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QUASIGEODESIC FLOWS

AND MÖBIUS-LIKE GROUPS

Steven Frankel

Abstract

If M is a hyperbolic 3-manifold with a quasigeodesic flow, then
we show that π1(M) acts in a natural way on a closed disc by
homeomorphisms. Consequently, such a flow either has a closed
orbit or the action on the boundary circle is Möbius-like but not
conjugate into PSL(2,R). We conjecture that the latter possibility
cannot occur.

1. Introduction

1.1. Background and motivation. In 1950, Seifert asked whether ev-
ery nonsingular flow on the 3-sphere has a closed orbit [15]. Schweitzer
gave a counterexample in 1974 and showed more generally that every
homotopy class of nonsingular flows on a 3-manifold contains a C1 rep-
resentative with no closed orbits [16]. Schweitzer’s examples were gen-
eralized considerably and it is known that the flows can be taken to be
smooth [12] or volume-preserving [11].

On the other hand, Taubes’ 2007 proof of the 3-dimensional Wein-
stein conjecture shows that flows satisfying certain geometric constraints
must have closed orbits [17]. Explicitly, Taubes showed that every Reeb
vector field on a closed 3-manifold has a closed orbit. Reeb flows are
geodesible, i.e. there is a Riemannian metric in which the flowlines are
geodesics. Complementary to this result, though by different methods,
Rechtman showed in 2010 that the only geodesible real analytic flows
on closed 3-manifolds that contain no closed orbits are on torus bundles
over the circle with reducible monodromy [14].

Geodesibility is a local condition, and furthermore one that is not
stable under perturbations. By contrast, a nonsingular flow is said to
be quasigeodesic if the flowlines of the flow pulled back to the universal
cover are quasigeodesics. This is a macroscopic condition, and when
the ambient 3-manifold is hyperbolic it is a stable condition under C0

perturbations; this stability is for global topological reasons and not
because the flow itself is structurally stable (which it will not typically
be).
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Calegari conjectured in 2006 that quasigeodesic flows on closed hyper-
bolic 3-manifolds should all have closed orbits, and moreover that every
homotopy class of quasigeodesic flow should contain a pseudo-Anosov
representative that is unique up to isotopy. Pseudo-Anosov flows are
hyperbolic and therefore structurally stable, so this conjecture implies
that one should be able to deduce the existence of closed orbits from the
dynamics of the fundamental group on the orbit space in the universal
cover.

Our paper is devoted to fleshing out some aspects of Calegari’s con-
jectural program. We are able to find conditions that guarantee the
existence of a closed orbit for a quasigeodesic flow on a closed hyper-
bolic 3-manifold expressed in terms of the action of the fundamental
group on an associated “universal circle.”

1.2. Statement of results. A quasigeodesic is a map from R to a
metric space X with bounded distortion. That is, distances as measured
in X and in R are comparable on the large scale up to a multiplicative
constant (see Section 2.1 for a precise definition).

A nonsingular flow F on a 3-manifold M is said to be quasigeodesic

if, after pulling back to a flow F̃ on the universal cover M̃ , the flowlines

of F̃ are quasigeodesics in M̃ . If M is compact, this depends not on a
choice of metric on M but only on the isotopy class of F.

We restrict attention in the sequel to the generic situation that M is
a closed hyperbolic 3-manifold; equivalently that M is irreducible and
the fundamental group of M is infinite and does not contain Z⊕ Z.

If F is a quasigeodesic flow on such a 3-manifold, then the orbit space
P is homeomorphic to a plane and the fundamental group π1(M) acts

on P as the quotient of the deck group action on M̃ . The existence of a
closed orbit is equivalent to the existence of a fixed point in P for some
nontrivial element of π1(M).

Calegari showed that the action of π1(M) on P induces an action
on a “universal circle” Su that is homeomorphic to S1. Our first main
result is a natural compactification of P as a closed disc P in such a way
that the boundary of P is the universal circle. This answers a question
of Calegari in [2].

Compactification Theorem. There is a natural compactification
P of P homeomorphic to the closed disc so that ∂P = Su. The action
of π1(M) on P extends to P and restricts to the universal circle action
on ∂P .

This will follow from Section 7.2 where we prove a more general result:
If D is a decomposition of the plane P into closed, unbounded sets, then
there is a natural compactification of P as a closed disc P such that the
ends of each decomposition element appear as points in ∂P and distinct
ends remain as separated as possible.
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A group of homeomorphisms of the circle is said to be Möbius-like
if each element is topologically conjugate to a Möbius trasformation,
i.e. conjugate to an element of PSL(2,R) acting in the standard way
on RP 1. A Möbius-like group is rotationless if each element has a fixed
point. Examples of Möbius-like actions are those of convergence groups
but it is known by the work of Casson-Jungreis, Gabai, Mess, Tukia,
et al. that convergence groups are globally conjugate to subgroups of
PSL(2,R). Our second main result concerns the action of π1(M) on
the circle ∂P .

Möbius-like Theorem. Let F be a quasigeodesic flow on a closed
hyperbolic 3-manifold M . Suppose F has no closed orbits. Then the ac-
tion of π1(M) on the universal circle S+

u (or S−
u or Su) is a rotationless

Möbius-like group.

As a counterpoint to this theorem we have the following.

Conjugacy Theorem. Let F be a quasigeodesic flow on a closed hy-
perbolic 3-manifold M . Suppose F has no closed orbits. Then the action
of π1(M) on S+

u (or S−
u or Su) is not conjugate into PSL(2,R).

1.3. Future directions. The only known examples of Möbius-like
groups which are not conjugate into PSL(2,R) were constructed by
Kovacevic [10]. However, it seems unlikely that the actions arising from
quasigeodesic flows could be of this type. Therefore we conjecture:

Conjecture 1.1. The action of π1(M) on the universal circle ∂P is
not Möbius-like.

A positive answer to this conjecture implies the aforementioned con-
jecture that all quasigeodesic flows on closed hyperbolic 3-manifolds
have closed orbits.

One possible route to this conjecture is as follows. The quasigeodesic
property is stable under perturbations, so F can be approximated by an-
other quasigeodesic flow F′ with closed orbits. The corresponding fixed
points in P ′ imply that the action on ∂P ′ is not Möbius-like. If the
action on ∂P ′ could be shown to be structurally stable, then we would
deduce that F had a closed orbit as well. We plan to pursue this idea in
a future paper.
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his extensive input on the exposition and organization of this paper.
Thanks to Dongping Zhuang for helpful comments and for correcting
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Mullen, and Henry Wilton for helpful conversations and correspondence.
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2. Quasigeodesics and flows

2.1. Quasigeodesics.

Definition 2.1. Let k, ǫ be non-negative constants. A curve γ : R →
X in a metric space (X, d) is a (k, ǫ)-quasigeodesic if we have

1/k · d(γ(x), γ(y)) − ǫ ≤ |x− y| ≤ k · d(γ(x), γ(y)) + ǫ

for all x, y ∈ R. A curve is called a quasigeodesic if it is a (k, ǫ)-
quasigeodesic for some constants k, ǫ.

If γ is parametrized by arc length and X is a geodesic space, then the
left inequality is always satisfied.

The property of being a quasigeodesic is invariant under bilipschitz
reparametrization, though the constants may change. In hyperbolic space,
quasigeodesity can also be reformulated as a local condition.

Lemma 2.2 (Gromov, see [2], Lemma 3.9 and [7]). A curve γ : R →

H3 is called a c-local k-quasigeodesic if d(γ(x), γ(y)) ≥ |x−y|
k

− k for all
x, y ∈ R with |x− y| < c.

For every k ≥ 1 there is a universal constant c(k) such that every
c(k)-local k-quasigeodesic is a (2k, 2k)-quasigeodesic.

Quasigeodesics in hyperbolic space are qualitatively similar to
geodesics:

Proposition 2.3 (see [8] or [1], pp. 399–404). Let γ be a quasi-
geodesic in H3. Then γ has distinct, well-defined endpoints in the sphere
at infinity, i.e. there are distinct points p, q ∈ ∂H3 such that

lim
t→∞

γ(t) = p, and

lim
t→−∞

γ(t) = q.

In addition, there are universal constants Ck,ǫ depending only on k and
ǫ such that each (k, ǫ)-quasigeodesic has Hausdorff distance at most Ck,ǫ

from the unique geodesic between its endpoints.

2.2. Quasigeodesic flows. A flow F on a manifold M is a continuous
R-action on M , i.e. a map

F : R×M → M

such that Ft(Fs(p)) = Ft+s(p) for all t, s ∈ R and p ∈ M . A flow is
called nonsingular if it has no global fixed points.

We denote the universal cover of a manifold M by M̃ . A flow F on

M lifts canonically to a flow F̃ on M̃ .

Definition 2.4. A nonsingular flow F on a manifold M is called

quasigeodesic if each flowline in F̃ is a quasigeodesic. It is called uni-
formly quasigeodesic if there are universal constants k, ǫ such that each

flowline in F̃ is a (k, ǫ)-quasigeodesic.
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It turns out that there is no need to distinguish between quasigeodesic
and uniformly quasigeodesic flows in our context:

Lemma 2.5 (Calegari, [2], Lemma 3.10). Let F be a quasigeodesic
flow on a closed hyperbolic 3-manifold M . Then F is uniformly quasi-
geodesic for some constants k, ǫ.

The quasigeodesic property for flows is stable under C0 perturbations
because of this lemma and the fact that quasigeodesity of flowlines is a
local condition. This is in contrast with the geodesible property.

A smooth reparametrization of a flow on a compact space is bilip-
schitz when restricted to each flowline and hence preserves quasigeode-
sity. Therefore we are mostly interested in the corresponding foliation by
flowlines. We will use the same symbol F to refer to both a flow and its
corresponding foliation and write l ∈ F to mean that l is a flowline/leaf
of F.

Example 1 (Zeghib, [20]). Let M be a closed surface bundle over
the circle. Then any flow that is transverse to the foliation by surfaces
is quasigeodesic.

Example 2 (Fenley-Mosher, [5]). Any closed hyperbolic 3-manifold
with nontrivial second homology admits a quasigeodesic flow.

Let M be a closed hyperbolic 3-manifold with a quasigeodesic flow
F. By Lemma 2.5 and Proposition 2.3, the maps

e± : M̃ → ∂H3

that send each point to the positive/negative end of the corresponding
flowline are continuous. In fact, the existence of these maps characterizes
quasigeodesic flows.

Theorem 2.6 (Calegari, Fenley-Mosher). Let M be a closed hyper-
bolic 3-manifold with a flow F. Then F is quasigeodesic if and only if
the maps e± are well defined and continuous and e+(p) 6= e−(p) for all

p ∈ M̃ .

The “if” direction is [5], Theorem B and the “only if” direction is
[2], Lemma 4.3.

3. Main results

In this section we state and prove our main theorems modulo certain
technical details which are relegated to Sections 4–7.

3.1. The orbit space. Fix a closed hyperbolic 3-manifold M with a

quasigeodesic flow F. Lift to a flow F̃ on the universal cover M̃ ≃ H3.

The orbit space P is the set of flowlines in F̃ with the quotient topology

obtained from M̃ by collapsing each flowline to a point. The action of
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π1(M) on H3 preserves the foliation F̃, so it descends to an action on
P . The orbit space is homeomorphic to the plane ([2], Theorem 3.12)
and the two endpoint maps

e± : P → ∂H3

that send each flowline to its positive/negative endpoint in ∂H3 are
continuous ([2], Lemma 4.3).

The maps e± are between manifolds of the same dimension. However,
they are far from being locally injective. In fact:

Proposition 3.1 (Calegari, [2], Lemma 4.8). Let F be a quasigeodesic
flow in a closed hyperbolic 3-manifold M and let p ∈ ∂H3. Then each
component of (e±)−1(p) is unbounded.

The point preimages of the maps e± give rise to interesting structure
on P .

Definition 3.2. A closed, connected, unbounded set in the plane is
called an unbounded continuum.

An unbounded decomposition of the plane P is a collection of un-
bounded continua covering P such that distinct decomposition elements
are disjoint.

A generalized unbounded decomposition of the plane P is a collection
of unbounded continua covering P such that distinct decomposition
elements intersect in a compact set.

The sets

D± := {components of (e±)−1(p)|p ∈ ∂H3}

are unbounded decompositions of the orbit space by Proposition 3.1.
The set

D = D+ ∪D−

is a generalized unbounded decomposition by the following lemma.

Lemma 3.3. Let A be a compact subset of the space ∂H3 × ∂H3 \∆
where ∆ is the diagonal. Then the preimage of A under the map

e+ × e− : P → ∂H3 × ∂H3

is compact.

Proof. There is a compact set K ⊂ H3 that intersects every geodesic
whose endpoints are a pair in A. Recall that there is a uniform constant
C such that each flowline has Hausdorff distance at most C from the
geodesic with the same endpoints (Lemma 2.5 and Proposition 2.3), so
the flowlines whose ends are pairs in A all intersect the C-neighborhood,
L, of K. The preimage of A is contained in the projection of L to the
orbit space and hence compact. q.e.d.

In the sequel we will concentrate on D+ for notational simplicity.
Everything we say works, mutatis mutandis, for D− and D.
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3.2. Universal circles for quasigeodesic flows. To each decomposi-
tion element K ∈ D+ we associate the set of ends E(K) (see Section 4,
especially Definition 4.1 for a discussion of ends and a precise defini-
tion). We lump together the ends of all of the positive decomposition
elements in one set

E+ :=
⋃

K∈D+

E(K).

The action of π1(M) on P preserves the decomposition D+ so it induces
an action on E+.

In Section 6.2 we will show that the sets of ends E+ comes with a
natural circular order that is preserved by the action of π1(M). This has
the nice property that we can tell whether K ∈ D+ separates L,M ∈
D+ in P by whether E(K) separates E(L) and E(M) in the circular
order (Proposition 6.9). In addition, after taking the order completion
and collapsing some intervals (Section 7.1), we can form the positive
universal circle S+

u , which is homeomorphic to S1. There is an order-
preserving map

φ : E+ → S+
u ,

with dense image and a natural faithful action of π1(M) on S+
u that is

equivariant with respect to φ.
In Section 7.2 we show that there is a natural end compactification

P
+
of P with respect to the decomposition D+. This is homeomorphic

to a closed disc with boundary ∂P
+
= S+

u . The action of π1(M) on P

extends to an action on P
+
that restricts to the universal circle action

on S+
u .

Replacing D+ with D− or D yields the compactifications P
−
and P .

3.3. Closed orbits. A fixed point p ∈ S1 of g ∈ Homeo+(S1) is at-
tracting if there is a neighborhood U of p such that for every open
interval I ⊂ U containing p we have g(I) ⊂ I. It is repelling if instead
we have I ⊂ g(I). A fixed point is indifferent if it is neither attracting
nor repelling. If g ∈ Homeo+(S1) has two fixed points, then they are
either both indifferent or an attracting-repelling pair.

Theorem 3.4. Let M be a closed hyperbolic 3-manifold with a quasi-
geodesic flow F. Fix an element g ∈ π1(M) and suppose that g acts on
S+
u (or S−

u , or Su) with either more than two fixed points, two indiffer-
ent fixed points, or no fixed points. Then F has a closed orbit in the free
homotopy class of g.

Proof. We will prove this for S+
u . The argument is identical for S−

u

and Su.
Note that a closed orbit in the free homotopy class of g is a point in

P fixed by g.
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The action of g on ∂H3 has an attracting fixed point ag and a repelling

fixed point rg. Suppose there is a flowline γ ∈ F̃ with an endpoint at
either ag or rg. Then g has a fixed point in P . Indeed, let γ have an
endpoint at rg (replace g by g−1 if it has an endpoint at ag). Then the
endpoints of gn(γ) for n positive approach (ag, rg) so the forward orbit
of γ is bounded in P by Lemma 3.3. The Brouwer plane translation
theorem implies that g must have a fixed point in P (see [6]).

Now suppose that g has at least three fixed points x, y, z ∈ S+
u .

Choose decomposition elements K,L,M ∈ D+ that have ends in each
of the respective oriented intervals (x, y), (y, z), and (z, x) in S+

u . Let A
be a compact set intersecting K, L, and M and set B = A∪K ∪L∪M .
The image of B under e+ is compact since e+(B) = e+(A) and A is
compact. Suppose that e+(B) does not contain ag or rg. Then for suf-
ficiently large n, e+(B) ∩ gn(e+(B)) = ∅ and so B ∩ gn(B) = ∅. But
this is impossible since the ends of B and gn(B) link in S+

u and hence
B and gn(B) must intersect by Proposition 6.9. Therefore, either ag or
rg are in e+(B) and the preceding discussion yields a closed orbit. See
Figure 1 for an illustration of this argument.

The argument for two indifferent fixed points is similar. See Figure 2.
Suppose g has no fixed points in S+

u . By the Compactification Theo-
rem, the action of g on S+

u is identical to the action of g on ∂P , so by
the Brouwer fixed point theorem, g fixes a point in P . q.e.d.

A group acting on the circle is a rotationless Möbius-like group if and
only if each element acts with either one fixed point or two fixed points
in an attracting-repelling pair. The following is therefore an immediate
corollary of Theorem 3.4.

Möbius-like Theorem. Let F be a quasigeodesic flow on a closed
hyperbolic 3-manifold M . Suppose F has no closed orbits. Then the ac-
tion of π1(M) on the universal circle S+

u (or S−
u or Su) is a rotationless

Möbius-like group.

On the other hand:

Conjugacy Theorem. Let F be a quasigeodesic flow on a closed hy-
perbolic 3-manifold M . Suppose F has no closed orbits. Then the action
of π1(M) on S+

u (or S−
u or Su) is not conjugate into PSL(2,R).

Proof. Suppose that the action of π1(M) on S+
u were conjugate into

PSL(2,R). It cannot be a discrete subgroup of PSL(2,R) since then
π1(M) would be isomorphic to a surface group. The closure is a Lie
group by the Cartan lemma, so it must be all of PSL(2,R) since all
proper Lie subgroups of PSL(2,R) are solvable. But then some element
would act without fixed points since every fixed point-free element of
PSL(2,R) has a neighborhood containing only fixed point-free elements.
This contradicts the Möbius-like Theorem. q.e.d.
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P

x

z
y

A

K

L

M
e+

∂H3

ag

rg

e+(B)

x

zy

gn(A)
gn(K)

gn(L)
gn(M)

e+

ag

rg

e+(gn(B))

Figure 1. The argument for closed orbits when g has
three fixed points on S+

u .

4. Ends

The next few sections are mainly technical, and dedicated to proving
the necessary structure theorems to justify the arguments in Section 3.
The decomposition elements that arise from the endpoint maps of a
quasigeodesic flow can be arbitrarily complicated closed subsets of the
plane, so some care is needed.

Definition 4.1. Let P be homeomorphic to the plane and let K ⊂ P .
An end of K is a map

κ : {bounded subsets of P} → {nonempty subsets of K}

such that

1) for each bounded set D ⊂ P , κ(D) is a connected component of
K \D, and

2) if D′ ⊃ D are bounded subsets of P , then κ(D′) ⊂ κ(D).
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P

gn(A)

gn(K)

gn(L)

Figure 2. The corresponding argument for two indiffer-
ent fixed points.

We write E(K) for the set of ends of K. If D is a collection of subsets
of the plane we write E(D) := ∪K∈DE(K).

To specify an end, it is enough to keep track of its values on any
bounded exhaustion of P . Indeed, fix such a bounded exhaustion (Di)

∞
i=0.

For any bounded D ⊂ P , there is some i such that Di ⊃ D. Then κ(D)
is the component of K \D containing κ(Di).

Conversely, we can use this to explicitly specify an end. Let (Di) be
a bounded exhaustion of P and suppose there is a sequence (Ki) such
that each Ki is a component of K \Di and Ki+1 ⊂ Ki for all i. Then
there is a unique end κ ⊂ E(K) with κ(Di) = Ki for all i.

Lemma 4.2. Let K ⊂ P be an unbounded continuum in the plane
and let D be a bounded set that intersects K. Then some component of
K \D is unbounded.

Proof. We work in the one point compactification of the plane P̂ ≃ S2

and replace K by K̂ = K∪{∞}. Let {Ui}
∞
i=1 be a sequence of connected

open neighborhoods of K̂ with intersection ∩Ui = K̂ and let D′ be a
closed disc away from ∞ with D ⊂ int(D′). Fix a point p ∈ K̂ ∩ D′

other than ∞. For each i we can choose an arc γi : [0, 1] → Ui from p
to ∞. Take γ′i = γi([ti, 1]) where ti is the last intersection of γi with D′.
Let A be the Hausdorff limit of a convergent subsequence of the γ′i and

note that A is a compact connected subset of K̂ \D containing ∞.
Now let q be any point in A other than ∞ and find a minimal contin-

uum A′ ⊂ A containing {q ∪∞}. Suppose that A′ \ ∞ is disconnected,
i.e. A′ = B ∪ C separated. If q ∈ B, then B ∪ {∞} is a continuum
containing {q ∪∞}, contradicting the minimality of A′. So A′ \ {∞} is
contained in an unbounded subset of K \D. q.e.d.
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Proposition 4.3. Let K ⊂ P be an unbounded continuum in the
plane. Then K has at least one end.

Proof. Let (Di)
∞
i=1 be an exhaustion of the plane by nested bounded

open sets. For each i, let Ki be an unbounded component of Ki−1 \Di,
which exists by the preceding lemma. Then there is an end κ with
κ(Di) = Ki for all i. q.e.d.

If A ∈ P is unbounded but not closed, then A does not necessarily
have ends. For example:

Example 3. Let A be the set in R2 consisting of the line segment
A0 = [0, 1] × {0} together with the segments {1/n} × [0, n] for all in-
tegers n ≥ 1. After removing A0, there are no unbounded pieces left,
so E(A) = ∅. Also note that we can thicken each of the segments to an
open neighborhood to construct an example of an open unbounded set
with no ends.

On the other hand, if A ⊂ B and E(A) 6= ∅, then E(B) 6= ∅. In
particular, any set containing an unbounded continuum has an end.
The following lemma provides a converse of this for open sets.

Lemma 4.4. Let U ⊂ P be an open, connected set with at least one
end. Then there is an embedded ray γ ⊂ U that is proper in P .

Proof. If W ⊂ S2 is open, a point p ∈ ∂W is arcwise accessible from
W iff it is accessible by a connected closed set (see [19] for a definition
of arcwise accessibility and [19], Thm IV.5.1 for this statement). So it
suffices to show that there is an unbounded continuum K ⊂ U , since
then the closure of K in the one point compactification P̂ ≃ S2 is just
K ∪ {∞}.

Let µ be an end of U and fix an exhaustion of the plane by nested
compact sets (Di)

∞
i=1. For each i, choose a point xi ∈ µ(Di) and a

connected closed set Ki from xi to xi+1 contained in µ(Di). The union
K = ∪Ki is clearly connected and unbounded. It is closed since only
finitely many Ki intersect any bounded set in the plane. q.e.d.

We can characterize the ends of the components complementary to
an unbounded continuum.

Lemma 4.5. Let K ⊂ P be an unbounded continuum and let U be
an unbounded connected component of P \K. Then U has at most one
end.

Proof. Suppose on the contrary that U has two ends. Then there is a
compact set D and distinct connected components U1, U2 ⊂ U \D such
that each Ui has at least one end. Then by Lemma 4.4 there are proper
embedded rays γi ∈ Ui. Connect these rays with an arc γ′ lying in U
and let γ = γ1 ∪ γ′ ∪ γ2. Then γ is an properly embedded curve and
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by the Jordan curve theorem there is a homeomorphism of P taking γ
to the x-axis. Now K is contained in, say, the lower half plane, so the
entire upper half plane is contained in U . But there is an arc in the
upper half plane connecting γ1 and γ2, so U1 and U2 cannot be distinct.

q.e.d.

5. Circular orders

Definition 5.1. A circular ordered set is a set S with at least three
elements together with a map

〈·, ·, ·〉 : {triples of distinct elements of S} → ±1

such that for distinct x, y, z ∈ S

• (antisymmetry condition:) 〈x, y, z〉 = (−1)sgn(τ)〈τ(x), τ(y), τ(z)〉
for τ a permutation of {x, y, z}, and

• (cocycle condition:) if 〈x, y, z〉 = +1 and 〈x, z, w〉 = +1, then
〈x, y, w〉 = +1 and 〈y, z, w〉 = +1.

The triple x, y, z is said to be positively ordered if 〈x, y, z〉 = +1
and negatively ordered otherwise. A tuple x1, x2, . . . , xn is said to be
positively ordered if xi, xi+1, xi+2 is positively ordered for each i with
subscripts taken mod n+ 1.

The order topology on a circularly ordered set is the topology with
basis the open intervals

(x, y) = {t ∈ S|〈x, t, y〉 = +1}.

We define the closed intervals

[x, y] = (x, y) ∪ {x, y}

and note that [x, y] is the complement of (y, x), which we denote by
(y, x)c in the sequel.

5.1. The order completion.

Definition 5.2. A circularly ordered set S is order complete if for
any sequence I1 ⊃ I2 ⊃ . . . of nested closed intervals we have

⋂
n In 6= ∅.

Every circularly ordered set has a canonical order completion S ⊃ S
constructed as follows.

Construction 5.3. Let S be a circularly ordered set. An admissible
sequence in S is an infinite sequence of closed intervals (Ii)

∞
i=i0

such
that Ii ⊇ Ii+1 for all i and

⋂∞
i=n Ii = ∅. Let S′ be the set of equivalence

classes of admissible sequences under the following relation.
We define (Ii) ∼ (Jj) if for each n > 0 there exists k > 0 such

that Ik ⊂ Jn. This is indeed an equivalence relation. To see that it is
symmetric, suppose (Ii) ∼ (Jj) and let n > 0. Then if k is large enough
so that Jk does not contain the endpoints of In, we must have Jk ⊂ In,
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since Ik′ ⊂ Jk for large enough k′. Hence (Jj) ∼ (Ii). Reflexivity and
transitivity are obvious. Note as well that a sequence is equivalent to
any of its subsequences.

The order completion is

S = S ∪ S′.

To define the circular order on S, we can represent each point x ∈
S ⊂ S by the constant infinite sequence ([x, x]). If (Ii), (Jj), (Kk) ∈ S
are distinct, we can choose n large enough that the intervals In, Jn,Kn

are disjoint. Then choose x ∈ In, y ∈ Jn, and z ∈ Kn and define
〈(Ii), (Jj), (Kk)〉 = 〈x, y, z〉. It is easy to see that this is well-defined.

Proposition 5.4. If S is a circularly ordered set, then the order
completion S is in fact order complete. Further, S is dense in S with
the order topology.

Proof. Suppose that [(Ini ), (J
n
j )]

∞
n=1 is a nested sequence of closed in-

tervals in S. For each n, choose in so that In−1
in−1

, Inin , and In+1
in+1

are

disjoint and choose xn ∈ Inin . Choose yn ∈ Jn
jn

similarly. Then either⋂
n[xn, yn] 6= ∅ or [xn, yn] is an admissible sequence. So S is order com-

plete.
The second statement is obvious. q.e.d.

5.2. Universal circles for circularly ordered sets. A gap in a cir-
cularly ordered set S is an ordered pair x, y ∈ S such that (x, y) is
empty.

Proposition 5.5. Let S be a separable circularly ordered set with
countably many gaps. Then S is 2nd countable.

Proof. Let S′ be a countable dense subset of S and let S′′ be the
set of endpoints of gaps. Let U be the collection of open intervals with
endpoints in S′ ∪ S′′.

Suppose that U ⊂ S is open and let x ∈ U . Then x ∈ (a, b) ⊂ U for
some a, b. If (a, x) 6= ∅, then we can find a′ ∈ S′∩(a, x); otherwise a ∈ S′′

and set a′ = a. Find b′ similarly. Then (a′, b′) ∈ U and x ∈ (a′, b′) ⊂ U .
This shows that U is a (countable) basis for the order topology on E(D).

q.e.d.

Proposition 5.6. Let S be a separable circularly ordered set with
countably many gaps. Then there is an order-preserving injection

f : S → S1.

If in addition S is order complete, then f may be chosen to be a con-
tinuous map with closed image.

Proof. Let
S′ = {si}

∞
i=1
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be a countable dense subset of S that contains the endpoints of all gaps
in S. We will start by defining f on S′. Send s1 and s2 to two antipodal
points in S1. Once we have defined f for S′

n−1 = {si}
n−1
i=1 , there are

unique a, b < n such that sn is the only element of S′
n lying in (sa, sb).

Let f(sn) be the midpoint of the positively oriented interval from f(sa)
to f(sb).

Now suppose x ∈ S \ S′. Note that S is 2nd countable by Proposi-
tion 5.5, so we can find a sequence xi that approaches x, in a counter-
clockwise direction (that is, xi+1 ⊂ (xi, x) for all i). Define

f(x) = lim
i→∞

f(xi).

The clockwise limit is identical since S′ contains the endpoints of gaps,
so it is clear that this is well-defined and that f is order-preserving and
injective.

Note that if (a, b) is a maximal open interval in S1 \ f(S), then both
a and b must be contained in f(S). Indeed, otherwise we could find i
and j such that si and sj are arbitrarily close to a and b. Then for k
large enough, f(sk) would be the midpoint of the interval (f(si), f(sj))
and hence contained in (a, b).

Now suppose that S is order complete. To show that f is continuous,
it is enough to show that f(S) is closed, since if (a, b) ⊂ S1 is any open
interval, we can find x, y ∈ S such that (f(x), f(y)) ∩ f(S) = (a, b) ∩ S.
Then

f−1((a, b)) = f−1((f(x), f(y)) = (x, y).

To see that f(S) is closed, let a ∈ f(S) ⊂ S1. If a is an endpoint
of a complementary interval of f(S), then a is in S. Otherwise, a is
approached by f(S) from both sides. That is, there are sequences (xi)
and (yi) in S such that a ∈ (f(xi), f(yi)) and (xi+1, yi+1) ⊂ (xi, yi) for
all i. But S is order complete, so there must be an x ∈

⋂
[xi, yi] and

f(x) = a. q.e.d.

Construction 5.7. Let S be an uncountable and separable circularly
ordered set with countably many gaps. Then the order completion S is
homeomorphic to an uncountable closed subset of the circle. By the
Cantor-Bendixson theorem (see [9], Theorem 6.4), S = T ∪ U where
T is a closed perfect set and U is countable. We collapse the closures

of complementary intervals to T to construct the universal circle Ŝ,
which is homeomorphic to the circle. Any automorphism of a circularly

ordered set S induces a homeomorphism on Ŝ.

6. Unbounded decompositions

Throughout this section, P will be a topological space that is home-
omorphic to the plane. A collection D of disjoint subsets of the plane is
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mutually nonseparating if no one set separates the others. Equivalently,
for each K ∈ D there is a single component U of Kc such that each
L ∈ D \ {K} is contained in U .

An n-ad in the plane is a set of n mutually nonseparating unbounded
continua. We will show that any n-ad has a natural circular order in-
duced by an orientation of the plane.

Suppose D is generalized unbounded decomposition of the plane P
and E = E(D) is the corresponding set of ends. If κ, λ, µ ∈ E , then we
can find a bounded disc D such that κ(D), λ(D), and µ(D) form a triad.
Such a disc is said to distinguish the ends κ, λ, and µ.

The circular order on n-ads will induce a circular order on E .

6.1. Topological background. Let’s collect a few definitions and ob-
servations that will be useful in the next section. We will use some
classical facts from planar point-set topology; we give references in the
text and statements in the footnotes.

Lemma 6.1. Let K1,K2, . . . ,Kn ⊂ P be an n-ad in the plane. There
is exactly one component C(K1, . . . ,Kn) of (

⋃
i Ki)

c that limits on all
of the Ki. Every other component limits on only one of the Ki.

Proof. Set

C = C(K1, . . . ,Kn) =
⋂

i

Ui.

For each i, let Ui be the component of Kc
i that contains the Kj for j 6= i.

Set K ′
i := P \Ui for each i. Each K ′

i is connected by [19], Thm. I.9.11.1

Note that C = (
⋃

iK
′
i)
c.

The set C is connected since each K ′
i is nonseparating and the union

of finitely many disjoint nonseparating sets in the plane is nonseparating
([19], Thm. II.5.28a). It is a maximal connected set since any x ∈ P \⋃

i(Ki) that is not in C is separated from C by some Ki. Thus C is a

component of (
⋃

i(Ki))
c. It is clear that C intersects every Ki.

Every other component of (
⋃

i(Ki))
c is a component of Kc

i for some
i. q.e.d.

Lemma 6.2. Let K,L,M ⊂ P be a triad. Then L ⊂ C(K,M).

Proof. Note that C(K,L,M) limits on K and M , so it must be con-
tained in C(K,M). But C(K,L,M) also limits on L, so L must also be
in C(K,M). q.e.d.

Let K,M ⊂ P be closed sets in the plane. An arc from K to M is
an embedded oriented arc with initial point in K and terminal point
in M whose interior γ̊ is disjoint from K ∪ M . Note that C(K,M) is

1If C is a connected subset of a connected space M , and A is a component of
M \ C, then M \ A is connected.
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homeomorphic to the disc (by the uniformization theorem, since the
compact region bounded by any simple closed curve cannot intersect K
or M) and γ̊ ⊂ C(K,M). By the Jordan curve theorem, γ̊ separates
C(K,M) into two discs. We define C+(γ;K,M) to be the component
of C(K,M) \ γ on the positive side of γ and C−(γ;K,M) to be the
component on the negative side.

If the sets K and M are implicit, then we use the abbreviation
C±(γ) = C±(γ;K,M).

Note that C±(γ) are discs for the same reason that C(K,M) is.

Lemma 6.3. Let K,M ⊂ P be disjoint unbounded continua in the
plane and let γ be an arc from K to M . Then C±(γ;K,M) are both
unbounded.

Proof. Suppose that one of these, say C+(γ), is bounded. Then
∂C+(γ) = K ′ ∪ γ ∪ M ′ where K ′ and M ′ are bounded subsets of K
and M . Choose a point p ∈ C. Now neither K ′ nor γ separate p from ∞
in the one point compactification P̂ ≃ S2, and K ′ ∩ γ is connected. So
K ′ ∪ γ does not separate p from ∞ ([19], Thm II.5.29).2 Similarly, nei-
ther K ′∪γ nor L′ separate p from ∞, and (K ′∪γ)∩L′ is connected, so
(K ′∪γ)∪L′ does not separate p from ∞, contradicting our assumption.

q.e.d.

Lemma 6.4. Let K,M ⊂ P be disjoint unbounded continua in the
plane and let γ, γ′ be disjoint arcs from K to M . Then we can relabel γ
and γ′ as the “outer arc” γ+ and “inner arc” γ− in such a way that

1) γ+ ⊂ C+(γ−) and γ− ⊂ C−(γ+);
2) the components of C(K,M) \ (γ+ ∪ γ−) are

C+(γ+),

C−(γ+) ∩ C+(γ−),

and

C−(γ−);

3) C+(γ+) ⊂ C+(γ−) and C−(γ−) ⊂ C−(γ+); and
4) C−(γ+) ∩ C+(γ−) has no ends.

Proof. Suppose γ ⊂ C+(γ′). Then label γ+ := γ and γ− := γ′. We
need to show that

γ− ⊂ C−(γ+).

If on the contrary γ− ⊂ C+(γ+), then there is an oriented arc λ from

γ− to γ+ whose interior λ̊ is on the positive side of both γ+ and γ−.
Let λ′ be an arc from γ+ ∩ K to γ− ∩ K that misses L. Let c be the
simple closed curve consisting of λ, the segment of γ+ from λ to K with

2If x and y are points in S2 which are not separated by either of the closed sets
A and B, and A ∩ B is connected, then x and y are not separated by A ∪B.
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orientation reversed, λ′, and the segment of γ− from K to λ. Then c
separates L ∩ γ+ from L ∩ γ−, which is impossible.

If γ′ ⊂ C+(γ), then a similar argument works after setting γ+ := γ′

and γ− := γ.
This completes the proof of (1). Statements (2) and (3) follow.
Suppose that C−(γ+)∩C

+(γ−) has an end. Then by Lemma 4.4 there
is a properly embedded ray λ : [0,∞) → C−(γ+) ∩ C+(γ−). Let κ be
an arc from γ+ to γ− that intersects λ only at λ(0). Either K or L is
on the same side of κ as λ, so suppose without loss of generality that K
is. Then we can add an arc λ′ from λ(0) to L whose interior is on the
opposite side of κ. Observe that L ∪ λ ∪ λ′ separates γ+ from γ− and
hence separates γ+ ∩K from γ− ∩K, which is impossible. q.e.d.

While C−(γ+) ∩ C+(γ−) in the preceding lemma has no ends, it is
possible that it is unbounded. For example, see Figure 3 where K is
upper rectangle with the no-ended open set of Example 3 cut out.

K

L

γ+ γ
−

Figure 3. An unbounded middle region.

6.2. Circular orders on ends.

Definition 6.5. Let P be the plane with a choice of orientation and
let K,L,M be a triad in P . Choose an arc γ from K to M . Then we
define

〈K,L,M〉 = +1

if L ⊂ C+(γ) and

〈K,L,M〉 = −1

if L ⊂ C−(γ).

Proposition 6.6. The function 〈·, ·, ·〉 defines a circular order on an
n-ad in the plane.
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Proof. We will start by showing that for a triadK,L,M in P , 〈K,L,M〉
does not depend on the choice of arc γ. Note that if γ1 and γ2 are arcs
from K to M , then we can find another arc from K to M disjoint
from both of them. So we may assume without loss of generality that
γ1 and γ2 are disjoint. Relabel the arcs according to Lemma 6.4 and
suppose that L ⊂ C+(γ+). By part (4) of the lemma, L is contained
in either C+(γ+) or C

−(γ−), so 〈K,L,M〉 is well-defined by part (3) of
the lemma.

Next we’ll show that

〈K,L,M〉 = (−1)sgn(τ)〈τ(K), τ(L), τ(M)〉,

for a permutation τ of (K,L,M).
It is immediate that 〈K,L,M〉 = −〈M,L,K〉, so we just need to show

that 〈K,L,M〉 = −〈K,M,L〉. Indeed, assume that 〈K,L,M〉 = +1, i.e.
that L ⊂ C+(γ) for some arc γ from K to M . We can find an arc γ′ from
K to M that intersects L and lies on the positive side of γ. Let γ′′ be the
sub-arc of γ′ that runs from K to L. Then it is immediate that γ is on
the negative side of γ′′ and hence so is M . Therefore, 〈K,M,L〉 = −1
as desired.

It remains to show that the circular order is compatible on quadru-
ples, i.e. to verify the cocycle condition. Let K,L,M,N be a 4-ad in P .
Suppose that 〈K,L,M〉 = +1 and 〈K,N,M〉 = −1. Choose an arc γ
from K to M that avoids L and N . Then L ∈ C+(γ) while N ∈ C−(γ).
Let γ′ be an arc from L to N , which we can choose to intersect γ only
once and transversely. Then the initial segment of γ is on the nega-
tive side of γ′, hence so is K. Therefore we have 〈L,K,N〉 = −1 and
〈K,L,N〉 = +1 as desired, and similarly 〈L,M,N〉 = +1. q.e.d.

A collection of unbounded subsets in the plane is eventually disjoint
if the intersection of any two is bounded. Recall that a generalized un-
bounded decomposition of P is a collection of eventually disjoint un-
bounded continua that covers P .

Definition 6.7. Let D be a collection of eventually disjoint un-
bounded continua in the plane P with a corresponding set of ends E .
Suppose κ, λ, µ is a triple of distinct ends in E . Choose a disc D that
distinguishes these ends and define

〈κ, λ, µ〉 = 〈κ(D), λ(D), µ(D)〉.

Proposition 6.8. Let D be a collection of eventually disjoint un-
bounded continua in the plane P with a corresponding set of ends E.
The function 〈·, ·, ·〉 defines a circular order on E.

Proof. All we need to check is that the order does not depend on the
choice of disc.

Let κ, λ, µ be a triple in E and let D,D′ be bounded open discs that
distinguish κ, λ, µ. Let K = κ(D), L = λ(D), and M = µ(D) and define



QUASIGEODESIC FLOWS AND MÖBIUS-LIKE GROUPS 419

K ′, L′, and M ′ similarly. Without loss of generality we may assume that
D ⊂ D′ so that K ′ ⊂ K, etc.

Suppose that 〈K,L,M〉 = +1. Then there is an arc γ from K to M
such that L is on the positive side of γ and hence so is L′. So we can
choose an arc c from the positive side of γ to L′. Let U and V be disjoint
connected open neighborhoods of K and M that avoid L ∪ c. Choose
an arc γ0 contained in U that runs from the initial point of γ to K ′ and
an arc γ1 contained in V that runs from the terminal point of γ to M ′.
Then γ′ = γ0 ∪ γ ∪ γ1 is an arc from K ′ to M ′. The arc c exhibits that
L′ ⊂ C+(γ′), so 〈K ′, L′,M ′〉 = +1 as desired. q.e.d.

Let S be a circularly ordered set. Two pairs x, y and z, w of points in S
are linked if either z ∈ (x, y) and w ∈ (y, x) or w ∈ (x, y) and z ∈ (y, x).
Two subsets A and B in S are linked if there are x, y ∈ A and z, w ∈ B
that are linked. A subset A ⊂ S separates the subsets B,C ∈ S if there
are points a, a′ ∈ A such that B ⊂ (a, a′) and C ⊂ (a′, a). Note that this
is not the same as topological separation in S with the order topology.

Proposition 6.9. Let K,L ⊂ P be disjoint unbounded continua in
the plane. Then E(K) and E(L) do not link in the canonical circular
order on E({K,L}).

Let K,L,M ⊂ P be disjoint unbounded continua in the plane. Then
K separates L from M if and only if E(K) separates E(L) from E(M)
in the canonical circular order on E({K,L,M}).

Proof. Suppose that, contrary to the first statement, there are ends
κ1, κ2 ∈ E(K) and λ1, λ2 ∈ E(L) such that 〈κ1, λ1, κ2〉 = +1 and
〈κ1, λ2, κ2〉 = −1. Let D be a bounded open disc distinguishing the
κi(D) and λj(D) and choose an oriented arc γ from κ1(D) to κ2(D)
that avoids L. Then λ1(D) and λ2(D) are on the same side of γ since
they are both contained in L, and L is connected and disjoint from γ.

One direction in the second statement follows from the first. Suppose
that K does not separate L from M . Then we can choose an arc γ
from L to M disjoint from L and there is an order-preserving bijection
between E(L ∪ γ ∪ M) and E(L) ∪ E(M). But L ∪ γ ∪ M and K are
disjoint, so by the first statement their ends do not link; hence E(K)
does not separate E(L) from E(M).

It remains to show that if K separates L from M then there are ends
κ1, κ2 ∈ E(K), λ ∈ E(L), and µ ∈ E(M) such that λ ∈ (κ1, κ2) and
µ ∈ (κ2, κ1). Let γ be an arc from L to M and let γ′ be the minimal
connected sub-arc that contains γ ∩K. Set

K ′ := K ∪ γ′

and

K ′
± := K ′ ∩ C±(γ;L,M).
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Note that the K ′
± are both closed and connected and neither one sep-

arates L from M . Also, K ′
+ ∩ K ′

− is connected, so in order for K ′ =
K ′

+ ∪K ′
− to separate L from M , both K ′

+ and K ′
− must be unbounded

by [19], Theorem II.5.23.3 So we can choose κ1 to be any end of L such
that κ1(D) ⊂ L′

+ for sufficiently large D and similarly for κ2. q.e.d.

6.3. Useful properties of the circular order. We’ll collect a few
lemmas that will be useful later on.

Lemma 6.10. Let K ⊂ P be an unbounded continuum in the plane
and κ1, κ2, κ3 ∈ E(K) with κ2 ∈ (κ1, κ3). Suppose U ⊂ P is a connected,
bounded open set that distinguishes κ1, κ2, κ3. Then U distinguishes κ2
from any end in (κ3, κ1).

Proof. Suppose that U does not distinguish κ2 from κ4 ∈ (κ3, κ1).
Then κ2(U) = κ4(U). By Proposition 6.9, κ2 separates κ1(U) from
κ3(U), a contradiction. q.e.d.

Lemma 6.11. Let K,L and M1,M2, . . . ,Mn be disjoint mutually
nonseparating unbounded continua in the plane such that M1 ∪ · · · ∪Mn

does not separate K and L in the circular order on {K,L,M1,M2, . . . ,
Mn}. Let A be a compact set not intersecting K and L. Then there is
an arc γ from K to L that avoids the Mi and A.

Proof. It suffices to show that there is an arc avoiding the Mi and
A′ = A ∩ C(K,L,M1, . . . ,Mn). Let B be a connected compact set in-
tersecting A′ and all of the Mi and set M = A ∪ B ∪

⋃
i Mi. The ends

of M do not separate the ends of K and L, so the claim follows from
Proposition 6.9. q.e.d.

Lemma 6.12. Let K,M ⊂ P be disjoint unbounded continua in the
plane and let S ⊂ P be an embedded circle with the usual orientation
that intersects both K and M . Then there is a unique “outermost” sub-
arc γo ⊂ S that runs from K to M with orientation inherited from S
such that if γ′ is a component of S ∩ C+(γo), then the endpoints of γ′

are both in K or both in L.

Proof. Note that S \(K∪L) is a countable collection of oriented open
arcs. Let Γ be the collection of closures of these arcs. We can partition

Γ = ΓK ∪ ΓM ∪ ΓK,M ∪ ΓM,K

where
ΓK = {sub-arcs from K to itself},

ΓM = {sub-arcs from M to itself},

ΓK,M = {sub-arcs from K to M},

3If x and y are points of S2 which are not separated by either of the closed sets
A and B, and A ∩ B is connected, then x and y are not separated by A ∪B.



QUASIGEODESIC FLOWS AND MÖBIUS-LIKE GROUPS 421

and

ΓM,K = {sub-arcs from M to K}.

Let Γs = ΓK,M ∪ Γ−
M,K , where the minus means to reverse the orien-

tation of the arcs. By Lemma 6.4, there is a well-defined linear order on
Γs, where we define γ < γ′ if γ′ ⊂ C+(γ). We will show that Γs has a
maximum element and that this maximum element lies in ΓK,M .

Suppose Γs has no maximum element. Then we can find a sequence
γ0 < γ1 < γ2 < · · · in Γs such that for each γ ∈ Γs, there exists j
such that γ < γj . Then let γ∞ be the Hausdorff limit of a convergent
subsequence of the γi, which exists because S is compact. Although γ∞
is a sub-arc of S, it is not necessarily an element of Γ, since γ̊∞ might
intersect K or M . However, there is at least one sub-arc γ ⊂ γ∞ from
K to M or M to K. Then γ ∈ Γs and γi < γ for all i, a contradiction.
So there must be a maximum element γo ∈ Γ.

We now turn to showing that γo ∈ ΓK,M rather than Γ−
M,K . Let

K ′ = K ∪ (
⋃

γ∈ΓK

γ)

and

M ′ = M ∪ (
⋃

γ∈ΓM

γ).

Then K ′ and L′ are still disjoint closed, unbounded sets, so C :=
C+(γo;K

′, L′) is unbounded (by Lemma 6.3). Note that C is now dis-
joint from S, so if γo were oriented from M to K, then C would be
contained in the bounded component of P \ S, which is impossible.
q.e.d.

Lemma 6.13. Let K,L,M,N ⊂ P be disjoint, mutually nonseparat-
ing unbounded continua in the plane such that K,L,M,N is a positively
oriented quadruple, and let S ⊂ P be an embedded circle intersecting all
four sets. Then the outermost arc from K to L is disjoint from the
outermost arc from M to N .

Proof. Suppose otherwise. Without loss of generality, we have an arc
γ : [0, 1] → P such that γ([0, y]) is an arc from K to L and γ([x, 1]) is
an arc from M to N with x < y. Let µ ∈ E(M). Let U be a connected
neighborhood of M that is disjoint from K, L, N , and γ([y, 1]). Then
since 〈K,M,L〉 = −1, we see that M ′ = µ(γ) is on the negative side of
γ([0, y]) in (K ∪ L)c) and we can find an arc c from the negative side
of γ([0, y]) to M ′ that avoids K, L, and γ([y, 1]). But c certifies that
M is on the negative side of γ([0, 1]) in (K ∪ N)c, which contradicts
〈K,M,N〉 = +1. q.e.d.
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7. Universal circles and the end compactification

In this section we show that a generalized unbounded decomposition
of the plane gives rise to a natural compactification of the plane as a
closed disc. Applying this to the special case of the orbit space P of
a quasigeodesic flow and the decompositions D± or D completes the
proofs of the Compactification Theorem and the results of Section 3.3.

7.1. Universal circles for unbounded decompositions. We will
now show that if D is an uncountable, eventually disjoint collection of
closed sets in the plane, then there is a natural space Su(D) constructed
from E(D) that is homeomorphic to S1.

Lemma 7.1. Let D be an eventually disjoint collection of unbounded
continua in the plane. Then the set of ends E(D) with the canonical
circular order is separable in the order topology.

Proof. Let {Di}
∞
i=1 be an exhaustion of the plane by nested bounded

open discs. For each i, consider

P i := ∪K∈DKDi

where KDi
is the union of the unbounded components of K \Di. Since

a subspace of a separable metric space is separable, we can choose for
each i a countable set {pij}

∞
j=1 that is dense in P i. Now for each i, j,

let Ki
j ∈ D+ be the decomposition element containing pij and choose an

end κij such that κij(Di) is the component of Ki
j \Di that contains pij .

Now let
E ′ = {κij}i,j .

We will show that E ′ is dense in E . Indeed, let κ, µ ∈ E(D) and
assume that (κ, µ) contains at least one end, λ. Choose D large enough
to distinguish κ, λ, and µ and let

K = κ(D),

M = µ(D).

Let γ be an arc from K to M and choose i large enough so that Di

contains D and γ. Set U := C+(γ;K,M). Now U ∩ KDi
is an open

subset of Di and it is nonempty because it contains λ(Di). So pij is

contained in U for some j. The corresponding end κij is contained in

(κ, µ), since κij(Di) is contained in U . q.e.d.

Recall that a gap in a circularly ordered set S is an ordered pair
of distinct elements x, y ∈ S such that the open interval (x, y) ⊂ S is
empty.

Lemma 7.2. Let D be an eventually disjoint collection of unbounded
continua in the plane. Then the set of ends E(D) has at most countably
many gaps.
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Proof. Let {Di}
∞
i=1 be an exhaustion of P by bounded open discs

and let Sj
i = ∂Di for all i > j (j is a dummy variable, i.e. we want to

keep track of all of the circles outside of j for each j). If (κ, λ) form a
gap, then let n be the first integer such that κ(Dn) 6= λ(Dn) and let
k be the first integer such that Sn

k intersects both κ(Dn) and λ(Dn).
We can associate to the gap (κ, λ) the open interval Uκ,λ ⊂ Sn

k whose
closure is the outermost arc from κ(Dn) to λ(Dn) (see Lemma 6.12),
and distinct gaps correspond to disjoint open intervals in {Si

j}0<i<j (see

Lemma 6.13). There can only be finitely many such open intervals and
thus only countably many gaps. q.e.d.

Construction 7.3. Let D be a generalized unbounded decomposi-
tion of the plane P . Then the corresponding set of ends E = E(D) is
an uncountable circularly ordered set with countably many gaps that
is separable in the order topology. We can construct a universal circle

Su(D) = Ê as in Construction 5.7. Note that any homeomorphism of P
preserving the decomposition D induces a natural homeomorphism on
Su.

Example 4. It is appealing to think that the image of the set of ends
of a decomposition element in the universal circle is closed, but this is
not generally true. For example, the set in Figure 4 has no rightmost
end.

Figure 4. An unbounded continuum with no rightmost end.

These results fill a gap in the literature. See [2] and compare with
[18], Section 2.1.3. Note that not all circularly ordered sets admit a
universal circle constructed this way. For example, take S1×{0, 1} where
each S1 × {i} has the usual circular order and (s, 1) is immediately
counterclockwise to (s, 0) for all s ∈ S1. This has uncountably many
gaps and is not 2nd countable.

7.2. The end compactification. Throughout this section D will be
an unbounded generalized decomposition of the plane P . Endow the set
of ends E := E(D) with the canonical circular order and let S := Su(D)



424 S. FRANKEL

be the corresponding universal circle. If A ⊂ E , we will denote by Â the
corresponding set in S.

Definition 7.4. A set K ⊂ P is said to be subordinate to the de-
composition D if K = κ(A) for some end κ ∈ E(D) and bounded open
set A ⊂ P .

If K = κ(A) is subordinate to D and K ′ ∈ D is the decomposition
element containing K, then we can identify E(K) with the subset of
E(K ′) consisting of ends κ′ such that κ′(A) = K. We will thus write
E(K) ⊂ E(D).

Construction 7.5. We will construct a space P , called the end com-
pactification of P with respect to D. If there is a possibility of confusion
about which decomposition we are working with, then we will write PD.

As a set, P := P ∪ S.
Suppose that K and L are disjoint sets subordinate to D and γ is an

arc from K to L. Let I be the maximal open interval in S running from

Ê(K) to Ê(L) with positive orientation. The set

O(K,L, γ) := I ∪ C+(γ;K,L)

is called the peripheral set determined by K, L, and γ.
The topology on P is the coarsest topology containing all open sets

in P and all peripheral sets.

Note that it is possible that O(K,L, γ) ∩ S = ∅, i.e. that the interval
I above may be empty. For example, take K to be the set in Example 4
and L its mirror image.

In the following discussion we will often need to find subordinate
elements with ends in a specified set. We’ll start with some observations
in this direction that will be used casually in the sequel.

If (a, b) ⊂ S is any open interval, then we can find a set L subordinate
to D such that E(L) ⊂ (a, b). Indeed, since E(D) has dense image in S,
we can find ends κ, λ, µ ∈ E(D) with image in (a, b) such that 〈κ, λ, µ〉 =
+1. Let D be a bounded open disc that distinguishes these three ends.
Then by Lemma 6.10, L := λ(D) satisfies our requirement. In addition,
by choosing D sufficiently large, we can ensure that L is disjoint from
any specified bounded set.

In addition, if K1, . . . ,Kn are subordinate sets with ends outside of
(a, b) then we can choose L disjoint from

⋃
Ki. Indeed, if Ki = κi(Di),

then choose D to contain
⋃

iDi.

Proposition 7.6. Let D be a generalized unbounded decomposition
of the plane P and let P be the end-compactification of P with respect
to D. Then

1) P has a basis consisting of open sets in P and peripheral sets,
2) P is 1st countable, and
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3) the inclusion maps P →֒ P and Su →֒ P are homeomorphisms.

Proof. Given p ∈ S ⊂ P , we will construct a sequence of peripheral
sets Ui that is eventually contained in any peripheral set containing p.

Fix an exhaustion of the plane by bounded sets Di and a sequence of
open intervals (ai, bi) in S such that [ai+1, bi+1] ⊂ (ai, bi) for all i and⋂

i(ai, bi) = p. Let K0 and L0 be subordinate sets with ends in (a0, a1)
and (b1, b0) respectively and let γ0 be an arc from K0 to L0. Set

U0 = O(K0, L0, γ0).

For each i choose subordinate sets Ki and Li with ends in (ai, ai+1)
and (bi+1, bi) respectively that are disjoint from Di, Ki−1, Li−1, and
γi−1. By Lemma 6.11 we can find an arc γi from Ki to Li that is con-
tained in Ui−1. Setting

Ui = O(Ki, Li, γi)

we have Ui ⊂ Ui−1 and Ui ∩Di = ∅.
Now suppose that U is a peripheral set containing p. Then the Ui

are eventually contained in U . Indeed, U = O(κ(D′), λ(D′′), γ) for some
κ, λ, D′, D′′, and γ. Let D be a compact disc containing D′,D′′, and
γ. Choose I large enough so that (aI , bI) ⊂ U ∩ V and DI ⊃ D. Then
Ui ⊂ U for all i > I.

To prove (1) it suffices to show that if U and V are either peripheral or
open in P and p ⊂ U ∩V , then there is a set W that is either peripheral
or open in P such that p ∈ W ⊂ U ∩ V . If p ∈ P , then this is obvious,
so assume that p ∈ S and U and V are both peripheral. Simply choose
i large enough so that Ui ⊂ U ∩ V .

Now that we know (1), the construction above yields a countable
basis about any point in S, and (2) follows.

For (3), it is clear that the inclusion P →֒ P is a homeomorphism.
Let i : Su →֒ P . It is clear that the preimage of an open set under i

is open. On the other hand, suppose that U ∈ Su is open and let p ∈ U .
Choose points a, b, c, d ∈ Su such that a, b, p, c, d is positively oriented
and let K and L be subordinate sets whose ends lie in (a, b) and (c, d)
respectively. Let γ be an arc from K to L. Then O(K,L, γ) ∩ ∂P is
contained in i(U), so i(U) is open. q.e.d.

We can now make sense of the term “end compactification.”

Proposition 7.7. Let D be a generalized unbounded decomposition
of the plane P . Then the end compactification P with respect to D is
compact.

Proof. Let U be an open cover of P̃D. Since S is compact, we can find a
finite subcollection {U1, U2, . . . , Un} ⊂ U that covers S. After reordering
and taking a refinement, we can assume that each Ui is a peripheral
set Ui = O(Ki, Li, γi) such that Ki, Li−1,Ki+1, Li is positively ordered
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for all i (mod n + 1). Further, we can assume that the arcs γi do not
intersect the Kj and Lk for any i, j, k and that γi intersects γi+1 only
once, transversely, for all i. See Figure 5.

P

Ki

Li−1

Ki+1

Li

γi

γi−1

γi+1

...

...

Figure 5. A refinement covering S.

We can concatenate the sub-arcs between intersections of the γi to
form a simple closed curve γ. Points on the negative side of γ are con-
tained in at least one of the Ui and the positive side of γ is compact. So
we can find a finite sub-cover of U that covers this compact piece and
the rest is covered by the Ui. q.e.d.

We use the abbreviation clX(Y ) for the closure of Y in X.

Lemma 7.8. Let K be subordinate to the decomposition D. Then

clP (K) = K ∪ clS(Ê(K)).

Proof. It is clear that clP (K) ∩ P = K, so let p ∈ S. If p is not in

clS(Ê(K)), then we can find a peripheral set containing p that does not
intersect K, so p /∈ clP (K). q.e.d.

Theorem 7.9. Let D be a generalized unbounded decomposition of
the plane P and let S be the corresponding universal circle. Then the
end compactification P is homeomorphic to a closed disc with boundary
S. Additionally, any homeomorphism of P that preserves D extends to
a homeomorphism of P .

Proof. The second statement follows from the fact that the image
of a peripheral set under a D-preserving homeomorphism is again a
peripheral set. To prove that P is a closed disc, we will use the following
theorem. An arc γ with endpoints a, b is said to span a set S ⊂ X if
a, b ∈ S and γ̊ ⊂ X \ S.
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Theorem 7.10 (Zippin, [19], Theorem II.5.1). Let X be a connected,
compact, 1st countable Hausdorff space. Suppose that there is a 1-sphere
S ∈ X such that there exists an arc in X spanning S, every arc that
spans S separates X, and no closed proper subset of an arc spanning S
separates X. Then X is homeomorphic to a closed 2-disc with boundary
S.

It is clear that P is connected and Hausdorff, and we have already
shown that it is 1st countable and compact. Let’s check the remaining
conditions.

Existence of a spanning arc: Let p ∈ S. As in the proof of 1st
countability, we can find a sequence {Ui} of nested open neighborhoods
of p such that ∩Ui = p and Ai = Ui \ Ui+1 is an open disc. Choose a
point pi ∈ γi for each i and let ci be an arc lying in Ai that connects
pi to pi+1. The concatenation of these arcs is a proper ray since the ci
are eventually disjoint from any bounded set in P . The closure of this
ray is an arc from c0 to p. Construct two such rays and connect their
endpoints with an arc in P .

Spanning arcs separate: Let γ be an arc spanning S with initial
point a and terminal point b. Note that γ̊ is a properly embedded curve
in P , so it separates P into two unbounded discs by the Jordan curve
theorem. Let D+ and D− be the discs on the positive and negative sides
of γ respectively. We will show that γ separates P into

D′
+ = D+ ∪ (a, b)

and

D′
− = D− ∪ (b, a).

Note that this statement is a little more than what we need: it also says
that the orientations work out as expected.

Let Ua and Ub be peripheral sets containing a and b respectively. We
may assume that (x, y) = Ua ∩ S and (z, w) = Ub ∩ S are disjoint.
Since the part γ′ of γ lying outside of Ua ∪ Ub is bounded, we can
find a subordinate set K whose ends lie in (y, z) that is disjoint from
Ka, La, µa,Kb, Lb, µb and γ′ and therefore disjoint from γ. Similarly, find
L with ends in (w, x) that is disjoint from γ.

Suppose that γ did not separate K from L. Then we could find an
arc µ from K to L disjoint from γ. But then b ∈ O(K,L, µ) while
a /∈ O(K,L, µ), implying that γ must intersect ∂O(K,L, µ), contrary to
our assumption. So γ must separate K from L.

Now let µ be an arc from K to L that intersects γ once and trans-
versely. Then K is on the positive side of γ while L is on the negative
side. Note that K and L are connected since K and L are connected,
so D′

+ and D′
− are connected.



428 S. FRANKEL

A similar argument shows that every point in (a, b) has a neighbor-
hood contained in D′

+ and every point in (b, a) has a neighborhood
contained in D′

−. This suffices to show that D′
+ and D′

− are separated.
No subset of a spanning arc separates: This is now obvious.

q.e.d.
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