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BOUNDING GEOMETRY OF LOOPS

IN ALEXANDROV SPACES

Nan Li & Xiaochun Rong

Abstract

For a path in a compact finite dimensional Alexandrov space X
with curv ≥ κ, the two basic geometric invariants are the length
and the turning angle (which measures the closeness from being a
geodesic). We show that the sum of the two invariants of any loop
is bounded from below in terms of κ, the dimension, diameter,
and Hausdorff measure of X . This generalizes a basic estimate of
Cheeger on the length of a closed geodesic in a closed Riemannian
manifold ([Ch], [GP1,2]). To see that the above result also gen-
eralizes and improves an analog of the Cheeger type estimate in
Alexandrov geometry in [BGP], we show that for a class of subsets
of X , the n-dimensional Hausdorff measure and rough volume are
proportional by a constant depending on n = dim(X).

Introduction

Let X denote an Alexandrov space with curvature bounded from be-
low, curv ≥ κ, which is a length metric space such that each point
has a neighborhood in which any geodesic triangle looks fatter than
a comparison triangle in the 2-dimensional space form S2

κ of constant
curvature κ. A motivation for studying Alexandrov spaces is that the
Gromov-Hausdorff limit of a sequence of Riemannian n-manifolds with
sectional curvature sec ≥ κ is an Alexandrov space with curv ≥ κ.
A Riemannian manifold with sec ≥ κ is an Alexandrov space, but an
Alexandrov space in general may have geometrical or topological singu-
larities. A basic issue in Alexandrov geometry is to prove results whose
counterparts to Riemannian geometry rely on the Toponogov triangle
comparison theorem ([BGP]).

Let γ : [0, 1] → X be a continuous curve. Given a partition, P : 0 =
t1 < · · · < tm+1 = 1 with partition size |P | = δ, let pi = γ(ti), and let
γm denote an m-broken geodesic, i.e., γm|[ti,ti+1] = [pipi+1] is a minimal
geodesic joint pi and pi+1. Let θi = π − ∡pi−1pipi+1. In particular,
θ1 = π−∡pm+1p1p2 if pm+1 = p1 (the loop case) and θ1 = 0 otherwise.
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Let ΘP (γ) =
∑m

i=1 θi. We define the following number,

Θ(γ) = lim
δ→0

sup
|P |=δ

{ΘP (γ)},

the turning angle of γ. For convenience, we assign 2π as the turning
angle of a trivial loop. An m-broken geodesic γm has a finite turning
angle Θ(γm) =

∑m
i=1 θi. Θ(γ) measures the closeness of a curve from a

geodesic in the following sense: A curve γ is a geodesic if and only if
Θ(γ) = 0. IfM is a Riemannian manifold, then for any C2-curve γ ⊂M ,

Θ(γ) =
∫ 1
0 |∇γ′γ′|dt is the geodesic curvature (c.f. [AB]). Because a

general Alexandrov space may contain no closed geodesic (nor an m-
broken geodesic loop with a small turning angle; e.g., a flat cone), a
loop with the minimal turning angle should be treated as a counterpart
of a closed geodesic on a (closed) Riemannian manifold.

In this paper, Hausn will denote the “normalized” n-dimensional
Hausdorff measure such that Hausn(I

n) = 1, where In is the unit n-
cube in R

n. In particular, if U is an open subset of an n-dimensional
Riemannian manifold, Hausn(U) = vol(U). Let Alexn(κ) be the collec-
tion of n-dimensional Alexandrov spaces with curvature bounded from
below by κ and

Alexn(κ,D) = {X ∈ Alexn(κ), diam(X) ≤ D} .

The purpose of this paper is to find an explicit upper bound for the
volume of X ∈ Alexn(κ,D) in terms of κ,D, L(γ), and Θ(γ) for any
given loop γ ∈ X (Theorem A or Theorem 1.1).

When X is a closed Riemannian manifold, this generalizes a basic
estimate of Cheeger on the length of a closed geodesic in [Ch] (see The-
orem 0.3), as well as an overlap with a generalization of Cheeger’s ba-
sic estimate in [GP1] (1.3 Main Lemma) and [GP2] (Lemma 1.5). As
an application, we will present a local injectivity radius estimate (see
Theorem B). To see that Theorem A also generalizes and improves an
analog of the Cheeger type estimate in Alexandrov geometry ([BGP],
Lemma 8.6), we show that for any open subset of X, the n-dimensional
Hausdorff measure and rough volume are proportional by a constant
depending on n = dim(X).

This implies that Theorem A generalizes and improves an analog of
the Cheeger type estimate in [BGP] on the length of an almost closed
geodesic in an Alexandrov space (see Theorem 0.5).

We now begin to state the main results of this paper. A more general
form will be proposed in Theorem 1.1.

Theorem A. Let X be a complete n-dimensional Alexandrov space
(n ≥ 2) with curv ≥ κ. If γ is a loop at p ∈ X contained in an r-ball
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Br(p), then the length and turning angle of γ satisfy:

L(γ) + (n− 1)r ·Θ(γ) ≥ (n− 1)Hausn(Br(p))

vol(Sn−2
1 ) · snn−1

κ (r0)
,

where Sm
1 denotes a unitm-sphere, r0 = r for κ ≤ 0 and r0 = min{r, π

2
√
κ
}

for κ > 0, and snκ(r) =
1√
κ
sin

√
κr, r, 1√

−κ
sinh

√−κr respectively for

κ > 0, κ = 0, and κ < 0.

The lower bound on the left-hand side of the inequality in Theorem A
is optimal in all dimensions; the inequality becomes an equality when γ
is a great circle in an n-dimensional spherical κ-space form and r = π√

κ

(note that vol(Sn
1 ) =

2π
n−1 · vol(Sn−2

1 ), n ≥ 2). Furthermore, in the case
when X contains no closed geodesic, the inequality is sharp modulo a
constant depending only on n (see Example 2.9). Let Alexn(κ,D, v) =
{X ∈ Alexn(κ,D), Hausn(X) ≥ v}.

Corollary 0.1. Let X ∈ Alexn(κ,D, v). For any loop γ on X,

L(γ) + Θ(γ) ≥ c(n, k,D, v) > 0,

where c(n, k,D, v) = v·min{(n−1),D−1}
vol(Sn−2

1
)·snn−1

κ (D0)
, D0 = D for κ ≤ 0, and D0 =

min{D, π
2
√
κ
} for κ > 0.

Corollary 0.1 reveals a basic geometric property of the loop space over
a compact Alexandrov space X ∈ Alexn(κ,D, v): any short loop has a
turning angle that is not small, or equivalently, any loop with a small
turning angle is not short.

For 0 ≤ ǫ < 1, we call a loop, γ, ǫ-closed geodesic, if Θ(γ) ≤ ǫ ·
v

D·vol(Sn−2

1
)·snn−1

κ (D0)
, where D0 = D for κ ≤ 0 and D0 = min{D, π

2
√
κ
}

for κ > 0. A loop γ is a closed geodesic if and only if γ is a 0 geodesic.
For any ǫ-closed geodesic γ on X, its length can be bounded from

below.

Corollary 0.2. Let X ∈ Alexn(κ,D, v). If γ is a loop that is ǫ-closed
geodesic, then

L(γ) ≥ (1− ǫ) · (n− 1)v

vol(Sn−2
1 ) · snn−1

κ (D0)
,

where D0 = D for κ ≤ 0 and D0 = min{D, π
2
√
κ
} for κ > 0.

We will make a few comments on Theorem A:
(a) In Riemannian geometry, it is often important to bound the length

of a closed geodesic from below. For instance, the following basic esti-
mate of Cheeger on the length of closed geodesics plays a crucial role in
the classical Cheeger’s finiteness theorem ([Ch]).
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Theorem 0.3 (Cheeger, [Ch]). LetM be a closed n-manifold (n ≥ 2)
with sectional curvature secM ≥ κ (κ ≤ 0) and diameter D < ∞. For
any closed geodesic γ,

L(γ) ≥ (n− 1)vol(M)

vol(Sn−2
1 ) · snn−1

κ (D)
.

Corollary 0.2 reduces to Theorem 0.3 when restricting to a closed
geodesic (i.e., ǫ = 0) on a Riemannian manifold.

(b) We now state a special case of Theorem A.

Theorem B. Let X ∈ Alexn(κ,D, v). For any p, q ∈ X and any
minimal geodesics γ1, γ2 from p to q, the distance between p and q sat-
isfies

|pq| ≥ n− 1

2
·
[

v

vol(Sn−2
1 )snn−1

κ (D0)
−D ·Θ(γ1 ∗ γ−1

2 )

]

,

where D0 = D for κ ≤ 0 and D0 = min{D, π
2
√
κ
} for κ > 0.

Let a(n, κ,D, v) = v
D·vol(Sn−2

1
)·snn−1

κ (D0)
. Observe that if Θ(γ1∗γ−1

2 ) <

a(n, κ,D, v), then |pq| ≥ c(n, κ,D, v) > 0.
With a stronger assumption, Theorem B yields an explicit form com-

paring the Main Lemma in [GP1] (c.f. [GP2], Lemma 1.5), which gen-
eralizes Theorem 0.3. Consider a compact Riemannian n-manifold M .
For p, q ∈ M , without loss of generality, let γ1 and γ2 be two minimal

geodesics from p to q such that ∡(
·
γ1(1),

·
γ2(1)) ≥ ∡(

·
γ1(0),

·
γ2(0)) =

π − 2β. Then

Θ(γ1 ∗ γ−1
2 ) = ∡(

·
γ1(0),−

·
γ2(0)) + ∡(

·
γ1(1),−

·
γ2(1)) ≤ 4β.

Applying Theorem B, we obtain an explicit lower bound for |pq|:
Corollary 0.4. LetM be a closed n-manifold with secM ≥ κ. Assume

max{diam(Γpq),diam(Γqp)} = π − 2β, where 0 ≤ β < a(n,κ,D,v)
4 . Then

|pq| ≥ (n− 1)D

2

(

vol(M)

D · vol(Sn−2
1 ) · snn−1

κ (D0)
− 4β

)

> 0,

where D0 = D for κ ≤ 0 and D0 = min{diam(M), π
2
√
κ
} for κ > 0.

Comparing to [GP1] and [GP2], let Sp be the unit tangent sphere,
and let Γpq ⊆ Sp (resp. Γqp ⊆ Sq) denote the subset of vectors tangent
to minimal geodesics from p to q (resp. from q to p). For any θ > 0, let
Γpq(θ) = {~s ∈ Sp, |~sΓpq|Sp

< θ}, where |~sΓpq|Sp
denotes the distance of

~s to Γpq on Sp. Then Γpq(
π
2 +β) = Sp and Γqp(

π
2 +β) = Sq, by the Main

Lemma in [GP1] (c.f. [GP2], Lemma 1.5, for an explicit estimate of β),
|pq| ≥ r(n, κ,D), where r(n, κ,D) is of an implicit form. If there is a
closed geodesic through p and q, then β = 0, and Corollary 0.4 implies
Theorem 0.3.



BOUNDING GEOMETRY OF LOOPS IN ALEXANDROV SPACES 35

(c) Theorem A can be useful in analyzing local geometry concerning
the injectivity radius of a point p (injradp) in a complete Riemannian
manifold M . If q ∈ M is a nearest cut point to p (consequently, |pq| =
injradp < ∞), then either q is a conjugate point to p or there is a
geodesic loop γ at p passing through q. In the latter case, 2|pq| = L(γ)
and Θ(γ) satisfy Theorem A. In the former case (e.g., no geodesic loop
satisfying L(γ) = 2|pq|), a similar estimate can also be established (see
Theorem B).

To extend the discussion to Alexandrov spaces, we introduce the fol-
lowing notions: we call a point p ∈ X ∈ Alexn(κ) a regular point, if
there is a non-trivial minimal geodesic along any direction in the space
of directions at p. As in the Riemannian case, we define the cut locus,
Cp, at a regular point as the collection of points q ∈ X such that q is the
furthest point on a radial curve from p with arc length equal to |pq|. Let
q ∈ Cp such that |pq| = |pCp|, which is equal to the injectivity radius
injradp. Clearly, the gradient-exponential map is a homeomorphism on
the ball of radius < injradp. Let geod(p, q) = {[pq]} denote the set of
minimal geodesics, [pq], from p to q. We call the following number in
[0, 2π],

θp = inf
q∈Cp, |pq|=injradp

{Θ(γ1 ∗ γ−1
2 ), γ1, γ2 ∈ geod(p, q)},

the geodesic angle of p. Observe that θp = 0 if and only if 2 · injradp is
realized by the length of a closed geodesic at p and θp = 2π if and only
if there is a unique minimal geodesic [pq]. (When X is a Riemannian
manifold, θp = 2π implies that q is a conjugate point of p.) Hence, θp
measures the existence of such a closed geodesic at p.

A consequence of Theorem A is:

Corollary 0.5. Let X be a complete n-dimensional Alexandrov space
(n ≥ 2) with curv ≥ κ. If p ∈ X is a regular point, then for any
r > injradp,

injradp ≥
n− 1

2
·
[

Hausn(Br(p))

vol(Sn−2
1 )snn−1

κ (r0)
− r · θp

]

,

where r0 = r for κ ≤ 0 and r0 = min{r, π
2
√
κ
} for κ > 0.

Corollary 0.5 provides a local estimate for injradp in terms of local

geometry when θp is relatively small (e.g., θp <
Hausn(Br(p))

r·vol(Sn−2

1
)·snn−1

κ (r)
). On

the other hand, θp that is not relatively small indicates that geodesics
from p to q are confined to a narrow region.

(d) In [BGP], an analog of Theorem 0.3 in Alexandrov geometry
was obtained, which implies a lower bound on the length of an al-
most closed geodesic, i.e., an m-broken geodesic loop γm = {[pipi+1]}mi=1
(pm+1 = p1), with Θ(γm) very small while m is fixed. To state the
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result, we recall two notions in [BGP]: the n-dimensional rough vol-
ume of a subset K ⊆ X is the limit, Vrn(K) = lim

ǫ→0
ǫn · βX(ǫ), where

βX(ǫ) = max{|{xi}|, {xi} ⊆ K is an ǫ-discrete net}. Clearly, rough vol-
ume is easier to estimate than the Hausdorff measure and Hausn(X) ≤
Vrn(X). Consider the following function in κ and d > 0 defined in [BGP]:

ψ(κ, d) = max
q,p,r∈S2

κ

{ |pr|
∡pqr

, |qp|, |qr|, |pr| ≤ d, |pr| ≥ 2||qp| − |qr||
}

.

Theorem 0.6 ([BGP]). Let X be a compact n-dimensional Alexan-
drov space of curv ≥ κ. If γm is an m-broken geodesic loop, then the
n-dimensional rough volume,

Vrn(X) ≤ χm(δ1, δ) · d · ψn−1(κ, d),

where d = diam(X),

δ1 =
1

diam(X)
max{|pipi+1|, 1 ≤ i ≤ m},

maxi{θi} ≤ δ, and χm(δ1, δ) is a constant depending on m, δ1, and δ
such that χm(δ1, δ) → 0 as δ1, δ → 0 (m fixed).

Theorem 0.6 implies a lower bound on the length of an almost closed
geodesic, implicitly in terms of n, κ, d, and Vrn(X) (when m is fixed and
δ → 0, δ1 must have a positive lower bound; see Remark 8.7 in [BGP]).
However, because χm(δ1, δ) → ∞ as m→ ∞, Theorem 0.6 fails to imply
a lower bound on the length of an m-broken geodesic loop (of length,
say, one) with m large while mδ are very small (so both δ1 and δ are
small).

In view of the above, it is natural to ask if the sharp estimate in The-
orem A holds in terms of the rough volume. First, the rough volume is
not equivalent to the Hausdorff measure in general. For example, the set
of rational numbers in [0, 1] has rough volume 1, while its complement
and [0, 1] both have rough volume 1. This also shows that the rough
volume does not have additivity. However, we can establish the equiv-
alency for the two measures on the bounded subset which is open or
has lower dimensional boundary. Note that this includes the closed set
whose Hausdorff measure is zero. Since we can’t find this equivalency
in literature, for completeness we give a proof for the following result.

Theorem C. Let U ⊆ X ∈ Alexn(κ) be a bounded subset. If U is
open or the Hausdorff dimension dimH(∂U) < n, then

Vrn(U) = c(n) ·Hausn(U),

where c(n) = Vrn (I
n)

Hausn(In)
= Vrn(I

n), and In denotes a Euclidean unit

n-cube.
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Theorem C can be useful in practice; if one wants to prove a result
involving an estimate for Hausn(X), then one reduces to prove it with
Vrn(X), which is much easier to estimate. As for the value of c(n), except
c(1) = 1 and c(2) ≥ 2√

3
, not much is known.

A consequence of Corollary 0.2 and Theorem C is:

Corollary 0.7. Let X be a compact n-dimensional Alexandrov space
(n ≥ 2) with curv ≥ κ. If γ is an ǫ-closed geodesic, then

L(γ) ≥ (1− ǫ) · Vrn(X)

C(n) · snn−1
κ (D0)

,

where D0 = diam(X) for κ ≤ 0 and D0 = min{diam(X), π
2
√
κ
} for

κ > 0, and C(n) =
c(n)·vol(Sn−2

1
)

n−1 and c(n) is the constant in Theorem C.

Corollary 0.7 generalizes and improves Theorem 0.6 by providing an
explicit sharp estimate for any ǫ-closed geodesic (including all m-broken
geodesic loops with mδ relatively small).

We conclude the introduction by giving an indication for the proof of
Theorem A. First, it is worth noting that our arguments also imply a
new (metric) proof for Theorem 0.3, which does not require a Riemann-
ian structure. Our approach is very different from the proof of Theorem
0.6 in [BGP], which follows the lines of the proof of Theorem 0.3 in [Ch].
Indeed, we found Theorem A after an unsuccessful attempt to remove
the dependence on m from χm(δ1, δ) in Theorem 0.6.

We take an elementary approach to estimate Hausn(X) (in the case
that r = diam(X)): expressing Hausn(X) as a “Riemann sum,” bound-
ing each term, and evaluating the “Riemann sum” of the bounds by
identifying a proper integrant. Let γm = {[pipi+1]}mi=1 be an m-broken
geodesic loop approximating to a loop c in Theorem A, and divide
X =

⋃m
i=1Xi such that Hausn(X) =

∑m
i=1Hausn(Xi), where Xi = {x ∈

X |xpi| ≤ |xpj|, for all 1 ≤ j 6= i ≤ m}. Observe that if γm is a closed
geodesic and |pipi+1| is sufficiently small, then Xi is like the “union of
normal slices” over [pipi+1] (when X is a Riemannian manifold). So in
spirit, we are estimating Hausn(X) via a Riemann sum of a double in-
tegral: first over a normal slice at γm(t), followed by an integral over
γm. To obtain a sharp estimate for Hausn(Xi), we apply a basic Haus-
dorff measure estimate (see Corollary 1.6), which bounds the Hausdorff
measure of any subset A ⊆ X in terms of the Hausdorff measure of
the space of directions at any point p ∈ X, |pA|, and diam(A ∪ {p}).
The key point in our proof is an estimate of the upper and lower bound
for ∡xpipi+1 − π

2 , x ∈ Xi − {pi}, in terms of |pipi+1|, |xpi|, and θi (see
Lemma 1.3).

The rest of the paper is organized as follows:
In Section 1, we will prove Theorem A.
In Section 2, we will prove Theorem C.
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1. Loops and Hausdorff Measure

Throughout this paper, we will freely use basic notions and proper-
ties (such as the space of directions, rough volume, etc.) in Alexandrov
geometry. These can be found in [BGP].

The goal in this section is to prove the following volume estimate,
which easily implies Theorem A.

Theorem 1.1. Let X ∈ Alexn(κ) (n ≥ 2). If γ is a loop at p with
γ ⊂ Br(p), then

Hausn(Br(p)) ≤ vol(Sn−2
1 )

[

snn−1
κ (r0)

n− 1
L(γ) + Θ(γ)

∫ r

0
snn−1

κ (t)dt

]

,

where r0 = r for κ ≤ 0 and r0 = min{r, π
2
√
κ
} for κ > 0.

To prove Theorem 1.1, it’s sufficient to consider the case that γ is
a broken geodesic loop. Given an m-broken geodesic loop, p ∈ γm =
{[pipi+1]}mi=1 ⊂ Br(p), let θi = π − ∡pi−1pipi+1; then the turning angle
Θ(γm) =

∑m
i=1 θi. We divide Br(p) into m subsets “centered” at pi,

Xi = {x ∈ Br(p), |xpi| ≤ |xpj |, for all j 6= i}, 1 ≤ i ≤ m.

Clearly, Br(p) =
⋃

iXi and thus Hausn(Br(p)) ≤
∑

iHausn(Xi). We
first introduce a volume estimation formula for certain subsets in an
Alexandrov space.

Lemma 1.2. Let Br(p) ⊂ X ∈ Alexn(κ), and let [pq] denote a geo-
desic in X from p to q. Given 0 ≤ α ≤ π, 0 ≤ θ < π, and L1, L2 > 0,
for η > 0 arbitrarily small, let

A([pq], α, L1, L2, θ) = {x ∈ Br(p)− {p},
L2

tanκ |xp|
≤ ∡xpq − α+

36η
3

2

| tanκ |xp||
3

2

≤ L1

tanκ |xp|
+ θ}.

Then

Hausn(A)

≤ vol(Sn−2
1 )

[

(L1 + L2)sn
n−1
κ (r0)

n− 1
+ θ ·

∫ r

0
snn−1

κ (t)dt+O(η
3

2 )

]

,

where r0 = r for κ ≤ 0 and r0 = min{r, π
2
√
κ
} for κ > 0.

In fact, the following lemma shows that each Xi is contained in a
certain subset shaped as in Lemma 1.2.
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Aj

Ajx

Xi

π – θi

pi – 1 pi + 1

pi

Figure 1

Lemma 1.3. Let the assumptions be as in Theorem 1.1 and θi,
Xi be defined as in Figure 1. For ǫ > 0, there is η > 0 such that if
maxi{|pipi+1|} < η, then for any x ∈ Xi −{pi}, the following inequality
holds:

− eǫ|pipi+1|
2 tanκ |xpi|

− 36η
3

2

| tanκ |xpi||
3

2

≤ ∡xpipi+1 −
π

2

≤ eǫ|pipi−1|
2 tanκ |xpi|

+
36η

3

2

| tanκ |xpi||
3

2

+ θi,

where tanκ t = snκt
sn′

κ(t)
, and when κ > 0 and |xpi| = π

2
√
κ
, the term

36η
3
2

| tanκ |xpi||
3
2

is defined to be zero.

Assuming Lemmas 1.2 and 1.3, we can give a proof for Theorem 1.1.

Proof of Theorem 1.1. It’s sufficient to prove for an m-broken ge-
odesic γm, in which p is one of the vertices. For any ǫ > 0, evenly
adding N(ǫ) “broken” points, we may assume that the broken geodesic
γm satisfies that |pipi+1| < η for all i, where η is given as in Lemma

1.3. Put Li
1 = eǫ|pi−1pi|

2 and Li
2 = eǫ|pipi+1|

2 . By Lemma 1.3, we see that

Xi ⊆ A([pipi+1],
π
2 , L

i
1, L

i
2, θi), and by Lemma 1.2,

Hausn(Xi) ≤ Hausn(A([pipi+1],
π

2
, Li

1, L
i
2, θi))

≤ vol(Sn−2
1 )

[

eǫ(|pi−1pi|+ |pipi+1|)
2

· sn
n−1
κ (r0)

n− 1

+ θi ·
∫ r

0
snn−1

κ (t)dt+O(η
3

2 )

]

.
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Then

Hausn(Br(p)) ≤
m+N(ǫ)
∑

i=1

Hausn(Xi)

≤ eǫ · vol(Sn−2
1 )









m+N(ǫ)
∑

i=1

|pipi+1|+ |p1pi−1|
2



 · sn
n−1
κ (r0)

n− 1

+

m+N(ǫ)
∑

i=1

θi ·
∫ r

0
snn−1

κ (t)dt+O(η
1

2 )



 ,

(

because η ≈ L(γm)

m+N(ǫ)

)

and the desired inequality follows when ǫ → 0, and thus N(ǫ) → ∞ and
η → 0. q.e.d.

To show Lemma 1.2, we need to divide A (or Xi in our context) into
thin annulus Aj, and then apply an explicit volume formula for κ-cones
(see Lemma 1.4).

For Σ ∈ Alexn−1(1), one can construct an n-dimensional Alexandrov
space Cκ(Σ) with curv ≥ κ (cf. [BGP]): for κ ≤ 0, let Cκ(Σ) = (Σ ×
R)/(Σ × {0}) denote a cone over Σ, and for κ > 0, let Cκ(Σ) = (Σ ×
[0, π√

κ
])/(Σ × {0},Σ × { π√

κ
}) denote the suspension over Σ. We define

a metric d on Cκ(Σ) via the cosine law in the space form of constant
sectional curvature κ. For instance, if κ = 0, then for (x, t), (x′, t′) ∈
(Σ× R)/(Σ × {0}),

d((x, t), (x′, t′))2 = t2 + (t′)2 − 2tt′ cos |xx′|Σ.

Note that for any X ∈ Alexn(κ) and p ∈ X, the space of directions
Σp ∈ Alexn−1(1), and thus we get Cκ(Σp) ∈ Alexn(κ) for a given κ. If
k > 0, then diam(Cκ(Σ)) =

π√
κ
.

Given Σ ∈ Alexn−1(1) and 0 ≤ r1 < r2, let

Ar2
r1(Γ) = {x ∈ Cκ(Σ) : [px] ∈ Γ and r1 ≤ |px| ≤ r2},

where p is the vertex of the κ-cone Cκ(Γ), which is a κ-suspension for
κ > 0 (in particular, r2 ≤ π√

κ
for κ > 0).

Lemma 1.4. Let Ar2
r1(Γ) be defined as in the above. Then

Hausn(A
r2
r1(Γ)) = Hausn−1(Γ) ·

∫ r2

r1

snn−1
κ (t)dt.

Lemma 1.4 is clear if one assumes the co-area formula for Alexandrov
spaces ([BGP], 10.6 in [BBI]). Since we do not find a proof in literature
for the co-area formula, for completeness we will present an elementary
proof using the cosine law in κ-space form.
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Corollary 1.5.

Hausn(Br(Cκ(Γ)) = Hausn−1(Γ) ·
∫ r

0
snn−1

κ (t)dt.

Corollary 1.6. Let X ∈ Alexn(κ). Given any bounded subset A ⊆ X,
and p ∈ X, then

(1.1) Hausn(A) ≤ Hausn−1(Γp(A))

∫ r2

r1

snn−1
κ (t)dt,

where Γp(A) = {↑qp∈ Σp : q ∈ A}, r1 = minx∈A{|px|} and r2 =
maxx∈A{|xp|}.

Corollary 1.6 may be viewed as an explicit (Hausdorff measure) ver-
sion of the comparison theorem in [BGP] Lemma 8.2. One can also
see it from Corollary 10.13 in [BGP], assuming the co-area formula for
Alexandrov spaces.

Proof of Lemma 1.2. Let A = A([p, q], α, L1, L2, θ). Given a parti-
tion for [0, 1] : 0 = a0 < a1 < · · · < aN = 1, let rj = ajr, Aj = {x ∈
A, rj ≤ |xp| ≤ rj+1}, 1 ≤ j ≤ N . If κ > 0 and d > π

2
√
κ
, we will

choose {aj} such that some rj = π
2
√
κ
(note that some Aj may be an

empty set; for instance, if θ = 0, then Aj = ∅ when rj >
π

2
√
κ
because

tanκ |xpi| < 0). For x ∈ Aj ,

− L2

tanκ |xp|
− 36η

3

2

| tanκ |xp||
3

2

≤ ∡xpq − α ≤ L1

tanκ |xp|
+ θ +

36η
3

2

| tanκ |xp||
3

2

implies

− L2

tanκ(cj)
− 36η

3

2

| tanκ |cj ||
3

2

≤ ∡xpq − α

≤ L1

tanκ(cj)
+ θ +

36η
3

2

| tanκ |cj ||
3

2

,(1.2)

where cj = rj+1 when κ ≤ 0 or κ > 0 and rj+1 ≤ π
2
√
κ
; otherwise

cj = rj . Let Γj = {[xp] ∈ Σp(X), x ∈ Aj}. Because curv(Σ[pq](Σp)) ≥ 1,

vol(Σ[pq](Γj)) ≤ vol(Sn−2
1 ), where Σ[pq](Γj) denotes the space of di-

rections of Γj at [pq] ∈ Γj . Applying Corollary 1.6 to Γj at [pq], by
curv(Σp) ≥ 1 and (1.2) we have

Hausn−1(Γj) ≤ vol(Σ[pq](Γj)) ·
∫ α1

α2

sinn−2(t)dt

≤ vol(Sn−2
1 ) ·

(

L1 + L2

tanκ(cj)
+ θ +

72η
3

2

| tanκ(cj)|
3

2

)

,(1.3)
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where α1 = α+ L1

tanκ(cj)
+θ+ 36η

3
2

| tanκ |cj ||
3
2

and α2 = α− L2

tanκ(cj)
− 36η

3
2

| tanκ |cj ||
3
2

.

For ǫ > 0, when △j = rj+1 − rj is sufficiently small, we may assume

that
snn−1

κ (rj+1)
snκ(rj)

≤ eǫsnn−2
κ (rj).

Case 1. Assume κ ≤ 0 or κ > 0 and d ≤ π
2
√
κ
. By applying Corollary

1.6 to Aj: from (1.3) we get

Hausn(Aj) ≤ Hausn−1(Γj)

∫ rj+1

rj

snn−1
κ (t)dt

≤ Hausn−1(Γj)(rj+1 − rj)sn
n−1
κ (cj)

≤ vol(Sn−2
1 )

(

L1 + L2

tanκ(cj)
+ θ +

72η
3

2

| tanκ(cj)|
3

2

)

snn−1
κ (cj)∆j

≤ eǫ · vol(Sn−2
1 )

[

(L1 + L2)sn
n−2
κ (cj)sn

′
κ(cj) + θ · snn−1

κ (cj)

+72η
3

2 sn
n− 5

2
κ (cj) · |sn′κ(cj)|

3

2

]

∆j .(1.4)

Then

e−ǫ · Hausn(A) = e−ǫ ·
N
∑

j=1

Hausn(Aj)

≤ vol(Sn−2
1 )(L1 + L2)

N
∑

j=0

snn−2
κ (cj)sn

′
κ(cj)∆j

+ θ

N
∑

j=0

snn−1
κ (cj)∆j + 72η

3

2

N
∑

j=0

sn
n− 5

2
κ (cj) · |sn′κ(cj)|

3

2∆j.(1.5)

Finally, view (1.5) as the Riemann sum of some integrals and let N →
∞. Note that for n = 2,

∫ r
0 sn

− 1

2
κ (t) · |sn′κ(t)|

3

2 dt <∞ because sn
− 1

2
κ (t) =

t−
1

2 + o(t), we get

Hausn(A) ≤ eǫ · vol(Sn−2
1 )

[

(L1 + L2)

∫ r0

0
snn−2

κ (t)sn′κ(t)dt

+θ ·
∫ r

0
snn−1

κ (t)dt+ 72η
3

2

∫ r

0
sn

n− 5

2
κ (t) · |sn′κ(t)|

3

2 dt

]

= vol(Sn−2
1 )

[

eǫ · (L1 + L2)sn
n−1
κ (r0)

n− 1
+ θ ·

∫ r

0
snn−1

κ (t)dt+O(η
3

2 )

]

.

Letting ǫ → 0, we see the desired result.
Case 2. Assume κ > 0 and d > π

2
√
κ
. For Aj with cj ≤ π

2
√
κ
, the

estimate in (1.4) is still valid. If cj >
π

2
√
κ
, then we modify the estimate
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(1.3) by throwing out the negative term with “tanκ(cj) ≤ 0”, and obtain

Hausn(Aj)

≤ eǫ · vol(Sn−2
1 )[θ · snn−1

κ (cj) + 72η
3

2 sn
n− 5

2
κ (cj)(sn

′
κ(cj))

2]△i.(1.6)

Combining (1.4) for cj ≤ π
2
√
κ
and (1.6), we derive

Hausn(A) =
N
∑

j=1

Vrn(Aj)

≤ eǫ · vol(Sn−2
1 )(L1 + L2)

rj+1≤ π

2
√

κ
∑

j=0

snn−2
κ (cj)sn

′
κ(cj)∆j

+ θ

N
∑

j=0

snn−1
κ (rj)∆j +O(η

3

2 ).(1.7)

In (1.7), letting N → ∞ and ǫ→ 0, we get

Hausn(A)

≤ vol(Sn−2
1 )

[

(L1 + L2)

∫ r0

0
snn−2

κ (t)sn′κ(t)dt+ θ

∫ r

0
snn−1

κ (t)dt

]

= vol(Sn−2
1 )

[

(L1 + L2)sn
n−1
κ (r0)

n− 1
+ θ

∫ r

0
snn−1

κ (t)dt

]

.

q.e.d.

Proof of Lemma 1.3. For ǫ > 0, we may choose η small so that for

all i, |pipi+1|
2 < η implies that tanκ

|pipi+1|
2 ≤ eǫ · |pipi+1|

2 . We first claim
that

cos ∡̃xpipi+1 ≤
eǫ · |pipi+1|
2 tanκ(|xpi|)

,(1.8)

where ∡̃xpipi+1 denotes the corresponding angle in the comparison tri-
angle △̃xpipi+1 ⊂ S2

κ. The proof of the claim relies on the cosine law in
the κ-space form. We will give a proof for the case κ = 0, κ = −1, and
κ = 1. The general case follows by an analog modification.

Case 1. Assume κ = 0. By the cosine law and by the fact that |xpi| ≤
|xpi+1|, we derive

cos ∡̃xpipi+1 =
|xpi|2 + |pipi+1|2 − |xpi+1|2

2|xpi| · |pipi+1|

≤ |xpi|2 + |pipi+1|2 − |xpi|2
2|xpi| · |pipi+1|

=
|pipi+1|
2|xpi|

=
|pipi+1|

2 tan0(|xpi|)
.(1.9)
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Case 2. Assume κ = −1. By the cosine law and |xpi| ≤ |xpi+1|, we
derive

cos ∡̃xpipi+1 =
cosh |xpi| cosh |pipi+1| − cosh |xpi+1|

sinh |xpi| sinh |pipi+1|

≤ cosh |xpi|
sinh |xpi|

· cosh |pipi+1| − 1

sinh |pipi+1|
=

tanh |pipi+1|
2

tanh |xpi|
≤ |pipi+1|

2 tanh |xpi|
.(1.10)

Case 3. Assume κ = 1. Again by the cosine law and |xpi| ≤ |xpi+1|,
we derive:

cos ∡̃xpipi+1 =
cos |xpi+1| − cos |xpi| cos |pipi+1|

sin |xpi| sin |pipi+1|

≤ cos |xpi| − cos |xpi| cos |pipi+1|
sin |xpi| sin |pipi+1|

=
cos |xpi|2 sin2 |pipi+1|

2

sin |xpi|2 sin |pipi+1|
2 cos

|pipi+1|
2

=
tan |pipi+1|

2

tan |xpi|
≤ eǫ · |pipi+1|

2 tan |xpi|
.(1.11)

By now, (1.8) follows from (1.9)–(1.11). Next, we shall show that the
inequality, u ≥ cosα, implies

α ≥ π

2
− u− 36|u| 32 .(1.12)

(This will give the left-hand side inequality in Lemma 1.3.) Note that,
in our case, we may assume 0 ≤ α ≤ π. Thus, if u ≥ 1 or u ≤ −1, then
(1.12) holds. On the other hand, for u ∈ (−1, 1), it’s sufficient to show

cos−1 u ≥ π
2 − u− 36|u|3/2; equivalently, the function

f(u) = u+ 36|u|3/2 − π

2
+ cos−1 u ≥ 0.

By direct calculation,

f ′(u) = 1+54·sign(u)|u|1/2− 1√
1− u2

, f ′′(u) =
27

|u|1/2−
u

(1− u2)3/2
.

For −1 < u < 5
√
13−1
18 , it’s easy to see that f ′′(u) > 0 and u = 0 is the

only critical point for f(u). Consequently, f(0) is the global minimum

for 0 < u < 5
√
13−1
18 . For 5

√
13−1
18 < u < 1, f ′′(u) < 0 and thus the

minimum of f(u) is achieved at the end points. Note that f(0) = 0 and
f(1) > 0; we get that f(u) ≥ 0 for all u ∈ (−1, 1). Plugging in (1.12)

with α = ∡xpipi+1 and u = eǫ·|pipi+1|
2 tanκ |xpi| , we obtain

∡xpipi+1 ≥
π

2
− eǫ|pipi+1|

2 tanκ |xpi|
− 36

(

eǫ|pipi+1|
2| tanκ |xpi||

)3/2

≥ π

2
− eǫ|pipi+1|

2 tanκ |xpi|
− 36η3/2

| tanκ |xpi||3/2
.(1.13)
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Similarly applying |xpi| ≤ |xpi−1| to the above 3 cases, we obtain

∡xpipi−1 ≥
π

2
− eǫ|pipi−1|

2 tanκ |xpi|
− 36η3/2

| tanκ |xpi||3/2
.(1.14)

Plugging (1.13), (1.14), and ∡pi−1pipi+1 = π− θi into the condition (B)
in [BGP]:

∡pi−1pipi+1 + ∡xpipi−1 +∡xpipi+1 ≤ 2π,

we get the right-hand side of the inequality in Lemma 1.3. q.e.d.

As mentioned in the Introduction (see Theorem 0.6 and comments
following it), we did not succeed in an early attempt to modify the
proof of Theorem 0.6 in [BGP] in order to remove the dependence on m
from χm(δ1, δ) and factor out L(γm) from χm(δ1, δ). We would like to
conclude this section by explaining the reason for this failure. The proof
in [BGP] is, following the idea in [Ch], to divide X into two parts and
estimate their rough volumes: one part, Uδ1 , is like a δ1-tube around γm,
and the other part is X − Uδ1 . Since points in X − Uδ1 are a definite
distance away from {pi}, this allowed [BGP] to have an estimate for the
diameter of the directions pointing to points in X−Uδ1 , in terms of δ1, δ,
and m. Unfortunately, the rough volumes of two parts in terms of δ1 are
in different order; that makes it impossible to remove the dependence
on m, or to factor L(γm) from χm(δ1, δ).

2. Hausdorff Measure and Rough Volume

Our proof of Theorem C relies on the local structure of an Alexandrov
space, which we briefly recall (see [BGP] for details). The notion of an
(n, δ)-strainer may be viewed as a counterpart of a normal coordinate
on a Riemannian manifold, defined as follows: for p ∈ X, the set of
n-pairs of points {(pi, qi)}ni=1 is called an (n, δ)-strainer at p, if

∡pippj −
π

2
< δ, ∡pipqi − π < δ, ∡qipqj −

π

2
< δ. (1 ≤ i 6= j ≤ n)

We call the number, ρ = min{|ppi|, |pqi|}, the radius of the (n, δ)-
strainer. By continuity, the subset of points with an (n, δ)-strainer is
open in X. Let Sδ denote the set of points admitting no (n, δ)-strainer.
Then Sδ is a closed subset whose Hausdorff dimension dimH(Sδ) ≤ n−1.

Given a bounded set U ⊆ X ∈ Alexn(κ), we divide U into the “reg-
ular” part U − Sδ and the “singular” part Sδ. On the regular part, we
have

Lemma 2.1 ([BGP] Theorem 9.4). Let X ∈ Alexn(κ). If p ∈ X has
an (n, δ)-strainer with radius ρ > 0, then there are ǫ = ǫ(n, δ, ρ) > 0
and η(n, δ, ρ) > 0 such that Bη(p) is eǫ bi-Lipschitz to an open subset
in R

n. Moreover, ǫ→ 0 as δ → 0.



46 N. LI & X. RONG

For our convenience, we call a subset U a region in a metric space with
Hausdorff dimension n if the interior of U is non-empty and dimH(∂U) <
n. By Lemma 2.6, if U ⊆ X ∈ Alexn(κ) is a bounded region, then

Vrn(U) = Vrn(
◦
U). In the following we show that Theorem C is true if

X = R
n. In particular, U has no singular point.

Lemma 2.2. Let U ⊂ R
n be a bounded region. Then

Vrn(U) = c(n) ·Hausn(U),

where c(n) = Vrn(I
n)

Hausn(In)
and In is a unit n-cube in R

n.

Proof. By Lemma 2.6, it’s sufficient to prove Lemma 2.2 for a bounded
open set U . Note that Hausn(I

n(r)) = rn ·Hausn(In) and Vrn(In(r)) =
rn · Vrn(In), and thus for any r > 0,

Vrn(I
n(r)) = c(n) ·Hausn(In(r)).(2.1)

It’s clear that

Vrn(I
n
1 (r1) ∪ In2 (r2)) = Vrn(I

n
1 (r1)) + Vrn(I

n
2 (r2)).(2.2)

We approximate U by the finite union of n-cubes whose interiors
have no overlap with each other. Let Tj and Tk be such approximations
satisfying

T1 ⊂ T2 ⊂ · · · ⊂ Tj ⊂ · · ·U · · · ⊂Wk ⊂ · · · ⊂W2 ⊂W1

and ∪
j
Tj = U =

k
∩Wk.

By (2.2),

Vrn(U) ≥ Vrn(Tj) =
∑

α∈Tj

Vrn(I
n
α)

=
∑

α∈Tj

c(n) · Hausn(Inα) = c(n) · Hausn(Tj).

Similarly,

Vrn(U) ≤ c(n) ·Hausn(Wk).

Letting j, k → ∞, we get the desired equality. q.e.d.

Using Lemma 2.1 and 2.2, one can get the equivalence for the regular
part in U . As mentioned in the introduction, for any set S, Hausn(S) = 0
may not imply Vrn(S) = 0. We shall show that this is true in our context
(see Lemma 2.6).

Lemma 2.4 will be used to improve the following rough volume es-
timate and get Corollary 2.5. This corollary will be used to deal with
the singular part in U (i.e., show Lemma 2.6). Comparing Corollary 2.5
with Corollary 8.4 in [BGP], the latter one has the form Vrn(Br(p)) ≤
c(n, κ, r), which is inadequate in our approach for Lemma 2.6.
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Lemma 2.3 ([BGP], Lemma 8.2). Let X ∈ Alexn(κ). Given any
subset A ⊆ X, and p ∈M ,

Vrn(A) ≤ 2d1ψ
n−1(κ, d)Vrn−1

(Γp),

where d1 = diam(A ∪ {p}), d = maxx∈A{|px|} − minx∈A{|px|} and
Γp ⊆ Σp consists of geodesic [pa] for every point a ∈ A− {p}.

Lemma 2.4. The function ψ(κ, d) satisfies the following inequalities:

2

3
· snκ(d) ≤ ψ(κ, d) ≤ 2 · snκ(d),

provided d < π
2
√
κ
when κ > 0, where snκ(r) is defined in Theorem A.

We will leave the proof of Lemma 2.4 for the end of this section.
Combining Lemmas 2.3 and 2.4, we get

Corollary 2.5. Let p ∈ X ∈ Alexn(κ). Then for any r > 0, Vrn(Br(p)) ≤
c(n, κ) · rn, where c(n, κ) > 0 is a constant depending only on n and κ.

Lemma 2.6. Let S ⊂ X ∈ Alexn(κ) be a compact subset with
Hausn(S) = 0. Then

(2.6.1) Vrn(S) = 0,
(2.6.2) there is a sequence µi ց 0 such that Vrn(Bµi

(S)) → 0 as i→ ∞.

Proof. We argue by contradiction for (2.6.1). If it is not so, then there

is a sequence ǫi → 0, and ǫi-net {xki }
β(ǫi)
k=1 ⊂ S such that

ǫni · β(ǫi) → Vrn(S) > 0.(2.3)

Let Bj(S) = {x ∈ X : there is h ∈ S such that |xh| < 1/j} denote
the j−1-tubular neighborhood of S. Because S is closed, S ⊂ · · · ⊂ B2 ⊂
B1, and

⋂

j Bj = S. Consequently,

Hausn(Bj) → Hausn(S) = 0.(2.4)

Given any large j, choose ǫi ≤ j−1, and we have
⋃

k

B ǫi
2

(xki ) ⊆ Bj , B ǫi
2

(xki ) ∩B ǫi
2

(xli) = ∅, k 6= l

and thus

β(ǫi) ·min
k

{Hausn(B ǫi
2

(xki ))}

≤
∑

k

Hausn(B ǫi
2

(xki )) ≤ Hausn(Bj).(2.5)

By Bishop-Gromov relative volume comparison for Alexandrov spaces
([BGP]), we have that for any p ∈ X and r > 0,

Hausn(Br(p)) ≥
Hausn(X)

vol(Bκ
diam(X))

· vol(Bκ
r ) = c(n, κ,X) · rn > 0.
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In particular, Hausn(B ǫi
2

(xki )) ≥ c(n, κ,X) ·( ǫi2 )n, and thus (2.5) implies

Hausn(Bj) ≥ β(ǫi) · c(n, κ,X) · (ǫi
2
)n =

c(n, κ,X)

2n
· ǫni β(ǫi).(2.6)

Let ǫi → 0; we get a contradiction with (2.3) and (2.4).
To prove (2.6.2), by (2.6.1), we may assume a sequence of ǫi → 0 and

a sequence of finite ǫi-net {xki }
β(ǫi)
i=1 ⊂ S such that ǫni · β(ǫi) ≤ i−1. Since

{Bǫi(x
k
i )}

β(ǫi)
i=1 is a finite open cover for S, we may assume 0 < µi < ǫi

such that

Bµi
(S) ⊆

⋃

k

Bǫi(x
k
i ),

and thus

Vrn(Bµi
(S)) ≤

∑

k

Vrn(Bǫi(x
k
i )) ≤ β(ǫi) ·max

k
{Vrn(Bǫi(x

k
i ))}.

By Corollary 2.5,

Vrn(Bǫi(x
k
i )) ≤ c(n, κ)ǫni ,

and thus

Vrn(Bµi
(S)) ≤ c(n, κ) · (ǫni · β(ǫi)) ≤ i−1 · c(n, κ).

q.e.d.

Since Sδ is closed and dimH(Sδ) ≤ n− 1 for δ small, by Lemma 2.6,
we have the following.

Corollary 2.7. Let X ∈ Alexn(κ). Then for δ > 0 small, Vrn(Sδ) = 0
and there is a sequence µi ց 0 such that Vrn(Bµi

(Sδ)) → 0 as i→ ∞.

Now we are ready to prove Theorem C.

Proof of Theorem C. Due to Lemma 2.6, it’s sufficient to prove for
a bounded open set U . Fix small δ > 0 and take a sequence µi ց 0.
The idea is to divide U into the disjoint union Bµi

(Sδ)∪ (U −Bµi
(Sδ))

and verify that

lim
i→∞

Vrn(Bµi
(Sδ)) = 0 and(2.7)

Vrn(U −Bµi
(Sδ)) = c(n) ·Hausn(U −Bµi

(Sδ)).(2.8)

By (2.7) and Vrn(U) ≤ Vrn(U −Bµi
(Sδ)) + Vrn(Bµi

(Sδ)), we get

Vrn(U) ≤ lim
i→∞

Vrn(U −Bµi
(Sδ)) ≤ Vrn(U).

Together with (2.8),

Vrn(U) = lim
i→∞

Vrn(U −Bµi
(Sδ))

= lim
i→∞

c(n) ·Hausn(U −Bµi
(Sδ)) = c(n) · Hausn(U).
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(2.7) is satisfied due to Corollary 2.7. It remains to show (2.8). For
each µi, because the closure of U − Bµi

(Sδ) is compact, we can con-
clude that every point in U −Bµi

(Sδ) has an (n, δ)-strainer with radius
ρ = ρ(n, δ, µi) > 0. (If not, then there is a sequence xj ∈ U − Bµi

(Sδ)
such that the (n, δ)-strainer at xj has radius ρi → 0. Passing to a sub-
sequence, we may assume xj → x ∈ U − Bµi

(Sδ). Because the (n, δ)-
strainer at x has radius ρ > 0, by definition we see that for large i,
the (n, δ)-strainer at xj has radius at least ρ/2, a contradiction.) By
Lemma 2.1, we may assume that η(δ, ρ) > 0 and ǫ > 0 such that Bη(p)
is eǫ-bi-Lipschitz embedded to Euclidean space, and ǫ→ 0 as δ → 0 and
η → 0 (equivalently, δ → 0 and µi → 0).

Now we decompose U−Bµi
(Sδ) into countable disjoint small regions:

U −Bµi
(Sδ) =

⋃

j Uj , such that each Uj is contained in an η
10 -ball. Let

U e
j be the corresponding subset in R

n (or equivalently, U e
i denotes an

Euclidean metric on Uj which is eǫ-bi-Lipschitz to Uj). In particular,

e−ǫ ≤ Vrn(Uj)

Vrn(U
e
j )

≤ eǫ, e−ǫ ≤ Hausn(Uj)

Hausn(U e
j )

≤ eǫ.

Together with Lemma 2.2, we get

e−2ǫc(n) = e−2ǫ ·
Vrn(U

e
j )

Hausn(U e
j )

≤ Vrn(Uj)

Hausn(Uj)
≤ e2ǫ

Vrn(U
e
j )

Hausn(U e
j )

= e2ǫc(n).

Because Vrn is finitely additive, we obtain

e−2ǫc(n)
∑

j

Hausn(Uj) ≤
∑

j

Vrn(Uj) ≤ e2ǫc(n)
∑

j

Hausn(Uj),

and thus

e−2ǫc(n) · Hausn(Bµi
(Sδ)) ≤ Vrn(U −Bµi

(Sδ))

≤ e2ǫc(n) ·Hausn(U −Bµi
(Sδ)).(2.9)

In (2.9), letting δ → 0 and µi → 0 (thus ǫ→ 0), we get (2.8). q.e.d.

Remark 2.8. We see that both (2.7) and (2.8) rely on the Alexan-
drov structure.

Proof of Lemma 2.4. We will first reduce the proof to the case when
|qp| = |qr| (see (2.10) below). We may assume that |qp| ≥ |qr|, and let
s be a point on the geodesic from q to p such that |qs| = |qr| = x. From
the condition that 2(|qp| − |qr|) ≤ |pr|, we derive

|pr| − |rs| ≤ |ps| = |qp| − |qr| ≤ 1

2
|pr|,

and thus |pr| ≤ 2|rs|. From

|rs| ≤ |pr|+ |ps| = |pr|+ |qp| − |qr| ≤ |pr|+ 1

2
|pr|,
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we get that |pr| ≥ 2
3 |rs|, and therefore

2

3

|rs|
θ

≤ |pr|
θ

≤ 2
|rs|
θ
,

where θ = ∡pqr. In the above inequality, taking the maximum over
p, q, r ∈ S2

κ under the conditions for ψ(κ, d), we get

2

3
max

q,r,s∈S2
κ

{ |rs|
θ
, |qs| = |qr| ≤ d

}

≤ ψ(κ, d)

≤ 2 max
q,r,s∈S2

κ

{ |rs|
θ
, |qr| = |qs| ≤ d

}

.(2.10)

We claim that for each fixed x,

max
|rs|

{ |rs|
θ
, |qr| = |qs| = x

}

= snκx.(2.11)

Clearly, Lemma 2.4 follows from (2.10) and (2.11). In the rest of the
proof, we will verify (2.11).

Case 1. For k < 0, applying the cosine law to the triangle △qrs we
derive

cosh(
√
−κ|rs|) = cosh2(

√
−κx)− sinh2(

√
−κx) cos θ

= 1 + sinh2(
√
−κx)(1− cos θ)

= 1 + 2 sinh2(
√
−κx) sin2 θ

2
,

and thus

(2.12) sinh

√−κ|rs|
2

= sin
θ

2
sinh(

√
−κx).

Since sin z ≤ z and z ≤ sinh z for z > 0, from (2.12) we get
√
−κ|rs|
2

≤ sinh

√
−κ|rs|
2

= sin
θ

2
sinh(

√
−κx) ≤ θ

2
sinh(

√
−κx),

and thus
|rs|
θ

≤ sinh(
√
−κx)√

−κ .

On the other hand, |rs| → 0 ⇔ θ → 0. Using (2.12), we derive

lim
θ→0

|rs|
θ

= lim
θ→0

|rs|
sinh

√
−κ|rs|
2

· sin
θ
2 sinh(

√−κx)
θ

=
sinh(

√
−κx)√

−κ .

By now, we can conclude (2.11) for k < 0.
Case 2. For k = 0, applying the cosine law to △qrs, we get that

|rs| = 2x sin θ
2 ≤ θx and thus |rs|

θ ≤ x. On the other hand,

lim
θ→0

|rs|
θ

= lim
θ→0

2x sin θ
2

θ
= x.

Similarly, we can conclude (2.11) for k = 0.
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Case 3. For κ > 0, applying the cosine law to △qrs, we get

sin

√
k|rs|
2

= sin
θ

2
sin(

√
kx).(2.13)

By (2.13), we get

|rs|
θ

=

√
κ|rs|
2

sin
√
κ|rs|
2

· sin
√
κ|rs|
2√

κ θ
2

=

√
κ|rs|
2

sin
√
κ|rs|
2

· sin
θ
2

θ
2

· sin(
√
κx)√
κ

.(2.14)

We claim that
√
κ|rs|
2

sin
√
κ|rs|
2

· sin
θ
2

θ
2

≤ 1.

Because θ → 0 if and only if |rs| → 0,

lim
θ→0

√
κ|rs|
2

sin
√
κ|rs|
2

· sin
θ
2

θ
2

= 1,

and consequently we conclude from (2.14) that (2.11) holds for κ > 0.
To see the claim, let λ = sin(

√
κx), and rewrite (2.13) as

sin

√
κ|rs|
2

= λ sin
θ

2
,

√
κ|rs|
2

= sin−1(λ sin
θ

2
).

Then
√
κ|rs|
2

sin
√
κ|rs|
2

· sin
θ
2

θ
2

=
sin−1(λ sin θ

2 )

λ sin θ
2

· sin
θ
2

θ
2

=
sin−1(λ sin θ

2)

λ θ
2

≤ 1,

because for all 0 < λ ≤ 1 and 0 ≤ θ
2 ≤ π

2 , λ sin
θ
2 ≤ sin(λ θ

2). q.e.d.

Example 2.9. We will calculate an example showing that when X
contains neither a closed geodesic nor an almost closed geodesic, the
inequality in Theorem A is sharp up to a constant depending only on
n.

Consider a sector of angle θ (0 < θ < π) in a flat 2-disk of radius d.
We obtain a flat cone, X2, by identifying the two sides of the sector.
Then vol(X2) = 1

2θd
2. Let c denote a geodesic loop at a point near the

vertex. Then L(c) << 1 and Θ(c) = θ. In this case, the inequality in
Theorem A reads:

L(c) + Θ(c) · d ≥ (2− 1) · vol(X2)

vol(S0
1) · d

=
θ

2
· d.

Let Bm
d denote a closed ball of radius d in R

m, and let Xm+1 =
X2 ×Bm

d be the metric product. Then Xm+2 is a compact Alexandrov
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space of curv ≥ 0, and

diam(Xm+2) =
√
2d,

vol(Xm+2) = vol(X2) · vol(Bm
d ) =

vol(Sm−1
1 )

2(m+ 1)
· θ · dm+2.

Let (pi, x) ∈ Xm+2 = X2 ×Bm
d such that pi converges to the vertex of

X2, and let γi ⊂ X2 be a sequence of geodesic loops at pi. Then (γi, x) ⊂
Xm+2 is a sequence of geodesic loops such that L(γi, x) = L(γi) → 0
and Θ((γi, 0)) ≡ θ. Applying Theorem A to (γi, 0) and taking the limit
as i→ ∞, one gets (we also assume m = 2s is even)

θ · d ≥ (m+ 1) · vol(Xm+2)

(m− 1) · vol(Sm
1 ) · dm+1

=
vol(Sm−1

1 )

2(m− 1) · vol(Sm
1 )

· θ · d

=

2
m
2 π

m−2
2

(m−1)!!

(m− 1) · π
m
2

(m
2
)!

· θ · d

=
1

π
· 1

2s − 1
·
[

(2s) · (2s − 2) · · · 4 · 2
(2s− 1) · (2s− 3) · · · 3 · 1

]

· θ · d

≥ 1

π(2s− 1)
· θ · d.

3. Appendix

In this section, we will give proofs for Lemma 1.4. The main ingredient
in the proof is the cosine law in the κ-space form.

Proof of Lemma 1.4. Note that for κ > 0, Cκ(Γ) is a κ-suspension
over Γ. If r1 ≥ π

2
√
κ
, by symmetry we see that

Hausn(A
r2
r1(Γ)) = Hausn(A

π√
κ
−r1

π√
κ
−r2

(Γ)).

If r1 <
π

2
√
κ
< r2, then similarly we may identify

Hausn(A
r2
r1(Γ)) = Hausn(A

π

2
√

κ

r1 (Γ)) + Hausn(A
π√
κ

π√
κ
−r2

(Γ)).

Hence, without loss of generality we may assume that r2 ≤ π
2
√
κ
.

We will divide Ar2
r1(Γ) into small annuli and express Hausn(A

r2
r1(Γ))

as a Riemannian sum of the Hausdorff measure of these small annuli.
The key in the proof is an estimate of the Hausdorff measure of a small
annulus in terms of the Hausdorff measure of a cross section and the
width of the small annulus (one may view this as a local co-area formula
estimate).
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Let {ti} be an N -partition of [r1, r2] and ∆t = r2−r1
N be sufficiently

small. By the above assumption, snκ(t) is increasing in each [t1, ti+1].

Let St = {x ∈ A : |px| = t} and A
ti+1

ti
= {x ∈ A : ti ≤ |px| ≤

ti+1}. Define the product metric |(a, u), (b, v)| =
√

|a, b|2 + |u, v|2 over
Sti × [ti, ti+1]. Because Sti is an Alexandrov space and the normalized
Hausn has countable additivity, we have

Hausn(Sti × [ti, ti+1])

Hausn−1(Sti) · (ti+1 − ti)
=

Hausn(I
n)

Hausn−1(In−1) ·Haus1(I1)
= 1.(3.1)

Consider the map f : A
ti+1

ti
→ Sti × [r1, r2] defined as the following: for

x ∈ A
ti+1

ti
, let x′ ∈ Sti be the point on geodesic [px] such that |px′| = ti,

then f(x) = (x′, |px|) and |f(x1)f(x2)|2 = |x′1x′2|2 + (|px1| − |px2|)2.
For any x1, x2 ∈ A

ti+1

ti
, assume |px2| ≥ |px1|. We will show that

(3.2)
|x1x2|

|f(x1)f(x2)|
= 1 +O(∆t).

Applying the following version of cosine law (which can be easily
derived) to the triangles △px1x2 and △px′1x′2, we get that

sn2κ
|x1x2|

2
= sn2κ

|px1| − |px2|
2

+ sin2
∡x1px2

2
· snκ|px1|snκ|px2|

sn2κ
|x′1x′2|

2
= sin2

∡x′1px
′
2

2
· sn2κ(ti).

Since ∡x1px2 = ∡x′1px
′
2,

sn2κ
|x1x2|

2
= sn2κ

|px1| − |px2|
2

+
snκ|px1|snκ|px2|

sn2κ(ti)
sn2κ

|x′1x′2|
2

= sn2κ
|px1| − |px2|

2
+ (1 +O(∆t))sn2κ

|x′1x′2|
2

.

By the Taylor expansion of (sn−1
κ (
√

sn2κ(x) + (1 +O(∆t))sn2κ(y)))
2, we

get that

|x1x2|2 = (|px1| − |px2|)2 + |x′1x′2|2 +O(∆t)|x′1x′2|2

= |f(x1)f(x2)|2 +O(∆t)|x′1x′2|2,
which leads to (3.2). By the cosine law, it’s easy to see that

Hausn−1(Sti) = snn−1
κ (ti)Hausn−1(Γp).

Together with (3.1) and (3.2),

Hausn(A
ti+1

ti
) = (1 +O(∆t))nHausn(Sti × [r1, r2])

= (1 +O(∆t))nHausn−1(Sti)∆t

= (1 +O(∆t))nHausn−1(Γp)sn
n−1
κ (ti)∆t.

Summing up the above, for i = 0, 1, . . . , N − 1 and let max{∆t} → 0,
we get Lemma 1.4. q.e.d.
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