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MINIMAL MODELS, FORMALITY, AND

HARD LEFSCHETZ PROPERTIES OF

SOLVMANIFOLDS WITH LOCAL SYSTEMS

Hisashi Kasuya

Abstract

For a simply connected solvable Lie group G with a cocompact
discrete subgroup Γ, we consider the space of differential forms on
the solvmanifold G/Γ with values in a certain flat bundle so that
this space has a structure of a differential graded algebra (DGA).
We construct Sullivan’s minimal model of this DGA. This result is
an extension of Nomizu’s theorem for ordinary coefficients in the
nilpotent case. By using this result, we refine Hasegawa’s result
of formality of nilmanifolds and Benson-Gordon’s result of hard
Lefschetz properties of nilmanifolds.

1. Introduction

The main purpose of this paper is to compute the de Rham cohomol-
ogy of solvmanifolds with values in local coefficients associated to some
diagonal representations by using the invariant forms and the unipotent
hulls. The computations are natural extensions of Nomizu’s computa-
tions of untwisted de Rham cohomology of nilmanifolds by the invariant
forms in [23]. The computations give natural extensions of Hasegawa’s
result of formality of nilmanifolds ([15]) and Benson and Gordon’s result
of hard Lefschetz properties of nilmanifolds ([6]).

First we explain the central tools of this paper, called the unipotent
hulls and algebraic hulls. Let G be a simply connected solvable Lie
group. There exists a unique algebraic group HG called the algebraic
hull of G with an injection ψ : G→ HG so that:

1) ψ(G) is Zariski-dense in HG;
2) the centralizer ZHG

(U(HG)) of U(HG) is contained in U(HG);
3) dimU(HG) = dimG;

where we denote U(H) the unipotent radical of an algebraic group H.
We denote UG = U(HG) and call it the unipotent hull of G.

We consider Hain’s DGAs in [14] which are expected to be effec-
tive techniques for studying de Rham homotopy theory of non-nilpotent
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spaces. Let M be a C∞-manifold, ρ : π1(M,x) → (C∗)n a representa-
tion; and T the Zariski-closure of ρ(π1(M,x)) in (C∗)n. Let {Vα} be
the set of one-dimensional representations for all characters α of T,
let (Eα,Dα) be a rank one flat bundle with the monodromy α ◦ ρ and
with A∗(M,Eα) the space of Eρ-valued C∞-differential forms. Denote
A∗(M,Oρ) =

⊕

αA
∗(M,Eα) and D =

⊕

αDα. Then (A∗(M,Oρ),D) is
a cohomologically connected (i.e. the 0-th cohomology is isomorphic to
the ground field) DGA. In this paper we construct Sullivan’s minimal
model ([29]) of such DGAs on solvmanifolds.

On simply connected solvable Lie groups, we consider DGAs of left-
invariant differential forms with local systems which are analogues of
Hain’s DGAs. Suppose G is a simply connected solvable Lie group and
g is the Lie algebra of G. Consider the adjoint representation Ad : G→
Aut(g) and its derivation ad : g→ D(g), whereD(g) is the Lie algebra of
the derivations of g. We construct representations of g and G as follows.

Construction 1.1. Let n be the nilradical of g. There exists a sub-
vector space (not necessarily Lie algebra) V of g so that g = V ⊕n as the
direct sum of vector spaces and for any A,B ∈ V (adA)s(B) = 0 where
(adA)s is the semi-simple part of adA (see [12, Proposition III.1.1]). We
define the map ads : g → D(g) as adsA+X = (adA)s for A ∈ V and
X ∈ n. Then we have [ads(g), ads(g)] = 0 and ads is linear (see [12,
Proposition III.1.1]). Since we have [g, g] ⊂ n, the map ads : g → D(g)
is a representation and the image ads(g) is abelian and consists of semi-
simple elements. We denote by Ads : G→ Aut(g) the extension of ads.
Then Ads(G) is diagonalizable.

Let T be the Zariski-closure of Ads(G) in Aut(gC). Then T is diago-
nalizable. Let {Vα} be the set of one-dimensional representations for all
characters α of T. We consider Vα the representation of g which is the
derivation of α ◦Ads. Then we have the cochain complex of Lie algebra
(
∧

g∗C ⊗ Vα, dα). Denote A∗(gC, ads) =
⊕

α

∧

g∗C ⊗ Vα and d =
⊕

α dα.
Then (A∗(gC, ads), d) is a cohomologically connected DGA. In this pa-
per we compute the cohomology of this DGA by the unipotent hull UG

of G. Let u be the Lie algebra of UG and
∧

u∗ be the cochain complex
of the dual space u∗ of u. We prove the following theorem.

Theorem 1.1 (Theorem 5.4). We have a quasi-isomorphism (i.e. a
morphism which induces a cohomology isomorphism) of DGAs

∧

u∗ → A∗(gC, ads).

Thus
∧

u∗ is Sullivan’s minimal model of A∗(gC, ads).

Suppose G has a lattice Γ, i.e. a cocompact discrete subgroup of G.
We call a compact homogeneous space G/Γ a solvmanifold. We have
π1(G/Γ) ∼= Γ. For the restriction of the semi-simple part of the adjoint
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representation Ads|Γ on Γ, we consider Hain’s DGA A∗(G/Γ,OAds|Γ
).

By using Theorem 1.1, we prove:

Theorem 1.2 (Corollary 7.5). Let G be a simply connected solvable
Lie group with a lattice Γ, and let UG be the unipotent hull of G. Let u
be the Lie algebra of UG. Then we have a quasi-isomorphism

∧

u∗ → A∗(G/Γ,OAds|Γ
).

Thus
∧

u∗ is Sullivan’s minimal model of A∗(G/Γ,OAds|Γ
).

IfG is nilpotent, the adjoint operator Ad is a unipotent representation
and hence A∗(G/Γ,OAds|Γ

) = A∗
C(G/Γ) and A∗(gC, ads) =

∧

gC =
∧

u∗. In this case, Theorem 1.2 reduces to the classical theorem proved
by Nomizu in [23]. Moreover, this result gives more refined computations
of untwisted de Rham cohomology of solvmanifolds than the results of
Mostow and Hattori (see Corollary 7.4 and Section 10).

We call a DGA A formal if there exists a finite diagram of morphisms

A→ C1 ← C2 · ·· ← H∗(A)

such that all morphisms are quasi-isomorphisms; and we call manifolds
M formal if the de Rham complex A∗(M) is formal. In [15] Hasegawa
showed that formal nilmanifolds are tori. By the results of this paper,
we have a natural extension of Hasegawa’s theorem for solvmanifolds.

Theorem 1.3 (Theorem 8.2). Let G be a simply connected solvable
Lie group. Then the following conditions are equivalent:
(A) The DGA A∗(gC, ads) is formal.
(B) UG is abelian.
(C) G = Rn ⋉φ Rm such that the action φ : Rn → Aut(Rm) is semi-
simple.
Moreover, suppose G has a lattice Γ. Then the above three conditions
are equivalent to the following condition:
(D) A∗(G/Γ,OAds|Γ

) is formal.

In [6] Benson and Gordon showed that symplectic nilmanifolds with
the hard Lefschetz properties are tori. We can also have an extension of
Benson and Gordon’s theorem.

Theorem 1.4 (Theorem 8.4). Let G be a simply connected solvable
Lie group. Suppose dimG = 2n and G has an G-invariant symplectic
form ω. Then the following conditions are equivalent:
(A)

[ω]n−i∧ : H i(A∗(gC, ads))→ H2n−i(A∗(gC, ads))

is an isomorphic for any i ≤ n.
(B) UG is abelian.
(C) G = Rn ⋉φ Rm such that the action φ : Rn → Aut(Rm) is semi-
simple.
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Suppose G has a lattice Γ and G/Γ has a symplectic form (not neces-
sarily G-invariant) ω. Then the conditions (B) and (C) are equivalent
to the following condition:
(D)

[ω]n−i∧ : H i(A∗(G/Γ,OAds|Γ
))→ H2n−i(A∗(G/Γ,OAds|Γ

))

is an isomorphism for any i ≤ n.

Remark 1.1. As a representation in an algebraic group, Ads is in-
dependent of the choice of a subvector space V in Construction 1.1
(see Lemma 2.5). By this, the structures of DGAs A∗(gC, ads) and
A∗(G/Γ,OAds|Γ

) are independent of the choice of a subvector space V .

Finally we consider relations with Kähler geometries. We review stud-
ies of Kähler structures on solvmanifolds briefly. See [5] and [17] for
more details. In [7] Benson and Gordon conjectured that for a com-
pletely solvable simply connected Lie group G with a lattice Γ, G/Γ
has a Kähler metric if and only if G/Γ is a torus. In [16] Hasegawa
studied Kähler structures on some classes of solvmanifolds which are
not only the completely solvable type, and suggested a generalized ver-
sion of Benson-Gordon’s conjecture: A compact solvmanifold can have
a Kahler structure if and only if it is a finite quotient of a complex torus
that is a holomorphic fiber bundle over a complex torus with its fiber a
complex torus. In [1] Arapura showed Benson-Gordon’s conjecture and
also showed that the fundamental group of a Kähler solvmanifold is
virtually abelian by the result in [2]. In [1] a proof of Hasegawa’s con-
jecture was also written, but we notice that this proof contains a gap and
Hasegawa complement in [17]. We also notice that Baues and Cortés
showed a more generalized version of Benson-Gordon’s conjecture for
aspherical manifolds with polycyclic fundamental groups in [5].

By the theory of Higgs bundle studied by Simpson, we have a twisted
analogue of formality (see [11]) and the hard Lefschetz properties of
compact Kähler manifolds. We have:

Theorem 1.5 (Special case of Thoerem 4.1). Suppose M is a com-
pact Kähler manifold with a Kähler form ω, and that ρ : π1(M)→ (C∗)n

is a representation. Then the following conditions hold:
(A) (formality) The DGA A∗(M,Oρ) is formal.
(B)(hard Lefschetz) For any 0 ≤ i ≤ n the linear operator

[ω]n−i∧ : H i(A∗(M,Oρ))→ H2n−i(A∗(M,Oρ))

is an isomorphism where dimRM = 2n.

Now by Theorem 1.5, formality and the hard Lefschetz property of
DGA A∗(G/Γ,OAds|Γ

) are criteria for G/Γ to have a Kähler metric. We

will see such conditions are stronger than untwisted formality and the
hard Lefschetz property.
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Remark 1.2. There exist examples of solvmanifolds G/Γ which sat-
isfy formality and the hard Lefschetz property of the untwisted de Rham
complex A∗(G/Γ), but do not satisfy formality and the hard Lefschetz
property of A∗(G/Γ,OAds|Γ

).

However, we will see that these criteria cannot classify Kähler solv-
manifolds completely.

Remark 1.3. There exist examples of non-Kähler solvmanifolds which
satisfy formality and the hard Lefschetz property of A∗(G/Γ,OAds|Γ

).
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2. Preliminaries on algebraic hulls

Let G be a discrete group (resp. a Lie group). We call a map ρ : G→
GLn(C) a representation, if ρ is a homomorphism of groups (resp. Lie
groups).

2.1. Algebraic groups. In this paper an algebraic group means an
affine algebraic variety G over C with a group structure such that
the multiplication and inverse are morphisms of varieties. All algebraic
groups in this paper arise as Zariski-closed subgroups of GLn(C). Let k
be a subfield of C. We call G k-algebraic if G is defined by polynomi-
als with coefficient in k. We denote as G(k) the k-points of G. We say
that an algebraic group is diagonalizable if it is isomorphic to a closed
subgroup of (C∗)n for some n.

2.2. Algebraic hulls. A group Γ is polycyclic if it admits a sequence

Γ = Γ0 ⊃ Γ1 ⊃ · · · ⊃ Γk = {e}

of subgroups such that each Γi is normal in Γi−1 and Γi−1/Γi is cyclic.

For a polycyclic group Γ, we denote rankΓ =
∑i=k

i=1 rankΓi−1/Γi. Let
G be a simply connected solvable Lie group, and let Γ to be a lattice
in G. Then Γ is torsion-free polycyclic and dimG = rankΓ (see [26,
Proposition 3.7]). Let ρ : G → GLn(C), for g ∈ G be a representation.
Let G and G′ be the Zariski-closures of ρ(G) and ρ(Γ) in GLn(C). Then
we have U(G) = U(G′) (see [26, Theorem 3.2]).

We review the algebraic hulls.
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Proposition 2.1. ([26, Proposition 4.40]) Let G be a simply con-
nected solvable Lie group (resp. torsion-free polycyclic group). Then
there exists a unique R-algebraic group HG with an injective group ho-
momorphism ψ : G→ HG(R) so that:
(1) ψ(G) is Zariski-dense in HG.
(2) ZHG

(U(HG)) ⊂ U(HG).
(3) dimU(HG)=dimG(resp. rankG).
Such HG is called the algebraic hull of G.

We denote UG = U(HG) and call UG the unipotent hull of G.

2.3. Direct constructions of algebraic hulls. Let g be a solvable Lie
algebra, and n = {X ∈ g|adX is nilpotent}. n is the maximal nilpotent
ideal of g and called the nilradical of g. Then we have [g, g] ⊂ n. Consider
the adjoint representation ad : g → D(g) and the representation ads :
g→ D(g) as Construction 1.1.

Let ḡ = Imads ⋉ g and

n̄ = {X − adsX ∈ ḡ|X ∈ g}.

Then we have [g, g] ⊂ n ⊂ n̄, and n̄ is the nilradical of ḡ (see [12]).
Hence we have ḡ = Imads ⋉ n̄.

Lemma 2.2. Suppose g = Rk⋉φn such that φ is a semi-simple action

and n is nilpotent. Then n̄ = Rk ⊕ n.

Proof. By assumption, for X+Y ∈ Rk⋉φ n, we have adsX+Y = adX .
Hence we have

[X1 + Y1 − adsX1+Y1 ,X2 + Y2 − adsX2+Y2 ] = [X2, Y2]

for X1 + Y1,X2 + Y2 ∈ Rk ⋉φ n. Hence the lemma follows. q.e.d.

Let G be a simply connected solvable Lie group and g be the Lie
algebra of G. Let N be the subgroup of G which corresponds to the
nilradical n of g. We consider the exponential map exp : g → G. In
general exp is not a diffeomorphism. But we have the useful property of
exp as following.

Lemma 2.3. ([10, Lemma 3.3]) Let V be a subvector space (not
necessarily Lie algebra) V of g so that g = V ⊕ n as the direct sum of
vector spaces. We define the map F : g = V ⊕ n → G as F (A +X) =
exp(A) exp(X) for A ∈ V , X ∈ n. Then F is a diffeomorphism and we
have the commutative diagram

1 // N // G // G/N ∼= Rk // 1

0 // n //

exp

OO

g //

F

OO

g/n ∼= Rk

exp=id
Rk

OO

// 0

where dimG/N = k.
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By this lemma, for A ∈ V , X ∈ n, the extension Ads : G→ Aut(gC)
is given by

Ads(exp(A) exp(X)) = exp((adA)s) = (exp(adA))s

and we have Ads(G) = {(exp(adA))s ∈ Aut(gC)|A ∈ V }. Let Ḡ =
Ads(G)⋉G. Then the Lie algebra of Ḡ is ḡ. For the nilradical N̄ of Ḡ,
by the spritting ḡ = Imads ⋉ n̄ we have Ḡ = Ads(G) ⋉ N̄ such that
we can regard Ads(G) ⊂ Aut(N̄) and Ads(G) to consist of semi-simple
automorphisms of N̄ . By the construction of n̄ we have Ḡ = G · N̄ .

A simply connected nilpotent Lie group is considered to be the real
points of a unipotent R-algebraic group (see [24, p. 43]) by the exponen-
tial map. We have the unipotent R-algebraic group N̄ with N̄(R) = N̄ .
We identify Auta(N̄) with Aut(nC), and Auta(N̄) has the R-algebraic
group structure with Auta(N̄)(R) = Aut(N̄). So we have theR-algebraic
group Auta(N̄)⋉N̄. By Ads(G)⋉G = Ads(G)⋉N̄ , we have the injection
I : G→ Aut(N̄)⋉ N̄ = Auta(N̄)⋉ N̄(R). Let G be the Zariski-closure
of I(G) in Auta(N̄)⋉ N̄.

Proposition 2.4. Let T be the Zariski-closure of Ads(G) in Aut N̄.
Then we have G = T ⋉ N̄, and G is the algebraic hull of G with the
unipotent hull UG = N̄. Hence the Lie algebra of the unipotent hull UG

of G is

n̄C = {X − adsX ∈ ḡC|X ∈ gC}.

Proof. The algebraic groupT⋉N̄ is the Zariski-closure of Ads(G)⋉N̄
in Aut(N̄)⋉N̄ . By Ads(G)·I(G) = Ads(G)⋉N̄ , we have T·G = T⋉N̄.
Since T is a diagonalizable algebraic group, we have N̄ ⊂ G. Otherwise,
since G ⊂ T ⋉ N̄ is a connected solvable algebraic group, we have
U(G) = N̄∩G = N̄. Since we have Ads(G)⋉N̄ = G ·N̄ , G is identified
with the Zariski-closure of Ads(G)⋉ N̄ . Hence we have G = T⋉ N̄. By
dimG = dim N̄ , we can easily check that T⋉ N̄ is the algebraic hull of
G. q.e.d.

By this proposition, the Zariski-closure T of Ads(G) is a maximal torus
of the algebraic hull of G. By the uniqueness of the algebraic hull (see
[26, Lemma 4.41]), we have:

Lemma 2.5. Let HG be the algebraic hull of G and q : HG →
HG/UG the quotient map. Then for any injection ψ : G → HG(R)
as in Proposition 2.1, there exists an isomorphism ϕ : HG/UG → T

such that the diagram

HG/UG
ϕ

// T

G

q◦ψ
OO

Ads

;;
v
v
v
v
v
v
v
v
v
v

commutes.
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Lemma 2.6. Let HG = HG(R) be the real points of the algebraic hull
of G. Let T be the Zariski-closure of Ads(G) in Aut(gC) and T = T(R)
its real points. Then we have a semi-direct product

HG = T ⋉G.

Proof. By Im(ads)⋉n̄ = Im(ads)⋉g, we have Ads(G)⋉N̄ = Ads(G)⋉
I(G). Hence the lemma follows from Proposition 2.4. q.e.d.

Proposition 2.7. ([19]) Let G be a simply connected solvable Lie
group. Then UG is abelian if and only if G = Rn ⋉φ R

m such that the
action φ : Rn → Aut(Rm) is semi-simple.

Proof. Suppose UG is abelian. Then by Proposition 2.4, the Lie alge-
bra n̄ is abelian. By n ⊂ n̄, the nilradical n of g is abelian. By [g, g] ⊂ n,
g is two-step solvable. We consider the lower central series gi as g0 = g

and gi = [g, gi−1] for i ≥ 1. We denote n′ = ∩∞i=0g
i. Then by [9,

Lemma 4.1], we have g = g/n′⋉n′. For this decomposition, the subspace
{X−adsX |X ∈ g/n′} ⊂ n̄ is a Lie subalgebra of n̄. Since g/n′ is a nilpo-
tent subalgebra of g, this space is identified with g/n′. Thus since n̄ is
abelian, g/n′ is also abelian. We show that the action of g/n on n is semi-
simple. Suppose for some X ∈ g/n′, adX on n is not semi-simple. Then
adX−adsX on n is not trivial. Since we have n̄ = {X−adsX |X ∈ g}, we
have [n̄, n] 6= {0}. This contradicts that n̄ is abelian. Hence the action
of g/n on n is semi-simple, and hence the first half of the proposition
follows. The converse follows from Lemma 2.2. q.e.d.

3. Left-invariant forms and the cohomology of solvmanifolds

Let G be a simply connected solvable Lie group, g the Lie algebra of
G, and ρ : G → GL(Vρ) a representation on a C-vector space Vρ. We
consider the cochain complex

∧

g∗ with the derivation d which is the
dual to the Lie bracket of g. Then

∧

g∗C ⊗ Vρ is a cochain complex with
the derivation dρ = d+ ρ∗, where ρ∗ is the derivation of ρ, and consider
ρ∗ ∈ g∗C⊗gl(Vρ). We can consider the cochain complex (

∧

g∗C⊗Vρ, dρ) to
be the twisted G-invariant differential forms on G. Consider the cochain
complex A∗

C(G) ⊗ Vρ with the derivation d such that

d(ω ⊗ v) = (dω)⊗ v ω ∈ A∗
C(G), v ∈ Vρ.

By the left action of G (given by (g · f)(x) = f(g−1x), f ∈ C∞(G), g ∈
G) and ρ, we have the action of G on A∗

C(G)⊗Vρ. Denote (A∗
C(G)⊗Vρ)

G

the G-invariant elements of A∗
C(G)⊗ Vρ. Then we have an isomorphism

(A∗
C(G)⊗ Vρ)

G ∼=
∧

g∗C ⊗ Vρ.

Suppose G has a lattice Γ. Since π1(G/Γ) = Γ, we have a flat vector
bundle Eρ|Γ with flat connection Dρ|Γ

on G/Γ whose monodromy is ρ|Γ .
Let A∗(G/Γ, Eρ|Γ ) be the cochain complex of Eρ|Γ -valued differential



MINIMAL MODELS OF SOLVMANIFOLDS WITH LOCAL SYSTEMS 277

forms with the derivation Dρ|Γ
. Consider the cochain complex A∗

C(G)⊗

Vρ with derivation d such that

d(ω ⊗ v) = (dω)⊗ v ω ∈ A∗
C(G), v ∈ Vρ.

Then we have the G-action on A∗
C(G) ⊗ Vρ and denote (A∗

C(G) ⊗ Vρ)
Γ

the subcomplex of Γ-invariant elements of A∗
C(G) ⊗ Vρ. We have the

isomorphism (A∗
C(G) ⊗ Vρ)

Γ ∼= A∗(G/Γ, Eρ|Γ ). Thus we have
∧

g∗C ⊗ Vρ ∼= (A∗
C(G)⊗ Vρ)

G ⊂ (A∗
C(G)⊗ Vρ)

Γ ∼= A∗(G/Γ, Eρ|Γ )

and we have the inclusion
∧

g∗C ⊗ Vρ → A∗(G/Γ, Eρ|Γ ).
We call a representation ρ Γ-admissible if for the representation ρ⊕

Ad : G → GLn(C) × Aut(gC), (ρ ⊕ Ad)(G) and (ρ ⊕ Ad)(Γ) have the
same Zariski-closure in GLn(C)×Aut(gC).

Theorem 3.1. ([20], [26, Theorem 7.26]) If ρ is Γ-admissible, then
the inclusion

∧

g∗C ⊗ Vρ → A∗(G/Γ, Eρ|Γ )

induces a cohomology isomorphism.

Proposition 3.2. Let G be a simply connected solvable Lie group
with a lattice Γ. We suppose Ad(G) and Ad(Γ) have the same Zariski-
closure in Aut(gC). We consider the diagonalizable representation Ads :
G→ Aut(G). Let T be the Zariski-closure of Ads(G) and α be a char-
acter of T. Then α ◦Ads is Γ-admissible.

Proof. Let G be the Zariski-closure of Ad(G) in Aut(gC). We first
show that T is a maximal torus of G. For the direct sum g = V ⊕ n

as Construction 1.1, the map F : V ⊕ n → G defined by F (A +X) =
exp(A) exp(X) for A ∈ V , X ∈ n is a diffeomorphism (see [10, Lemma
3.3]). For A ∈ V , we consider the Jordan decomposition Ad(exp(A)) =
exp((adA)s) exp((adA)n). Then we have exp((adA)s), exp((adA)n) ∈ G.
For X ∈ n, we have exp(adX) ∈ U(G). Hence we have Ad(G) ⊂
TU(G) ⊂ G. Since G is a Zariski-closure of Ad(G), G = TU(G).
Thus T is a maximal torus of G.

We take a spritting G = T⋉U(G). We consider the algebraic group

G′ = {(α(t), (t, u)) ∈ C∗ ×G|(t, u) ∈ T⋉U(G)}.

Then we have

(α ◦ Ads ⊕Ad)(G)

= {(α(exp((adA)s)), exp(adA) exp(adX))|A +X ∈ V ⊕ n}

⊂ G′.

Since G is a Zariski-closure of Ad(G), (α ◦ Ads ⊕ Ad)(G) is Zariski-
dense in G′. Since Ad(G) and Ad(Γ) have the same Zariski-closure,
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(α ◦Ads⊕Ad)(G) and (α ◦Ads⊕Ad)(Γ) have the same Zariski-closure
G′. q.e.d.

4. Hain’s DGAs

4.1. Constructions. Let M be a C∞-manifold, S be a reductive al-
gebraic group, and ρ : π1(M,x) → S be a representation. We assume
the image of ρ is Zariski-dense in S. Let {Vα} be the set of irreducible
representations of S, (Eα,Dα) a flat bundle with the monodromy α ◦ ρ,
and A∗(M,Eα) the space of Eρ-valued C

∞-differential forms. Then we
have an algebra isomorphism of

⊕

α Vα ⊗ V
∗
α and the coordinate ring

C[S] of S (see [14, Section 3]). Denote

A∗(M,Oρ) =
⊕

α

A∗(M,Eα)⊗ V
∗
α

and D =
⊕

αDα. Then by the wedge product, (A(M,Oρ),D) is a co-
homologically connected DGA with coefficients in C.

Suppose S is a diagonal algebraic group. Then {Vα} is the set of
one-dimensional representations for all algebraic characters α of T, and
(Eα,Dα) are rank one flat bundles with the monodromy α ◦ ρ. In this
case, for characters α and β, we have the wedge product A∗(M,Eα) ⊗
A∗(M,Eβ)→ A∗(M,Eαβ) and Dαβ(ψα∧ψβ) = Dαψα∧ψβ+(−1)pψα∧
Dβψβ for ψα ∈ A

p(M,Eα), ψβ ∈ A
q(M,Eβ) (see [22] for details in this

case).

4.2. Formality and the hard Lefschetz properties of compact

Kähler manifolds. In this subsection we will prove the following the-
orem by theories of Higgs bundles studied by Simpson.

Theorem 4.1. Let M be a compact Kähler manifold with a Kähler
form ω and ρ : π1(M) → S a representation to a reductive algebraic
group S with the Zariski-dense image. Then the following conditions
hold:
(A) (formality) The DGA A∗(M,Oρ) is formal.
(B)(hard Lefschetz) For any 0 ≤ i ≤ n, the linear operator

[ω]i∧ : Hn−i(A∗(M,Oρ))→ Hn+i(A∗(M,Oρ))

is an isomorphism where dimRM = 2n.

Let M be a compact Kähler manifold and E a holomorphic vector
bundle on M with the Dolbeault operator ∂̄. For an End(E)-valued
holomorphic form θ, we denote D′′ = ∂̄ + θ. We call (E,D′′) a Higgs
bundle if it satisfies the Leibniz rule: D′′(ae) = ∂̄(a)e + (−1)pD′′(e) for
a ∈ Ap(M), e ∈ A0(E) and the integrability (D′′)2 = 0. Let h be a
Hermitian metric on E. For a Higgs bundle (E,D′′ = ∂̄ + θ), we define
D′
h = ∂h + θ̄h as follows: ∂h is the unique operator which satisfies

h(∂̄e, f) + h(e, ∂hf) = ∂̄h(e, f)
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and θ̄h is defined by (θe, f) = (e, θ̄hf). Let Dh = D′
h +D′′. Then Dh is

a connection. We call a Higgs bundle (E,D′′, h) with a metric harmonic
if Dh is flat, i.e. (Dh)

2 = 0.
For two Higgs bundles (E,D′′), (F,D′′) with metric hE , hF , the tensor

product (E⊗F,D′′⊗1+1⊗D′′) is also a Higgs bundle, and hE⊗hF gives
the connection DhE⊗hF = DhE ⊗ 1 + 1⊗DhF on E ⊗ F . If (E,D′′, hE)
and (F,D′′, hF ) are harmonic, (E⊗F,D′′⊗1+1⊗D′′) is also a harmonic
Higgs bundle with the flat connection DhE ⊗ 1 + 1⊗DhF .

Theorem 4.2. ([28, Theorem 1]) Let (E,D) be a flat bundle on M
whose monodromy is semi-simple. Then D is given by a harmonic Higgs
bundle (E,D′′, h), that is, D = Dh.

Theorem 4.3. ([28, Lemma 2.2]) Let (E,D′′, h) be a harmonic Higgs
bundle with the flat connection D = D′ +D′′. Then the inclusion

(KerD′,D′′)→ (A∗(E),D)

and the quotient

(KerD′,D′′)→ (HD′(A∗(E)),D′′) = (H∗
D(A

∗(E)), 0)

induce the cohomology isomorphisms.

Theorem 4.4. ([28, Lemma 2.6]) Let (E,D′′, h) be a harmonic Higgs
bundle with the flat connection D = D′ +D′′. Then for any 0 ≤ i ≤ n
the linear operator

[ω]n−i∧ : H i
D(A

∗(Eρ))→ H2n−i
D (A∗(Eρ))

is an isomorphism.

Proof of Theorem 4.1. By Theorems 4.2 and 4.4, the condition (B) holds.
By Theorem 4.2, for (A∗(Eα),Dα), we have Dα = D′

α +D′′
α such that

D′′
α is a harmonic Higgs bundle. Denote D′ =

⊕

αD
′
α and D′′ =

⊕

αD
′′
α.

Then by properties of the Higgs bundle, (KerD′,D′′) is a DGA, and the
maps

(KerD′,D′′)→ (A∗(M,Oρ)),D)

and

(KerD′,D′′)→ (H∗
D(A

∗(M,Oρ)), 0)

are DGA homomorphisms, and thus quasi-isomorphisms by Theorem
4.3. Hence the condition (A) holds. q.e.d.

5. Minimal models of invariant forms on solvable Lie groups

with local systems

Let G be a simply connected solvable Lie group and g the Lie algebra
of G. Consider the diagonal representation Ads as in Section 1 and
the derivation ads of Ads. For some basis {X1, . . . ,Xn} of gC, Ads is
represented by diagonal matrices. LetT be the Zariski-closure of Ads(G)
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in Aut(gC). Let {Vα} be the set of one-dimensional representations for
all characters α of T. We consider Vα the representation of g which is
the derivation of α ◦ Ads. Then we have the cochain complex of Lie
algebra (

∧

g∗C ⊗ Vα, dα). Denote d =
⊕

α dα. Then (
⊕

α

∧

g∗C ⊗ Vα, d)
is a cohomologically connected DGA with coefficients in C as the last
section. By Ads(G) ⊂ Aut(gC) we have T ⊂ Aut(gC), and hence we
have the action of T on

⊕

α

∧

g∗C ⊗ Vα. Denote (
⊕

α

∧

g∗C ⊗ Vα)
T the

sub-DGA of
⊕

α

∧

g∗C ⊗ Vα which consists of the T-invariant elements
of
⊕

α

∧

g∗C ⊗ Vα.

Lemma 5.1. We have an isomorphism

H∗((
⊕

α

∧

g∗C ⊗ Vα)
T) ∼= H∗(

⊕

α

∧

g∗C ⊗ Vα).

Proof. We show that the action of Ads(G) ⊂ T on the cohomology
H∗(

∧

g∗C ⊗ Vα) is trivial. Consider the direct sum g = V ⊕ n as Con-
struction 1.1. Then we have Ads(G) = Ads(exp(V )) by Lemma 2.3. For
A ∈ V , the action Ads(exp(A)) on the cochain complex

∧

g∗C ⊗ Vα is a
semi-simple part of the action of exp(A) on

∧

g∗C⊗Vα via Ad⊗α ◦Ads.
Since the action of G on the cohomology H∗(

∧

g∗C⊗Vα) via Ad⊗α◦Ads
is the extension of the Lie derivation on H∗(

∧

g∗C⊗Vα), this G-action on
H∗(

∧

g∗C⊗ Vα) is trivial. Hence for A ∈ V the action of Ads(exp(A)) =
(exp(adA))s on the cohomology H∗(

∧

g∗C ⊗ Vα) is trivial.
Since T is the Zariski-closure of Ads(G) in Aut(gC) and the action of

T on
∧

g∗C ⊗ Vα is algebraic, the action of T on H∗(
∧

g∗C ⊗ Vα) is also
trivial. Since the action of T on

∧

g∗C⊗Vα is diagonalizable, we have an
isomorphism

H∗(
∧

g∗C ⊗ Vα) ∼= H∗(
∧

g∗C ⊗ Vα)
T ∼= H∗((

∧

g∗C ⊗ Vα)
T).

Hence we have the lemma. q.e.d.

Consider the unipotent hull UG of G. Let u be the C-Lie algebra of UG

and u∗ the C-dual space. We consider the DGA
∧

u∗ with coefficients
in C.

Lemma 5.2. We have an isomorphism of DGA
∧

u∗ ∼= (
⊕

α

∧

g∗C ⊗ Vα)
T.

Proof. Let {x1, . . . , xn} be the dual of a basis {X1, . . . ,Xn} of g such
that Ads is represented by diagonal matrices. We define characters αi
as t ·Xi = αi(t)Xi for t ∈ T. Then we have t · xi = α−1

i (t)xi. Hence the

vector space (
⊕

α

∧1
g∗C ⊗ Vα)

T is spanned by {x1 ⊗ vα1
, . . . , xn ⊗ vαn}

where Vαi
∋ vαi

6= 0. For

ω =
∑

i1,...,ip,α

ai1,...,ip,αxi1 ∧ · · · ∧ xipvα ∈ (
⊕

α

p
∧

g∗C ⊗ Vα)
T,
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since any xi1 ∧ · · · ∧ xipvα is an eigenvector of the action of T, if
ai1,...,ip,α 6= 0 then xi1 ∧ · · · ∧ xipvα is also a T-invariant element. Since
we have

t · xi1 ∧ · · · ∧ xip = α−1
i1

(t) · · ·α−1
ip

(t)xi1 ∧ · · · ∧ xip

for t ∈ T, we have

xi1 ∧ · · · ∧ xip ⊗ vα = xi1vαi1
∧ · · · ∧ xipvαip

.

Thus the DGA (
⊕

α

∧

g∗C⊗Vα)
T is generated by {x1⊗vα1

, . . . , xn⊗vαn}.
Consider the Maurer-Cartan equations

dxk = −
∑

ij

ckijxi ∧ xj

and denote adsXi
(Xj) = aijXj . Since Adsg(Xk) = αi(Adsg)Xk for g ∈

G, we have dvαk
=
∑n

i=1 adsXi
(Xk)xivαk

=
∑n

i=1 aikxivαk
. Then we

have

dαk
(xk ⊗ vαk

) = −
∑

ij

(ckijxi ∧ xj ⊗ vαk
− aikxi ∧ xk ⊗ vαk

).

Hence the DGA (
⊕

α

∧

g∗C⊗Vα)
T is isomorphic to a free DGA generated

by degree 1 elements {y1, . . . , yn} such that

d(yk) = −
∑

ij

(ckijyi ∧ yj − aikyi ∧ yk).

Let h be the Lie algebra which is the dual of the free DGA (
⊕

α

∧

g∗C⊗
Vα)

T and {Y1, . . . , Yn} the dual basis of {y1, . . . , yn}. It is sufficient to
show h ∼= u. Then the bracket of h is given by

[Yi, Yj] =
∑

k

ckijYk − aijYj + ajiYi.

Otherwise, by Section 2.3, we have u ∼= {X − adsX |X ∈ gC} ⊂ D(gC)⋉
gC. For the basis {X1 − adsX1

, . . . ,Xn − adsXn} of u, we have

[Xi − adsXi
,Xj − adsXj

] =
∑

k

ckijXk − aijXj + ajiXi.

By [g, g] ⊂ n, we have [u, u] ⊂ nC, where n is the nilradical of g. By this
we have

∑

k

ckijXk − aijXj + ajiXi ∈ nC,

and hence we have

ads
∑

k c
k
ij
Xk−aijXj+ajiXi

= 0.
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This gives

[Xi − adsXi
,Xj − adsXj

]

=
∑

k

ckij(Xk − adsXk
)− aij(Xj − adsXj

) + aji(Xi − adsXi
).

This gives an isomorphism h ∼= u. Hence the lemma follows. q.e.d.

Since Ads(G) is Zariski-dense in T, Ads(G)-invariant elements are also
T-invariant. In particular, we have the following lemma.

Lemma 5.3. Let T = T(R) be the real points of T. Then we have

(
⊕

α

∧

g∗C ⊗ Vα)
T ∼= (

⊕

α

∧

g∗C ⊗ Vα)
T ∼=

∧

u∗.

Later we use this lemma.
Denote A∗(gC, ads) =

⊕

α

∧

g∗C ⊗ Vα. By Lemmas 5.1 and 5.2 we
have:

Theorem 5.4. We have a quasi-isomorphism of DGAs
∧

u∗ → A∗(gC, ads).

Thus
∧

u∗ is the minimal model of A∗(gC, ads).

6. Cohomology of A∗(G/Γ,OAds|Γ
)

Consider the two DGAs A∗(gC, ads) and A∗(G/Γ,OAds|Γ
). For any

character α of an algebraic group T which is the Zariski-closure of
Ads(G) in Aut(gC), we have the inclusion
∧

g∗C ⊗ Vα ∼= (A∗
C(G)⊗ Vα)

G ⊂ (A∗
C(G)⊗ Vα)

Γ ∼= A∗(G/Γ, Eα◦Ads|Γ
).

Thus we have the morphism of DGAs

φ : A∗(gC, ads)→ A∗(G/Γ,OAds|Γ
).

Proposition 6.1. The morphism φ : A∗(gC, ads)→ A∗(G/Γ,OAds|Γ
)

is injective and the induced map

φ∗ : H∗(A∗(gC, ads))→ H∗(A∗(G/Γ,OAds|Γ
))

is also injective.

Proof. Since G has a lattice Γ, G is unimodular (see [26, Remark
1.9]). Choose a Haar measure dµ such that the volume of G/Γ is 1. We
define a map ϕα : (A∗

C(G)⊗ Vα)
Γ →

∧

g∗C ⊗ Vα as

ϕα(ω ⊗ vα)(X1, . . . ,Xp) =

∫

G/Γ

ωx
α(x)

(X1, . . . ,Xp)dµ · vα
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for ω ⊗ vα ∈ (ApC(G) ⊗ Vα)
Γ, X1, . . . ,Xp ∈ gC . Then each ϕα is a

morphism of cochain complexes and we have ϕα ◦ φ|∧
g
∗
C
⊗Vα

= id|∧
g
∗
C
⊗Vα

(see [26, Remark 7.30]). Thus the restriction

φ∗ : H∗(
∧

g∗C ⊗ Vα)→ H∗(A∗(G/Γ, Eα))

is injective. By this it is sufficient to show that two distinct characters
α, β with α ◦ Ads|Γ = β ◦ Ads|Γ satisfy ϕβ ◦ φ|∧

g
∗
C
⊗Vα

= 0. For ω ⊗ vα ∈
∧

g∗C ⊗ Vα, we have

ϕβ ◦ φ|∧
g
∗
C
⊗Vα

(ω ⊗ vα) =

∫

G/Γ

α(x)

β(x)
ωx(X1, . . . ,Xp)dµ · vα.

Since ω ∈
∧

g∗C, ωx(X1, . . . ,Xp) is constant on G/Γ. Let λ = β
αd(

α
β ).

Then λ is a G-invariant form. Choose η ∈
∧

g∗C such that λ ∧ η = dµ.
Then we have

d

(

α

β
η

)

=
α

β
λ ∧ η =

α

β
dµ.

By α ◦ Ads|Γ = β ◦ Ads|Γ,
α
β η is Γ-invariant and we can consider α

β η a

differential form on G/Γ. Hence by Stokes’ theorem, we have

∫

G/Γ

α(x)

β(x)
ωx(X1, . . . ,Xp)dµ = ω(X1, . . . ,Xp)

∫

G/Γ

α(x)

β(x)
dµ

= ω(X1, . . . ,Xp)

∫

G/Γ
d

(

α

β
η

)

= 0.

This proves the proposition. q.e.d.

Corollary 6.2. Let G be a simply connected solvable Lie group with
a lattice Γ. We suppose Ad(G) and Ad(Γ) have the same Zariski-closure
in Aut(gC). Then we have an isomorphism

H∗(A∗(G/Γ,OAds|Γ
)) ∼= H∗(A∗(gC, ads)).

Proof. Let T be the Zariski-closure of Ads(G). For any 1-dimensional
representation Vα of T given by a character α of T, we consider a flat
bundle Eα on G/Γ given by the representation α ◦ Ads and the two
cochain complex A∗(G/Γ, Eα) and

∧

g∗C⊗Vα as above. Then since α◦Ads
is Γ-admissible, by Theorem 3.1 we have an isomorphism

H∗(
∧

g∗ ⊗ Vα) ∼= H∗(A∗(G/Γ, Eα)).

By the definitions of A∗(G/Γ,OAds|Γ
) and A∗(gC, ads), the corollary

follows. q.e.d.
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7. Extensions

In this section we extend Corollary 6.2 to the case of general solv-
manifolds. To do this we consider infra-solvmanifolds which are gener-
alizations of solvmanifolds.

7.1. Infra-solvmanifold. Let G be a simply connected solvable Lie
group. We consider the affine transformation group Aut(G)⋉G and the
projection p : Aut(G)⋉G→ Aut(G). Let Γ ⊂ Aut(G)⋉G be a discrete
subgroup such that p(Γ) is contained in a compact subgroup of Aut(G)
and the quotient G/Γ is compact. We call G/Γ an infra-solvmanifold.

Theorem 7.1. [4, Theorem 1.5] For two infra-solvmanifolds G1/Γ1

and G2/Γ2, if Γ1 is isomorphic to Γ2, then G1/Γ1 is diffeomorphic to
G2/Γ2.

7.2. Extensions for infra-solvmanifolds. Let Γ be a torsion-free
polycyclic group and HΓ be the algebraic hull. Then there exists a fi-
nite index normal subgroup ∆ of Γ and a simply connected solvable
subgroup G of HΓ such that ∆ is a lattice of G, and G and ∆ have the
same Zariski-closure in HΓ (see [4, Proposition 2.9]). Since the Zariski-
closure of ∆ in HΓ is finite index normal subgroup of HΓ, this group
is the algebraic hull H∆ of ∆ by the properties in Proposition 2.1. By
rankΓ = dimG, H∆ is also the algebraic hull HG of G. Hence we have
the commutative diagram

G // H∆(= HG) // HΓ

∆

OO
99
s
s
s
s
s
s
s
s
s
s

// Γ

99
r
r
r
r
r
r
r
r
r
r
r
r

Since ∆ is a finite index normal subgroup of Γ, by this diagram H∆ is
a finite index normal subgroup of HΓ. We suppose HΓ/UΓ is diagonal-
izable. Let T and T′ be maximal diagonalizable subgroups of HΓ and
H∆. Then we have decompositions HΓ = T⋉UΓ, H∆ = T′⋉UΓ. Since
T/T′ = HΓ/H∆ is a finite group, we have a finite subgroup T′′ of T
such that T = T′′T′(see [8, Proposition 8.7]).

Lemma 7.2. HΓ = ΓH∆.

Proof. Consider the quotient q : HΓ → HΓ/H∆. Since Γ is Zariski-
dense in HΓ, q(Γ) is Zariski-dense in HΓ/H∆. Since HΓ/H∆ is a finite
group, q(Γ) = HΓ/H∆. Thus we have

ΓH∆ = ΓT′ ⋉UΓ = T′′T′ ⋉UΓ = HΓ.

q.e.d.

Let HΓ = HΓ(R), T
′ = T′(R), and T ′′ = T′′(R). Then by Lemma 2.6

and HG = H∆, we have HΓ = T ′T ′′ ⋉ G. Hence we have Γ ⊂ HΓ ⊂



MINIMAL MODELS OF SOLVMANIFOLDS WITH LOCAL SYSTEMS 285

Aut(G)⋉G. Since ∆ is a lattice of G and a finite index normal subgroup
of Γ, Γ is a discrete subgroup of Aut(G) ⋉G and G/Γ is compact and
hence an infra-solvmanifold.

Theorem 7.3. Let Γ be a torsion-free polycyclic group and Γ→ HΓ

be the algebraic hull of Γ. Suppose HΓ/UΓ is diagonalizable. Let u be
the Lie algebra of UΓ. Let ρ be the composition

Γ→ HΓ → HΓ/UΓ.

Then we have a quasi-isomorphism
∧

u∗ → A∗(G/Γ,Oρ).

Proof. In this proof for a DGA A with a group G-action, we denote
(A)G the sub-DGA which consists of G-invariant elements of A. Con-
sider decompositions HΓ = T⋉UΓ, H∆ = T′⋉UΓ as above. Let {Vα}
be the set of 1-dimensional representations of T for all characters α of
T. Consider the DGA

⊕

αA
∗(G)⊗ Vα with the derivation d given by

d(ω ⊗ vα) = (dω)⊗ vα ω ∈ A∗(G), vα ∈ Vα

and the products given by

(ω1 ⊗ vα) ∧ (ω2 ⊗ vβ) = (ω1 ∧ ω2)⊗ (vα ⊗ vβ).

Then by the definition, we have

A∗(G/Γ,Oρ) = (
⊕

α

A∗(G)⊗ Vα)
Γ.

Let {Vα′} and {Vα′′} be the sets of 1-dimensional representations of T′

and T′′ for all characters α′ of T′ and α′′ of T′′. By T = T′T′′, we have
{Vα} = {Vα′ ⊗ Vα′′}. Then we have

H∗(A∗(G/Γ,Oρ)) = H∗











⊕

α′,α′′

A∗(G)⊗ (Vα′ ⊗ Vα′′)





Γ





.

Since ∆ is a finite index normal subgroup of Γ, we have

H∗











⊕

α′,α′′

A∗(G)⊗ (Vα′ ⊗ Vα′′)





Γ






∼= H∗











⊕

α′,α′′

A∗(G) ⊗ (Vα′ ⊗ Vα′′)





∆






Γ/∆

.



286 H. KASUYA

Since ∆ ⊂ T′ ⋉UΓ, for a character α′′ of T′′, ∆ acts trivially on Vα′′ .
Hence we have

H∗











⊕

α′,α′′

A∗(G)⊗ (Vα′ ⊗ Vα′′)





∆






Γ/∆

= H∗





⊕

α′′

(

⊕

α′

A∗(G) ⊗ Vα′

)∆

⊗ Vα′′





Γ/∆

.

Since ∆ is a lattice of G and we assume that Ad(G) and Ad(∆) have
the same Zariski-closure, by Corollary 6.2 we have

H∗





(

⊕

α′

A∗(G) ⊗ Vα′

)∆



∼= H∗





(

⊕

α′

A∗(G)⊗ Vα′

)G


 .

By Lemmas 5.1 and 5.3, we have

H∗





(

⊕

α′

A∗(G) ⊗ Vα′

)G



∼= H∗











(

⊕

α′

A∗(G)⊗ Vα′

)G




T ′





.

Hence we have

H∗





⊕

α′′

(

⊕

α′

A∗(G)⊗ Vα′

)∆

⊗ Vα′′





Γ/∆

∼= H∗







⊕

α′′





(

⊕

α′

A∗(G) ⊗ Vα′

)G




T ′

⊗ Vα′′







Γ/∆

.

Since H∆ = T ′ ⋉G, we have

H∗







⊕

α′′





(

⊕

α′

A∗(G) ⊗ Vα′

)G




T ′

⊗ Vα′′







Γ/∆

= H∗





⊕

α′′

(

⊕

α′

A∗(G) ⊗ Vα′

)H∆

⊗ Vα′′





Γ/∆

∼= H∗





(

⊕

α′′

⊕

α′

A∗(G)⊗ Vα′ ⊗ Vα′′

)ΓH∆



 .
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By Lemma 7.2, we have

H∗





(

⊕

α′′

⊕

α′

A∗(G)⊗ Vα′ ⊗ Vα′′

)ΓH∆





= H∗





(

⊕

α′′

⊕

α′

A∗(G)⊗ Vα′ ⊗ Vα′′

)HΓ



 .

Since HΓ = T ′T ′′ ⋉G, as above we have

H∗





(

⊕

α′′

⊕

α′

A∗(G)⊗ Vα′ ⊗ Vα′′

)HΓ





= H∗















⊕

α′′





(

⊕

α′

A∗(G) ⊗ Vα′

)G




T ′

⊗ Vα′′







T ′′








.

Thus it is sufficient to show that the DGA






⊕

α′′





(

⊕

α′

A∗(G)⊗ Vα′

)G




T ′

⊗ Vα′′







T ′′

is isomorphic to
∧

u∗. By Lemma 5.3 we have







⊕

α′′





(

⊕

α′

A∗(G)⊗ Vα′

)G




T ′

⊗ Vα′′







T ′′

∼= (
⊕

α′′

∧

u∗ ⊗ Vα′′)T
′′
.

Now let
∧

u∗ =
⊕

β Aβ′′ be the weight decomposition of T ′′ for charac-
ters β′′ of T′′. Then we have

(
⊕

α′′

∧

u∗ ⊗ Vα′′)T
′′
= (
⊕

β′′

⊕

α′′

Aβ′′ ⊗ Vα′′)T
′′
=
⊕

α′′

A(α′′)−1 ⊗ Vα′′ .

It is easily seen that
⊕

α′′

A(α′′)−1 ⊗ Vα′′ ∼=
∧

u∗.

Hence the theorem follows. q.e.d.

Obviously a solvmanifold G/Γ is a infra-solvmanifold with polycyclic
fundamental group Γ. Since T is the Zariski-closure of Ads(Γ) and di-
agonalizable, we have:
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Corollary 7.4. Let G be a simply connected solvable Lie group with
a lattice Γ and UG be the unipotent hull of G. Let u be the Lie algebra
of UG. Then we have a quasi-isomorphism

∧

u∗ → A∗(G/Γ,OAds|Γ
).

Thus
∧

u∗ is the minimal model of A∗(G/Γ,OAds|Γ
).

Consider the injection φ : A∗(gC, ads) → A∗(G/Γ,OAds|Γ
). By The-

orem 5.4, Proposition 6.1, and the corollary above, φ : A∗(gC, ads) →
A∗(G/Γ,OAds|Γ

) is a quasi-isomorphism. Hence we have:

Corollary 7.5. Let G be a simply connected solvable Lie group with
a lattice Γ. Then we have an isomorphism

H∗(A∗(G/Γ,OAds|Γ
)) ∼= H∗(A∗(gC, ads)).

We can apply this corollary to computations of the untwisted de
Rham cohomology of solvmanifolds by invariant forms. We have an ex-
tension of Mostow’s theorem (=Theorem 3.1) for the untwisted coho-
mology.

Corollary 7.6. Let G be a simply connected solvable Lie group with a
lattice Γ. Let T be the Zariski-closure of Ads(G) in Aut(gC). Denote AΓ

a set of characters of T such that for α ∈ AΓ the restriction of α ◦Ads
on Γ is trivial. Consider the sub-DGA

⊕

α∈AΓ

∧

g∗C⊗Vα of A∗(gC, ads).
Then we have a quasi-isomorphism





⊕

α∈AΓ

∧

g∗C ⊗ Vα





T

→
⊕

α∈AΓ

∧

g∗C ⊗ Vα → A∗
C(G/Γ).

Moreover, the DGA
(

⊕

α∈AΓ

∧

g∗C ⊗ Vα
)T

is a sub-DGA of
∧

u∗.

Proof. Since we can consider A∗
C(G/Γ) = A∗(G/Γ, E1) for the trivial

character 1, A∗
C(G/Γ) is a sub-DGA of A∗(G/Γ,OAds|Γ

). Then we have

φ−1(A∗
C(G/Γ)) =

⊕

α∈AΓ

∧

g∗C ⊗ Vα.

Since we define A∗(G/Γ,OAds|Γ
) =

⊕

A∗(G/Γ, Eα◦Ads|Γ
) as a direct

sum of cochain complexes and φ : A∗(gC, ads) → A∗(G/Γ,OAds|Γ
) is a

quasi-isomorphism by Corollary 7.5, the restriction φ : φ−1(A∗
C(G/Γ))→

A∗
C(G/Γ) is also a quasi-isomorphism. By Lemma 5.1, the inclusion





⊕

α∈AΓ

∧

g∗C ⊗ Vα





T

→
⊕

α∈AΓ

∧

g∗C ⊗ Vα
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is a quasi-isomorphism. By Lemma 5.2,
(

⊕

α∈AΓ

∧

g∗C ⊗ Vα
)T

is a sub-

DGA of
∧

u∗. Hence the corollary follows. q.e.d.

8. Formality and hard Lefschetz properties

In [15], Hasegawa proved the following theorem.

Theorem 8.1. ([15]) Consider a DGA
∧

n∗ which is the dual of a
nilpotent Lie algebra n. Then

∧

n∗ is formal if and only if n is abelian.

By Hasegawa’s theorem, Theorem 5.4, Proposition 2.7, and Corollary
7.4, we have the following theorem.

Theorem 8.2. Let G be a simply connected solvable Lie group. Then
the following conditions are equivalent:
(A) The DGA A∗(gC, ads) is formal.
(B) UG is abelian.
(C) G = Rn ⋉φ Rm such that the action φ : Rn → Aut(Rm) is semi-
simple.
Moreover, suppose G has a lattice Γ. Then the above three conditions
are equivalent to the following condition:
(D) A∗(G/Γ,OAds|Γ

) is formal.

In [6], Benson and Gordon proved:

Theorem 8.3. ([6]; see also [13, Section 4.6.4]) Consider a DGA
∧

n∗ which is the cochain complex of the dual of a nilpotent Lie algebra
n. Suppose we have [ω] ∈ H2(

∧

n∗) such that [ω]n 6= 0 where 2n = dimn.
Then for any 0 ≤ i ≤ n the linear operator

[ω]n−i∧ : H i(
∧

n∗)→ H2n−i(
∧

n∗)

is an isomorphism if and only if n is abelian.

By this theorem, we have:

Theorem 8.4. Let G be a simply connected solvable Lie group. Sup-
pose dimG = 2n and G has an G-invariant symplectic form ω. Then
the following conditions are equivalent:
(A)

[ω]n−i∧ : H i(A∗(gC, ads))→ H2n−i(A∗(gC, ads))

is an isomorphic for any i ≤ n.
(B) UG is abelian.
(C) G = Rn ⋉φ Rm such that the action φ : Rn → Aut(Rm) is semi-
simple.

Suppose G has a lattice Γ and G/Γ has a symplectic form (not neces-
sarily G-invariant) ω. Then the conditions (B) and (C) are equivalent
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to the following condition:
(D)

[ω]n−i∧ : H i(A∗(G/Γ,OAds|Γ
))→ H2n−i(A∗(G/Γ,OAds|Γ

))

is an isomorphism for any i ≤ n.

For infra-solvmanifolds, by Theorem 7.3 and Proposition 2.7 we have:

Theorem 8.5. Let M be a infra-solvmanifold with the torsion-free
polycyclic fundamental group Γ, and let Γ→ HΓ be the algebraic hull of
Γ. Suppose HΓ/UΓ is diagonalizable. Let ρ be the composition

Γ→ HΓ → HΓ/UΓ.

Then following conditions are equivalent:
(A) A∗(M,Oρ) is formal.
(B) UΓ is abelian.
(C)M is finitely covered by a solvmanifold G/Γ such that G = Rn⋉φR

m

with a semi-simple action φ : Rn → Aut(Rm), and Γ is a lattice of G.
If dimM = 2n and M has a symplectic form ω, the conditions (A),
(B), and (C) are equivalent to the following condition:
(D)

[ω]n−i∧ : H i(A∗(M,Oρ))→ H2n−i(A∗(M,Oρ))

is an isomorphism for any i ≤ n.

9. Examples and remarks

Let G be a simply connected solvable Lie group with a lattice Γ.
Suppose UG is abelian. In [19] the author showed that G/Γ is formal
and if G/Γ has a symplectic form, then G/Γ is hard Lefschetz. But the
converses of these results are not true. See the following examples.

Example 1. ([27]) We consider a 8-dimensional solvable Lie group
G = G1 × R such that: G1 is the matrix group as


























































ea1t 0 0 0 0 e−a3tx2 y1
0 ea2t 0 e−a1tx3 0 0 y2
0 0 ea3t 0 e−a2tx1 0 y3
0 0 0 e−a1t 0 0 x1
0 0 0 0 e−a2t 0 x2
0 0 0 0 0 e−a3t x3
0 0 0 0 0 0 1





















: t, xi, yi ∈ R







































,

where a1, a2, a3 are distinct real numbers such that a1 + a2 + a3 = 0.
Let g be the Lie algebra of G, and g∗ the dual of g. The cochain

complex (
∧

g∗, d) is generated by a basis {α, β, ζi, ηi} of g
∗ such that:

dα = 0, dβ = 0,
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dζi = aiα ∧ ζi,

dη1 = −a1α ∧ η1 − ζ2 ∧ ζ3,

dη2 = −a2α ∧ η2 − ζ3 ∧ ζ1,

dη3 = −a3α ∧ η3 − ζ1 ∧ ζ2.

In [27] Sawai showed that for some a1, a2, a3, G has a lattice Γ and G/Γ
satisfies formality and has a G-invariant symplectic form

ω = α ∧ β + p(ζ1 ∧ η1 − ζ2 ∧ η2) + q(−ζ2 ∧ η2 + ζ3 ∧ η3)

satisfying the hard Lefschetz property where pq 6= 0 and p+ q 6= 0. We
have

Ads(G) =







































































ea1t 0 0 0 0 0 0 0
0 ea2t 0 0 0 0 0 0
0 0 ea3t 0 0 0 0 0
0 0 0 e−a1t 0 0 0 0
0 0 0 0 e−a2t 0 0 0
0 0 0 0 0 e−a3t 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

























: t ∈ R















































.

Let T be the Zariski closure of Ads(G). Then for some characters
α1, α2, α3 of T, the cochain complexes (

∧

g∗ ⊗ Vαi
, dαi

) are given by:

dαi
(vαi

) = −aiα⊗ vαi

for vαi
∈ Vαi

.
We have

dα2
(ζ2 ⊗ vα2

) = a2α ∧ ζ2 ⊗ vα2
+ ζ2 ∧ a2α⊗ vα2

= 0,

dα3
(ζ3 ⊗ vα3

) = a3α ∧ ζ3 ⊗ vα3
+ ζ3 ∧ a3α⊗ vα3

= 0,

dα2α3
(η1 ⊗ vα2α3

)

= −(a1 + a2 + a3)α ∧ η1 ⊗ vα2α3
− ζ2 ∧ ζ3 ⊗ vα2α3

= −ζ2 ∧ ζ3 ⊗ vα2α3
.

Hence in H2(
∧

g∗C ⊗ Vα2α3
),

[ζ2 ⊗ vα2
] · [ζ3 ⊗ vα3

] = 0

and we have the Massey triple product

〈[ζ2 ⊗ vα2
], [ζ3 ⊗ vα3

], [ζ3 ⊗ vα3
]〉 = [η1 ∧ ζ3 ⊗ vα2α2

3
]

in the quotient of

H2(
∧

g∗C ⊗ Vα2α2
3
)

by

([ζ2 ⊗ vα2
] ·H1(

∧

g∗C ⊗ Vα2
3
) + [ζ3 ⊗ vα3

] ·H1(
∧

g∗C ⊗ Vα2α3
)).
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This Massey product is not zero. Hence the DGA
⊕

α

∧

g∗ ⊗ Vα has a
non-zero Massey product and it is not formal.

Remark 9.1. In [22], Narkawicz gave examples of complements X
of hyperplane arrangements which are formal, but for some diagonal
representations of π1(X,x) the DGA A∗(X,Oρ) is non-formal.

We have dα1
(ζ1 ⊗ vα1

) = 0 and the cohomology class [ζ1 ⊗ vα1
] ∈

H1(
∧

g∗C ⊗ Vα1
) is not zero. We have

ω3 = −6p(p+ q)α ∧ β ∧ ζ1 ∧ η1 ∧ ζ2 ∧ η2

− 6(p+ q)qα ∧ β ∧ ζ2 ∧ η2 ∧ ζ3 ∧ η3

+ 6pqα ∧ β ∧ ζ1 ∧ η1 ∧ ζ3 ∧ η3

− 6pq(p+ q)ζ1 ∧ η1 ∧ ζ2 ∧ η2 ∧ ζ3 ∧ η3,

and

ω3 ∧ ζ1 ⊗ vα1
= −6(p + q)qα ∧ β ∧ ζ1 ∧ ζ2 ∧ η2 ∧ ζ3 ∧ η3 ⊗ vα1

.

Otherwise we have

dα1
(α∧β ∧ ζ1∧ η1 ∧ η2∧ η3⊗ vα1

) = −α∧β ∧ ζ1∧ ζ2∧ η2∧ ζ3∧ η3⊗ vα1
.

Hence [ω]3 ∧ ([ζ1 ⊗ vα1
]) = 0 and the operator [ω]3∧ is not injective.

Theorem 9.1. For G/Γ, the DGA A∗(G/Γ,OAds|Γ
)) is not formal

and the linear operator

[ω]3∧ : H1(A∗(G/Γ,OAds|Γ
))→ H7(A∗(G/Γ,OAds|Γ

))

is not an isomorphism. Thus UG is not abelian. In particular G/Γ is
not Kähler.

As shown above, compared with untwisted versions, formality and
the hard Lefschetz properties of the DGA A∗(G/Γ,OAds|Γ

) are useful

criteria for determining that formal and hard Lefschetz solvmanifolds
to be not Kähler. But we have a non-Kähler symplectic solvmanifold
such that A∗(G/Γ,OAds|Γ

) is formal and hard Lefschetz. In [1] Arapura

showed that for a simply connected solvable Lie group G with a lattice
Γ, if a solvmanifold G/Γ admits a Kähler structure then Γ is virtually
abelian. In [3] it was proved that a lattice of a simply connected solvable
Lie group G is virtually nilpotent if and only if G is type (I), i.e. for
any g ∈ G all the eigenvalues of Adg have absolute value 1. Thus by
Theorem 8.2 and 8.4, we have:

Corollary 9.2. Let G = Rn ⋉φ Rm such that the action φ : Rn →
Aut(Rm) is semi-simple. Suppose G is not type (I) and has a lattice Γ.
Then A∗(G/Γ,OAds|Γ

) is formal but G/Γ has no Kähler structure. If

G/Γ has a symplectic form ω, then the operator

[ω]n−i∧ : H i(A∗(G/Γ,OAds|Γ
))→ H2n−i(A∗(G/Γ,OAds|Γ

))
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is an isomorphism for any i ≤ n where dimG = 2n.

We give complex examples.

Example 2. ([21])

Let G = C ⋉φ C
2 with φ(x) =

(

ex 0
0 e−x

)

. Then G has an invariant

symplectic form. In [21], it was shown that G has a lattice Γ. Thus G/Γ
is a non-Kähler complex solvmanifold but A∗(G/Γ,OAds|Γ

) is formal

and hard Lefschetz.

10. On isomorphism H∗(G/Γ,C)∼=H∗(gC)

Let G be a simply connected solvable Lie group with a lattice Γ, and
let g be the Lie algebra of G. We give new criteria for the isomorphism
H∗(G/Γ,C) ∼= H∗(gC) to hold by using Corollary 7.4. Take a basis
X1, . . . ,Xn of gC such that Ads is represented by diagonal matrices
as Adsg = diag(α1(g), . . . , αn(g)). For {i1, . . . , ip} ⊂ {1, . . . , n} write
αi1,...,ip as the product of characters αi1 , . . . , αip .

Corollary 10.1. Let G be a simply connected solvable Lie group with
a lattice Γ, and let g be the Lie algebra of G. Suppose (G,Γ) satisfies
the following condition:
(CG,Γ): For any {i1, . . . , ip} ⊂ {1, . . . , n}, if the character αi1,...,ip is
non-trivial, then the restriction of αi1,...,ip|Γ on Γ is also non-trivial.
Then an isomorphism H∗(G/Γ,C) ∼= H∗(gC) holds.

Proof. Let x1, . . . , xn be a basis of g∗C which is dual to X1, . . . ,Xn.

Consider the DGA
(

⊕

α∈AΓ

∧

g∗C ⊗ Vα
)T

as Corollary 7.4. By Ad∗sg ·

xi = αi(g)
−1xi we have





⊕

α∈AΓ

∧

g∗C ⊗ Vα





T

=

〈

xi1 ∧ · · · ∧ xip ⊗ vαi1,...,ip

∣

∣

∣

1 ≤ i1 < i2 < · · · < ip ≤ n,
the restriction of αi1,...,ip on Γ is trivial

〉

as the proof of Lemma 5.2. Suppose (G,Γ) satisfies the condition (CG,Γ).
Then we have





⊕

α∈AΓ

∧

g∗C ⊗ Vα





T

=
(

∧

g∗C
)T

.

Hence by Corollary 7.4, we have an isomorphism

H∗
(

(

∧

g∗C
)T
)

∼= H∗(G/Γ,C).
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This implies that the inclusion
∧

(gC)
∗ ⊂ A∗

C(G/Γ) induces an isomor-
phism

H∗(gC) ∼= H∗(G/Γ,C).

q.e.d.

Remark 10.1. We have examples such that we can apply this corol-
lary but cannot use Mostow’s theorem (=Theorem 3.1 ).

Example 3. Let G = R ⋉φ R2 with φ(t) =

(

cos πt − sinπt
sinπt cos πt

)

.

Then G has a lattice Γ = Z⋉Z2. In this case G is not completely solvable
and (G,Γ) does not satisfies the Mostow’s condition. But diagonalization

of Ads is given by Ads(t, x, y) = diag(1, eπt
√
−1, e−πt

√
−1) and hence

(G,Γ) satisfies the condition (C,G,Γ). Thus we have an isomorphism
H∗(gC) ∼= H∗(G/Γ,C).

For a character α of G, if the restriction of α on Γ is trivial, then the
image α(G) = α(G/Γ) is compact and hence α is a unitary character.
Hence the above corollary reduces to the following corollary.

Corollary 10.2. Let G be a simply connected solvable Lie group with
a lattice Γ, and let g be the Lie algebra of G. Suppose G satisfies the
following condition:
(DG): For each {i1, . . . , ip} ⊂ {1, . . . , n} the character αi1,...,ip is not a
non-trivial unitary character.
Then an isomorphism H∗(G/Γ,C) ∼= H∗(gC) holds.

Since the condition (DG) does not concern Γ, this corollary is more
useful than the earlier corollary. Clearly a completely solvable Lie group
satisfies the condition (DG). Hence this corollary is a generalization of
Hattori’s result in [18].

Example 4. Let G = Rs ⋉φ (R
s × C) such that

φ(t1, . . . , ts) =

















et1 0 . . . 0 0

0
. . .

. . .
...

...
...

. . . ets 0 0

0 . . . 0 e−
1

2
(t1+···ts) cosϕ −e−

1

2
(t1+···ts) sinϕ

0 · · · 0 e−
1

2
(t1+···ts) sinϕ e−

1

2
(t1+···ts) cosϕ

















,

where ϕ = c1t1 + · · ·+ csts. Then a diagonalization of Ads is given by

Ads = diag(et1 , . . . , ets , e−
1

2
(t1+···ts)+ϕ

√
−1, e−

1

2
(t1+···ts)−ϕ

√
−1, 1, . . . , 1).

By this, G satisfies the condition (DG) for any S.

Proposition 10.3. For any lattice Γ, we have bp(G/Γ) = b2s+2−p(G/Γ) =
sCp for 1 ≤ p ≤ s and bs+1(G/Γ) = 0.



MINIMAL MODELS OF SOLVMANIFOLDS WITH LOCAL SYSTEMS 295

Proof. For a coordinate (t1, . . . , ts, x1, . . . , xs, z) ∈ Rs⋉φ (R
s×C), the

cochain complex
∧

g∗C is generated by

{dt1, . . . , dts,e
−t1dx1, . . . , e

−tsdxs,

e
1

2
(t1+···ts)−ϕ

√
−1dz, e

1

2
(t1+···ts)+ϕ

√
−1dz̄}.

Since G satisfies the condition (Dp,G), we have an isomorphism

Hp(G/Γ,C) ∼= H∗





(

p
∧

g∗C

)T


 .

We have
(

p
∧

g∗C

)T

= 〈dti1 ∧ · · · ∧ dtip |1 ≤ i1 < · · · < ip ≤ s〉

for 1 ≤ p ≤ s and
(

∧s+1
g∗C

)T

= 0. Since the restriction of the deriva-

tion on (
∧p

g∗C)
T is 0 for 1 ≤ p ≤ s+ 1, we have

H∗





(

p
∧

g∗C

)T



∼= 〈dti1 ∧ · · · ∧ dtip |1 ≤ i1 < · · · < ip ≤ s〉.

By the Poincaré duality, we have the proposition. q.e.d.

We can construct a lattice of G using number theory. LetK be a finite
extension field of Q with the degree s + 2(s > 0). Suppose K admits
embeddings σ1, . . . , σs, σs+1, σs+2 into C such that σ1, . . . , σs are real
embeddings and σs+1, σs+2 are complex ones satisfying σs+1 = σ̄s+2.
We can choose K admitting such embeddings (see [25]). Denote OK
the ring of algebraic integers of K, O∗

K the group of units in OK , and

O∗+
K = {a ∈ O∗

K : σi > 0 for all 1 ≤ i ≤ s}.

Define σ : OK → Rs × C by

σ(a) = (σ1(a), . . . , σs(a), σs+1(a))

for a ∈ OK . Then the image σ(OK) is a lattice in Rs × C. We denote

σ(a) · σ(b)

= (σ1(a)σ1(b), . . . , σs(a)σs(b), σs+1(a)σs+1(b), . . . , σs+t(a)σs+t(b))

for a, b ∈ OK . Define l : O∗+
K → Rs+1 by

l(a) = (log |σ1(a)|, . . . , log |σs(a)|, 2 log |σs+1(a)|)

for a ∈ O∗+
K . Then by Dirichlet’s units theorem, l(O∗+

K ) is a lattice

in the vector space L = {x ∈ Rs+1|
∑s+1

i=1 xi = 0}. By this we have a
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geometrical representation of the semi-direct product l(O∗+
K )⋉φ σ(OK)

with

φ(t1, . . . , ts+1)(σ(a)) = σ(l−1(t1, . . . , ts+1)) · σ(a)

for (t1, . . . , ts+1) ∈ l(O
∗+
K ). Since l(O∗+

K ) and σ(OK) are lattices of L
and Rs × C respectively, we have an extension φ̄ : L → Aut(Rs × C)
of φ and l(O∗+

K ) ⋉φ σ(OK) can be seen as a lattice of L ⋉φ̄ (Rs × C).

Since we have φ(t1, . . . , ts+1) = diag(et1 , . . . , ets , σs+1(l
−1(t1, . . . , ts+1)))

and σs+1 is a complex embedding of K, for some c1, . . . , cs ∈ R, the Lie
group L⋉φ̄ (R

s × C) is identified with the Lie group G as above.

Remark 10.2. In [25], for each s Oeljeklaus and Toma constructed a
LCK (locally conformal Kähler) structure on the manifold G/l(O∗+

K )⋉φ

σ(OK) and showed that for s = 2 this LCK manifold is a counter
example of Vaisman’s conjecture (i.e. every compact LCK manifold has
an odd Betti number). By the above proposition, for s = 2m the Betti
number bp = b4m+2−p = 2mCp is even for odd number 1 ≤ p < 2m.
Hence for any even s, G/l(O∗+

K )⋉φ σ(OK) is also a counterexample of
Vaisman’s conjecture.
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