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MINIMIZERS OF THE WILLMORE FUNCTIONAL
UNDER FIXED CONFORMAL CLASS

ERNST KUWERT & REINER SCHATZLE

Abstract

We prove the existence of a smooth minimizer of the Willmore
energy in the class of conformal immersions of a given closed Rie-
mann surface into IR",n = 3,4, if there is one conformal immer-
sion with Willmore energy smaller than a certain bound W, ,
depending on codimension and genus p of the Riemann surface.
For tori in codimension 1, we know Ws 1 = 87 .

1. Introduction

For an immersed closed surface f: Y — IR"™ the Willmore functional
is defined by

Wi =5 [ AP du,
b

where H denotes the mean curvature vector of f,9 = f*geue the pull-
back metric and p4 the induced area measure on X . For orientable
3. of genus p , the GauBl equations and the Gauf}-Bonnet theorem give
rise to equivalent expressions

(10) W) =5 [ 1AP dsg+ 200 =) = 5 [ 17 dug + 4x(1 - p)
> >

where A denotes the second fundamental form, A% = A — % g® H its
tracefree part.

We always have W(f) > 4r with equality only for round spheres,
see [Wil82] in codimension one that is n =3 . On the other hand, if
W(f) < 8 then f is an embedding by an inequality of Li and Yau
in [LY82].
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Critical points of W are called Willmore surfaces or more precisely
Willmore immersions. They satisfy the Euler-Lagrange equation which
is the fourth order, quasilinear geometric equation

AMH+QANH =0

where the Laplacian of the normal bundle along f is used and Q(AY)
acts linearly on normal vectors along f by

Q(A%)¢ == g% g7 AL (AD, 6).

The Willmore functional is scale invariant and moreover invariant under
the full Mdbius group of IR™ . As the Mobius group is non-compact,
this invariance causes difficulties in the construction of minimizers by
the direct method.

In [KuSch11], we investigated the relation of the pull-back metric
g to constant curvature metrics on > after dividing out the Md&bius
group. More precisely, we proved in [KuSch11] Theorem 4.1 that for
immersions f: 3 — IR",n =3,4, X closed, orientable and of genus
p=p(X) > 1 satisfying W(f) < Wi — 9 for some § > 0, where

W?’vp = min (87T’47T+Zk( gk _47T) ‘ kak :p70 Spk <p)7
(1.2) Wy, = min (8, B3 + 87/3,47 + >, (B4, — 47) |
> kP =00 < pp <p),

and
(1.3)
By == nf{W(f) | f: %X — IR" immersion, p(¥) = p, ¥ orientable },

there exists a Mobius transformation ¢ of the ambient space IR"
such that the pull-back metric § = (® o f)*geye differs from a constant
curvature metric e~2“§ by a bounded conformal factor, more precisely

[ llpoe oy, | V25, < Cp, ).

In this paper, we consider conformal immersions f : ¥ — IR"™ of a fixed
closed Riemann surface Y and prove existence of smooth minimizers
in this conformal class under the above energy assumptions.

Theorem 7.3 Let ¥ be a closed Riemann surface of genus p > 1
with smooth conformal metric gy with

W(E,go,n) :=

inf{W(f) | f: %X — IR" smooth immersion conformal to go } < Whp,
where W, , is defined in (1.2) and n = 3,4 .



MINIMIZERS OF THE WILLMORE FUNCTIONAL 473

Then there exists a smooth conformal immersion f : X — IR"
which minimizes the Willmore energy in the set of all smooth conformal
immersions. Moreover [ satisfies the Euler-Lagrange equation

(1.4) AGH + QAYH = g% g A gy on 3,
where q s a smooth transverse traceless symmetric 2-covariant tensor

with respect to the Riemann surface X , that is with respect to g =
[*Geue -

For the proof, we select by the compactness theorem [KuSch11]
Theorem 4.1 a minimizing sequence of smooth immersions f,, : ¥ —
IR™ conformal to gg , that is

W(fm) = W(E, g0,1),
converging
fm — f weakly in W2%(%, IR"™),
where the limit f defines a uniformly positive definite pull-back metric

g = f*geuc = e2u90
with u € L>®(X) . We call such f a W?2—immersion uniformly con-
formal to gq .
For such f we can define the Willmore functional and obtain by
lower semicontinuity

W) < Tim W(fm) = WIS, go,1).

Now there are two questions on f :

e Is f a minimizer in the larger class of uniformly conformal
W22 _immersions?

e Is f smooth?
For the first question we can approximate uniformly conformal f by
[SU83] strongly in W22 by smooth immersions f,, , but these f,
are in general not conformal to gy anymore. To this end, we develop a
correction in conformal class and get smooth conformal immersions f,,
converging strongly in W22 to f . We obtain that the infimum over
smooth conformal immersions and over uniformly conformal immersions
coincide.

Theorem 5.1 For a closed Riemann surface X of genus p > 1
with smooth conformal metric go

W(E, go,n) =
=inf{W(f) | f: X — IR" smooth immersion conformal to gy }
= inf{W(f) | f: ¥ — IR" is a W*? — immersion uniformly
conformal to go }.
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Smoothness of f is obtained by the usual whole filling procedure as
in the proof of the existence of minimizers for fixed genus in [Sim93].
Here again we need the correction in conformal class in an essential way.
Our method applies to prove smoothness of any uniformly conformal
W22 _minimizer.

Theorem 7.4 Let Y be a closed Riemann surface of genus p > 1
with smooth conformal metric gg and f : X — IR™ be a uniformly
conformal W22 —immersion, that is ¢ = [*Jeue = €>%go with u €
L>(X) , which minimizes the Willmore energy in the set of all smooth
conformal immersions

W(f) = W(E7g(]7 n)7
then f is smooth and satisfies the Euler-Lagrange equation

Agﬁ +Q(AYH = gikglequkl on X,

1,

where q s a smooth transverse traceless symmetric 2-covariant tensor
with respect to g .

Finally to explain the correction in conformal class, we recall by
Poincaré’s theorem, see [Tr], that any smooth metric g on ¥ is confor-
mal to a unique smooth unit volume constant curvature metric Gpoin =
e 2"g . Denoting by Met the set of all smooth metrics on X , by
Metpoin the set of all smooth unit volume constant curvature metrics

on ¥ ,and by D:={¥ =5 %} the set of all smooth diffeomorphisms
of ¥, we see that Metpsin/D is the moduli space of all conformal
structures on ¥ . Actually to deal with a space of better analytical
properties, we consider Dy :={¢ € D | ¢ ~idy } and the Teichmiiller
space T := Metpsin/Do . This is a smooth open manifold of dimension
2 forp = 1 and of dimension 6p — 6 for p > 2 and the projection
m: Met — T is smooth, see [FiTr84] and [Tr]. We define in §3 the
first variation in Teichmiiller space of an immersion f: ¥ — IR" and
a variation V € C*(X,IR") by

d *
0= %ﬂ-((f + tV) geuc)‘tzo = (57Tf-v
and consider the subspace
Vi = 0np.C*(E,IR") C Tﬂ(f*geuc)T.

In case of Vy = T;T , which we call f of full rank in Teichmiiller
space, the correction in Teichmiiller space is easily achieved by implicit
function theorem.

A severe problem arises in the degenerate case, when f is not of
full rank in Teichmiiller space. In this case, we prove in Proposition 4.1
that

dim Vy =dim 7 —1,
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9" Aqr =0
for some non-zero smooth transverse traceless symmetric 2-covariant
tensor ¢ with respect to g, and f isisothermic locally around all but
finitely many points of X , that is around all but finitely many points
of ¥ there exist local conformal principal curvature coordinates. Then
by implicit function theorem, we can do the correction in Vy . In the
one dimensional orthogonal complement spanned by some e L V; , we
do the correction with the second variation by monotonicity. To deal
with the positive and the negative part along span{e} , we need two
variations Vi satisfying
:|:<527Tf(V:|:), ey >0, oy Vyi=0,

whoose existence is established in a long computation in Proposition
4.2.

Recently, Kuwert and Li and independently Riviere have extended
the existence of non-smooth conformally constrained minimizers in any
codimension, where branch points may occur if W(X, gg,n) > 87 , see
[KuLil0] and [Ri10]. In [Ril0] the obtained conformally constrained
minimizers are smooth and satisfy the Euler-Lagrange equation (1.4)
in the full rank case, whereas in the degenerate case these are proved
to be isothermic, but the smoothness and the verification of (1.4) as in
Theorem 7.4 are left open. Everything that is done in this article for
W(X, go,n) < Wy for n = 3,4, can be done with [Sch12] Theorem
4.1 for W(X, go,n) < 8r for any n .

Acknowledgement. The main ideas of this paper came out during
a stay of both authors at the Centro Ennio De Giorgi in Pisa. Both
authors thank very much the Centro Ennio De Giorgi in Pisa for the
hospitality and for providing a fruitful scientific atmosphere.

2. Direct method

Let X be a closed, orientable surface of genus p > 1 with smooth
metric ¢ satisfying
WX, g,n) =
inf{W(f) | f: X — IR" smooth immersion conformal to g } < W, ,,

as in the situation of Theorem 7.3 where W, ,, is defined in (1.2) above
and n = 3,4 . To get a minimizer, we consider a minimizing sequence
of immersions f,, : ¥ — IR™ conformal to ¢ in the sense

W(fm) = W(E,g,n).

After applying suitable M6bius transformations according to [KuSch11]
Theorem 4.1 we will be able to estimate f,, in W2?(X) and WhH*>(%) ,
see below, and after passing to a subsequence, we get a limit f €
W22(2) N Whe(X) which is an immersion in a weak sense, see (2.6)
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below. To prove that f is smooth, which implies that it is a minimizer,
and that f satisfies the Euler-Lagrange equation in Theorem 7.3 we
will consider variations, say of the form f+V . In general, these are not
conformal to ¢ anymore, and we want to correct it by f+ V + AV,

for suitable selected variations V, . Now even these are not confor-
mal to ¢ since the set of conformal metrics is quite small in the set
of all metrics. To increase the set of admissible pull-back metrics, we
observe that it suffices for (f +V + A, V) 0 ¢ being conformal to g¢

for some diffeomorphism ¢ of ¥ . In other words, the pullback metric
(f +V 4+ A\V,.)*geue need not be conformal to ¢ , but has to coincide
only in the modul space. Actually, we will consider the Teichmiiller
space, which is coarser than the modul space, but is instead a smooth
open manifold, and the bundle projection m: Met — T of the sets of
metrics Met into the Teichmiiller space 7T is smooth, see [FiTr84],
[Tr]. Clearly W(X,g,n) depends only on the conformal structure de-
fined by ¢, in particular it descends to Teichmiiller space and leads to
the following definition.

Definition 2.1. We define M,,,,: T — [0,00] for p > 1,n > 3, by
selecting a closed, orientable surface ¥ of genus p and

My, p(7) = inf{W(f) | f : ¥ — IR" smooth immersion, 7(f*geyc) = 7 }.
We see
Mo p(7(g)) = W(E, g,n).

Next, inf, M, ,(7) = 8, for the infimum under fixed genus defined in
(1.3), and, as the minimum is attained and 47 < 3} < 87 , see [Sim93]
and [BaKu03],

A < ITIél7I_1 M p(T) = B, < 8.

In the following proposition, we consider a slightly more general situa-
tion than above.

Proposition 2.2. Let f,, : ¥ — IR",n = 3,4, be smooth immer-
stons of a closed, orientable surface X of genus p > 1 satisfying

(2.1) W(fm) < Wpp—96
and
(2.2) w(fo Jeuc) = 70 in T.

Then replacing f, by @pmo finodm, for suitable Mébius transformations
®,, and diffeomorphisms ¢, of X homotopic to the identity, we get

(2.3) limsup || fm [[w2.2(m)< o0,

m—o0
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and £ Geue = 62“7”gpom7m for some unit volume constant curvature
metrics Gpoin,m With

(2.4) Pt NIz e), | Viim | 22(2.gp0imm) < 00
Gpoin,m — Gpoin  SMO0thlY

with w(gpoin) = To - After passing to a subsequence

fm — [ weakly in W22(X), weakly* in WH> (%),

(2.5)

Upy, — u weakly in WH2(X), weakly* in L®(%),
and
(2'6) f*geuc = ezugpoin

where (f*geuc)(X,Y) := (Ox f,0v f) for X, Y € TY .

Proof. Clearly, replacing fi, by ®,, 0 fm © ¢y, as above does neither
change the Willmore energy nor the projection into the Teichmiiller
space.

By [KuSch11] Theorem 4.1 after applying suitable M&bius transfor-
mations, the pull-back metric ¢, := f;,geuc is conformal to a unique
constant curvature metric e~ 2%mg,, =: Gpoin,m of unit volume with

0scsUm, || Vm || L2(x,9,,)< C(p:6)-

Combining the Mobius transformations with suitable homotheties, we
may further assume that f,, has unit volume. This yields

1= / dlugm = /e2um d/’[/gpoin,m7

% 2

and, as  gpoin,m has unit volume as well, we conclude that wu,, has a
zero on Y , hence

| wm oo () | Vim 222,990 < C(P:6)

* — _ L2u
and7 as fmgeuc =0m =¢€ mgpoin,m )

'V i 2o (8.gp0im.m) < C(P56)-

Next
AgPoin,m fm = e2um Agmfm = e2umem
and
2 2 m B 2,2 m
H Agpom,mfm ”Lz(Evgpoin,WL)S er e /’Hfm’ e™ dugpoin,m
b
(2.7) = 4¢? maxumN(f) < C(p,9).

To get further estimates, we employ the convergence in Teichmdiller
space (2.2). We consider a slice § of unit volume constant curvature
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metrics for 79 € T , see [FiTr84], [Tr]. There exist unique Gpoin,m €
S with 7(Jpoin,m) = 7™(gm) — 70 for m large enough, hence
gb:n,gpoin,m = Ypoin,m
for suitable diffeomorphisms ¢,, of ¥ homotopic to the identity. Re-
placing fm, by fm 0 &m , We get gpoin,m = Jpoin.m € S and
Gpoin,m — Gpoin SmOOthly

with gpoin € S, T(gpoin) = 70 . Then translating f,, suitably, we obtain

| frn Lo (=)< Clp, 9).
Moreover standard elliptic theory, see [GT] Theorem 8.8, implies by
(2.7),
| fin lw22(2)< C(P: 6, Gpoin)

for m large enough.

Selecting a subsequence, we get f,, — f weakly in W22(X), f €
Whe(¥), Df,, — Df pointwise almost everywhere, u,, — u weakly in
WhH2(%), pointwise almost everywhere, and w € L*(X) . Putting

9= ["Geuc , that is g(X,Y) := (Ox f,0y f) , we see
g(X, Y) A <6Xfma anm> = gm(XyY)
= e2umgpoin,m(—X7 Y) — e2ugpoin(X7 Y)
for X,Y € TY and pointwise almost everywhere on 3., hence
f*geuc =g= e2ugpoin'
q.e.d.
We call amapping f € WH(S, IR™) with g := f*geue = €**Gpoin, u €
L>®(X), gpoin a smooth unit volume constant curvature metric on ¥ as
in (2.6) a lipschitz immersion uniformly conformal to gpein or in short a
uniformly conformal lipschitz immersion. If further f € W22(%, IR") ,
we call f a W22 _immersion uniformly conformal to gpein or a
uniformly conformal W??2—immersion. In this case, we see g,u €
WH2(X) |, hence we can define weak Christoffel symbols T' € L? in

local charts, a weak second fundamental form A and a weak Riemann
tensor R via the equations of Weingarten and Gauf3

Oif = TH0uf + Aij,
Rijrr = (Aix, Aji) — (Aij, Awr).
Of course this defines ﬁ, AY K for f as well. Moreover we define the
tangential and normal projections for V € W12(X, IR™) N L (X, IR™)
C7Tf.V = gij <8Zf, V>8jf,

(28) il 1,2 n oo n
TFV =V — w5V € WR(S, IRY) 0 LP(S, RY).
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Mollifing f asin [SU83] §4 Proposition, we get smooth f,, : ¥ — IR"
with

(2.9) fm — [ strongly in W2’2(E),weakly* in Wl,OO(E)
and, as Df € W12 | that locally uniformly

sup  d(Dfm(x),Df(y)) — 0.
lz—y|<C/m

This implies for that the pull-backs are uniformly bounded from below
and above

(2.10) cog < f:;;,geuc < Cg

for some 0 < ¢y < C < oo and m large, in particular f,, are smooth
immersions.

3. The full rank case

For a smooth immersion f : 3 — IR" of a closed, orientable surface
Yofgenusp > 1 and V € C®(X,IR") , we see that the variations
f+tV are still immersions for small ¢. We put ¢; := (f+tV)*geuc, g =
9o = [*Gewe and define

(31) (57va = dﬂg.atgt|t:0.
The elements of
Vi = 0mp.C™(3,IR") C TrygT

can be considered as the infinitesimal variations of ¢ in Teichmiiller
space obtained by ambient variations of f . We call f of full rank
in Teichmiiller space, if dimV; = dim 7 . In this case, the necessary
corrections in Teichmiiller space mentioned in §2 can easily be achieved
by the inverse function theorem, as we will see in this section.

Writing g = e%* 9poin for some unit volume constant curvature metric
Gpoin by Poincaré’s theorem, see [Tr] Theorem 1.3.7, we see 7(g:) =
m(e=2%g;) , hence for an orthonormal basis ¢"(gpoin),” = 1,...,dim T,
of transvere traceless tensors in Sg T(gpom) with respect to  gpoin

(32) 57TfV = dﬂ'g.atgt‘tzo = dﬂgpom.e_%@tgtﬁzo
dim T
= Z <€_2u8tgt |t:0'qr (gPOin)>gpoin dﬂ-gpoin 'qr (-gPOin) .
r=1

Calculating in local charts

(3.3) Itij = Gij + t{0; f, ajV> + t(ajf, V) + t2<aiV, 8jV>,
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we get

—2u atgt ‘t:()? qr (gPOin)>gpoin

ik gl —2u r
gpoingpoine 8tgt72]|t:0qk‘l(gp0@n) dlugpoin

Il
—

|
oM

/ 3D, £, 0V ) s (Gpoin) ity

»
= =2 [ g% VIV V)G (Gpoin) ditg

=2 [ g*g0:f, V)Viah(gpoin) dirg

= =2 [ g" gAY, V)i (Gpoin) dpig,

M\ 1 M\

as q € ST (gpoin) = S37T(g) is divergence- and tracefree with respect
to g . Therefore

dim T

57er = Z 2/ ik jl<a f7 8 V>qkl(gp02”) d:ug dﬂ-gpozn (QPOin)
r=1 5
dim T
(3.4) / ik ]l A?], V>qzl(gpoin) d:ug dﬂ-gpoin'qr(ngin)7
r=1 5

and 07y and V; are well defined for uniformly conformal lipschitz im-
mersions f and V € Wh2(%) .
First, we select variations whoose image via d7; form a basis of Vy .

Proposition 3.1. For a uniformly conformal lipschitz immersion f

and finitely many points xo,...,zN € X, there exist Vi,...,Vaimy, €
Ce (X —{zo,...,zn}, IR"™) such that
(3.5) V¢ = span {6m;.Vs | s=1,...,dim Vy }.

Proof. Clearly o7y : C°°(%,IR") — Try,,., T is linear. For suitable
W C C*®(3,IR") , we obtain a direct sum decomposition
C>®(X,IR") = ker dmy @ W
and see that o0m¢|W — im 07y is bijective, hence dim W = dim Vs
and a basis V1,..., Vaimy, of W satisfies (3.5).

Next we choose cutoff functions ¢, € C§°(UN_B,(zx)) such that 0 <
9o <1,y =10n Uy, Byja(xr) and [V, < Co~! , hence 1— ¢, €
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Ce(E—{z0,..-,an}),1—p, = L on T—{xo,...,2n}, [ [Volg dig <
Co— 0for o — 0. Clearly ¢, Vs € C3°(X — {zo,...,2zn},R") and
by (3.4)

O ¢ (pmVs) = 6ms. Vi,

hence Vi, ..., omVaimy, satisfies for large m all conclusions of the
proposition. q.e.d.

We continue with a convergence criterion for the first variation.

Proposition 3.2. Let f: X — IR" be a uniformly conformal lips-
chitz immersion approximated by smooth immersions f,, with pull-back

. . rx _ L2u _opx _ J2u
metrics g = f*Geuc = € Gpoins Im = fimGeuc = € Gpoin,, for some
smooth unit volume constant curvature metrics 9poin s Ipoin,m and sat-

1sfying
fm — [ weakly in W22(X), weakly* in WH* (%),
(3.6) A7 gpoin < gm < Agpoin,
| um (L)< A
for some A < oo . Then for any W € L*(%, IR")
T W — . W

as m — o0 .

Proof. By (3.6)

m = fmYeuc = [ Geue = g weakly in W1’2(E),
weakly™ in L>®(X),
(3.7) F’;m,ij — I‘ZU weakly in L2,
Afmyij’A%n,ij — Ay, A(}’ij weakly in L2,
% %
hence by [FiTr84], [Tr],

. . weakly in W12(X),
q (gpoin,m) —q (gpoin
(3.8) weakly™ in L>*°(X),
dﬂ—gpoin,m _q"‘ (gpom,m) — dﬂgpom 'qT (gpoin)-

Then by (3.4)
omy, W

dim T
= Z _2/gizlig¥rlL<A0m,ijaW>Ql:l(gpoin,m) dug,, dﬂ-gpoin,m'qr(gpoin,m)
r=1
b
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— 57Tf.W
q.e.d.

In the full rank case, the necessary corrections in Teichmiiller space
mentioned in §2 are achieved in the following lemma by the inverse
function theorem.

Lemma 3.3. Let f: X — IR" be a uniformly conformal lipschitz
immersion approzimated by smooth immersions fn, satisfying (2.2) -
(2.6).

If f s of full rank in Teichmiiller space, then for arbitrary xg €
Y, neighbourhood U,(z9) C X of g and A < oo , there exists a neigh-
bourhood U(xo) C Us(zo) of xo , variations Vi,...,VaimT € C°(X —
U(xo), IR") , satisfying (3.5), and § > 0,C < co,mg € IN such that
for any V € C§°(U(xp), IR") with f,, +V a smooth immersion for
some m>mg,and V=0 or

A" gpoin < (fmn + V) Geue < Agpoin,

(3.9) [V llwezs)< A,

I 1Apv P dig, v < o(n),

U (z0)

where go(n) is as in Lemma A.1, and any T €T with
(3.10) dr(1,19) <6,
there exists A € IRY™ 7T satisfying

T((fn +V + AN Ve) Geue) = 7

and
A < Car (7((fmn + V) Geue): 7)-

Proof. By (2.3), (2.4) and A large enough, we may assume

(3.11) It D fon llwr2(2ynzee(2) < A

A_lgpoin < f;zgeuc < Agpoina

in particular

(312) /|Afm|2 dlu’fm é O(EngOimA)'
P

Putting v, := |V§pom fm gpm_n Hgpoin » We se€ V() < C(A, gpoin) and
for a subsequence v, — v weakly* in C§(X)* . Clearly v(X) < oo,
and there are at most finitely many yi,...,yy € X with v({y;}) > 1,
where we choose 1 > 0 below.

As f is of full rank, we can select Vi,...,Vaim7T € C{°(2 —

{z0,y1,...,yn}, R") with span{déns.V;} =T, . T by Proposition 3.1.

poin
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We choose a neighbourhood Up(zg) € U.(xo) of z9 with a chart
w0 : Up(x0) — B2(0), po(x0) =0,
supp V., NUg(xg) =0 forr=1,...,dimT,

put xo € U,(20) = ¢y (B,(0)) for 0 < ¢ < 2 and choose 2 € U(xg) C
Uij2(wo) small enough, as we will see below.

Next for any x € UfizniTsupp V. , there exists a neighbourhood
Up(z) of z with a chart ¢, : Up(z) —= Ba(0), pu(z) = 0,Up(z) N
Up(zo) = 0,v(Up(z)) < &1 and in the coordinates of the chart ¢,

ik gl r s
(313) / nginQPOinngin’rsrgpoin7ijrgpoin7kl d’ugPOi”l S €1-
Uo(z)

Putting x € Uy(x) = ;1 (B,(0)) CC Up(z) for 0 < p < 2, we see that
there are finitely many x1,...,z5 € Uf}i:“iTsupp V- such that
Ufi:n}Tsupp V. C Ué\/leUl/g(a:k).

Then there exists mg € IN such that for m > mg

/ | gpomfm o Wgpoin < €1 fork=1,... M.
Ur(zk)

For V and m > mg as above, we put fm)\ = fm+V+ AV, . Clearly

supp (fm — finx) € UpLoUs o (k).

By (3.9), (3.11), (3.13), and |A| < A9 < 1/4 small enough independent
of mand V , f,, \ is asmooth immersion with

(3'14) (2A)_lgpoin < gm,)\ = ]F:;q,Ageuc < 2Agpo’in7
and if V #0 by (3.9) and the choice of Up(x) that
/ A, * dug,, , <eoln) fork=0.....M
U1(:vk)

for (A, gpoin)(e1+ o) < eo(n) . If V=0, wesee supp (fm— fin) C
URL, U1 j2(x) - Further by (3.12)

1
/|Kgm,)\| d/’Lgm,/\ S §/|A‘f7n,>\|2 d/’Lgm,/\
% )

1
5/\Afm dpg,, + 5 Z / ‘Afmykp dpg,,

k_ Uy ja(zk)
< C(%, gpoin, A) + (M + 1)eg(n).
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This verifies (A.3) and (A4) for f = fon,f = fm,)\,go = Gpoin and
different, but appropriate A . (A.2) follows from (2.4) and (3.12). Then
for the unit volume constant curvature metric gpoin,mx = e_%m’kgm, 2
conformal to g, » by Poincaré’s theorem, see [Tr] Theorem 1.3.7, we
get from Lemma A.1 that

(3.15) [ @mx [[oo(s)s | Viima 225,60 < C

with C < oo independent of m and V .

From (3.9), we have a W?22nN W5 —bound on fo , hence for fm,)\ .
On X —U(xg) , we get fm)\ = fm + AV, — f weakly in W22(% —
U(zp)) and weakly* in Wh°(X — U(zg)) for mg — oo,A\g — 0 by
(2.5). If V =0, then fm,)\ = fm + MV, — f weakly in W22(X%)
and weakly* in W1>°(2) for mg — 00, \g — 0 by (2.5). Hence letting
mo — 00, \g — 0,U(z9) — {x0} , we conclude
(3.16) fmx — f weakly in W2%(2), weakly™ in W1°(%),

in particular

B . ou weakly in W12(%),
Im A —7 [ Geue = € 9poin = 9
weakly™ in L>°(X).
Together with (3.14), this implies by [FiTr84], [Tr],
(3.17) T(Jm,\) = To-

We select a chart 1 : U(m(gpoin)) € T — RI™T  and put 7 :=
Yom, dm = dyodr, f)f = dVrg,oim-Vy - By (3.17) for mg large enough,
Ao and U(zg) small enough independent of V', we get m(gm r) € U(7o)
and define

P (A) = ﬁ-(gm,)\)'
This yields by (3.4), (3.14), (3.15), (3.16) and Proposition 3.2

DcI)m()\) = (57%fm’k-v;’)r:1,...,dim7' — (57%f"/r)r:1,...,dim7-
— A€ leimedimT.

As span{ém;.V;} = T, T = RY™7T | the matrix A is invertible.
Choosing myq large enough, Ao and U(xo) small enough, we obtain

I D@ (A) — A< 1/ A7),

hence by standard inverse function theorem for any ¢ € IRY™7 with
|€ — ®,,(0)] < Xo/(2 | A71||) there exists A € By,(0) with

Al <2 AT [E = 25 (0)]-
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As
a7 (7((fn+ V)" Geue), 7) < dr(w(Go), 70) +d(70,7) < d(m(Go), 70) +9

by (3.10), we see for ¢ small enough, mg large enough and U(xo)
small enough by (3.17) that there exists A € IRY™7 satisfying

ﬂ-((fm +V + )\T"/r)*geuc) = ﬂ'(gm,)\) =T,
A< Car (7((fm + V)" Gene): 7))

and the lemma is proved. q.e.d.

4. The degenerate case

In this section, we consider the degenerate case when the immersion
is not of full rank in Teichmiiller space. First we see that the image in
Teichmiiller space looses at most one dimension.

Proposition 4.1. For a uniformly conformal immersion f €
W22(%, IR™) we always have

(4.1) dim Vy > dim 7 — 1.
f is not of full rank in Teichmiiller space if and only if
(4.2) 9" " Aqu = 0

for some non-zero smooth transverse traceless symmetric 2-covariant
tensor q with respect to g = f*Geue -

In this case, f s isothermic locally around all but finitely many
points of X, that is around all but finitely many points of X there
exist local conformal principal curvature coordinates.

Proof. Let gpoin = e~ 2%g be the unit volume constant curvature
metric conformal to g = f*geye - For ¢ € Sg T(gpom) , we put Ay :
C*®(X,R") - IR

AV = —Z/Qikgﬂ(A?j,le dpug
5

and define the annihilator
Ann := {q € 57" (gpoin) | Ag =0 }.

AS dﬂ—gpoin’Sg‘T(ngin) — Tgpoin
elementary linear algebra

4.3 dim 7 =dim V¢ +dim Ann.
(4.3) f
Clearly,

T is bijective, we see by (3.4) and

()

(4.4) q € Ann <= gikgﬂAQijl =0,
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which already yields (4.2) Choosing a conformal chart with respect to
the smooth metric gpoin , We see g;; = 62”52-]- for some v € W12 N L>®
and A(l)l = —Agz,A(1)2 = A(2)17 q11 = —q22,G12 = 21 , as both A% and qc<
Sg T(gpom) are symmetric and tracefree with respect to g = e2ugpom .
This rewrites (4.4) into

(4.5) q € Ann <— A(flcm + A(1]2Q12 =0.

The correspondence between SQT T(gpom) and the holomorphic qua-
dratic differentials is exactly that in conformal coordinates

(4.6) h := ¢11 — ig12 is holomorphic.

Now if (4.1) were not true, there would be two linearly independent
q',¢*> € Ann by (4.3). Likewise the holomorphic functions h* :=
q'fl — z'qu are linearly independent over IR , in particular neither of
them vanishes identically, hence these vanish at most at finitely many
points, as ¥ is closed. Then h'/h? is meromorphic and moreover not a
real constant. This implies that I'm(h'/h?) does not vanish identically,
hence vanishes at most at finitely many points. Outside these finitely
many points, we calculate

1 1
Im(ht/h%) = |2 2Im(hh2) = |h2|~2 det T 12 7
2 2
a11 412
hence
a1 a
det ;1 ;2 vanishes at most at finitely many points
a1 412
and by (4.5)

Approximating f by smooth immersions as in (2.10), we get
V.H = 29“V¢Agk =0 weakly,

where V = D+ denot_(?s the normal connection in the normal bundle
along f . Therefore |H| is constant and

OL.H = gY <8kﬁ,8jf>aif = —gij(ﬁ, Aji)0if  weakly.

Using Ay ..f = e®Agf = e2“H and u € W2 N L™ | we conclude
successively that f € C°° . Then (4.7) implies that f parametrizes a
round sphere or a plane, contradicting p > 1, and (4.1) is proved.
Next if f is not of full rank in Teichmiiller space, there exits
qg € Ann — {0} # 0 by (4.3), and the holomorphic function h in
(4.6) vanishes at most at finitely many points. In a neighbourhood
of a point where h does not vanish, there is a holomorphic function
w with (w')? = ih . Then w has a local inverse z and using w as
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new local conformal coordinates, h transforms into (hoz)(z')? =

hence ¢11 =0,¢q12 =1 in w—coordinates. By (4.5)
A1p =0,

_Z"

and w are local conformal principal curvature coordinates. q.e.d.

Since we loose at most one dimension in the degenerate case, we
will do the necessary corrections in Teichmiiller space mentioned in §2
by investigating the second variation in Teichmiiller space. To be more
precise, for a smooth immersion f: X — IR™ with pull-back metric g =
f*geuc conformal to a unit volume constant curvature metric gpoin =
e 2 f*g.u. by Poincaré’s theorem, see [Tr] Theorem 1.3.7, we select
a chart ¢ @ U(m(gpoin)) € T — RI™T | put 7 = @ ow,f)f =
dYrg,oin -V > and define the second variation in Teichmiiller space of f
with respect to the chart 1 by

dN\2, .

) A+ V) gese) o

If f is not of full rank in Teichmiiller space, we know by the previous
Proposition 4.1 that dim Vy =dim 7 — 1, and we do the corrections

(4.8) % (V) = (

in the remaining direction e L f)f, le] =1, which is unique up to the
sign, by variations V4 satisfying

i(éQﬁf(Vi), e) > 0.

We construct VL locally around an appropriate xg € ¥ in a chart

¢ : U(zg) = B1(0) of conformal principal curvature coordinates that
is

(4'9) g = ezvgeua A12 = 07

which exists by Proposition 4.1, and moreover assuming that xg is not
umbilical that is

(4.10) A%(z0) # 0,
as Y is not a sphere. We choose some unit normal Ay at f in f(0) ,
some 7 € C5°(B1(0)) and put 7,(y) :=n(0~'y) ,

V.= T]Q./\/o.

For o small, the support of V iscloseto 0 and V is nearly normal.

Putting f; := f + V.9t := f{ Geuc: 9 = go » we see @(gr) = 7(e”*gy)
and calculate

. d\2., o,
527Tf(V) = (a) (e 2 9t)|t=0

= dﬁ—gpoin’(e_2u(attgt)|t:0) + d2ﬁ-gpoin(e_2u(atgt)|t:07 e_2u(atgt)‘t:0)’

We will see that the second term, which is quadratic in ¢ , is much
smaller than the first one for g small. To calculate the effect of the first
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term on e, we consider the unique ¢. € 537 (g) with dfg,,,, -Ge(gpoin) =
e and see by (3.3) that

<dﬁ-gpoin : (6_2u (8ttgt) ‘t:0)7 €>

S
= /ggfn-nggmme 24 (Ort91,i5) jt=0Ge ki Agpor
5
= 2 / 9 POV, 03V ) e dusg-
>

Now ¢, satisfies (4.2), hence by (4.9) and (4.10) that ¢e11 = —ge22 =
0,4e12 = ¢e21 =q € IR — {0} in B;(0) and

(3?75 (V), e) — 4qe~20(0) / d1ndan dL?  for o — 0.

B1(0)

Now it just requires to find appropriate n € C3°(B1(0)) to achieve
a positive and a negative sign. Our actual choice is given after (4.26)
below.

In the following long computation, we make the above considerations
work. Firstly we show that the second variation in Teichmiiller space
is well defined for uniformly conformal W??2—immersions f and V &
WH2(3) . Then we estimate rigorously the lower order approximations
which were neglected above.

We proceed for smooth f and V' by decomposing

(4'11) 6_2u(atgt)\t:0 = Opoin + ﬁXgpoin +q,

with o € C®(%), X € X(X),q € S37(gpoin) and continue by recalling
{Jgpoin + EXgpoin} = ker dﬁ-gpoin with

52ﬁf(V) = dﬁgpom-(6_2u(5tt9t)|t:o)
+d2ﬁ-gpom (ngoin + ﬁXgpoin + q, 0 Gpoin + ﬁXgpoin + Q)
= dﬁ-gpoin‘(e_2u(attgt)|t:0) + d2ﬁ-gpoin(q7 q)
+d2ﬁ-gpom (ngoin + ﬁXgpoiny O poin + ﬁXgpoin + 2Q)

= dlg,,i,- <e_2u(attgt)|t:0 — LxLX Gpoin

—20Lx Gpoin — 209 — 2£Xq> + d2frgmm(q, q).
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For an orthonormal basis ¢"(gpoin),” = 1,...,dim 7T, of transverse
traceless tensors in Sg T(gpom) with respect to gpoin , We obtain

dim T
527%f(v) = Z o dftg, -0 (Gpoin)
r=1
@12 T
+ Z /BT’/BS d27¢rgpom(qr(gpoin)7qs(gpoin))a
r,s=1
where
. il _
Qr = / g;'ngﬁ,om <€ 2 (8ttgt)\t:0 — Lx L x Gpoin
by
— 20LX Gpoin — 20q — 2»CXQ> iqugl (gpoin) d:“gpomv
ik il
(413) BT = /g]Z)OZTLgIJ)ozan]q]:‘l(QPOZn) dugpoin'
b
Since

L x L X Gpoin,ij
= ggé?n (vaoﬁXgpoin,ij + Vi)(mﬁXgpoin,jo + vamﬁXgpoin,oi>a

we get integrating by parts

-
ap = / g;,’zmgﬁ,om <€ 2u(8ttgt)\t:0 — 20 L x Gpoin
>

_ 2Uq - 2£XQ) Z‘]qu (gPOin) d/’[/gpoin

. i
(414) + /ggl)lf)ing;;oingx)?n <voXm£Xgpoin,ij - ViAXVmﬁX.g;z)oin,jo
by

- vamﬁXgpoin,oi> qzz (gpoin) d,ugpom

ik jl
+ /g;)ozng;;mng;?)?nXmEXgpozn,zyVOQIT;I (gpoln) d/’Lgpoin'
2

For a uniformly conformal immersion f € W?22(X, IR") and V ¢
W172(271Rn) , We see g € Wl,2(2)’u € W172(E) N LOO(E)v (8tgt)|t:0 €
L2(%), and (8ugt)ji=0 € L'(X) by (3.3). Then we get a decomposition
asin (4.11) with o € L?(%), X € X1(%),q € STT(X) C S5(%) . Observ-
ing that ¢"(gpoin) € S37(X) C S2(X) , we conclude that §27; is well
defined for uniformly conformal immersions f € W22(%,R") and V €
WH2(%, IR™) by (4.12), (4.13) and (4.14).
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Proposition 4.2. For a wuniformly conformal immersion f €
W22(3, IR™) , which is not of full rank in Teichmiiller space, and finitely
many points xi,...,xN € X, there exist Vi,...,Vaim7-1, Ve € C5°(X—
{z1,...,xn},IR™) such that

(4.15) Vi = span {67;.Vy | s=1,...,dim T —1}
and for some e L Vy,le| =1,

(4.16) i<52ﬁf(vi), e) >0, orp.Vy=0.

Proof. By Proposition 4.1, there exists zg € ¥ — {x1,...,xy} such
that f is isothermic around =z . Moreover, since Y is not a sphere,
hence A° does not vanish almost everywhere with respect to [y , aS
we have seen in the argument after (4.7) in Proposition 4.1, we may
assume that

(4.17) zo € supp |A°* .

By Proposition 3.1, there exist Vi,..., Viim7-1 € C°(X—{x0, ..., 2N},
IR™) which satisfy (4.15). Next we select a chart ¢ : U(zg) — B1(0)
of conformal principal curvature coordinates that is

(4.18) g = ezvgeum A12 = 07

in local coordinates of ¢ and where v € W12(B1(0)) N L®(B4(0)) .
Moreover, we choose U(zg) so small that U(zo)Nsupp Vi =0 for s =
1,...,dim 7 — 1, and U(zg) N {z1,...,2n} = 0 . For any Vy €
Wh2(2, IR™) N L*°(X) with supp Vo C U(zg) , there exists a unique
v e RI™T=1 guch that for V :=Vp —~,V, € Wh2(3) IR™), supp V C

E—{xl,...,xN}

(4.19) 5.V =0.
By (3.4)
(420) ”Y‘ < C’(Sﬁ'f‘/()‘ <C H AO HLZ(suppVo,g) ” Vo HL‘X’(U(mo))a

where C' does not depend on V; . By (3.2), we get for the decomposi-
tion in (4.11) that ¢ = 0. We select the orthonormal basis ¢"(gpoin ), ™ =
1,...,dim 7T, of SQT T(gpom) with respect to gpein , in such a way that
dfrgpom.qr(gpom) € Vyforr=2,...,dim 7, and <dﬁgpom.q1(gpom), e) >
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0. Putting
I(V;

/gpozngpom 2u(8ttgt)\t=0 - 2U£Xgp0in) Z.quil (gpoin) d/’[/gpoin
b

(4 21) + /.gpozngpmngpozn (V X ‘CX.gpozn ij ViXmEXgpoin,jo
Yy

- Vj XmﬁXgpoin,oi) QIil (gpoin) d:u'gpom

+ / gpomgpomgpomX L x gpoin, ZJVqul(.gPOZn) dﬂgpom
by
we obtain from (4.12), (4.13) and (4.14)

(52ﬁf(V),e> = <dﬁgpoin-q1(9poin)’e> I(Vp).

As I(Vom) — I(V) for Vom — Vo in WH2(S, IR™) | it suffices to find
Vo respectively V € W12(X) such that

(4.22) +1(Vp) > 0.

Recalling o7y W € 1>f 1 efor any W € C°(3,IR") , we see in the
same way by (3.4) that

0= (57%fVV, €> =-2 / i jl<A?y W>QI£l (QPOin) dlu’g <dﬂ-gpoin'q1 (gpoin), €>,
by

hence, as (dftg,,.-a* (gpoin),€) > 0 and W € C(%,IR") is arbi-

trary, g’kg]lA qkl(gpom) =0 . We get by (4.18) that Aolqll(gpom) =

0 in B1(0) = U(a:o) and by (4.17), as g1 (9poin) — iqi9(gpoin) is holo-

morphic,
q%l(gpoin) = —Q%Q(onm) =0,
qis =: ¢* € IR — {0}

in local coordinates of ¢ .
Next we consider V[ to be normal at f and calculate by (3.3) that

(Orgt,ij) =0 = (0if, 0;V) + (0; f,diV')
hence by (4.20)
H (atgt)hf =0 ||L2 < 2 H A ||L2(suppVo,g H Vo ||L°°(E +C|’7|
<C H A HLZ(suppVo,g)” Vo HL‘X’(E)
As above we can select o € L*(X), X € X1(X) in (4.11) such that

(4.23) in Bl(O) = U($0)

H o ”LQ(E)a ” X HleZ(Z)S C ” A ”Lz(supp\/o,g)H Vo HLOO(E)a
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where C' does not depend on V; . We get from (4.21)

L
‘I (Vo) — / ToinTaoin® - (Oetgt.i7)t=0 Ga(Gpoin) Uigpoin
(4.24) J
< C ” A ”%z(supp\/g,g)u Vo H%W(E)’

where C' does not depend on Vj .
We continue with (3.3) and get, as supp Vo N supp Vs = () for s =
L., dim 7T—1,

(O grij) =0 = 200V, 0;V) = 2(0i Vo, 9; Vo) + 27v75(0; Vi, 05 Vs) -
As
‘/Q;ﬁingljyéme_%z%%@iw,ajVs>QIil(9poin) dﬂgpom
z

< C|’7|2 <C H A H%?(suppVo,g)H Vo H%OO(E)
and by (4.18)

. i _
/g;)lélngg)ol’ne 2“2(82‘/67 ajv()>qlil(gpom) d/’[/gpoin
%

= [ agte o) ac
B1(0)
where we identify U(zg) = B1(0) , we get from (4.24)

[1(vo) - / 4gLe=2 (04 Vh, DoV dLC2
(4.25) B1(0)

< Ol AN upprog | Vo (s
where C' does not depend on Vj .

Perturbing xy = 0in U(xzg) = B;(0) slightly, we may assume
that 0 is a Lebesgue point for Vf and v . We select a unit vec-
tor Ny € IR" normal at f in f(0) and define via normal projection
N = npNo € WH(Bi(0), IR") , see (2.8). Clearly, N(0) = A ,
and 0 is a Lebesgue point of N . For n € C§°(B1(0)) , we put
no(y) :=n(0"'y) and Vg := n,N' and calculate

/(alVo,ano)e_z” dc?

B1(0)
= / 8117982779|,/\/’|2e—2vd£2+ /(8177@)77@(/\/,52N>e_2”d£2
B1(0) B1(0)
i / 12N Npe™ AL + / N2 (N, DN Yo dL2,

B1(0) By (0)
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As || Vg 2,00 =l V1 |l 22(B, (0)) » We see

lim (D1 V, By Vi)e 2 dL?

0—0
B1(0)

= lim [ Oun(y)dan(y) NV (oy)[Pe ) dy
B1(0)

= ¢~ 20) / O1mdam dL2.

B1(0)

Since

| Vo llzeo )<l o oo (B, 0=l 1 | oo (B (0))
and

H A ”LQ(suppVO,g)_> 0 for 0 — 07

we get
(4.26) lim 7(, ') = 4g'e > / Ondam AL2.

0

B1(0)

Introducing new coordinates 1 := (y1 +v2)/V2, %2 := (—y1 +v2)/V2 ,
that is we rotate the coordinates by 45 degrees, and putting 7(g1,92) =
E(91)7(g2) with £, 7 € C3°(] —1/2,1/2[) , we see

/ Dy 1By AL = / &' / 72 - / g2 / 172,
B1(0)

Choosing 7 € C§°(] — 1/2, 1/2[) T ;é 0 and &(t) == 7(2t) , we get
JIEP=2[I"2[1Ef =[] a

[ oo ac =3 [ [17P >0

B1(0)

Exchanging ¢ and 7 , we produce a negative sign. Choosing ¢ small
enough and approximating Vj = n,N' smoothly, we obtain the desired
VieC(X —{x1,...,zn},IR") . q.e.d.

Next we extend the convergence criterion in Proposition 3.2 to the
second variation.

Proposition 4.3. Let f : ¥ — IR"™ be a uniformly conformal
W22 —immersion approzimated by smooth immersions fm with pull-

: _ _ .2 _ _ 2
back metrics g = [*Geue = € GpoinsIm = fmGeuc = € Gpoin,,, for
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some smooth unit volume constant curvature metrics 9poin s Gpoin,m and
satisfying

fm — [ weakly in W22(X), weakly* in W5H™ (%),
(427) A_lgpoin <gm < Agpoina

| um [[poe ()< A

for some A < oo . Then for any chart ¢ : U(m(gpoin)) €T — RI™T
7t 1= tpom, 7 = dipodm, 67 defined in (4.8) and any W € WL2(Z, IR"™)

(57%fm.W — 57%fVV, 627%,]“777, (W) — 52ﬁf(W)
as m — 0o .

Proof. By Proposition 3.2, we know already o7y, .W — d7;.W and
get further (3.7) and (3.8).

Next we select a slice S(gpoin) of unit volume constant curvature
metrics for m(gpoin) =: 70 € T around gpein, With 7 : S(gpoin) = U(10) ,
and  q" (Gpoin) € ST (Gpoin) for m(Gpoin) € U(10) , see [FiTr84], [Tr].

As 7(gpoin,m) = T(gm) = T(gpoin) € U(10) = S(gpoin) , there exist
for m large enough smooth diffeomorphisms ¢,, of ¥ homotopic to

the identity with &}, gpoin,m =: Gpoin,m € S(Gpoin) - As T(Gpoinm) =
7"'(g]uoin,m) - 7T(gm) — 7T(gpoin) and gpoin,m € S(gpoin) , We get

(4.28) Gpoin,m — Gpoin ~ Smoothly.

The Theorem of Ebin and Palais, see [FiTr84], [Tr|, imply by (3.7),
(4.27) and (4.28) that after appropriately modifying ¢,

(4.29) ¢, bt —idy  weakly in W22(X), weakly* in W1 (%),
in particular,
(4.30) | Do llwr2synzeesys | Do) llwrzesynpes) < C

with C independent of m and V .
For the second variations, we see by (3.3) and (4.27)

O((fm +tW) geuc)ij ji=0 = (Oi fm, O3 W) + (0; fim, O W)
= (0if, OiW) + (0; f, OiW) = Ou((f +tW ) Geuc)ij =0
weakly in W12(X). Following (4.11), we decompose
G0 ((firn + tW)* Geue) jt=0 = TmTpoin,m + L X, Fpoingm + Gm
with ¢, € ST T(gpom,m) and moreover recalling (4.30), we can achieve

| om w2y, | Xm w22y | @m o2 < C.
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For a subsequence, we get o, — o weakly in W1%(%), X,,, — X weakly
in W22(%),gm — ¢ strongly in C1(X) with ¢ € SIT(gpoin) and by
(4.29)

(4.31) o ((f + tW)*geuc)\tzo = 09poin + L X poin + q-
Observing from (3.3) that

(Ot Gt,ij)jt=0 = 2(0;W, ;W)
we get from (4.12), (4.13) and the equivariance of 7

dim T
527Tfm ): Z amvr dﬁgpoi'rL,m'qr(nginym)

dim T
+ Z Bm,rﬂm,s d2ﬁ'§pom,m(qr(gpoin,m)aqs(gpoin,m))a

r,s=1

where

Qmr 1= /gfﬁ,g% <aivvvajW>QI7;l(gpoin,m) d/‘gm
by

~ik ~jl -
o /gpom mgpom m (‘CXm‘CXmgpoin,m
b

+ 20_m£Xmgpoin,m> . ,QIZI (gpoin,m) d,ugpm-n’m
ij

/ngZn mgpozn m (20mqm + 2£qum> qk‘l (QPOZn m) dlugpozn m?
%

. ~ik ~7 5
ﬁm,r . / ngZTL mgpozn mqm 2] qk‘l (QPOZn m) dlu’gpoin,m N
%

By the above convergences in particular by (3.7), (3.8) and (4.28), we
obtain

= e 5= [ GOV, ) gpin) it
>

gpozngpozn (‘CX ‘CXngZ'I’L + ZU‘CXngZn) ZJ qzl (gpm,n) d/’Lgpo'Ln

M\ M\

gpomgpom (20’(] + 2£Xq> ijq;;l (QPOin) dugpoirﬂ

ik jl
5777,77“ — /87” = /g]Z)Oang)ozanJQZZ(gpozn) dlugpoin’
b
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We see from (4.28)
P50 Gpoinn) € Gpoinn)) — Py (4 Gpoin) 0 (Gpoin).
Observing (4.31), we get from (4.12), (4.13)
(4.32) &y (W) = 0%*p(W)  for any W € WH2(S, IR"),
and the proposition is proved. q.e.d.

Remark. The bound on the conformal factor wu,, in the above
proposition is implied by Proposition A.2, when we replace the weak
convergence of f,, — f in W22(X) by strong convergence.

Now we can extend the correction lemma 3.3 to the degenerate case.

Lemma 4.4. Let f:X — IR™ be a uniformly conformal W??—im-
mersion approximated by smooth immersions fp, satisfying (2.2) -

(2.6).

If f isnot of full rank in Teichmiiller space, then for arbitrary xg €
Y, neighbourhood U,(z9) C X of zg, and A < 0o , there exists a neigh-
bourhood U(xzg) C Ui(xo) of zg , variations Vi,...,Vigim7-1,Ve €

C (X — Ulxo), IR"™) , satisfying (4.15) and (4.16), and 6 > 0,C <
oo,mg € IN such that for any V € C§°(U(zo), IR") with fm +V a
smooth immersion for some m >mgy , and V =0 or

A_lgpoin < (fm + V)*geuc < Agpoin,
(4.33) [V lw2es)< A,

I Agpsv]? dpg,,4v < eo(n),
U (z0)

where eg(n) is as in Lemma A.1, and any 7 €T with

(4.34) dr(7,70) <6,

there exists A € lein“T_l,,tHE € IR , satisfying prpu—_ =0,
T((fm +V + XN Ve + 1 Va) Geue) = 7,

. 1/2
A lel < Cd (7 ((fin + V) geuc) ) -

Further for any Ao > 0, one can choose myg,d in such a way that for
m > mo ,

|V lw22s)< 9,
there exists A € RY"™T~1 i e IR, satisfying firfi— =0 ,

7T((fm +V 4+ 5\7"/7“ + ,a:l:v:l:)*geuc) =T,
‘5"7 ‘ﬂ:‘:’ S )\07
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and
,LL+,EL+ < 07,&'— = 07 Zf H+ 7é 07
p—pi— < 0,44 =0, if po #0.

Proof. By (2.3), (2.4) and A large enough, we may assume

(435) H Umanm HW1,2(2)0L00(2)§ A’

A_lgpoin < f;zgeuc < Agpoina

in particular

(436) /|Afm|2 dlu’fm é C(EngOimA)'
>
Putting v, := |V§pom fm gpom Hgpoin » WE €€ Um(£) < C(A, gpoin) and

for a subsequence v, — v weakly* in C§(X)* . Clearly v(X) < oo,
and there are at most finitely many yi,...,yy € X with v({y;}) > 1,
where we choose 1 > 0 below.
By Proposition 4.2, we can select Vi,...,Vaim7-1, V4 = Vdim T, V- =
Vaim7+1 € C5°(Z — {zo,y1,...,yn}, IR") satisfying (4.15) and (4.16).
We choose a neighbourhood Upy(xzg) € U(zp) of g with a chart

@0 : Up(wo) = Ba(0),po(x0) =0,

supp V., NUp(xzg) =0 forr=1,...,dimT + 1,

put xo € U,(20) = ¢y (B,(0)) for 0 < ¢ <2 and choose 2 € U(xg) C
Uij2(wo) small enough, as we will see below.

Next for any =z € Ufi:“iTHsupp V-, there exists a neighbourhood

Up(z) of z with a chart ¢, : Up(z) == Ba(0),p.(z) = 0,Up(z) N

Uop(zo) = 0,v(Up(z)) < &1 and in the coordinates of the chart ¢,

ik gl ) T s
(4.37) / gpomgpomgpom,rsrgpom,ijrgpom,kz dptgpeim < €1-
Uo(z)

Putting x € Uy(x) = ;1 (B,(0)) CC Up(z) for 0 < p < 2, we see that

there are finitely many z1,...,z5 € Ufi:rriTHsupp V- such that
U T supp Vi © URL, Uy o ().

Then there exists mg € IN such that for m > my

/ \Vf]pomfm]gpom dprgpem <1 fork=1,..., M.
U1(:vk)

For V and m > mg as above, we put fm«\,u =itV +NVe+ps Ve .
Clearly

supp (fm = fnpn) € UptoUn o ().
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By (4.33), (4.35), (4.37), and [A],[u] < Ao < 1/4 small enough inde-
pendent of m and V', f,, ), is a smooth immersion with

(438) (2A)_lgp0in < gm,)\,u = f;7,7)\,ugeuc < 2Agpoina

and if V #£0 by (4.33) and the choice of Up(z) that

/ |A];7M’H|2 dptgy, s, <co(n) fork=0,...,M
Ur(zk)

for C(A, gpoin)(€1+X0) < eo(n) . If V=0, we see supp (fm—fm)\,u) C
URL U1 j2(x) . Further by (4.36)

1 2
/|Kgm,&u| dugm,%# é 5 / |Afm,>\,u| dugm’k’“
% P

1 1 M
2 E 2
S §/|Afm| dlufm + 5 / |Afm,>\,u| d/"gm,A”u
b k=0 Uy 2(zk)

S C(EygpoimA) + (M + 1)60(71).

This verifies (A.3) and (A.4) for f = fy,, f = fm,)w,go = gpoin and dif-
ferent, but appropriate A . (A.2) follows from (2.4) and (4.36). Then for
the unit volume constant curvature metric Gpoin,m u = e 2imap ImAu
conformal to gy, , by Poincaré’s theorem, see [Tr] Theorem 1.3.7, we
get from Lemma A.1 that

(4-39) H ﬂm)\,u HL‘X’(E)’ H vam)\,u HLZ(E,gpom)g C

with C' < oo independent of m and V .

From (4.33), we have a W?2?2 N W —bound on fm70,0 , hence
for fm,)\,u . On ¥ - U(l‘o) , we get fm,)\,u = fm + )\r‘/r + ,u:I:V:I: —
f weakly in W22(X — U(wxg)) and weakly* in Wh(% — U(zg)) for
mo — 00,A\g — 0 by (2.5). If V =0, then fm,)\# = fom + NV, +
psVe — f weakly in W22(X) and weakly* in WH*°(X) for mg — oo,
Ao — 0 by (2.5). Hence letting mg — 00, A\g = 0,U(xg) — {z0} , we
conclude

(4.40) fmap — f weakly in W22(%), weakly™ in W1>°(%),
Then by (4.38), (4.39), (4.40) and Proposition 4.3 for any W € Wh2(%,
IR™)

(4.41) 0s W = o7y W, §r: (W) — 827,(W)

f'rrL,)\,u

for mgo — oo, \g = 0,U(z¢) — {z0} -
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Further from (4.40)

B . ou weakly in W12(X),
ImApu —7 f Jeuc = € Gpoin = g .
weakly™ in L>*°(X),

and by (4.39), we see Uy, — @ weakly in Wh2(3) and weakly* in
L>(¥) , hence

weakly in WH2(%),
weakly™ in L>®(X),

(u—0)

~ —2u ~ 2
Gpoin,m A \u — € m’)\’“gm,)\,u — e Gpoin

which together with (4.38) implies
(4.42) T(Gm,\pu) = T0-

We select a chart 1 : U(m(gpoin)) € T — RI™T  and put 7 :=
Yom &t = dpodn, Vi = diprg,,,, Vs, 6°% defined in (4.8). By (4.42)
for mq large enough, Ao and U(xg) small enough independent of V ,
we get m(gmapu) € U(1o) and define

(Mo 1t) 1= (G

We see by (4.41)
DO (A ) = (07 Ve)r=1,dimT+1 = (077 Ve)r=1, _dimT41-

After a change of coordinates, we may assume

f}f — RImT-1 4 1o}
and e := eqm7 L V. Writing ®,,(\, 1) = (®rno(\ 1), om(A, 1)) €
RIMT=1 « R x IR , we get
O\Prmo(A, 1) = (67 7.V ) ezt dimT—1 =0 A € [R(@m T—1)x (dim T—1)

From (4.15), we see that A is invertible, hence after a further change
of coordinates we may assume that A = [(gim7—1) and

(4.43) | OaPrno(A, 1) = LgimT—1) 1< 1/2

for mg large enough, Ao and U(zp) small enough independent of V' .

Next by (4.16), we obtain

Our P A, ) — 07 . Ve =0,

(4.44) h P (A 1) = OV
V(')Dm()H/J) - <(5’ﬁ-f"/7‘)7“=1,...,dim7’+17e> = 07

as omp.V, € 1>f 1 e, hence

(4.45) |Ous P (A )| [Vom (A, )| < &2

for any e9 > 0 chosen below, if mgy large enough, Xy and U(x)
small enough independent of V .
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The second derivatives

asqum )\7 = 62 Tz ‘/8 )
o () = 82, (V)
4857“@777,()‘7,“) = 527%]?7” N (‘/s + ‘/r) - 527%fm N (‘/s - ‘/7’)

A s H

are given by the second variation in Teichmiiller space. From (4.41) for
W =V, Vs £V, € C®°(X,IR") , we conclude for mg large enough,
Ao and U(xp) small enough independent of V' that

(4.47) |D2®,, (A, )| < Ay

for some 1 < A; < oo and

i (A,

O P (A ) — 52ﬁf(V—)a
hence by (4.16)
+ lm 9y s om (N, 1) = £(08%7 (Vi) e) > 0

myA,p

and

(4.49) 0y s Pm(A, 1) >

for some 0 <y <1/4 and mg large enough, Ao and U(zp) small
enough independent of V' . Now, we choose &5 > 0 to satisfy CAjey <
v/4 . Choosing mg even larger and U(zg) even smaller we get by
(4.42)

dT(W(.aO)?TO) S 67
where we choose § now. As

a7 (7 ((fm + V) Geue)s ™) < dy(m(Go), 7o) + d (0,7) < 28

by (4.34), we choose Cyd < A1A3,\o/8,7A3/32 and conclude from
Proposition B.1 that there exists A € RY™ 71 1, € IR with pypu_ =
0 and satisfying

7T((fm +V+ )\7"/7“ + N:I:V:I:)*geuc) = 7T(gm,)\ﬂu) =T,
1/2
Al < Cd (7 ((fn + V) geuc) ) -
To obtain the second conclusion, we consider Ay > 0 such small that
CAiea + CA1Ag < /2 and fix this Ao . We assume || V' |yp22m)< 0
and see as in (4.40) that fno00 = fm +V — f weakly in W22(X%)
and weakly* in W1H>°(2) for my — 00,d — 0 by (2.5). Again we get

(4.41) and (4.44) for A\, = 0, hence for mg large enough, J small
enough, but fixed U(zg) ,

|V90m(0)| <o



MINIMIZERS OF THE WILLMORE FUNCTIONAL 501

with CAjeg + C’O)\al + CA1 )y < v . Then by Proposition B.1, there
exist further X\ € RY™7 =1 i, € IR with firji- =0 and satisfying

T((fm +V 4+ MNVe + 12Vie) Geue) = 7(J5.;) = T
AL ] < Ao,
pifir < 0,0 =0, if u_ =0,
p—p— <0, iy =0, if py =0,

and the lemma is proved. q.e.d.

5. Elementary properties of minimization

As a first application of our correction Lemmas 3.3 and 4.4 we estab-
lish continuity properties of the minimal Willmore energy under fixed
Teichmiiller class M,, ,, .

Proposition 5.1. M, : T — [B,,00] is upper semicontinuous.
Secondly, for a sequence T, — T inT,n=23,4,

lim inf My, ,,(7in) < Whp = My (1) < lini}nmep(Tm)'

m—0o0

In particular M, , 1is continuous at T €T with
My p(T) < Whp.
Proof. For the upper semicontinuity, we have to prove
(5.1) lim sup M,, (1) < My, p(19) for 9 € T.

T—T0
It suffices to consider M, ,(79) < oo . In this case, there exists for
any ¢ > 0 a smooth immersion [ : ¥ — IR" with 7(f*geuc) =
70 and W(f) < M, p(10) + € , where ¥ 1is a closed, orientable sur-
face of genus p>1.
By Lemmas 3.3 and 4.4 applied to the constant sequence f,, =
f and V =0, there exist for any 7 close enough to 79 in Teichmiiller
space A, € RI™MT+HL with

T((f + Ao Vi) Geue) = T,
Ar = 0 for 7 — 7.
Clearly f+ A:,V;, — f smoothly, hence
lim sup M,, ,(7) < Th_)IITlO W(f + Ari Vi) = W(f) < My p(10) + €

T—T0
and (5.1) follows.
To prove the second statement, we may assume after passing to a
subsequence that 7,, = 7 and M, ,(7mm) < Wy, — 20 for some 6 > 0 .
We select smooth immersions f,, : ¥ — IR" with 7(f} geuc) = T and

(5'2) W(fm) < Mn,p(Tm) + 1/m7
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hence for m large enough W(f,,) < Wy, —9d . Replacing f,, by ®,,0
fm © ¢ as in Proposition 2.2 does neither change the Willmore en-
ergy nor its projections in Teichmiiller space, and we may assume that
fm, [ satisfy (2.2) - (2.6). By Lemmas 3.3 and 4.4 applied to f,,,V =
0 and 7 , there exist Ay, € RY™7+! for m large enough with

T((fm + A Vi) Geue) = T,
Am — 0 for m — oo.
This yields
Mup(r) < Tminf WS + A Vr)
< lgri}o%f(W(fm) +ClA\nl) = lgri}gofW(fm).

which is the second statement.

Finally, if M, , were not continuous at 7 € T with M,, ,(1) <
Whp » by upper semicontinuity of M, , proved above, there exists a
sequence T, — 7 in T with

lim inf M, (7)) < Moy p(7) < Wi p.

m—0o0
Then by above
My, p(7) < lirri)inf Mo, p(Tin),

which is a contradiction, and the proposition is proved. q.e.d.

Secondly, we prove that the infimum taken in Definition 2.1 over
smooth immersions is not improved by uniformly conformal W??2—im-
mersions.

Proposition 5.2. Let f : X — IR" be a uniformly conformal
W22 —immersion with pull-back metric f*geye = ezugpom conformal
to a smooth unit volume constant curvature metric gpoin - Then there
exists a sequence of smooth immersions fp, : 3 — IR" satisfying (2.2)

- (2.6),
fmGeue and f*geye are conformal,

fm — f  strongly in W22(X),
. 1
Mn,p(ﬂ'(gpoin)) < n"%l—I}})o W(fm) = W(f) = Z / ‘Af‘2 dﬂf + 277(1 _p)’

5
Proof. We approximate f by smooth immersions f,, as in (2.9)
and (2.10). Putting ¢ := f*Geuc,9m ‘= [hgeue and writing g =
e2ugpom,gm = €2umgpom,m for some unit volume constant curvature

metrics  gpoins gpoin,m Dy Poincaré’s theorem, see [Tr| Theorem 1.3.7,
we get by Proposition A.2

(5.3) | wm, (Lo ()5 | Vim (|25 < C
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for some C < oo independent of m . In local charts, we see

gm — g strongly in W2, weakly* in L,

rk .. Tk

T2
G g strongly in L=,

and
Ay = VIV fin = 0y f = Tg3500f = VIVIf = Apy
strongly in L2, Therefore by (1.1)

B4) W) > W) = [ 147 day + 200 - p)
b

and

(5'5) 7T(Qm) — W(gpoin)-

Then there exist diffeomorphisms ¢, : & =, >, ¢m =~ idy , such that
Gpoin,m = OmGpoin,m — Jpoin SMoothly.
Next by (5.3)
(5.6) | D || oo () || Dt lpoesy < C
and
Il Gpoinm w2y < e lwrzmynre )l gm lwrznres) < C

and for a subsequence gpoinm — §,Um — @ weakly in W12(X) | in
particular g <= gpoin,m = e~ 2umg. — e 2lg and

(5'7) g= 6_2129 = 62(u_a)gpoin

is conformal to the smooth metric gpoin, -
The Theorem of Ebin and Palais, see [FiTr84|, [Tr|, imply after
appropriately modifying ¢,

(5.8) Gm — idy  weakly in W?(X), weakly* in W1H(%)
and  gpoin = 15§ = 62(“_ﬁ)gpom by (5.7), hence
(5.9) Uy — G =u weakly in WH2(X), weakly® in L>®(X).
Putting fo, := fim © Gm, lm := Um © Pm , We see
(5.10) Fineue = (€™ gpoinm) = € Gpoinm
and by (5.6), (5.8) and (5.9)

fm — f weakly in W22(%), weakly* in W1°(%),

U — u weakly in WH2(X), weakly™ in L>°(X).
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Therefore f,, f satisfy (2.2) - (2.6). By Lemmas 3.3 and 4.4 applied
to V =0, there exist A, € RY™7F! for m large enough with

ﬂ-((fm + Am,r‘/r)*geuc) = 7T(gpoin),

Am — 0 for m — oo,

as W(f;:@geuc) = m(gm) — F(gpom) by (5.5). Then putting fm =
fm + )\m,r(‘/r o ¢7711) , We see

W(f;zgeuc) = 7T(gpoin)y
fm — f strongly in W22(X), weakly* in Who(%),
co < f;zgeuc <C

for some 0 < ¢y < C < oo and m large, when observing that ¢!
is bounded in W?22(3%) N W1(X) by (5.6), (5.8) and |D?*(¢,!)| <
C‘D2(¢m) o ¢r_nll :

This means f, approximate f asin (2.9), (2.10), and additionally
induce the same Teichmiiller class as f . Therefore we can replace
fm by fm at the beginning of this proof or likewise, we can additionally

assume that 7(f} geuc) = T(gpoin) which improves (5.5) to

(511) 7T(gm) = 7T(g]uoin,m) = ﬂ'(gpoin)-

Then ¢,, can be chosen to get Gpoinm = PpGpoin,m = Ypoin , and
by (5.10) that f;;geuc = 2im Gpoin 18 conformal to gpein, and f*geye =
¢ Gpoin - We know already that f,,, f satisfy (2.2) - (2.6). Moreover
by (5.4)

hence

Agpoinfm = e2amﬁfm — e2uﬁf = Agpoinf Strongly in L2

and
fim — f  strongly in W2(%).
Finally
Mnﬁﬂ(ﬂ-(gpoin)) § mlgnoo W(fm) = W(f),
and the proposition follows. q.e.d.

As a particular consequence, we get for Riemann surfaces the follow-
ing theorem.

Theorem 5.1. For a closed Riemann surface ¥ of genus p > 1
with smooth conformal metric gg

W(Ev 9o, ’I’L)
=inf{W(f) | f: ¥ — IR" smooth immersion conformal to go }
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=inf{W(f) | f: X —=>IR" isa
W22 — immersion uniformly conformal to go }.
Proposition 5.2 implies strong convergence of minimizing sequences.

Proposition 5.3. Let f : X — IR" be a uniformly conformal
W22 —immersion approximated by smooth immersions f, satisfying
(2.2) - (2.6) and

(5.12) W(Fn) < Mo (7(Fiugeuc)) + m
with €, — 0. Then

(5.13) fm — f  strongly in W??(X)
and

(5.14) W(F) = My (o).

Proof. By (2.3), (2.4), (2.5) and Ao large enough, we may assume
after relabeling the sequence f,
| Dfm lwr2s)nre(s)< Ao,
%gpoin < Gpoin,m < 2gpoina
(5.15) 1 X
A(] YGpoin < gm = fmgeuc < Angoina

b
In local charts, we see

Ggm — g weakly in W2 weakly* in L™,

k

k : 2
Lo ii = g weakly in L=,

and
Ay = V"V i = 0if =g 3500

We conclude by Propositions 5.1, 5.2 and (5.12), as 7(f,},geuc) — 70
by (2.2),

W) < T inf W(fy) < T inf Moy (5 9eue) < Mo p(r0) < W(F),
hence (5.14) and
(5.16) W(fm) = W(f),
in particular H Fn = H # strongly in L? . This yields using (2.4)
Dginmfm = 62“7”ﬁfm — e2uﬁf =Ay,..,f strongly in L?

and
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049500 om0 i = £)) = 02 (5 Froim = G5/ T Jm

v/ Ipoin,mBgpoin.m fm — /IpoinDgpuin f — 0 strongly in L2
recalling that 0; f,, is bounded in W2 and Gpoin,m — Gpoin Smoothly
by (2.4), hence

fm — f strongly in W2(%),
and the proposition is proved. q.e.d.
Remark. From the proof above, we see that strong convergence in

(5.13) is obtained for any closed surface 3 , when (2.2) and (5.12) are
replaced by (5.16).

6. Decay of the second derivative

In this section, we add to our assumptions on f, f,,, , as considered in
§2 - 84, that f,,, is approximately minimizing in its Teichmiiller class,
see (6.1). The aim is to prove in the following proposition a decay for
the second derivatives which implies that the limits in Ch® .

Proposition 6.1. Let f : ¥ — IR"™ be a uniformly conformal

W22 —immersion approximated by smooth immersions fm satisfying
(2.2) - (2.6) and

(6'1) W(fm) < Mn,p(ﬂ(f;"bgeuc)) +ém
with &, — 0. Then there exists a > 0,C < oo such that

(6.2) / |V3pomf|§pom dplg, i < Co**  for anyx € X, 0> 0,
ngoin (w)
in particular f € CH¥(%) .

Proof. By (2.3), (2.4) and A large enough, we may assume after
relabeling the sequence f,,

| wms D fn [[wr2s)nzee )< Ao,

%gpoin < Gpoin,m < 2gpoina
(63) A—l P __ % < A .
0 Ypoin = Gm = fmgeuc = A0Gpoin,
b
Putting vy, := ‘V?;pomfm’zpom“gpom , we see vy (2) < C(Ao, gpoin) and
for a subsequence v, — v weakly* in C§(X)* with v(X) < oo .
We consider 1z € ¥ with a neighbourhood Uy(xg) satisfying

(6.4) v(Uo(zo) — {wo}) < €1,
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where we choose e1 = €1(Ag,n) > 0 below, together with a chart
¢ Up(wg) — Bagy(0), p(z0) = 0,U,(w0) := ¢ 1(B,(0)) for 0 < o <
200 < 2, such that

1 —1\*
(65) igeuc S (90 1) gpoin S 2geuc

and in the coordinates of the chart ¢

ik gl ) r s
(66) / nginQPOingpozn’rsrgpoin7ijrgpoin,kl ngPOin < €1-
By (0)

Moreover we select

(6.7) Ui (w0) € U(x0) C Upy (o),

variations Vi,..., Vgim7-1, Ve € C§°(X — U(xp),IR™) and 6 >0,C =
Crp,p < 00,mg € IN , as in Lemmas 3.3 and 4.4 for xq, Uy, (zg) and A :=
C(Ap) defined below. As w(fy) — 7(gpoin) by (2.2), we get for myg
large enough

(68) dT(W(f;zgeuc)yﬂ(gpoin)) <e for m > my.

Clearly for each x9 € X |, there exist Uy(zg),00 as above, since
V(B3 (xg) — {xo}) — v(0) = 0 for 0 — 0 .

For x9,Up(xzo) as above and 0 < g < gp , there exists my >
mo such that v, (Ug, (7o) — Uyya(20)) < €1 for m > my , hence in the
coordinates of the chart ¢

|D? f|* L
By (0)—B,/2(0)
S C / g;)]fnngg)lozn<aljfm7 ak‘lfm> dugpoin
By (0)—B,/2(0)

S 2 / ’vgpomfm‘f]pom dlugpoin
(69) UQO(O)—UQ/Q(wo)

ik jl
+ 2 / g;oingg)oinrzpoin7’ijrgpoin,kl <a7" fm7 asfm> dlugpoin
B.Qo (x)
ik jl
< 2e1 4+ C(Ao) / IpoinIpoinIpoinsrsL guoin i1 gpom skl Pgpoin

Boy (0)
< C(Ao)er.
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There exists o €]3/0/4,70/8| satisfying by Co-Area formula, see [Sim)]
§12,

To/8
/ |D? i) dH' < 8p7" / / |D? i) dH* dr
0B (0) 30/4 0B, (0)
(6.10) = 8ot / |D? fn|? dL? < C(Ag)ero .

Br,/8(0)—Bs,/4(0)

First we conclude that

oscon, 0| Dhnl <C [ D% ful M < CA0)},
8B, (0)
hence for any = € 0B,(0) and the affine function [(y) := f(z) +
D fin(z)(y — z)
_ 1/2
0| fn = Ulzm@B, ) + || DUfm = 1) =08, 0)) < CAo)er’>.

Moreover by (6.3) and (6.5)

co(Ao)(9i5)ij < ({0l 051))iz = gm(w) < C(Ao)(di5)ij
hence DI € IR>*? is invertible and

| DU, || (D)™ [|< C(Ao).

Next by standard trace extension lemma, there exists f,, € C2(B,(0))
such that

f~m = fmanm = Dfm on 830(0),
o fm =1 +1D(fm = 1)
(6.11) < Clo7M | fm = Ulz=@B,0)) + | D(fm = 1) 205, (0)))
< C(Mo)ey”,

/ ID2f2 dL2 < Co / ID2f2 dH' < CAg)er.
B, (0) 0B5(0)
We see .
| Dfin = DL|I< C(A0)ey* <[ (D)™ |7 /2
for €1 =¢e1(Ag) <1 small enough, and D fm is of full rank everywhere
with 3 3
I Do 1,1l (Df) ™t I C(Ao).
Extending f,, = fm on ¥ — U,(xzg) , we see that f,, : ¥ — IR" is a

CY!—immersion with pullback metric satisfying by (6.5)
(6.12)

CO(AO)gpoin < CO(AO)geuc < Ggm = ~:;Lgeuc < C(AO)geuc < C(AO)gpoin-
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and by (6.6), (6.9) and (6.11)

(6.13) / |D2fm|2 dc?, / |Vgpomfm|g2;pom dptg,ein < C(Ao)er,
By (0) By, (0)

in particular, as [A; .| <10 fm| in local coordinates,

(6.14) | 145, dus, < Oz < ot
U.Qo (z0)

for &1 = e1(Ag,n) small enough. Putting V := fon — fm , We see
supp V CC Uy(xg) C U(xp) for 0 < o < p; from (6.7) and

IV w2y < C IV w22z, o)< C(Ao)-

Together with (6.12) and (6.14), this verifies (3.9) and (4.33) for A =
C(Ap) in Lemmas 3.3 and 4.4, respectively. After slightly smoothing
V| there exists A, € IRY™7*! by Lemmas 3.3 and 4.4 and (6.8) with

7"'((]Fm + )\m,r‘/r)*geuc) = 7T( :;qgeuc)y

Al < Copptlr (w(Frgene)s w(Fgeuc))

By the minimizing property (6.1), and the Gaufl-Bonnet theorem in
(1.1), we get

1 *
1 / ’Afm’2 dpf,, —em < Mn,P(Tr(fmgeuC)) +27m(p—1)
>

1 2
<7 / At B r 0
b

hence, as fo, = fm in X — Uy(0) and supp V, N Uy (xo) =0,
(6.16)

gl dug < [ 145, g, + CooolB poin) o + 45
Us(z0) Us(z0)
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We continue, using [Af

m,z‘j| < |8Z-jfm| in local coordinates, (6.10) and
(6.11),

/ Az, * dpg,
Us(z0)
<Cho) [ D ac?
B (0)
<co [ D ar
Br,/8(0)—Bs,/4(0)
S C(AO) / ‘vgpoinme dlugpoin
Urg/s(20)=Usg/a(z0)
+C(80) | Tgpoin 175 0))

< C(AO)Vm <U7g/8(x0) - U3g/4($0)) + Cxo,w(AOygpoin)Qz-

2

We calculate in local coordinates in B,(0) that
Agpoin,mfm = e2umAgm m = e2umﬁf7rl
and

1B gpoinn frn = fi)l < C(R0)([Hy,, | + D finl + [T gyt 1D Fin)-

By standard elliptic theory, see [GT] Theorem 8.8, from (2.4) for m >
mq large enough, as f,, = f;, on 0B,(0) , we get

/ ID2f,|2 AL
B, (0)
< Cxo,gp(A07gpoin)< / ’ﬁfm’2 d:u'fm
Us(z0)
(6.18) + / |D? % dL? + / 1D fn|? d£2>
Bs(0) B (0)

< Cxo,gp(A07gpoin)< / ’ﬁfm’2 d:u'fm
Us(z0)

+ Um (U7g/8(xo) - U39/4(330)) + 02>,
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where we have used (6.17). Putting (6.16), (6.17) and (6.18) together
yields

Vi (Uy2(20))
2
(619) = / ’ gpoznfm‘ dugpozn
Ug/2(m0)

< Crp,0 (Ao, poin) <Vm <U7g/8($0) - U3g/4($0)) + 0%+ [An| + €m>-

To estimate )\, , we continue observing that f;@geuc = gm and [ geue =
gm coincide on 3 — U,(xo) ,

dr (7 (frgeuc) 7(frnGeue))?

ZdT(W(f;zgeuc)y 7I-(.g;z)oin))2 + 2dT(7T(f;196uc)7 ﬂ-(gpoin))2

1 s -
OTO / <§gpoin,ij9% V9m — / gpoin> dx
b

IN

IN

1 ..
+C7’0 / <§gpoin,ijg7z7]1vgm - \/gpoin> dz
b

1 ..
= 2CT0 / <§gpoin,ijg%\/gm Y gpoin) dz

Y—Uy(zo)
1 T

+C7'0 / _gpoin,ijg% V m — / gpoin> dx
Up(wo)

+C7—0 / gpom ngm VIm — +/ gpoin) dz
Up(wo)

< 207—0 / ‘agpoin,ijg%\/ 9m — \/Ypoin dz + OTO (AO)Q2

N—Uy(zo)

where we have used (6.3) and (6.12). As gn — g = €2“gpoin, pointwise
and bounded on ¥ , we get from Lebesgue’s convergence theorem
lim sup dT(W(ﬁ;geuC)v T(fmGeuc)) < Cr (Ao)e

m—o0

and from (6.15)

limsup | A | < Cyy, (Ag)o"/™.

m—0o0

Q09poin

Plugging into (6.19) and passing to the limit m — oo , we obtain

V(Ug/2(5170)) < Omo,so(AO’ gpoin)V (Ug(xo)_Ugﬂ (x0)> +Cmo,so(AOv gpoin)91/4
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and by hole-fllling

V(U,ya(20)) < (Uy(20)) + Cug o (Ao Gpoin) 0™

with v=C/(C +1) <1 . Iterating with [GT] Lemma 8.23, we arrive
at

(6.20) V(ng‘””(xo)) < Cxo,cp(Ao,gpom)g%‘gl_Qo‘ for all p >0

and some 0 < & = Qgg(A0, Gpoin) < 1 . Since v(BJ*"(x0)) —
v({xo}) for o — 0, we first conclude

(6.21) v({zo}) = 0.
Then we can improve the choice of Up(zg) in (6.4) to
I/(Uo($0)) <é€q,

and we can repeat the above iteration for any x € U,, /2(20),0 < 0 <
01/2 to obtain

v(BF™ () < C’mo,@(Ao,gpom)g%‘gfza for all z € Uy, jo(w0)o > 0.

By a finite covering, this yields (6.2). Since in the coordinates of the
chart ¢

/ |D? f,,|? dL?

S C / gpolngpozn 87«] fm7 8kil fm> dlu’gpoin
By(x)

2
/ ’Vgpoinfm‘gpoin dlugpoin
By(x)
ik i
+2 / g;oinggyoinrgpomerf]pom,kl<8rfm,8sfm> d:ugpom
By ()

< Cxo,gp(Am gpoin)g2agl_2a + C(A07 gpoin)g27

we conclude by Morrey’s lemma, see [GT| Theorem 7.19, that f €
C1(¥) , and the proposition is proved. q.e.d.

7. The Euler-Lagrange equation

The aim of this section is to prove the Euler-Lagrange equation for the
limit of immersions approximately minimizing under fixed Teichmiiller
class. From this we will conclude full regularity of the limit.
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Theorem 7.1. Let f: ¥ — IR" be a uniformly conformal W22 —im-
mersion approrimated by smooth immersions f,, satisfying (2.2) - (2.6)
and

(7'1) W(fm) < Mn,p(ﬂ(f:qgeuc)) +éem

with €, — 0. Then [ is a smooth minimizer of the Willmore energy
under fized Teichmdiller class

(72) W(f) = My p(70)
and satisfies the Fuler-Lagrange equation
(73) AgH + QA" H = "¢ gy on =,

where q s a smooth transverse traceless symmetric 2-covariant tensor
with respect to g = f*Geue -

Proof. By Propositions 3.1 and 4.2, we select variations Vi,..., Viim T
€ C§°(X,IR"™) , satisfying (3.5) or variations Vi,...,Viim7-1,Ve €
C§° (%, IR") , satistying (4.15) and (4.16), depending on whether f has
full rank in Teichmdiiller space or not.

For V. € C*(X,IR") and putting fo, ¢ u = fr+tV+NVe+pa Ve,
we see for |t| < to for some tg = to(V,Ag,n) > 0 small enough and
IAl, ] < Ao for some Ao = Ao(V;, Vi, Ag) > 0 small enough that

| Dfmtap lwizmnre )< 200,
(2A0)_lgpoin < f;ht,)\#geuc < 2A09poin
and all m € IN . As fp, 42, — f strongly in W22(%) and weakly* in
Whee(x) for m — oo,t,\,u — 0 by Proposition 5.3, we get from
Proposition 4.3 and the remark following for any chart ¢ : U(7(gpoin)) €
T — RI™T and put #:=om, 6% = dipoém, f}f = d?/)wgpom.Vf,é%r
defined in (4.8), and any W € C*(X, IR")

7T( :;L,t)\,ugeuc) — 70,

(7.4)
5ﬁfm,x,u‘W — (57%f.W, 52ﬁfm,t,/\,u(W) — (527%f(W)

as m— oo, t, \,u — 0. If f is of full rank in Teichmiiller space, then

Vi = RI™T and we put d = dim7 . If f is not of full rank in
Teichmiiller space, we may assume after a change of coordinates,

f}f — ]RdimT_l « {0}

and put d:=dim7 — 1 and e := egm7 L Vs . By (3.5) or (4.15), we
see for the orthogonal projection T, RImT _, f/f that

(7.5) (mp, 07 7.V )rmt,d =2 A € IR
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is invertible, hence after a further change of variable, we may assume
that A = I; . In the degenerate case, we further know

(7.6) (07t4.Vy,e) = 0.
By (4.16)
(7.7) +(8%7(Vy),e) > 2y, 67p.Ve =0,

for some v >0 .
Next we put for m large enough and tg, A\g small enough

q>m(t7 )‘7 M) = ﬁ(f;z,t,)\7ugeuc)‘

Clearly, ®,, is smooth. We get from (7.4), (7.5) (7.6) and (7.7) for
some A; < oo and any 0 <e <1 that

| D2®y (¢, A) [|I< A,
osc D?®,, <,
| O3B (t,A) — Ig |[< e <1/2,
NPy (B, A) = (677.V3)r=1,...d5

(7.8)

in the full rank case, and writing ®,, (¢, A, 1) = (0 (t, A, 1), ©m (E, A, 1))
in the degenerate case that

| D2, (t, A, ) 1< A,
osc D*®,, <,

| ON®ro(t, A, ) — g [|< e <1/2,

T py P (B A 1) >,
0P (8, X, )], [Dpm (t, A, )| < e,
NP (t, A\, 1) = (07§ V3 )p=1,.. ds
Oprapis P (b, X, ) — (%7 (V). ),
Ou @ (t, A, 1) Doy (t, A, 1) — 0,

all for m > mg large enough and |t| < to,|A], |n] < A small enough
or respectively ¢, A, u — 0. We choose &, \g smaller to satisfy CAje+
CA1)o < v/2 . Moreover choosing mg large enough and t; small
enough, we can further achieve

| Do (t,0,0)] <o
with CAie + C’J)\gl + CAi Ay <7, and
|®,,(£,0,0) — ®,,(0,0,0)] < Cty < AAZ, No/8, 7AZ/32.
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By Proposition B.1 there exist |Ap, - (t)], |tom,+(t)], |5\m7r(t)|, |form,+(1)] <
Xo With 4 ()i, () = O, i 1 (8)im(8) = 0 anc
(7.10) D (8, A (8), i () = 1 (0,0,0) = Doy (2, S‘m(t)aﬂm(t))v
which means

7T((fm +tV + )\m,r(t)‘/r + ,um,:l:(t)v:l:)*geuc) = W(f;;;,geuc)

(7.11) )

= w((fm +tV 4+ A () Vi + ﬂm,i(t)Vi)*geuc),
and
(7.12) fm, 4 (&) o4 (1) < 0, fim,—(8) =0, if pum 4. () # 0,

b (D (£) < O, firact (8) = 0, i p—(£) # 0.

By (7.8), (7.9) and (7.10), we get from a Taylor expansion of the smooth
function ®,, at 0 that

04 P (0) + A ()OAP1 (0) + fan (¢) 0, P (0)+

g (0 A (0 i ()7 D2y 0) 1 A 1), (1)
< =t + PO + lim (),
hence, 8 i+ (i, (1) = 0.

10120 A (1003810 (0) i (1) B (0) 5 (1) Dy i (0)

< CAre™ ([t + P (8)]?) + Celm £ ()]%).

Passing to the limit m — oo , we get for subsequences M, (t) —
A(t), o+ (t) = p(t) with [A(2)], |n(t)] < Ao and by (7.8) and (7.9)

1
‘t&ﬁf.V + A (0877 Vr - s (8)? 0774 (Vi)
< CAe (It + X)) + Celux (b))

(7.13)

In the degenerate case, we recall 07¢.V,) € f)f 1 e, hence by (7.7) and
(7.13)

Y (t)? < spe(t)? (%75 (V), €)

N |

< |to67 sV + A (t)07 7.V, + %um,i(t)Q 8?7 (Vi)
< Chiem (1t + M) + Celpus (1)
and for Ce < /2 small enough
(7.14) |+ (@)] < C(|t] + [A@)])-
Then again by (7.13)
(7.15) t671.V + Mo(8)07 . V| < C (L + IN0) ).
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In the full rank case, we have pui = 0, and (7.15) directly follows
from (7.13). As (67¢.V;)p=1,..a are linearly independent by (7.5), we
continue

IAB)] < C(It + IMB)) < Clt+ CrolA @),
hence for Ao small enough |A(t)] < C|t| . We get from (7.14)
(7.16) lux(t)] < Clt]
and from (7.15)

t671.V + Mo (8)07 1.V < CJt.

Therefore A is differentiable at ¢ =0 with
(7.17) N(0)87 .V, = —67,.V.

Writing for the inverse A~ = (brs)r.s=1,..4 in (7.5), we continue with
(3.4)
N(0) = —byo {67,V €5)

Z / i Jl Azg’v>qgl(9poin) dﬂg (dﬁgpom-qg(gpoin),brses>a

hence puttlng

dim T
= Z 2471 (9poin) (AT g1, -4° (Ipoin ), brses) € 53" (gpoin)»
o=1
we get
(7.18) N0) = [ g™ (A% Vg Ay
s
Moreover

i FtV 4+ X (OVe + o, £ (0) Ve = [V + N (0) Ve + ps (6) Ve
strongly in W?2(X) and weakly* in W1°°(X) | hence recalling (7.11)
W(f+tV+ X () Ve + pa () Ve) <= W(fon +tV + X () Ve + i, + (£) V)

> Mop(T(fimeuc)) = W(fm) — em — W(F).

Since (t, A\, p) = W(f +tV + AV, + ut Vi) is smooth, we get again
by a Taylor expansion, (7.16) and (7.17)

0 <W(f +tV + A\()Vy + pus(t)Ve) — W(Sf)

= toW;.V + Mo () OW Ve + s ()W Ve 4+ O(Jt]?).

As py(t)u—(t) = 0 and by (7.12), we can adjust the sign of 4 (¢)
according to the sign of 0W;.V4: and improve to

0 < WV + M () 0Wr. Vi + O(t?).
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Differentiating by ¢ at ¢ =0 , we conclude from (7.17) and (7.18)

WiV = =M(0)6W}.V, = — /gikgjl<A?j,V>q};l WiV, dpg,
)

hence putting g := —qy; WV, € SQTT(ngm) , We get

(7.19) WV = / g% gAY, Vigu dug  for all V € C(S, R™).
by

As f € W22nCh* by Proposition 6.1, we can write f as a graph, more
precisely for any xg € ¥ there exists a neighbourhood U(zg) of xg
such that after a translation, rotation and a homothetie, which leaves
W as conformal transformation invariant, there is a (W22 N Ch%) —
inverse chart ¢ : By(0) = U(xg), $(0) = zo , with f(y) := (fod)(y) =
(y,u(y)) for some u € (W22NCH¥)(B;(0), IR""?) . Moreover, we may
assume |ul,|Du| <1 and from (6.2) that

(7.20) /|D2u|2 dL? < Cp*™  for any Ball B,.
BQ

We calculate the square integral of the second fundamental form for a
graph as

A= [ 1A anp= [ G g o o v g,
B1(0) B1(0)

where g;; = 0;; + O;udju, (g"7) = (gij)_l,dm = Moo’ see
[Sim93] p. 310.

By the GauB-Bonnet theorem in (1.1), we see for any v € C§°(B1(0),
IR"?) that 4W(graph(u +v)) = A(u + v) + 87(1 — p) , hence from
(7.19)

T N .
SA,0 = / <gzkg]l B ig”gkl)%l@zju _ Pij(‘)mu,w dpg,
B1(0)

where ¢ = ¢*q, I} = g™ (0;ju, Ogu) . From this we conclude that
(7.21)

9j1(2ai M 0u®) — 0; ((aajur ap?™*)Ou® mlut> = b (0u) G 0iju®
weakly for testfunctions v € C§°(B1(0), IR""?) , where
aii! (Du) = (85 — drs)g7 g /3,
b (Du) = (9% g7 = 397 g*) (615 — drs) /3.
Then we conclude from [Sim] Lemma 3.2 and (7.20) that u € (VV;{’JS N

Cloe ) (B1(0)) -

loc
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Full Regularity is now obtained by [ADNS59], [ADNG64]. First we
conclude by finite differences that u € I/Vlif (B1(0)) and

20 Du)Ou® + br(Du, D*u) * (1 + D3u) 4 b.(Du) * G(.) * D*u =0
strongly in Bj(0), with a?skl,f)r,br are smooth in Du and D?u |,
whereas § = ¢*q € (WH2NC%*)(B1(0)) . As W2 W3P for all 1 <
p < 00, we see u € I/Vli’f(Bl(O)) — Cf(;g(Bl(O)) and then wu €
Cloc (B1(0)) -

loc
Now we proceed by induction assuming u, [ € CZ’?(Bl(O)) for some

k>4. Wesee §:= f*Geue € Cch—la , hence we get locally confor-

loc
mal C*® — charts ¢ : U C B;(0) =5 0 C IR? with o™ *§ = €2 gepe
On the other hand, as gpoin is smooth, there exists a smooth confor-
mal chart ¢ : U(xg) =5 Qp C IR? with w_l’*gpom = 2“0 g, , when
choosing U(zp) small enough. As g = f*geuc = €*“gpoin , We see that
hopop™ 1 0 — Qq is aregular conformal mapping with respect to stan-
dard euclidian metric, in particular holomorphic or anti-holomorphic,
hence smooth. We conclude that ¢ € Cl-*(By(0)) and § = ¢*q €

loc

Ck_l’a(Bl(O)) ,as q € S2TT(gpom) is smooth. Then we conclude

loc

u € C£t17a(31(0)) and by induction wu,f,¢and f = fo ¢! are
smooth.
In [KuSch02] §2, the first variation of the Willmore functional with

a different factor was calculated for variations V to be
d 1 — —
VNV = W +V) = [ 58+ QUORLY) du,
»

and we obtain from (7.19)

Agﬁ + Q(AO)I:i = Qgikglequkl on Y,

1,

which is (7.3) up to a factor for ¢ . (7.2) was already obtained in
Proposition 5.3 (5.14). This concludes the proof of the theorem. q.e.d.

As a corollary we get minimizers under fixed Teichmiiller or conformal
class, when the infimum is smaller than the bound W, , in (1.2).

Theorem 7.2. Let ¥ be a closed, orientable surface of genus p > 1
and 19 €T satisfying

Mn,p(T()) < me

where W, , is defined in (1.2) and n = 3,4 .
Then there exists a smooth immersion f: X — IR" which minimizes
the Willmore energy in the fized Teichmiiller class 10 = 7(f*geuc)

W(f) = Mn,p(TO)-
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Moreover f satisfies the Euler-Lagrange equation

AH + QA" H = g* g/ AV gy on 3,
where q s a smooth transverse traceless symmetric 2-covariant tensor
with respect to g = f*geue -

Proof. We select a minimizing sequence of smooth immersions f, :
Y — IR™ with w(f} geuc) = 70

(7.22) W(fm) = My p(10).

We may assume that W(f,,) < W, — ¢ for some § > 0 . Replac-
ing fm by ®.,, o fi, © ¢, for suitable Mdébius transformations @,

and diffeomorphisms ¢, of ¥ homotopic to the identity, which does
neither change the Willmore energy nor the projection into the Te-
ichmiiller space, we may further assume by Proposition 2.2 that f,, —
f weakly in W22(X) and satisfies (2.2) - (2.6). Since (7.1) is implied by
(7.22), Theorem 7.1) yields that f is a smooth immersion which mini-
mizes the Willmore energy in the fixed Teichmiiller class 79 = 7(f* geuc)
and satisfies the above Euler-Lagrange equation. q.e.d.

Theorem 7.3. Let X be a closed Riemann surface of genus p > 1
with smooth conformal metric gy with

W(3, go,n) =
inf{W(f) | f: X — IR" smooth immersion conformal to go } < Wh p,
where W, , is defined in (1.2) and n = 3,4 .
Then there exists a smooth conformal immersion f : ¥ — IR"

which minimizes the Willmore energy in the set of all smooth conformal
immersions. Moreover f satisfies the Euler-Lagrange equation

(7.23) AMH+ Q(AYH = gikglequkl on Y,

)

where q s a smooth transverse traceless symmetric 2-covariant tensor
with respect to the Riemann surface X , that is with respect to g =

f*Geuc -
Proof. We put 19 := 7m(gg) and see by invariance
Mn,p(TO) =
inf{W(f) | f: X — IR" smooth immersion conformal to gy } < W, p.

Therefore by Theorem 7.2, there exists a smooth immersion f: ¥ —
IR™ which minimizes the Willmore energy in the fixed Teichmiiller class
7o = 7(f*geuc) and satisfies the above Euler-Lagrange equation. More-
over there exists a diffeomorphism ¢ of 3 homotopic to the identity
such that (fo¢)*geye is conformal to gg . Then f:= fo¢ is a smooth
conformal immersion of the Riemann surface ¥ which minimizes the
Willmore energy in the set of all smooth conformal immersions and
moreover satisfies the Fuler-Lagrange equation. q.e.d.
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In any case, we get that minimizers under fixed Teichmuiiller class or
fixed conformal class are smooth and satisfy the Euler-Lagrange equa-
tion.

Theorem 7.4. Let ¥ be a closed Riemann surface of genus p > 1
with smooth conformal metric gg and f : X — IR™ be a uniformly
conformal W22 —immersion, that is ¢ = [*Geuc = €%go with u €
L>(X) , which minimizes the Willmore energy in the set of all smooth
conformal immersions

W(f) = W(E7g(]7 n)7
then f is smooth and satisfies the Euler-Lagrange equation

Agﬁ + Q(AO)FI = gikglequkl on X,

1,

where q s a smooth transverse traceless symmetric 2-covariant tensor
with respect to g .

Proof. By Proposition 5.2 there exists a sequence of smooth immer-
sions fp, : X — IR" satisfying (2.2) - (2.6) and

fGeue and f*geye are conformal,

fm — f strongly in W22(%),

Jm W(fin) = W) = Map(@(f*geue)) = Mup(m(fgene))-
This implies (7.1), and the conclusion follows directly from Theorem
7.1 q.e.d.

Appendix A. Conformal factor

Lemma A.1. Let ¥ be a closed, orientable surface of genus p > 1,
go @ given smooth metric on ¥ , x1,...,xp € % with charts oy :

U(zk) = B1(0), pk(z1) = 0, Uy(1) = ¢}, (B,(0)) for 0 < o < 1,
(Al) A_lgEUC S ((;0];1)*90 S AgeuC fOY’ k — 1, “ o 7M.

Let f:YX — IR"™ be a smooth immersion with ¢ := f*geyc = ezugpom
for some unit volume constant curvature metric Ipoin  and
Atgo < g < Ago,

| e, / 1Kyl g < A,
>

(A.2)
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and f : X — IR™ a smooth immersion with § := f*Qeue = 62“§pom
for some unit volume constant curvature metric Gpoin ,

A~1lgy < § < Ago,

(4.3) /!Kg\ dug < A,
%
supp (f — ) C UM U, jo(ax) and
(A.4) / |A|? dpg < eo(n) fork=1,...,.M
Ui (zg)

for some universal 0 < eg(n) <1 . Then

(A.5) | @ (g (), | VE [22(s,5)< C(E, g0, A, p).-

Proof. We know
(A6) —AputKpe =K, —Ajit+Kpe*=K; onX.
Observing [y, | — Kpe 2| dug = —K, = 47(p — 1) and multiplying

(A.6) by @ — A for any A € IR , we get recalling (A.3)

o(8) [ 1V, dag, < [ 193 dg
P P

= /(—er_za + K3)(a—X) dug < C(A,p) || & — A (s,
s
hence for A = ][ U dpg, by Poincaré inequality
(A.7)

[ %= Ar2(sg)< O 90) | Va |22 g0 < C(2, g0, A, p)V/ 0scst.
Next by the uniformization theorem, see [FaKr| Theorem IV.4.1, we
can parametrize f o gp,;l : B1(0) — IR™ conformally with respect to
the euclidean metric on Bj(0) , possibly after replacing Bj(0) by

a slightly smaller ball. Then by [MuSv95] Theorem 4.2.1 for eo(n)
small enough, there exist v, € C*°(Uy(zg)) with

—Agvk = Kg on U1($k),

A8 -

(A.8) | vk ooy @< Cn f 1A]? dpg < Creo(n) < 1.
Ui(zk)

We get

(A.9)

—Ag(ﬁ — Uk) = —Kvpe_2ﬁ >0,

i on Uy (z)
— A5 — vg) + Kp(e™2 — e729%) = —Kpe 2% >0,
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for k=1,...,M , and, as gzgonE—UﬂilUlp(mk),

(A.10)
—Ag(ii — u) + K, (e 2t — e=2u) = 0, T iz
g ) P on E—UﬂilUl/z(xk)-
—Ag(u — U)+ S 07

Therefore @ — u cannot have positive interior maxima nor negative
interior minima in E—U,i\/[: U2 () as K, <0 by standard maximum
principle, hence putting I' := Ufc\/‘[: 10U3 /4(a:k) we get

sup (& —u)r = max(t — u)x.
S—UM  Us/y(zs) r

From above, we see from (A.1), (A.3), (A.8), (A.9),

0 < =0:(37/3 030 — vy)) + Kp/G(e™2 — ™)
= —Kye 2 \/g < O(A,p),

hence using [GT] Theorem 8.16

sup (@ —vg)+ < max(i —vg)+ + C(A,p).
Uszya(zi) r

Together, we get from (A.2) and (A.8)
(A.12) mzaxﬂi < max s + C(A,p).

(A.11)

From (A.1), (A.2), (A.3), and gpeir having unit volume, we get
(A.13) C0(A) < 119(5), g0 (£, 15(5) < C(A).

Now if minya < —C(A,p) , there exists z € I' with u(x) < miny a +
C(A,p) <0. As a4 —wvp > mingu —1 = A, we get identifying
vk : Up(zx) = B1(0) by the weak Harnack inequality, see [GT] Theorem
8.18, from (A.11)

| @ —wvk = Allr2(B, 52 < C(A) Bligigx)(ﬂ —vg — )

< C(A)(i(x) — mini +2) < C(A, p),

and
e —ming |2, o)< C(A;p).

We see from (A.1) and (A.7)

CO|)\—mZinﬂ| < ||)\_mzinﬂ||L2(Bl/8(m))

IN

C(A) H u— 5‘ ||L2(Z,go) + H (e Hgnﬂ ||L2(Bl/8(1’))

< C(X%,90,A,p)(1 + +/oscsu).
Using (A.13), we have proved
mini < ~C(A,p) =
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(A.14) | o — mzinﬁ [22(5,90) < C (2, g0, A p) (1 + \/oses).

If further minya < —C(3,g90,A,p)(1 + Voscsu) , we put A =
[miny, @ < @ < miny @/2] and see @ —miny 4 > |miny @/2| on ¥ — A
and using (A.3)
1
plminl us(E = A) < [ |7 mindl dug
Y-A

< A/ |ﬂ—mzinﬂ| dpgy < C(3, 90, A, p)(1 + \/oscxin),
b

hence

0(27 g0, A7p)(1 + v OSCE’EL)

| min |
>

pg(3—A) < < co(A)/2,

if |miny a| > C(X, go, A, p)(1 4+ v/oscxu) is large enough. This yields
using (A.13) and pg,,,,(X) =1

co(A)/2 < pz(A) = / VIR T 03) exp(mina) = exp(mina),
A

and we conclude
(A.15) mzinzl > —C(3, 90, A, p)(1 + \/osext).

In the same way as above, if maxy @ > —C(A,p) , we get from (A.12)
that there exists = € T with @(x) > maxya—C(A,p) > 0. As u—v <
maxy % + 1 =: X\, we get by the weak Harnack inequality, see [GT]
Theorem 8.18, from (A.11)

” U — Vg — A ”L2(Bl/8(x))g C(A) Bll/r;f(‘x)()\ —u+ ’Uk)

< C(A)(max i — () +2) < C(A,p),

and
I maxa —a |[z2(p, 4@y = C(A, p)-

We see from (A.1) and (A.7)

IN

ol max @ — X Fmaxa — Al 23, 4 2))

IN

CA) | &= X lz2(s.go) + I maxd — lL2(B, s(2))

< C(X%,90,A,p)(1 + \/oscst).
Using (A.13), we have proved

mzaxﬂ >C(Ap) =
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(A.16) I mzale — U |[2(5,90) < C(E, 90, A, p) (1 + \/oses).

Now if maxya > C(X, g0, A, p)(1 + Voscsu) , we need a lower bound
on @ . If minya < —C(A,p), we see from (A.14) and (A.16) that

min@ > maxi — C(S, g0, A, p)(1 + /oscsi) = 0,

therefore miny, @ > —C'(A,p) . We put A := [maxy @/2 < @ < maxy, U]
and see maxy, 4 — U > maxy 4/2 on ¥ — A , hence using (A.7)

1 - - —oa
3K 15,0, (5~ A) < [ gt — e dg

Y—-A
< C(Ap) [ I = il diagy < O[S0, A,)(1 + V/owest)
>

and
0(27 4o, A7p)(1 + v OSCZ'&)

max i
by

1
lugpoin(2 - A) S S 57

if maxyu > C(X, g0, A, p)(1 + Voscsu) is large enough. This yields
lu’gpoin(A) 2 1/2 and by (A13)

C(A) = pg(%) > / € Aftgpn > Mgy (A) exp(max ) > exp(maxi)/2,
A
and we conclude

(A.17) mzaxz] < C(%, 90, A, p)(1 + \oscsu).
(A.15) and (A.17) yield

0sCxU = maxu — minu
b)) by

1
< (%, 90, A, p)(1 4+ Voscst) < C(E, go, A,p) + 50802?1,

hence oscxu < C(X,g0,A,p) . Then (A.5) follows from (A.7), (A.15)
and (A.17), and the lemma is proved. q.e.d.

Here, we use this lemma to get a bound on the conformal factor for
sequences strongly converging in w22 .

Proposition A.2. Let f : ¥ — IR"™ be a uniformly conformal
W22 —immersion approzimated by smooth immersions fm with pull-
back metrics g = [*Geue = e2ugpoimgm = f;qgeuc = e2um9poinm for
some smooth unit volume constant curvature metrics gpoin, Gpoin,m and
satisfying

fm — f strongly in W22(2), weakly* in WH* (%),

A_lgpoin < Im < Agpoin'
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Then

sup (o ey, | Vi N2,y ) < o0
me

Proof. We want to apply Lemma A.1 to f = fi,f = fm, 90 = Gpoin -
(A.2) and (A.3) are immediate by the above assumptions for appropriate
possibly larger A < oo .

In local charts, we have

gm — g strongly in W2 weakly* in L>(X),

k

k : 2
Lo i = Tg strongly in L~

and
Afpij = VNI frn = 03 f =T Ok f
= V?V?f = Ay;; strongly in L.
Therefore |Ay,, |2 \/Gm — |Ay|2\/g strongly in L', hence for each = €
Y there exists a neighbourhood U(x) of  with
/ |Afm|§m dpg,, < eo(n) forallm e IN,
U(z)

where ¢o(n) is as in Lemma A.1. Choosing U(x) even smaller, we

may assume that there are charts ¢, : U(z) — B;(0) with ¢, (z) =
0 and cp zgeue < (90_1)*gpom < Crgeuc - Selecting a finite cover X =

Uﬂ/lzlgpgkl(Bl/g(O)) , we obtain (A.1) and (A.4) for appropriate A < oo .
As clearly supp (fi — fm) € X, the assertion follows from Lemma A.1.
q.e.d.

Appendix B. Analysis

Proposition B.1. Let & = ($g, ¢) : B%“(O) — RMT = RM x
IR,M € IN, be twice differentiable satisfying for & = (A u,v) €
BMT2(0) CRM x Rx IR

0

| AP0 — Inr [|<1/2,
10uPol, [0, Pol, [Or¢p| < ¢,
| D*® |[< A,
auu‘:py —Oup >y
with 0 <e,v, A0 <1/4,1 < A < o0,
(B.1) CAe <.
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Then for 1= (no,7) € R™ x IR with
|@0(0) — 10| < min(ANZ, Ao/8),
[p(0) — 71| < ¥A3/32,
there exists £ € B%”(O) with pv = 0 and satisfying

(&) =mn
with
(B.2) 6] < Cy 21 ®(0) — ',
If further
- De(0)] <o

CAe + Carg' + CAN < 7,
there exists a solution £ € B%”(O) of (&) =n, i =0 with

pi<0,0=0, ifr=0,
v <0,i=0, ifp=0.

Proof. After the choice in (B.10) below, we will need only one variable
wor v . Therefore to simplify the notation, we put v = 0 and omit
V.

First there exists a twice differentiable function \ :] — \o/2, Ao/2[—
By, 1(0)

0/2
(B.4) Po(A(n), 1) = no-

Indeed putting
TM()‘) =\ — <I>0()\,,u) + Mo for ‘)\‘ < )\0/2,

we see
1T, (1<l Iar — 03 ®0 < 1/2,
hence |
’Tu()‘l) - Tu()\2)’ < 5’)\1 — )\2‘.
As

T (0)] = [®0(0, 1) — 10| < [Po(0, 1) = Po(0,0)] + [P0 (0) — 0]
<[ 0u®o | |1l + Ao/8 < (/2 4+1/8)ho < Xo/4,
we get
TN < A2+ [TL(0)] < Ao/2
and by Banach’s fixed point theorem, (B.4) has a unique solution \ =
Ap) € B%M(O) . In particular

(B5) AO)] < 2/T5(0)] < 2|%0(0) — no| < 2473,
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By implict function theorem, A is twice differentiable and
PO\ + 0,P9 =0,
AT ONPILA + 205, PO\ + O\ @Dy + 0, P = 0.
This yields
B6) 9,A] < 2/0,0| < 25 < 1/2,
10| < 210, AT 00RO + 202, PO\ + 9, Po| < CA.

Next we put

() = eA(p),p) =7 for [u] < Ao/2
and see by (B.5)
B [ (0)] < [0(A(0),0) = (0)] + [¢(0) — 7]
<[] O || INO0)] +vA3/32 < CAeA? +vA3/32 < yA3/16.

Clearly 1 is twice differentiable and

Out) = OxpOu\ + Oup,
OHHT,Z) = 8HAT6M<,06H>\ + ZOAMQDOH)\ + 8)\(,06““)\ + auugp.
This yields using (B.6)

(B.8)

(B.9) ‘8uu¢ — (9””(,0’ < ‘8MAT(9AAQD(9M)\ + 200, 0u N + 8)\90811/1)“
< C || D¢ [ |01+ || Ox || [9upA| < CAe.

Since the assumptions and conclusions are the equivalent for —® and —
n , we assume after possibly exchanging p by v that

(B.10) ¥(0) < 0.

Replacing p by — p , we may further assume 9,1 (0) > 0 . On the
other hand by (B.7) and (B.9)

i inf ¢ (1) > $(0) + 0,h(0)A0/2 + (inf Bt /2) (Mo /2)?

> —yA\3/16 + (v — CAe)A3/8 > 0,
when using (B.1). Therefore there exists 0 < p < \g/2 with ¢(u) =0,
hence putting & := (A(u), u,0) € B%H(O)

(8) = (@o(k(ﬂ),u),w(k(u),ﬂ)) = (no,w(u) +77) =1.

Choosing Ao small enough, we further obtain (B.2).
If further (B.3) is satisfied for the original X , we see from (B.5),
(B.6) and (B.8) that

10,1(0)] < CD(A0),0)| < CIDp(0)[+C || D¢ || INO0)] < Co+CAN;.
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Proceeding as above with (B.7) and (B.9), we calculate
Jiminf 4h(u) 2 9(0) + G,a(0)Ao/2 + (inf Buth/2) (Mo /2)?
—A0

> —yA\2/16 — (Co + CAN )N + (v — CAe)NE/8

> (v/16 — CAe — Cory' — CAN)A > 0,
when using (B.3). Therefore there exists —\o/2 < i < 0 with (i) =
0 , hence putting & := (A(i2),[1,0) € B%”(O) , we get ®(€) =
nand pp < 0. q.e.d.
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