]. Here we discuss one application of this rela-
tionship in the case of n = 0. Let Sg denote the set of homotopy classes
of non-trivial simple closed curves on a compact surface Sg of genus
g. For any γ ∈ Sg, let Sg − γ denote the surface obtained by cutting
the surface Sg along γ. Given α1, α2 ∈ Sg, we say α1 ∼ α2 if α1 and
α2 are of the same type; that is, Sg − α1 is homeomorphic to Sg − α2.
Given a connected simple closed curve γ ∈ Sg and f : R+ → R+, define
fγ : Mg → R+ by

fγ(X) =
∑

α∼γ

f(ℓα(X)).

Then we can integrate the function fγ with respect to the Weil-Petersson
volume form. If γ is non-separating, then Sg − γ ∼= Sg−1,2, and we have

∫

Mg

fγ(X) dX =

∞
∫

0

t · f(t) Vg−1,2(t, t) dt.

For the general case, see Theorem 2.2. By this formula, integrating fγ ,
even for a compact Riemann surface, reduces to the calculation of vol-
umes of moduli spaces of bordered Riemann surfaces.

1.3. Remarks.

• A recursive formula for the Weil-Petersson volume of the moduli
space of punctured spheres was obtained by Zograf [Z1]. Moreover,
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Zograf and Manin have obtained generating functions for the Weil-
Petersson volume of Mg,n[MZ]. See also ([KMZ]). The following
exact asymptotic formula was proved in [MZ].

Theorem 1.3. There exists C > 0 such that for any fixed g ≥ 0,

(1.2) Vg,n = n!Cnn(5g−7)/2(ag +O(1/n))

as n→ ∞.

Penner has developed a different method for calculating the
Weil-Petersson volume of the moduli spaces of curves with marked
points by using decorated Teichmüller theory [Pe].

• In [Gr], it is shown that for a fixed n > 0 there are c1, c2 > 0 such
that

cg2(2g)! < Volwp(Mg,n) < cg1(2g)!.

This result was extended to the case of n = 0 in [ST]. Note that
these estimates do not give much information about the growth of
Vg,n/Vg−1,n+2 and Vg,n+1/(2gVg,n) when g → ∞.

• In a recent joint work with P. Zograf, we show [MZ]:

Theorem 1.4. There exists a universal constant α ∈ (0,∞)
such that for any given k ≥ 1, n ≥ 0,

Vg,n = α
(2g − 3 + n)! (4π2)2g−3+n

√
g

(

1 +
c
(1)
n

g
+ · · ·+ c

(k)
n

gk
+O

(

1

gk+1

)

)

,

as g → ∞ Each term c
(i)
n in the asymptotic expansion is a poly-

nomial in n of degree 2i with coefficients in Q[π−2, π2] that are

effectively computable.

• In [BM], Brooks and Makover developed a method for the study
of typical Riemann surfaces with large genus by using trivalent
graphs. In this model the expected value of the systole of a ran-
dom Riemann surface turns out to be bounded (independent of
the genus) [MM]. (See also [Ga].) We will see in this note that a
random Riemann surface with respect to the Weil-Petersson vol-
ume form has similar features. However, it is not clear how the
model in [BM] is related to the one discussed in this paper.

• The distribution of hyperbolic surfaces of genus g produced ran-
domly by gluing Riemann surfaces with long geodesic boundary
components is closely related to the volume form induced by ω on
Mg,n. See [M3] for details.

1.4. Questions.

• In general,

lim
g+n→∞

log(Vg,n)

(2g + n) log(2g + n)
= 1,
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but understanding the asymptotics of Vg,n for arbitrary g, n seems
to be more complicated. It would be useful to know the asymp-
totics of

Vg,n(g)

Vg−1,n(g)+2
,

where n(g) → ∞ as g → ∞. Note that by Theorem 1.3 and Theo-
rem 1.2, we know the asymptotics of Vg/Vg−1,2 and V1,2g−4/V0,2g−2.
However, we don’t know much about the behavior of the sequence

Vg , Vg−1,2, . . . , V0,2g

as g → ∞.
• As in Theorem 2.3, when n = 1 the volume polynomial can be
written as

Vg,1(L) =

3g−2
∑

k=0

ag,k
(2k + 1)!

L2k,

where ag,k are rational multiples of powers of π. It would be helpful
to understand the asymptotics of ag,k/ag,k+1 for an arbitrary k
(which can grow with g). Note that ag,0 = Vg,1. In Theorem 3.5(1),
we show that for given i ≥ 0,

lim
g→∞

ag,i+1

ag,i
= 1.

On the other hand, it is known that [IZ]
∫

Mg,

ψ3g−2
1 =

1

24gg!
,

and hence
ag,3g−2

ag,0
→ 0

as g → ∞.
• The results obtained in this paper are only small steps toward un-
derstanding the geometry of random hyperbolic surfaces of large
genus. Many interesting questions about such random surfaces are
open. Investigating geometric properties of random Riemann sur-
faces could shed some light on the asymptotics geometry of Mg as
g → ∞. See [CP], [T], and [Hu] for some results in this direction.
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nating discussions regarding the growth of Weil-Petersson volumes. I am
grateful to Rick Schoen and Jan Vondrak for helpful remarks. I would
also like to thank the referee for pointing out a mistake in section 3 of
the previous version of this paper.
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2. Background and notation

In this section, we recall definitions and known results about the
geometry of hyperbolic surfaces and properties of their moduli spaces.
For more details, see [M2], [Bu], and [W3].

2.1. Teichmüller space. A point in the Teichmüller space T (S) is a
complete hyperbolic surface X equipped with a diffeomorphism f : S →
X. The map f provides a marking on X by S. Two marked surfaces,
f : S → X and g : S → Y , define the same point in T (S) if and
only if f ◦ g−1 : Y → X is isotopic to a conformal map. When ∂S
is nonempty, consider hyperbolic Riemann surfaces homeomorphic to
S with geodesic boundary components of fixed length. Let A = ∂S

and L = (Lα)α∈A ∈ R
|A|
+ . A point X ∈ Tg,n(L) is a marked hyperbolic

surface with geodesic boundary components such that for each boundary
component β ∈ ∂S, we have

ℓβ(X) = Lβ.

By convention, a geodesic of length zero is a cusp and we have

Tg,n = Tg,n(0, . . . , 0).
Let Mod(S) denote the mapping class group of S, or the group of isotopy
classes of orientation preserving self homeomorphisms of S leaving each
boundary component setwise fixed. The mapping class group Modg,n =
Mod(Sg,n) acts on Tg,n(L) by changing the marking. The quotient space

Mg,n(L) = M(Sg,n, ℓβi
= Li) = Tg,n(L1, . . . , Ln)/Modg,n

is the moduli space of Riemann surfaces homeomorphic to Sg,n with n
boundary components of length ℓβi

= Li. Also, we have

Mg,n = Mg,n(0, . . . , 0).

By the work of Goldman [Go], the space Tg,n(L1, . . . , Ln) carries a nat-
ural symplectic form invariant under the action of the mapping class
group. This symplectic form is called the Weil-Petersson symplectic

form, and is denoted by ω or ωwp. When L1 = · · · = Ln = 0, this
symplectic form is the Kähler form of a Kähler metric on Mg,n [IT].

The Fenchel-Nielsen coordinates. A pants decomposition of S is
a set of disjoint simple closed curves that decompose the surface into
pairs of pants. Fix a system of pants decomposition of Sg,n, P = {αi}ki=1,
where k = 3g − 3 + n. For a marked hyperbolic surface X ∈ Tg,n(L),
the Fenchel-Nielsen coordinates associated with P, {ℓα1(X), . . . , ℓαk

(X),
τα1(X), . . . , ταk

(X)} consist of the set of lengths of all geodesics used in
the decomposition and the set of the twisting parameters used to glue
the pieces. We have an isomorphism

Tg,n(L) ∼= RP
+ ×RP
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by the map

X → (ℓαi(X), ταi(X)).

See [Bu] for more details. By the work of Wolpert, over Teichmüller
space the Weil-Petersson symplectic structure has a simple form in
Fenchel-Nielsen coordinates [W1], [Go]:

Theorem 2.1 (Wolpert). The Weil-Petersson symplectic form is

given by

ωwp =
k
∑

i=1

dℓαi ∧ dταi .

By Theorem 2.1, the natural twisting around α is the Hamiltonian
flow of the length function of α.

2.2. Integrating geometric functions over moduli spaces. Here,
we discuss a method for integrating certain geometric functions over
Mg,n with respect to the Weil-Petersson volume form [M2]. As in
the introduction, let Sg,n denote the set of homotopy classes of non-
trivial, non-peripheral, simple closed curves on the surface Sg,n. Let
Γ = (γ1, . . . , γk), where γi’s are distinct and disjoint elements of Sg,n.
To each Γ, we associate the set

OΓ = {(g · γ1, . . . , g · γk) |g ∈ Modg,n}.
Given a function F : Rk

+ → R+, define

FΓ : Mg,n → R

by

(2.1) FΓ(X) =
∑

(α1,...,αk)∈OΓ

F (ℓα1(X), . . . , ℓαk
(X)).

Let Sg,n(Γ) be the result of cutting the surface Sg,n along γ1, . . . , γk.
In fact, Sg,n(Γ) ∼= Sg,n − UΓ, where UΓ is an open neighborhood of

γ1 ∪ · · · ∪ γk homeomorphic to ∪k
i=1γi × (0, 1). Thus Sg,n(Γ) is a (possi-

bly disconnected) compact surface with n + 2k boundary components;
each γi gives rise to two boundary components γ1i and γ2i of Sg,n(Γ).
Given x = (x1, . . . , xk) with xi ≥ 0, we consider the moduli space
M(Sg,n(Γ), ℓΓ = x) of hyperbolic Riemann surfaces homeomorphic to
Sg,n(Γ) such that for 1 ≤ i ≤ k, ℓγ1

i
= xi and ℓγ2

i
= xi. Given

x = (x1, . . . , xk) ∈ Rk
+, Vg,n(Γ,x) is defined by

Vg,n(Γ,x) = Volwp(M(Sg,n(Γ), ℓΓ = x)).

In general,

Vg,n(Γ,x) =

s
∏

i=1

Vgi,ni(ℓAi),
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where

(2.2) Sg,n(Γ) =
s
⋃

i=1

Si,

Si ∼= Sgi,ni , and Ai = ∂Si. Then in terms of the above notation, we
have ([M2]):

Theorem 2.2. For any Γ = (γ1, . . . , γk), the integral of FΓ over

Mg,n with respect to the Weil-Petersson volume form is given by
∫

Mg,n

FΓ(X) dX = 2−M(γ)

∫

x∈Rk
+

F (x1, . . . , xk) Vg,n(Γ,x) x · dx,

where x · dx = x1 · · · xk · dx1 ∧ · · · ∧ dxk, and
M(γ) = |{i|γi separates off a one-handle from Sg,n}|.

Remark. Given a multicurve γ =
∑k

i=1 ciγi, the symmetry group of γ,
Sym(γ), is defined by

Sym(γ) = Stab(γ)/ ∩k
i=1 Stab(γi).

When F is a symmetric function, we can define

Fγ : Mg,n → R

Fγ(X) =
∑

∑k
i=1 ciαi∈Modg,n ·γ

F (c1ℓα1(X), . . . , ckℓαk
(X)).

Then it is easy to check that

(2.3) FΓ(X) = Sym(γ) · Fγ(X),

where Γ = (c1γ1, . . . , ckγk).

2.3. Connection with the intersection pairings of tautological
line bundles. The moduli space Mg,n is endowed with natural coho-
mology classes. When n > 0, there are n tautological line bundles de-
fined on Mg,n as follows. We can define Li in the orbifold sense whose

fiber at the point (C, x1, . . . , xn) ∈ Mg,n is the cotangent space of C at

xi. Then ψi = c1(Li) ∈ H2(Mg,n,Q). Note that although the complex
curve C may have nodes, xi never coincides with the singular points.
See [HM] and [AC] for more details. Then we have [M1]:

Theorem 2.3. In terms of the above notation,

Volwp(Mg,n(L1, . . . , Ln)) =
∑

|d|≤3g−3+n

Cg(d) L2d1
1 . . . L2dn

n ,

where d = (d1, . . . , dn), and Cg(d) is equal to

2m(g,n)|d|

2|d| |d|! (3g − 3 + n− |d|)!

∫

Mg,n

ψd1
1 · · ·ψdn

n · ω3g−3+n−|d|.
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Here m(g, n) = δ(g − 1)× δ(n − 1), d! =
∏n

i=1 di!, and |d| =∑n
i=1 di.

Remark. We warn the reader that there are some small differences in
the normalization of the Weil-Petersson volume form in the literature;
in this paper,

Vg,n = Vg,n(0, . . . , 0) =
1

(3g − 3 + n)!

∫

Mg,n

ω3g−3+n,

which is slightly different from the notation used in [Z2] and [ST]. Also,
in [Z1] the Weil-Petersson Kähler form is 1/2 the imaginary part of the
Weil-Petersson pairing, while here the factor 1/2 does not appear. So
our answers are different by a power of 2.

3. Asymptotic behavior of Weil-Petersson volumes

In this section, we study the asymptotics of Vg,n(L) = Volwp(Mg,n

(L1 . . . , Ln)) as g → ∞.
Notation. For d = (d1, . . . , dn) with di ∈ N ∪ {0} and |d| = d1 + · · ·+
dn ≤ 3g − 3 + n, let d0 = 3g − 3− |d| and define

[

n
∏

i=1

τdi ]g,n =

∏n
i=1(2di + 1)!2|d|
∏n

i=0 di!

∫

Mg,n

ψd1
1 · · ·ψdn

n ωd0

=

∏n
i=1(2di + 1)!!22|d|(2π2)d0

d0!

∫

Mg,n

ψd1
1 · · ·ψdn

n κd01 ,

where κ1 = ω/(2π2) is the first Mumford class on Mg,n [AC]. By The-
orem 2.3 for L = (L1, . . . , Ln), we have:

(3.1) Vg,n(2L) =
∑

|d|≤3g−3+n

[τd1 , . . . , τdn ]g,n
L2d1
1

(2d1 + 1)!
· · · L2dn

n

(2dn + 1)!
.

3.1. Recursive formulas for the intersection pairings. Given d =
(d1, . . . , dn) with |d| ≤ 3g−3+n, the following recursive formulas hold:
I.

[τ0τ1

n
∏

i=1

τdi ]g,n+2 = [τ40

n
∏

i=1

τdi ]g−1,n+4

+6
∑

g1+g2=g
{1,...,n}=I∐J

[τ20
∏

i∈I

τdi ]g1,|I|+2 · [τ20
∏

i∈J

τdi ]g2,|J |+2,

II.

(2g−2+n)[

n
∏

i=1

τdi ]g,n =
1

2

3g−3+n
∑

L=0

(−1)L(L+1)
π2L

(2L + 3)!
[τL+1

n
∏

i=1

τdi ]g,n+1.

III. Let a0 = 1/2, and for n ≥ 1,

an = ζ(2n)(1 − 21−2n).
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Then we have

[τd1 , . . . , τdn ]g,n =
n
∑

j=2

Aj
d
+ Bd + Cd,

where

(3.2) Aj
d = 8

d0
∑

L=0

(2dj + 1) aL[τd1+dj+L−1,
∏

i 6=1,j

τdi ]g,n−1,

(3.3) Bd = 16

d0
∑

L=0

∑

k1+k2=L+d1−2

aL[τk1τk2
∏

i 6=1

τdi ]g−1,n+1,

and

Cd = 16
∑

I∐J={2,...,n}

0≤g′≤g

d0
∑

L=0

∑

k1+k2=L+d1−2

aL [τk1
∏

i∈I

τdi ]g′,|I|+1(3.4)

× [τk2
∏

i∈J

τdi ]g−g′,|J |+1.

References.

• For results on the relationship between the Weil-Petersson volumes
and the intersections of ψ classes on Mg,n, see [Wi] and [AC]. An
explicit formula for the volumes in terms of the intersection of ψ
classes was developed in [KMZ].

• Formula (I) is a special case of Proposition 3.3 in [LX1].
• For different proofs of (II), see [DN] and [LX1]. The proof pre-
sented in [DN] uses the properties of moduli spaces of hyperbolic
surfaces with cone points.

• For a proof of (III), see [M2]; in view of Theorem 2.3, (III) can
be interpreted as a recursive formula for the volume of Mg,n(L)
in terms of volumes of moduli spaces of Riemann surfaces that we
get by removing a pair of pants containing at least one boundary
component of Sg,n. See also [Mc] and [LX2].

• If d1+ · · ·+ dn = 3g− 3+n, (III) gives rise to a recursive formula
for the intersection pairings of ψi classes which is the same as the
Virasoro constraints for a point. See also [MS]. For different proofs
and discussions related to these relations, see [Wi], [Ko], [OP],
[M1], [KL], and [EO].

Remarks.

• In terms of the volume polynomials, equation (II) can be written
as ([DN]):

∂Vg,n+1

∂L
(L, 2πi) = 2πi(2g − 2 + n)Vg,n(L).
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When n = 0,

Vg,1(2πi) = 0

and

(3.5)
∂Vg,1
∂L

(2πi) = 2πi(2g − 2)Vg.

• Note that (III) applies only when n > 0. In the case of n = 0,
(3.5) allows us to prove necessary estimates for the growth of Vg,0.

• Although (III) has been described in purely combinatorial terms,
it is closely related to the topology of different types of pairs of
pants in a surface.

• In this paper, we are mainly interested in the intersection pairings
only containing κ1 and ψi classes. For generalizations of (III) to
the case of higher Mumford’s κ classes, see [LX1] and [E].

• We will show that when n is fixed and g → ∞, both terms Ad,
and Bd in (III) contribute to Vg,n = [τ0, . . . , τ0]g. More precisely,
for d = (0, . . . , 0),

Bd

Ad

≍ 1.

On the other hand, for d = (0, . . . , 0) the contribution of Cd in

(III) is negligible. More precisely, we will see that Cd
Vg,n

= O(1/g).

3.2. Basic estimates for the intersection pairings. The main ad-
vantage of using (III) is that all the coefficients are positive. Moreover,
it is easy to check that

an = ζ(2n)(1− 21−2n) =
1

(2n − 1)!

∫ ∞

0

t2n−1

1 + et
dt.

Hence,

an+1 − an =

∫ ∞

0

1

(1 + et)2

(

t2n+1

(2n+ 1)!
+
t2n

2n!

)

dt.

As a result, we have:

Lemma 3.1. In terms of the above notation, {an}∞n=1 is an increasing

sequence. Moreover, limn→∞ an = 1, and

(3.6) an+1 − an ≍ 1/22n.

Using this observation and (3.1), one can prove the following general
estimates:

Lemma 3.2. In terms of the above notation, the following estimates

hold:

1)

[τd1+1, τ0, . . . , τ0]g,n ≤ [τd1 , τ0, . . . , τ0]g,n ≤ [τ0, . . . , τ0]g,n = Vg,n.
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2) More generally,

[τd1 , . . . , τdn ]g,n ≤ (2d1 + 1) · · · (2dn + 1)Vg,n

and

(3.7) Vg,n(2L1, . . . , 2Ln) ≤ eLVg,n,

where L = L1 + · · ·+ Ln.
3) For any g, n ≥ 0 with 2g − 2 + n > 0,

(3.8) Vg−1,n+4 ≤ Vg,n+2

and

(3.9) b0 <
(2g − 2 + n)Vg,n

Vg,n+1
< b1,

where b1 and b0 are universal constants independent of g and n.
4) Given d1, . . . , dk ≥ 0, we have

[τd1 , τd2 , . . . , τdk , τ0, . . . , τ0]g,n ≍ Vg,n,

where the implied constants are independent of g.

Proof. Parts (1) and (2) follow by comparing the contributions of Ad,
Bd, and Cd for (d1, d2, . . . , dn), (d1, 0, . . . , 0), and (0, . . . , 0) in (III).
Moreover, since 1/2 ≤ mini{ai/ai+1}, we have

1

2
≤ [τ1 τ

n−1
0 ]g,n
Vg,n

.

See (3.2), (3.3), and (3.4). Also, (3.1) implies (3.7). Note that equation
(I) for d = (0) implies that for any n ≥ 0, Vg,n+2 ≥ Vg−1,n+4. Also,
since for l ≥ 1

l π2l−2

(2l + 1)!
≥ (l + 1)π2l

(2l + 3)!
,

part (1) and equation (II) imply that

(3.10) b0 ≤
(2g − 2 + n)Vg,n

Vg,n+1
≤ b1,

where

b0 =
1

2
·
(

1

6
− π2

60

)

, b1 =
∞
∑

l=1

l π2l−2

(2l + 1)!
.

Note that

Vg−1,n+2

Vg,n
=
Vg−1,n+2

Vg−1,n+3
· Vg−1,n+3

Vg−1,n+4
· Vg−1,n+4

Vg,n+2
· Vg,n+2

Vg,n+1
· Vg,n+1

Vg,n
.

So (3.8) and (3.9) imply that

(3.11) Vg−1,n+2 = O(Vg,n).



280 M. MIRZAKHANI

As a result, in view of part (3), (I) implies that

(3.12)
∑

g1+g2=g
{2,...,n}=I∐J

Vg1,|I|+1 · Vg2,|J |+1 = O

(

Vg,n
g

)

.

In (3.11) and (3.12), the implied constants are independent of g.
Finally, we prove part (4) for (d1, 0, . . . , 0). Here we compare the

contributions of Ad, Bd, and Cd for (d1, 0, . . . , 0) and (0, . . . , 0) in (III)
and write Vg,n = V1 + V2, where V1 is the sum of terms in (3.2), (3.3),
and (3.4) which also contribute to the expansion of [τd1 , τ0, . . . , τ0]g,n. It
is easy to check that for i, j ≥ 1, aj/ai ≤ 2. Hence, we have

V1 ≤ 2 [τd1 , τ0, . . . , τ0]g,n.

Next, we show that

V2 ≤ C2(d1, n)
Vg,n
g
,

where C2 is a constant independent of g, but it can depend on d1 and
n. There are O(d21) terms in V2 (from (3.2) and (3.3)); by (3.10) and

(3.11) each one of these terms is bounded above by
Vg,n

2g+n . We can use

(3.12) to bound the contribution of (3.4) to V2. Hence, we have

[τd1 , . . . , . . . , τ0]g,n
Vg,n

≥ 1

2
(1− C2(d1, n)

g
)

where C2 is a constant independent of g, but it can depend on d1 and
n. A similar argument can be applied to prove that in general

(3.13)
[τd1 , . . . , τdk , τ0, . . . , τ0]g,n

Vg,n
≥ 1

2
(1− C2(d, n)

g
).

✷

Remarks.

• A stronger lower bound for
Vg,n+1

(2g−2+n)Vg,n
was obtained in [ST]. But

in this paper, we will use only (3.9).
• We will show that given n ≥ 0, (3.8) is asymptotically sharp as
g → ∞. However, (1.2) implies that when g is fixed and n is large,
this inequality is far from being sharp; in fact, given g ≥ 1 as
n→ ∞,

Vg,n+2 ≍
√
n Vg−1,n+4.

3.3. The following lemma will be used in the proof of Theorem 1.2.

Lemma 3.3. Let n1, n2 ≥ 0. In terms of the above notation, we have

(3.14)
∑

g1+g2=g
g2≥g1≥0

Vg1,n1+1 × Vg2,n2+1 = O

(

Vg,n
g

)

,

where n = n1 + n2. Here the implied constant is independent of g.
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To simplify the notation, let

[x]g,n := [τx1 , . . . , τxn ]g,n,

where x = (x1, . . . , xn). Also,

|x| = x1 + · · ·+ xn.

Our proof of Lemma 3.3 relies on the following statement:

Lemma 3.4. Given r ≥ 1 and n ≥ 0, there exists C = C(r, n) > 0
such that for any (g1,m), (g2, n) with 2g1 − 2 +m ≥ r, we have

(3.15)
[x1, . . . , xm]g1,m × Vg2,n+r ≤ C(r, n)× [x1, . . . , xm, 0, . . . , 0]g1+g2,m+n.

Sketch of proof of Lemma 3.4. We prove (3.15) by induction on
2g1 +m. Note that [x1, . . . , xn]g,n 6= 0 only if x1+ · · ·+xn ≤ 3g− 3+n.
The recursive relation (III) implies that if g ≤ g′ and n ≤ n′, then

(3.16) [x1, . . . , xn]g,n ≤ [x1, . . . , xn, 0, . . . , 0]g′,n′ .

First, by part (3) of Lemma 3.2, if 2g1 − 2 +m ≥ r,

Vg2,n+r

Vg1+g2,n+m
= O(1),

where the implied constant is independent of g2. So in view of (3.13),
there exist C0, c(r, n) > 0 such that

[x1, . . . , xm]g1,m × Vg2,n+r ≤ C0 × [x1, . . . , xm, 0, . . . , 0]g1+g2,m+n

holds for any (g1,m), (g2, n) with r ≤ 2g1−2+m ≤ 3r, and g2 ≥ c(r, n).
Let

C(r, n) = C0 +max{Vg2,n+r}g2≤c(r,n).

Then (3.16) yields that (3.15) holds for any (g1,m), (g2, n) with r ≤
2g1 − 2 +m ≤ 3r.

The main idea for the rest of the proof is using the recursive formula
(III) to expand both [x]g1,m and [y]g1+g2,m+n. Assume that the result
holds for (g, n) with 2g+n < 2g1+m, and 3r < 2g1−2+m. To simplify
the notation, let x = (x1, . . . , xm) and y = (x1, . . . , xm, 0, . . . , 0). Ex-
pand both [x]g1,m and [x, 0, . . . , 0]g1+g2,m+n in (3.15) using the relation
(III). Since all the terms in equation (III) and (3.15) are positive, it
is enough to check that after expanding both sides every term in the
expansion of [x]g1,m has a corresponding term on the right hand side
(in the expansion of [y]g1+g2,m+n). More precisely, following (3.2), (3.3),
and (3.4), we can write

[x]g1,m =
m
∑

j=2

Aj
x + Bx + Cx
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and

[y]g1+g2,m+n =

n+m
∑

j=2

Aj
y + By + Cy.

Then we have:

• For 2 ≤ j ≤ m, each term in Aj
x is of the form al · [x′]g1,m−1,

where l = |x′| − |x|+ 1. In this case, the induction hypothesis for
[x′]g1,m−1 implies that

al · [x′]g1,m−1 × Vg2,n+r ≤ C(r, n) al · [x′, 0, . . . , 0]g1+g2,m−1+n.

In this case, al · [x′, 0, . . . , 0]g1+g2,m−1+n appears in the expansion

of Aj
y.

• Similarly, each term in Bx is of the form al · [x′]g1−1,m+1, where
l = |x′|− |x|+2. The induction hypothesis for [x′]g1−1,m+1 implies
that

al · [x′]g1−1,m+1 × Vg2,n+r ≤ C(r, n) al · [x′, 0, . . . , 0]g1−1+g2,m+1+n.

In this case, al ·[x′, 0, . . . , 0]g1−1+g2,m+1+n appears in the expansion
of By.

• Finally, each term in Cx is of the form al · [y1]h1,m1 · [y2]h2,m2

where l = |y1|+ |y2|− |x|+2, m1+m2 = m− 1, h1+h2 = g1 and
2h2 + m2 ≤ 2h1 + m1. In this case, we can apply the induction
hypothesis for [y1]h1,m1 since r < 2h1 +m1 < 2g1 +m. Then we
have

al · [y1]h1,m1 · [y2]h2,m2 × Vg2,n+r ≤ C(r, n) al · [y1, 0, . . . , 0]h1+g2,m1+n

· [y2]h2,m2 .

Note that all the terms of the form al · [y1, 0, . . . , 0]h1+g2,m1+n ·
[y2]h2,m2 appear in the expansion of Cy.

✷

Proof of Lemma 3.3. In view of Lemma 3.2, we have

(3.17)
∑

g1+g2=g
g1≥g2≥0

Vg1,n1+1 × Vg2,n2+1 = O







∑

g1+g2=g
g1≥g2≥0

Vg1,n1+4 × Vg2,n2+1

g3






.

We have
∑

g1+g2=g
g1≥g2≥0

Vg1,n1+4 × Vg2,n2+1 = Vg,n1+4

· V0,n2+1 + Vg−1,n1+4 · V1,n2+1 + Vg−2,n1+4 · V2,n2+1

+
∑

g1+g2=g
g1≥g2≥3

Vg1,n1+4 × Vg2,n2+1.
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Note that V0,n2+1 6= 0 only if n2 ≥ 2, which implies that Vg,n1+4 ·
V0,n2+1 = O(Vg,n+2). Similarly, by part (3) of Lemma 3.2, we have

(3.18) Vg−1,n1+4 · V1,n2+1 + Vg−2,n1+4 · V2,n2+1 = O(Vg,n+2).

Also, by Lemma 3.4 for x = (0, . . . , 0) and r = 4, if i ≥ 3

Vg−i,n1+4 × Vi,n2+1 ≤ C4 · Vg,n+1.

Hence, (3.18) implies that
∑

g1+g2=g
g1≥g2≥0

Vg1,n1+4 × Vg2,n2+1 = O (Vg,n+2 + g · Vg,n+1) .

Now Equation (3.15) follows from part (3) of Lemma 3.2 and (3.17).
✷.

Remark.

• In particular, when n1 = n2 = 0, we have

g−1
∑

i=1

Vi,1 × Vg−i,1 = O

(

Vg
g

)

,

as g → ∞. More generally, Lemma 3.4 implies that given r ≥ 0,

(3.19)

⌈g/2⌉
∑

i=r+1

Vi,1 × Vg−i,1 = O

(

Vg
g2r+1

)

as g → ∞, where the implied constants only depend on r. We
prove a stronger statement in Corollary 3.7.

• The implied constant in Lemma 3.3 depends on n1 and n2.

Now we can prove the main result of this section:

Theorem 3.5. Let n, k ≥ 0. As g → ∞, we have:

1)
[τk, τ0, . . . , τ0]g,n+1

Vg,n+1
= 1 +O(1/g),

2)
Vg,n+1

2gVg,n
= 4π2 +O(1/g),

and

3)
Vg,n

Vg−1,n+2
= 1 +O(1/g).

Remark.

• These estimates are consistent with the conjectures on the growth
of Weil-Petersson volumes in [Z2]; we remark that the statements
had been predicted by Peter Zograf.
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• By part (3) of Theorem 3.5 and (3.8),

(3.20)
Vg−i,k

Vg,k−2i
= O(1),

where the implied constant is independent of g, k, and i. Also,
given i ≥ k/2, we have

Vg−i,k

Vg
=

Vg−i,k

Vg−i,k+1
· · · Vg−i,2i−1

Vg−i,2i
× Vg−i,2i

Vg−i+1,2i−2
· · · Vg−1,2

Vg
.

Hence Theorem 3.5 and Lemma 3.3 imply that

(3.21) Vg−i,k = O

(

Vg
g2i−k

)

as g → ∞.
• Following the ideas used in the proof of Theorem 3.5, one can show
that

Vg,n+1

2gVg,n
= 4π2 +

a1,n
g

+ · · ·+ ak,n
gk

+O

(

1

gk+1

)

and

Vg,n
Vg−1,n+2

= 1 +
b1,n
g

+ · · ·+ bk,n
gk

+O(
1

gk+1
).

However, in general it is not easy to calculate ai,n and bi,n’s ex-
plicitly (see [MZ]).

Proof of Theorem 3.5. Fix n ≥ 0. By Lemma 3.3,

(3.22)
∑

g1+g2=g
{1,...,n}=I1∐I2

Vg1,|I1|+1 × Vg2,|I2|+1 = O

(

Vg,n+1

g2

)

.

Now we compare the contributions ofAd, Bd, and Cd for d = (k, 0, . . . , 0)
and (0, . . . , 0) in (III). We can expand the difference [τk τ

n−1
0 ]g,n −

[τk+1 τ
n−1
0 ]g,n in terms of the intersection numbers onMg−1,n+1,Mg,n−1,

and Mg1,n1 ×Mg2,n2 . Following (3.2), the numbers

[τk−1 τ
n−2
0 ]g,n−1, . . . , [τ3g+n−4 τ

n−2
0 ]g,n−1

contribute to [τk τ
n−1
0 ]g,n and [τk+1 τ

n−1
0 ]g,n. It is easy to check that the

contribution of [τk−1+i τ
n−2
0 ]g,n−1 to [τk τ

n−1
0 ]g,n− [τk+1 τ

n−1
0 ]g,n is equal

to (ai+1−ai)[τk−1+i τ
n−2
0 ]g,n−1. Similarly, the numbers [τi τj τ

n−1
0 ]g−1,n+1

contribute to [τk τ
n−1
0 ]g,n (resp. to [τk+1 τ

n−1
0 ]g,n) whenever i+ j ≥ k−2

(resp. i+ j ≥ k− 1). In view of Lemma 3.1, part (3) of Lemma 3.2, and
(3.22), we get

[τk τ
n−1
0 ]g,n − [τk+1 τ

n−1
0 ]g,n ≤ c0 · k

Vg,n
g
,
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where c0 is a universal constant independent of g and k. Therefore, we
have

(3.23) 0 ≤ 1− [τk, τ0, . . . , τ0]g,n
Vg,n

≤ c0
k2

g
.

We use the following elementary observation to prove part (2) for
n ≥ 1:

Elementary fact. Let {ri}∞i=1 be a sequence of real numbers and {kg}∞g=1

be an increasing sequence of positive integers. Assume that for g ≥ 1 and

i ∈ N, 0 ≤ cg,i ≤ ci and limg→∞ cg,i = ci. If
∑∞

i=1 |ciri| <∞, then

(3.24) lim
g→∞

kg
∑

i=1

ricg,i =

∞
∑

i=1

rici.

Now, let

ri = (−1)i
π2i(i+ 1)

(2i + 3)!
, kg = 3g−3+n , ci = 1 and cg,i =

[τi+1, τ0, . . . , τ0]g,n
Vg,n+1

.

By (3.24), and (II) for d = 0, we get

lim
g→∞

2(2g − 2 + n)Vg,n
Vg,n+1

=
1

3!
−2π2

5!
+· · ·+(−1)L(L+1)

π2L

(2L + 3)!
+· · · = 1

2π2
.

In fact, (3.23) similarly implies that

2(2g − 2 + n)Vg,n
Vg,n+1

=
1

2π2
+O(

1

g
).

On the other hand, from (I) and (3.21) we get that for n ≥ 2 :

lim
g→∞

Vg,n
Vg−1,n+2

= 1 +O(1/g).

Now it is easy to check that

Vg,1 =
1

g
Vg,2(

1

4π2
(1−O(1/g))) , Vg−1,3 =

1

g
Vg−1,4(

1

4π2
(1−O(1/g)))

and

Vg,2 = Vg−1,4(1 +O(1/g))

imply
Vg,1
Vg−1,3

= 1 +O(1/g).

In other words, (b) for n = 1 and n = 2 proves part (3) for n = 1.
Also, (3.5) implies part (2) for n = 0, and part (2) for n = 0 and n = 1
implies part (3) for n = 0. ✷
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Remark. More generally, the argument used in the proof of (3.23)
implies that given n ≥ 1,

0 ≤ 1− [τd1 , . . . , τdn ]g,n
Vg,n

≤ c0
(d1 + . . .+ dn)

2

g
,

where c0 is a constant independent of g and d1, . . . , dn.
For any bounded sequence {ki}∞i=1 with |ki| < a, we have:

1

c
g−a <

g
∏

i=1

(1 +
ki
i
) < c ga,

where c is independent of g. Hence, parts (3) and (4) of Theorem 3.5
imply that:

Corollary 3.6. Given n ≥ 0, there exists m ≥ 0 such that:

g−mFg,n < Vg,n < gmFg,n,

where

Fg,n = (4π2)2g+n−3(2g − 3 + n)!
1√
gπ
.

As a result, we get the following estimate which will be used in the
next section:

Corollary 3.7. Let b, k ≥ 0 and C < C0 = 2 ln(2),

∑

g1+g2=g+1−k
r+1≤g1≤g2

eCg1 · gb1 · Vg1,k · Vg2,k ≍ Vg
g2r+k

,

as g → ∞.

We remark that following (3.20), it is enough to prove the statement
for k = 1 and k = 2.

Proof of Corollary 3.7. Note that for 1 ≤ i ≤ N ,
(

N
i

)

≥ (N/i)i. Also,

for 0 < s ≤ 1/2, ss(1 − s)1−s ≤ 1
4s . Then a simple calculation using

Stirling’s formula implies that for 2i ≤ N we have
(

N

i

)

>
4i

2e2
√
N
.

Hence, for C < 2 ln(2), there exists a constant c0 = c0(r, k, b) such that

(3.25)
∑

g1+g2=g+1−k,
c0(r,k,b)≤g1≤g2

eCg1gb+1
1 · Fg1,k · Fg2,k = O

( Fg

g2m+3r

)

,
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where Fg = F(g, 0) (see Corollary 3.7). In view of Corollary 3.6, we
have

(3.26)

⌈g/2⌉
∑

g1=c0+1

gb1 · eC g1 × Vg1,k × Vg−g1−k+1,k = O

(

Vg
g3r

)

.

Now, it is enough to bound the terms Vi,k × Vg−i−k+1,k for r + 1 ≤ i ≤
c0(r, k, b). Recall that in general by (3.21),

Vg−i−k+1,k = O

(

Vg
g2i+k−2

)

.

When r + 1 ≤ i, we have 2i+ k − 2 ≥ 2r + k, and hence

(3.27)

c0(r,k)
∑

g1=r+1

gb1 · eC g1 × Vg1,k × Vg−g1−k+1,k = O

(

Vg
g2r+k

)

.

The result follows from (3.26) and (3.27). In this proof, the implied con-
stants can depend on C, b, k and r. ✷

4. Random Riemann surfaces of high genus

In this section, we apply the asymptotic estimates on the volume
polynomials to study the geometric properties of random hyperbolic
surfaces; in particular, we are interested in the length of the shortest
simple closed geodesic of a given combinatorial type, diameter, and the
Cheeger constant of a random surface. See [BM] for more in the case
of random hyperbolic surfaces constructed by random trivalent graphs.

4.1. Notation. Recall that the mapping class group Modg,n acts nat-
urally on the set Sg,n of isotopy classes of simple closed curves on Sg,n:
Two simple closed curves α1 and α2 are of the same type if and only
if there exists g ∈ Modg,n such that g · α1 = α2. The type of a simple
closed curve is determined by the topology of Sg,n −α, the surface that
we get by cutting Sg,n along α.

Given a multicurve α =
∑k

i=1 ciαi on Sg, define

Nα(·, ·) : Mg × R+ → R+

by

Nα(X,L) = |{γ|γ ∈ Modg ·α, ℓγ(X) ≤ L}|.
Similarly, define

N c
α(·, ·) : Mg × R+ → R+

by

N c
α(X,L) = |{γ =

k
∑

i=1

ciγi|γ ∈ Modg ·α,∀i : 1 ≤ i ≤ k , ℓγi(X) ≤ L}|.
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By the definition, for any connected simple closed curve, Nα(X,L) =
N c

α(X,L). To simplify the notation,

• For k ≤ g, let βk = γ1 + · · · + γk be a multicurve on Sg with k
connected components so that Sg − βk is connected. That is,

Sg − βk ∼= Sg−k,2k.

• For 1 ≤ k ≤ m ≤ g − 1, let ηm,k = γ′1 + · · · + γ′k be a separating
multicurve with k connected components on Sg such that

Sg − ηm,k
∼= Sg1,k ∪ Sg2,k

and
m = |χ(Sg1,k)| = 2g1 − 2 + k,

where g1 + g2 + k − 1 = g.

We consider the following counting functions:

N0(X,L) := Nβ1(X,L) = |{γ |ℓγ(X) ≤ L, γ ∈ Sg is non-separating}|
and

Ni(X,L) := Nη2i−1,1(X,L)

for i ≥ 1; that is, Ni(X,L) is the number of connected simple closed
geodesics of length ≤ L which divide X into a surface of genus i and a
surface of genus g − i. Then we have:

Lemma 4.1. As g → ∞,

(4.1)

∫

Mg

N c
βk
(X,L) dX = O((eL − 1)k

Lk

k!
Vg),

(4.2)

∫

Mg

N1(X,L) dX = O(
(eL/2 − 1)(L3 + L)Vg

g
),

and

(4.3)

∫

Mg

Nk(X,L) dX = O((eL − 1)L Vk,1 × Vg−k,1),

where k > 0. Here the implied constants are independent of k, L, and g.

Proof of Lemma 4.1. Recall that by Lemma 3.2,

Vg,n(2L1, . . . , 2Ln) ≤ eL × Vg,n.

Let Ck = [0, L]k ⊂ Rk. Since |Sym(βk)| = k!, Theorem 2.2 for F =
χ(Ck) : R

k → R and (2.3) imply that

(4.4)

∫

Mg

N c
βk
(X,L) dX ≤ (

∫ L

0
t · etdt)k Vg−k,2k

k!
.

On the other hand,
∫ L

0
t · etdt = O((eL − 1)L).
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Also, by (3.8) and Theorem 3.5 we have

Vg−k,2k = O(Vg).

Hence (4.4) implies (4.1). Similar arguments imply (4.2) and (4.3). ✷

Remark. In fact, when L > 1 is fixed,
∫

Mg
N0(X,L) dX

Vg
≍ eL

L

as g → ∞. Similar estimates hold when L is much smaller than g. On
the other hand, when L is very large compared to g,

∫

Mg
N0(X,L) dX

behaves like a polynomial of degree 6g − 6 in L (see [M4]).
We recall that the number of all closed geodesics of length ≤ L on

X ∈ Mg is at most eL+6(g − 1) (see Lemma 6.6.4 in [Bu]).

4.2. Injectivity radius. As in the introduction, let ℓsys(X) denote the
length of the shortest simple closed geodesic on X. Given ǫ > 0, let

Mǫ
g,n = {X | ℓsys(X) ≤ ǫ} ⊂ Mg,n.

The set Mg,n − Mǫ
g,n of hyperbolic surfaces with lengths of closed

geodesics bounded below by ǫ is a compact subset of the moduli space
Mg,n.

Theorem 4.2. Let n ≥ 0. There exists ǫ0 > 0 such that for any

ǫ < ǫ0,

Volwp(Mǫ
g,n) ≍ ǫ2Volwp(Mg,n)

as g → ∞.

Proof. Here we sketch the proof for the case of n = 0. Fix ǫ0 such that
no two simple closed geodesics of length ≤ ǫ0 on a hyperbolic surface
could meet, and choose ǫ < ǫ0. Consider the function

N(X, ǫ) = N0(X, ǫ) + · · ·+N⌈g/2⌉(X, ǫ),

as defined in §4.1. Then, in view of Theorem 2.2, we have

Volwp(Mǫ
g) ≤

∫

Mg

N(X, ǫ) dX

=

⌊g/2⌋
∑

i=1

∫ ǫ

0
tVolwp(M(Si,1×Sg−i,1, t, t)) dt +

∫ ǫ

0
tVolwp(Mg−1,2(t, t)) dt.

On the other hand, (3.7) implies that when t is small enough, for i ≥ 1,

Volwp(Mi,1(t))×Volwp(Mi,1(t)) ≤ 2Vi,1 × Vg−i,1

and

Volwp(Mg−1,2(t, t)) ≤ 2Vg−1,2.
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Hence, when ǫ is small (independent of g), from (3.19) and (3.20) we
get

Volwp(Mǫ
g) = O(ǫ2(

⌈g/2⌉
∑

i=1

Vi,1Vg−i,1 + Vg−1,2)) = O(ǫ2Vg).

Next, we prove that the probability that a surface has a non-separating

simple closed geodesic of length ≤ ǫ is asymptotically positive. More
precisely, we show that as g → ∞,

(4.5) Volwp({X|N0(X, ǫ) ≥ 1}) ≍ ǫ2Vg.

Recall that Vg−1,2 ≍ Vg and for t < ǫ0, Vg−1,2(t, t) ≍ Vg−1,2. Therefore,
for ǫ < ǫ0,

(4.6)

∫

Mg

N0(X, ǫ) dX ≍ ǫ2Vg.

Given 1 ≤ i ≤ g − 1, let U i
ǫ ⊂ Mg denote the set of points X in Mg

such that N c
α(X, ǫ) ≥ 1 for α = ηi1,k1 with i1 ≥ i (see §4.1), and let

Uǫ = U1
ǫ .

Note that if X ∈ Mg − Uǫ, then the union of all closed geodesics of
length ≤ ǫ on X is a non-separating multicurve. Now (4.5) is a corollary
of the following claims:

Claim 1. For any k ≥ 1,

(4.7) Volwp({X|N0(X, ǫ) ≥ k} − Uǫ) ≤ c
ǫ2keǫk

k!
Vg,

where c is a constant independent of g and k. Therefore, as g → ∞,

(4.8)
∞
∑

k=2

Volwp({X|N0(X, ǫ) ≥ k} − Uǫ) = O(ǫ4Vg).

Claim 2. We have

(4.9)

∫

Uǫ

N0(X, ǫ) dX = O

(

ǫ2Vg
g

)

.

Therefore, by (4.6),

(4.10)

∫

Mg−Uǫ

N0(X, ǫ) dX ≍ ǫ2Vg

as g → ∞.

Proof of Claim 1. As in §4.1, let βk be a multicurve with k connected
components such that Sg − βk ∼= Sg−k,2k. For X 6∈ Uǫ, N0(X, ǫ) = k
implies that N c

βk
(X, ǫ) ≥ 1. That is,

Volwp({N0(X, ǫ) ≥ k} − Uǫ) ≤ Volwp({X|Nβk
(X, ǫ) ≥ 1}).
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Since for small t, et − 1 = O(t), by Lemma 4.1 we have

(4.11) Volwp({X|Nβk
(X, ǫ) ≥ 1}) ≤ c

ǫ2keǫk

k!
Vg,

where c is a constant independent of g and k. When ǫ is small enough,
(4.11) implies (4.7).

Proof of Claim 2. For 1 ≤ k ≤ i ≤ g− 1, let ηi,k be a multicurve with
k connected components defined in §4.1. Then we have

Volwp(U2i
ǫ − U2i+1

ǫ ) ≤
i
∑

k=1

N c
η2i,2k

(X, ǫ).

Since |Sym(ηi,2k)| = 2k!, using Theorem 2.2 and (3.20) we get

Volwp(U2i
ǫ − U2i+1

ǫ ) = O

(

(2i)
i
∑

k=1

(eǫǫ)2k

2k!
· Vi,2 × Vg−i−1,2

)

.

Similarly, we have

Volwp(U2i+1
ǫ − U2i+2

ǫ ) = O

(

(2i+ 1)

i
∑

k=1

(eǫǫ)2k+1

(2k + 1)!
· Vi+1,1 × Vg−i−1,1

)

.

Since
∑∞

k=1
(eǫǫ)2k

k! < ǫ2e2ǫ, from Corollary 3.7 we get

Volwp

(

U2
ǫ

)

= O

(

ǫ2Vg
g2

)

.

Let S1,1
g be the set of multicurves γ = γ′1+ · · ·+γ′j on Sg such that Sg−

γ ∼= S1 ∪ S2 ∪S3, where |χ(S1)| = |χ(S2)| = 1, and S3 is homeomorphic
to Sg−2,2, Sg−3,4, or Sg−4,6. Define

U1,1
ǫ = {X |N c

γ(X, ǫ) ≥ 1, γ ∈ S1,1
g } ⊂ Uǫ.

It is easy to check that

Volwp

(

U1,1
ǫ

)

= O

(

ǫ2
Vg
g2

)

.

Let αǫ =
∑

ℓα(X)≤ǫ α. If X ∈ Uǫ − (U2
ǫ ∪ U1,1

ǫ ), then X − αǫ has exactly

two connected components. Moreover, for k ≥ 2 we have:

Volwp({X |N0(X, ǫ) = k} ∩ (Uǫ − (U2
ǫ ∪ U1,1

ǫ ))) = O

(

Vgǫ
2k−2

(k − 1)!g

)

.

Note that by the choice of ǫ, N0(X, ǫ) ≤ 3g − 3. Hence, we have
∫

Uǫ

N0(X, ǫ) dX =

∫

U2
ǫ ∪U

1,1
ǫ

N0(X, ǫ) dX +

∫

Uǫ−(U2
ǫ ∪U

1,1
ǫ )

N0(X, ǫ) dX
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= O

(

(3g − 3) · ǫ
2Vg
g2

+
ǫ2Vg
g

3g−3
∑

k=1

k2
ǫk−1

k!

)

,

which proves the claim.
Finally, note that

Volwp({X |N0(X, ǫ) ≥ 1}) ≥ Volwp({X|N0(X, ǫ) ≥ 1} − Uǫ)

=

∫

Mg−Uǫ

N0(X, ǫ) dX −
∞
∑

k=2

Volwp({X|N0(X, ǫ) ≥ k} − Uǫ).

Hence, the lower bound in (4.5) follows from (4.10) and (4.8). ✷

Remark. It is easy to see from the first part of the proof of Theorem
4.2 that for any sequence {ǫg}g with ǫg < ǫ0, we have

Volwp(Mǫg
g,n) = O(ǫ2g Volwp(Mg,n))

as g → ∞.
Define f : Mg → R+ by

f(X) =
∑

ℓα(X)≤1

1

ℓα(X)
.

Then in view of Theorem 2.2, (3.20) and (3.19) imply that

∫

Mg

f(X) dX =

∫ 1

0
Vg−1,2(t, t)dt +

⌊g/2⌋
∑

i=1

∫ 1

0
Vg−i,1(t)Vi,1(t)dt ≍ Vg

and hence Theorem 4.2 implies that:

Corollary 4.3. As g → ∞,
∫

Mg

1

ℓsys(X)
dX ≍ Vg.

4.3. Behavior of separating simple closed geodesics. Let ℓssys(X)
denote the length of the shortest homologically trivial simple closed
geodesic on X. We show that ℓssys(X) is generically at least of (2 −
ǫ) log(g) as g → ∞. In fact, there exists C > 0 such that (as g → ∞) for
most points X ∈ Mg, if a separating simple closed geodesic γ satisfies
ℓγ(X) < C log(g), then Sg − γ = Sg1 ∪ Sg2 with min{g1, g2} = O(1).

Theorem 4.4. Let 0 < a < 2. Then

Probgwp(ℓ
s
sys(X) < a log(g)) = O

(

log(g)3ga/2

g

)

,

and

E
g
X∼wp(ℓ

s
sys(X)) ≍ log(g)

as g → ∞.
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Proof. Note that in terms of the notation in §4.1, we have

Volwp({X |ℓssys(X) < L}) ≤
⌈g/2⌉
∑

i=1

∫

Mg

Ni(X,L) dX.

Let L > 1. Then by Lemma 4.1,

(4.12) Probgwp(ℓ
s
sys(X) < L) ≤ eL/2L3

g
+

⌈g/2⌉
∑

i=2

eLVi,1 × Vg−i,1

Vg
.

On the other hand, by (3.19),

⌈g/2⌉
∑

i=2

Vi,1 × Vg−i,1 = O

(

Vg
g3

)

.

Using these bounds for L = a log(g) implies the first part of the theorem.
By Theorem 1.3 of [SS], there exists a positive constant C > 0 such

that every closed surface X of genus g ≥ 2, ℓssys(X) ≤ C log(g), and
hence

E
g
X∼wp(ℓ

s
sys(X)) < C log(g).

On the other hand, we have

E
g
X∼wp(ℓ

s
sys(X)) ≥ log(g)

10

(

1− Probgwp(ℓ
s
sys(X) < log(g)/10)

)

,

which implies the second part of the theorem. ✷

4.4. Injectivity radius and embedded balls. Let Inj(x) denote the
injectivity radius of x ∈ X. We show that on a generic X ∈ Mg most
points x ∈ X (with respect to the hyperbolic volume form on X) satisfy
Inj(x) ≥ 1

6 log(g). Note that, corresponding to each x, there exists a
simple closed curve γx of length ≤ 2 Inj(x) such that the distance of x
from the geodesic representative of γx is at most 2 Inj(x).

• Let

(4.13) Ag = {X | N(X, log(g)/3) ≤ g1/3+1/4} ⊂ Mg,

where N(X,L) is the number of connected simple closed geodesics
of length ≤ L on X. Then by (4.1), (4.2), and (4.12)

(4.14)
Volwp(Mg −Ag)

Vg
= O(g−1/4)

as g → ∞.
• A simple calculation shows that given a simple closed geodesic γ
of length ≤ log(g)/3, the (hyperbolic) volume of the locus on X

with γx = γ is at most g1/3 log(g).
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Therefore, for any point in X ∈ Ag (defined by (4.13)),

Vol({x ∈ X | Inj(x) ≤ 1

6
log(g)}) = O(g11/12 log(g)),

where the volume is with respect to the hyperbolic volume form on
X ∈ Mg. In particular, for X ∈ Ag the radius Emb(X) of the largest
embedded ball in X is ≥ log(g)/6 and (4.14) implies that:

Theorem 4.5. As g → ∞,

Probgwp(Emb(X) < CE log(g)) → 0,

E
g
X∼wp(Emb(X)) ≍ log(g),

where CE = 1
6 .

4.5. Cheeger constants and isoperimetric inequalities. Recall
that the Cheeger constant of a Riemann surface X is defined by

(4.15) h(X) = inf
α

ℓ(α)

min{Area(X1),Area(X2)}
where the infimum is taken over all smooth 1-dimensional submanifolds
of X which divide it into two disjoint submanifolds X1 and X2 such
that X − α = X1 ∪X2 and α ⊂ ∂(X1) ∩ ∂(X2).

We remark that:

• In fact, by an observation due to Yau, we may restrict A to a
family of curves for which X1 and X2 are connected. See Lemma
8.3.6 in [Bu].

• By a result of Cheng [C], for any compact hyperbolic surface X

(4.16) h2(X) ≤ 1 +
16π2

diam(X)
,

Therefore, there is an upper bound for the Cheeger constant which
tends to 1 as g(X) → ∞. See also §III and §X in [Ch].

Given i ≤ g − 1, let

(4.17) Hi(X) = inf
α

ℓα(X)

min{Area(X1),Area(X2)}
,

where α = ∪s
j=1αj is a union of simple closed geodesics on X with

X −α = X1 ∪X2, and X1 and X2 are connected subsurfaces of X such
that |χ(X1)| = i ≤ |χ(X2)|. So min{Area(X1),Area(X2)} = 2π · i. We
define the geodesic Cheeger constant of X by

H(X) = min
i≤g−1

Hi(X).

In general, by the definition

h(X) ≤ H(X),
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but the inequality is not sharp. Using basic isoperimetric inequalities
for hyperbolic surfaces, we will obtain a lower bound for h(X) in terms
of H(X).

Recall that in a compact hyperbolic surface, there exists a perimeter
minimizer among regions of prescribed area bounded by embedded recti-
fiable curves; it consists of curves of equal constant curvature. Moreover,
by a result of Adams and Morgan [AM]:

Theorem 4.6. For given area 0 < A < 4πg, a perimeter-minimizing

system of embedded rectifiable curves bounding a region R of area A
consists of a set of curves of one of the following four types:

1) a circle,

2) horocycles around cusps,

3) two neighboring curves at constant distance from a closed geodesic,

bounding an annulus or complement,

4) geodesics or single neighboring curves.

All curves in the set have the same constant curvature.

On the other hand, one can easily check that:

• If α is a circle or a union of two neighboring curves at constant

distance from a closed geodesic then the ratio ℓ(α)
min{Area(X1),Area(X2)}

in (4.15) is strictly bigger than one.
• For a neighboring curve of length L and curvature κ at distance s
from a closed geodesic of length ℓ enclosing area A, we have

A = ℓ sinh(s), L = ℓ cosh(s), and κ = tanh(s).

See Lemma 2.3 in [AM].

Therefore, a simple calculation shows that:

Proposition 4.7. Let X ∈ Mg be a hyperbolic surface of genus g.
Then

H(X)

H(X) + 1
≤ h(X) ≤ H(X).

Now we can show:

Theorem 4.8. Let C1 <
ln(2)

2π+ln(2) , and 0 ≤ β < 2. As g → ∞
Probgwp(h(X) ≤ C1) → 0

and
∫

Mg

(

1

h(X)

)β

dX ≍ Vg.

Our proof relies on the following lemma:

Lemma 4.9. Let m = 2g1 − 2+n1 ≤ g− 1, where 1 ≤ n1 ≤ 2. Then
given 0 < C1 < C2,

Volwp({X|X ∈ Mg,Hm(X) ≤ C1}) = O(m2·e2π·m·C2 ·Vg1,n1×Vg−g1−n1+1,n1),
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as g → ∞. Here the implied constant is independent of m and g, but it
might depend on C1 and C2.

Proof of Lemma 4.9. We prove the statement for n1 = 2. In this case,
m is even and g1 = m/2. The proof for n1 = 1 is similar. The argument
is similar to the one we used in the proof of Claim 2 in Theorem 4.2.
For 1 ≤ k ≤ m, consider the multicurve ηm,k defined in §4.1.

Let
Wm

k (L) = Volwp({X ∈ Mg |Nηm,k
(X,L) ≥ 1}),

and

Wm(L) = Volwp({X ∈ Mg |
m
∑

k=1

Nηm,k
(X,L) ≥ 1}).

Then, by the above definitions,

Wm
k (L) ≤

∫

Mg

Nηm,k
(X,L) dX

and

Wm(L) ≤
m
∑

k=1

Wm
k (L).

Recall that by Lemma 3.2, for 1 ≤ i ≤ g1 and 1 ≤ j ≤ g − 1− g1

Vg1−i,2+2i ≤ Vg1,2

and
Vg−1−g1−j,2+2j ≤ Vg−1−g1,2.

Since |Sym(ηm,k)| = k!, Theorem 2.2 and (3.7) yield that:

Wm
k (L)

= O

(

eL × Vg1,2 × Vg−g1−1,2 ×
∫

L1+···+Lk≤L

1

k!
L1 · · ·Lk dL1 · · · dLk

)

.

Hence,

Wm(L) = O
(

eL × Vg1,2 × Vg−1−g1,2 ×
m
∑

k=1

∫

L1+···+Lk≤L

1

k!
L1 · · ·Lk dL1 · · · dLk

)

.

Since
∫

L1+...Ls≤L
L1 · · ·Ls dL1 · · · dLs =

L2s

(2s)!

and
∞
∑

s=1

L2s

s!(2s)!
= O(L2e3L

2/3
),

we get

(4.18) Wm(L) = O(L2 × eL+3L2/3 × Vg1,2 × Vg−1−g1,2),



GROWTH OF WEIL-PETERSSON VOLUMES 297

where the implied constant is independent of g,m, and L. By definition
(4.17), if Hm(X) < C, then

∑m
k=1Nηm,k

(X,C · 2π ·m) ≥ 1. Therefore,
we have

(4.19) Volwp({X|X ∈ Mg,Hm(X) ≤ C1}) ≤ Wm(C1 · 2π ·m).

Hence, (4.18) implies the lemma for n1 = 2. ✷

Proof of Theorem 4.8. Lemma 4.9 implies that for any H0 > 0, as
g → ∞

Probgwp (H(X) ≤ H0) = O




∑

2g1≤g

e4π·H0·g1g31(Vg1,2 × Vg−1−g1,2 + Vg1,1 × Vg−g1,1)



 .

For H0 < ln(2)/2π, by Corollary 3.7 we have:

Probgwp (H(X) ≤ H0) = O

(

Vg
g

)

.

Therefore, Proposition 4.7 implies the first part of the theorem.
In view of (4.18) and (4.19), and similar statements for n1 = 1, the

argument in the proof of Lemma 4.9 implies that there exists ǫ0 > 0
such that for any ǫ < ǫ0, we have

(4.20) Volwp({X| H(X) ≤ ǫ}) = O

(

ǫ2Vg
g

)

,

where the implied constant is independent of g and ǫ. Note that follow-
ing Proposition 4.7, if ǫ ≤ 1/2, and h(X) ≤ ǫ, then H(X) ≤ 2ǫ. Hence,
the second part of the theorem is a corollary of (4.20). ✷

Remark. Let sg be a sequence such that limg→∞
sg
g = 0. Given M > 0,

Probgwp(Hsg(X) ≤M) → 0

as g → ∞.

4.6. Diameter. It is known that the diameter of a Riemannian man-
ifold of constant curvature −1 satisfies:

(4.21) diam(X) ≤ 2(r0 +
1

h(X)
log(

Vol(X)

2B(r0)
)),

where r0 > 0 and B(ro) is the infimum of the volume of a ball of radius
r0 in X (see [B]).

We show:

Theorem 4.10. As g → ∞,

Probgwp(diam(X) ≥ Cd log(g)) → 0
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and

E
g
X∼wp(diam(X)) ≍ log(g),

where Cd = 40.

Proof. Following (4.21) for r0 = ℓsys(X)/2, we have

(4.22) diam(X) = O

(

ℓsys(X) +
log(g) + | log(ℓ1(X))|

h(X)

)

,

where ℓ1(X) = min{ℓsys(X), 1}. Note that ℓsys(X) = O(log(g)). Also,
by the proof of Theorem 4.2 we have

Probgwp({X |ℓsys(X) ≤ 1

g
}) = O

(

1

g2

)

.

Therefore, the first part of the theorem is a direct consequence of (4.22)
and the first part of Theorem 4.8. In order to prove the second part of
the theorem, it is enough to show that:

E
g
X∼wp(diam(X)) = O(log(g)).

By Hölder’s inequality, we have

∫

Mg

| log(ℓ1(X))|
h(X)

dX ≤
(

∫

Mg

1

h(X)3/2
dX

)2/3

×
(

∫

Mg

| log(ℓ1(X))|3dX
)1/3

.

The second part of Theorem 4.8 (for β = 3/2) and Corollary 4.3 imply
that:

∫

Mg

| log(ℓ1(X))|
h(X)

dX = O(Vg).

Hence, the second part of the theorem follows from (4.22). ✷
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