
j. differential geometry

93 (2013) 299-326

VOLUME OPTIMIZATION, NORMAL SURFACES,

AND THURSTON’S EQUATION

ON TRIANGULATED 3-MANIFOLDS

Feng Luo

Abstract

We propose a finite-dimensional variational principle on trian-
gulated 3-manifolds so that its critical points are related to solu-
tions to Thurston’s gluing equation and Haken’s normal surface
equation. The action functional is the volume.

1. Introduction

1.1. The statement of the main theorem. Given a closed triangu-
lated 3-manifold or pseudo 3-manifold, there are several linear and al-
gebraic systems of equations associated to the triangulation. Beside the
homology theory, the most prominent ones are Haken’s theory of nor-
mal surfaces [10], Thurston’s algebraic gluing equations for constructing
hyperbolic metrics [31] using hyperbolic ideal tetrahedra, and the no-
tion of angle structures [16, 26]. The normal surface theory gives a
parametrization of essential surfaces in the manifold, and solutions of
Thurston’s equation produce hyperbolic cone metrics. Thurston used a
solution to Thurston’s gluing equation to produce a complete hyperbolic
metric on the figure-8 knot complement in the earlier stage of formu-
lating his geometrization conjecture. The notion of (Euclidean) angle
structures, introduced by Casson, Rivin, and Lackenby for 3-manifolds
with torus boundary, is a linearized version of Thurston’s equation.

The goal of this paper is to generalize the notion of angle structures
introduced by Casson, Rivin [26], and Lackenby [16] to the circle-valued
angle structure (or S1-angle structure, for short) on any closed trian-
gulated pseudo 3-manifold (M,T). These pseudo 3-manifolds include
ideal triangulations of compact 3-manifolds even with non-torus bound-
ary. Using the method introduced in [19], we show that circle-valued
angle structures always exist on any (M,T). Furthermore, the space
of all S1-angle structures on (M,T), denoted by SAS(M,T), is shown
to be a closed smooth manifold (proposition 2.6). Each S1-angle struc-
ture has a natural volume given by the Milnor–Lobachevsky function.
This defines a continuous but not necessarily smooth volume function
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V : SAS(M,T) → R. Since the space SAS(M,T) is compact, the vol-
ume function V has a maximum point. Our main result is the following.

Theorem 1.1. Suppose (M,T) is a triangulated closed orientable
pseudo 3-manifold. Let p be a maximum point of the volume function
V : SAS(M,T) → R.

(a) If p is a smooth point for V, then p produces a solution to the
generalized Thurston gluing equation.

(b) If p is a non-smooth point for V, then p produces a solution
to Haken’s normal surface equation with exactly one or two non-zero
quadrilateral coordinates.

In this paper, we call a solution to Haken’s equation in part (b) of
theorem 1.1 a 2-quad-type solution. Recall that a triangulation of M
is called minimal if it has the smallest number of tetrahedra among all
triangulations of M . It is conceivable that the existence of a 2-quad-type
solution on a minimally triangulated 3-manifold puts constraints on the
topology of the manifold. This is indeed the case. In our recent joint
paper with S. Tillmann [20], using the work of Jaco and Rubinstein
[13] and Futer and Guéritaud, we proved the following theorem

Theorem 1.2 (Luo and Tillmann [20]). Suppose (M,T ) is a mini-
mally triangulated orientable closed 3-manifold so that the volume func-
tion V : SAS(M,T) → R has a non-smooth maximum point. Then,

(a) M is reducible, or
(b) M is toroidal, or
(c) M is a Seifert fibered space, or
(d) M contains the connected sum #3

i=1RP 2 of three copies of the
projective plane.

Theorems 1.1 and 1.2 prompt us to make the following conjecture.

Conjecture 1.3. Suppose (M,T) is a minimally triangulated closed
irreducible orientable 3-manifold so that all maximum points of V :
SAS(T) → R are smooth for V. Then (M,T) supports a solution to
Thurston’s gluing equation.

We thank Ben Burton and Henry Segerman for providing data that
helped us to formulate conjecture 1.3. As we will see in the next sub-
section, conjecture 1.3 for simply connected manifolds is equivalent to
the Poincaré conjecture.

A weaker version of conjecture 1.3 is conjecture 5.1 in §5. It does
not involve a maximization process and deals only with solutions to
Thurston’s equation and Haken’s equation. It is shown in §5 that for
a simply connected 3-manifolds, conjecture 5.1 is equivalent to the
Poincaré conjecture.
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Figure 1.1

1.2. The Thurston equation. Recall that a closed pseudo 3-manifold
is the quotient space of a disjoint union of tetrahedra so that their
codimension-1 faces are identified in pairs by affine homeomorphisms.
In particular, a closed 3-manifold is a pseudo 3-manifold. The generalized
Thurston gluing equation associated to a triangulated oriented pseudo
3-manifold is defined as follows. Assign each edge in each tetrahedron in
the triangulation T a complex number z ∈ C− {0, 1}. The assignment
is said to satisfy the generalized Thurston equation if

(a) opposite edges of each tetrahedron have the same assignment;
(b) the three complex numbers assigned to three pairs of opposite edges
in each tetrahedron are z, 1

1−z and z−1
z subject to an orientation con-

vention; and
(c) for each edge e in the triangulation, if {z1, . . . , zk} is the set of all
complex numbers assigned to the edge e in various tetrahedra adjacent
to e, then

(1.1)

k∏

i=1

zi = ±1.

If the right-hand side of (1.1) is 1 for all edges, we say the assignment
satisfies the Thurston gluing equation (or the Thurston equation, for
short).

We would like to emphasize that the Thurston equation and its so-
lutions are well defined on any closed oriented triangulated pseudo 3-
manifold. The most investigated cases are solutions of the Thurston
equation on an ideally triangulated 3-manifold with torus boundary
so that the complex numbers z are in the upper-half plane (see, for
instance [31, 30], [5, 25] and many others). We intend to study the
Thurston equation in the most general setting. Even though a solution
to Thurston equation in the general setting does not necessary produce
a hyperbolic structure, one can still obtain some important information
from it. For instance, it was observed in [33] (see also [23], [28]) that
each solution of Thurston equation produces a representation of the
fundamental group of the 3-manifold with vertices of the triangulation
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removed to PSL(2,C). A simplified version of a theorem of Segerman
and Tillmann [28] states that if (M,T) is a one-vertex triangulation
of a closed 3-manifold so that T supports a solution to the Thurston
equation, then each edge in T, considered as a loop in M , is homo-
topically essential in M . In particular, any one-vertex triangulation of a
simply connected 3-manifold cannot support a solution to the Thurston
equation.

Using this theorem of Segerman and Tillman and theorem 1.2, we can
deduce the Poincaré conjecture from conjecture 1.3 as follows. Suppose
M is a simply connected closed 3-manifold. By the Kneser–Milnor prime
decomposition theorem, we may assume that M is irreducible. Take a
minimal triangulation T of M . By the work of Jaco and Rubinstein on
0-efficient triangulations, we may assume that T has only one vertex,
i.e., each edge is a loop. By Segerman and Tillmann’s theorem above,
we see that (M,T) cannot support a solution to the Thurston equation.
By conjecture 1.3, there exists a non-smooth maximum volume S1-angle
structure. By theorem 1.2, the minimality of T, and the irreducibility
of M , we conclude that M = S3.

Theorem 1.1 is a special case of theorem 3.2 in §3 where one shows
that under the same assumption as theorem 1.1 there exists either a
solution to the generalized Thurston equation so that (a) and (b) of
theorem 1.1 hold, and for any edge e,

(1.2)
k∏

i=1

zi = ±k(e)

where k(e) ∈ S1 is a given function satisfying (2.16) and (2.17) or there
exists a 2-quad-type solution to Haken’s equation. Theorem 1.1 provides
some evidence relating normal surface theory to representations.

A potential application of theorem 1.1 is to construct hyperbolic
metrics on closed 3-manifolds. Namely, if a maximum-volume S1-angle
structure produces a solution to the usual Thurston equation so that
(i) the right-hand sides of Thurston equations (1.1) are 1 and (ii) the
maximum volume is the Gromov norm of M multiplied by the volume
of the ideal regular tetrahedron, then the associated representation will
likely produce a hyperbolic metric on M ([5, 6]). In our recent work
with Tillmann and Yang [21], we have shown that for a closed hyper-
bolic 3-manifold, there exists a triangulation and a solution to Thurston
equation so that the above conditions (i) and (ii) hold.

1.3. Remarks. We remark that all results in the paper can be general-
ized without difficulties to compact pseudo 3-manifolds with boundary.
The simplest way to treat them is by taking the doubling construction.
For simplicity, we will not state the corresponding theorems for pseudo
manifolds with boundary.
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Using volume optimization on the space of angle structures to find
hyperbolic structures was carried out successfully by F. Guéritaud in
[9] for punctured torus bundles over the circle. Our method is similar
to that of [9] in a different setting.

The paper is organized as follows. In §2, we revisit the theory of
normal surfaces and spun normal surfaces. In §3, we recall Thurston’s
work on gluing hyperbolic metrics and the volume of angle structures.
Theorem 1.1 is proved in §4. Some open problems are discussed in §5.

We would like to thank S. Tillmann, D. Futer, F. Guéritaud, W.
Jaco, and Ruifeng Qiu for discussions. We also thank the referees for nice
comments and suggestions. The work is partially supported by the NSF.

Acknowledgments. This work was partially Supported by an NSF
grant.

2. The theory of normal surfaces revisited

The normal surface theory, developed by Haken in the 1950s, is a
beautiful chapter in 3-manifold topology. In the late 1970s, Thurston
introduced the notion of spun normal surfaces and used it to study
3-manifolds. There are works by Tollefson, Kang and Rubinstein, Till-
mann, Thurston, Jaco, and others that characterize spun normal sur-
faces using Haken’s normal coordinates. It turns out a spun normal
surface is most conveniently described in terms of the tangent vectors
to S1-angle structures. In fact, the two systems of linear equations for
the tangential angle structures and the spun normal surfaces are dual to
each other. This observation, which is implicit in the work of [32, 14],
and [29], is very useful for us in §4 to relate the critical points of the
volume functional with the normal surfaces.

We will revisit the normal surface theory and follow the expositions
in [11] and [29] closely in this section. Some of the notation used in the
section are new.

2.1. Triangulations of closed pseudo 3-manifolds and normal

surfaces. Let X be a union of finitely many disjoint oriented Euclidean
tetrahedra. The collection of all faces of tetrahedra in X is a simplicial
complex T∗ that is a triangulation of X. Identify codimension-1 faces
in X in pairs by affine homeomorphisms. The quotient space M is a
closed pseudo 3-manifold with a triangulation T whose simplexes are
the quotients of simplexes in T∗. See [13] for more information.

Note that in this definition of triangulation, we do not assume that
simplexes in T are embedded in M . For instance, it may well be that
T has only one vertex. Furthermore, the non-manifold points in M are
either the vertices or the midpoints of the edges. If we require the affine
homeomorphisms used in the gluing for M to be orientation-reversing,
then the pseudo manifold M is oriented and non-manifold points of
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Figure 2.1

M are contained in the vertex set V . Let N be the compact 3-manifold
obtained from M with a small open regular neighborhood of V removed.
Then we call {σ ∩N |σ ∈ T} an ideal triangulation of N .

According to Haken [10], a normal arc in X is an embedded arc in a
triangle face so that its end points are in different edges and a normal
disk in X is an embedded disk in a tetrahedron so that its boundary
consists of 3 or 4 normal arcs. These are called normal triangles and
normal quadrilaterals, respectively.

The projections of normal arcs and normal disks from X to M con-
stitute normal arcs and normal disks in the triangulated space (M,T).
An immersed surface S in M (or X) is called normal with respect to the
triangulation T (or T∗) if for each tetrahedron σ in the triangulation,
the intersection S ∩ σ consists of normal disks. A normal isotopy is an
isotopy of the ambient space X or M that leaves each simplex invariant.
Normal arcs and disks will be considered up to normal isotopy. In each
tetrahedron, there are four normal triangles and three normal quadri-
laterals up to normal isotopy. We use △, �, and A to denote the sets of
all normal isotopy classes of normal triangles, quadrilaterals and normal
arcs in the triangulation T. Since the set of all normal isotopy classes
of normal quadrilaterals (and normal triangles) in T∗ is the same as �
(and △), we will also use � and △ to denote the sets of all normal iso-
topy classes of normal quadrilaterals and normal triangles in T∗. In this
paper, we will use both “triangle” and “quadrilateral” for the normal
isotopy class of a triangle and a quadrilateral.

Let V,E, F, T be the sets of all vertices, edges, triangles, and tetrahe-
dra in T. The set of all edges and tetrahedra in T∗ will be denoted by
E∗ and T ∗. We consider E as the set of equivalence classes of elements
in E∗, i.e., E = {[x]|x ∈ E∗ where x and y in E∗ are equivalent if they
are identified in X}.

If x, y ∈ V ∪E ∪ F ∪ T , we use x > y to denote that y is a face of x.
We use |Y | to denote the cardinality of a set Y .

There are relationships among various sets V,E, F, T,△,�,A. These
incidence relations, which will be recalled below, are the basic ingredient
for defining linear and algebraic equations on T.



VOLUME OPTIMIZATION, NORMAL SURFACES, THURSTON’S EQ. 305

t


q


e


e
'
 e
'


q


i(
q
,
e
)=1
 i(
q
,
e
)=2


e
=
e
'
e
'


e

e
'


e'
'


i(
t
,
e
)=2


e
=
e
'
 e'
'


Figure 2.2

Take t ∈ △, a ∈ A, q ∈ �, e ∈ E, and σ ∈ T . We use a < t (and
a < q) if there exist representatives x ∈ a, y ∈ t (and z ∈ q) so that
x is an edge of y (and z). We use t ⊂ σ and q ⊂ σ to denote that
representatives of t and q are in the tetrahedron σ. In this case, we say
the tetrahedron σ contains t and q.

The index i(q, e) is an integer 0, 1, or 2 defined as follows. Given
q ∈ � and e∗ ∈ E∗, let i(e∗, q) be 1 if q, e∗ lie in the same tetrahedron
so that q ∩ e∗ = ∅ and let i(e∗, q) = 0 in all other cases. If e ∈ E and
q ∈ �, then the index i(e, q) =

∑
e∗∈e i(e

∗, q).
The index i(t, e) is the number of edges e∗ ∈ e so that t has a vertex

in e∗. See figure 2.2.
We remark that if T is a simplicial triangulation, then the indices

i(t, e) and i(q, e) take only values 0, 1.
As a convention, in this paper we will always use σ, e, and q to

denote a tetrahedron, an edge, and a quadrilateral in the triangulation
T, respectively.

2.2. The Normal surface equation and Kang–Rubinstein basis.

The normal surface equation is a system of linear equations defined in
the spaceR△×R� introduced by W. Haken [10]. It is defined as follows.
For each normal arc a ∈ A, suppose σ, σ′ are the two tetrahedra adjacent
to the triangular face which contains a. Then there is a homogeneous
linear equation for x ∈ R△ ×R� associated to a:

(2.1) x(t) + x(q) = x(q′) + x(t′)

where t, q ⊂ σ, t′, q′ ⊂ σ′, and t, t′, q, q′ > a. See figure 2.1(b). Let Sns

be the space of all solutions to (2.1) as a runs over all normal arcs.
A basis of the solution space Sns to equations (2.1) was found by Kang

and Rubinstein [14]. To state it, let us introduce one more notation.
Given a finite set Z, the standard basis of the vector space RZ will be
denoted by {z∗|z ∈ Z} where z∗(z) = 1 and z∗(z′) = 0 if z′ ∈ Z − {z}.
We give RZ the inner product so that {z∗|z ∈ Z} forms an orthonormal
basis. Now for each σ ∈ T and e ∈ E, define the vectors Wσ,We ∈
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R△ ×R� as follows:

(2.2) Wσ =
∑

q∈�,q⊂σ

q∗ −
∑

t∈△,t⊂σ

t∗

and

(2.3) We =
∑

q∈�
i(q, e)q∗ −

∑

t∈△
i(t, e)t∗.

A basic theorem proved in [14] says:

Theorem 2.1 (Kang and Rubinstein). For any triangulated closed
pseudo 3-manifold, the set {Wx|x ∈ E∪T} forms a basis of the solution
space Sns of the normal surface equation.

For the convenience of the reader, an alternative interpretation of
Kang and Rubinstein’s proof is given in the appendix.

2.3. Spun normal surfaces and tangential angle structures. Given
x ∈ R△ × R�, we will call x(t) and x(q) the t-coordinate and q-
coordinate (triangle and quadrilateral coordinates) of x. Spun normal
surface theory addresses the following question, first investigated by
Thurston [31]. Given a vector z ∈ R�, when does there exist a solution
x ∈ Sns to (2.1) whose projection to R� is z? Geometrically, it asks if a
given finite set of normal quadrilaterals can be realized as the set of all
normal quadrilaterals in a normal surface. The question was completely
solved in [32, 14, 29] and [12]. The results of Kang and Rubinstein and
of Tillmann are more general and give solutions to the projections of
not necessarily closed normal surfaces.

The purpose of this section is to interpret a weak version of their
work in terms of tangential angle structures.

Definition 2.1. A tangential angle structure on a triangulated pseudo
3-manifold (M,T) is a vector x ∈ R� so that for each tetrahedron
σ ∈ T ,

(2.4)
∑

q∈�,q⊂σ

x(q) = 0,

and for each edge e ∈ E,

(2.5)
∑

q∈�
i(q, e)x(q) = 0.

The linear space of all tangential angle structures on (M,T) is de-
noted by TAS(M,T), or simply TAS(T).

Recall that a (Euclidean type) angle structure, introduced by Casson,
Rivin, and Lackenby, is a vector x ∈ R�

>0 so that for each tetrahedron
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σ ∈ T ,

(2.6)
∑

q∈�,q⊂σ

x(q) = π,

and for each e ∈ E,

(2.7)
∑

q∈�
i(q, e)x(q) = 2π.

Thus one sees easily that a tangential angle structure is a tangent vector
to the space of all angle structures. In [19], a generalized angle structure
on (M,T) is defined as a vector x ∈ R� so that (2.6) and (2.7) hold.
It is proved in [19] that a generalized angle structure exists if and only
if the euler characteristic of each link lk(v) is zero for v ∈ V . We will
consider in this paper those x ∈ R� so that the right-hand side of (2.6)
is in π + 2πZ and the right-hand side of (2.7) is in 2πZ. These will
be called S1-valued angle structures on T and will be shown to exist
on any closed pseudo 3-manifold using the method introduced in [19].
Evidently, TAS(T) is the tangent space to SAS(T).

The following is a result proved by Tollefson for the closed 3-manifold
case, and Kang and Rubinstein and Tillmann for all cases. The result
was also known to Jaco [12].

Theorem 2.2 ([32, 14, 29]). For a triangulated closed pseudo 3-
manifold (M,T), let Proj� : R△ ×R� → R� be the projection. Then

(2.8) Proj�(Sns) = TAS(T)⊥

where R� has the standard inner product so that {q∗|q ∈ �} is an
orthonormal basis.

We remark that theorem 2.2 is not stated in this form in the work of
[32, 14, 29]. This interpretation is due to us.

Proof. Suppose Rn and Rm are Euclidean spaces with the standard
inner product and A : Rn → Rm is a linear transformation with trans-
pose At : Rm → Rn. Then it is well known that Im(A) = ker(At)⊥.
Define a linear map

(2.9) A : RE ×RT → R�

by

(2.10) A(h) = Proj�(
∑

e∈E
h(e)We +

∑

σ∈T
h(σ)Wσ).

By definition, Proj�(Sns) = Im(A).
By (2.2) and (2.3), we have

(2.11) A(h)(q) =
∑

σ∈T,q⊂σ

h(σ) +
∑

e∈E
i(q, e)h(e).
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To understand tangential angle structures, we define a linear map
B : R� → RE ×RT so that

(2.12) B(x)(e) =
∑

q∈�
i(q, e)x(q)

and

(2.13) B(x)(σ) =
∑

q∈�,q⊂σ

x(q).

By definition, we have TAS(T) = ker(B). We claim that B = At,
i.e., (B(x), h) = (x,A(h)) for all x ∈ R�, h ∈ RE ×RT where (, ) is the
standard inner product.

Indeed, by definition, we have

(B(x), h) =
∑

e∈E
h(e)B(x)(e) +

∑

σ∈T
h(σ)B(x)(σ)

=
∑

e∈E,q∈�
i(e, q)x(q)h(e) +

∑

σ∈T,q∈�,q⊂σ

h(σ)x(q)

=
∑

q∈�
x(q)

∑

e∈E
i(q, e)h(e) +

∑

q∈�
x(q)

∑

σ∈T,q⊂σ

h(σ)

= (x,A(h)).

Therefore, TAS(T)⊥ = ker(B)⊥ = Im(A) = Proj�(Sns). This ends
the proof. q.e.d.

Corollary 2.3 (Tillmann [29]). (a) dim(TAS(T)) = |V | − |E| +
2|T | = χ(M) + |T |.

(b) dim(Proj�(Sns)) = −χ(M) + 2|T |.

Definition 2.2. Suppose (M,T) is a triangulated closed pseudo 3-
manifold. We say the triangulation T is angle rigid if there is q ∈ �

so that x(q) = 0 for all x ∈ TAS(T). We say T is 2-angle rigid if
there exists a non-zero vector (c1, c2) ∈ R2 and q1 6= q2 ∈ � so that
c1x(q1) + c2x(q2) = 0 for all x ∈ TAS(T).

By definition, if T is angle rigid, then x(q) is a constant for all S1-
angle structures x, i.e., the angle at q cannot be deformed. If the tri-
angulation T has an edge e of degree 1, then T is angle rigid at the
quadrilateral q so that i(q, e) 6= 0. If T has an edge e of degree 2, then
T is 2-angle rigid at the quadrilaterals q1 and q2 so that i(qj, e) 6= 0 for
j = 1, 2.

One simple consequence of Theorem 2.2 is the following corollary.

Corollary 2.4. Under the same assumption as in theorem 2.2,
(a) (M,T) is angle rigid if and only if there exists an embedded nor-

mal surface Σ in T so that the surface has exactly one normal quadri-
lateral type;
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(b) (M,T ) is 2-angle rigid if and only if there exists a vector v ∈
Sns ∩ (Z△ × Z�) so that Proj�(v) is non-zero and has at most two
non-zero coordinates.

To see part (a), if there exists a normal surface containing only one
quadrilateral type q ∈ �, then its normal coordinate x ∈ R△ ×R� is a
vector so that Proj�(x) = kq∗ ∈ TAS(T)⊥ for some non-zero scalar k
and some q ∈ �. Thus, z(q) = 0 for all z ∈ TAS(T). Conversely, if there
exists q ∈ � so that z(q) = 0 for all z ∈ TAS(T), then q∗ ∈ TAS(T)⊥.
By theorem 2.2, q∗ = Proj�(v) for some v ∈ Sns. We may choose v ∈
Q△ ×Q� since the linear equations (2.1) have integer coefficients and
q∗ has integer coordinates. It follows that some integer multiple kv has
non-negative integer q-coordinates. Now add to the vector kv a positive
integer multiple of the normal coordinates of the normal surfaces lk(v),
the link of the vertex v ∈ V , so the resulting vector has positive t-

coordinates. We obtain a vector u ∈ Sns∩ (Z△
≥0×Z�

≥0) with exactly one
non-zero q-coordinate. By the work of Haken, this vector u is the normal
coordinate of an embedded normal surface in (M,T). The proof of (b)
is similar and will be omitted. However, we are not able to conclude

that v ∈ Z
△
≥0 × Z�

≥0 in this case.

2.4. Existence of S1-valued angle structures. We begin with a
definition which was also known to D. Futer and F. Gueritaud.

Definition 2.3. Suppose (M,T) is a triangulated closed pseudo 3-
manifold. Let k : E → S1 be given. An S1-valued angle structure with
curvature k on T is a function x : � → S1 so that for each tetrahedron
σ ∈ T,

(2.14)
∏

q∈�,q⊂σ

x(q) = −1

and for each edge e ∈ E,

(2.15)
∏

q∈�
x(q)i(q,e) = k(e).

The set of all x ∈ (S1)� satisfying (2.14) and (2.15) will be denoted by
SAS(T, k). The case that k(e) = 1 for all e ∈ E is the most interesting
one. We use SAS(T) to denote SAS(T, 1) where 1(e) = 1 for all e ∈ E.

For a complex number w ∈ C, we use arg(w) ∈ [0, 2π) to denote its
argument. If x ∈ SAS(T, k), by taking arg(x(q)), we can interpret an
S1-valued angle structure x as a map from � → R satisfying (2.6) and
(2.7) so that the right-hand side of (2.6) is in 2πZ+π and the right-hand
side of (2.7) is in 2πZ+ arg(k(e)).

Lemma 2.5. If SAS(T, k) 6= ∅, then the function k : E → S1 satis-
fies
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(2.16)
∏

e∈E
k(e) = 1,

and for each vertex v ∈ V ,

(2.17)
∏

e>v

k(e) = 1.

Indeed, to see (2.16), using (2.14) and (2.15), we can write the left-
hand side of (2.16) as

∏

q∈�,e∈E
x(q)i(q,e) =

∏

σ∈T

∏

q∈σ,e<σ

x(q)i(q,e) =
∏

σ∈T
(
∏

q⊂σ

x(q))2 = 1

due to
∑

e∈E i(q, e) = 2 for each q.
To see (2.17), using (2.14), we can write the left-hand side of (2.17)

as,
∏

e>v

∏

q∈�
x(q)i(q,e) =

∏

σ∈T,σ>v

(
∏

q⊂σ,e<σ,e>v

x(q)i(q,e)) = (−1)N

where N is the number of normal triangles at the vertex v. This number
N is the same as the number of triangles in the link lk(v). Since lk(v) is
a closed triangulated surface, N is an even number. Thus, (2.17) follows.

One can define the similar notion of an S1-valued angle structure
on a closed triangulated surface by assigning each angle of a triangle a
complex number of norm 1 so that the product of the complex numbers
in each triangle is −1. The curvature at a vertex is the product of all
complex numbers assigned to the angles at the vertex. For instance, if
(M3,T) is a triangulated pseudo 3-manifold with an S1-valued angle
structure, then the vertex link lk(v) has the induced S1-angle structure.
The identity (2.17) says that the product of its curvatures at all vertices
is 1.

The main result in this section says that (2.16) and (2.17) are also suf-
ficient. This generalizes our earlier work with Tillmann on 3-manifolds
with torus boundary [19]. The method of the proof of the proposition
below is that of [19].

Proposition 2.6 (See also [19]). Given any triangulated closed pseudo
3-manifold (M,T) and k : E → S1 satisfying (2.16) and (2.17), then
SAS(T, k) 6= ∅. Furthermore, SAS(T, k) is a smooth not necessarily
connected closed manifold of dimension |χ(M)|+ |T |.

In a recent joint work with D. Futer, C. Hodgson, and H. Segerman,
we are able to improve the above result by showing that any triangulated
closed pseudo 3-manifold supports a Z2- angle structure.
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Proof. Wemay assume without loss of generality thatM is connected.
Consider the Lie group homomorphism F : (S1)� → (S1)E×(S1)T given
by

F (z)(e) =
∏

q∈�
z(q)i(q,e)

and
F (z)(σ) =

∏

q∈�,q⊂σ

z(q)

where z ∈ (S1)�, e ∈ E, and σ ∈ T . The goal is to show that the point
t : E ∪ T → S1 given by t(e) = k(e) for e ∈ E and t(σ) = −1 for σ ∈ T
is in the image of F .

Suppose otherwise, that t is not in the image of F . Since F is a
continuous group homomorphism from a torus to a torus, the image of
F is a connected closed subgroup of (S1)E × (S1)T that misses t. Thus
there exists a continuous group homomorphism h : (S1)E × (S1)T → S1

so that h(t) 6= 1 and h ◦ F is the trivial homomorphism.
Each homomorphism from (S1)n to S1 is given by a vector

(m1, . . . ,mn) ∈ Zn, i.e., the homomorphism sends (x1, . . . , xn) ∈ (S1)n

to xm1

1 . . . xmn
n . Thus for the homomorphism h, there exists φ ∈ ZE×ZT

so that for all x ∈ (S1)E × (S1)T ,

h(x) =
∏

e∈E
x(e)φ(e)

∏

σ∈T
x(σ)φ(σ).

By the choice of t, we have h(t) =
∏

σ∈T (−1)φ(σ)
∏

e∈E k(e)φ(e). Thus,
h(t) 6= 1 says that

(2.18)
∏

e∈E
k(e)φ(e) 6= (−1)

∑
σ∈T φ(σ).

On the other hand, we will show that φ ◦ F being trivial implies that
(2.18) is an equality. The contradiction establishes the proposition.
q.e.d.

Since the composition h ◦ F is trivial, for any z ∈ (S1)�,

1 = h(F (z)) = (
∏

e∈E

∏

q

z(q)i(q,e)φ(e))(
∏

σ∈T

∏

q⊂σ

z(q)φ(σ))

=
∏

q∈�
z(q)

∑
σ,q⊂σ φ(σ)+

∑
e∈E φ(e)i(q,e).

By the assumption, h(F (z)) = 1 for all choices of z ∈ (S1)�. Thus,
we obtain, for each q ∈ �,

(2.19)
∑

σ,q⊂σ

φ(σ) +
∑

e

i(q, e)φ(e) = 0.

For a fixed tetrahedron σ ∈ T, the above equation says that the
sum of φ(e) + φ(e′) of the values of φ at two opposite edges e, e′ in σ
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Figure 2.3: A topological interpretation of lemma 2.7

is independent of the choice of e, e′. We will need to use the following
lemma.

Lemma 2.7. Suppose aij = aji ∈ Z where i 6= j ∈ {1, 2, 3, 4} are six
numbers so that

aij + akl = c

is a constant independent of the choice of indices i, j, k, l where
{i, j, k, l} = {1, 2, 3, 4}. Then there exist b1, . . . , b4 ∈ 1

2Z = {n/2|n ∈ Z}
so that

aij = bi + bj

for all i 6= j ∈ {1, 2, 3, 4}.

Indeed, bi =
aij+aik−ajk

2 is independent of the choices of {i, j, k},
{i, j, l}, or {i, k, l} due to the assumption on aij + akl = c.

Thus, by the lemma, there exists a map w : {vertice of σ} → 1
2Z so

that

(2.20) φ(e) = w(v, σ) + w(v′, σ)

where v, v′ are the end points of e. We claim that w(v, σ) is independent
of the choice of σ. Indeed, consider two tetrahedra σ, σ′ sharing a com-
mon triangular face f (see figure 2.3(b)). Then for three edges e1, e2, e3
in f , we solve (2.20) and obtain

w(v, σ) = w(v, σ′) =
φ(e1) + φ(e2)− φ(e3)

2
where v is the vertex opposite to the edge e3 in f . It follows that
w(v, σ) = w(v, σ′) is independent of the choice of tetrahedra σ and
σ′ since (M,T) is a pseudo 3-manifold. Let w : V → 1

2Z be the map so
that

(2.21) φ(e) = w(v) + w(v′)

where v, v′ are vertices of e. We claim that either all w(v)’s are integers,
or all of w(v) are half-integers (i.e., k+1/2 for some k ∈ Z). Indeed, since
φ(e) is an integer, it follows from (2.21) that either both w(v), w(v′) are
in Z, or both are in 1

2Z − Z. Since the manifold M is connected, it

follows that either w(v) ∈ Z for all v, or w(v) ∈ 1
2Z− Z for all v.
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We now claim that the sum
∑

σ∈T φ(σ) has to be an even integer.
Indeed, by (2.19) and (2.21), φ(σ) = −

∑
v<σ w(v). Thus,

∑

σ∈T
φ(σ) = −

∑

v∈V
w(v)(

∑

σ>v

1)

= −
∑

v∈V
w(v)|{triangles in the link lk(v)}|.

For any triangulation of a closed surface, the number of triangles in
the triangulation has to be even. Thus if all w(v) ∈ Z,

∑
σ∈T φ(σ) is

even. In the other case, all w(v) ∈ Z/2− Z. Thus,
∑

σ

φ(σ) = −
∑

v∈V

1

2
|{triangles in the link lk(v)}| mod(2)

= −
1

2
|{ normal triangles in T}| mod(2).

Now each tetrahedron has four normal triangles, and thus the total
number of normal triangles in T is divisible by 4. This implies again
that

∑
σ∈T φ(σ) is an even number.

This implies that the right-hand side of (2.18) is 1. We claim that
the left-hand side of (2.18) is also equal to 1. There are two cases to be
considered. In the first case, all w(v)’s are in Z. Then the left-hand side
of (2.18) becomes

∏

e∈E
k(e)

∑
v<e w(v) =

∏

v∈V
(
∏

e>v

k(e))w(v)

which is 1 due to (2.17).
In the second case that w(v) = W (v) + 1/2 where W (v) ∈ Z for all

v ∈ V , we have φ(e) = 1+
∑

v<e W (v). Thus, the left-hand side of (2.18)
becomes

∏

e∈E
k(e)1+

∑
v<e W (v) = (

∏

v∈V

∏

e>v

k(e)W (v))
∏

e∈E
k(e)

which is again 1 due to (2.16) and (2.17). This contradiction shows that
SAS(T, k) 6= ∅.

Finally, since SAS(T, k) = F−1(t) where F is a Lie group homomor-
phism, one concludes that SAS(T, k) is a closed smooth manifold that
may be disconnected.

3. Thurston equation and volume

The Thurston equation mentioned in the introduction can be conve-
niently rephrased in terms of the normal quadrilaterals in the triangula-
tion. It is based on the fact that a pair of opposite edges in a tetrahedron
is the same as the normal isotopy class of the quadrilateral that is dis-
joint from the given edges. We will rewrite the Thurston equation in
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terms of quadrilaterals in this section. In order to do so, we first recall
the Neumann–Zagier anti-symmetric bilinear form on R�. This bilinear
form appeared in the important work of Neumann–Zagier [23]. We as-
sume that (M,T) is an oriented closed pseudo 3-manifold in this section
so that each tetrahedron in T has the induced orientation.

3.1. Neumann-Zagier Poisson structure. If σ is an oriented Eu-
clidean tetrahedron with edges from one vertex labeled by a, b, c so that
the opposite edges have the same labeling a, b, c (see figure 2.3(c)), then
the cyclic order of edges a, b, c viewed from each vertex depends only on
the orientation of the tetrahedron, i.e., is independent of the choice
of the vertices. Now each pair of opposite edges in the tetrahedron
corresponds to a normal isotopy class of quadrilateral q in σ via the
relation i(q, e) 6= 0. Let q1, q2, q3 be three quadrilaterals in σ so that
q1 → q2 → q3 → q1 is the cyclic order induced by the cyclic order on
the opposite edges from a vertex. Let W be the vector space with a
basis {q1, q2, q3}. An anti-symmetric bilinear form ω : W ×W → R is
defined by ω(qi, qj) = 1 if and only if (i, j) = (1, 2), (2, 3), (3, 1). In par-
ticular, ω(qi, qj) = −ω(qj, qi). Given any two quadrilaterals q, q′ ∈ �,
set ω(q, q′) to be the value just defined if they are in the same tetrahe-
dron, and ω(q, q′) = 0 if they are in different tetrahedra. In this way,
one obtains the Neumann–Zagier anti-symmetric bilinear form

ω : R(�)×R(�) → R

where R(�) is the vector space with a basis �. More details of the form
can be found [23, 4], and [29]. See also [18].

The following was proved in [23].

Proposition 3.1 (Neumann-Zagier). . Suppose (M,T) is a triangu-
lated, oriented closed pseudo 3-manifold. Then

(a) for any q′ ∈ �,
∑

q∈� ω(q, q′) = 0.

(b) for any pair of edges e, e′ ∈ E,
∑

q,q′∈�
i(q, e)i(q′, e′)ω(q, q′) = 0.

Indeed, part (a) follows from the anti-symmetric property, i.e., for

any i = 1, 2, or 3,
∑3

j=1 ω(qj , qi) = 0. Part (b) is more complicated.

First, anti-symmetry shows that the identity (b) holds if (1) e = e′, or
(2) e and e′ do not lie in a tetrahedron, or (3) e, e′ lie in a tetrahedron
and are opposite edges. Now if e 6= e′ and e, e′ lie in a tetrahedron σ and
are not opposite, then e, e′ lie in a triangular face and there is a second
tetrahedron σ′ containing e, e′. In this case, due to the orientations on
σ and σ′, we have

(3.1)
∑

q,q′⊂σ

i(q, e)i(q′, e′)ω(q, q′) = −
∑

q,q′⊂σ′

i(q, e)i(q′, e′)ω(q, q′).
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Thus part (b) follows. For more details of the proof, see [23], pp. 316–
320.

It is known ([23]) that the restriction of the Neumann–Zagier 2-form
to the subspace {x =

∑
q∈� aqq ∈ R(�)| for each σ ∈ T ,

∑
q⊂σ aq = 0}

becomes non-degenerate. The 2-dimensional counterpart of the
Neumann–Zagier Poisson structure is Thurston’s anti-symmetric bilin-
ear form on the space of measured laminations. It is very closely related
to the Weil–Petersson symplectic form [24, 1] on the Teichmüller spaces
and plays a vital rule in Kontsevich’s work [15] on Witten’s conjecture
and many other works. It is expected that the Neumann-Zagier Poisson
structure will play an equally important role in (2 + 1) TQFT.

3.2. The generalized Thurston equation with prescribed cur-

vature. We begin with the following definition.

Definition 3.1. Suppose (M,T) is an oriented closed pseudo 3-
manifold with a triangulation and k ∈ (S1)E . The Thurston equation
(with curvature k) is defined for z ∈ C� so that for each e ∈ E,

(3.2)
∏

q∈�
z(q)i(q,e) = ±k(z),

and if q, q′ ∈ � so that ω(q, q′) = 1, then

(3.3) z(q′)(1− z(q)) = 1.

By (3.3) and the fact that f(t) = 1
1−t satisfies tf(t)f(f(t)) = −1, we

have, for each tetrahedron σ ∈ T ,

(3.4)
∏

q∈�,q⊂σ

z(q) = −1.

Note that we do not require that Im(z(q)) > 0, which corresponds
to the positively oriented ideal tetrahedron ([23]). The work of Yoshida
[33] (see also [23] and [29]) shows that each solution z so that the
right-hand side of (3.2) is 1 produces a representation of π1(M − V ) to
PSL(2,C).

Note that equation (3.2) is equivalent to

(3.5)
∏

q∈�
z(q)2i(q,e) = k(e)2

It is the solution to (3.3) and (3.5) that is addressed in theorem 1.1.

3.3. Volume of S1-valued angle structures. Recall that the
Lobachevsky function Λ(x) = −

∫ x
0 ln |2 sin(u)|du is a continuous pe-

riodic function of period π defined on R. It is real analytic on R− πZ
so that limt→0Λ

′(t) = +∞. For more details, see Milnor [22]. Given

t = e
√
−1a ∈ S1, define λ(t) = Λ(a). This is well defined since Λ(a) has

π as a period. Furthermore, λ : S1 → R is real analytic on the subset
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S1 − {±1}. For an S1-valued angle structure x : � → S1 on (M,T),
define its volume V(x) to be

V(x) =
∑

q∈�
λ(x(q)) =

∑

q∈�
Λ(arg(x(q))).

The volume function V is continuous and, in particular, has a maxi-
mum and a minimum point. By definition the smooth points for V :
SAS(T, k) → R include those points x where x(q) 6= ±1 for all q.

The main theorem in the paper can be stated as follows.

Theorem 3.2. Suppose (M,T) is a triangulated oriented closed pseudo
3-manifold and k ∈ (S1)E satisfies (2.16) and (2.17). Let p be a maxi-
mum point of the volume function V : SAS(T, k) → R.

(a) If p(q) 6= ±1 for all q ∈ �, then p produces a solution to the
generalized Thurston equation (3.3) and (3.5).

(b) If p(q0) = ±1 for some q0 ∈ �, then p produces a 2-quad-type
solution y to Haken’s normal surface equation so that y(q0) 6= 0.

3.4. Smooth critical point of the volume. The following lemma
was known to Casson and Rivin.

Lemma 3.3. Suppose x ∈ SAS(T, k) is a critical point of the volume
V : SAS(T) → R so that x(q) 6= ±1 for all q ∈ �. Then the generalized
Thurston equation (3.3) and (3.5) has a solution in (C−R)�.

Proof. Suppose q1, q2, q3 are three quadrilaterals in a tetrahedron. Let
xi = x(qi) be the S1-valued angle at the quadrilateral. We define the
associated complex values z(qi) by the formula.

z(qi) =
xj − x̄j
xk − x̄k

xi =
sin(arg(xj))

sin(arg(xk))
xi

where ω(qi, qj) = 1 and {i, j, k} = {1, 2, 3}. This is well defined since
xk − x̄k 6= 0 by the assumption that x(q) 6= ±1. More generally, for
x ∈ SAS(T) and x(q) 6= ±1 for all q, one defines z ∈ C� by

z(q) = x(q)
∏

r∈�
(sin(arg(x(r))))ω(r,q).

We claim that z is a solution to the Thurston equation (3.3) and
(3.5).

First, (3.3) follows by a direct calculation and the definition. Let us
assume that zi = z(qi) and that ω(q1, q2) = 1. By definition, we have

z1 =
x2 − x̄2
x3 − x̄3

x1

and

z2 =
x3 − x̄3
x1 − x̄1

x2.
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Due to x1x2x3 = −1 and xix̄i = 1, then (3.3) says that

z2(1− z1) = 1.

Indeed,

z2(1− z1) = (
x3 − x̄3
x1 − x̄1

x2)
x3 − x̄3 − x1x2 + x1x̄2

x3 − x̄3

=
x3 + x1x̄2
x1 − x̄1

x2 =
x3x2 + x1
x1 − x̄1

= 1.

To see (3.5), we need to use the critical point equation for V at the
smooth point x. By definition, we can identify the tangent space to a
point of SAS(T, k) with TAS(T). Indeed, for any v ∈ TAS(T) and
x ∈ SAS(T, k), the path p(t) = xetv ∈ SAS(T, k) given by

p(t)(q) = x(q)etv(q)

for t ∈ (−ǫ, ǫ) has tangent vector v at t = 0 and all tangent vectors to

SAS(T, k) at x are of this form. Now due to x(q) 6= ±1, dV(xetv)
dt |t=0 = 0

shows that,

(3.6)
∑

q∈�
v(q) ln | sin(arg(x(q)))| = 0.

Choose a specific v ∈ TAS(T) as follows. Fix an edge e ∈ E, by
proposition 3.1,

(3.7) ve =
∑

q∈�

∑

r∈�
i(q, e)ω(r, q)r∗ ∈ TAS(T).

Now substitute ve for v in (3.6) and use the fact that
∑

q∈� i(q, e)ve(q) =
0, we obtain, for each e ∈ E,

∏

q∈�
z(q)i(e,q) =

∏

q∈�
x(q)i(e,q)

∏

r∈�
sin(arg(x(q)))i(e,q)ω(r,q)

= k(e)
∏

q,r∈�
sin(arg(x(q)))i(e,q)ω(r,q) = ±k(e)

due to (3.6) and (3.7). This verifies (3.5) and ends the proof. q.e.d.

Furthermore, if z is a solution in (C−R)� to the generalized Thurston
equation (3.3) and (3.5) over a closed 3-manifold, then z

|z| is an S1-angle

structure that is a smooth critical point of the volume V in SAS(T).
The proof uses the fact that for a closed manifold M , the tangent space
TAS(T) is generated by the vectors ve’s for e ∈ E given by (3.7). We
omit the details.

Corollary 3.4. Under the same assumption as in lemma 3.3, if x ∈
SAS(T, k) is a smooth critical point of the volume V with x(q) 6= ±1 for
all q ∈ �, let y ∈ R�

≥0 be the vector so that y(q) = − ln |(sin(arg(x(q)))|.
Then y ∈ Proj�(Sns).



318 F. LUO

Indeed, (3.6) shows that y ∈ TAS(T)⊥. Thus, by theorem 2.2, y ∈
Proj�(Sns).

It will be very interesting to see what topological information y con-
tains.

4. Volume optimization and normal surfaces

A relationship between those smooth critical points p with p(q) 6= ±1
of the volume V : SAS(T, k) → R and the normal surfaces is estab-
lished in corollary 3.4. In this section, we will investigate the remaining
critical points of the volume. Since the function V is not smooth, the
definition of the critical points of V should be specified. First of all, we
will show (corollary 4.3) that for any p ∈ SAS(T) and u ∈ TAS(T),

the limit limt→0
dV(petu)

dt always exists as an element in [−∞,∞] =
R ∪ {∞,−∞}. We say that a point p ∈ SAS(T, k) is a critical point of
the volume V if for all u in TAS(T),

(4.1) lim
t→0

dV(petu)

dt
= 0.

Using this definition, one sees easily that the maximum and minimum
points of V are critical points, i.e., the volume function V always has
critical points.

The main theorem in the section, which implies theorem 1.1, is the
following:

Theorem 4.1. Suppose (M,T) is an orientable closed triangulated
pseudo 3-manifold with SAS(M,T, k) 6= ∅. If the volume V : SAS
(M,T, k) → R has a critical point p so that p(q0) = ±1 for some
q0 ∈ �, then p produces a 2-quad-type solution y to Haken’s normal
surface equation so that y(q0) 6= 0.

Recall that by proposition 2.6, SAS(M,T, k) 6= ∅ if and only if k
satisfies (2.16) and (2.17).

4.1. Subderivatives of the volume function. The volume function
V is essentially composed by the function W : P → R where P =
{(x1, x2, x3) ∈ R3|x1 + x2 + x3 = π} and W (x1, x2, x3) = Λ(x1) +
Λ(x2) + Λ(x3). The function W is not smooth on the subset defined by
some xi ∈ πZ. However, we can obtain subderivative information of W
at these points.

The function h(t) = t ln |t| can be extended to be a continuous func-
tion from R → R by declaring h(0) = 0. This extension, still denoted
by t ln |t|, will be used below.

Lemma 4.2. Take a point a = (a1, a2, a3) ∈ P and b = (b1, b2, b3) ∈

R3 so that b1 + b2 + b3 = 0. Define f(t) = dW (a+tb)
dt . Then limt→0 f(t)

exists as an element in R ∪ {±∞} and
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(a) if ai /∈ πZ for all i,

(4.2) lim
t→0

f(t) = −
3∑

i=1

bi ln | sin(ai)|;

(b) if ai ∈ πZ for all i,

(4.3) lim
t→0

f(t) = −
3∑

i=1

bi ln |bi|;

(c) if a1 ∈ πZ and a2, a3 /∈ πZ, then

(4.4) lim
t→0

(f(t) + b1 ln |t|) = −b1 ln |b1| −
3∑

i=2

bi ln | sin(ai)|.

Proof. We have f(t) = −
∑3

i=1 bi ln |2 sin(ai + tbi)| = −
∑3

i=1 bi
ln | sin(ai + tbi)| due to

∑3
i=1 b3 = 0. Now part (a) follows from the

definition.
For part (b), due to ln(| sin(t + π)|) = ln | sin(t)|, it follows that

f(t) = −
∑3

i=1 bi ln(| sin(tbi)|). The result is obvious if bi = 0 for all
i. Otherwise—say, b3 6= 0—then b3 = −b1 − b2. Substitute it to f(t),
and we obtain

f(t) = −b1 ln |
sin(b1t)

sin(b3t)
| − b2 ln |

sin(b2t)

sin(b3t)
|.

By taking the limit as t → 0, we obtain part (b).
For part (c), we write

f(t) = −b1 ln |
sin(b1t)

b1t
| − b1 ln |b1t| −

3∑

i=2

bi ln | sin(ai + tbi)|

= −b1 ln |t| − b1 ln |b1| −
3∑

i=2

bi ln | sin(ai)|+ o(t).

where o(t) is a quantity so that limt→0 o(t) = 0. This establishes part
(c) and finishes the proof. q.e.d.

Note that due to a1 + a2 + a3 = π, cases (a), (b), and (c) are the
list of all cases up to symmetry. The limit limt→0 f(t) in cases (b),
(c) above is called the subderivative of the function W at the point
a. The subderivative, considered as a function of the tangent vector b,
is homogeneous of degree 1. However, due to the non-smoothness, the
subderivative, as shown in (b) and (c), is not a linear function of b.

In the case of the S1-valued angle structure, consider X = {a =

(a1, a2, a3) ∈ (S1)3|a1a2a3 = −1} and the volume V(a) =
∑3

i=1 λ(ai) =∑3
i=1Λ(arg(ai)). Consider a tangent vector b = (b1, b2, b3) ∈ R3 so that
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b1 + b2 + b3 = 0. Define f(t) = dV(aetb)
dt . Then limt→0 f(t) exists as an

element in R ∪ {±∞} and the above lemma says
(a) if ai 6= ±1 for all i,

(4.5) lim
t→0

f(t) = −
3∑

i=1

bi ln | sin(arg(ai))|;

(b) if ai = ±1 for all i,

(4.6) lim
t→0

f(t) = −
3∑

i=1

bi ln |bi|;

(c) if a1 = ±1 and a2, a3 6= ±1, then

(4.7) lim
t→0

(f(t) + b1 ln |t|) = −b1 ln |b1| −
3∑

i=2

bi ln | sin(arg(ai))|.

Corollary 4.3. For any a ∈ SAS(T, k), there exists a unique linear
function g(b) of b ∈ TAS(T) and a continuous function f(b, t) of b and
t ∈ (−ǫ, ǫ) so that

dV(aetb)

dt
= g(b) ln |t|+ f(b, t).

In particular, the limit limt→0
dV(aetb)

dt always exists as an element in
[−∞,∞]. Furthermore, a local maximum or minimum point of V is a
critical point.

4.2. A proof of theorem 4.1. Suppose p ∈ SAS(T, k) is a critical
point of the volume function V so that p(q0) = ±1 for some q0 ∈ �. By
definition of critical points, we have

lim
t→0

dV(petb)

dt
= 0

for all b in TAS(T). By the definition of V, we have

V(x) =
∑

σ∈T

∑

q∈�,q⊂σ

Λ(arg(x(q))).

Let Y = {q ∈ �|p(q) = ±1}, which contains q0, and Y ′ = {q ∈ Y | there
exists σ ∈ T so that q ⊂ σ and for the other two q′, q′′ ⊂ σ, one has
p(q′), p(q′′) 6= ±1}.

Thus, by (4.5)–(4.7), we can write

lim
t→0

(
dV(petb)

dt
+ ln |t|

∑

q∈Y ′

b(q)) = −
∑

q∈Y
b(q) ln |b(q)|

−
∑

q /∈Y
b(q) ln | sin(arg(p(q)))|.
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By the critical point condition (4.1), we obtain
∑

q∈Y ′ b(q) = 0 and

(4.8)
∑

q∈Y
b(q) ln |b(q)| = −

∑

q /∈Y
b(q) ln | sin(arg(p(q)))|.

For each q ∈ �, let fq : TAS(T) → R be the linear function on TAS(T)
defined by fq(b) = b(q). Then the right-hand side of (4.8) is a linear
function in b on TAS(T) and the left-hand side of (4.8) is a sum of the
functions fq(b) ln |fq(b)|.

Lemma 4.4. Suppose W is a finite-dimensional vector space over R
and f1, . . . , fn and g are linear functions on W satisfying

(4.9)
n∑

i=1

fi(x) ln |fi(x)| = g(x).

Then for each index i there exists j 6= i and λij ∈ R so that

fi(x) = λijfj(x).

Proof. Note if one of fi is the zero function fi(x) = 0 for all x, then
the lemma holds. Let us assume that all fi’s are non-zero functions. We
may assume that W = Rm and x = (x1, . . . , xm) ∈ W after a linear
change of variables. Write

fi(x) =
m∑

j=1

aijxj.

Now suppose the result does not hold—say, f1(x) is not proportional
to fj(x)

′s for j ≥ 2. Then we can find a point v ∈ ker(f1) so that
v /∈ ∪n

j=2ker(fj). Since f1 6= 0, for simplicity, let us assume that a11 6= 0.

Now take the partial derivative of (4.9) with respect to x1. We obtain

(4.10)
∑

j=1

a1j ln |fj(x)| = h(x)

where h(x) is a linear function. Take a sequence of vectors x converging
to v in (4.10), we obtain a contradiction since a11 6= 0. This ends the
proof. q.e.d.

Applying lemma 4.4 to (4.8) with fi’s being fq’s for q ∈ Y , we
conclude that for fq0 , there exist fq1 , q1 6= q0 and λ ∈ R so that
fq0(b) = λfq1(b) for all b ∈ TAS(T). This shows that (b, q∗0 − λq∗1) = 0
for all b. By theorem 2.2, there exists a solution y to Haken’s equation
so that y(q0) = 1, y(q1) = −λ, and y(q) = 0 for all q ∈ �−{q0, q1}. This
ends the proof.
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4.3. A generalization. In [7], David Futer and François Guéritaud
proved a very nice theorem concerning the non-smooth maximum points
of the volume function. Given x ∈ SAS(T), we say a tetrahedron σ ∈ T
is flat with respect to x if x(q) = ±1 for all q ⊂ σ and partially flat if
x(q) = ±1 for one q ⊂ σ.

Theorem 4.5 (Futer and Guéritaud). Suppose (M,T) is an oriented
triangulated closed pseudo 3-manifold. If x is a non-smooth maximum
point of the volume function on SAS(T), then there exists a non-smooth
maximum volume point y ∈ SAS(T) so that all partially flat tetrahedra
in y are flat.

A written proof of it, supplied by Futer and Guéritaud, can be found
in [18]. Combining theorems 4.5 and 4.1, we obtain a stronger statement:

Theorem 4.6. Suppose (M,T) is a closed triangulated oriented pseudo
3-manifold so that it has a non-smooth maximum volume point in SAS(T).
Then there exist three 2-quad type solutions x1, x2, x3 of Haken’s normal
surface equation so that there are three distinct quadrilaterals q1, q2, q3
in a tetrahedron with xi(qi) 6= 0 for all i.

We call the three 2-quad-type solutions that appear in theorem 4.6 a
cluster of 2-quad-type solutions. In the joint work with Tillmann [20],
we proved the following topological result.

Theorem 4.7 ([20]). Suppose (M,T ) is a minimally triangulated
orientable closed 3-manifold which supports a cluster of three 2-quad-
type solutions to Haken’s equation. Then,

(a) M is reducible, or
(b) M is toroidal, or
(c) M is a Seifert fibered space, or
(d) M contains the connected sum #3

i=1RP 2 of three copies of the
projective plane.

Theorem 1.2 mentioned in the introduction is a consequence of the-
orems 4.6 and 4.7.

5. Open problems

Based on theorem 4.7, we propose the following conjecture, which is
weaker than conjecture 1.3.

Conjecture 5.1. Suppose (M,T) is a minimally triangulated irre-
ducible orientable closed 3-manifold so that the triangulation does not
have a cluster of three 2-quad-type solutions to Haken’s equation. Then
there is a solution to the Thurston equation associated to T.

Note that by the same argument as in §1.2 and using theorem 4.7
instead of theorem 1.2 and Segerman and Tillmann’s theorem, we see
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that conjecture 5.1 for simply connected manifold is equivalent to the
Poincaré conjecture.

Conjecture 5.1 relates solutions of Thurston equation to solutions of
Haken’s equation and does not involve any volume optimization process.
The minimality condition in conjecture 5.1 is necessary. This was shown
to us by Ben Burton and Henry Segerman. Solutions to the Thurston
equation have been found in many cases. For instance, Tillmann proved
in [30] that if M is a non-compact finite volume hyperbolic 3-manifold
and T is an ideal triangulation so that each edge is homotopically es-
sential, then T supports a solution to the Thurston equation. However,
a general existence theorem for solving the Thurston equation seems to
be still lacking. Conjecture 5.1 is an attempt to address the issue.

Given a solution to the Thurston equation, by the work of Yoshida
[33] one can produce a representation of the fundamental group ofM−V
to PSL(2,C) where V is the set of vertices. It is interesting to know
when solutions to the Thurston equation produce irreducible represen-
tations of the fundamental group. See the work of [6] and [8].

Finally, solving the Thurston equation over the real numbers, i.e., z ∈
R�, seems to be an attractive problem. The first step toward producing
a real-valued solution to Thurston equation comes from the following
definition.

Definition 5.1. Let Z2 be the multiplicative group of two elements
{−1, 1}. A Z2-angle-taut structure on a triangulated closed pseudo 3-
manifold (M,T) is a map f : � → {−1, 1} so that

(a) if q1, q2, q3 are three quadrilaterals in each tetrahedron σ, then
exactly one of f(q1), f(q2), f(q3) is −1; and

(b) for each edge e in T,
∏

q∈� f(q)i(q,e) = 1.

The motivation for the definition comes from Lackenby’s taut triangu-
lations and real-valued solutions to thr Thurston equation. Indeed, if z is
a real-valued solution to the Thurston equation, then f(q) = sgn(z(q)),
i.e., the sign of z(q), is a Z2-angle-taut structure. A theorem of Ba-
seilhac and Benedetti shows that every triangulated pseudo 3-manifold
supports a Z2-angle-taut structure.

6. Appendix

We give a new proof of the Kang–Rubinstein theorem in this section.
First, one checks easily that both Wσ and We are in Sns. Next, by a
simple dimension counting, one sees that dim(Sns) ≤ |E|+|T |. Indeed, a
solution to the normal surface equation is determined by its intersection
numbers with edges and the numbers of quads inside each tetrahedron.
Thus, it suffices to prove that {Wσ,We|σ ∈ T, e ∈ E} is an independent
set. To this end, suppose otherwise that there exists h ∈ RE × RT so
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that ∑

e∈E
h(e)We +

∑

σ∈T
h(σ)Wσ = 0.

We can write it as
∑

t∈△
(−

∑

e>t

h(e) −
∑

σ>t

h(σ))t∗ +
∑

q∈�
(
∑

e∈E
h(e)i(q, e) +

∑

σ∈T,q⊂σ

h(σ))q∗ = 0

Since {t∗, q∗} form a basis, we obtain for each t ∈ △,

(6.1)
∑

e>t

h(e) +
∑

σ>t

h(σ) = 0

and for each q ∈ �,

(6.2)
∑

e∈E
h(e)i(q, e) +

∑

σ∈T,q⊂σ

h(σ) = 0.

Consider a fixed tetrahedron σ ∈ T . We claim that the system of
linear equations (6.1) and (6.2) for the six edges of σ has only the trivial
solution, i.e., h(e) = h(σ) = 0. In particular, this shows that {We,Wσ}
is independent.

To see the claim, let us label the vertices of σ by 1, 2, 3, 4 and the six
edges by eij where i 6= j ∈ {1, 2, 3, 4}. Let hij = h(eij) and f = h(σ).
Then (6.1) and (6.2) say that at the ith vertex

(6.3) hij + hik + hil = f

and

(6.4) hij + hkl = f

for {i, j, k, l} = {1, 2, 3, 4}. Consider the sum of two equations (6.3) at
the ith and jth vertices subtracting the sum of the two equations (6.3)
at the kth and lth vertices. We obtain, hij = hkl, i.e., h(e) = h(e′) when
e, e′ are opposite edges. Now by (6.4), we see that hij = f/2 for all i 6= j.
Now substituting back to (6.3), we obtain 3f/2 = f . Thus, f = 0 and
hij = 0, i.e., h(e) = h(σ) = 0.
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