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YAU’S GRADIENT ESTIMATES
ON ALEXANDROV SPACES
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Abstract

In this paper, we establish a Bochner-type formula on Alexan-
drov spaces with Ricci curvature bounded below. Yau’s gradient
estimate for harmonic functions is also obtained on Alexandrov
spaces.

1. Introduction

The study of harmonic functions on Riemannian manifolds has been
one of the basic topics in geometric analysis. Yau in [50] and Cheng—Yau
in [10] proved the following well-known gradient estimate for harmonic
functions on smooth manifolds (see also [48]).

Theorem 1.1. (Yau [50], Cheng—Yau [10]) Let M™ be an n-
dimensional complete noncompact Riemannian manifold with Ricci cur-
vature bounded from below by —K, (K > 0). Then there exists a constant
Ch, depending only on n, such that every positive harmonic function u
on M" satisfies

1
Vlogu| < Cu(VE + 1)
in any ball By(R).

A direct consequence of the gradient estimate is Yau’s Liouville the-
orem, which states that a positive harmonic function on a complete
Riemannian manifold of nonnegative Ricci curvature must be constant.

The main purpose of this paper is to extend the Yau’s estimate to
Alexandrov spaces. Roughly speaking, an Alexandrov space with cur-
vature bounded below is a length space X with the property that any
geodesic triangle in X is “fatter” than the corresponding one in the
associated model space. The seminal paper [6] and the 10th chapter in
the book [2] provide introductions to Alexandrov geometry.

Alexandrov spaces (with curvature bounded below) successfully gen-
eralize the notion of lower bounds of sectional curvature from Riemann-
ian manifolds to metric spaces. In the last few years, several notions for
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the Ricci curvature bounded below on general metric spaces have ap-
peared. Sturm [45] and Lott—Villani [28, 29], independently, introduced
a so-called curvature-dimension condition on metric measure spaces, de-
noted by CD(K,n). The curvature-dimension condition implies a gen-
eralized Brunn—Minkowski inequality (hence also Bishop—Gromov com-
parison and Bonnet—Myer’s theorem) and a Poincaré inequality (see
[45, 28, 29]). Meanwhile, Sturm [45] and Ohta [31] introduced a mea-
sure contraction property, denoted by MCP(K,n), which is a slight
modification of a property introduced earlier by Sturm in [46] and
in a similar form by Kuwae and Shioya in [23, 24]. The condition
MCP(K,n) also implies Bishop—Gromov comparison, Bonnet—Myer’s
theorem, and a Poincaré inequality (see [45, 31]).

In the framework of Alexandrov spaces, Kuwae—Shioya in [22] intro-
duced an infinitesimal version of the Bishop—Gromov comparison con-
dition, denoted by BG(K,n). On an n-dimensional Alexandrov space
with its Hausdorff measure, the condition BG(K,n) is equivalent to
MCP(K,n) (see [22]). Under the condition BG(0,n), Kuwae-Shioya
in [22] proved a topological splitting theorem of Cheeger—Gromoll type.
In [52], the authors introduced a notion of “Ricci curvature has a lower
bound K7, denoted by Ric > K, by averaging the second variation of
arc-length (see [37]). On an n-dimensional Alexandrov space M, the
condition Ric > K implies that M (equipped with its Hausdorff mea-
sure) satisfies CD(K,n) and BG(K,n) (see [38] and Appendix in [52]).
Therefore, Bishop—Gromov comparison and a Poincaré inequality hold
on Alexandrov spaces with Ricci curvature bounded below. Further-
more, under this Ricci curvature condition, the authors in [52] proved
an isometric splitting theorem of Cheeger—Gromoll type and the maxi-
mal diameter theorem of Cheng type. Note that all of these generalized
notions of Ricci curvature bounded below are equivalent to the classical
one on smooth Riemannian manifolds.

Let M be an Alexandrov space. In [33], Ostu—Shioya established
a C'-structure and a corresponding C°-Riemannian structure on the
set of regular points of M. Perelman in [35] extended it to a DC'-
structure and a corresponding B‘/}?)C-Riemannian structure. By apply-
ing this DC!-structure, Kuwae-Machigashira-Shioya in [19] introduced
a canonical Dirichlet form on M. Under a DC? coordinate system and
written the BV)? -Riemannian metric by (g;;), a harmonic function u is
a solution of the equation

n
(L.1) > 0i(vag705u) =0
ij=1
in the sense of distribution, where g = det (g;;) and (¢%) is the in-
verse matrix of (g;;). By adapting the standard Nash-Moser iteration
argument, one knows that a harmonic function must be locally Holder
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continuous. More generally, in a metric space with a doubling measure
and a Poincaré inequality for upper gradient, the same regularity as-
sertion still holds for Cheeger-harmonic functions (see [8, 18] for the
details).

The classical Bernstein trick in PDEs implies that any harmonic
function on smooth Riemannian manifolds is actually locally Lipschitz
continuous. In the language of differential geometry, one can use the
Bochner formula to bound the gradient of a harmonic function on smooth
manifolds. The well-known Bochner formula states that for any C? func-
tion u on a smooth n-dimensional Riemannian manifold, there holds

(1.2) A|Vul?* = 2|V2ul? + 2 (Vu, VAu) + 2Ric(Vu, Vu).

But for singular spaces (including Alexandrov spaces), one meets seri-
ous difficulty in studying the Lipschitz continuity of harmonic function.
First, due to the lack of the notion of second-order derivatives, the Bern-
stein trick does not work directly on singular spaces. Next, one notes
that the singular set might be dense in an Alexandrov space. When
one considers the partial differential equation (1.1) on an Alexandrov
space, the coefficients \/ﬁgij might be not well defined and not contin-
uous on a dense subset. It seems that all PDE’s approaches fail to give
the Lipschitz continuity for the (weak) solutions of (1.1).

The first result for the Lipschitz continuity of harmonic functions on
Alexandrov spaces was announced by Petrunin in [41]. In [40], Petru-
nin developed an argument based on the second variation formula of
arc-length and Hamilton—Jacobi shift, and sketched a proof to the Lip-
schitz continuity of harmonic functions on Alexandrov spaces with non-
negative curvature, which is announced in [41]. In the present paper,
a detailed exposition of Petrunin’s proof is contained in Proposition
5.3 below. Furthermore, we will prove the Lipschitz continuity of solu-
tions of the general Poisson equation; see Corollary 5.5 below. In [21],
Koskela—Rajala—Shanmugalingam proved that the same regularity of
Cheeger-harmonic functions on metric measure spaces, which supports
an Ahlfors regular measure, a Poincaré inequality, and a certain heat
kernel condition. In the same paper, they gave an example to show that,
on a general metric supporting a doubling measure and a Poincaré in-
equality, a harmonic function might fail to be Lipschitz continuous. In
[53], based on the Lipschitz continuity of harmonic functions and a
representation of heat kernel in [19], we proved that every solution of
the heat equation on an Alexandrov space must be Lipschitz contin-
uous. Independently, in [11], by applying the contraction property of
gradient flow of the relative entropy in L% Wasserstein space, Gigli-
Kuwada—Ohta also obtained the Lipschitz continuity of solutions of the
heat equation on Alexandrov spaces.

Yau’s gradient estimate in Theorem 1.1 above is an improvement of
the classical Bernstein gradient estimate. To extend Yau’s estimates to
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Alexandrov spaces, let us recall its proof in the smooth case. Consider a
positive harmonic function v on an n-dimensional Riemannian manifold.
By applying the Bochner formula (1.2) to logu, one has

AQ > 207 - 2(Viogu, VQ) - 2KQ,

where Q = |V log u|?. Let ¢ be a cut-off function. By applying maximum
principle to the smooth function ¢(@), one can get the desired gradient
estimate in Theorem 1.1. In this proof, it is crucial that the positive
quadratic term %Q2 exists on the RHS of the above inequality.

Now let us consider an n-dimensional Alexandrov space M with
Ric > —K. In [11], Gigli-Kuwada—Ohta proved a weak form of the
I's-condition

AlVul> > 2(Vu, VAu) — 2K|Vul?, forall ue D(A)NWH2(M).

This is a weak version of the Bochner formula. If we use the formula to
log u for a positive harmonic function u, then

where Q = |V logu|?. Unfortunately, this does not suffice to derive the
Yau’s estimate because the positive term %Qz vanishes. The first result
in this paper is the following Bochner-type formula, which keeps the
desired positive quadratic term.

Theorem 1.2. Let M be an n-dimensional Alexandrov space with
Ricci curvature bounded from below by — K, and ) be a bounded domain
in M. Let f(x,s): Qx[0,400) — R be a Lipschitz function and satisfy
the following:

(a) there exists a zero measure set N' C Q such that for all s > 0,
the functions f(-,s) are differentiable at any x € Q\N;

(b) the function f(x,-) is of class C for all x € Q and the function
%(m,s) is continuous, non-positive on € x [0, 4+00).

Suppose that u is Lipschitz on Q and

—/ (Vu,VqS}dvol:/qﬁ-f(g;,\vuP)Vd
Q Q

for all Lipschitz functions ¢ with compact support in 2.
Then we have |Vul? € VV;}S(Q) and

—/ <V<,0,V|Vu|2>dvol
Q
2 2
> 2/ ©- (W +(Vu,Vf(z,|Vul*)) - K\vuy2)dvol
Q

for all Lipschitz functions ¢ = 0 with compact support in ), provided
|Vul is lower semi-continuous at almost all x € Q2. (That is, there exists
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a representative of |Vu|, which is lower semi-continuous at almost all
zef)

Instead of the maximum principle argument in the above proof of
Theorem 1.1, we will adapt a Nash—Moser iteration method to establish
the following Yau’s gradient estimate, the second result of this paper.

Theorem 1.3. Let M be an n-dimensional Alexandrov space with
Ricci curvature bounded from below by —K (K > 0), and let Q be a
bounded domain in M. Then there exists a constant C = C
(n, \/Ediam(Q)) such that every positive harmonic function u on €
satisfies

max |Vlegu| < C(VK + l)
2€By(£) R

for any ball B,(R) C Q. If K =0, the constant C' depends only on n.
We also obtain a global version of the above gradient estimate.

Theorem 1.4. Let M be as above and u be a positive harmonic
function on M. Then we have

Vlogul < Cox
for some constant C,, i depending only on n, K.

The paper is organized as follows. In Section 2, we will provide some
necessary materials for calculus, Sobolev spaces, and Ricci curvature
on Alexandrov spaces. In Section 3, we will investigate a further prop-
erty of Perelman’s concave functions. Poisson equations and mean value
inequality on Alexandrov spaces will be discussed in Section 4. Bochner-
type formula will be established in Section 5. In the last section, we will
prove Yau’s gradient estimates on Alexandrov spaces.

Acknowledgments. We are grateful to Prof. Petrunin for his patient
explanation of his manuscript [40]. We also would like to thank Dr.
Bobo Hua for his careful reading of the first version of this paper. He
showed us a gap in the previous proof of Proposition 5.3. The second
author is partially supported by NSFC 10831008.

2. Preliminaries

2.1. Alexandrov spaces. Let (X, |--|) be a metric space. A rectifiable
curve « connecting two points p, ¢ is called a geodesic if its length is equal
to |pg| and it has unit speed. A metric space X is called a geodesic space
if every pair of points p,q € X can be connected by some geodesic.
Let £k € R and [ € N. Denote by I\\/JIL the simply connected, [-
dimensional space form of constant sectional curvature k. Given three
points p, ¢, in a geodesic space X, we can take a comparison triangle
Apgr in the model spaces M3 such that [pg| = |pq|, |g7| = |qr|, and
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|7p| = |rp|. If & > 0, we add assumption |pq| + |gr| + |rp| < 27/Vk.
Angles Zppqr := Zpqr are called comparison angles.

A geodesic space X is called an Alexandrov space (of locall curvature
bounded below) if it satisfies the following properties:

(i) it is locally compact;

(ii) for any point x € X there exists a neighborhood U, of z and a
real number k such that, for any four different points p, a, b, c in U, we
have

Z,iapb + Z,ibpc + Z,icpa < 2.

The Hausdorff dimension of an Alexandrov space is always an integer.
Let M be an n-dimensional Alexandrov space; we denote by vol the n-
dimensional Hausdorff measure of M. Let p € M; given two geodesics
v(t) and o(s) with y(0) = o(0) = p, the angle

£9/(0)a’(0) := 81}130257(15)190(8)

is well defined. We denote by Z;, the set of equivalence classes of geodesic
v(t) with v(0) = p, where v(¢) is equivalent to o(s) if Z4/(0)o’(0) = 0.
The completion of metric space (2;,, /) is called the space of directions
at p, denoted by ¥,. The tangent cone at p, T, is the Euclidean cone
over Y,. For two tangent vectors w,v € T}, their “scalar product” is
defined by (see Section 1 in [39])

1
(,v) = S (fuf* + [o* = Juvl?).

For each point x # p, the symbol 17 denotes the direction at p corre-
sponding to some geodesic px. We refer to the seminar paper [6] or the
textbook [2] for the details.

Let p € M. Given a direction { € ¥, there possibly does not exist
geodesic v(t) starting at p with 7/(0) = £. To overcome this difficulty,
it is shown in [36] that for any p € M and any direction { € X, there
exists a quasi-geodesic 7y : [0,4+00) — M with v = p and 7/(0) = £ (see
also Section 5 of [39]).

Let M be an n-dimensional Alexandrov space and p € M. Denote by

(133])
W, : = {z € M\{p} ‘ there exists y € M such that y # x
and [py| = [pa| + |zyl}.

According to [33], the set W), has full measure in X. For each x € W),
the direction 17 is uniquely determined, since any geodesic in M does
not branch ([6]). Recall that the map log, : W), — T}, is defined by
log,(z) := |pz|- 1} (see [39]). We denote this by

Wy = log, (W) C T).
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The map log, : W, — #, is one-to-one. After Petrunin in [37], the
exponential map exp,, : T, — M is defined as follows: expp(o) = p and
for any v € T),\{o}, exp,(v) is a point on some quasi-geodesic of length
|v| starting point p along direction v/|v| € 3. If the quasi-geodesic is
not unique, we fix some one of them as the definition of exp,(v). Then
exp,, |y, is the inverse map of log,, and hence exp, |y, : #, — W), is
one-to-one. If M has curvature > k on Bj,(R), then exponential map

exp, : Bo(R) N, C Tf — M

is a non-expending map ([6]), where Tlf is the k-cone over X, and o is
the vertex of T),.

A point p in an n-dimensional Alexandrov space M is called regqular
if its tangent cone T}, is isometric to Euclidean space R" with standard
metric. A point p € M is called a singular point if it is not regular.
Denote by Sas the set of singular points of M. It is shown (in Section
10 of [6]) that the Hausdorff dimension of Sy is < n — 1 (see [6, 33]).
Note that the singular set Sjps is possibly dense in M (see [33]). It is
known that M\S)ys is convex [37]. Let p be a regular point in M; for
any € > 0 there is a neighborhood B, (r) which is bi-Lipschitz onto an
open domain in R™ with bi-Lipschitz constant 1+ € (see Theorem 9.4 of
[6]). Namely, there exists a map F' from B,(r) onto an open domain in
R™ such that

(140 < | F(x) — F(y)]
h |y

A (generalized) C'-structure on M\S); is established in [33] in the
following sense: there is an open covering {U, } of an open set containing
M\ Sy, and a family of homeomorphism ¢, : U, — O, C R™ such that
it U, NUg # @, then

$a 05+ d5(UaNUs) = da(UaNUp)

is C' on ¢5((Ua NUs)\Sm). A corresponding C°-Riemannian metric
g on M\S), is introduced in [33]. In [35], this Cl-structure and the
corresponding C°-Riemannian metric has been extended to be a DC'-
structure and the corresponding BVlgc—Riemannian metric. Moreover,
we have the following:

(1) The distance function on M\Sjs induced from g coincides with
the original one of M ([33]).

(2) The Riemannian measure on M \S), coincides with the Haudorff
measure of M; that is, under a coordinate system (U, ¢), on the metric
g = (gi;), we have

(2.1) dvol(z) = \/det(g(o(z)))dzt A --- A dz™
for all z € U\Sys (Section 7 in [33]).

<1l+4e Vx,y € By(r), #uy.
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A point p is called a smooth point if it is regular and there exists a
coordinate system (U, ¢) around p such that

(2.2) |94 (¢(x)) — di5] = o(lp]),

where (g;;) is the corresponding Riemannian metric (see [33]) near p
and (0;;) is the identity n x n matrix. The set of smooth points has full
measure [35].

Lemma 2.1. Let p € M be a smooth point. We have

dvol(z) 1‘

(2.3) (o)

= o(r), YV v e By(r) N #yp,

where x = exp,(v), and
(2.4) H" (Bo(r) N 7/1,) > H" (Bo(r)) (1 =o(r))
where H" is the n-dimensional Hausdorff measure on T,.

Proof. Let (U, ¢) be a coordinate system such that ¢(p) = 0 and
By(r) C U. For each v € B,(r) N #), C T},

dvol(z) = \/det[gij(¢(x))]dz" A --- A da™,

where z = exp,(v). Since p is regular, T}, is isometric to R™. We obtain
that

dH"(v) = dH"™(0) = dz' A - A dz"
for all v € T},. We get

;l;;rlt((i; —1=/detlg;;(o(x))] - 1.

Now the estimate (2.3) follows from this and equation (2.2).
Now we want to show (2.4).
Equation (2.2) implies that (see [35]) for any x,y € By(r) C U,

|lzy| = llo(x) = ()| = o(r?).
In particular, the map ¢ : U — R" satisfies
gb(Bp(r)) D) Bo(r — 0(7‘2)).
On one hand, from (2.2), we have

(2.5)

vol(By(r)) = /¢(B . \/det(gij)dzt A - A da™
o (7

> H"(¢(Bp(r))) - (1 = o(r)) = H"(Bo(r — o(r?))) - (1~ o(r))
= H"(B,(r)) - (1 = o(r)).
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On the other hand, because exp,, : B,(R) N %}, C T:f — M is a non-

expending map ([6]), where T is the k-cone over ¥, and o is the vertex
of T),, we have

exp, : Bo(R)NW)p CT) — M
is a Lipschitz map with Lipschitz constant 1+ O(r?). Hence we get
H"(Bo(r) N #p) - (1+0(r?)) 2 vol(By(r)).
Therefore, by combining with equation (2.5), we have
H"(Bo(r)#) = H" (Bo(r))-(1-0(1%))-(1~0(r)) = H"(Bo(r)-(1~0(r)).
This is the desired estimate (2.4). q.e.d.

REMARK 2.2. If M is a C?-Riemannian manifold, then for sufficiently
small » > 0, we have

dvol(x)

dH™(v)

_ 1‘ =O0(r?), VveB,(r)CT, and =z =exp,(v).

Let M be an Alexandrov space without boundary and €2 C M be an
open set. A locally Lipschitz function f : 2 — R is called A-concave
([39)) if for all geodesics (t) in €, the function

for(t)—A-t2/2

is concave. A function f : 2 — R is called semi-concave if for any x € €2,
there exists a neighborhood of U, 3 z and a number A, € R such that
flu, is Agz-concave. In fact, it was shown that the term “geodesic” in
the definition can be replaced by “quasi-geodesic” ([36, 39]). Given a
semi-concave function f : M — R, its differential d, f and gradient V, f
are well-defined for each point p € M (see Section 1 in [39] for the basic
properties of semi-concave functions).

From now on, we always consider Alexandrov spaces without boundary.

Given a semi-concave function f : M — R, a point p is called a f-
regular point if p is smooth, d, f is a linear map on 7}, (= R"), and there
exists a quadratic form H,,f on 7T}, such that

(26)  F(x) = F(0) + dpf(5) - Japl + 5 H, (15,12) - lpal? + ol lpa)

for any direction 1. We denote by Regy the set of all f-regular points
in M. According to [35], Regs has full measure in M.

Lemma 2.3. Let f be a semi-concave function on M and p € M.
Then we have
nr

e f (1@ - 1) dvl) = - ] o€+ olr),

Byp(r) p
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where ﬂB fdvol = ﬁ(m i) g fdvol. Furthermore, if we add the assumption
that p € Regy, then

2
28 | (7@ = 1@))dvole) = g2 s - | HH(EE)dE +o(r?).
Bp(r) Xp
Proof. According to Theorem 10.8 in [6], we have
dvol(exp,(v)) vol(B,(r))
iy B,
Similarly as in the proof of equation (2.4), we have
Vol(Bo(r) N #y) = H'(By(r)) - (1 — o(1)).
Since f(x) — f(p) = dpf(15) - [pz| + o(|px]), We get

/Bp(r) (f(x) - f(p)>dvol(x)

(2.9) =1+ o(1).

(2.10)
— / (dpf )+ oflo]) (1 + o(1))dH" (v).
Bo(r)N#)p

On the other hand, from (2.9), we have
‘ / dpf(v)dHn(v)‘ < O(r) - H*(B,(r)\#;) < o(r™*1).
Bo (r)\"p

By combining this and (2.10), we obtain
H™(Bo(r))

| (@ = s avoite) = 2 [ dp i) + o)

By(r) Bo(r)
— [ )" @)1+ o) + ol

Bo(r)

= [ as@an) + o)
Bo(r)

. nr

Cn+1

[ ans@a + o).
2p

This is equation (2.7).
Now we want to prove (2.8). Assume that p is an f-regular point.
From (2.6) and Lemma 2.1, we have

(2.11)
/B,,(r) (f(x) - f(P))dvol(x)

B / () 30 0) + 0((0f)) - (14 o) (1),
Bo(r)N#p
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Using Lemma 2.1 again, we have

[ O] < 00) - B\ Hy) = () - olr) - H(By(r)
= o(r"*?).
Noticing that fBo(r) dpf(v)dH™ = 0, we get
(2.12) / d,f (0)dH™ = o(r™?).
Bo(r)N#p

Similarly, we have

(2.13) / Hyf(v,v)dH" = / H,f (v, v)dH™ + o(r"*3).
Bo(r)n#p o(T)
From (2.11)-(2.13) and Lemma 2.1, we have

[ (s - 1)) o) = ZEAD [ o 0 + o)
By(r) T B

_ / H,f (v, 0)dH™(1 + o(r)) + o(r?)
Bo(r)

2
= ﬁ/ Hyf(£,€)dE + o(r?).
Zp

This is the desired (2.8). q.e.d.

Given a continuous function g defined on B,(dg), where ¢ is a suffi-
ciently small positive number, we have

d
/ gdvol = — gdvol
By (r) dr JB,r)

for almost all r € (0, dp).

Lemma 2.3 Let f be a semi-concave function on M and p € M.
Assume &g is a sufficiently small positive number. Then we have, for
almost all r € (0, 6o),

@) (f@) - o)) dvolle) = nr- f (e +olr),
B, (r) 5,

Furthermore, if we add the assumption that p € Regy, then we have, for
almost all r € (0,d),

©15) [ (1@ - 1) wow) =5 HurE e+ o)

0By () Xp
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2.2. Sobolev spaces. Several different notions of Sobolev spaces have
been established; see [8, 19, 43, 20, 24, 51]. (In [8, 20, 43, 24|, Sobolev
spaces are defined on metric measure spaces supporting a doubling prop-
erty and a Poincaré inequality. Since €2 is bounded, it satisfies a doubling
property and supports a weakly Poincaré inequality [19].) They coincide
with each other on Alexandrov spaces.

Let M be an n-dimensional Alexandrov space and let €2 be a bounded
open domain in M. Given u € C(f2), at a point p € §, the pointwise
Lipschitz constant ([8]) and subgradient norm ([30]) of u at = are de-
fined by:

Lipu(z) := limsup 11@) = F)l and

y—x |xy|

|V~ ul|(z) := limsup fle) - f(y))+

y—z \xy]

)

where a; = max{a,0}. Clearly, |V~ u|(z) < Lipu(z). It was shown in
[30] for a locally Lipschitz function u on €,

IV~ ul(x) = Lipu(x)

for almost all x € Q (see Remark 2.27 in [30] and its proof).

Let x € € be a regular point. We say that a function u is differentiable
at x, if there exists a vector in T, (= R"), denoted by Vu(z), such that
for all geodesic v(t) : [0,€) — Q with v(0) = = we have

(2.16) u(y(t)) = u(x) + t- (Vu(x),7'(0)) + o(t).

Thanks to the Rademacher theorem, which was proved by Cheeger [8]
in the framework of general metric measure spaces with a doubling
measure and a Poincaré inequality for upper gradients and was proved
by Bertrand [3] in Alexandrov space via a simply argument, a locally
Lipschitz function w is differentiable almost everywhere in M. (See also
[32].) Hence the vector Vu(z) is well defined almost everywhere in M.

Note that any semi-concave function f is locally Lipschitz. The dif-
ferential of u at any point z, dyu, is well-defined. (See Section 1 in [39].)
The gradient V u is defined as the maximal value point of dyu : B,(1) C
T, — R.

Proposition 2.4. Let u be a semi-concave function on an open do-
main  C M. Then for any x € Q\Sy, we have

Veu| < |V7ul(z).
Moreover, if u is differentiable at x, we have

|Viu| = |V~ u|(z) = Lipu(z) = |Vu(x)|.
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Proof. Without loss of generality, we can assume that |V u| > 0.
(Otherwise, we are done.) Since x is regular, there exists direction —V  u.
Take a sequence of point {y; 524 such that

. . ; Vu
lim y; =2 and lim Wi 2

By semi-concavity of u, we have
u(y;) — u(z) < loy;l - (Vou, 19) + Ny, /2, j=1,2,...
for some A € R. Hence

() ()
Ve ) <

Letting j — oo, we conclude |V u| < |V~ u|(z).
Let us prove the second assertion. We need only to show Lipu(z) <
|Vu(z)| and |Vu(x)| < [Vyul. Since u is differentiable at , we have

u(y) —u(z) = |zy| - (Vu(z), 1) + o(|zy])
for all y near z. Consequently,
luly) —u(z)| = lzy| - [ (Vu(z), 19) [+ o(lzy]) < |zyl - [Vu(z)] + of|zyl).

This implies that Lipu(z) < |Vu(x)|.
Finally, let us show |Vu(z)| < |Vgu|. Indeed, combining the differen-
tiability and semi-concavity of u, we have

jzyl - (Vu(@), 1) + ollzy)) = uly) — u(z) < |zy| - (Vou, 1) + Azyl?/2

for all y near z. Without loss of generality, we can assume that |Vu(z)| >
0. Take y such that direction 1% is arbitrarily close to Vu(z)/|Vu(z)|.
We get

o4 Nayl/2, j=1,2,...

Vu(@)? < (Vou, Vu(@)) < [Voul - [Vu(@)].
This is |Vyu| < |[Vu(x)]. q.e.d.

According to this proposition, we will not distinguish between two
notations V,u and Vu(z) for any semi-concave function u.

We denote by Lip.(£2) the set of locally Lipschitz continuous func-
tions on €2, and by Lipo(€2) the set of Lipschitz continuous functions on
Q) with compact support in . For any 1 < p < 400 and u € Lip,(2),
its WP(Q)-norm is defined by

ullwre@) = llullLr@) + ILipullLr().-
Sobolev spaces WHP(€) are defined by the closure of the set
{u € Lipioc(Q)] lullpr2(0) < +oo},

under W1P(Q)-norm. Spaces VVO1 P(Q) are defined by the closure of
Lipo(Q) under W1P(Q)-norm. (This coincides with the definition in [8];
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see Theorem 4.24 in [8].) We say a function u € VV;?(Q) if u € WiP(QY)
for every open subset ' € Q. According to Kuwae-Machigashira—
Shioya [19] (see also Theorem 4.47 in [8]), the “derivative” Vu is well-
defined for all w € WHP(Q) with 1 < p < co. Cheeger in Theorem 4.48
of [8] proved that W1P(Q) is reflexive for any 1 < p < oc.

2.3. Ricci curvature. For an Alexandrov space, several different defi-
nitions of “Ricci curvature having lower bounds by K” have been given
(see Introduction).

Here, let us recall the definition of lower bounds of Ricci curvature
on Alexandrov space in [52].

Let M be an n-dimensional Alexandrov space. According to Section
7 in [6], if p is an interior point of a geodesic ~, then the tangent cone
T, can be isometrically split into

T,=L,xR-~, v=(vht).
We set
A, ={6e€L,: [{ =1}

DEFINITION 2.5. Let o(t) : (—¢,{) — M be a geodesic and
{90(t)(§)} —e<t<¢ be a family of functions on A, such that g, is con-
tinuous on A, for each t € (—¢,f). We say that the family
{90(#) (&)} —e<t<¢ satisfies Condition (RC) on o if for any two points
q1,q2 € o and any sequence {9]-}]0-‘;1 with §; — 0 as j — oo, there exists
an isometry T : 34, — X4, and a subsequence {J;} of {#;} such that

(2.17)
|exp,, (6;11€), exp,, (9;12T¢€)|
<lgrge| + (la = 1) (€,7) - 05

(11—12)2 gl(gL)'|(J1(J2| "2
(Gt @l ) (1)

+ 0(63)

for any l1,lo > 0 and any £ € X, .

If M has curvature bounded below by ko (for some ky € R), then
by Theorem 1.1 of [37] (or see Theorem 20.2.1 of [1]), the family of
functions {gq(1)(§) = ko}—e<t<¢ satisfies Condition (RC) on o. In par-
ticular, if a family {g,(;)(§)}—r<i<¢ satisfies Condition (RC), then the
family {go(1)(§) V ko}—e<t<¢ satisfies Condition (RC) too.

DEFINITION 2.6. Let 7 : [0,a) — M be a geodesic. We say that M
has Ricci curvature bounded below by K along ~y, if for any € > 0 and
any 0 <ty < a, there exists £ = {(tg,€) > 0 and a family of continuous
functions {g,(s)(§) }to—t<t<to+e On Ay such that the family satisfies
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Condition (RC') on 7|—y, t9+¢) and

(218)  (n—1)- / G OIS K —e, Ve (ty— Lty +0),
Ay

where [ 0:(6) = sy [, 9:(6)dE.

We say that M has Ricci curvature bounded below by K, denoted by
Ric(M) > K, if each point € M has a neighborhood U, such that M
has Ricci curvature bounded below by K along every geodesic v in U,.

REMARK 2.7. Let M be an n-dimensional Alexandrov space with
curvature > k. Let v : [0,a) — M be any geodesic. By [37], the family of
functions {g,(;)(§) := k}o<t<a satisfies Condition (RC') on ~. According
to Definition 2.6, we know that M has Ricci curvature bounded from
below by (n — 1)k along . Because of the arbitrariness of geodesic 7,
M has Ricci curvature bounded from below by (n — 1)k.

Let M be an n-dimensional Alexandrov space M having Ricci curva-
ture > K. In [38] and the Appendix of [52], it is shown that met-
ric measure space (M,d,vol) satisfies Sturm—Lott—Villani curvature-
dimension condition C'D(K,n), and hence measure contraction property
MCP(K,n) (see [45, 31], since Alexandrov spaces are non-branching)
and infinitesimal Bishop-Gromov condition BG(K,n) ([22]; this is equiv-
alent to MCP(K,n) on Alexandrov spaces). Consequently, M satisfies
a corresponding Bishop—Gromov volume comparison theorem [45, 22|
and a corresponding Laplacian comparison in the sense of distribution
[22].

3. Perelman’s concave functions

Let M be an Alexandrov space and x € M. In [34], Perelman con-
structed a strictly concave function on a neighborhood of x. This im-
plies that there exists a convex neighborhood for each point in M. In
this section, we will investigate a further property of Perelman’s concave
functions.

In this section, we always assume that M has curvature bounded from
below by k (for some k € R).

Let f: Q C M — R be a semi-concave function and x € ). Recall
that a vector vs € T, is said to be a supporting vector of f at x (see
[39]) if

d.f(€) < —(vs,&) forall £ € 3.

The set of supporting vectors of f at x is a non-empty convex set (see
Lemma 1.3.7 of [39]). For a distance function f = dist,, by the first
variant formula (see, for example, [2]), any direction 1% is a supporting
vector of f at z # p.
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Proposition 3.1. Let f : Q C M — R be a semi-concave function
and x € Q. Then we have

dg f(§)d€ < 0.
Xz
Furthermore, if f is a distance function f = dist,, * # p, and the
“=" holds; then 1%, is uniquely determined and maxeey,, |, 15 | = .

Proof. Let vs be a support vector of f at x; then
do (&) < —(v5,&), VEEX,.

Without loss of generality, we can assume vs; # 0. (If vs = 0, then
d. (&) < 0. We are done.) Setting ny = ﬁ € X, we have
de f(§) < = (vs,§) = —[vs| - cos(|no,&]) V&€ X,

Denote D = maxeey, |€,10]- By using the co-area formula, we have

D
= e f€)de < o] /. cos(lm. g = | cost-

where A(t) = vol,—2({€ € 5 &, m0| = t}).
If D <7/2, then I <O0.
We consider the case D > m/2. Since ¥, has curvature > 1, by
Bishop—Gromov comparison, we have
vol,_2(0By(m —t) C S*71)
" vol,_2(0B,(t) C S*1)

Alr —t) < A(t) = A(t)

for any t < 7/2. Hence

I /2 D
— < —/ cost - A(t)dt —/ cost - A(t)dt
|'Us| 0 w/2

w/2 D
< - / cost - A(m —t)dt — / cost- A(t)dt
0 w/2
= / cost - A(t)dt < 0.
D

Moreover, if I =0, then D = 7.
If f = dist,, then vs can be chosen as any direction 5. When I = 0,
we have

(3.1) de f(§) = — (15,€), V&€,

and
max|¢, 13 | =.

The left-hand side of (3.1) does not depend on the choice of direction
1. This implies that 1% is determined uniquely. q.e.d.
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Lemma 3.2. Given any n € N and any constant C' > 0, we can find
do = 60(C,n) satisfying the following property: for any n-dimensional
Alexandrov spaces X with curvature > 1, if there exist 0 < § < dy and
points {pj}j-vzl C X" such that

(3.2) lpipj| >0 (i # j), N:=#{pj} >C-5"

and

(3.3) rad(p;) := max lpjq| =m foreach 1< j <N,
q n

then Y™ is isometric to S™.

Proof. We use an induction argument with respect to the dimension
n. When n = 1, we take 69(C,1) = C/3. Then each 1-dimensional
Alexandrov space X! satisfying the assumption of the lemma must con-
tain at least three different points p1,p2, and ps with rad(p;) = =,
i=1,2,3. Hence X! is isometric to S'.

Now we assume that the lemma holds for dimension n — 1. That is,
for any C, there exists dy(C,n — 1) such that any (n — 1)-dimensional
Alexandrov space satisfying the condition of the lemma must be isomet-
ric to S"7L.

We want to prove the lemma for dimension n. Fix any constant C' > 0
and let
(3.4) 5o(C,n) := min {% -8 <% - (10/8) ", n — 1) , 1}.

Let X" be an n-dimensional Alexandrov space with curvature > 1.
Suppose that there exists 0 < § < 6o(C, n) and a set of points {p, }2_; C
¥" such that they satisfy (3.2) and (3.3).

Let g1 € ¥™ be the point that |pi1gi| = 7. Then X" is a suspension
over some (n — 1)-dimensional Alexandrov space A of curvature > 1 and
with vertex p; and ¢, denoted by X" = S(A). We divide X" into pieces
Al, AQ,...,A[,...,A[&S

= s

Ar=A{z € I": (5/10)1 < fopr| < (6/10)-(1+D)}, 0 <1< T= [,

where [a] is the integer such that [a] < a < [a] + 1. Then there exists
some piece, say A;,, such that
N N <1 C

>—> > — .5
I+17 107/6 +1 117

(3.5) N1 :=#(A, N{p;}il1)
Notice that
A1UAy C By, (6/2) and AjU A7 C By, (0/2),

then we have Iy ¢ {1,2,1 —1,1}.
We denote the points A;, N {pa}Y_; as (:Ei,ti)ﬁill c S(A) (= XM,
where x; € A and 0 < t; < 7 for 1 < i < Ny. Let ; be the geodesic
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p1(zi )1 and p; = v N OBy, ((lo + 1) - §/10). By triangle inequality,
we have

o 8
(3.6) |pipj| 2 E . 5

Applying cosine law, we have
cos(|pip;|) = cos(|p1pil) - cos(|p1p;l) 4 sin(|ppil) - sin(|p1p;]) - cos(|ziz;])
for each i # j. Since |p1p;| = |p1p;|, we get
(3.7) |wix;| = [pib;l-
By the assumption (3.3), there exist points (£, #;) € ¥" ( = S(A)) such
that
(@i, ta), (@i, )| = =
for each 1 < i < Ni. By using the cosine law again, we have

—1 = cos(|(wi, t;) (@i, t;)|) = cost; - cost; + sint; - sint; - cos(|x;z;|)

cos(t; + t;) + sint; - sint; - (cos(|z; &) + 1)
> cos(t; + t;).

By combining with 0 < ¢;,¢; < m, we deduce
(3.8) |v;z;| =7 and t; +¢; =7

By the induction assumption and (3.4)—(3.8), we know A is isometric to
S*~1. Hence X" is isometric to S™. g.e.d.

Lemma 3.3. (Perelman’s concave function.) Letp € M. There ex-
ists a constant r1 > 0 and a function h : By(r1) = R satisfying:

(i) his (—1)-concave;

(i) h is 2-Lipschitz, that is, h is Lipschitz continuous with a Lips-
chitz constant 2;

(111)  for each x € By(r1), we have

(3.9) / dsh(€)de < 0.

x

Moreover, if “=” holds, then x is regular.

Proof. Let us recall Perelman’s construction in [34]. Fix a small ro >
0 and choose a maximal set of points {g, }2_; C 8B, (ro) with Zgapgs >
d for aw # B, where ¢ is an arbitrarily (but fixed) small positive number
6 < rg. By Bishop—Gromov volume comparison, there exists a constant
(', which is independent of §, such that
(3.10) N>C -6

Consider the function

1 N
h(y) =+ > #lgayl)

a=1
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o, where ¢(t) is a real function with ¢'(t) = 1

on By(r) with 0 < r; <
=1/2 for t = ro + 6, and ¢"(t) = —1/(49) for

for t < rog— 0, ¢(t)
te (7‘0 — 9,19 + 6).

The assertions (i) and (ii) have been proved for some positive constant
r1 < 1o in [34] (see also [15] for more details). The assertion (iii) is
implicitly claimed in Petrunin’s manuscript [40]. Here we provide a
proof as follows.

Let x be a point near p. It is clear that (3.9) follows from Proposition
3.1 and the above construction of h. Thus we only need to consider the
case of

1
2
1

(3.11) dyh(€)dE = 0.
P

We want to show that x is a regular point.

From Zqapgg = Zqapqp > d for a # 3 and the lower semi-continuity
of angles (see Proposition 2.8.1 in [6]), we can assume Zqo2qg > /2
for aw # (. Proposition 3.1 and (3.11) imply that

dgdistg, (€)d¢ =0 foreach 1< a < N.

Using Proposition 3.1 again, we have
(3.12) ?1%}(| ol =7 foreach 1< a<N.
[SIP
From Lemma 3.2 and the arbitrarily small property of §, the combina-
tion of (3.10) and (3.12) implies that 3, is isometric to S"~!. Hence x
is regular. q.e.d.
4. Poisson equations and mean value inequality

4.1. Poisson equations. Let M be an n-dimensional Alexandrov space
and  be a bounded domain in M. In [19], the canonical Dirichlet form
& : Wol’2(Q) X Wol’2(Q) — R is defined by

E(u,v) = /Q (Vu, Vo) dvol for u,v € Wol’2(Q).
Given a function u € Wlif(Q), we define a functional .%,, on Lipo(€2) by
Zu(p) = — /Q (Vu, Vo) dvol, V¢ € Lipo(Q).
When a function u is A-concave, Petrunin in [38] proved that %, is a

signed Radon measure. Furthermore, if we write its Lebesgue’s decom-
position as

(4.1) 2, = Au - vol + A’u,
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then Ay < 0 and

(42) Bu(p) = [ Hyu(6.)de <n-x
Ep

for almost all points p € M, where Hyu is the Perelman’s Hessian (see
(2.6) or [35]).

Nevertheless, to study harmonic functions on Alexandrov spaces, we
can not restrict our attention only to semi-concave functions. We have
to consider the functional .Z, for general functions in I/Vlf)f(Q)

Let f € L2(Q) and u € W,"*(Q). If the functional .%, satisfies

loc

L) > /Q fodvol  (or Z(0) < /Q fodvol)

for all nonnegative ¢ € Lipy(€2), then, according to [13], the functional
%, is a signed Radon measure. In this case, u is said to be a subsolution
(supersolution, resp.) of Poisson equation

%, = f-vol.

Equivalently, u € VV;S(Q) is a subsolution of .%,, = f - vol if and only
if it is a local minimizer of the energy

E(v) = /Q (IVof2 + 2f0)dvol

in the set of functions v such that v > v and v — v are in VVO1 ’2(9’ )
for every fixed Q' € Q. It is known (see for example [25]) that every
continuous subsolution of %, = 0 on (2 satisfies the Maximum Principle,
which states that

maxu < max u
reB r€0B

for any ball B € Q.

A function u is a (weak) solution of Poisson equation .%, = f - vol
on € if it is both a subsolution and a supersolution of the equation. In
particular, a (weak) solution of .%, = 0 is called a harmonic function.

Now note that u is a (weak) solution of Poisson equation %, = f -
vol if and only if %, is a signed Radon measure and its Lebesgue’s
decomposition .Z, = Au - vol + A%u satisfies

Au=f and Ay = 0.

Given a function f € L?(Q) and ¢ € WH2(Q), we can solve the
Dirichlet problem of the equation

{fu = f-vol

u = glaa.
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Indeed, by the Sobolev compact embedding theorem (see [14, 19]) and
a standard argument (see, for example, [12]), it is known that the solu-
tion of the Dirichlet problem exists and is unique in W2(€2). (See, for
example, Theorem 7.12 and Theorem 7.14 in [8].) Furthermore, if we
add the assumption f € L with s > n/2, then the solution is locally
Holder continuous in € (see [18, 19]).

DEFINITION 4.1. A function v € C(2) N VV;S(Q) is called a A-
superharmonic (or A-subharmonic, resp.) on 2, if it satisfies the fol-
lowing comparison property: for every open subset ' € Q, we have

u < u, (or > u,resp.),

where u is the (unique) solution of the equation .%; = X - vol in ' with
boundary value u = « on 9.

In particular, a 0-superharmonic (or 0-subharmonic, resp.) function
is simply said a superharmonic (or subharmonic, resp.) function.

In partial differential equation theory, this definition is related to the
notion of viscosity solution (see [7]).

According to the maximum principle, we know that a continuous
supersolution of %, = 0 must be a superharmonic function. Notice
that the converse is not true in general metric measure space (see [16]).
Nevertheless, we will prove a semi-concave superharmonic function on
M must be a supersolution of .Z,, = 0 (see Corollary 4.6 below).

4.2. Mean value inequality for solutions of Poisson equations.
Let u € WhH2(Q) such that .%, is a signed Radon measure on  and
A € Q be an open set. We define a functional I, 4 on W12(A) by

(4.3) Loa(¢) = /A (Vu, V) dvol + /A bd,.

REMARK 4.2. (i) If 61,2 € W2(A) and ¢1 — ¢p € Wy%(A), then,
by the definition of .Z,, we have I, A(¢1) = I, a(¢2).
(ii) If M is a smooth manifold and 0OA is smooth, then I, 4(¢) =
[ 4 div(¢Vu)dvol.

Lemma 4.3. Let 0 < 79 < Ry and w(x) = ¢(|px|) satisfy L > 0
on some neighborhood of By(Ro)\By(ro), where p € C?(R). Consider a

function v € WH2(B,(Ro)\By(ro)) N L>®(B(p, Ro)\B(p,70)). Then for
almost all r, R € (1o, Ry), we have

Loa) =) |

9B,(R)

vdvol — ¢/ (r) / vdvol,
9Bp(r)

where A = B,(R)\B(r).
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Proof. Since %, is a signed Radon measure, we have %, (B,(Rp)\
By(rg)) < 400. Hence, for almost all r, R € (ro, Ry), Zu(A;\A) — 0 as
Jj — o0, where A; = B,(R+ %)\Bp(r - %) Now let us fix such r and R.

Let v; = v -n;(|pz|) € W01’2(D), where D = B,(Ry)\Byp(ro) and

1 if terR]

jot—r)+1 if te[r—1r7]
—j-(t—R)+1 if te[R R+13]
0 if te(—oo,r—3)U(R+31 00).

n;(t) ==

By the definitions of I, 4(v) and %, we have

(4.4)

Iy a(v) :/D(Vw,ij>dvol—/D\A

—/ vjdL, = —/ v (Vw, Vn;) dvol
D\A D\A

—/ nj (Vw, Vv) dvol —/ v;dZ,
D\A D\A
=—J1 — Jy— J3.

(Vw,ij>dvol+/vad.$w

Notice that

|Jo| < / , [Vwl| - [Vuldvol and [J3| < Z(A;\A) - [v] 1 (D).

J

Hence we have Jo — 0 and J3 — 0 as j — oo.

(45) J=3j- / v dvol — j - / v dvol.
Bp(r)\Bp(r—1/j) Bp(R+1/)\Bp(R)

The assumption v € L>°(D) implies the function h(t) = | B, (1) vadvol
is Lipschitz continuous in (rg, Rp). Indeed, for each o < s <t < Ry,

|h(t)—h(s)| < / |v|dvol < |U|Loo-vol(Bp(t)\Bp(s)) < e (t"—s"),
Bp(t)\Bp(S)

where constant ¢ depends only on Rg,n and the lower bounds of cur-
vature on B, (Rp). Then h(t) is differentiable at almost all t € (g, Ro).
By co-area formula, we have

B (t) = / vdvol
OBp(t)

for almost all ¢ € (rg, Rp).
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Without loss of generality, we may assume that r and R are differen-
tiable points of function h. Now

3] sy Edol = @) (h00) bt 175)

< / max |¢”| - [v|dvol — 0
Bp(r)\Bp(r—1/7)

as j — oo. A similar estimate also holds for j |’ By(R+1/))\B, (R) ©'vdvol.

Therefore,
lim J; = lim ¢/(r) -j(h(r) — h(r— 1/j))
j—oo j—oo
— Tim ¢'(R) - j(A(R +1/j) = h(R))
j—00
= ¢/ (nh'(r) — ¢/ (R)N(R).
By combining this and (4.4), we get the desired assertion. q.e.d.

If M has Ric > (n — 1)k, then for a distance function disty(z) :=
|px|, Laplacian comparison (see Theorem 1.1 and Corollary 5.9 in [22])
asserts that fdistp is a signed Radon measure and

Liist, < (n — 1) - coty, odisty, - vol on M\{p}.
Moreover, G(z) := ¢i(|pz|) is defined on M\{p} and
Za=0  on M\{p},

where ¢y (r) is the real value function such that ¢ o dist, is the Green
function on M} with singular point o. That is, if n > 3,

1 o
(4.6) o (r) = CE / sp " (t)dt,
where w,_1 = vol(S"~!) and

sin(Vkt)/Vk k>0
sp(t) =t k=0
sinh(v/—kt)/v/—k k <0.

If n = 2, the function ¢ can be given similarly.
By applying Lemma 4.3 to function G, we have the following mean
value inequality for nonnegative supersolution of Poisson’s equation.

Proposition 4.4. Let M be an n-dimensional Alexandrov space with
Ric > (n — 1)k and Q be a bounded domain in M. Assume that f €
L>(Q) and u is a continuous, nonnegative supersolution of Poisson’s
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equation £, = f - vol on Q. Then for any ball B,(R) € Q, we have
(4.7)

vol(2,) 1
wn_f <H"‘1(8BO(R) CTh) /E,BP(R) “dVOl—U(p)>
g(n—Q)-/B; Gfdvol—(n—Q).¢k(R)/ Fdvol,

By(R)
where By (R) = By(R)\{p} and Tlf is the k-cone over ¥, (see [2] p.
354).

Proof. For simplicity, we only give a proof for the case n > 3. A slight
modification of the argument will prove the case n = 2.

(R)

Case 1: Assume that u is a solution of .Z, = f - vol.

Let G(z) = ¢x(|pz|), where the real function ¢ is chosen such that
¢k (Jox|) is the Green function on M} with singular point at o. Then,
by Laplacian comparison theorem (see [22] or [52]), the signed Radon
measure .4 is nonnegative on M\{p}.

Since u is continuous on Bp(R), the function h(s) = | B, (s) Udvol is

Lipschitz. From Lemma 4.3, we have
Ig,a(u) = ¢ (t) - W' (t) — ¢j(s) - W'(s)
for almost all s,t € (0,R) with s < t, where A = B,(t)\B,(s). By the

definition of supersolution of Poisson equation, we have

Ig a(u) — I, A(G) :/ud.iﬂg—/ Gd %, > —/ G fdvol.
A A A

On the other hand, letting

G(z) if s<|pz| <t
t) if |pz| >t
s) if  |pz| <s,

we have

/A<VG,W> :/Bp@) <V(G—¢k(t)),Vu>—/Bp(s) (V(G = éi(s)), Vu)

_ / GdZL, + du(t) / 0% — () / i
A Bp(t) BP(S)
Hence, by %, = f - vol,

LalG) = ) |

Bp(t)

fdvol — ¢ (s) / fdvol.

Byp(s)
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If we set

B(r) = B(r) - () — dx(7) / fdvol,

BP(T)
then the function

U(T) —I-/B*( )Gfdvol

is nondecreasing with respect to 7 (for almost all 7 € (0, R)). Indeed,
for almost all s < ¢,

P(t) + Gfdvol — (s) — / Gfdvol = Ig a(u) — I, a(G)
By (1) By(s)

+/ Gfdvol > 0.
A

Thus by

Gh(t) = — b () —— _ 1 vol(%y) 1

(n—2wn1  n—2 w1 H'(B,(t) C TF)

we have

SN (1) — Gx(t) /

B

> lim (Y(s +/
s—)O( () B;(s)

By combining this and h'(s) = faBp(T) udvol a.e. in (0, R), we obtain
that (4.7) holds for almost all » € (0, R).

By combining the Bishop—Gromov inequality on spheres (see [2] or
Lemma 3.2 of [22]), the assumption u > 0; and the continuity of u, we
have

(4.8) lim inf / udvol > / udvol.
r=R" JoB,(r) 9Bp(R)

Therefore, we get the desired result for this case.

fdvol + / G fvol
p(t) B (1)

1 Vol(%,)
n—2  wWp_1

G fdvol) S u(p).

Case 2: u is a supersolution of .Z, = f - vol.

For each R > 0, let u be a solution of Z; = f - vol on B,(R) with
boundary value condition & = w on dBy(r). Since £ _,, > 0, by maximal
principle, we get u(p) < u(p). Therefore, by applying Case 1 to u, we
get the desired estimate. q.e.d.

Corollary 4.5. Let M, Q, u, and f be as above. If p is a Lebesgue
point of f, i.e.,

(4.9) | vl = ) + o)
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then
1

f(p)
H"1(9B,(R) C Tf) /aBpm) u(e)dvol S ulp) + 5 7 B+ oY)

Proof. By using (4.7), we have
(4.10)

1 / Wn—1
udvol —u(p) < (n —2) - ——
H"—1(8BO(R) C TI?) 9B, (R) ( ) ( ) VOI(EP)

where

-o(R),

o(R) :/B*(R G fdvol — ¢r(R )/ fdvol

AR I o

Hence, by (4.9), we have
J(R) = ~oy(R) [ fivol
Byp(R)

_ o volsy)  fy' s e vol(By(R)) )
T (n—2uwn1 sTYR) H"(B,(R) C T} / Jdvol

Sk
- % ’ (g +o(R)) - (14 0(1)) - (f(p) + o(1))
vol(2,)

= ————f(p)- R+ o(R).

n(n — 2)wp—1

Hence, noting that p(0) = 0, we get

_ vol(%,) 2 2
(4.11) PR) = G B f(p) - B+ of ).
Therefore, the desired result follows from (4.10) and (4.11). q.e.d.

Corollary 4.6. Let M be an n-dimensional Alexandrov space with
Ric = (n — 1)k and Q be a bounded domain in M. Let u be a semi-
concave function on Q and f € L*(Q). Then wu is a supersolution of
%, = [ - vol provided it satisfies the following property: for each point
p € Reg, and every sufficiently small ball B,(R) € 2, we have
(4.12) urp —u < 0,

where the function ug is the (unique) solution of the Dirichlet problem:
Lp = [ -vol in By(R)
Ur =u on 0B,(R).

In particular, a semi-concave superharmonic function must be a su-
persolution of the equation £, = 0.
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Proof. Since the singular part of .%, is non-positive, we need only to
consider its absolutely continuous part Aw - vol.

Fix a point p € Reg, such that (4.2) holds and p is a Lebesgue point
of f. Since the set of such points has full measure in €2, we need only to
show that Au(p) < f(p).

We set

gr(z) =u(x) — min ugr(z) and gr(x) =ur(r)— min ug(x).
zE€Bp(R) z€Bp(R)

Then gr < gr and grlop,(r) = 9rlos,(r)- Noting that the function gr
is nonnegative and %5, = f - vol, by Corollary 4.5 and assuming p is
regular, we have

(4.13)

/ 9r = / gr < H'"'(9B,(R) C Ty) - (ﬁR(p) + @32 + O(Rz))
9B, (R) 9B, (R) "

fp)
2n

On the other hand, since p € Regy,,, from (2.15) and (4.2), we have

(4.14)
/ 9 = gr(p) - vol(9B,(R)) + AgzL(mR? vol(0B,(R)) + o(R™Y)
08, (R) n

<gr(p) - H" 1 (0Bo(R) C Ty) + > R™ ! - wny + o(R™).

for almost all R € (0,dy), where Jy is a small positive number. Because
p is a smooth point, Lemma 2.1 implies

(4.15) H" Y0B,(R) C T)¥) — vol(dB,(R)) = o(R")

for almost all R € (0,dp).
Now we want to show gr(p) = O(R). From (4.12) and the fact that
u is locally Lipshitz (since u is semi-concave), we have

(4.16)

0<gr(p) =u(p) — min ug(r)+ min ug(r)— min ugr(z)
x€0Bp(R) x€0Bp(R) z€Bp(R)

<CiR+ min up(z) — min ug(x).
x€0Bp(R) z€Bp(R)

Since R is sufficiently small, there exists the Perelman concave function
h on B,(2R) given in Lemma 3.3. We have

gﬂR-i-”f”LooJL S fﬂR — ”f”Loo - vol § 0.

Hence, by applying maximal principle, we have for any point € B,(R),
(@) + |fllieh(z) > min_(r(@) + || floeh(@))
x€0Bp(R)

> min_ug(z) + | fllee min_A(z).
2€0B,(R) 2€0B,(R)
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Since h is Lipschitz continuous, this implies that

min_up(z) — ur(z) < || fllze (h(z) — min_ h(z)) < C2R
©€0B,(R) ©€B,(R)

for any point z € B,(R). The combination of this and (4.16) implies

(4.17) 9r(p) = O(R).
By combining (4.13)—(4.15) and (4.17), we have

E900) g2 ot 08, (R) L,y R < O(R)-o( B o(R™) = o B™)

for almost all R € (0,dp). Hence, Agr(p) < f(p). Therefore, Au(p) <
f(p), and the proof of the corollary is completed. q.e.d.

4.3. Harmonic measure. In this subsection, we basically follow Petru-
nin in [40] to consider harmonic measure.

Lemma 4.7. (Petrunin [40])  Let M be an n-dimensional Alexan-
drov space with Ric > (n—1)k and let Q be a bounded domain in M. If u
is a nonnegative harmonic function on 2, then for any ball B,(R) € €2,
we have

1
(4.18) u(p) > _ /
vol(Sp) - 53~ (R) Jo, ()
Proof. By the definition, v is harmonic if and only if it is a solution
of equation .Z,, = 0. Now the result follows from (4.7) with f = 0. q.e.d.

udvol.

Consider an n-dimensional Alexandrov space M and a ball B,(R) C
M. In order to define a new measure v, g on By(R), according to [13],
we need only to define a positive functional on Lipy(By(R)).

Now fix a nonnegative function ¢ € Lipyg(B,(R)). First we define a
function p : (0, R) — R as follows: for each r € (0, R), define

p(r) := ur(p),
where u, is the (unique) solution of Dirichlet problem .Z, = 0 in By(r)
with boundary value u = ¢ on 0B,(r).

Lemma 4.8. There exists R > 0 such that u(r) is continuous in

(0, R).

Proof. From Lemma 11.2 in [6], we know that there exists R > 0
such that, for all x € B,(R)\{p}, we can find a point z; satisfying

~ 99
Lprxy > Too” and |pxi| = 2|px|.

In particular, this implies, for each r € (0, R), that B,(r) satisfies an
exterior ball condition in the following sense: there exists C' > 0 and
do > 0 such that for all x € 0B,(r) and 0 < 0 < dp, the set B, (6)\Bp(r)
contains a ball with radius C¢. Indeed, we can choose xo in geodesic
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xx1 with |zze| = §/3 (with § < r/10). The monotonicity of comparison
angles says that Zpzrxy > Zpra, > 297 This concludes |pza| > [pz| +
/6. Therefore, B,,(0/6) C By (0)\Bp(r).

Since ¢ is Lipschitz continuous on By (r), Bjorn in [5] (see Remark

2.15 in [5]) proved that u, is Holder continuous on Bp(r).
For any 0 < r; < ro < R, by using the maximum principle, we have
r1) — u(re) < max |u U = ma x) — Up, (T)].
(1) = p(r2)| < _mace (@) — o (@)] = | o [o(z) — iy ()
By combining with the Holder continuity of ¢ and w,,, we have that
l(r1) — p(re)] — 0 as ro — r1 — 01, Hence p(r) is continuous.  q.e.d.

REMARK 4.9. If p is a regular point, then the constant R given in
Lemma 4.8 can be chosen uniformly in a neighborhood of p.

Indeed, there exists a neighborhood of p, B,(Ry) and a bi-Lipschitz
homeomorphism F' mapping B,(Rp) to an open domain of R™ with bi-
Lipschitz constant < 1/100. Then for each ball By(r) C Bp(Ro/4) with
r < Ro/4 and x € 0B,(r), let 2’ € R™ such that

' F(z)| = [F(q)F(z)] and [2'F(q)| = |F(q)F ()| + |F(x)a']

=2|F(q)F(2)];
we have
99 99
—1 / > / > /
aF @) > o Fla)al| > 2() gl and Ja'F(z)
(101) -l
100

Hence, it is easy to check that B,(r) satisfies an exterior ball condition
as above (in a similar way to that above). Therefore, the constant R in
Lemma 4.8 can be chosen Ry /4 for all ¢ € B,(Ry/4).

Now we can define the functional v, g by
OR sy 1 w(r)dr
fo Sz_ldr
From Lemma 4.7, we have p, > 0, and v, r(¢) = 0. Hence, it provides

a Radon measure on By,(R). Moreover, it is a probability measure and
by (4.18),

Vp,R((p) -

vol

(4.19) YR Z Fn(B(R) C Ty)

Let u be a harmonic function on 2. Then for any ball B,(R) € €, we
have

(4.20) u(p) :/B(R) w(x)dvp R.
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The following strong maximum principle was proved in an abstract
framework of Dirichlet form by Kuwae in [25] and Kuwae—Machiyashira—
Shioya in [19]. In metric spaces supporting a doubling measure and
a Poincaré inequality, it was proved by Kinnunen—Shanmugalingan in
[18]. Here, by (4.20), we give a short proof in Alexandrov spaces.

Corollary 4.10. (Strong Maximum Principle) Let u be a subhar-
monic function on a bounded and connected open domain ). Suppose
there exists a point p € Q for which u(p) = sup,cqu. Then u is constant.

Proof. First, we consider u to be harmonic. By (4.19)—(4.20) and
given that v, r is a probability measure, we have u(x) = u(p) in some
neighborhood B,(R). Hence the set {x € Q@ : wu(x) = u(p)} is open.
On the other hand, the continuity of u implies that the set is closed.
Therefore, it is 2 and u is a constant in 2.

If u is a subharmonic function, the result follows from the definition
of subharmonic and the above harmonic case. q.e.d.

The following lemma appeared in [40] (page 4). In this lemma, Petru-
nin constructed an auxiliary function, which is similar to Perelman’s
concave function.

Lemma 4.11. (Petrunin [40]) For any point p € M, there exists a
neighborhood Bp(r2) and a function hg : Bp(r2) — R satisfying:

(i) ho(p) = 0;

(it) Lh, = 1-vol on Bp(r2);

(iii) there are 0 < ¢ < C' < oo such that

- |pz|* < ho(x) < C - |pz|?.

Proof. A sketched proof was given in [40]. For completeness, we
present a detailed proof as follows.

Without loss of generality, we may assume M has curvature > —1 on
a neighborhood of p. Fix a small real number r > 0 and set

o(t) = a+bt* " +t2 t<r
o t >,
where a = ——2>r? and b = %
Take a minimal set of points {g, })\_; such that [pgs| = r and minj<,<n
Z(€,1*) < w/10 for each direction £ € 3,. Consider

N
ho(z) = ha
a=1

where hy = ¢(|gaz|). Clearly, ho(p) = 0. Bishop—Gromov volume com-
parison of ¥, implies that N < ¢(n), for some constant depending only
on the dimension n.

™.
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Fix any small 0 < 6 < r. For each x € B,(0)\{p}, there is some
qa such that Z(17,15%) < 7/10. When 0 is small, the comparison angle
Z/xqup is small. Then Zgaap > %77. This implies that |V, dist,, | > 1/V2,
when § is sufficiently small.

Fix any a. Since the function —h,, is semi-concave near p, the singular
part of %}, is nonnegative. We only need to consider the absolutely
continuous part Ah,. By Laplacian comparison theorem (see [52] or
[22]) and a direct computation, we have Ahy(z) > —C9§ a.e. in By(9)
and Ahy(xz) > n — C6 at almost all points x with anmp > %77, where
C denotes the various positive constants depending only on n and r.
Indeed, since r — § < |gax| < 7 (the fact Lgazp > %77 implies |goz| < 1),

Ahq(2) = ¢/ (|gaz]) - Adisty, (x) + ¢ (lgaz])[Vdiste, |

= 2|qa11}‘| . <1 — W) . Adistqa(x)
(7
7’ 9
+ 2(1 -1 x|“> |V odisty, |
(07
n —1
> 2|qaz| - <1 . > . <n —i—C\qam])
|Qa$|n |Qa33|
rn

+ 2(1 +(n— 1)W) | Vodisty, |?

)
> —Cp— + 2n - |V,dist,, |*.
r

On the other hand, at the points z where Z(17,15*) < 7/10 and
Ipz| < [pgal/10, we have
r— |pz| < |gaz| <7 — |pz|/2.
<

Hence, by applying ¢'(r) = 0 and 2n < ¢ (¢) < 2n-2" forallr/2 <t < r,
it is easy to check that there exist two positive numbers ¢y, C7 depending
only on n and r such that

cr - prl? < ha(z) = ¢(|gaz]) < C1 - [paf?

if r — |pz| < |gax| < 7 — |px|/2.
Therefore, we have (since for each « € B,(0)\{p}, there is some ¢,
such that Ah,(x) > n — C9)

Ahy=2n—N-Cé on By(0)
and
c1 - [prf? < ha(2) = ¢(|gaz]) < N - Oy - [pzf?.

By N < ¢(n) for some constant ¢(n) depending only on the dimension
n, if § < (C - ¢,)7!, the function hg satisfies all of the conditions in the
lemma. q.e.d.
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REMARK 4.12. If p is a regular point, then the constant rs given in
Lemma 4.11 can be chosen uniformly in a neighborhood of p. Indeed, in
this case, there exists a neighborhood of p which is bi-Lipschitz homeo-
morphic to an open domain of R with a bi-Lipschitz constant close to 1.
The constant r and ¢ in the above proof can be chosen to have a lower
bound depending only on the bi-Lipschitz constant.

Proposition 4.13. (Petrunin [40])  Given any p € Q and A > 0,
there exist constants R, and c(p,\) such that, for any v € Wh2(Q) N
C(Q) satisfing £, < X\-vol on §, we have

(4.21) / udvy g < u(p) + c(p, ) - R?
By(R)

for any ball By(R) € Q with 0 < R < R, where the constant c(p,A) =0
if A=0.

Proof. This proposition was given by Petrunin in [40] (page 5). For
completeness, we give a detailed proof as follows.

Case 1: A = 0.

For each r € (0, R), let u, be the harmonic function on B,(r) with
boundary value u, = uon dBy(r). Then %, _, < 0and (u—u,)|sp, ) =
0. By applying maximum principle, we know that u —u, > 0 on B,(r);
that is, by the definition of u(r), u(r) < u(p). Therefore, by the defini-
tion of v, g, we have

/ udvp r < u(p).
Bp(R)
Case 2: A > 0.

Let hg be the function given in Lemma 4.11; we have .Z,_xp, < 0 on
By(r2), where ry is the constant given in Lemma 4.11. Hence, we can
use the case above for function u — Ahg. This gives us, by Lemma 4.11,

u(p) = ulp) ~ Mho(p) > /

(u—Nho)dvp g > / udvy g —C-\- R?
By(R)

Bp(R)

for all 0 < R < 19, where C' is the constant given in Lemma 4.11. g.e.d.

REMARK 4.14. If p is regular, according to Remark 4.9 and Remark
4.12, the constant R, can be chosen uniformly in a neighborhood of p.

The following lemma is similar to one that appeared in [40] (page
10).

Lemma 4.15. (Petrunin [40])  Let h be the Perelman concave func-
tion given in Lemma 3.3 on a neighborhood U C M. Assume that f is
a semi-concave function defined on U. And suppose that u € WH2(U) N
C(U) satisfies £, < X-vol on U for some constant A € R.
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We assume that point x* € U is a minimal point of function u+ f+h;
then x* has to be reqular. Moreover, f is differentiable at x* (in the sense
of Taylor expansion (2.16)).

Proof. Without loss of generality, we may assume that A > 0. In the
proof, we denote B,«(R) (C U) by Bg. From the minimum property of
¥, we have

(4.22) / (u+ f + h)dvy > u(@®) + f(z*) + h(z®).
Bgr
By Proposition 4.13, we get

(4.23) / udvp g < u(z*) + cR?
Bpr

for some constant ¢ = ¢(p, \) and for all sufficiently small R.
On the other hand, setting h = f + h, we have

_ - - vol
4.24 hdv, r = h(z* —I—/ h—h(x*))dvpr — ————
w2t [ =)+ [ B R~ gpry)
1 / - -
+ == h — h(z™))dvol
AR Jn, ")
= h(z*) + J1 + Ja,
where B¥(R) is the ball in T;f.
vol(BR)

Because h = f + h is a Lipschitz function and T (B R — 1+ o(1),

we have
(4.25)

) <0<R>-/

Br

1d(up7R—$§l(m)) = o<m-(1-%) — o(R).

Since h = f + h is semi-concave, according to equation (2.7), we have

Jo = %/ (h — h(z*))dvol

R

VOI(BR))) ( ni / dx*ﬁ(ﬁ)dﬁ‘FO(R))

(4.26) ~ H"(BKR)) \n+1
nR -
- ot / do-B(€)dE + o(R).

3

x

By combining (4.22)—(4.26), we have

nR
n+1

/ dyh(€)dE + o(R) + cR? > 0.
3

x
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By combining with Proposition 3.1,
[ b= [ depic+ [ denipi <o
. . .
we have
[ det©ds = [ duenieae—o.
X X

Then by using Lemma 3.3 (iii), we conclude that z* is regular.
Next we want to show that f is differentiable at z*.
Since x* is regular, we have

| Vergde= [ (Verod-o

[ @) = (Ve r.0)de = | dresipie=o.
T pI

On the other hand, by the definition of V-« f (see Section 1.3 of [39]),
we have

¥

Hence

x

do= f(§) < (Var[,€) VYV EE Tpe.

According to the combination of the above two equations, we have

do= f(§) = (Var [,€) VYV E§E Tpe.

By combining with the fact that x* is regular, we get that f is differen-
tiable at x*. q.e.d.

We now follow Petrunin in [40] to introduce a perturbation argument.
Let uw € W42(D) N C(D) satisfy %, < A -vol on a bounded domain D.
Suppose that zg is the unique minimum point of v on D and u(xg) <
mingcyp u. Suppose also that zg is regular and g = (g1, g2,.-.,9n) :
D — R™ is a coordinate system around xy such that ¢ satisfies the
following:

(i) g is an almost isometry from D to g(D) C R™ (see [6]). Namely,
there exists a sufficiently small number §y > 0 such that

M—l < o, forall z,ye€ D, x#vy;
|y
(i) all of the coordinate functions gj, 1 < j < n, are concave ([34]).
Then there exists ¢y > 0 such that, for each vector V = (v, v2,...,v") €

R™ with |v7| < ¢ for all 1 < j < n, the function
G(V,z) :=u(x)+V-g(z)
has a minimum point in the interior of D, where - is the Euclidean inner
product of R™ and V' - g(x) = >°1_; v/ g;(z).
Let ‘
U ={VeR": |[vV|<e, 1 <j<n} CR"
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We define p : Z — D by setting p(V') to be one of the minimum points
of G(V,x). Note that the map p might not be uniquely defined.

The following was given by Petrunin in [40] (page 8). For complete-
ness, a detailed proof is given here.

Lemma 4.16. (Petrunin [40]) Let u, wo, {g;}}_; and p be as above.
There exists some € € (0,e0) and § > 0 such that
(4.27) p(V)p(W)| Z 0|V =W  VV.We%"
where

U = {V = (v1,v2,...,0,) ER": 0 </ <e forall 1<j<n}.
In particular, for arbitrary € € (0,€), the image p(%) has nonzero

Hausdorff measure.

Proof. Without loss of generality, we can assume that A > 0.

Since xg is a regular point, according to Remark 4.14, the mean value
inequality in Proposition 4.13 holds uniformly on some neighborhood
of zo. Namely, there exists neighborhood U,, > xo and two constants
Ry, co such that for any w € WH2(D) N C(D) satisfying %, < A - vol,
we have

(4.28) / wdvg r < w(q) + co - R?
Bq(R)

for all ¢ € Uy, and all R € (0, Rp).

Noting that G(V,x) = u(x)+V - g converges to u as V' — 0, and that
xo is the uniquely minimal value point of u(z), we can conclude that
p(V') converges to zp as V' — 0. Hence, there exists a positive number
€ > 0 such that p(V) € Uy, provided V = (v},... v") satisfies |[v7| < ¢
for all 1 < j < n. From now on, we fix such € and let

U :={V = (v1,v2,...,0,) ER": 0< v/ <e forall 1<j<nk

Let V,W € 2. Denote by p := p(V) and p := p(W). That means

G(V.p) <G(V.x) and G(W,p) < G(W.x)

for any x € D. Hence, we have

(4.29) W =V)-g(p) =W =V)-g(x) = GW,p) —G(V, p)
- G(W,z)+ G(V,z)
<G(V,z) = G(V,p)
<G(V,z) = G(V,p)

Notice that v/ > 0 and g; are concave for 1 < j < n. We know that
G(V,z) = u(z) + V - g(z) also satisfies ZLv,) < A - vol. By the mean
value inequality (4.28), we have

(4.30) / (G(V,2) = G(V,p))dvp g < co - R?
By(R)
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for any 0 < R < Ry. We denote ¢4 := max{¢,0} for a function ¢. It
is clear that (¢ + a); < ¢4 + |a| for any a € R. By combining this and
the assumption that g is an almost isometry, we have

[ (V=) gl0) = W =) g(0)
By(R)

< /B i (V=) 000) = OV =) g(a) v
+ (W =V)-g(p) = (W =V)-g(p)|

< /B o OV V) 5) = OV = V) ) v
+ll9(o) — 9@ - IW = V|

< /B o OV V) 5) = (W V) ) v

+clppl- W=V,

(4.31)

where constant ¢; depends only on J.
Consider the set

(X =g(p)- (W =V)

R R
K= {XeR"| T <X -g(n)l <3,

1
<=5 IX =gl - [V = W]},

In fact, K is a trunked cone in R™ with vertex g(p), central direction
~W +V +g(p), cone angle %, and radius from % to %.

Since K C By(,)(1?/2) and g is an almost isometry with ¢ sufficiently
small, it is obvious that g~1(K) C B,(R). Hence, we have

[ (V=) gl0) — = V) g(0)
Bp(R)

- Ww-Vv). —g(x)) dv
(4.32) >/91(K) (( ) (9(p) — 9(x)) ,dvp.r

1
>5IW VI [ lalo) = o@)dvn
g~ (K)

R _
> S IW =V vpr(g™ (K)).
By the estimate (4.18) and that g is a dp-almost isometry, we have

vol(g~1
(4.33) vor(g~ (K)) > Hn(gog(R)(Ié)gF,if)

Z C

for some constant ¢y depending only on §y and the dimension n, the
lower bound k of curvature.
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By combining (4.29)—(4.33), we obtain

ca- R .
W= VI < eilop] - [W = VI + coR?
for any 0 < R < Rp. We set
ne - cy
4.34 N = 1.
(4.34) ke
Since |V — W|| < ne, we get
,_ - |[V-W]|
=————< 10.
i 10co - N Ro/10
Then we have
. coR! o V=W /1 1
oA V-1 > 22y )R = (oly
cr-lopl- IV =1 > 25V =W eoR? = 2T (Lo
Now the desired estimate (4.27) follows from the choice of
' T 40000'01']\[.
Therefore, the proof of this lemma is completed. g.e.d.

5. Hamilton—Jacobi semigroup and Bochner-type formula

5.1. Hamilton—Jacobi semigroup. Let M be an n-dimensional Alexan-
drov space and €2 be a bounded domain of M. Given a continuous and
bounded function u on 2, the Hamilton—Jacobi semigroup is defined by

. |lzy|?
Quu(x) = inf {um + -} >0

and Qou(x) := u(x). Clearly, Qsu is semi-concave for any ¢ > 0, since
u(y) + | - y|?/(2t) is semi-concave, for each y € Q. In particular, Qsu is
locally Lipschitz for any ¢ > 0.

If |zy| > \/4t||ul| Lo, then
x
u(y) + == > uly) + 2lluf e > fluf L.
On the other hand, Qiu(z) < u(x) < ||ul|p~. We conclude that
. jzyl?
Qru(z) = inf u(y) + )
() yEBz(C)ﬂQ{ W) 2t }

where C' = \/4t||u||ze. Therefore, for any ' € €, there exists ¢ =
t(Y, ||u|| ) such that

(5.1) Qiu(x) = min {u(y) + |$y|2}

yeN 2t

forallz € ¥ and 0 <t < t.
For convenience, we always set u; := Qu in this section.
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The following was shown in [30] in the framework of length spaces.

Lemma 5.1. (Lott—Villani [30])
(i) For each x € ', we have inf u < w(z) < u(x).
(i7) limy_yo+ up = u in C(Y).
(i13) For any t,s > 0 and any x € O, we have
(

5.2) 0 < w(x) — upps(x) < g - Lip*uy,
where Lipuy is the Lipschitz constant of uy on Q' (see [8] for this
notation).
(iv) For any t > 0 and almost all x € Q', we have
59 (@) () V)P
’ s—0t t 2 )

The following lemma is similar to Lemma 3.5 in [3].

Lemma 5.2. Let t > 0. Assume u; is differentiable at x € . Then
there exists a unique point y € § such that

2
(5.4) zﬂ@zmw+h§.
Furthermore, the direction 1% is determined uniquely and
(5.5) [yl 1= —t - Vuy(@).

Proof. Now fix a regular point . We arbitrarily choose y such that
(5.4) holds. Taking any geodesic y(s) : [0,€) — M with v(0) = z, by
the definition of u; and (5.4), we have

s)?  |zyl?
(5.6 w3 (5)) — () < WL IO
If © = y, we have Vuy(x) = 0. Hence equation (5.5) holds.

If x # y, by using the differentiability of u; at x and the first variant

formula, we have

(5.7) u((s)) = w(x) + dyui(v(0)) - 5+ o(s)
and

S 2 X 2 X
(5.8) |y72(t)| ] ;l < B tyl (A (0)) - 5 + ofs)

for any direction 1% from z to y. By combining (5.6)—(5.8), we have

%mmm»<—%Q«%mmw

for all geodesic v with 7(0) = z. For each £ € 3., we take a sequence of
geodesics y(t) starting from z such that 7/(0) converges to . Then we
have
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for all £ € 3.

Since u; is differentiable at x, we know that the direction —¢ exists
and d,u(—&) = —d,u(§). By replacing £ by —¢ in the above inequality,
we obtain

Vu(z) = _|33t_y|' 1Y

The left-hand side does not depend on the choices of point y and direc-
tion of 1%. This gives the desired assertion. q.e.d.

For each ¢ > 0, we define a map F; : Q' — Q by Fi(z) to be one of
points such that

|2 Fy ()2
+ TR
According to Lemma 5.2 and the Rademacher theorem ([8, 3]), we have,
for almost all z € €/,

(5.11) [wFy ()| =t - V()]

By Lemma 5.2 again, F; is continuous at x, where u; is differentiable
(since the point y satisfying (5.4) is unique). Then F; is measurable.

In [40], Petrunin sketched a proof of his key lemma, which states
that, on an Alexandrov space with nonnegative curvature, u; is super-
harmonic on €’ for each ¢t > 0, provided u is a supersolution of .%, = 0
on 2. The following proposition is an extension.

(5.10) wy(z) = u(Fy(z))

Proposition 5.3. Let M be an n-dimensional Alezandrov space with
Ric > —K and let Q be a bounded domain of M. Assume that u €
WH2(Q) N C(Q), f € LX(Q) is upper semi-continuous for almost all
x € and

L, < f-vol
in the sense of measure. Then, for any Q' € Q, there ewists some ty > 0
such that for all 0 <t < tg, we have
1)

- Kt
(512) a2 'gut < foFt + n(af + ?(CL2 +a—+ 1)’V’U,t’2] - vol

on ' for all a > 0.

Proof. We divide the proof into the following four steps.
Step 1. Setting up a contradiction argument.

Since, for almost all € Q, f is upper semi-continuous and |z Fi(z)| =
t|Vug ()], it is sufficient to prove that there exists some ¢y > 0 such that
for all 0 < t < tg, we have

(5.13)
-1)? K
a’- %, < sup f(z)—i—w—l——(aQ—ka—i-l)-\xﬂ(az)]Q—i-H -vol
2€Bp, (x)(0) t 3t

on QY for all @ > 0 and all § > 0.
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For each t > 0, a > 0, and € > 0, we set

(5.14)
2
a2-wt,a79(x) = sup f(z)+M+5(a2+a+l)-|:17Ft(113)|2+9.
2€Bp, (2 (0) t 3t

For each t > 0, a > 0, and 6 > 0, since u; is semi-concave, |Vu| €
L>(€Y) and hence we have wy,9 € L®(Q). Noting that wu; is semi-
concave again, it is sufficient to prove that u; satisfies the corresponding
comparison property in Corollary 4.6 for all sufficiently small ¢ > 0.

Let us argue by contradiction. Suppose that there exists a sequence
of t; — 0% as j — oo, a sequence a; > 0, and a sequence §; > 0
satisfying the following: for each t;, a;, and 6;, we can find p; and R; > 0
with a;R; + Rj — 0 and B, (R;) € @/, such that the corresponding
comparison property in Corollary 4.6 is false. That is, if the function v,
is the solution of equation

Ly, = —Wi; q;,6; " VOl

in By, (R;j) with boundary value v; = —ug; on 9B, (R;), then the func-

tion uy; + v; has a minimum point in the interior of B, (R;) and
ety ) S B (s )

We say in this case that u;; +v; has a strict minimum in the interior of

By, (Rj).

Since €' is bounded, we can assume that some subsequence of {p; }]O‘;l
converges to a limit point p... Denote the subsequence by {p; }]"’;1 again.
So we can choose a convex neighborhood U &€ {2 of po, and a Perelman
concave function h on U given in Lemma 3.3. Since u is bounded, by
|z Fy(2)]? < 4t||ul| Lo (q), we have |zFy, (z)] — 0 as j — oo uniformly on
Q. Now we fix some j* so large that

Bpj* (CL]'*R]'* + Rj*) U Bth* (p;+) (CL]'*R]'* + Rj*) cU
and Fy . (z) € U for all x € B, (aj«Rj« + Rj+).

Step 2. Perturbing the functions to achieve the minimums at smooth
points.

From now on, we omit the index j* to simplify the notations.

Let 1 be a minimum of u; + v in the interior of B,(R). Because h
is 2-Lipschitz on U, for any sufficiently small positive number ¢g, the
function

u + v+ E(]h
also achieves a strict minimum at some point Z in the interior of B, (R).
Noting that u; is semi-concave and wy 4 ¢ is bounded and %, < —wy g0
vol, according to Lemma 4.15, we know Z is regular and that wu; is
differentiable at . Now we fix such a sufficiently small ¢g.
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On the other hand, according to the condition Ric > —K and Lapla-
cian comparison (see [52] or [22]), we have £ ;2 < c(n, K, diam(2).
Thus, by the fact that h is (—1)-concave, we can choose some suffi-
ciently small positive number ¢{, such that

Leohreplaz2 < 0.
Setting vg = v + egh + €|rZ|?, we have that the function
ug + vo = ug + v + eoh + ep|rz|?
achieves a unique minimum at & and
Loy =Ly + D?éoh_,_gé‘mﬂz <% = —W¢ q,0 - VOL.

Consider function
_ |y
H(‘ray)_UO(w)"i_u(y)‘i‘T, (x,y) e O x 0.

Then it achieves a unique strict minimum at (Z, F}(z)) € Bp(R) x U.
Indeed,

H(z,) 2 (o) + wole) 2 (@) + () = (@) + L
= H(z, F;(T)).

Since Z is a regular point and wu; is differentiable at Z, by Lemma 5.2,
the point pair (Z, F;(Z)) is the unique minimum of H in B,(R) x U.

+ ’Uo(f)

Applying the fact that A is 2-Lipschitz on U, we know that, for any
sufficiently small positive number €y,
2
Yy
H () = (@) + o (y) + P

also achieves its strict minimum in the interior of B,(R) x U, where
vi(z) =vo(z) + e1h(z) and wuy(y) = uly) + e1h(y).

Let (z*,y*) denote one minimal point of Hj.
By the condition Ric > —K and Laplacian comparison (see [52] or
[22]), we have

Laar < ¢(n, K,diamQ) and £, -2 < ¢(n, K, diamQ).
Since )
o o, 2y
Hi(z,y") = vo(2) + ua(y”) + —— +erh(z)

is continuous and wy 4 ¢ is bounded, we know that
¢(n, K, diam(2)
2t

on By(R) for some constant A € R and H;(x,y*) has a minimum at
z*. By Lemma 4.15, we know that z* is regular. The point y* is also
regular, by the boundedness of f and the same argument.

< (—Wra,0 ) - vol < \-vol

* |2
vo+u1(y*)+%
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Let vo(z) = v1(x) + e2|zx*|? and uaz(y) = ui(y) + e2|yy*|? with any
positive number 5. Then

Es
2%

Hy(x,y) := va(x) + u2(y) +

achieves a unique minimum point (z*, y*).

Since (x*,y*) is regular in M x M, now we choose one almost or-
thogonal coordinate system near z* by concave functions g1, go, ..., gn
and another almost orthogonal coordinate system near y* by concave
functions gn+1, gn+2,- - -, gon- Using Lemma 4.16, there exist arbitrarily
small positive numbers by, bo,...,bs, such that

n 2n
Hy(x,y) + > bigi(z) + > bigi(y)
i=1

i=n+1

achieves a minimal point (z°,y°) near point (z*, y*), where (z°,y°) sat-
isfies the following properties:

1) a° # y°

2) x° is a disto-regular point and y° is a dist o-regular point (hence,

they are smooth);

3) geodesic x°y° can be extended beyond z° and y°;

4) y° is a Lebesgue point of f;

5) z° is a Lebesgue point of wy 4 ¢;

6) x° is a Lebesgue point of A(|zy°|?) and y° is a Lebesgue point of

A(lzoyl),
where A(|zy°|?) (or A(|z°y|?)) is the density of the absolutely continu-
ous part of g o2 (01 Lzoyp2, TeSD.).

Indeed, let A be the set of points satisfying all of conditions (1)—(6)
above. It is easy to check that H*"((By(R) x U)\A) = 0. By applying
Lemma 4.16, we can find the desired (z°,y°).

Set

n 2n
vg(z) = vo(z) + Z bigi(x) and  ug(y) = ua(y) + Z bigi(y)-
i=1 i=n+1
Then
_ gl
Hj(z,y) := v3(x) + us(y) + ot

has a minimal value at (z°,y°).

Step 3. Ricci curvature and second variation of arc-length.

Let v : [0,5] — U be a geodesic with z°,y° € v\{~(0),v(5)}. Put
x° = ~(ty) and y° = y(t,) with 0 < t, < t, < 5. Assume that some
neighborhood of v has curvature > kg, for some kg € R. For each t €
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(LO, 3), \t}\l;e (tiangent cone T,y can be split isometrically into T = R x
~(t)- We denote

Ay =By N Ly ={€ € Ty | (69') =0}

Fix an arbitrarily small positive number e3. According to the defi-
nition of M having Ricci curvature > —K along geodesic v (see Def-
inition 2.6), for each ty € [t;,t,], there exists an open neighborhood
I, 3 to and a family of function {g, ) }ter,, such that {g, }heer,, satis-
fies Condition (RC) and

615) -1 [ @k -K-a ek,
A

It is shown in [52] that

(5.16) ‘gﬁ/(t)‘ <C, Vt e [to

for some constant C' depends only on the distance |x°v(0)|, |y°v(5)|, |1z
and the lower bound kg of curvature on some neighborhood of . For
completeness, we recall its proof as follows. Since the family { 9y = ko}
satisfies Condition (RC) (see Remark 2.7), we can assume that g, >
ko. Otherwise, we replace g, ;) by g,(:) V ko- On the other hand, for any
1,92 € V|, with [q1g2| = [It,|/2, letting isometry T : X4 — ¥g, and
sequence 0; be in the definition of Condition (RC) (see Definition 2.5),
by applying equation (2.17) with I; =ls = 1 and (£,7') = 0, we have

| expy, (5;€) expg, (5;T€)| < |q1g2| — gq, (&) - larqe] - 52 /2 + o(67).

By the semi-concavity of distance functions dist. (o) and dist

17(0) exp,, (3;6)] < [7(0) q1] + Cry jr(0)ae| - 65

~(5), We get

and
7(5) expg, (6;T€)] < [1(5) gal + Cry (e - 9
Combining with triangle inequality
| expg, (8;8) expg, (§;T€)| = [7(0) ¥(5)] = [7(0) expy, (6;€)] — |7(5)
expg, (6,7,

we can obtain
9 (§) < ——
‘h( )\ ’q1q2’

All of such neighborhood Iy, forms an open covering of [t,t,]. Then
there exists a sub-covering Iy, I, ..., Is. Now we divide [tz,t,] into N-
equal parts by

4
(Cho, J(0)22FCho |1 (5)ye]) < m'(Ckov|v<o>x°|+Cko,w<§>y°|)-

o
o= ,X1y-eeyLmy-e-y LN —ITN.

We can assume that any pair of adjacent x,,, xmy1 is lying into some
same I, o € {1,2,...,5}.
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By Condition (RC), we can find a sequence {0;} and an isometry
Ty : ¥4y — Xy, such that equation (2.17) holds. Next, we can find a
further subsequence {01,;} C {d;} and an isometry T} : 3, — X, such
that equation (2.17) holds. After finite steps of these procedures, we get
a subsequence {dny_1j} C --- C {d1;} C {d;} and a family of isometries
Tt Xy, — 2 such that, for each m =0,1,... , N — 1,

Tm41

|expy,, (ON—-1,5l1m&m), XDy, (ON-1,jl2,mTmém)]
<|xm$m+1| + (l2,m - ll,m) <£m7’7,> : 5N—1,j

+ <(ll,m —lom)® _ Yz () - [EmTm]
2|z 1] 6

B+ lm lom + Bm)
(1= e )?) B,y
+ 0(512\/—1,3')

for any 1 m,l2,m = 0 and any &, € X,,,.
Denote the isometry 1" : Ygo — Xyo by

T:TN_lo"'OTloT().

It can be extended naturally to an isometry 7" : Tio — Tipo.

We fix a > 0 and

am:%'(l—a)—l—a, m=0,1,...,N -1

We have a,, > 0, and ag = a,ay = 1.
To simplify notations, we put {d;} = {dn—_1,;} and denote

W ={veTly |aveWe and TveWp}

Claim 1: We have
(5.17)
[ (lexpptan) ey (@)l — o )arr ()
o (85)NW

(K + e3) - [a%y°?
3n

Wn—1 24n 2
<oyl -<(1—a) +

+o(6772).

'(a2+a—|—1)>
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By applying Condition (RC'), we have
| €XPg,, (5jam : bgm)v €XPgryni1 (5jam+1 : b£m+1)|

J4
gﬁ + (am—i-l - am) : b<f,’7/> : 5]'

+b?-

<N’ (am — am+1)2 _ g:cm(grjﬁ) L
20 6N

(02 + G - gt + 02, 4))
(1= ()-8
+ 0(5]2-)
for any b € [0, 1] and any £ € ¥,,,, where ¢ = |zozy| = |2°y°| and
ém =T o0Ty,_q10---0THe.
Hence, by combining with triangle inequality, we have

| C€XPyg (5]'(10 ’ bf), CXPg (5]‘&]\/ : ng)|

N-1
< lexp,,, (6am - bém), expy,  (§am11 - b))
m=0
<l+ (an —ag) (§,7/)b- 55
+ b2 :Z:: (N : (am2—€ amy1)? gxmééjé) L
(ap, + am - a1 + a?;ﬁl))
(1)) %
+ 0(5]2)

for any b € [0, 1]. That is, by setting v = b¢,

| exp,o(3;av), expyo(3;T0)|* — [2°y°[?

<20-(1—a){v,y)-6;+(1— a)? <v,7/>2 . 5]2-

N-1

z (gj_) {2
+ 3 (N - (am — an )2 - Jomiom) 2
(5.18) m=0< ’ 3N

. (afn + G Qg1 + afnﬂ))
. <\v\2 — <v,fy’>2) .(5?
+0(5]2)

for any vector v € By(1) C Ty,.
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Let .%;(v) be the function defined on B, (1) C T, by
Fj(v) = |expyo(djav), expyo(éij)|2 — |z°y°|?
—20-(1—a)(v,y)-6—(1— a)? <v,7/>2 . 5]2-

N-1 L 2
=2 (N~ i) - S

. (a?n + Qm Qg1 + az,wl))

. (|v|2 — <v,7/>2) 5]2

For any v € B,(1), we rewrite (5.18) as

lim sup .%;(v) /62 < 0.

; J
]—)OO
Next, we will prove that .%;(v)/ 6]2 has a uniformly upper bound on

B,(1). Take the midpoint z of z° and y°. By the semi-concavity of
distance function dist,, we have

2 expo (8 - av)| < |22 — a (v,79") 65 4 Chy zoyo| -5]2-
and
|z expyo(éj -To)| < |2y°| + <Tv,7/> i + Chy,|zoye| 5?
By applying triangle inequality, we get
| exp o (85 av) expyo(8;-Tw)| < [2°Y°|+ (1 —a) (v,79") §;42C, |poye| 5]2
Hence

| exp,o(0) - av) expyo(d; STw) |2 — |x°y°)?
<20-(1—a){v,y)d6; + (4C? + (1 —a)?) - 5]2-.

By combining with the boundedness of g,  (i.e., equation (5.16)), we
conclude that 9}(1})/5]2- <C.
Now, by applying Fatou’s Lemma, we have

T, T,
lim sup/ 7 (U)dH"(fu) < / lim sup 7 (U)dH"(fu) < 0.
o(1)

; 2 ; 2
j—o0 5]' o(1) j—oo j
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That is,
(5.19)

[, (exse(ja0), expyatorTo) = faoy )t 0

<20-(1— a)/B " (v,7)ydH"(v) - 6; + (1 — a)?

/ <v,7/>2dH"(v) -5]2-
Bo(1)

N-—1
+ (N m=amaf [ (P = (o) )aH" )-8
> o ) ;
62 N-—1
YN (agn + G Qg1 + a?n-i—l)
3N —
S gty (1 = (0 )t ) -
B,(1)
+0(6j2»).

Since x is regular, we have

/ (v,)dH™(v) = 0,
B,(1)

I\ 2 n 1/ 2 n Wn—1
v, dH"(v) = — vI*dH™(v) = —2—=
/Bo<1>< VY =5 [ ) =

and

- 1)wn—l
v2—v,’2 dH™(v) = / v2dH"v:(ni,
/Bo(l) <| =) ) ) Bo(1)| | ®) n(n +2)
where w;, 1 = Vol(S"~1).

By equation (5.15), and denoting &, = (£5,0) C X, , the spherical
suspension over Az , we have

R CR (SN R D LA O

n—1

— /2 (1-— cos? 0)9z,, (5#1)‘1Hn_1(5)

Tm

- / / sin® 0gy,, (&) - sin™ 2 0dH"2(&5)do
0 Ay

:/ sin” 9d9/ gxm(ﬁfﬁ)dHn_Z(grjﬁ)
0 Az,
> / sin™ 0df - ﬂwn—z _ Kt

0 n—1

Wnp—1-
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Hence, we have

[, gt (108 = (07 )t

/ Gl (e ) R i L
=i ), (&) (el () ) o

n-+4 2
}{-‘F €3
n(n + 2) -t
Putting these into (5.19), and combining with a,4+1 — @y = 1;N“, we
have
/ (] eXPo(djav), expyo (6,Tv)[* — \x°y0\2>dH”(v)
Bo(1)
Wn—1 2
<(1—a) 22— .42
(1-a) nin+2) 7
(n — Dwp—1 82
n(n + 2) J
N-1
(K + e3)
2, 2 2
‘mEZ:O(N'(am—CLmH) m ( m+am'am+1+am+1)>
+ 0(5?)
Wn—1 2
—=(1—q)2— .52
(1-a) nn+2)
(n — Dwp_1 Nl(a—l (K + e3) ai’nﬂ—ai’n)
n(n+ 2) = 3N(n—1) Amt1 — O,
+ 0(5]2-)
Wil o (o o P(E+e) 2
=t o3 <(1 a)” + ™ (a +a—|—1)>—|—0(5j).
By setting n = vd;, we have

(5.20)
| (1expuoten). expy(ml? oy ) at )
B, ()

2
Wn-1  coin < o, F(K+e) o n+2
< _Zn-l | s2tn _ . ! .

Stry O \mat e g (a tat1)) +o(d+)
Since x° and y° are smooth, by (2.4) in Lemma 2.1, we have

H™(Bo(5;)\#) = o(67*).
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On the other hand, by triangle inequality, we have

|| expyo(an), expyo(Tn)|* — [2°y° ]
< (| expgo(an), expyo(Tn)| + [x°y°|) - (aln| + [Tn])
Cs;

/

N

for all n € B,(d;).
Now the desired estimate (5.17) in Claim 1 follows from the above
two inequalities and equation (5.20).

Step 4. Integral version of maximum principle.

Let us recall that in Step 2, the point pair (z°,y°) is a minimum of
Hj(x,y) on By(R) x U. Then we have

0

N

/ ” <H3 ( exp,o(an), eXPyo (Tn)) — Hs(z°, yo)) dH"™(n)
Bo(r)nw
— [ (valexppetam) — vala”))aH" ()

Bo(r)nw

e o f oy (18 (T0) = us(4) )8 0

+/‘ | expo(an) expyo (Tn)]* — |2y
Bo(r)nw

dH™
57 ()

= 11(7’) + [2(7‘) + [3(7’),

where # ={v e T, | av € #po and Tv e Wy}
By the condition Ric > —K and Laplacian comparison (see [52] or
[22]), we have

Lazo2 < ¢(n, K,diamQ) and & < ¢(n, K, diamQ).

yy°l|?
Claim 2: We have

—€1+ - €3 — Wi qp(2°)
2n(n +2)

(5.22) Ii(r) < a2 wn—lTn+2 + O(Tn+2)

and

—€1+c-ea+ f(y°)

(5.23) I(r) < w12 4 o(r"?)

2n(n + 2)
for all small r > 0, where ¢ = ¢(n, K, diam(2).
Let
|zy°|? |zy°|?
= d =
a(z) =vs(x) + 57 B 57
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Since z° is a smooth point, by Lemma 2.1, we have

| (alewutan) - ae))aH" ()
Bo(r)N# o
=a " (a(z) — a(2?)) (1 + o(r))dvol(z).
B,o(ar)
Note that a(z) — a(x°) > 0 and
Ly < Loy < (— &+ ¢(n, K,diamQ) - ) - vol + %,
< (—wiap — €1+ ¢ €) - vol,
fa_a(mo) =L + gg < ( — Wiqp — €1+ C- €2+ Aﬁ) - vol.

Since z° is a Lebesgue point of —wy 49 + Af, by Corollary 4.5, we get

/ (a(z) — a(z®))dvol(z)
9B.o (s)

—Wyq,0(x°) — €1 + - €2+ AB(2°)
2n

for all 0 < s < ar. By combining with the fact that z° is regular, we
have

/ (a(z) — a(2?))dvol(x)
Bgo(ar)

o — Wi q0(x°) — €1+ ¢ €2 + AB(2°)
b 2n(n + 2)

< 52 H"il(an(s)) +o(r"th)

cwp1 - (ar)" T2 4 o(r™T),

Therefore, we obtain (since a(x) — a(x?) > 0),

(5.24)
/BO(T)OV/ (a( expo (@) — a(xo)) dH"(n)

S /Bo(r)n%o (a( expyo(an)) = a(xo))dH ")

o — Wt q,0(x°) — €1+ C- €2 + AB(2°)
h 2n(n +2)

. a2 . wn_l7,2+n + 0(7‘2+n).

On the other hand, since /3 is Lipschitz (since it is semi-concave) and
equation (2.4)
H" (Bo(r)\#') = o(r™*),

we have

lexpo(an)y®)® |29\ |, m
/Bo(r)ﬁ'fﬂ< - >dH (77)

2t 2t

= [ (Blexpastan)) ~ BG)AH ) + 0r" )
Bo(r)N# o
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Since 2° € Regg, by applying equation (2.3) in Lemma 2.1, the Lipschitz
continuity of 8, and Lemma 2.3, we get

[ (Blexptan) - 5a)dH" ()
Bo(r)NH#yo

= a_"/ (B(x) — B(x°))dvol + o(r"*?)
Bo(ar)
AB(z°)

_ A2 n+2 n+2
OS] a” - w1+ o(r" ).

By combining above two equalities, we have

|expo(an)y®)? |22y
2 _ H"
(5:25) /BO(T)W< 2t 2t )d ()
AB(x°)

— a2 n+2 n+2
Sty & e Ao,

Therefore, the desired estimate (5.22) follows from equations (5.24),
(5.25), and v3 = a — B.

The estimate for (5.23) is similar. Let
_ |2yl > eyl
aly) =usly) + —— and f=—".
By a similar argument to (5.24) and (5.25), we have, for all small r > 0,

e (0t 07 )70

< fo) —atc ot ASG) c w4 o(r2t)
2n(n + 2)

and

<|ex1i>yo(T77)ﬂc‘°|2 . \x°y°\2>dHn(n)
Bo(r)# 2t

2t
o Ag(yo) n+2 n—+2
= m Wn—1T +o(r"T7).

Thus the combination of these two estimates and us(y) = o — ] implies
(5.23). The proof of Claim 2 is finished.

By combining (5.21), Claim 1 (5.17) and Claim 2 (5.22)—(5.23), we
have

|:—€1 ;—nc - €9 (a2 1) — a?- ’wt,a,e(l’o) n f(w°) (a— 1)2

. r_L+2
2n 2n + 2t ] 53
(K + 63)"T0y0‘2 2 n+2 n+2

o7 . >
—i—[ et (1+a+a)] 077 +0(0777) >0
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for all j € N. Thus,

—€1+cCc-€2, 9 a2'wm0($o) f(y°) (a—1)2
1 _ that)
—y, (@ +1) o T T
(K + es)|ay°]”

(14+a+a®) >0.

6nt
Combining with the definition of function wy 49, (5.14), we have

(5.26)

2
— 1
D<@+ =L XD (g 4 ey - Ko )P)
1 :
(s ) ) o
2n ZEBFt(Zo)(G) 2n

In Step 2, we have known that (z, Fi(z)) is the unique minimum
point of H(x,y). Because Hs(z,y) converges to H(x,y) as €,€3 and
bj, 1 < j < 2n,tend to 0T, we know that (z°, y°) converges to (z, F;(Z)),
as €1, € and bj, 1 < j < 2n, tend to 0.

On the other hand, because Z is regular and z° converges to T as

€1,€2 and b;, 1 < j < 2n, tend to 07, function
|z°y|?
u(y) + =,

converges to function
|zy[®
uly) + =,

as €1, and b;, 1 < j < 2n, tend to 07. Fy(z°) is a minimum of
u(y) + |x°y|*/(2t). uy is differentiable at Z (see Step 2). So Fy(Z) is the
unique minimum point of u(y) + |zy|?/(2t). Therefore, F}(x°) converges
to Fy(Z) as €1,€2 and b, 1 < j < 2n, tend to 0.

Hence, when we choose €1,€2 and bj, 1 < j < 2n sufficiently small,
we have that |y°F;(x°)| < 0. This implies

Y° € Bp,(zoy(0) and ||2°y°| — [2°Fy(2°)]| < 6.

Now we can choose €1, €5, and €3 so small that

2 —€1 + ce (a2+a+1) 0,,0|2 o 0|2 0

1 K - Kz°F < —

(@ +1)—5 —+ (K + )y’ = K[2°F(2°)]°) < -
and y° € Bp,(z0)(f). This contradicts (5.26). Therefore we have com-
pleted the proof of the proposition. g.e.d.

Lemma 5.4. Let Q) be a bounded open domain in an n-dimensional
Alexandrov space. Assume that a WH2(Q)-function u satisfies £, >
f - vol for some f € L>(Q). Then, for any Q' € Q, we have

Sup u < Cllullpr@) + ClifllL=(@)
e
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where the constant C depends on lower bounds of curvature, Q and €.

Proof. If f =0 and u > 0, this lemma has been shown in Theorem
8.2 of [4] for any metric measure space supporting a doubling property
and a weak Poincaré inequality. According to volume comparison and
Theorem 7.2 of [19], it holds for Alexandrov spaces.

On the other hand, according to Lemma 6.4 of [4] (see also Lemma
3.10 of [17]), we know that u, is also a subsolution of .Z,, = 0, that is,
L, 2 0.

Therefore, if f = 0, we have

sup u < sup ut < Clluy||pq) < Cllullpy o).
e xeY

In fact, the proof in [4] works for general f € L*°(Q). In the following,
we give a simple argument for the general case on Alexandrov spaces.

For each p € 2, we choose a Perelman concave function h defined
on some neighborhood B, (r,), which is given in Lemma 3.3, such that
—1 < h <0. Then we have

Lu Nl = (F+ [ fllLoo@) - vol =0 on By(ry).
Applying the above estimate (in case f = 0), we have
sup u< sup (u—||fllze@h) < Cllu— || fllLec@)hllLr (s,
Byp(rp/2) Bp(rp/2) (Bp(rp))
< Cllullpis, @) + Cllf o) - vOl(Bp(rp))-

Since ¥ is compact, there are finite balls B,,(r;) such that the above
estimate holds on each By, (r;) and that Q' C U;B,,(r;/2). Therefore,
we have

Supu < COllullpiq) + Cll fllLes(q) - vol ().
The proof of the lemma is finished. q.e.d.

In [40, 41], by using his key lemma, Petrunin proved that any har-
monic function on an Alexandrov space with nonnegative curvature is
locally Lipschitz continuous. Very recently, this Lipschitz continuity re-
sult on compact Alexandrov spaces was also obtained by Gigli-Kuwada—
Ohta in [11] via probability method. We can now establish the locally
Lipschitz continuity for solutions of general Poisson equations.

Corollary 5.5. Let M be an n-dimensional Alexandrov space and €2
be a bounded domain of M. Assume that u satisfies £, = f - vol on 2
and f € Lip(Q). Then w is locally Lipschitz continuous.

Proof. Since () is bounded, we may assume that M has Ricci curva-
ture > — K on ) with some K > 0.

By applying Lemma 5.4 to both %, = f -vol and £, = —f - vol,
we can conclude that v € L*(Q) for any Q' € Q. Without loss of
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generality, we may assume
—1<u<0

on Q. Otherwise, we replace u by (u — supg u)/(supq, v — infgr u).
Fix any open subset Q; € ' and let (u;)o<;<7 be its Hamilton—Jacobi
semigroup defined on ;. By Lemma 5.1, we know

on , for all 0 <t < ¢.
By Proposition 5.3, there is ¢y > 0 such that (5.12) holds for all
t € (0,t9) and all a > 0. By putting a = 1 in (5.12), we have

L, < (f o Fy + Kt|Vul?) - vol, VO<t<t

on Ql.
Set

_ —Ktug) — 1
K—K+1 and )= P - ut)

for all 0 < ¢t < tp(< 1). Then we have

0< P < f(e[{, 1< exp(—f(tut) <elf
and, for each t € (0,t),

P, = —R exp(—Ktw) - (Lo, — KtIVuf?) - vol
—Kexp(—Ktuy) - (f o Fy + Kt|Vuy|*> — Kt|Vu|?) - vol
—K exp(—Ktuy) - HfHLoo(Q) -vol

—C -vol

(5.27)

A\VAR\VARR\V}

in the sense of measure on €2;. Here and in the following, C' will denote
various positive constants that do not depend on ¢ (while they might
depend on K, to, ©,1,Q2,Q3, || f| 1~ (@) and the Lipschitz constant of

f, Lipf, on Q).
By applying Caccioppoli inequality (see Proposition 7.1 of [4]), or by
choosing test function @, for some suitable cut-off ¢ on €2y, we have

[V@¢illr2(0,) < CllPtl2(0)) < C

for any open subset 2y € 2.
Noting that —Ku; > 0 and

VO] = K exp(—Ktug)|[Vue| > K|V,
we have

(5.28) Vel 20, < C
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By using inequalities exp(—Ktu;) < ek and [1—e’+v-e| < C-~%/2
for any 0 < v < Kto, we have, for each t € (0,ty) and x € Q,

(5.29)

|@1a(z) — Bi()] < ‘exp(_K(t+s)ut+s) -1 exp (— Ktugis) — 1‘

t+s t
exp (— Ktugys) =1 exp (— Ktug) — 1
+ ( _ ‘
t - B t )
<s- max exp(—t' Kugys) (- Kuggs )t — exp(—t' Kueps) + 1 ‘
t<t/'<t+s (t/)2
+ Kl|ugrs — wg| - max  exp(—Kta)
Ut+sSAKUL

< Cs+ C‘ut—i-s — ut]

forall 0 < s <ty—t.
By applying the Dominated Convergence Theorem, (5.28), (5.29),
and Lemma 5.1(iii)—(iv), we have

+ Pyis(x) —
a—||<I>tHL1(QQ) = limsup/ t+s () t(:E)dvol
ot o

s—0t S

< Cvol(€22) + C'lim sup/ Mdvol
Q2 §

s—0t

= Cvol(Q) + ¢ / |Vug|?dvol < C.
2 Ja,

This implies that

(5.30) 1Pl 1 (0) < [1Purll L1 (02) + CE— 1)

for any 0 < ¢’ <t < tg. Since 0 < &y < KeE and limy g+ @y (x) =
—Ku(x), we have

Jim 020y = [ (~Kujdvol
By combining with (5.30), we have
/Qz — ol = 2 (1@l — Jm {|Pylriey) < C

On the other hand, for each ¢ € (0,%p), since f is Lipschitz and

2 F ()] = t|Vug(2)],



500 H.-C. ZHANG & X.-P. ZHU

for almost all z € 21, we have

Lo, +icu = —K exp(—Ktuy) (L, — I_(t\Vut]2) -vol + K f - vol
= —Kexp(—Ktw) - (L, — Kt|Vu|* — f) - vol
— Kf - (exp(—Ktus) — 1) - vol
> —Kexp(—Ktw) - (f o Fy + Kt|Vw|* — Kt|Vu* — f) - vol
— Kf - (exp(—Ktug) — 1) - vol
> —Kexp(—Ktuy) - (Lipf - |z Fy ()| — t|Vug|?) - vol
— Ct - || fllLoe () - vol
= —Kexp(—Ktu) -t - (Lipf - |Vuy| — |[Vug|?) - vol
— Ct - || fllLoe () - vol
Lip®f
4

_Ct. (
—C't - vol

> + 1/l (@ ) - vol
Z

in the sense of measure on 9. Note that ®; + Ku > —Ku; + Ku > 0
(because of Lemma 5.1(i)). According to Lemma 5.4, we get

o+ K o, + K
€ =€ | P vl 0 < O
Qo2

‘q)t—I—KU
t

max ‘ <O
Q3

for any open subset 23 € Q9. Hence, we have (since ®; > —Kuy)

—Ut + U g]’?_l@t—i_}?u gC

t t

on Qg, for each t € (0,tg).
Therefore, by the definition of u;, we obtain

Es
%

u(z) < u(x) + Ct < u(y) + + Ct

forall z,y € Q3 and t € (0,tp). Now fix z and y in {23 such that |zy| < to.
By choosing ¢t = |zy|, we get

u(z) — u(y) < Clayl.
Hence, by replacing x and y, we have
lu(@) — u(y)| < Clay|, for all [zy| < to.

This implies that u is Lipschitz continuous on {2s.
By the arbitrariness of Q3 €@ Qs € Q1 € Q' € Q, we get that u is
locally Lipschitz continuous on ), and complete the proof. q.e.d.
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5.2. Bochner-type formula. Bochner formula is one of the important
tools in differential geometry. In this subsection, we will extend it to
Alexandrov space with Ricci curvature bounded below.

Lemma 5.6. Let u € Lip(Q) with Lipschitz constant Lipu, and let
uy be its Hamilton—Jacobi semigroup defined on Q' & Q, for 0 <t < t.
Then we have the following properties:

(i) For anyt >0, we have
(5.31) V-ul(Fi()) < V()] < Lipu(Fy())

for almost all x € O, where Fy is defined in (5.10).
In particular, the Lipschitz constant of us, Lipu; < Lipu.
(it)  For almost all x € ', we have

(5.32) lim (%) = ul@)

t—0+ t

= —%]Vu(m)\?

Furthermore, for each sequence tj converging to 0%, we have
]im+ Vuy, (z) = Vu(r)

t;—0
for almost all x € Q.

Proof. (i) Lipschitz function u; is differentiable at almost all points
x € Q. For such a point z, we first prove |V~ u|(F;(z)) < |[Vuy(x)|.
Assume |V~ u|(Fy(z)) > 0. (If not, we are done.) This implies y :=
Fy(x) # z. Indeed, if Fy(z) = x, we have
|22
2t
for all z € Q. Hence (u(z) — u(z))+ < |zz|?/(2t). This concludes
|V~ u|(F(z)) = 0.
Take a sequence of points y; converging to y such that
lim uly) = uly;) = |V u|(y).
v~y Yyl

Let z; be points in geodesic zy such that |zz;| = |yy;|. By

u(z) < u(z) +

|2 5
ut(xj) < U(yj) + M and ut(x) _ u(y) 4 ‘»Ty’ :
2t ot
we have
1
(5:33)  wiley) —wil@) < ulyy) = uly) + 5 (@l — oy

Since u; is differentiable at x,
up(xy) — wp(x) = ezg] - (Vug(@), 157) + of|lza;)).
Triangle inequality implies

lzjy;| < |2yl + lyy;| = oy + |zz;| = |2yl
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Therefore, by combining with (5.33), we have
u(y) —u(y) < —|zag| - (Vue(x),15") + ol|a;|)
< fawj| - [Vug(2)] + of|za;])
= lyyjl - [Vur ()] + o(lyy;])-
Letting y; — y, this implies |V~ u|(y) < [Vu(z)].

Now let us prove |Vu(z)| < Lipu(Fi(x)) at a point x, where u; is
differentiable. Assume |Vu.(z)| > 0. (If not, we are done.) This implies
y := Fy(x) # z. Indeed, if y = x, we have
2|

2t

2
o)+

On the other hand, u; is differentiable at x,
u(z) = ug(2) + (Vue(2),17) - [2z] + o(|z2]).

u(2) < ulz) + , VzeQ.

Hence, we obtain
(Vue(x),17) < [oz]/(2t) + o(1)

for all z near z. Hence |Vu(x)| = 0.
Let the sequence z; € Q' converge to = and

. :E] _
(5.34) xljlglm (Vug(z), 12" ) = |Vuy(z)|.
Take y; to be points in geodesic xy with |yy;| = |zz;|. By triangle
inequality, we have

lzjy;] < |zxi| + |ovy;| = lyy;| + |zy;| = |2yl
Combining with

x5y, 22
) < uly) + 0 and (o) = u(y) + 22
we have
(5.35) up(i) — ue(z) < uly;) —u(y) < |luly;) —u(y)]-

Since u; is differentiable at x,
ur(5) — u(z) = (Vue(w), 12") - |22;] + of|zay]).
Hence, by combining with (5.34), (5.35), and |z;z| = |y;y|, we get

Vug(2)] < lim sup 1282 = 4l

< Lipu(y).
Y=y lyy;

The assertion (i) is proved.

(ii) The equation (5.32) was proved by Lott—Villani in [30] (see also
Theorem 30.30 in [49]).
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Now let us prove the second assertion. The functions u and u;; are
Lipschitz on €. Then they are differentiable at almost all points z € €.
For such a point z, according to (5.5) in Lemma 5.2, we have, for each ¢,

) ‘vutj (‘T)P
2 )

"Tytj
21,

’ 2

ug; (x) = u(ys,) + u(ye;) +1t;

where y; is the (unique) point such that (5.4) holds, and
y .
u(y,) = u(@) + oy, | (Vu(@), 127 ) + olt;)
u(z) —t; (Vu(z), Vug, (x)) + o(t;).
The combination of the above two equations and (5.32) implies that

Y, Fy __ [V’
2 2 '

lim (— (Vu(z), Vuy, (z)) +

t;—0+
This is
: 2 2\ _
Jim (|Vu(x)| — 2(Vu(x), Vuy, (2)) + [Vuy, ()] ) —0,
which implies
lim Vuy,(z) = Vu(z).

tj—)0+

Now the proof of this lemma is completed. g.e.d.

Next we have the following Bochner-type formula.

Theorem 5.7 (Bochner-type formula). Let M be an n-dimensional
Alexandrov space with Ricci curvature bounded from below by —K and Q
be a bounded domain in M. Let f(x,s): Qx[0,400) — R be a Lipschitz
function and satisfy the following:

(a) there exists a zero measure set N C Q such that for all s > 0,
the functions f(-,s) are differentiable at any x € Q\N;

(b) the function f(x,-) is of class C* for all x € Q and the function
%(x,s) is continuous, non-positive on 2 x [0, 400).

Suppose that v € Lip(Q) and

%, = flz,|Vul?) - vol.
Then we have |Vul|* € Wllof(Q) and
2 \V4 2
(5.36) Lgup = 2(@ +(Vu, V£ (z, |Vul?)) — KyvuP) vol
in the sense of measure on ), provided |Vul is lower semi-continuous

at almost all x € 2, namely, there exists a representative of |Vu| which
18 lower semi-continuous at almost all x € €.
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Proof. Recalling the pointwise Lipschitz constant Lipu of u in Section
2.2, we defined a function

g(z) := max{Lipu, |Vu(z)*}, VzeQ.

Noting the fact that Lipu = |Vu| for almost all z € €, we have g = |Vu/?
for almost all x € 2, and hence

Ly = f(z,g9(z)) - vol

in the sense of measure on 2.

The function g is lower semi-continuous at almost all x € Q2. Indeed,
by the definition of g, we have g(x) > |Vu(z)|? at any 2 € Q. On the
other hand, g(z) = |Vu(z)|? at almost all z € Q. Combining with the
fact that |Vu| is lower semi-continuous at almost all x € 2, we can get
the desired lower semi-continuity of g at almost all x € (2.

The combination of the assumption % < 0 and the lower semi-
continuity of g at almost everywhere in €2 implies that f = f (m, g(:z:))
is upper semi-continuous at almost all z € ).

Fix any open subset ' € Q. Let u; be the Hamilton—Jacobi semi-
group of u, defined on ', and let F; be the map defined in (5.10). By
applying Proposition 5.3, there exists some tg > 0 such that for each
t € (0,tp), we have

2
a’- L, < |foFi+ M + %(Cﬂ +a+ 1)]Vut\2] - vol
for all @ > 0. Hence, the absolutely continuous part Au, satisfies
n(a — 1)

Kt
a® - Aw(@) < fo Fy(x) + ————+ (0" + o+ )|V ()]

for all @ > 0 and almost all x € Q. By setting
K
D=~ 5 V()P

and

2
Alz—Aut(:E)—l—?—tD, Agz—Tn—tD, A3:foFt(3:)—|—%—tD,

we can rewrite this equation as
Al-a2+A2-a—|—A3>0

for all @ > 0 and almost all xz € €V'.
By taking a = 1, we have

(5.37) Aug(z) < fo Fy(x) — 3tD.
Because w is Lipschitz, by Lemma 5.6(i), we have

D = K| |Vu,[*/3 < |K| - Lip*u/3, g < Lip™u,
and then [ = f(x,g(:n)) is bounded in €V'.
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The combination of equation (5.37) and the boundedness of D, f
implies that A; > 0 and As < 0, when ¢ is sufficiently small. By choosing
a= —2‘4721, we obtain
(5.38)

(Auy(z) — f o Fy(z)) - (? —tD) < —Aw(z) - f o Fy(z) —3nD + Zt2D2.

Therefore, (by writing f = f(z, g(x)) and foF; = foFi(z) = f(Fi(x),go
Fi(2))),

Aug(z) — f(z,9(2)) - (n—t*D)(foF,— f)/t—f-foF,—3nD+3t?D?/4
t = n—t2D +tfoF,
_foF—-f f+3nD N f2—f?0F, 3t2D?
t A A 4A
_ foF — f(F(z), [Vu(2)P) N f(Fi(@), [Vu(@)]?) = f  f2+3nD
t t A

2= [2(Fi(x), [Vuy(z)?) n P2 (Fi(x), [Vue(z)?) = f2o Fy n 3t D?

A A 4A
f(Fi(@), [Vue(2)]?) - f N f? = P (F(2), [Vu(2)]?) 2 +3nD

t A A

+ (foFt — f(Ft(Z), |Vut(:c)|2)) ) (l B foFl; +f(Ft(I), |Vut(a:)|2))

t A
3t2D?
4A

+

for almost all z € €/, where
A=n—t’D+tfoF,.
From Lemma 5.6(i) and the definition of function g, we have
go Fy(z) > Lipu(Fi(x)) > |[Vus())?, ae., z€Q.
Combining with the assumption % < 0, we have, for almost all z € €/,

foF—f(Fy(x), |Vu(x)]*) = f(Fi(x), goFi(x))—f (Fi(x), [Vue (x)]?) < 0.

On the other hand, by the boundedness of D and f, we have

A=n—£D+tfoFi> "
when t is sufficiently small. By combining with the boundedness of f,
we have

1 foF + f(Fi(x), |Vug () [?) >0
t A -

when ¢ is sufficiently small.




506 H.-C. ZHANG & X.-P. ZHU

When ¢ is sufficiently small, by using A > n/2 and the boundedness
of D again, we have

Auy(z) — f(z,9(x)) < f(Fi(x), |[Vug(2)]?) — f
t h t
N 2= r? (Ft(it), [V (2)]?)
_ f*+3nD

A

+C -t

Here and in the following proof, C' will denote various positive constants
that do not depend on ¢.

Note that %, < Awu; - vol and %, = f - vol. The above inequality
implies that

L < LB V0P - f
2= f2(F(x), |Vu(@)]?)  f2+3nD
+ 7 - +C-t] -vol

in the sense of measure on .
Fix arbitrary 0 < ¢ € Lipo(2'). We have

x up(x)]?) —
(639) T Lu(d) </,¢>- (f(Ft( [ [Tt ) Do

f?2 = PF(@), [ Vu(z)
A

2
) dvol

+ [ ¢
Q/
f?+3nD

N qus‘ T
= Il(t) -+ Ig(t) — Ig(t) + Ctsup|¢|.

dvol 4+ Ctsup |¢|

We want to take the limit in the inequality above. So we have to
estimate the limits of I4(t), I2(t), and I3(t), as t — 0.
Since for almost all x € €,

g = Lipu(z) = [Vu(z)],
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we have
hit) - Q,(bf(Ft(az),Wut(:EiP) —f(@g(x)
-/ S (B |Vut(:n)|2t) — f@|Vu@)P)
(5.40) ) §y¢f0%@0JVUA$H%;—f@ﬁ@ﬁﬁvu@ﬂp)$ml
+_§y¢f0%@ﬁJVu@OFE—JTwJVU@ﬂP)&mI

= J1(t) + Ja(t).

In order to calculate lim; .o+ Ji(t), we need the following:
Claim: For any Q; € ', there exists constant C' > 0 such that

)

Proof of the Claim. For each t € (0,%9), by combining equation (5.37)
and semi-concavity of us, we have

(foiéf + K|Vut|2) - vol

:<fUH@ﬂOE@D—f@y)
t

V(utt_u>‘2dvol <C

for all t € (0,%).

fut—u <
t

(5.41)

+K|Vut|2) - vol

in the sense of measure on €. Noting that % < 0, and that, for almost
all z € O,

go Fy(z) > Lip*u(Fy(2)) > [Vu(2)?,  g(x) = [Vu(@)?,

(see Lemma 5.6(i)) we have, for each t € (0,1),

Fy(x),|V 2) — f(x,|Vul?
o < (LEDITUD) S o)
t
F, Vu|? — [Vul?
\V4 2 \V4 2
< (2Lipf. [V t [Vl |+2Lipf-|Vut|+K|Vut|2) -vol

because |z Fy(z)| =t - [Vu(z)] for a.e. z € V' (see (5.11))

< (o [Furwu
h t
because |Vu.(z)| < Lipu (see Lemma 5.6(i))

+C)-vol
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:@;<v(@%ﬂyv@,+@>+o)wd

<(c (%)
in the sense of measure on V'.

Since us —u < 0, according to Caccioppoli inequality, Theorem 7.1 in
[4] (or by choosing test function —¢(u; —u)/t for some suitable nonneg-
ative cut-off ¢ on '), for any Qy € ', there exists positive constant
C, independent of ¢, such that

(5.42) /Q |

On the other hand, for almost all x € ', according to Eq. (2.6) in
[29], we have

—I—C’) - vol

v(”t - “) ‘2dvol <c/ (“t — ”)2dvol i)

ju(x) —w(a)| _ Lip*u

~X

t 2
Consequently,

/Q (”t - u>2dvol <C.
1

The desired estimate follows from the combination of this and (5.42).
Now the proof of the claim is finished. g.e.d.

Let us continue the proof of Theorem 5.7.

Let Q1 = suppgp € . By combining (5.32), the above Claim, and
the reflexivity of W2() (see Theorem 4.48 of [8]), we can conclude
the following facts:

(i)  u¢ converges (strongly) to u in W12(Qy) as t — 0%

(ii) there exists some sequence t; converging to 0%, such that (u;, —
u)/t; converges weakly to —|Vu[?/2 in WH2(Qy), as t; — 0.

Let us estimate Jp(t). For each t € (0, t),

f(Fu(=), [Vuy(2)]?) — f(Fr(), [Vu(@)?)

h = ¢ - dvol
_ ¢f(Ft(SU), Vi (2)[?) = f(Fe(2), [Vu()]?)
o Vg2 — [Vul?

. <V(ut + ), v(”t - “>> dvol

= ¢ %(Ft(fﬂ), st) - <V(Ut + ), v(”t - “>> dvol

Q/

for some s; between |Vuy(z)|? and |Vu(x)|?.
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Let t; be the sequence coming from fact (ii) above. According to
Lemma 5.6(ii),

lim [Vuy, ()| = [Vu(z)|

tj—)0+
for almost all x € Q'; combining with the continuity of %, we get

im 2L (F, (2),51,) = %(:c,wu(xn?).

tj—0+ 0s
On the other hand, by facts (i), (ii) above and the boundedness of

of

= (Fu(@), )| < Lip/,

we have

—|Vul?
th_}n&+J1 tj) = /qb (z,|Vul?) - <2Vu,V< 5 ) dvol

/ ¢ == (z,|Vul?) - (Vu, V|Vu|*) dvol.

(5.43)

Let us calculate the limit J(¢;), where the sequence comes from fact
(ii) above.

For each t € (0,tp), if x € \N and wu; is differentiable at point z,
by Lemma 5.2, we have

J(Fi(@), [Vu(@)?) = f(, [Vu(@)])
= [2Fy(@)] (V1 [, | Vu(@) ), 15@) + o2 Fy(w) )
=—t- <V1f(:n, |Vu(:r)|2), Vut(:r)> + o(|xFy(x)])

where V1 f(z, s) means the differential of function f(-, s) at point = (see
equation (2.16)). For the sequence ¢;, the combination of this, equation
(5.11), and Lemma 5.6(ii),

lim Vuy, (z) = Vu(z),

t;—0t
implies that
i L (@), [Vu(@)?) = f(z,[Vu()]?)
im

tj—>0+ t]
= —(Vif(z, |Vu(@)]*), Vu(z))
for almost all z € . Note that

t

2k, ()| . .
\Lpf tf < Lipf-Lipu
j
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for almost everywhere in Q. Dominated Convergence Theorem con-
cludes that

i ) — i [ o LDV — F [Vu@P)

tj —0t tj—)0+ QO t]

_ /Q 6 (V1 f(x,|Vu(x)[2), Vu(z)) dvol.

By combining with equations (5.40) and (5.43), we have

(5.44)
tjliné+ Il (tj) § tjliné+ Jl (tj) + tleH&+ J2 (tj)
of

—— [ o (u S [9u?) - V19U 4 911 [Vule)) ) dvol
o s

= —/ ¢ (Vu,V f(z,|Vul?)) dvol.
o

Let us calculate limy; o I2(t;) for the sequence t; — 0" coming from
fact (ii) above.
From Lemma 5.6(ii),
lim |V, (2)? = [Vu(z)]® = g(x)
tj—)0+
at almost all x € Q'. Combining with the Lipschitz continuity of f(z, s)
and A > n/2 for sufficiently small ¢, we have

P @)V, P) - P g@)

=0
t; —0t A

at almost all z € Q'. On the other hand, using that A > n/2 again
(when ¢ is sufficiently small) and that f is bounded, we have

‘f2(th (‘T)7 ’VUtj ’2) - f2(x7g(f1?)
A
for almost all x € Q', j=1,2,...,

)(g(),

for some constant C'. Dominated Convergence Theorem concludes that
(5.45)

lim Io(t;) = lim —f2(F, (), [Vug, ) + f2(z, g(2))

dvol = 0.
tj—)0+ tj —0t QO ./4

Let us calculate lim, 0 I5(t;) for the sequence t; coming from fact
(i) above.
According to Lemma 5.6 (i) and (ii), we get

[Vug,| < Lipu and  lim [Vug,| = [Vul.
tj—>0+
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By combining with the boundedness of D and f, and applying Domi-
nated Convergence Theorem, we conclude that

. f? —nK|Vul|?
lim I3(t;) = —dvol
tj1—>n01 3( ]) Q/ (Zs .A o
2 —nKIV 2
Q/ mn
By the fact that
9(x) = Lipu = [V
for almost everywhere in ., we get
. B fA(a, [Vul?) 2
(5.46) tj11_>n01+ I3(t;) = /Q/ qﬁ(f — K|Vu|?)dvol.

By applying the above Claim again,
U, — U |Vul?
_— H J—
t
as t; — 0. By combining with the definition of futj _u (see the first
paragraph of Section 4.1), we have
1 U, — U
(5.47) lim %, _u(¢)=— lim <v¢,v< s )>
Q/

t;—0t 15 t;—0+ t;

weakly in Wh2(Qy),

:1/ (V,V|Vul?*) dvol.
2 Q/

The combination of equations (5.39) and (5.44)—(5.47) shows that,

for any ¢ € Lipo(Y'),
1/ < (b ‘ u’2>dV01
2 Jor , VIV
V 2 2
) _/Q/ o( (Vu, Vf (@, [Vuf?)) + % Vul?)

The desired result follows from this and the definition of Zjy,2. Now
the proof of Theorem 5.7 is completed. g.e.d.

- K|Vu|2) dvol.

If f(z,s) = f(x), then we can remove the technical condition that
|Vu| is lower semi-continuous at almost everywhere in €. That is,

Corollary 5.8. Let M be an n-dimensional Alexandrov space with
Ricci curvature bounded from below by —K, and let Q be a domain in
M. Assume function f € Lip(Q) and u € WH2(Q) satisfying

%, = f-vol.
Then we have |Vu|? € I/Vllocz(Q) and |Vul is lower semi-continuous

on ). Consequently, we get

Z >2f2 Yu,V K|Vu|?)dvol
|Vul2 Z ?+< u, Vf) — K|Vul”)dvo
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in the sense of measure on €.

Proof. At first, by Corollary 5.5, we conclude that u € Lipj,.(£2).
Fix any Q* € Q. Then u € Lip(?*) and f(z,s) = f(z) satisfies the
conditions (a), (b) on Q* in Theorem 5.7.

Let us recall that in the proof of Theorem 5.7, the technique condition
that |Vul is lower semi-continuous (with % < 0) is only used to ensure
the upper semi-continuity of f = f(a;, g(m)) on 2* so that Proposition
5.3 is applicable. Now, since f(x) is Lipschitz, Proposition 5.3 still works
for equation

£, = f-vol.

Using the same notations as in the above proof (with f(x,s) = f(x))

of Theorem 5.7, we get the corresponding equation

<foFt —f f(Fu(x)) — f(z)
t t

in the sense of measure on any ' € Q* (see equation (5.41) in the proof
of the Claim above). Then we get, by (5.11), |[zFi(x)| = t|Vu(z)| at
almost all x € Q,

Lura < —|—K|Vut|2>-vol - ( +K|Vut|2)-vol

|2 Fi ()|
t

Lupu < <Lipf —|—K|Vut|2> - vol
t

(5.48) = (Lipf - |Vuu| + K[Vuy[2) - vol
< C -vol (because |Vu| < Lipu)

in the sense of measure on . Here and in the following, C' denotes
various positive constants independent of t.

Using the same argument as in the proof of Claim above, we obtain
that the W12-norm of 4t is uniformly bounded on any Q; € Q.
Hence there exists a sequence ¢; — 07 such that

N |VuP

weakly in WhH2(Qy),

tj
as t; — 07. Combining with (5.48), we have |Vu|? € Wllof(Ql) and
.,iﬂ‘vmz > —2C - vol
in the sense of measure on €);.
By setting
w = |Vul? + 2C,
we have w > 2C and
Ly = —2C -vol = —w - vol.

Consider the product space M xR (with direct product metric) and the
function v(z,t) : ' xR — R as

v(x,t) = w(z) e’
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Then v satisfies %, > 0 in ;1 x R. Hence it has a lower semi-continuous
representative (see Theorem 5.1 in [16]). Therefore, w is lower semi-
continuous on ;. So is |Vul.

Because of the arbitrariness of Q1 € ' € Q* € Q, we obtain that
|Vul? € VV;E(Q) and |Vul is lower semi-continuous on .

It is easy to check that f(z,s) = f(z) satisfies the conditions (a),
(b) on € in Theorem 5.7 (since f is Lipschitz and 9f/0s = 0). We can
apply Theorem 5.7 to equation

L, = f-vol
and conclude the last assertion of the corollary. q.e.d.

As a direct application of the Bochner-type formula, we have the
following Lichnerowicz estimate, which was earlier obtained by Lott—
Villani in [29] by a different method. Further applications have been
given in [42].

Corollary 5.9. Let M be an n-dimensional Alexandrov space with
Ricci curvature bounded below by a positive constant n — 1. Then we

have
/ |Vu|2dvol > n/ u?dvol
M M

for all w € WY2(M) with [, udvol = 0.

Proof. Let u be a first eigenfunction and A; be the first eigenvalue.
It is clear that A; = 0 and u(z)eV™! is a harmonic function on M x R.
According to Corollary 5.5, we know that u is locally Lipschitz contin-
uous.

(Generalized) Bonnet—Myers’ theorem implies that M is compact (see
Corollary 2.6 in [45]). By using the Bochner-type formula Corollary 5.8
for equation

fu = —/\1’LL,

and choosing test function ¢ = 1, we get the desired estimate immedi-
ately. q.e.d.

6. Gradient estimates for harmonic functions

Let Q be a bounded domain of an n-dimensional Alexandrov space
with Ricci curvature > —K and K > 0.

In this section, we always assume that u is a positive harmonic func-
tion on €. According to Corollary 5.8, we know that |Vu| is lower semi-
continuous in  and |Vul? € VV;}S(Q)

REMARK 6.1. In the previous version of this paper, by using some
complicated pointwise C'-estimate of the elliptic equation (see, for ex-
ample, [7, 27]), we can actually show that |Vu/| is continuous in almost
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all Q. Nevertheless, in this new version, we avoid using this continuity
result.

Now, let us prove the following estimate.

Lemma 6.2. Let M be an n-dimensional Alexandrov space with Ricci
curvature > —K and K > 0. Suppose that u is a positive harmonic
function in By(2R). Then we have

(61)  1Qlzsmym) < (20K + %) : <v01(Bp(2R))>1/s
for s = 2n + 4, where Q = |V logul?.
Proof. Since u > 0 in Bp(2R), setting v = logu, we have
&L, = —|Vu|* - vol = —Q - vol.

For simplicity, we denote B, (2R) by Bag.

Let () be a nonnegative Lipschitz function with support in Bap.
By choosing test function ?*Q*~2 and using the Bochner-type formula
(5.36) to v (with function f(z,s) = —s, which satisfies the conditions
(a) and (b) in Theorem 5.7), we get

(6.2) — /B (VQ,V(4**Q° %)) dvol

2
> 2 / PP QPdvol — 2 / $EQ2 (Vo, VQ) dvol
n BZR BQR
—2K 25 Q*Ldvol.
Bor

Hence we have
(6.3)

2

= [ PQ%dvol —2K | ¢*Q°dvol
n B2R BQR

<-2s [ 0PIV Vi) dvol
Bar

—(s—2) /B P2 Q53 |V Q[ dvol + 2 /B Y¥#Q¥ 2 (Vu, VQ) dvol

2R
:S'[l—(S—Q)'IQ—i-Ig.
We now estimate I1, I5, and I3. By Cauchy—Schwarz inequality, we have
1
I <= / V*#Q* 3V Q|2 dvol + 2 / Q1?2 |Vep2dvol
2 Baor Bar
and

1
Iy <n Q3 |V Q| dvol + — P2 Q4 dvol.
Baopr " JBor
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By combining with (6.3), we obtain
1
— / P*Q%dvol —2K | 4> Q" dvol
Bayr

n Baor

<(5-(s-24n) D+2s / Q2| Vg Pdvol.
2 Baopr

If we choose s > 2n + 4, then we can drop the first term in RHS.

Set R
= ( /B 5 ¢23Qsdvol) g

Then by K > 0 and Hoélder inequality, we have

s

=< 2K</B2R wQSdVOI)l/S-TS_l —|—2s</B \V¢]2deol>1/s.7-5_1.

2R
Therefore, when we choose v such that ¢» = 1 on Bg, ¥ = 0 outside
Bsg, and |V¢| < 2/R, we get the desired estimate (6.1). q.e.d.

Corollary 6.3. Let uw be a positive harmonic function on an n-
dimensional complete noncompact Alexandrov space with Ricci curva-
ture > —K and K > 0. Then we have

|V10gu| < Cn,K-

Proof. Without loss of generality, we may assume K > 0. From
Lemma 6.2 above, setting s = R? for R large enough, we have

1
H|Vlogu|2HLR2(Bp(R)) < <2nK—|—8n) : (Vol(Bp(2R))) "

According to Bishop—Gromov volume comparison theorem (see [22] or
[45]), we have

vol(B,(2R)) < H"(Bo(2R) C Ml 1)) < Cre®",

where both constants C; and C5 depend only on n and K. Combining
the above two inequalities, we get

2 1/R* Cy/R
||V log ul HLRQ(BP(R)) <Chi-Cy'e 2/R
Letting R — oo, we obtain the desired result. q.e.d.

In order to get a local L™ estimate of |V logu|, let us recall the local
version of Sobolev inequality.
Let D = D(f2) be a doubling constant on €2; i.e., we have

vol(B,(2R)) < 2P - vol(B,(R))

for all balls B,(2R) € 2. According to Bishop-Gromov volume compar-
ison, it is known that if M has nonnegative Ricci curvature, the constant
D can be chosen D = n. For the general case, if M has Ric > —K for
some K > 0, then the constant can be chosen to depend on n and
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VK -diam(Q), where diam(€Q) is the diameter of Q. Here and in the fol-
lowing, without loss of generality, we always assume that the doubling
constant D > 3.

Let Cp = Cp(2) be a (weak) Poincaré constant on €2; i.e., we have

/ o — ¢p.r|*dvol < Cp - R? - / |V|2dvol
Bp(R) Bp(2R)

for all balls B,(2R) € Q and ¢ € W12(Q2), where ¢, r :f/Bp(R) wdvol.
By Bishop—Gromov volume comparison and Cheeger—Colding’s segment
inequality, it is known that if M has nonnegative Ricci curvature, the
constant C'p can be chosen to depend only on n. For the general case,
if M has Ric > —K for some K > 0, then the constant can be chosen
to depend on n and VK - diam(f).

It is well known that the doubling property and a Poincaré inequality
imply a Sobolev inequality in length spaces (see, for example, [44, 47,
14]). Explicitly, there exists a constant Cs = Cg(€2), which depends
only on D and Cp, such that

D-2 9
(6.4) (/ |<,p|%dvol)_ <Cg— T
By(R) h VOI(Bp(R))2/D

- / (IVg|* + R~2 - ?)dvol
By(2R)

for all balls B,(2R) € Q and ¢ € W,().
Now by combining Lemma 6.2 and the standard Nash—Moser iteration
method, we can get the following local estimate.

Theorem 6.4. Let M be an n-dimensional Alexandrov space with
Ric > —K, for some K > 0. Suppose that 2 C M is a bounded open
domain. Then there ezists a constant C = C(n, \/Ediam(Q)) such that

1
logu| < C- (VK + =
peax |V log ul (VK + R)

for every positive harmonic function u on Q and By(2R) € Q.
If K =0, the constant C' = C(n).

Proof. Let v and @ be as in Lemma 6.2. We choose test function
$2Q*~1, where 1 has support in ball Bg := B,(R). By using the
Bochner-type formula (5.36) for function v (with function f(z,s) = —s),
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we have
(6.5) 2 P2Q* Mdvol < 2 [ 4*Q ' (Vu, VQ) dvol
" JBg Br
-2 [ 9 (Vy,VQ) dvol
Br
—(s—1) / V2Q 2V QPdvol + 2K [ 42Q%dvol.
Bgr Bpr

Note that

2 / $2Q*1 (Y, VQ) dvol < = / P2Q°2|VQ|*dvol
Br 2 Br
+3/ V2Q%|V|?dvol
n Bgr
and
-2 [ Q1 (Vy,VQ) dvol < / V2Q 2|V Q| dvol + / Q°|Vip|*dvol.
Br Br Br

By combining with (6.5), we get
(6.6)
n 252 2 E 2 2 s
(3—2——)/ Q77| V Q| dvol < Q°|Vy|“dvol+2K P*Q%dvol.
2 BR BR BR
Taking s > 2n + 4, then, s — 2 —n/2 > s/2. Let 1—2% <p<yp <R
Choose 9 such that ¢(z) = 1 if x € By(p), ¢¥(x) = 0 if = &€ By(p') and
V| <2/(p) — p). Then by (6.4) and (6.6), we have

1/6
1 8s
Qsedvol <o -28K+ —+——) / Q’dvol,
</Bp(p) < ( R? - (p) —p)? > By (o)

where § = D/(D — 2) and

R2

(6.7) S =5 S

Let Iy be an integer such that 6% > 2n 4 4. Taking s; = 0!, p; =
R(1/2 +1/2%) with | > Iy, we have

1

1 2.6 .42
2 ))7

-log (.@7-(29’K+ — +

log Ji11 —log J; < 2 7

where

1/s;
Jl = / Qsldvol = HQ” l .
( By(py) > L (Bp(p1))
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Hence, we have

33(46)!
R2 )

log J» — log Ji, < log <7 - Z 0~ + Z 0= log(20' K +
1=l I=lo

<07 log P2 4 ZH‘I - (1-1og(46) + log(K + ﬁ))

2
1=ly R
On the other hand, by Lemma 6.2, we have
8n0l0 —lo
log J;, < log(2nK + 7 ) + 67" log vol(B,(2R)).
Hence, we obtain
(6.8)
8nplo Ll D
log Jo. < log(2nK + =) + <log vol(B,(2R)) + log )

+1log(460) - Y "1-07" +log(K + 73 > o

1=lp I=lo
From (6.7) and (6.8), we have
871910 D 1 2
< Zplo
log Joc < log(2nK + =) + 20" log (4051% )
T log(40) - 3107 + log(K + %) S ot
l:lo l:lO
8ng'lo D
< log(2nK + %) + 507" log (4Cs(KR? +33)) + C(8,1o).
Taking [y such that 0% < 8n, we get
64n>
log Joo < log(2nK + Rg ) 4+ C(n, VKdiam(Q)).
This gives the desired result. q.e.d.

The gradient estimate shows that any sublinear growth harmonic
function on an Alexandrdov space with nonnegative Ricci curvature
must be a constant. Explicitly, we have the following:

Corollary 6.5. Let M be an n-dimensional complete non-compact
Alexandrov space with nonnegative Ricci curvature. Assume that u is a
harmonic function on M. If

m SUPzeB, (r) |U(ZE) |

r—00 r

=0

for some p € M, then u is a constant.
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Proof. Clearly, for any ¢ € M, we still have

L SWPren, () [u(x)]

r—00 r

=0.

Let @, = sup,ep, () [u(z)|- Then 2, —u is a positive harmonic on By(r),
unless u is identically zero. By Theorem 6.4, we have

3uy

SUPzeB,(r (2'&_7, - u)
Va(g)| < C(n)—=2 <O(m)=".
Letting r — oo, we get |Vu(g)| = 0. This completes the proof.  q.e.d.

As another application of the gradient estimate, we have the following
mean value property, by using Cheeger—Colding—Minicozzi’s argument
in [9]. In the smooth case, it was first proved by Peter Li in [26] via a
parabolic method.

Corollary 6.6. Let M be an n-dimensional complete non-compact
Alexandrov space with nonnegative Ricci curvature. Suppose that u is a
bounded superharmonic function on M. Then

lim udvol = inf u.
T—00

OBp(r)

Proof. Without loss of generality, we can assume that infu = 0.

Fix any € > 0. Then there exists some R(e) such that infp g)u <€
for all R > R(e). For any R > 4R(¢), we consider the harmonic function
hr on B,(R) with boundary value hg = w on dB,(R). By maximum
principle and the gradient estimate of hr, we have

sup hr < C(n)- inf hr <C(n)- e
Bp(R/2) f () Bp(R/2) f )

On the other hand, from the monotonicity of =" - J. OB, (r) hrdvol on
(0, R) (see the proof of Proposition 4.4), we have

/ hrdvol < C(n)/ hrdvol.
OBy(R) 0Bp(R/2)

Then we get
/ udvol = / hrdvol < C(n) - €-vol(0By(R/2)).
8B, (R) 8B, (R)

Therefore, the desired result follows from Bishop—Gromov volume com-
parison and the arbitrariness of e. q.e.d.
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