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ON A GENERALIZATION OF
A THEOREM OF MCDUFF

G. Deltour

Abstract

We study the symplectic structure of the holomorphic coad-
joint orbits, generalizing a theorem of McDuff on the symplectic
structure of Hermitian symmetric spaces of noncompact type.

1. Introduction

In this article, we are interested in the symplectic structure of holo-
morphic coadjoint orbits.

Let G be a noncompact, connected, real semisimple Lie group with
finite center, and let K be a maximal compact subgroup of G. We de-
note by g and k the Lie algebras of G and K respectively. The maximal
compact subgroup K is connected and corresponds to a Cartan decom-
position g = k⊕ p on the Lie algebra level; see for instance [6]. Assume
that G/K is a Hermitian symmetric space, that is, there exists a G-
invariant complex structure on the manifold G/K. Let T be a maximal
torus in K and t its Lie algebra. We fix a Weyl chamber t∗+ ⊂ t∗ for the
compact group K. We recall that a coadjoint orbit O of the noncompact
group G is called elliptic if O intersects k∗.

Any coadjoint orbit O carries a canonical G-invariant symplectic form
ΩO, called the Kirillov-Kostant-Souriau symplectic form on O. If O =
G · λ is the coadjoint orbit through λ ∈ g∗, the symplectic form ΩG·λ is
defined above λ by

(ΩG·λ)|λ(X,Y ) := 〈λ, [X,Y ]〉, for all X,Y ∈ g/gλ,

where we identify canonically the tangent space Tλ(G·λ) with the vector
space g/gλ. For instance, considering the homogeneous space G/K as
the coadjoint orbit of some generic element of the center of k∗, the
Kirillov-Kostant-Souriau form defines a natural G-invariant symplectic
structure on the Hermitian symmetric space G/K, which is compatible
with the G-invariant complex structure on G/K.

Actually, the Hermitian symmetric spaces form a part of a much
larger family of Kähler coadjoint orbits, called holomorphic coadjoint
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orbits. They are the coadjoint orbits which are related to the holomor-
phic discrete series of G.

More precisely, a holomorphic coadjoint orbit is an elliptic coadjoint
orbit O of G which carries a canonical G-invariant Kähler structure,
compatible with the Kirillov-Kostant-Souriau symplectic structure on
O. The holomorphic coadjoint orbits are parametrized by a subcham-
ber Chol of t

∗
+, called the holomorphic chamber. This chamber can be

formally defined using noncompact roots of G; see section 2.2. This def-
inition has the following consequence: if λ ∈ Chol, then the stabilizer
Gλ of λ in G is compact (that is, the coadjoint orbit G · λ is strongly
elliptic). In particular, when Gλ = K, the holomorphic coadjoint orbit
G · λ coincides with the Hermitian symmetric space G/K.

In the 80s, McDuff [8] proved that any Hermitian symmetric space of
noncompact type is diffeomorphic, as a symplectic manifold, to a sym-
plectic vector space. This yields a global version of Darboux’s theorem
for every Hermitian symmetric space.

Our purpose is to extend McDuff’s Theorem to any holomorphic
coadjoint orbit.

First of all, we introduce our symplectic model for general holomor-
phic coadjoint orbits of G, which extends the symplectic vector space
model obtained for the Hermitian symmetric space case.

Let λ ∈ Chol. Using the Cartan decomposition on the Lie group
G, we know that the manifold structure of G · λ is K-equivariantly
diffeomorphic to the product K · λ × p, on which K acts diagonally.
These two manifolds admit canonical symplectic structures ΩG·λ and
ΩK·λ×p = ΩK·λ ⊕ Ωp (direct product of two symplectic forms), where
ΩK·λ denotes the Kirillov-Kostant-Souriau symplectic form on the com-
pact coadjoint orbit K · λ, and Ωp is a K-invariant constant symplectic
form on the vector space p (its definition is given in section 2.3).

The main goal of this article is to prove the following generalization
of McDuff’s Theorem, conjectured by Paradan in [11].

Theorem 1.1. Let λ ∈ Chol. Then there exists a K-equivariant dif-
feomorphism from G · λ onto K · λ× p which takes the symplectic form
ΩG·λ on G · λ to the symplectic form ΩK·λ×p on K · λ× p.

Remark 1.1. As we will see in the proof of Theorem 1.1, we can
assume that the diffeomorphism, obtained in the above statement, also
satisfies that each element kλ ∈ K ·λ ⊂ G·λ is sent to (kλ, 0) ∈ K ·λ×p.

The symplectic manifolds (G · λ,ΩG·λ) and (K · λ× p,ΩK·λ×p) actu-
ally have Hamiltonian K-manifold structures given respectively by the
moment maps ΦG·λ : ξ ∈ G · λ ⊆ g∗ 7→ ξ|k ∈ k∗ (that is, the standard
orbit projection of G · λ on k∗), and

ΦK·λ×p : K · λ× p → k∗

(ξ, v) 7→
(
X ∈ k 7→ 〈ξ,X〉 + 1

2Ωp(v, [X, v])
)
.
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Let ∆K(G ·λ) := ΦG·λ(G ·Λ)∩ t∗+ and ∆K(K ·λ× p) := ΦK·λ×p(K ·λ×
p) ∩ t∗+ denote the associated moment polyhedra. Theorem 1.1 has the
following direct consequence, originally proved by Nasrin (for λ in the
center of k∗) and Paradan in totally different ways [10, 11].

Corollary 1.2 (Nasrin, Paradan). Let λ ∈ Chol. Then

∆K(G · λ) = ∆K(K · λ× p).

This new description of the moment polyhedron ∆K(G · λ) allows us
to describe its faces, using GIT methods on the second setting [2].

This article is completely dedicated to the proof of Theorem 1.1. In
section 2, we introduce the notion of holomorphic coadjoint orbit and
some other preliminary facts about Cartan decomposition of G. The
main tool, constructing symplectomorphisms by a Moser argument on
a special noncompact setting, is given in section 3. It uses the properness
of the involved moment maps so as to be able to integrate a particular
vector field on the noncompact manifold K ·λ× p. Theorem 1.1 is then
proved in section 4 for the case of Hermitian symmetric spaces, and
section 5 achieves the general proof.

Acknowledgements. I would like to thank Paul-Émile Paradan for our
many discussions and his precious help. I thank the referees for their
helpful comments which improved the presentation of this article.

2. Preliminaries

In this section, we set some definitions and notations. From now on,
let G be a noncompact, connected, real semisimple Lie group with finite
center, and g its Lie algebra.

2.1. Properties of the Cartan decomposition. Here, we recall some
facts about Cartan decomposition of G, and establish two lemmas. A
good exposition on Cartan decomposition of real semisimple Lie groups
can be found in [6, Chapter VI].

Since g is semisimple, there exists a Cartan involution θ on g. We
recall that a Cartan involution on the Lie algebra g is an involutive Lie
algebra automorphism θ of g such that the symmetric bilinear form Bθ

defined by

Bθ(X,Y ) = −Bg(X, θ(Y )), for all X,Y ∈ g,

is positive definite on g. Here, Bg denotes the Killing form on g.
Let k (resp. p) be the eigenspace of θ with eigenvalue 1 (resp. −1).

From the definitions, we have the Cartan decomposition g = k⊕p and the
inclusions [k, k] ⊆ k, [p, p] ⊆ k, and [k, p] ⊆ p. Then k is a Lie subalgebra
of g.

Let K be the connected Lie subgroup of G with Lie algebra k. Then,
K is a maximal compact subgroup of G, and we have a K-invariant
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diffeomorphism K×p → G, (k, Z) 7→ eZk, known as the Cartan decom-
position on the Lie group G.

Fix λ ∈ k∗ such that its stabilizer in G is compact, that is, Gλ = Kλ.
Then the Cartan decomposition induces theK-invariant diffeomorphism

Γ : K · λ× p −→ G · λ
(ξ, Z) 7−→ eZξ.

We can identify the tangent bundle of the homogeneous space G · λ
(resp. K ·λ) with the manifold G×Gλ

g/gλ (resp. K ×Kλ
k/kλ) by using

the diffeomorphism

G×Gλ
g/gλ −→ T (G · λ)

[g,X mod gλ] 7−→ d
dt
(getXλ)|t=0

(resp. K×Kλ
k/kλ → T (K ·λ), [k,X mod kλ] 7→

d
dt
(ketXλ)|t=0). Since Γ

is defined in terms of the exponential function, its derivative will involve
the linear endomorphisms of g

(1) ΨZ :=

∫ 1

0
e−s ad(Z)ds =

+∞∑

n=0

(−1)n ad(Z)n

(n+ 1)!
,

defined for all Z ∈ g. For Z ∈ g, the derivative of exp at Z is given by
the equation

(2)
d

dt

(
exp(Z + tX)

)
|t=0 =

d

dt

(
eZ exp(tΨZ(X))

)
|t=0, ∀X ∈ g.

See for example [3, Theorem 1.5.3]. We can now compute the derivative
of Γ at any point of K · λ× p.

Lemma 2.1. For all (kλ,Z) ∈ K · λ × p and all (X,A) ∈ k/kλ ⊕ p,
we have

(3) dΓ(kλ,Z)([k,X], A) = [eZk,X +Ad(k−1)ΨZ(A)].

Proof. By linearity of dΓ(kλ,Z), we only have to compute separately
the expressions d

dt
(eZk exp(tX)λ)|t=0 and d

dt
(exp(Z + tA)kλ)|t=0. But

the first term is equal to [eZk,X] by definition. Moreover, using equation
(2), we have

d

dt
(exp(Z + tA)kλ)|t=0 =

d

dt
(eZk exp(tΨAd(k−1)Z(Ad(k

−1)A)λ)|t=0,

which is also equal to [eZk,ΨAd(k−1)Z(Ad(k
−1)A)]. One can easily check

that ΨAd(k−1)Z(Ad(k
−1)A) = Ad(k−1)ΨZ(A) from the definition of ΨZ .

q.e.d.

Now, let Z be in p. Then ad(Z) is a symmetric endomorphism relative
to the inner product Bθ, cf. [6, Lemma 6.27]. Since ΨZ is defined as the
convergent series (1), it is also symmetric for Bθ. Its eigenvalues are
positive real numbers, so ΨZ is positive definite.
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Note that, for all positive integers n, the endomorphism ad(Z)2n maps
k (resp. p) into k (resp. p), and ad(Z)2n+1 maps k (resp. p) into p (resp.
k), because of the inclusions [k, k] ⊆ k, [p, p] ⊆ k, and [k, p] ⊆ p. Then we
decompose ΨZ in two parts, ΨZ = Ψ+

Z +Ψ−
Z , where

Ψ+
Z :=

+∞∑

n=0

ad(Z)2n

(2n+ 1)!
and Ψ−

Z := −

+∞∑

n=0

ad(Z)2n+1

(2n + 2)!
.

These linear endomorphisms of g are symmetric for Bθ, and Ψ+
Z is also

positive definite. Thus Ψ+
Z is invertible, but Ψ−

Z is not, since Ψ−
Z (Z) = 0.

We can define the linear map

(4) χZ := Ψ−
Z ◦ (Ψ+

Z )
−1 : g → g.

In section 5, we will use the important property of χZ stated in the next
lemma.

Lemma 2.2. For all Z ∈ p, the linear map χZ : g → g is symmetric
for Bθ, and its eigenvalues are in ]− 1, 1[.

Proof. Clearly, since Ψ+
Z is symmetric, (Ψ+

Z )
−1 is also symmetric.

Moreover, ad(Z) commutes with (Ψ+
Z )

−1, because it commutes with

Ψ+
Z . Now, from the definition of Ψ−

Z and the linearity of (Ψ+
Z )

−1, Ψ−
Z

obviously commutes with (Ψ+
Z )

−1. This implies that χZ = Ψ−
Z ◦ (Ψ+

Z )
−1

is symmetric for Bθ, and then, if ν1, . . . , νr are the eigenvalues of ad(Z),
a quick calculation shows that the eigenvalues of χZ are the real numbers
(eνj − 1)/(eνj + 1) ∈]− 1, 1[, for j = 1, . . . , r. q.e.d.

2.2. The holomorphic chamber Chol. We recall that the symmetric
space G/K is Hermitian if it admits a complex-manifold structure such
that G acts by holomorphic transformations. If G and K satisfies the
previous hypotheses (that is, G is noncompact, connected, real semisim-
ple Lie group with finite center, and K a maximal compact subgroup of
G), then the following assertions are equivalent:

1) G/K is Hermitian,
2) there exists z0 in the center of k such that ad(z0)|

2
p = −id|p.

A proof of this equivalence is given by Theorems 7.117 and 7.119 in [6].
Now assume G/K is Hermitian, and let z0 be an element of the cen-

ter of k such that ad(z0)|
2
p = −id|p. It means that ad(z0)|p defines a

K-invariant C-vector space structure on p. Denote by pC the complex-
ification of p, and similarly gC and kC. The linear action of K on p,
defined by the adjoint action Ad, induces a complex-linear action of K
on pC.

Denote by p±,z0 the eigenspace ker(ad(z0)|pC ∓ i) of ad(z0)|pC asso-
ciated to the eigenvalue ±i. Especially, ad(z0) is multiplication by the
complex number ±i on p±,z0 . These two subspaces of pC are K-stable.
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Let T be a maximal torus of the connected compact group K. We
set the following convention: an element α ∈ t∗ is a root of g (resp. k) if
there exists X ∈ gC (resp. X ∈ kC), X 6= 0, such that [H,X] = iα(H)X
for all H ∈ t. The associated root space is

gα := {X ∈ gC | [H,X] = iα(H)X,∀H ∈ t}.

If α is a root of g, then either gα ⊆ kC (α is a compact root), or gα ⊆ pC
(noncompact root). Note that the compact roots are the roots of the Lie
algebra k. The set of compact (resp. noncompact) roots is denoted by
Rc (resp. Rn). Fix once and for all t∗+ as a Weyl chamber of K in t∗, and
let R+

c be the system of positive compact roots associated to this Weyl
chamber. Notice that, since z0 ∈ t, for any noncompact root β, we have
either gβ ⊆ p+,z0 (positive noncompact roots) or gβ ⊆ p−,z0 (negative

noncompact roots). Denote by R
+,z0
n the set of positive noncompact

roots of g. Then R+
c ∪R

+,z0
n is a system of positive roots of g. Indeed,

we can easily see that for all α ∈ R+
c , we have α(z0) = 0, and for all

β ∈ R
+,z0
n , β(z0) = 1.

Definition 2.1. The holomorphic chamber is the subchamber of t∗+
defined by

Cz0
hol := {ξ ∈ t∗ | (β, ξ) > 0,∀β ∈ R+,z0

n },

where (·, ·) is the inner product on t∗ induced by Bθ. A holomorphic
coadjoint orbit is a coadjoint orbit O of G which intersects Cz0

hol in a
nonempty set.

Let λ ∈ Cz0
hol. The holomorphic coadjoint orbit G · λ has a natural

G-invariant Kähler structure:

1) a canonical G-invariant symplectic form ΩG·λ, called the Kirillov-
Kostant-Souriau symplectic structure on G · λ;

2) a G-invariant complex structure JG·λ: its holomorphic tangent
bundle T 1,0(G · λ) → G · λ is equal, above λ, to the T -submodule

∑

α∈R+
c ,(α,λ)6=0

gα +
∑

β∈R−

n

gβ

︸ ︷︷ ︸

p−

One can check that this complex structure is compatible with the
symplectic form ΩG·λ.

Besides, the stabilizer of λ is clearly compact, since (β, λ) 6= 0 for all
β ∈ Rn.

A trivial example of an element of Cz0
hol is the linear form λ0 :=

Bθ(z0, ·), since (β, λ0) = β(z0) = 1 for all β ∈ R
+,z0
n . This element

is stabilized by the action of K.

Remark 2.1. In the rest of the paper, we will omit the notation z0
in Cz0

hol, and write Chol instead.
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Example 2.1. Consider the example of SU(p, q), with 1 ≤ p ≤ q.
A maximal compact subgroup is K = S(U(p) × U(q)), and we fix for
maximal torus the subgroup of diagonal matrices of K. The dual of its
Lie algebra is t∗ = {(x1, . . . , xp+q) ∈ R

p+q |
∑

j xj = 0}. For a standard

choice of system of positive compact roots R+
c , the Weyl chamber is

t∗+ = {(x1, . . . , xp+q) ∈ t∗ | x1 ≥ · · · ≥ xp and xp+1 ≥ · · · ≥ xq}.

We also choose for z0 the matrix

z0 :=
i

p+ q

(
qIp 0
0 −pIq

)

.

The relative holomorphic chamber is

Chol = {(x1, . . . , xp+q) ∈ t∗ | x1 ≥ · · · ≥ xp > xp+1 ≥ · · · ≥ xq}.

The holomorphic coadjoint orbits of SU(p, q) are the conjugation classes
for SU(p, q) of the diagonal matrices determined by the elements in Chol.

2.3. The symplectic forms Γ∗ΩG·λ and ΩK·λ×p. Let λ ∈ Chol. The
manifold K ·λ×p can be identified with the holomorphic coadjoint orbit
G ·λ through the diffeomorphism Γ. This gives K ·λ×p a first canonical
symplectic structure Γ∗ΩG·λ, where ΩG·λ is the Kirillov-Kostant-Souriau
symplectic form on G ·λ. Note that, here, ΩG·λ is defined by the formula

(ΩG·λ)|gλ
(
[g, (X,A)], [g, (Y,B)]

)
= 〈λ, [X,Y ]〉+ 〈λ, [A,B]〉

for all g ∈ G, and all (X,A), (Y,B) ∈ k/kλ ⊕ p, where 〈·, ·〉 : g∗ × g → R

denotes the standard pairing. Then, from Lemma 2.1, the expression of
Γ∗ΩG·λ is given for all (kλ,Z) ∈ K ·λ×p and all (X,A), (Y,B) ∈ k/kλ⊕p

by

(Γ∗ΩG·λ)|(kλ,Z) (([k,X], A), ([k, Y ], B))

= 〈λ, [X +Ad(k−1)ΨZ(A), Y +Ad(k−1)ΨZ(B)]〉.

We can also split the right-hand term up using the operators Ψ+
Z and

Ψ−
Z :

(5) (Γ∗ΩG·λ)|(kλ,Z) (([k,X], A), ([k, Y ], B))

=
〈
λ, [X +Ad(k−1)Ψ−

Z (A), Y +Ad(k−1)Ψ−
Z (B)]

〉

+
〈
kλ, [Ψ+

Z (A),Ψ
+
Z (B)]

〉
.

Now, consider the following K-invariant symplectic form on p:

(6) Ωp(A,B) := 〈λ0, [A,B]〉 = Bθ(A, ad(z0)B), ∀A,B ∈ p.

It is symplectic since ad(z0)|
2
p = −idp and Bθ is nondegenerate on p.

The K-invariance of Ωp is provided by the fact that λ0 is centralized
by K. Denoting ΩK·λ the Kirillov-Kostant-Souriau symplectic form on
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the compact coadjoint orbit K · λ, we thus have another canonical K-
invariant symplectic structure ΩK·λ×p := ΩK·λ ⊕ Ωp, that is, the sym-
plectic structure obtained from the direct product of the symplectic
manifolds (K · λ,ΩK·λ) and (p,Ωp). This new symplectic form is given
by the formula

(7) ΩK·λ×p|(kλ,Z) (([k,X], A), ([k, Y ], B)) = 〈λ, [X,Y ]〉+ 〈λ0, [A,B]〉

for all (kλ,Z) ∈ K · λ× p and all (X,A), (Y,B) ∈ k/kλ ⊕ p.
Our purpose boils down to prove the existence of a symplectomor-

phism between the two symplectic manifolds (K · λ × p,Γ∗ΩG·λ) and
(K · λ× p,ΩK·λ×p).

3. A noncompact version of Moser’s theorem

We first need a tool allowing us to prove that two symplectic mani-
folds are diffeomorphic. In general, Moser’s trick [9] is an effective way
of solving such a problem.

This trick is based on the following observation: if (Ωt)t∈[0,1] is a
smooth family of symplectic forms on a compact manifold N , the exis-
tence of an isotopy ρt : N → N such that ρ∗tΩt = Ω0 for all t ∈ [0, 1]
is equivalent to solving the equation LξtΩt +

d
dt
Ωt = 0 for the time-

dependent vector field ξt. The isotopy and the time-dependent vector
field are related by the formula ξt = ( d

dt
ρt) ◦ ρ

−1
t .

However, in the noncompact setting, it is not always possible to apply
Moser’s trick because the time-dependent vector field ξt is not neces-
sarily integrable. Fortunately, this is still possible in good cases. For
instance, in [8], the proof uses the geodesic completeness of the man-
ifold, combined with Rauch’s comparison theorem. Another method is
to work on Hamiltonian manifolds with proper moment maps, as in [5].
Here, we propose to follow this second method.

Let K be a connected compact Lie group, V a finite dimensional
real representation of K, and M a connected compact manifold, en-
dowed with an action of K. This induces a diagonal action of K on the
trivial vector bundle M × V . Let (Ωt,Φt)t∈[0,1] be a smooth family of
K-Hamiltonian structures on M × V .

Theorem 3.1. Assume that the following assertions are satisfied:

1) there exists a smooth family (µt)t∈[0,1] of K-invariant 1-forms such

that dµt =
d
dt
Ωt for all t ∈ [0, 1];

2) for all m ∈ M and all t ∈ [0, 1], we have an Ωt-orthogonal decom-
position T(m,0)(M × V ) = TmM ⊕ V ;

3) there exist two positive numbers d and γ such that

‖Φt(m, v)‖ > d‖v‖γ , ∀(m, v) ∈ M × V, ∀t ∈ [0, 1].

Then there exists a K-invariant isotopy ρt : M ×V → M ×V such that
ρ∗tΩt = Ω0 for all t ∈ [0, 1].
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Moreover, if, for some m0 ∈ M , we have µt|(m0,0)(u, 0) = 0 for all
(t, u) ∈ [0, 1] × Tm0

M , then ρt(m0, 0) = (m0, 0) for all t ∈ [0, 1].

The idea is to integrate the K-invariant time-dependent vector field
ξt defined on M × V by

(8) ı(ξt)Ωt = −µt, ∀t ∈ [0, 1].

Assertion 1) ensures that the isotopy ρt, obtained by integrating ξt,
satisfies the equation ρ∗tΩt = Ω0. The other three conditions are used
to make ξt completely integrable on the noncompact manifold M × V .
Note that the last condition implies the properness of Φt.

We are going to see that we can take µt so that the isotopy ρt will
satisfy ρ∗tΦt = Φ0 + ct, where ct is some element of k∗ depending only
on t (and not on the initial condition x).

Lemma 3.2. Let (µt)t∈[0,1] be a smooth family of K-invariant 1-
forms on M ×V . There exists a smooth family (ft)t∈[0,1] of K-invariant
C∞-functions on M × V , such that

(i) dft|T (M×{0}) ≡ 0,
(ii) ı(v)(µt − dft) = 0 on M × {0} for all v ∈ V .

Proof. Take ft(m, v) := 2
∫ 1
0 µt|(m,sv)(0, sv)ds for all t ∈ [0, 1] and all

(m, v) ∈ M × V . q.e.d.

By Lemma 3.2, without loss of generality we may assume that, for
all t ∈ [0, 1], the 1-form µt is K-invariant and satisfies

(9) µt|(m,0)(0, v) = 0, ∀(m, v) ∈ M × V.

From (8) and (9), we notice that, for all (m, v) ∈ M × V , the tangent
vector ξt(m, 0) is Ωt-orthogonal to V at the point (m, 0). But hypothesis
2) implies that ξt(m, 0) is in TmM for all m ∈ M and all t ∈ [0, 1].

In order to prove Theorem 3.1, we must integrate the smooth family
of vector fields ξt and obtain an isotopy on M × V . We thus have to
consider the time-dependent differential equation

(10)

{
ρ0(x) = x,
d
dt
ρt(x) = ξt(ρt(x)),

for any initial condition x ∈ M × V .
We will need the following properties of the integration of a smooth

family of vector fields with initial conditions contained in a relatively
compact set.

Proposition 3.3. Let ξt be a smooth family of vector fields on a
manifold N , and U a relatively compact set in N .

(i) There exists ε ∈]0, 1] and a map ρε,U : [0, ε[×U → N which satis-
fies the differential equation (10).
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(ii) If Image(ρε,U ) is relatively compact in N , then we can extend ρε,U

in ρε
′,U with ε′ > ε.

Proof. By Cauchy-Lipschitz’s theorem, the domain of definition D ⊆
[0, 1] × N of the integral curves of (10) is an open set. Thus, for any
x ∈ U , since the domain D contains (0, x) ∈ [0, 1] × N , there exists
an open neighborhood Vx of x in N and a real number εx ∈]0, 1] such
that [0, εx[×V ⊆ D. But U is relatively compact, so there exists a finite
number of points x1, . . . , xs in U such that the family of neighborhoods
(Vxj)j=1,...,s is a covering of U . Take ε := minsj=1 εxj . Then, clearly

[0, ε[×U is contained in D. This proves assertion (i).
Now assume that Image(ρε,U ) is relatively compact in N . In particu-

lar, any integral curve ρε,U (·, x), with x ∈ U , is contained in a compact
set, so we can extend it to an integral curve of (10) defined on all [0, ε].
That is, [0, ε]×U ⊆ D. Applying the same argument as in the previous
paragraph for (ε, x) instead of (0, x), we show that there exists ε′ > ε
such that [0, ε′[×U ⊆ D and prove assertion (ii). q.e.d.

Proof of Theorem 3.1. Let r be any positive real number, and Ur :=
M × B(0, r) the open connected neighborhood of M × {0} in M × V ,
where B(0, r) is the open ball in V centered at 0 with radius r, defined
for some K-invariant inner product on V . The closure U r is the compact
subset M ×B(0, r) of M × V .

First, we have to prove two claims.

Claim 1. For all m ∈ M , the integral curve t 7→ ρt(m, 0) is defined
for all t ∈ [0, 1].

Since ξt(m, 0) is tangent to the submanifold M × {0} for all m ∈ M
and t ∈ [0, 1], the integral curve t 7→ ρt(m, 0) is included in M × {0}
for all m ∈ M . But M is compact. Hence, the maximal integral curve
of (10), starting from any point (m, 0) ∈ M × {0}, is defined for all
t ∈ [0, 1].

Let m0 be an element of M . This point enables us to define the family
of vectors

ct := Φt ◦ ρt(m0, 0)− Φ0(m0, 0) ∈ k∗, ∀t ∈ [0, 1],

and the constant

C := sup
t∈[0,1]

‖ct‖ < +∞.

This supremum is finite because the family of moment maps (Φt)t∈[0,1]
is smooth. We also define the real numbers

Dr := sup
x∈Ur

‖Φ0(x)‖, ∀r > 0.
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Claim 2. Let r > 0 and ε ∈ ]0, 1] be such that the map ρε,Ur :
[0, ε[×Ur → M × V is defined, as in Proposition 3.3. Then we have

(11) Image
(
ρε,Ur

)
⊂ U

(Dr+C
d )

1/γ .

For r > 0 and ε ∈ ]0, 1] satisfying the hypothesis of Claim 2, we obtain

for all t ∈ [0, ε[ a smooth map ρε,Ur
t := ρε,Ur(t, ·) : Ur → M × V . Since

Ωt is a closed 2-form, LξtΩt = d(ı(ξt)Ωt) = −dµt = − d
dt
Ωt by Cartan’s

Formula. Thus, 0 = (ρε,Ur
t )∗(LξtΩt +

d
dt
Ωt) =

d
dt

(
(ρε,Ur

t )∗Ωt

)
on Ur, for

all t ∈ [0, ε[. As a result, we have

(12) (ρε,Ur
t )∗Ωt = Ω0|Ur , ∀t ∈ [0, ε[.

Note that Ur is a K-invariant neighborhood of M × {0} in M × V .
Therefore, Φ0|Ur : Ur → k∗ is a moment map for the symplectic K-

manifold (Ur,Ω0|Ur). But, by (12), (ρε,Ur
t )∗Φt = Φt ◦ ρ

ε,Ur
t : Ur → k∗ is

another moment map of (Ur,Ω0|Ur). We deduce from the connectedness

of Ur that, for all t ∈ [0, ε[, Φt ◦ ρ
ε,Ur
t −Φ0 is a constant map and, more

precisely, we have the equality Φt ◦ ρ
ε,Ur
t (x) = Φ0(x) + ct for all x ∈ Ur

and all t ∈ [0, ε[. In particular, this induces the inequality

(13) ‖Φt(ρ
ε,Ur
t (x))‖ ≤ ‖Φ0(x)‖+ ‖ct‖ ≤ Dr +C, ∀x ∈ Ur,∀t ∈ [0, ε[.

Denote by πV : M×V → V the canonical projection. From hypothesis
3) and (13), we have

Dr +C ≥ ‖Φt(ρ
ε,Ur
t (x))‖ ≥ d‖πV (ρ

ε,Ur
t (x))‖γ , ∀x ∈ Ur,∀t ∈ [0, ε[,

that is, the inclusion Image(ρε,Ur
t ) ⊆ U

(Dr+C
d )

1/γ .

Now, for all r > 0, we define the interval

Ir := {ε ∈ [0, 1] | [0, ε[×Ur ⊆ D} ⊆ [0, 1].

We recall that, here, D ⊆ [0, 1] ×M × V is the domain of definition of
the integral curves of the time-dependent differential equation (10).

We want to prove that Ir is equal to [0, 1] for all r. By Proposition
3.3 (i), Ir contains a nonzero element. Moreover, Proposition 3.3 (ii)
and Claim 2 prove that Ir is open in [0, 1].

Let εr := sup Ir. By property of the supremum, [0, ε[×Ur must be
contained in the domain D of (10) for all ε < εr. Hence, [0, εr [×Ur is
clearly contained in D, that is, εr ∈ Ir and Ir is a closed interval.

Finally, since Ir is nonempty, open, and closed in the connected set
[0, 1], we have Ir = [0, 1], and, thus, every integral curve with initial
condition in Ur is completely integrable. Therefore, the time-dependent
vector field ξt is complete inM×V = ∪r>0Ur. It defines, for all t ∈ [0, 1],
a map ρt : M×V 7→ M×V , which is a diffeomorphism onto [7, Theorem
52], and K-equivariant because ξt is K-invariant. This proves that ρt is
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a K-equivariant isotopy of M × V that satisfies the equality ρ∗tΩt = Ω0

for all t ∈ [0, 1].
It remains to prove the last assertion. We assumed, at the beginning of

the proof, that (µt)t∈[0,1] is a smooth family of K-invariant 1-forms such
that µt|(m,0)(0, v) = 0 for all (m, v) ∈ M × V . But now, the hypothesis
on m0 yields µt|(m0,0) ≡ 0, and then ξt(m0, 0) = 0, for all t ∈ [0, 1].
By uniqueness of the maximal integral curve of ξt with initial condition
(m0, 0), we conclude that ρt(m0, 0) = (m0, 0) for all t ∈ [0, 1]. This
completes the theorem’s proof. q.e.d.

Theorem 3.1 works for every smooth family (Ωt)t∈[0,1] of symplectic
forms, not only for segments as in the classical Moser argument. But it is
generally difficult to find moment maps for arbitrary symplectic paths.
So, for practical purposes, we study segments of symplectic forms as
soon as possible.

Note that the manifold we are studying here is the trivial vector
bundle M × V . Thus we can define the two canonical maps

i : M →֒ M × V and πM : M × V ։ M.

The map

F : M × V × [0, 1] → M × V, (m, v, t) 7→ (m, tv)

is a K-equivariant homotopy of M × V such that F (m, v, 0) = i ◦
πM (m, v) = (m, 0) and F (m, v, 1) = idM×V (m, v). For any 2-form
ω we define the 1-form hF (ω) at (m, v) ∈ M × V by the formula

hF (ω)|(m,v) :=
∫ t=1
t=0 (F

∗ω)|(m,v,t). By the Poincaré Lemma, we have

(14) d ◦ hF + hF ◦ d = id∗M×V − π∗
M ◦ i∗

(see for example [12]). One can easily check from the definition that, if
ω is K-invariant, then hF (ω) is. Moreover, the 1-form hF (ω) vanishes
on the submanifold M × {0}.

Corollary 3.4. Let Ω0 and Ω1 be two K-invariant symplectic forms
on M × V , with moment maps Φ0 and Φ1 respectively. Set Ωt = tΩ1 +
(1 − t)Ω0 and Φt = tΦ1 + (1 − t)Φ0 for all t ∈ [0, 1]. If the following
assertions are satisfied:

a) for all t ∈ [0, 1], Ωt is symplectic on M × V ,
b) i∗Ω0 = i∗Ω1 on M ,
c) for all m ∈ M , the decomposition T(m,0)(M × V ) = TmM ⊕ V is

orthogonal for Ω0 and Ω1,
d) there exist two positive numbers d and γ such that

‖Φt(m, v)‖ > d‖v‖γ , ∀(m, v) ∈ M × V, ∀t ∈ [0, 1],

then, there exists a K-equivariant symplectomorphism from (M×V,Ω0)
onto (M × V,Ω1) fixing each element of M × {0}.
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Proof. Let µ be the 1-form defined by µ = hF (Ω1 − Ω0). Hypothe-
sis b) and formula (14) yield that dµ = Ω1 − Ω0, because Ω1 − Ω0 is
a closed 2-form and it must be in the kernel of the linear operator i∗.
Thus assertion 1) of Theorem 3.1 is satisfied. From the definition of Ωt,
the decomposition in hypothesis c) is also Ωt-orthogonal. Now asser-
tion 2) is verified, so we can conclude the proof, applying Theorem 3.1
with µ = hF (Ω1 − Ω0), which vanishes on M × {0}, so that we get a
symplectomorphism fixing each point of M × {0}. q.e.d.

Example 3.1. Assume that (V, ω1) is a Hamiltonian K-manifold,
with moment map Φ1 such that there exist two positive real numbers d
and γ satisfying the assertion:

(15) ‖Φ1(v)‖ ≥ d‖v‖γ , ∀v ∈ V.

Let δ be a positive real number, and ωδ := δω1. For every t ∈ [0, 1],
the 2-form ωt := tω1 + (1 − t)ωδ = (t + (1 − t)δ)ω1 is symplectic, and
Φt := (t+(1− t)δ)Φ1 is a moment map for the Hamiltonian K-manifold
(V, ωt). Since M is a single point here, hypotheses a), b), and c) of
Corollary 3.4 are clearly satisfied, and assertion d) is given by

‖Φt(v)‖ = (t+ (1− t)δ)‖Φ1(v)‖ ≥ min{1, δ}d‖v‖γ , ∀v ∈ V.

Therefore, there exists a K-equivariant diffeomorphism from V onto V
which takes ω1 to ωδ.

4. Proof of the Hermitian symmetric space case

In this section, we prove Theorem 1.1 when the holomorphic coadjoint
orbit is G · λ0, where λ0 = Bθ(z0, ·) is the element of g∗ identified with
z0 using the inner product Bθ on g. The Hermitian symmetric space
G/K coincides with the coadjoint orbit G · λ0 since λ0 is centralized by
K. The diffeomorphism Γ is expressed here by the map

Γ0 : p −→ G · λ0

Z 7−→ eZλ0.

The symplectic form Γ∗
0ΩG·λ0

, given by the formula (5) in the general
case, is now

(Γ∗
0ΩG·λ0

)|Z(A,B) = 〈λ0, [Ψ
+
Z (A),Ψ

+
Z (B)]〉, ∀A,B ∈ p.

Theorem 4.1 (McDuff). There exists a K-equivariant diffeomor-
phism from manifold G · λ0 onto p which takes the symplectic form
ΩG·λ0

on G · λ0 to the symplectic form Ωp on p, such that λ0 ∈ G · λ0 is
sent to 0 ∈ p.

We present here a completely different proof of this result, using The-
orem 3.1. The main difference is that we need proper moment maps on
our Hamiltonian K-manifolds.
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The canonical projection map G · λ0 ⊂ g∗ → k∗ is known to be a
moment map of the Hamiltonian K-manifold (G·λ0,ΩG·λ0

). Composing
with Γ0, we get a moment map ΦΓ∗

0
ΩG·λ0

for the HamiltonianK-manifold

(p,Γ∗
0ΩG·λ0

). This moment map is defined by

ΦΓ∗

0
ΩG·λ0

: p → k∗

Z 7→
(
X ∈ k 7→ 〈eZλ0,X〉

)
.

Lemma 4.2. For all Z ∈ p, we have

〈ΦΓ∗

0
ΩG·λ0

(Z)− λ0, z0〉 >
1

2
‖Z‖2.

In particular, the moment map ΦΓ∗

0
ΩG·λ0

: p → k∗ is proper.

Proof. First notice that, for all Z ∈ p and all X ∈ k, we have

〈λ0, e
− ad(Z)X〉 =

〈

λ0,

∞∑

k=0

ad(−Z)2k

(2k)!
X
〉

= Bθ

(

z0,

∞∑

k=0

ad(Z)2k

(2k)!
X

)

.

But ad(Z) is symmetric for the inner product Bθ. Thus, we get

〈eZλ0 − λ0, z0〉 =

∞∑

k=1

1

(2k)!
Bθ(ad(Z)kz0, ad(Z)kz0)

>
1

2
Bθ([z0, Z], [z0, Z]) =

1

2
‖Z‖2.

Consequently, the map ΦΓ∗

0
ΩG·λ0

− λ0 : p → k∗ is proper, and so is
ΦΓ∗

0
ΩG·λ0

. q.e.d.

As for the second symplectic form Ωp on p, it is a constant symplectic
form on a symplectic vector space. Recall that it is defined by (6).
Therefore, one can easily check that a moment map for (p,Ωp) is

ΦΩp
: p → k∗

Z 7→
(
X ∈ k 7→ 1

2〈λ0, [[X,Z], Z]〉
)
.

Lemma 4.3. We have 〈ΦΩp
(Z), z0〉 = 1

2‖Z‖2, for all Z ∈ p. In
particular, the moment map ΦΩp

: p → k∗ is proper.

Proof. From the definition of ΦΩp
, we obtain the following equalities:

〈ΦΩp
(Z), z0〉 =

1

2
Bθ(z0, [[z0, Z], Z]) =

1

2
Bθ(− ad(z0)

2Z,Z).

But ad(z0)|
2
p = −idp. Thus 〈ΦΩp

(Z), z0〉 =
1
2‖Z‖2. q.e.d.

We will also need the next lemma, which is an analogue of the Poincaré
Lemma for smooth families of differential forms.

Lemma 4.4. Let (ωt)t∈[0,1] be a smooth family of closed 2-forms on
p. Then there exists a smooth family (µt)t∈[0,1] of 1-forms, such that
ωt = dµt for all t ∈ [0, 1]. Moreover, if the 2-form ωt is K-invariant for
t ∈ [0, 1], then we can take µt to be K-invariant.
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The proof of this lemma is almost the same as the one of the Poincaré
Lemma for 2-forms on R

n (see for example [12, 4.18]), by making obvi-
ous changes of notation. The parameter t does not involve any change
in the computations, and the result is actually a smooth family.

Moreover, if ωt is K-invariant, then the linearity of the action of K
on p induces that µt is K-invariant. This can be checked directly on the
definition of µt given in the proof of the Poincaré Lemma.

Proof of Theorem 4.1. For all t ∈ [0, 1], let Ωt be the differential 2-form
on p defined by

Ωt|Z := (Γ∗
0ΩG·λ0

)|tZ ∀Z ∈ p.

In particular, Ω1 = Γ∗
0ΩG·λ0

. Moreover, for t = 0, we have the constant
symplectic form

Ω0|Z(A,B) = 〈λ0, [A,B]〉 = Ωp|Z(A,B),

for all Z,A,B ∈ p, since Ψ+
0 = idp. When t 6= 0, one can check that

Ωt =
1

t2
η∗t (Γ

∗
0ΩG·λ0

) =
1

t2
η∗tΩ1,

where ηt : p → p is the homothety Z 7→ tZ, for all t ∈ [0, 1]. By
linearity of the action of K, ηt commutes with this action. Thus Ωt is K-
invariant. Furthermore, since Ω1 is closed, we have dΩt =

1
t2
d(η∗tΩ1) =

1
t2
η∗t dΩ1 = 0. But Ω1 is symplectic, so the skew-symmetric bilinear

form (Ωt)|Z = (Ω1)|tZ is clearly nondegenerate. We conclude that Ωt is
symplectic for all t ∈ [0, 1].

The smooth family (Ωt)t∈[0,1] of symplectic forms induces the smooth

family ( d
dt
Ωt)t∈[0,1] of K-invariant closed 2-forms. Indeed, d

dt
Ωt is closed

for all t ∈ [0, 1] since the exterior derivative d and the differential oper-
ator d

dt
commute. Now, from Lemma 4.4, there exists a smooth family

(µt)t∈[0,1] of K-invariant 1-forms on p such that, for all t ∈ [0, 1], we

have d
dt
Ωt = dµt. This proves hypothesis 1) of Theorem 3.1.

For all t ∈]0, 1], we define

Φt :=
1

t2
η∗tΦΓ∗

0
ΩG·λ0

−
1

t2
λ0 : p → k∗,

and, for t = 0, we set Φ0 := ΦΩp
. The maps Φt are moment maps for the

Hamiltonian K-manifolds (p,Ωt), since λ0 is centralized by K. Notice
that, for all t ∈ [0, 1],

(16) 〈Φt(Z),X〉 =
∞∑

k=0

t2k

(2k + 2)!
Bθ(z0, ad(Z)2k+2X), ∀X ∈ k,

so clearly the family (Φt)t∈[0,1] is smooth.
The submanifold M ×{0} = K ·λ0 ×{0} being identified to {0} ⊂ p,

we have (T0p)
Ωt|0 = {0} = T0{0}, that is, condition 2) is also satisfied.
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It remains to prove hypothesis 3) of Theorem 3.1. Formula (16) gives

〈Φt(Z), z0〉 >
1

2
‖Z‖2

for all Z ∈ p and all t ∈ [0, 1], similarly to the proof of Lemma 4.2.

So ‖Φt(Z)‖ = supX∈k\{0}
〈Φt(Z),X〉

‖X‖ ≥ 1
2‖z0‖

‖Z‖2, for all Z ∈ p and all

t ∈ [0, 1]. Finally assertion 4) is proved and we conclude by applying
Theorem 3.1 and the fact that the condition “µt|0(0) = 0 for all t ∈
[0, 1]” is always satisfied on the vector space p ≃ K · λ0 × p. q.e.d.

5. Proof of Theorem 1.1

In this last section, we prove Theorem 1.1 for any λ ∈ Chol. Now,
the two K-equivariant diffeomorphisms Γ : K · λ × p → G · λ and
Γ0 : p → G · λ0 are involved, so that we will exclusively work on the
manifold K · λ× p. We will consider the following symplectic forms on
K · λ× p:

(i) ΩK·λ×p = ΩK·λ ⊕ Ωp;
(ii) Ω1 := ΩK·λ ⊕ Γ∗

0ΩG·λ0
;

(iii) Ωδ := ΩK·λ ⊕ (δΓ∗
0ΩG·λ0

), for all δ > 0;
(iv) Γ∗ΩG·λ.

Recall that the “direct sum” of two symplectic forms is defined as the
canonical symplectic form on the direct product of the two underlying
symplectic manifolds.

The purpose of this section is to prove that the symplectic forms
ΩK·λ×p and Γ∗ΩG·λ are symplectomorphic. To this end, we will use
repeatedly the Moser argument given in section 3 in order to prove the
existence of the symplectomorphisms indicated in the following diagram:

ΩK·λ×p
Theorem 4.1
−−−−−−−−→ Ω1 Example 3.1

−−−−−−−→ Ωδ section 5.1
−−−−−−→ Γ∗ΩG·λ.

The first symplectomorphism directly results from Theorem 4.1, the
second one from Example 3.1 and Lemma 4.2. The last arrow will
be studied in the next subsection. Furthermore, one can assume that
the diffeomorphisms, given by the three arrows in the above diagram,
fix each point of the submanifold K · λ × {0}. Composing such diffeo-
morphisms yields a symplectomorphism from (K · λ × p,ΩK·λ×p) onto
(K · λ× p,Γ∗ΩG·λ), which satisfies the statement of Theorem 1.1.

5.1. Symplectomorphism between Ωδ and Γ∗ΩG·λ on K ·λ×p. The
proof of Theorem 1.1 will be completed by proving the next statement.

Theorem 5.1. For all δ > bλ := sup‖u‖=1,‖v‖=1〈λ, [u, v]〉, there exists

a K-equivariant symplectomorphism from (K · λ× p,Γ∗ΩG·λ) onto (K ·
λ× p,Ωδ), which fixes each point (kλ, 0), for all k ∈ K.
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We will apply Corollary 3.4 again. The main difficulty lies in proving
that the 2-form Ωδ

t := tΓ∗ΩG·λ+(1− t)Ωδ is symplectic for all t ∈ [0, 1].
According to the statement of the next theorem, this is possible for δ
large enough.

We first define a Hamiltonian structure on K · λ× p compatible with
Ωδ
t . A moment map for the Hamiltonian K-manifold (K ·λ× p,Γ∗ΩG·λ)

is the map defined for all (kλ,Z) ∈ K · λ× p by

(17) ΦΓ∗ΩG·λ
(kλ,Z) := (eZkλ)|k = kλ ◦

(
∑

n>0

ad(Z)2n

(2n)!

)

.

Obviously, the map Φδ, defined for all (kλ,Z) ∈ K · λ× p by

(18) Φδ(kλ,Z) := kλ+ δλ0 ◦

(
∑

n>0

ad(Z)2n

(2n)!

)

,

is a moment map for (K ·λ×p,Ωδ). Consequently, we obtain a moment
map for Ωδ

t := tΓ∗ΩG·λ+(1− t)Ωδ by taking Φδ
t := tΦΓ∗ΩG·λ

+(1− t)Φδ.

Theorem 5.2. Let δ > 0 and t ∈ [0, 1].

A) The moment map Φδ
t satisfies the condition d) of Corollary 3.4.

B) Moreover, if δ > bλ := sup‖u‖=1,‖v‖=1〈λ, [u, v]〉, then the 2-form

Ωδ
t := tΓ∗ΩG·λ + (1− t)Ωδ is symplectic.

This result will be proved in sections 5.2 and 5.3.

Proof of Theorem 5.1. We want to apply Corollary 3.4. Since δ > bλ,
conditions a) and d) of Corollary 3.4 are implied by assertions B) and
A) of Theorem 5.2, respectively. The remaining conditions b) and c) can
be easily checked from the formulas of Ωδ

0 = Γ∗ΩG·λ and Ωδ
1 = Ωδ on

the submanifold K · λ. Indeed, we have

Ωδ
t |(kλ,0)

(
([k,X], A), ([k, Y ], B)

)
= 〈λ, [X,Y ]〉+ 〈tλ+ (1− t)δλ0, [A,B]〉

for all X,Y ∈ k/kλ, all A,B ∈ p, and all t ∈ [0, 1]. This follows from the
fact that Ψ0|p = Ψ+

0 |p = id|p. q.e.d.

The rest of this section is devoted to the proof of a lemma, which will
be used to prove both assertions A) and B) of Theorem 5.2.

We begin by setting some notations. For all λ ∈ t∗, let Hλ be the
unique element of t such that

Bθ(Hλ,X) = 〈λ,X〉 ∀X ∈ g.

For any noncompact positive root β, we fix two nonzero vectors Eβ ∈ gβ
and E−β ∈ g−β such that E−β = Eβ. Then, Eβ +E−β and i(Eβ −E−β)
are in p (that is, they are real vectors). Moreover, the family

(
Eβ +

E−β, i(Eβ−E−β)
)

β∈R+
n
is an R-basis of p, and it is well-known that this
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basis of p is orthogonal with respect to the inner product Bθ. Moreover,
we can choose Eβ and E−β such that

(19) Bθ(Eβ + E−β, Eβ + E−β) = Bθ

(
i(Eβ −E−β), i(Eβ −E−β)

)
= 2

(see [6, 4, 1]).

Lemma 5.3. Let λ, λ′ be in Chol. Then, for all Z ∈ p, we have

(20) Bθ(Hλ, ad(Z)2Hλ′) ≥
(

min
β∈R+

n

β(Hλ)β(Hλ′)
)

‖Z‖2.

In particular, if we set mλ = minβ∈R+
n
β(Hλ), then

(21) Bθ(z0, ad(Z)2Hλ) ≥ mλ‖Z‖2,

and

(22) Bθ(Hλ, ad(Z)2Hλ) ≥ m2
λ‖Z‖2,

for all Z ∈ p.

Proof. Let Z be in p. Then,

Z =
∑

β∈R+
n

(

x+β (Eβ +E−β) + x−β i(Eβ − E−β)
)

,

with x±β ∈ R for all β ∈ R+
n . Note that (19) implies

(23) Bθ(Z,Z) =
∑

β∈R+
n

2
(

(x−β )
2 + (x+β )

2
)

.

Let H ∈ t. Since E±β is in g±β, we have [H,E±β] = ±iβ(H)E±β .
Thus, we deduce the two equalities

[H,Eβ + E−β] = β(H)
(
i(Eβ − E−β)

)

and
[H, i(Eβ − E−β)] = −β(H)(Eβ + E−β).

Consequently,

[H,Z] =
∑

β∈R+
n

β(H)
(

−x−β (Eβ + E−β) + x+β i(Eβ − E−β)
)

,

for all H ∈ t.
Now, let λ, λ′ ∈ Chol. The elements Hλ and Hλ′ of t necessarily verify

β(Hλ) > 0 and β(Hλ′) > 0 for all β ∈ R+
n . We have

Bθ(Hλ, ad(Z)2Hλ′) = Bθ([Hλ, Z], [Hλ′ , Z])

=
∑

β∈R+
n

2β(Hλ)β(Hλ′)
(

(x−β )
2 + (x+β )

2
)

.

But β(Hλ)β(Hλ′) is positive for all β ∈ R+
n ; thus one can obtain

Bθ(Hλ, ad(Z)2Hλ′) ≥
(

min
β∈R+

n

β(Hλ)β(Hλ′)
)

Bθ(Z,Z),
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by (23). This proves equation (20).
If we take λ′ = λ0, then Hλ′ = Hλ0

= z0. Since β(z0) = 1 for
all β ∈ R+

n , we must have minβ∈R+
n
β(Hλ)β(z0) = mλ, and equa-

tion (21) is clear. And finally, equation (22) is induced by the equality
minβ∈R+

n

(
β(Hλ)

2
)
= m2

λ, which is true because of the positivity of the

numbers β(Hλ). q.e.d.

5.2. Proof of claim A) of Theorem 5.2. In this section, we prove
that the condition d) of Corollary 3.4 is fulfilled in the setting of Theo-
rem 5.2 for any δ > 0 and any t ∈ [0, 1].

We define for any t ∈ [0, 1] the element λt := tλ+ (1− t)δλ0 of Chol,
and denote by Hλt = tHλ + (1− t)δz0 the associated vector in t.

Recall that Φδ
t isK-equivariant, so we only need to consider the points

(λ,Z) with Z ∈ p. Using (17) and (18), we make a first computation:

〈Φδ
t (λ,Z),Hλt〉 =

〈

tΦΓ∗ΩG·λ
(λ,Z) + (1− t)Φδ(λ,Z),Hλt

〉

= tBθ

(
Hλ,

∑

n≥0

ad(Z)2n

(2n)!
Hλt

)

+ (1− t)δBθ

(
z0,
∑

n≥0

ad(Z)2n

(2n)!
Hλt

)

+ (1− t)〈λ,Hλt〉

= Bθ

(
Hλt ,

∑

n≥0

ad(Z)2n

(2n)!
Hλt

)
+ (1− t)〈λ,Hλt〉.

Since λ and λt are both in Chol, the number 〈λ,Hλt〉 is positive, because
〈λ,Hλt〉 = 2

∑

α∈R+ α(Hλ)α(Hλt) > 0. But ad(Z) is symmetric for Bθ;
then

〈Φδ
t (λ,Z),Hλt〉 ≥

∑

n≥0

1

(2n)!
Bθ

(
ad(Z)nHλt, ad(Z)nHλt

)

≥
1

2
Bθ

(
ad(Z)Hλt , ad(Z)Hλt

)
.

Equation (22) of Lemma 5.3 yields now

〈Φδ
t (λ,Z),Hλt〉 >

m2
λt

2
‖Z‖2.

Finally, we get the following inequalities, for all (kλ,Z) ∈ K · λ× p:

‖Φδ
t (kλ,Z)‖ ≥

m2
λt

2‖Hλt‖
‖Z‖2 ≥

(

inf
t∈[0,1]

m2
λt

2‖Hλt‖

)

‖Z‖2,

because the norms are K-invariant. Note that the constant number

inft∈[0,1]
m2

λt
2‖Hλt

‖ is positive, since Hλt is never zero and by continuity
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on the compact set [0, 1]. Therefore, assertion d) of Corollary 3.4 is
checked, and claim A) of Theorem 5.2 is proved.

5.3. Proof of claim B) of Theorem 5.2. It remains to prove that for
δ sufficiently large, the closed 2-form Ωδ

t is symplectic. By K-invariance
of this 2-form, it is enough to prove that Ωδ

t is nondegenerate at any
point of {λ} × p.

Let Z ∈ p. We transform the skew-symmetric bilinear form Ωδ
t |(λ,Z)

through the invertible linear map id⊕Ψ+
Z |p on k/kλ⊕p. This requires us

to define, for all Z ∈ p, the two nondegenerate skew-symmetric bilinear
forms ωδ

0|Z and ω1|Z on k/kλ ⊕ p, by

ωδ
0|Z
(
(X,A), (Y,B)

)
= 〈λ, [X,Y ]〉+ δBθ(z0, [A,B]),

for any δ > 0, and

ω1|Z
(
(X,A), (Y,B)

)
= 〈λ, [X + χZ(A), Y + χZ(B)]〉+ 〈λ, [A,B]〉,

for all (X,A), (Y,B) ∈ k/kλ ⊕ p, where the linear map χZ is defined by
(4).

Now, Ωδ
t |(λ,Z) is nondegenerate if and only if tω1|Z + (1 − t)ωδ

0|Z is.

Since ωδ
0|Z is clearly nondegenerate, it suffices to prove the next lemma.

Lemma 5.4. Let Z ∈ p and δ > 0. If δ > bλ, then the skew-
symmetric bilinear form ω1|Z + cωδ

0|Z is nondegenerate for any c > 0.

Proof. We are going to prove the statement of Lemma 5.4 by contra-
position, that is, if the bilinear form ω1|Z +cωδ

0|Z is degenerate for some
c > 0, then δ ≤ bλ.

So let c > 0 be such that ω1|Z+cωδ
0|Z is degenerate. Then there exists

(X,A) ∈ k/kλ ⊕ p nonzero such that the equality

(24) ω1|Z
(
(X,A), (Y,B)

)
= −c ωδ

0|Z
(
(X,A), (Y,B)

)

is valid for all (Y,B) ∈ k/kλ ⊕ p. First, taking B = 0, we have

〈λ, [X + χZ(A), Y ]〉 = −c〈λ, [X,Y ]〉, ∀Y ∈ k/kλ.

This yields that X+χZ(A) = −cX mod kλ, that is, χZ(A) = −(c+1)X
mod kλ. But, by linearity of χZ , we cannot have A = 0, becauseX would
also be zero, which would contradict the hypothesis “(X,A) 6= 0”. The
equation (24) is now reduced to

〈λ, [X + χZ(A), χZ(B)]〉+ 〈λ, [A,B]〉 = −cδBθ(z0, [A,B]),

satisfied for all B ∈ p. It is equivalent to

(25) δBθ(z0, [A,B]) +
1

c
〈λ, [A,B]〉 = 〈λ, [X,χZ (B)]〉,



ON A GENERALIZATION OF A THEOREM OF MCDUFF 399

for all B ∈ p, sinceX+χZ(A) = −cX mod kλ. Taking B = −[z0, A] ∈ p

in (25), we get

0 < δBθ(z0, [A,−[z0, A]]) +
1

c
〈λ, [A,−[z0, A]]〉

≤ −
1

c+ 1
〈λ, [χZ(A), χZ(−[z0, A])]〉.

Note that ‖A‖2 = Bθ(A,A) = Bθ(z0, [A,−[z0, A]]). Moreover, we have
1
c
〈λ, [A,−[z0, A]]〉 = 1

c
Bθ(z0, ad(A)

2Hλ) ≥ 0, from (21) of Lemma 5.3
applied to A ∈ p. We deduce the following inequalities:

δ‖A‖2 ≤ δBθ(z0, [A,−[z0, A]]) +
1

c
〈λ, [A,−[z0, A]]〉

≤
1

c+ 1
〈λ, [χZ(A), χZ([z0, A])]〉

≤
1

c+ 1
bλ‖χZ(A)‖.‖χZ([z0, A])‖.

The number c is positive, so 0 < 1
c+1 ≤ 1. Furthermore, by Lemma 2.2,

the linear operator χZ is symmetric for Bθ and all its eigenvalues are in
]− 1, 1[. Hence,

‖χZ(W )‖ ≤ ‖W‖ ∀W ∈ g.

Consequently, ‖χZ([z0, A])‖ ≤ ‖[z0, A]‖ = ‖A‖. So δ‖A‖2 ≤ bλ‖A‖
2,

with A 6= 0. Then we conclude that δ ≤ bλ. q.e.d.

This concludes the proof of Theorem 5.2.
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