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YAU’S GRADIENT ESTIMATES

ON ALEXANDROV SPACES

Hui-Chun Zhang & Xi-Ping Zhu

Abstract

In this paper, we establish a Bochner-type formula on Alexan-
drov spaces with Ricci curvature bounded below. Yau’s gradient
estimate for harmonic functions is also obtained on Alexandrov
spaces.

1. Introduction

The study of harmonic functions on Riemannian manifolds has been
one of the basic topics in geometric analysis. Yau in [50] and Cheng–Yau
in [10] proved the following well-known gradient estimate for harmonic
functions on smooth manifolds (see also [48]).

Theorem 1.1. (Yau [50], Cheng–Yau [10]) Let Mn be an n-
dimensional complete noncompact Riemannian manifold with Ricci cur-
vature bounded from below by −K, (K > 0). Then there exists a constant
Cn, depending only on n, such that every positive harmonic function u
on Mn satisfies

|∇ log u| 6 Cn(
√
K +

1

R
)

in any ball Bp(R).

A direct consequence of the gradient estimate is Yau’s Liouville the-
orem, which states that a positive harmonic function on a complete
Riemannian manifold of nonnegative Ricci curvature must be constant.

The main purpose of this paper is to extend the Yau’s estimate to
Alexandrov spaces. Roughly speaking, an Alexandrov space with cur-
vature bounded below is a length space X with the property that any
geodesic triangle in X is “fatter” than the corresponding one in the
associated model space. The seminal paper [6] and the 10th chapter in
the book [2] provide introductions to Alexandrov geometry.

Alexandrov spaces (with curvature bounded below) successfully gen-
eralize the notion of lower bounds of sectional curvature from Riemann-
ian manifolds to metric spaces. In the last few years, several notions for
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the Ricci curvature bounded below on general metric spaces have ap-
peared. Sturm [45] and Lott–Villani [28, 29], independently, introduced
a so-called curvature-dimension condition on metric measure spaces, de-
noted by CD(K,n). The curvature-dimension condition implies a gen-
eralized Brunn–Minkowski inequality (hence also Bishop–Gromov com-
parison and Bonnet–Myer’s theorem) and a Poincaré inequality (see
[45, 28, 29]). Meanwhile, Sturm [45] and Ohta [31] introduced a mea-
sure contraction property, denoted by MCP (K,n), which is a slight
modification of a property introduced earlier by Sturm in [46] and
in a similar form by Kuwae and Shioya in [23, 24]. The condition
MCP (K,n) also implies Bishop–Gromov comparison, Bonnet–Myer’s
theorem, and a Poincaré inequality (see [45, 31]).

In the framework of Alexandrov spaces, Kuwae–Shioya in [22] intro-
duced an infinitesimal version of the Bishop–Gromov comparison con-
dition, denoted by BG(K,n). On an n-dimensional Alexandrov space
with its Hausdorff measure, the condition BG(K,n) is equivalent to
MCP (K,n) (see [22]). Under the condition BG(0, n), Kuwae–Shioya
in [22] proved a topological splitting theorem of Cheeger–Gromoll type.
In [52], the authors introduced a notion of “Ricci curvature has a lower
bound K”, denoted by Ric > K, by averaging the second variation of
arc-length (see [37]). On an n-dimensional Alexandrov space M , the
condition Ric > K implies that M (equipped with its Hausdorff mea-
sure) satisfies CD(K,n) and BG(K,n) (see [38] and Appendix in [52]).
Therefore, Bishop–Gromov comparison and a Poincaré inequality hold
on Alexandrov spaces with Ricci curvature bounded below. Further-
more, under this Ricci curvature condition, the authors in [52] proved
an isometric splitting theorem of Cheeger–Gromoll type and the maxi-
mal diameter theorem of Cheng type. Note that all of these generalized
notions of Ricci curvature bounded below are equivalent to the classical
one on smooth Riemannian manifolds.

Let M be an Alexandrov space. In [33], Ostu–Shioya established
a C1-structure and a corresponding C0-Riemannian structure on the
set of regular points of M . Perelman in [35] extended it to a DC1-
structure and a corresponding BV 0

loc-Riemannian structure. By apply-
ing this DC1-structure, Kuwae–Machigashira–Shioya in [19] introduced
a canonical Dirichlet form on M . Under a DC1 coordinate system and
written the BV 0

loc-Riemannian metric by (gij), a harmonic function u is
a solution of the equation

(1.1)
n∑

i,j=1

∂i
(√
ggij∂ju

)
= 0

in the sense of distribution, where g = det (gij) and (gij) is the in-
verse matrix of (gij). By adapting the standard Nash–Moser iteration
argument, one knows that a harmonic function must be locally Hölder
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continuous. More generally, in a metric space with a doubling measure
and a Poincaré inequality for upper gradient, the same regularity as-
sertion still holds for Cheeger-harmonic functions (see [8, 18] for the
details).

The classical Bernstein trick in PDEs implies that any harmonic
function on smooth Riemannian manifolds is actually locally Lipschitz
continuous. In the language of differential geometry, one can use the
Bochner formula to bound the gradient of a harmonic function on smooth
manifolds. The well-known Bochner formula states that for any C3 func-
tion u on a smooth n-dimensional Riemannian manifold, there holds

(1.2) ∆|∇u|2 = 2|∇2u|2 + 2 〈∇u,∇∆u〉+ 2Ric(∇u,∇u).
But for singular spaces (including Alexandrov spaces), one meets seri-
ous difficulty in studying the Lipschitz continuity of harmonic function.
First, due to the lack of the notion of second-order derivatives, the Bern-
stein trick does not work directly on singular spaces. Next, one notes
that the singular set might be dense in an Alexandrov space. When
one considers the partial differential equation (1.1) on an Alexandrov
space, the coefficients

√
ggij might be not well defined and not contin-

uous on a dense subset. It seems that all PDE’s approaches fail to give
the Lipschitz continuity for the (weak) solutions of (1.1).

The first result for the Lipschitz continuity of harmonic functions on
Alexandrov spaces was announced by Petrunin in [41]. In [40], Petru-
nin developed an argument based on the second variation formula of
arc-length and Hamilton–Jacobi shift, and sketched a proof to the Lip-
schitz continuity of harmonic functions on Alexandrov spaces with non-
negative curvature, which is announced in [41]. In the present paper,
a detailed exposition of Petrunin’s proof is contained in Proposition
5.3 below. Furthermore, we will prove the Lipschitz continuity of solu-
tions of the general Poisson equation; see Corollary 5.5 below. In [21],
Koskela–Rajala–Shanmugalingam proved that the same regularity of
Cheeger-harmonic functions on metric measure spaces, which supports
an Ahlfors regular measure, a Poincaré inequality, and a certain heat
kernel condition. In the same paper, they gave an example to show that,
on a general metric supporting a doubling measure and a Poincaré in-
equality, a harmonic function might fail to be Lipschitz continuous. In
[53], based on the Lipschitz continuity of harmonic functions and a
representation of heat kernel in [19], we proved that every solution of
the heat equation on an Alexandrov space must be Lipschitz contin-
uous. Independently, in [11], by applying the contraction property of
gradient flow of the relative entropy in L2–Wasserstein space, Gigli–
Kuwada–Ohta also obtained the Lipschitz continuity of solutions of the
heat equation on Alexandrov spaces.

Yau’s gradient estimate in Theorem 1.1 above is an improvement of
the classical Bernstein gradient estimate. To extend Yau’s estimates to
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Alexandrov spaces, let us recall its proof in the smooth case. Consider a
positive harmonic function u on an n-dimensional Riemannian manifold.
By applying the Bochner formula (1.2) to log u, one has

∆Q >
2

n
Q2 − 2 〈∇ log u,∇Q〉 − 2KQ,

where Q = |∇ log u|2. Let φ be a cut-off function. By applying maximum
principle to the smooth function φQ, one can get the desired gradient
estimate in Theorem 1.1. In this proof, it is crucial that the positive
quadratic term 2

nQ
2 exists on the RHS of the above inequality.

Now let us consider an n-dimensional Alexandrov space M with
Ric > −K. In [11], Gigli–Kuwada–Ohta proved a weak form of the
Γ2-condition

∆|∇u|2 > 2 〈∇u,∇∆u〉 − 2K|∇u|2, for all u ∈ D(∆) ∩W 1,2(M).

This is a weak version of the Bochner formula. If we use the formula to
log u for a positive harmonic function u, then

∆Q > −2 〈∇ log u,∇Q〉 − 2KQ,

where Q = |∇ log u|2. Unfortunately, this does not suffice to derive the
Yau’s estimate because the positive term 2

nQ
2 vanishes. The first result

in this paper is the following Bochner-type formula, which keeps the
desired positive quadratic term.

Theorem 1.2. Let M be an n-dimensional Alexandrov space with
Ricci curvature bounded from below by −K, and Ω be a bounded domain
in M . Let f(x, s) : Ω× [0,+∞) → R be a Lipschitz function and satisfy
the following:

(a) there exists a zero measure set N ⊂ Ω such that for all s > 0,
the functions f(·, s) are differentiable at any x ∈ Ω\N ;

(b) the function f(x, ·) is of class C1 for all x ∈ Ω and the function
∂f
∂s (x, s) is continuous, non-positive on Ω× [0,+∞).
Suppose that u is Lipschitz on Ω and

−
∫

Ω
〈∇u,∇φ〉 dvol =

∫

Ω
φ · f

(
x, |∇u|2

)
vol

for all Lipschitz functions φ with compact support in Ω.
Then we have |∇u|2 ∈W 1,2

loc (Ω) and

−
∫

Ω

〈
∇ϕ,∇|∇u|2

〉
dvol

> 2

∫

Ω
ϕ ·
(f2(x, |∇u|2)

n
+
〈
∇u,∇f(x, |∇u|2)

〉
−K|∇u|2

)
dvol

for all Lipschitz functions ϕ > 0 with compact support in Ω, provided
|∇u| is lower semi-continuous at almost all x ∈ Ω. (That is, there exists
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a representative of |∇u|, which is lower semi-continuous at almost all
x ∈ Ω.)

Instead of the maximum principle argument in the above proof of
Theorem 1.1, we will adapt a Nash–Moser iteration method to establish
the following Yau’s gradient estimate, the second result of this paper.

Theorem 1.3. Let M be an n-dimensional Alexandrov space with
Ricci curvature bounded from below by −K (K > 0), and let Ω be a
bounded domain in M . Then there exists a constant C = C(
n,

√
Kdiam(Ω)

)
such that every positive harmonic function u on Ω

satisfies

max
x∈Bp(

R
2
)
|∇ log u| 6 C(

√
K +

1

R
)

for any ball Bp(R) ⊂ Ω. If K = 0, the constant C depends only on n.

We also obtain a global version of the above gradient estimate.

Theorem 1.4. Let M be as above and u be a positive harmonic
function on M . Then we have

|∇ log u| 6 Cn,K

for some constant Cn,K depending only on n,K.

The paper is organized as follows. In Section 2, we will provide some
necessary materials for calculus, Sobolev spaces, and Ricci curvature
on Alexandrov spaces. In Section 3, we will investigate a further prop-
erty of Perelman’s concave functions. Poisson equations and mean value
inequality on Alexandrov spaces will be discussed in Section 4. Bochner-
type formula will be established in Section 5. In the last section, we will
prove Yau’s gradient estimates on Alexandrov spaces.

Acknowledgments. We are grateful to Prof. Petrunin for his patient
explanation of his manuscript [40]. We also would like to thank Dr.
Bobo Hua for his careful reading of the first version of this paper. He
showed us a gap in the previous proof of Proposition 5.3. The second
author is partially supported by NSFC 10831008.

2. Preliminaries

2.1. Alexandrov spaces. Let (X, | · ·|) be a metric space. A rectifiable
curve γ connecting two points p, q is called a geodesic if its length is equal
to |pq| and it has unit speed. A metric space X is called a geodesic space
if every pair of points p, q ∈ X can be connected by some geodesic.

Let k ∈ R and l ∈ N. Denote by M
l
k the simply connected, l-

dimensional space form of constant sectional curvature k. Given three
points p, q, r in a geodesic space X, we can take a comparison triangle
△p̄q̄r̄ in the model spaces M

2
k such that |p̄q̄| = |pq|, |q̄r̄| = |qr|, and
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|r̄p̄| = |rp|. If k > 0, we add assumption |pq| + |qr| + |rp| < 2π/
√
k.

Angles ∠̃kpqr := ∠p̄q̄r̄ are called comparison angles.
A geodesic space X is called an Alexandrov space (of locall curvature

bounded below) if it satisfies the following properties:
(i) it is locally compact;
(ii) for any point x ∈ X there exists a neighborhood Ux of x and a

real number κ such that, for any four different points p, a, b, c in Ux, we
have

∠̃κapb+ ∠̃κbpc+ ∠̃κcpa 6 2π.

The Hausdorff dimension of an Alexandrov space is always an integer.
Let M be an n-dimensional Alexandrov space; we denote by vol the n-
dimensional Hausdorff measure of M . Let p ∈ M ; given two geodesics
γ(t) and σ(s) with γ(0) = σ(0) = p, the angle

∠γ′(0)σ′(0) := lim
s,t→0

∠̃κγ(t)pσ(s)

is well defined. We denote by Σ′
p the set of equivalence classes of geodesic

γ(t) with γ(0) = p, where γ(t) is equivalent to σ(s) if ∠γ′(0)σ′(0) = 0.
The completion of metric space (Σ′

p,∠) is called the space of directions
at p, denoted by Σp. The tangent cone at p, Tp, is the Euclidean cone
over Σp. For two tangent vectors u, v ∈ Tp, their “scalar product” is
defined by (see Section 1 in [39])

〈u, v〉 := 1

2
(|u|2 + |v|2 − |uv|2).

For each point x 6= p, the symbol ↑xp denotes the direction at p corre-
sponding to some geodesic px. We refer to the seminar paper [6] or the
textbook [2] for the details.

Let p ∈ M . Given a direction ξ ∈ Σp, there possibly does not exist
geodesic γ(t) starting at p with γ′(0) = ξ. To overcome this difficulty,
it is shown in [36] that for any p ∈ M and any direction ξ ∈ Σp, there
exists a quasi-geodesic γ : [0,+∞) → M with γ = p and γ′(0) = ξ (see
also Section 5 of [39]).

Let M be an n-dimensional Alexandrov space and p ∈M . Denote by
([33])

Wp : =
{
x ∈M\{p}

∣∣ there exists y ∈M such that y 6= x

and |py| = |px|+ |xy|
}
.

According to [33], the set Wp has full measure in X. For each x ∈ Wp,
the direction ↑xp is uniquely determined, since any geodesic in M does
not branch ([6]). Recall that the map logp : Wp → Tp is defined by
logp(x) := |px|· ↑xp (see [39]). We denote this by

Wp := logp(Wp) ⊂ Tp.
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The map logp : Wp → Wp is one-to-one. After Petrunin in [37], the
exponential map expp : Tp → M is defined as follows: expp(o) = p and
for any v ∈ Tp\{o}, expp(v) is a point on some quasi-geodesic of length
|v| starting point p along direction v/|v| ∈ Σp. If the quasi-geodesic is
not unique, we fix some one of them as the definition of expp(v). Then
expp |Wp

is the inverse map of logp, and hence expp |Wp
: Wp → Wp is

one-to-one. If M has curvature > k on Bp(R), then exponential map

expp : Bo(R) ∩ Wp ⊂ T k
p →M

is a non-expending map ([6]), where T k
p is the k-cone over Σp and o is

the vertex of Tp.
A point p in an n-dimensional Alexandrov space M is called regular

if its tangent cone Tp is isometric to Euclidean space R
n with standard

metric. A point p ∈ M is called a singular point if it is not regular.
Denote by SM the set of singular points of M . It is shown (in Section
10 of [6]) that the Hausdorff dimension of SM is 6 n − 1 (see [6, 33]).
Note that the singular set SM is possibly dense in M (see [33]). It is
known that M\SM is convex [37]. Let p be a regular point in M ; for
any ǫ > 0 there is a neighborhood Bp(r) which is bi-Lipschitz onto an
open domain in R

n with bi-Lipschitz constant 1+ ǫ (see Theorem 9.4 of
[6]). Namely, there exists a map F from Bp(r) onto an open domain in
R
n such that

(1 + ǫ)−1
6

‖F (x)− F (y)‖
|xy| 6 1 + ǫ ∀ x, y ∈ Bp(r), x 6= y.

A (generalized) C1-structure on M\SM is established in [33] in the
following sense: there is an open covering {Uα} of an open set containing
M\SM , and a family of homeomorphism φα : Uα → Oα ⊂ R

n such that
if Uα ∩ Uβ 6= ∅, then

φα ◦ φ−1
β : φβ(Uα ∩ Uβ) → φα(Uα ∩ Uβ)

is C1 on φβ
(
(Uα ∩ Uβ)\SM

)
. A corresponding C0-Riemannian metric

g on M\SM is introduced in [33]. In [35], this C1-structure and the
corresponding C0-Riemannian metric has been extended to be a DC1-
structure and the corresponding BV 0

loc-Riemannian metric. Moreover,
we have the following:

(1) The distance function on M\SM induced from g coincides with
the original one of M ([33]).

(2) The Riemannian measure onM\SM coincides with the Haudorff
measure of M ; that is, under a coordinate system (U, φ), on the metric
g = (gij), we have

(2.1) dvol(x) =
√

det(g(φ(x)))dx1 ∧ · · · ∧ dxn

for all x ∈ U\SM (Section 7 in [33]).
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A point p is called a smooth point if it is regular and there exists a
coordinate system (U, φ) around p such that

(2.2) |gij(φ(x)) − δij | = o(|px|),
where (gij) is the corresponding Riemannian metric (see [33]) near p
and (δij) is the identity n×n matrix. The set of smooth points has full
measure [35].

Lemma 2.1. Let p ∈M be a smooth point. We have

(2.3)
∣∣∣
dvol(x)

dHn(v)
− 1
∣∣∣ = o(r), ∀ v ∈ Bo(r) ∩ Wp,

where x = expp(v), and

(2.4) Hn
(
Bo(r) ∩ Wp

)
> Hn

(
Bo(r)

)
· (1− o(r))

where Hn is the n-dimensional Hausdorff measure on Tp.

Proof. Let (U, φ) be a coordinate system such that φ(p) = 0 and
Bp(r) ⊂ U . For each v ∈ Bo(r) ∩ Wp ⊂ Tp,

dvol(x) =
√

det[gij(φ(x))]dx
1 ∧ · · · ∧ dxn,

where x = expp(v). Since p is regular, Tp is isometric to R
n. We obtain

that

dHn(v) = dHn(o) = dx1 ∧ · · · ∧ dxn

for all v ∈ Tp. We get

dvol(x)

dHn(v)
− 1 =

√
det[gij(φ(x))] − 1.

Now the estimate (2.3) follows from this and equation (2.2).
Now we want to show (2.4).
Equation (2.2) implies that (see [35]) for any x, y ∈ Bp(r) ⊂ U ,

∣∣|xy| − ‖φ(x)− φ(y)‖
∣∣ = o(r2).

In particular, the map φ : U → R
n satisfies

φ
(
Bp(r)

)
⊃ Bo

(
r − o(r2)

)
.

On one hand, from (2.2), we have

vol(Bp(r)) =

∫

φ(Bp(r))

√
det(gij)dx

1 ∧ · · · ∧ dxn

> Hn
(
φ(Bp(r))

)
·
(
1− o(r)

)
> Hn

(
Bo(r − o(r2))

)
· (1− o(r))

= Hn(Bo(r)) · (1− o(r)).

(2.5)
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On the other hand, because expp : Bo(R) ∩ Wp ⊂ T k
p → M is a non-

expending map ([6]), where T k
p is the k-cone over Σp and o is the vertex

of Tp, we have

expp : Bo(R) ∩ Wp ⊂ Tp →M

is a Lipschitz map with Lipschitz constant 1 +O(r2). Hence we get

Hn(Bo(r) ∩ Wp) · (1 +O(r2)) > vol(Bp(r)).

Therefore, by combining with equation (2.5), we have

Hn(Bo(r)∩Wp) > Hn
(
Bo(r)

)
·(1−O(r2))·(1−o(r)) = Hn(Bo(r)·(1−o(r)).

This is the desired estimate (2.4). q.e.d.

Remark 2.2. IfM is a C2-Riemannian manifold, then for sufficiently
small r > 0, we have

∣∣∣
dvol(x)

dHn(v)
− 1
∣∣∣ = O(r2), ∀ v ∈ Bo(r) ⊂ Tp and x = expp(v).

Let M be an Alexandrov space without boundary and Ω ⊂M be an
open set. A locally Lipschitz function f : Ω → R is called λ-concave
([39]) if for all geodesics γ(t) in Ω, the function

f ◦ γ(t)− λ · t2/2
is concave. A function f : Ω → R is called semi-concave if for any x ∈ Ω,
there exists a neighborhood of Ux ∋ x and a number λx ∈ R such that
f |Ux is λx-concave. In fact, it was shown that the term “geodesic” in
the definition can be replaced by “quasi-geodesic” ([36, 39]). Given a
semi-concave function f :M → R, its differential dpf and gradient ∇pf
are well-defined for each point p ∈M (see Section 1 in [39] for the basic
properties of semi-concave functions).

From now on, we always consider Alexandrov spaces without boundary.

Given a semi-concave function f : M → R, a point p is called a f -
regular point if p is smooth, dpf is a linear map on Tp (= R

n), and there
exists a quadratic form Hpf on Tp such that

(2.6) f(x) = f(p) + dpf(↑xp) · |xp|+
1

2
Hpf(↑xp , ↑xp) · |px|2 + o(|px|2)

for any direction ↑xp . We denote by Regf the set of all f -regular points
in M . According to [35], Regf has full measure in M .

Lemma 2.3. Let f be a semi-concave function on M and p ∈ M .
Then we have

(2.7) /

∫

Bp(r)

(
f(x)− f(p)

)
dvol(x) =

nr

n+ 1
· /
∫

Σp

dpf(ξ)dξ + o(r),
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where /
∫
B fdvol =

1
vol(B)

∫
B fdvol. Furthermore, if we add the assumption

that p ∈ Regf , then

(2.8) /

∫

Bp(r)

(
f(x)− f(p)

)
dvol(x) =

nr2

2(n+ 2)
· /
∫

Σp

Hpf(ξ, ξ)dξ + o(r2).

Proof. According to Theorem 10.8 in [6], we have

(2.9)
dvol(expp(v))

dHn(v)
= 1 + o(1),

vol(Bp(r))

Hn(Bo(r))
= 1 + o(1).

Similarly as in the proof of equation (2.4), we have

vol(Bo(r) ∩ Wp) > Hn(Bo(r)) · (1− o(1)).

Since f(x)− f(p) = dpf(↑xp) · |px|+ o(|px|), we get
∫

Bp(r)

(
f(x)− f(p)

)
dvol(x)

=

∫

Bo(r)∩Wp

(
dpf(v) + o(|v|)

)
(1 + o(1))dHn(v).

(2.10)

On the other hand, from (2.9), we have
∣∣∣
∫

Bo(r)\Wp

dpf(v)dH
n(v)

∣∣∣ 6 O(r) ·Hn
(
Bo(r)\Wp

)
6 o(rn+1).

By combining this and (2.10), we obtain

/

∫

Bp(r)

(
f(x)− f(p)

)
dvol(x) =

Hn(Bo(r))

vol(Bp(r))
/

∫

Bo(r)

dpf(v)dH
n(v) + o(r)

= /

∫

Bo(r)

dpf(v)dH
n(v)(1 + o(1)) + o(r)

= /

∫

Bo(r)

dpf(v)dH
n(v) + o(r)

=
nr

n+ 1
/

∫

Σp

dpf(ξ)dξ + o(r).

This is equation (2.7).
Now we want to prove (2.8). Assume that p is an f -regular point.

From (2.6) and Lemma 2.1, we have

∫

Bp(r)

(
f(x)− f(p)

)
dvol(x)

=

∫

Bo(r)∩Wp

(
dpf(v) +

1

2
Hpf(v, v) + o(|v|2)

)
· (1 + o(r))dHn(v).

(2.11)



YAU’S GRADIENT ESTIMATES ON ALEXANDROV SPACES 455

Using Lemma 2.1 again, we have
∣∣∣
∫

Bo(r)\Wp

dpf(v)dH
n
∣∣∣ 6 O(r) ·Hn(Bo(r)\Wp) = O(r) · o(r) ·Hn(Bo(r))

= o(rn+2).

Noticing that
∫
Bo(r)

dpf(v)dH
n = 0, we get

(2.12)

∫

Bo(r)∩Wp

dpf(v)dH
n = o(rn+2).

Similarly, we have
∫

Bo(r)∩Wp

Hpf(v, v)dH
n =

∫

Bo(r)
Hpf(v, v)dH

n + o(rn+3).(2.13)

From (2.11)–(2.13) and Lemma 2.1, we have

/

∫

Bp(r)

(
f(x)− f(p)

)
dvol(x) =

Hn(Bo(r))

vol(Bp(r))
/

∫

Bo(r)

Hpf(v, v)dH
n + o(r2)

= /

∫

Bo(r)

Hpf(v, v)dH
n(1 + o(r)) + o(r2)

=
nr2

2(n+ 2)
/

∫

Σp

Hpf(ξ, ξ)dξ + o(r2).

This is the desired (2.8). q.e.d.

Given a continuous function g defined on Bp(δ0), where δ0 is a suffi-
ciently small positive number, we have

∫

∂Bp(r)
gdvol =

d

dr

∫

Bp(r)
gdvol

for almost all r ∈ (0, δ0).

Lemma 2.3′ Let f be a semi-concave function on M and p ∈ M .
Assume δ0 is a sufficiently small positive number. Then we have, for
almost all r ∈ (0, δ0),

(2.14) /

∫

∂Bp(r)

(
f(x)− f(p)

)
dvol(x) = nr · /

∫

Σp

dpf(ξ)dξ + o(r).

Furthermore, if we add the assumption that p ∈ Regf , then we have, for
almost all r ∈ (0, δ0),

(2.15) /

∫

∂Bp(r)

(
f(x)− f(p)

)
dvol(x) =

r2

2
· /
∫

Σp

Hpf(ξ, ξ)dξ + o(r2).
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2.2. Sobolev spaces. Several different notions of Sobolev spaces have
been established; see [8, 19, 43, 20, 24, 51]. (In [8, 20, 43, 24], Sobolev
spaces are defined on metric measure spaces supporting a doubling prop-
erty and a Poincaré inequality. Since Ω is bounded, it satisfies a doubling
property and supports a weakly Poincaré inequality [19].) They coincide
with each other on Alexandrov spaces.

LetM be an n-dimensional Alexandrov space and let Ω be a bounded
open domain in M . Given u ∈ C(Ω), at a point p ∈ Ω, the pointwise
Lipschitz constant ([8]) and subgradient norm ([30]) of u at x are de-
fined by:

Lipu(x) := lim sup
y→x

|f(x)− f(y)|
|xy| and

|∇−u|(x) := lim sup
y→x

(
f(x)− f(y)

)
+

|xy| ,

where a+ = max{a, 0}. Clearly, |∇−u|(x) 6 Lipu(x). It was shown in
[30] for a locally Lipschitz function u on Ω,

|∇−u|(x) = Lipu(x)

for almost all x ∈ Ω (see Remark 2.27 in [30] and its proof).
Let x ∈ Ω be a regular point. We say that a function u is differentiable

at x, if there exists a vector in Tx (= R
n), denoted by ∇u(x), such that

for all geodesic γ(t) : [0, ǫ) → Ω with γ(0) = x we have

(2.16) u(γ(t)) = u(x) + t ·
〈
∇u(x), γ′(0)

〉
+ o(t).

Thanks to the Rademacher theorem, which was proved by Cheeger [8]
in the framework of general metric measure spaces with a doubling
measure and a Poincaré inequality for upper gradients and was proved
by Bertrand [3] in Alexandrov space via a simply argument, a locally
Lipschitz function u is differentiable almost everywhere in M . (See also
[32].) Hence the vector ∇u(x) is well defined almost everywhere in M .

Note that any semi-concave function f is locally Lipschitz. The dif-
ferential of u at any point x, dxu, is well-defined. (See Section 1 in [39].)
The gradient ∇xu is defined as the maximal value point of dxu : Bo(1) ⊂
Tx → R.

Proposition 2.4. Let u be a semi-concave function on an open do-
main Ω ⊂M . Then for any x ∈ Ω\SM , we have

|∇xu| 6 |∇−u|(x).

Moreover, if u is differentiable at x, we have

|∇xu| = |∇−u|(x) = Lipu(x) = |∇u(x)|.



YAU’S GRADIENT ESTIMATES ON ALEXANDROV SPACES 457

Proof. Without loss of generality, we can assume that |∇xu| > 0.
(Otherwise, we are done.) Since x is regular, there exists direction −∇xu.
Take a sequence of point {yj}∞j=1 such that

lim
j→∞

yj = x and lim
j→∞

↑yjx = − ∇xu

|∇xu|
.

By semi-concavity of u, we have

u(yj)− u(x) 6 |xyj| ·
〈
∇xu, ↑yjx

〉
+ λ|xyj|2/2, j = 1, 2, . . .

for some λ ∈ R. Hence

−
〈
∇xu, ↑yjx

〉
6

(
u(x)− u(yj)

)
+

|xyj |
+ λ|xyj |/2, j = 1, 2, . . .

Letting j → ∞, we conclude |∇xu| 6 |∇−u|(x).
Let us prove the second assertion. We need only to show Lipu(x) 6

|∇u(x)| and |∇u(x)| 6 |∇xu|. Since u is differentiable at x, we have

u(y)− u(x) = |xy| · 〈∇u(x), ↑yx〉+ o(|xy|)
for all y near x. Consequently,

|u(y)− u(x)| = |xy| · | 〈∇u(x), ↑yx〉 |+ o(|xy|) 6 |xy| · |∇u(x)| + o(|xy|).
This implies that Lipu(x) 6 |∇u(x)|.

Finally, let us show |∇u(x)| 6 |∇xu|. Indeed, combining the differen-
tiability and semi-concavity of u, we have

|xy| · 〈∇u(x), ↑yx〉+ o(|xy|) = u(y)− u(x) 6 |xy| · 〈∇xu, ↑yx〉+ λ|xy|2/2
for all y near x. Without loss of generality, we can assume that |∇u(x)| >
0. Take y such that direction ↑yx is arbitrarily close to ∇u(x)/|∇u(x)|.
We get

|∇u(x)|2 6 〈∇xu,∇u(x)〉 6 |∇xu| · |∇u(x)|.
This is |∇xu| 6 |∇u(x)|. q.e.d.

According to this proposition, we will not distinguish between two
notations ∇xu and ∇u(x) for any semi-concave function u.

We denote by Liploc(Ω) the set of locally Lipschitz continuous func-
tions on Ω, and by Lip0(Ω) the set of Lipschitz continuous functions on
Ω with compact support in Ω. For any 1 6 p 6 +∞ and u ∈ Liploc(Ω),
its W 1,p(Ω)-norm is defined by

‖u‖W 1,p(Ω) := ‖u‖Lp(Ω) + ‖Lipu‖Lp(Ω).

Sobolev spaces W 1,p(Ω) are defined by the closure of the set

{u ∈ Liploc(Ω)| ‖u‖W 1,2(Ω) < +∞},
under W 1,p(Ω)-norm. Spaces W 1,p

0 (Ω) are defined by the closure of
Lip0(Ω) underW

1,p(Ω)-norm. (This coincides with the definition in [8];
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see Theorem 4.24 in [8].) We say a function u ∈W 1,p
loc (Ω) if u ∈W 1,p(Ω′)

for every open subset Ω′ ⋐ Ω. According to Kuwae–Machigashira–
Shioya [19] (see also Theorem 4.47 in [8]), the “derivative” ∇u is well-
defined for all u ∈ W 1,p(Ω) with 1 < p < ∞. Cheeger in Theorem 4.48
of [8] proved that W 1,p(Ω) is reflexive for any 1 < p <∞.

2.3. Ricci curvature. For an Alexandrov space, several different defi-
nitions of “Ricci curvature having lower bounds by K” have been given
(see Introduction).

Here, let us recall the definition of lower bounds of Ricci curvature
on Alexandrov space in [52].

Let M be an n-dimensional Alexandrov space. According to Section
7 in [6], if p is an interior point of a geodesic γ, then the tangent cone
Tp can be isometrically split into

Tp = Lp × R · γ′, v = (v⊥, t).

We set

Λp = {ξ ∈ Lp : |ξ| = 1}.

Definition 2.5. Let σ(t) : (−ℓ, ℓ) → M be a geodesic and
{gσ(t)(ξ)}−ℓ<t<ℓ be a family of functions on Λσ(t) such that gσ(t) is con-
tinuous on Λσ(t) for each t ∈ (−ℓ, ℓ). We say that the family
{gσ(t)(ξ)}−ℓ<t<ℓ satisfies Condition (RC) on σ if for any two points
q1, q2 ∈ σ and any sequence {θj}∞j=1 with θj → 0 as j → ∞, there exists

an isometry T : Σq1 → Σq2 and a subsequence {δj} of {θj} such that

| expq1(δj l1ξ), expq2(δj l2Tξ)|
6|q1q2|+ (l2 − l1) 〈ξ, γ′〉 · δj

+
( (l1 − l2)

2

2|q1q2|
− gq1(ξ

⊥) · |q1q2|
6

· (l21 + l1 · l2 + l22)
)
·
(
1− 〈ξ, γ′〉2

)
· δ2j

+ o(δ2j )

(2.17)

for any l1, l2 > 0 and any ξ ∈ Σq1 .

If M has curvature bounded below by k0 (for some k0 ∈ R), then
by Theorem 1.1 of [37] (or see Theorem 20.2.1 of [1]), the family of
functions {gσ(t)(ξ) = k0}−ℓ<t<ℓ satisfies Condition (RC) on σ. In par-
ticular, if a family {gσ(t)(ξ)}−ℓ<t<ℓ satisfies Condition (RC), then the
family {gσ(t)(ξ) ∨ k0}−ℓ<t<ℓ satisfies Condition (RC) too.

Definition 2.6. Let γ : [0, a) → M be a geodesic. We say that M
has Ricci curvature bounded below by K along γ, if for any ǫ > 0 and
any 0 < t0 < a, there exists ℓ = ℓ(t0, ǫ) > 0 and a family of continuous
functions {gγ(t)(ξ)}t0−ℓ<t<t0+ℓ on Λγ(t) such that the family satisfies
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Condition (RC) on γ|(t0−ℓ, t0+ℓ) and

(2.18) (n− 1) · /

∫

Λγ(t)

gγ(t)(ξ)dξ > K − ǫ, ∀t ∈ (t0 − ℓ, t0 + ℓ),

where /
∫
Λx
gx(ξ) =

1
vol(Λx)

∫
Λx
gx(ξ)dξ.

We say that M has Ricci curvature bounded below by K, denoted by
Ric(M) > K, if each point x ∈M has a neighborhood Ux such that M
has Ricci curvature bounded below by K along every geodesic γ in Ux.

Remark 2.7. Let M be an n-dimensional Alexandrov space with
curvature > k. Let γ : [0, a) →M be any geodesic. By [37], the family of
functions {gγ(t)(ξ) := k}0<t<a satisfies Condition (RC) on γ. According
to Definition 2.6, we know that M has Ricci curvature bounded from
below by (n − 1)k along γ. Because of the arbitrariness of geodesic γ,
M has Ricci curvature bounded from below by (n− 1)k.

Let M be an n-dimensional Alexandrov space M having Ricci curva-
ture > K. In [38] and the Appendix of [52], it is shown that met-
ric measure space (M,d, vol) satisfies Sturm–Lott–Villani curvature-
dimension condition CD(K,n), and hence measure contraction property
MCP (K,n) (see [45, 31], since Alexandrov spaces are non-branching)
and infinitesimal Bishop-Gromov condition BG(K,n) ([22]; this is equiv-
alent to MCP (K,n) on Alexandrov spaces). Consequently, M satisfies
a corresponding Bishop–Gromov volume comparison theorem [45, 22]
and a corresponding Laplacian comparison in the sense of distribution
[22].

3. Perelman’s concave functions

Let M be an Alexandrov space and x ∈ M . In [34], Perelman con-
structed a strictly concave function on a neighborhood of x. This im-
plies that there exists a convex neighborhood for each point in M . In
this section, we will investigate a further property of Perelman’s concave
functions.

In this section, we always assume thatM has curvature bounded from
below by k (for some k ∈ R).

Let f : Ω ⊂ M → R be a semi-concave function and x ∈ Ω. Recall
that a vector vs ∈ Tx is said to be a supporting vector of f at x (see
[39]) if

dxf(ξ) 6 −〈vs, ξ〉 for all ξ ∈ Σx.

The set of supporting vectors of f at x is a non-empty convex set (see
Lemma 1.3.7 of [39]). For a distance function f = distp, by the first
variant formula (see, for example, [2]), any direction ↑px is a supporting
vector of f at x 6= p.
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Proposition 3.1. Let f : Ω ⊂ M → R be a semi-concave function
and x ∈ Ω. Then we have ∫

Σx

dxf(ξ)dξ 6 0.

Furthermore, if f is a distance function f = distp, x 6= p, and the
“=” holds; then ↑px is uniquely determined and maxξ∈Σx

|ξ, ↑px | = π.

Proof. Let vs be a support vector of f at x; then

dxf(ξ) 6 −〈vs, ξ〉 , ∀ ξ ∈ Σx.

Without loss of generality, we can assume vs 6= 0. (If vs = 0, then
dxf(ξ) 6 0. We are done.) Setting η0 =

vs
|vs| ∈ Σx, we have

dxf(ξ) 6 −〈vs, ξ〉 = −|vs| · cos(|η0, ξ|) ∀ ξ ∈ Σx.

Denote D = maxξ∈Σx
|ξ, η0|. By using the co-area formula, we have

I :=

∫

Σx

dxf(ξ)dξ 6 −|vs| ·
∫

Σx

cos(|η0, ξ|)dξ = −|vs| ·
∫ D

0
cos t ·A(t)dt,

where A(t) = voln−2({ξ ∈ Σx : |ξ, η0| = t}).
If D 6 π/2, then I < 0.
We consider the case D > π/2. Since Σx has curvature > 1, by

Bishop–Gromov comparison, we have

A(π − t) 6 A(t) · voln−2(∂Bo(π − t) ⊂ S
n−1)

voln−2(∂Bo(t) ⊂ Sn−1)
= A(t)

for any t 6 π/2. Hence

I

|vs|
6 −

∫ π/2

0
cos t · A(t)dt−

∫ D

π/2
cos t ·A(t)dt

6 −
∫ π/2

0
cos t · A(π − t)dt−

∫ D

π/2
cos t · A(t)dt

=

∫ π

D
cos t ·A(t)dt 6 0.

Moreover, if I = 0, then D = π.
If f = distp, then vs can be chosen as any direction ↑px. When I = 0,

we have

(3.1) dxf(ξ) = −〈↑px, ξ〉 , ∀ ξ ∈ Σx,

and

max
ξ∈Σx

|ξ, ↑px | = π.

The left-hand side of (3.1) does not depend on the choice of direction
↑px. This implies that ↑px is determined uniquely. q.e.d.
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Lemma 3.2. Given any n ∈ N and any constant C > 0, we can find
δ0 = δ0(C,n) satisfying the following property: for any n-dimensional
Alexandrov spaces Σn with curvature > 1, if there exist 0 < δ < δ0 and
points {pj}Nj=1 ⊂ Σn such that

(3.2) |pipj| > δ (i 6= j), N := #{pj} > C · δ−n

and

(3.3) rad(pj) := max
q∈Σn

|pjq| = π for each 1 6 j 6 N,

then Σn is isometric to S
n.

Proof. We use an induction argument with respect to the dimension
n. When n = 1, we take δ0(C, 1) = C/3. Then each 1-dimensional
Alexandrov space Σ1 satisfying the assumption of the lemma must con-
tain at least three different points p1, p2, and p3 with rad(pi) = π,
i = 1, 2, 3. Hence Σ1 is isometric to S

1.
Now we assume that the lemma holds for dimension n − 1. That is,

for any C̃, there exists δ0(C̃, n − 1) such that any (n − 1)-dimensional
Alexandrov space satisfying the condition of the lemma must be isomet-
ric to S

n−1.
We want to prove the lemma for dimension n. Fix any constant C > 0

and let

(3.4) δ0(C,n) := min
{10

8
· δ0
( C

11π
· (10/8)1−n, n − 1

)
, 1
}
.

Let Σn be an n-dimensional Alexandrov space with curvature > 1.
Suppose that there exists 0 < δ < δ0(C,n) and a set of points {pα}Nα=1 ⊂
Σn such that they satisfy (3.2) and (3.3).

Let q1 ∈ Σn be the point that |p1q1| = π. Then Σn is a suspension
over some (n−1)-dimensional Alexandrov space Λ of curvature > 1 and
with vertex p1 and q1, denoted by Σn = S(Λ). We divide Σn into pieces
A1, A2, . . . , Al, . . . , Al̄ as

Al =
{
x ∈ Σn : (δ/10)·l < |xp1| 6 (δ/10)·(l+1)

}
, 0 6 l 6 l̄ := [

π

δ/10
],

where [a] is the integer such that [a] 6 a < [a] + 1. Then there exists
some piece, say Al0 , such that

(3.5) N1 := #
(
Al0 ∩ {pj}Nj=1

)
>

N

l̄ + 1
>

N

10π/δ + 1

(δ<1)

>
C

11π
· δ1−n.

Notice that

A1 ∪A2 ⊂ Bp1(δ/2) and Al̄ ∪Al̄−1 ⊂ Bq1(δ/2),

then we have l0 6∈ {1, 2, l̄ − 1, l̄}.
We denote the points Al0 ∩ {pα}Nα=1 as (xi, ti)

N1
i=1 ⊂ S(Λ) (= Σn),

where xi ∈ Λ and 0 < ti < π for 1 6 i 6 N1. Let γi be the geodesic
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p1(xi, ti)q1 and p̃i = γi ∩ ∂Bp1

(
(l0 + 1) · δ/10

)
. By triangle inequality,

we have

(3.6) |p̃ip̃j| >
8

10
· δ.

Applying cosine law, we have

cos(|p̃ip̃j|) = cos(|p1p̃i|) · cos(|p1p̃j |) + sin(|p1p̃i|) · sin(|p1p̃j|) · cos(|xixj|)
for each i 6= j. Since |p1p̃i| = |p1p̃j|, we get

(3.7) |xixj | > |p̃ip̃j |.
By the assumption (3.3), there exist points (x̄i, t̄i) ∈ Σn

(
= S(Λ)

)
such

that
|(xi, ti), (x̄i, t̄i)| = π

for each 1 6 i 6 N1. By using the cosine law again, we have

−1 = cos(|(xi, ti)(x̄i, t̄i)|) = cos ti · cos t̄i + sin ti · sin t̄i · cos(|xix̄i|)
= cos(ti + t̄i) + sin ti · sin t̄i ·

(
cos(|xix̄i|) + 1

)

> cos(ti + t̄i).

By combining with 0 < ti, t̄i < π, we deduce

(3.8) |xix̄i| = π and ti + t̄i = π.

By the induction assumption and (3.4)–(3.8), we know Λ is isometric to
S
n−1. Hence Σn is isometric to S

n. q.e.d.

Lemma 3.3. (Perelman’s concave function.) Let p ∈M . There ex-
ists a constant r1 > 0 and a function h : Bp(r1) → R satisfying:

(i) h is (−1)-concave;
(ii) h is 2-Lipschitz, that is, h is Lipschitz continuous with a Lips-

chitz constant 2;
(iii) for each x ∈ Bp(r1), we have

(3.9)

∫

Σx

dxh(ξ)dξ 6 0.

Moreover, if “=” holds, then x is regular.

Proof. Let us recall Perelman’s construction in [34]. Fix a small r0 >

0 and choose a maximal set of points {qα}Nα=1 ⊂ ∂Bp(r0) with ∠̃qαpqβ >
δ for α 6= β, where δ is an arbitrarily (but fixed) small positive number
δ ≪ r0. By Bishop–Gromov volume comparison, there exists a constant
C1, which is independent of δ, such that

(3.10) N > C1 · δ1−n.

Consider the function

h(y) =
1

N
·

N∑

α=1

φ(|qαy|)



YAU’S GRADIENT ESTIMATES ON ALEXANDROV SPACES 463

on Bp(r1) with 0 < r1 6
1
2r0, where φ(t) is a real function with φ′(t) = 1

for t 6 r0 − δ, φ′(t) = 1/2 for t > r0 + δ, and φ′′(t) = −1/(4δ) for
t ∈ (r0 − δ, r0 + δ).

The assertions (i) and (ii) have been proved for some positive constant
r1 ≪ r0 in [34] (see also [15] for more details). The assertion (iii) is
implicitly claimed in Petrunin’s manuscript [40]. Here we provide a
proof as follows.

Let x be a point near p. It is clear that (3.9) follows from Proposition
3.1 and the above construction of h. Thus we only need to consider the
case of

(3.11)

∫

Σx

dxh(ξ)dξ = 0.

We want to show that x is a regular point.

From ∠qαpqβ > ∠̃qαpqβ > δ for α 6= β and the lower semi-continuity
of angles (see Proposition 2.8.1 in [6]), we can assume ∠qαxqβ > δ/2
for α 6= β. Proposition 3.1 and (3.11) imply that

∫

Σx

dxdistqα(ξ)dξ = 0 for each 1 6 α 6 N.

Using Proposition 3.1 again, we have

(3.12) max
ξ∈Σx

| ↑qαx ξ| = π for each 1 6 α 6 N.

From Lemma 3.2 and the arbitrarily small property of δ, the combina-
tion of (3.10) and (3.12) implies that Σx is isometric to S

n−1. Hence x
is regular. q.e.d.

4. Poisson equations and mean value inequality

4.1. Poisson equations. LetM be an n-dimensional Alexandrov space
and Ω be a bounded domain in M . In [19], the canonical Dirichlet form

E : W 1,2
0 (Ω)×W 1,2

0 (Ω) → R is defined by

E (u, v) =

∫

Ω
〈∇u,∇v〉 dvol for u, v ∈W 1,2

0 (Ω).

Given a function u ∈W 1,2
loc (Ω), we define a functional Lu on Lip0(Ω) by

Lu(φ) = −
∫

Ω
〈∇u,∇φ〉 dvol, ∀φ ∈ Lip0(Ω).

When a function u is λ-concave, Petrunin in [38] proved that Lu is a
signed Radon measure. Furthermore, if we write its Lebesgue’s decom-
position as

(4.1) Lu = ∆u · vol + ∆su,
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then ∆su 6 0 and

(4.2) ∆u(p) = n /

∫

Σp

Hpu(ξ, ξ)dξ 6 n · λ

for almost all points p ∈ M , where Hpu is the Perelman’s Hessian (see
(2.6) or [35]).

Nevertheless, to study harmonic functions on Alexandrov spaces, we
can not restrict our attention only to semi-concave functions. We have
to consider the functional Lu for general functions in W 1,2

loc (Ω).

Let f ∈ L2(Ω) and u ∈W 1,2
loc (Ω). If the functional Lu satisfies

Lu(φ) >

∫

Ω
fφdvol

(
or Lu(φ) 6

∫

Ω
fφdvol

)

for all nonnegative φ ∈ Lip0(Ω), then, according to [13], the functional
Lu is a signed Radon measure. In this case, u is said to be a subsolution
(supersolution, resp.) of Poisson equation

Lu = f · vol.

Equivalently, u ∈W 1,2
loc (Ω) is a subsolution of Lu = f ·vol if and only

if it is a local minimizer of the energy

E(v) =
∫

Ω′

(
|∇v|2 + 2fv

)
dvol

in the set of functions v such that u > v and u − v are in W 1,2
0 (Ω′)

for every fixed Ω′ ⋐ Ω. It is known (see for example [25]) that every
continuous subsolution of Lu = 0 on Ω satisfies the Maximum Principle,
which states that

max
x∈B

u 6 max
x∈∂B

u

for any ball B ⋐ Ω.
A function u is a (weak) solution of Poisson equation Lu = f · vol

on Ω if it is both a subsolution and a supersolution of the equation. In
particular, a (weak) solution of Lu = 0 is called a harmonic function.

Now note that u is a (weak) solution of Poisson equation Lu = f ·
vol if and only if Lu is a signed Radon measure and its Lebesgue’s
decomposition Lu = ∆u · vol + ∆su satisfies

∆u = f and ∆su = 0.

Given a function f ∈ L2(Ω) and g ∈ W 1,2(Ω), we can solve the
Dirichlet problem of the equation

{
Lu = f · vol
u = g|∂Ω.
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Indeed, by the Sobolev compact embedding theorem (see [14, 19]) and
a standard argument (see, for example, [12]), it is known that the solu-
tion of the Dirichlet problem exists and is unique in W 1,2(Ω). (See, for
example, Theorem 7.12 and Theorem 7.14 in [8].) Furthermore, if we
add the assumption f ∈ Ls with s > n/2, then the solution is locally
Hölder continuous in Ω (see [18, 19]).

Definition 4.1. A function u ∈ C(Ω) ∩ W 1,2
loc (Ω) is called a λ-

superharmonic (or λ-subharmonic, resp.) on Ω, if it satisfies the fol-
lowing comparison property: for every open subset Ω′ ⋐ Ω, we have

ũ 6 u, (or ũ > u, resp.),

where ũ is the (unique) solution of the equation Lũ = λ · vol in Ω′ with
boundary value ũ = u on ∂Ω′.

In particular, a 0-superharmonic (or 0-subharmonic, resp.) function
is simply said a superharmonic (or subharmonic, resp.) function.

In partial differential equation theory, this definition is related to the
notion of viscosity solution (see [7]).

According to the maximum principle, we know that a continuous
supersolution of Lu = 0 must be a superharmonic function. Notice
that the converse is not true in general metric measure space (see [16]).
Nevertheless, we will prove a semi-concave superharmonic function on
M must be a supersolution of Lu = 0 (see Corollary 4.6 below).

4.2. Mean value inequality for solutions of Poisson equations.

Let u ∈ W 1,2(Ω) such that Lu is a signed Radon measure on Ω and
A ⋐ Ω be an open set. We define a functional Iu,A on W 1,2(A) by

(4.3) Iu,A(φ) =

∫

A
〈∇u,∇φ〉 dvol +

∫

A
φdLu.

Remark 4.2. (i) If φ1, φ2 ∈ W 1,2(A) and φ1 − φ2 ∈ W 1,2
0 (A), then,

by the definition of Lu, we have Iu,A(φ1) = Iu,A(φ2).
(ii) If M is a smooth manifold and ∂A is smooth, then Iu,A(φ) =∫
A div(φ∇u)dvol.

Lemma 4.3. Let 0 < r0 < R0 and w(x) = ϕ(|px|) satisfy Lw > 0
on some neighborhood of Bp(R0)\Bp(r0), where ϕ ∈ C2(R). Consider a

function v ∈ W 1,2(Bp(R0)\Bp(r0)) ∩ L∞(B(p,R0)\B(p, r0)). Then for
almost all r,R ∈ (r0, R0), we have

Iw,A(v) = ϕ′(R)
∫

∂Bp(R)
vdvol − ϕ′(r)

∫

∂Bp(r)
vdvol,

where A = Bp(R)\Bp(r).
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Proof. Since Lw is a signed Radon measure, we have Lw

(
Bp(R0)\

Bp(r0)
)
< +∞. Hence, for almost all r,R ∈ (r0, R0), Lw(Aj\A) → 0 as

j → ∞, where Aj = Bp(R+ 1
j )\Bp(r− 1

j ). Now let us fix such r and R.

Let vj = v · ηj(|px|) ∈W 1,2
0 (D), where D = Bp(R0)\Bp(r0) and

ηj(t) :=





1 if t ∈ [r,R]

j · (t− r) + 1 if t ∈ [r − 1
j , r]

−j · (t−R) + 1 if t ∈ [R,R+ 1
j ]

0 if t ∈ (−∞, r − 1
j ) ∪ (R + 1

j ,∞).

By the definitions of Iw,A(v) and Lw, we have

Iw,A(v) =

∫

D
〈∇w,∇vj〉 dvol−

∫

D\A
〈∇w,∇vj〉 dvol +

∫

D
vjdLw

(4.4)

−
∫

D\A
vjdLw = −

∫

D\A
v 〈∇w,∇ηj〉 dvol

−
∫

D\A
ηj 〈∇w,∇v〉 dvol −

∫

D\A
vjdLw

:= −J1 − J2 − J3.

Notice that

|J2| 6
∫

Aj\A
|∇w| · |∇v|dvol and |J3| 6 Lw(Aj\A) · |v|L∞(D).

Hence we have J2 → 0 and J3 → 0 as j → ∞.

(4.5) J1 = j ·
∫

Bp(r)\Bp(r−1/j)
vϕ′dvol− j ·

∫

Bp(R+1/j)\Bp(R)
vϕ′dvol.

The assumption v ∈ L∞(D) implies the function h(t) =
∫
Bp(t)

vdvol

is Lipschitz continuous in (r0, R0). Indeed, for each r0 < s < t < R0,

|h(t)−h(s)| 6
∫

Bp(t)\Bp(s)
|v|dvol 6 |v|L∞ ·vol

(
Bp(t)\Bp(s)

)
6 c·(tn−sn),

where constant c depends only on R0, n and the lower bounds of cur-
vature on Bp(R0). Then h(t) is differentiable at almost all t ∈ (r0, R0).
By co-area formula, we have

h′(t) =
∫

∂Bp(t)
vdvol

for almost all t ∈ (r0, R0).
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Without loss of generality, we may assume that r and R are differen-
tiable points of function h. Now

∣∣∣j
∫

Bp(r)\Bp(r−1/j)
ϕ′vdvol − ϕ′(r) · j

(
h(r)− h(r − 1/j)

)∣∣∣

6

∫

Bp(r)\Bp(r−1/j)
max |ϕ′′| · |v|dvol → 0

as j → ∞. A similar estimate also holds for j
∫
Bp(R+1/j)\Bp(R) ϕ

′vdvol.
Therefore,

lim
j→∞

J1 = lim
j→∞

ϕ′(r) · j
(
h(r)− h(r − 1/j)

)

− lim
j→∞

ϕ′(R) · j
(
h(R + 1/j) − h(R)

)

= ϕ′(r)h′(r)− ϕ′(R)h′(R).

By combining this and (4.4), we get the desired assertion. q.e.d.

If M has Ric > (n − 1)k, then for a distance function distp(x) :=
|px|, Laplacian comparison (see Theorem 1.1 and Corollary 5.9 in [22])
asserts that Ldistp is a signed Radon measure and

Ldistp 6 (n− 1) · cotk ◦distp · vol on M\{p}.

Moreover, G(x) := φk(|px|) is defined on M\{p} and

LG > 0 on M\{p},

where φk(r) is the real value function such that φ ◦ disto is the Green
function on M

n
k with singular point o. That is, if n > 3,

(4.6) φk(r) =
1

(n− 2) · ωn−1

∫ ∞

r
s1−n
k (t)dt,

where ωn−1 = vol(Sn−1) and

sk(t) =





sin(
√
kt)/

√
k k > 0

t k = 0

sinh(
√
−kt)/

√
−k k < 0.

If n = 2, the function φk can be given similarly.
By applying Lemma 4.3 to function G, we have the following mean

value inequality for nonnegative supersolution of Poisson’s equation.

Proposition 4.4. Let M be an n-dimensional Alexandrov space with
Ric > (n − 1)k and Ω be a bounded domain in M . Assume that f ∈
L∞(Ω) and u is a continuous, nonnegative supersolution of Poisson’s
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equation Lu = f · vol on Ω. Then for any ball Bp(R) ⋐ Ω, we have

vol(Σp)

ωn−1

(
1

Hn−1(∂Bo(R) ⊂ T k
p )

∫

∂Bp(R)
udvol − u(p)

)

(4.7)

6 (n− 2) ·
∫

B∗
p(R)

Gfdvol − (n− 2) · φk(R)
∫

Bp(R)
fdvol,

where B∗
p(R) = Bp(R)\{p} and T k

p is the k-cone over Σp (see [2] p.
354).

Proof. For simplicity, we only give a proof for the case n > 3. A slight
modification of the argument will prove the case n = 2.

Case 1: Assume that u is a solution of Lu = f · vol.
Let G(x) = φk(|px|), where the real function φk is chosen such that

φk(|ox|) is the Green function on M
n
k with singular point at o. Then,

by Laplacian comparison theorem (see [22] or [52]), the signed Radon
measure LG is nonnegative on M\{p}.

Since u is continuous on Bp(R), the function h(s) =
∫
Bp(s)

udvol is

Lipschitz. From Lemma 4.3, we have

IG,A(u) = φ′k(t) · h′(t)− φ′k(s) · h′(s)

for almost all s, t ∈ (0, R) with s < t, where A = Bp(t)\Bp(s). By the
definition of supersolution of Poisson equation, we have

IG,A(u)− Iu,A(G) =

∫

A
udLG −

∫

A
GdLu > −

∫

A
Gfdvol.

On the other hand, letting

Ḡ(x) =





G(x) if s 6 |px| 6 t

φk(t) if |px| > t

φk(s) if |px| < s,

we have
∫

A
〈∇G,∇u〉 =

∫

Bp(t)

〈
∇(Ḡ− φk(t)),∇u

〉
−
∫

Bp(s)

〈
∇(Ḡ− φk(s)),∇u

〉

= −
∫

A
GdLu + φk(t)

∫

Bp(t)
dLu − φk(s)

∫

Bp(s)
dLu.

Hence, by Lu = f · vol,

Iu,A(G) = φk(t)

∫

Bp(t)
fdvol− φk(s)

∫

Bp(s)
fdvol.



YAU’S GRADIENT ESTIMATES ON ALEXANDROV SPACES 469

If we set

ψ(τ) = φ′k(τ) · h′(τ)− φk(τ)

∫

Bp(τ)
fdvol,

then the function

ψ(τ) +

∫

B∗
p(τ)

Gfdvol

is nondecreasing with respect to τ (for almost all τ ∈ (0, R)). Indeed,
for almost all s < t,

ψ(t) +

∫

B∗
p(t)

Gfdvol− ψ(s)−
∫

B∗
p(s)

Gfdvol = IG,A(u)− Iu,A(G)

+

∫

A
Gfdvol > 0.

Thus by

φ′k(t) = −s1−n
k (t)· 1

(n − 2)ωn−1
= − 1

n− 2
·vol(Σp)

ωn−1
· 1

Hn−1(∂Bo(t) ⊂ T k
p )
,

we have

φ′k(t)h
′(t)− φk(t)

∫

Bp(t)
fdvol +

∫

B∗
p(t)

Gfvol

> lim
s→0

(
ψ(s) +

∫

B∗
p(s)

Gfdvol
)
= − 1

n− 2
· Vol(Σp)

ωn−1
u(p).

By combining this and h′(s) =
∫
∂Bp(r)

udvol a.e. in (0, R), we obtain

that (4.7) holds for almost all r ∈ (0, R).
By combining the Bishop–Gromov inequality on spheres (see [2] or

Lemma 3.2 of [22]), the assumption u > 0; and the continuity of u, we
have

(4.8) lim inf
r→R−

∫

∂Bp(r)
udvol >

∫

∂Bp(R)
udvol.

Therefore, we get the desired result for this case.

Case 2: u is a supersolution of Lu = f · vol.
For each R > 0, let ũ be a solution of Lũ = f · vol on Bp(R) with

boundary value condition ũ = u on ∂Bp(r). Since Lũ−u > 0, by maximal
principle, we get ũ(p) 6 u(p). Therefore, by applying Case 1 to ũ, we
get the desired estimate. q.e.d.

Corollary 4.5. Let M , Ω, u, and f be as above. If p is a Lebesgue
point of f , i.e.,

(4.9) /

∫

Bp(R)

fdvol = f(p) + o(1),
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then

1

Hn−1(∂Bo(R) ⊂ T k
p )

∫

∂Bp(R)
u(x)dvol 6 u(p) +

f(p)

2n
· R2 + o(R2).

Proof. By using (4.7), we have
(4.10)

1

Hn−1(∂Bo(R) ⊂ T k
p )

∫

∂Bp(R)
udvol − u(p) 6 (n− 2) · ωn−1

vol(Σp)
· ̺(R),

where

̺(R) =

∫

B∗
p(R)

Gfdvol − φk(R)

∫

Bp(R)
fdvol

=

∫ R

0

∫

∂Bp(s)
φk(s)f − φk(R)

∫ R

0

∫

∂Bp(s)
f.

Hence, by (4.9), we have

̺′(R) = −φ′k(R)
∫

Bp(R)
fdvol

=
vol(Σp)

(n − 2)ωn−1
·
∫ R
0 sn−1

k (r)dr

sn−1
k (R)

· vol(Bp(R))

Hn(Bo(R) ⊂ T n
k )

/

∫

Bp(R)

fdvol

=
vol(Σp)

(n − 2)ωn−1
·
(R
n

+ o(R)
)
· (1 + o(1)) · (f(p) + o(1))

=
vol(Σp)

n(n− 2)ωn−1
f(p) · R+ o(R).

Hence, noting that ρ(0) = 0, we get

(4.11) ρ(R) =
vol(Σp)

2n(n− 2)ωn−1
f(p) · R2 + o(R2).

Therefore, the desired result follows from (4.10) and (4.11). q.e.d.

Corollary 4.6. Let M be an n-dimensional Alexandrov space with
Ric > (n − 1)k and Ω be a bounded domain in M . Let u be a semi-
concave function on Ω and f ∈ L∞(Ω). Then u is a supersolution of
Lu = f · vol provided it satisfies the following property: for each point
p ∈ Regu and every sufficiently small ball Bp(R) ⋐ Ω, we have

(4.12) ũR − u 6 0,

where the function ũR is the (unique) solution of the Dirichlet problem:
{

LũR
= f · vol in Bp(R)

ũR = u on ∂Bp(R).

In particular, a semi-concave superharmonic function must be a su-
persolution of the equation Lu = 0.
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Proof. Since the singular part of Lu is non-positive, we need only to
consider its absolutely continuous part ∆u · vol.

Fix a point p ∈ Regu such that (4.2) holds and p is a Lebesgue point
of f . Since the set of such points has full measure in Ω, we need only to
show that ∆u(p) 6 f(p).

We set

gR(x) = u(x)− min
x∈Bp(R)

ũR(x) and g̃R(x) = ũR(x)− min
x∈Bp(R)

ũR(x).

Then g̃R 6 gR and g̃R|∂Bp(R) = gR|∂Bp(R). Noting that the function g̃R
is nonnegative and Lg̃R = f · vol, by Corollary 4.5 and assuming p is
regular, we have

∫

∂Bp(R)
gR =

∫

∂Bp(R)
g̃R 6 Hn−1(∂Bo(R) ⊂ T k

p ) ·
(
g̃R(p) +

f(p)

2n
R2 + o(R2)

)
(4.13)

6 gR(p) ·Hn−1(∂Bo(R) ⊂ T k
p ) +

f(p)

2n
Rn+1 · ωn−1 + o(Rn+1).

On the other hand, since p ∈ ReggR , from (2.15) and (4.2), we have
(4.14)∫

∂Bp(R)
gR = gR(p) · vol(∂Bp(R)) +

∆gR(p)

2n
R2 · vol(∂Bp(R)) + o(Rn+1)

for almost all R ∈ (0, δ0), where δ0 is a small positive number. Because
p is a smooth point, Lemma 2.1 implies

(4.15) Hn−1(∂Bo(R) ⊂ T k
p )− vol(∂Bp(R)) = o(Rn)

for almost all R ∈ (0, δ0).
Now we want to show gR(p) = O(R). From (4.12) and the fact that

u is locally Lipshitz (since u is semi-concave), we have

0 6 gR(p) = u(p)− min
x∈∂Bp(R)

ũR(x) + min
x∈∂Bp(R)

ũR(x)− min
x∈Bp(R)

ũR(x)

6 C1R+ min
x∈∂Bp(R)

ũR(x)− min
x∈Bp(R)

ũR(x).

(4.16)

Since R is sufficiently small, there exists the Perelman concave function
h on Bp(2R) given in Lemma 3.3. We have

LũR+‖f‖L∞ ·h 6 LũR
− ‖f‖L∞ · vol 6 0.

Hence, by applying maximal principle, we have for any point x ∈ Bp(R),

ũR(x) + ‖f‖L∞h(x) > min
x∈∂Bp(R)

(
ũR(x) + ‖f‖L∞h(x)

)

> min
x∈∂Bp(R)

ũR(x) + ‖f‖L∞ min
x∈∂Bp(R)

h(x).
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Since h is Lipschitz continuous, this implies that

min
x∈∂Bp(R)

ũR(x)− ũR(x) 6 ‖f‖L∞

(
h(x) − min

x∈∂Bp(R)
h(x)

)
6 C2R

for any point x ∈ Bp(R). The combination of this and (4.16) implies

(4.17) gR(p) = O(R).

By combining (4.13)–(4.15) and (4.17), we have

∆gR(p)

2n
R2·vol(∂Bp(R))−

f(p)

2n
ωn−1R

n+1
6 O(R)·o(Rn)+o(Rn+1) = o(Rn+1)

for almost all R ∈ (0, δ0). Hence, ∆gR(p) 6 f(p). Therefore, ∆u(p) 6
f(p), and the proof of the corollary is completed. q.e.d.

4.3. Harmonic measure. In this subsection, we basically follow Petru-
nin in [40] to consider harmonic measure.

Lemma 4.7. (Petrunin [40]) Let M be an n-dimensional Alexan-
drov space with Ric > (n−1)k and let Ω be a bounded domain inM . If u
is a nonnegative harmonic function on Ω, then for any ball Bp(R) ⋐ Ω,
we have

(4.18) u(p) >
1

vol(Σp) · sn−1
k (R)

∫

∂Bp(R)
udvol.

Proof. By the definition, u is harmonic if and only if it is a solution
of equation Lu = 0. Now the result follows from (4.7) with f = 0. q.e.d.

Consider an n-dimensional Alexandrov space M and a ball Bp(R) ⊂
M . In order to define a new measure νp,R on Bp(R), according to [13],
we need only to define a positive functional on Lip0(Bp(R)).

Now fix a nonnegative function ϕ ∈ Lip0(Bp(R)). First we define a
function µ : (0, R) → R as follows: for each r ∈ (0, R), define

µ(r) := ur(p),

where ur is the (unique) solution of Dirichlet problem Lu = 0 in Bp(r)
with boundary value u = ϕ on ∂Bp(r).

Lemma 4.8. There exists R > 0 such that µ(r) is continuous in
(0, R).

Proof. From Lemma 11.2 in [6], we know that there exists R > 0
such that, for all x ∈ Bp(R)\{p}, we can find a point x1 satisfying

∠̃pxx1 >
99

100
π and |px1| > 2|px|.

In particular, this implies, for each r ∈ (0, R), that Bp(r) satisfies an
exterior ball condition in the following sense: there exists C > 0 and
δ0 > 0 such that for all x ∈ ∂Bp(r) and 0 < δ < δ0, the set Bx(δ)\Bp(r)
contains a ball with radius Cδ. Indeed, we can choose x2 in geodesic
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xx1 with |xx2| = δ/3 (with δ 6 r/10). The monotonicity of comparison

angles says that ∠̃pxx2 > ∠̃pxx1 >
99
100π. This concludes |px2| > |px|+

δ/6. Therefore, Bx2(δ/6) ⊂ Bx(δ)\Bp(r).
Since ϕ is Lipschitz continuous on Bp(r), Björn in [5] (see Remark

2.15 in [5]) proved that ur is Hölder continuous on Bp(r).
For any 0 < r1 < r2 < R, by using the maximum principle, we have

|µ(r1)− µ(r2)| 6 max
x∈∂Bp(r1)

|ur1(x)− ur2(x)| = max
x∈∂Bp(r1)

|ϕ(x)− ur2(x)|.

By combining with the Hölder continuity of ϕ and ur2 , we have that
|µ(r1)− µ(r2)| → 0 as r2 − r1 → 0+. Hence µ(r) is continuous. q.e.d.

Remark 4.9. If p is a regular point, then the constant R given in
Lemma 4.8 can be chosen uniformly in a neighborhood of p.

Indeed, there exists a neighborhood of p, Bp(R0) and a bi-Lipschitz
homeomorphism F mapping Bp(R0) to an open domain of Rn with bi-
Lipschitz constant 6 1/100. Then for each ball Bq(r) ⊂ Bp(R0/4) with
r 6 R0/4 and x ∈ ∂Bq(r), let x

′ ∈ R
n such that

|x′F (x)| = |F (q)F (x)| and |x′F (q)| = |F (q)F (x)| + |F (x)x′|
= 2|F (q)F (x)|;

we have

|qF−1(x′)| > 99

100
|F (q)x′| > 2

( 99

100

)2
|xq| and |x′F (x)|

6

(101
100

)2
|xq|.

Hence, it is easy to check that Bq(r) satisfies an exterior ball condition
as above (in a similar way to that above). Therefore, the constant R in
Lemma 4.8 can be chosen R0/4 for all q ∈ Bp(R0/4).

Now we can define the functional νp,R by

νp,R(ϕ) =

∫ R
0 sn−1

k µ(r)dr
∫ R
0 sn−1

k dr
.

From Lemma 4.7, we have µr > 0, and νp,R(ϕ) > 0. Hence, it provides
a Radon measure on Bp(R). Moreover, it is a probability measure and
by (4.18),

(4.19) νp,R >
vol

Hn(Bo(R) ⊂ T k
p )
.

Let u be a harmonic function on Ω. Then for any ball Bp(R) ⋐ Ω, we
have

(4.20) u(p) =

∫

Bp(R)
u(x)dνp,R.
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The following strong maximum principle was proved in an abstract
framework of Dirichlet form by Kuwae in [25] and Kuwae–Machiyashira–
Shioya in [19]. In metric spaces supporting a doubling measure and
a Poincaré inequality, it was proved by Kinnunen–Shanmugalingan in
[18]. Here, by (4.20), we give a short proof in Alexandrov spaces.

Corollary 4.10. (Strong Maximum Principle) Let u be a subhar-
monic function on a bounded and connected open domain Ω. Suppose
there exists a point p ∈ Ω for which u(p) = supx∈Ω u. Then u is constant.

Proof. First, we consider u to be harmonic. By (4.19)–(4.20) and
given that νp,R is a probability measure, we have u(x) = u(p) in some
neighborhood Bp(R). Hence the set {x ∈ Ω : u(x) = u(p)} is open.
On the other hand, the continuity of u implies that the set is closed.
Therefore, it is Ω and u is a constant in Ω.

If u is a subharmonic function, the result follows from the definition
of subharmonic and the above harmonic case. q.e.d.

The following lemma appeared in [40] (page 4). In this lemma, Petru-
nin constructed an auxiliary function, which is similar to Perelman’s
concave function.

Lemma 4.11. (Petrunin [40]) For any point p ∈M , there exists a
neighborhood Bp(r2) and a function h0 : Bp(r2) → R satisfying:

(i) h0(p) = 0;
(ii) Lh0 > 1 · vol on Bp(r2);
(iii) there are 0 < c < C <∞ such that

c · |px|2 6 h0(x) 6 C · |px|2.
Proof. A sketched proof was given in [40]. For completeness, we

present a detailed proof as follows.
Without loss of generality, we may assume M has curvature > −1 on

a neighborhood of p. Fix a small real number r > 0 and set

φ(t) =

{
a+ bt2−n + t2 t 6 r

0 t > r,

where a = − n
n−2r

2 and b = 2
n−2r

n.

Take a minimal set of points {qα}Nα=1 such that |pqα| = r and min16α6N

∠(ξ, ↑qαp ) 6 π/10 for each direction ξ ∈ Σp. Consider

h0(x) =
N∑

α=1

hα

where hα = φ(|qαx|). Clearly, h0(p) = 0. Bishop–Gromov volume com-
parison of Σp implies that N 6 c(n), for some constant depending only
on the dimension n.
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Fix any small 0 < δ ≪ r. For each x ∈ Bp(δ)\{p}, there is some
qα such that ∠(↑xp , ↑qαp ) 6 π/10. When δ is small, the comparison angle

∠̃xqαp is small. Then ∠̃qαxp >
3
4π. This implies that |∇xdistqα | > 1/

√
2,

when δ is sufficiently small.
Fix any α. Since the function −hα is semi-concave near p, the singular

part of Lhα
is nonnegative. We only need to consider the absolutely

continuous part ∆hα. By Laplacian comparison theorem (see [52] or
[22]) and a direct computation, we have ∆hα(x) > −Cδ a.e. in Bp(δ)

and ∆hα(x) > n − Cδ at almost all points x with ∠̃qαxp > 3
4π, where

C denotes the various positive constants depending only on n and r.

Indeed, since r− δ 6 |qαx| 6 r (the fact ∠̃qαxp >
3
4π implies |qαx| 6 r),

∆hα(x) = φ′(|qαx|) ·∆distqα(x) + φ′′(|qαx|)|∇distqα |2

= 2|qαx| ·
(
1− rn

|qαx|n
)
·∆distqα(x)

+ 2
(
1 + (n− 1)

rn

|qαx|n
)
· |∇xdistqα |2

> 2|qαx| ·
(
1− rn

|qαx|n
)
·
(n− 1

|qαx|
+ C|qαx|

)

+ 2
(
1 + (n− 1)

rn

|qαx|n
)
· |∇xdistqα |2

> −Cn
δ

r
+ 2n · |∇xdistqα |2.

On the other hand, at the points x where ∠(↑xp , ↑qαp ) 6 π/10 and
|px| 6 |pqα|/10, we have

r − |px| 6 |qαx| 6 r − |px|/2.
Hence, by applying φ′(r) = 0 and 2n 6 φ′′(t) 6 2n·2n for all r/2 6 t 6 r,
it is easy to check that there exist two positive numbers c1, C1 depending
only on n and r such that

c1 · |px|2 6 hα(x) = φ(|qαx|) 6 C1 · |px|2

if r − |px| 6 |qαx| 6 r − |px|/2.
Therefore, we have (since for each x ∈ Bp(δ)\{p}, there is some qα

such that ∆hα(x) > n− Cδ)

∆h0 > n−N · Cδ on Bp(δ)

and

c1 · |px|2 6 hα(x) = φ(|qαx|) 6 N · C1 · |px|2.
By N 6 c(n) for some constant c(n) depending only on the dimension
n, if δ < (C · cn)−1, the function h0 satisfies all of the conditions in the
lemma. q.e.d.
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Remark 4.12. If p is a regular point, then the constant r2 given in
Lemma 4.11 can be chosen uniformly in a neighborhood of p. Indeed, in
this case, there exists a neighborhood of p which is bi-Lipschitz homeo-
morphic to an open domain of R with a bi-Lipschitz constant close to 1.
The constant r and δ in the above proof can be chosen to have a lower
bound depending only on the bi-Lipschitz constant.

Proposition 4.13. (Petrunin [40]) Given any p ∈ Ω and λ > 0,
there exist constants Rp and c(p, λ) such that, for any u ∈ W 1,2(Ω) ∩
C(Ω) satisfing Lu 6 λ · vol on Ω, we have

(4.21)

∫

Bp(R)
udνp,R 6 u(p) + c(p, λ) · R2

for any ball Bp(R) ⋐ Ω with 0 < R < Rp, where the constant c(p, λ) = 0
if λ = 0.

Proof. This proposition was given by Petrunin in [40] (page 5). For
completeness, we give a detailed proof as follows.

Case 1: λ = 0.
For each r ∈ (0, R), let ur be the harmonic function on Bp(r) with

boundary value ur = u on ∂Bp(r). Then Lu−ur 6 0 and (u−ur)|∂Bp(r) =
0. By applying maximum principle, we know that u− ur > 0 on Bp(r);
that is, by the definition of µ(r), µ(r) 6 u(p). Therefore, by the defini-
tion of νp,R, we have

∫

Bp(R)
udνp,R 6 u(p).

Case 2: λ > 0.
Let h0 be the function given in Lemma 4.11; we have Lu−λh0 6 0 on

Bp(r2), where r2 is the constant given in Lemma 4.11. Hence, we can
use the case above for function u− λh0. This gives us, by Lemma 4.11,

u(p) = u(p)−λh0(p) >
∫

Bp(R)
(u−λh0)dνp,R >

∫

Bp(R)
udνp,R−C ·λ ·R2

for all 0 < R < r2, where C is the constant given in Lemma 4.11. q.e.d.

Remark 4.14. If p is regular, according to Remark 4.9 and Remark
4.12, the constant Rp can be chosen uniformly in a neighborhood of p.

The following lemma is similar to one that appeared in [40] (page
10).

Lemma 4.15. (Petrunin [40]) Let h be the Perelman concave func-
tion given in Lemma 3.3 on a neighborhood U ⊂ M . Assume that f is
a semi-concave function defined on U . And suppose that u ∈W 1,2(U)∩
C(U) satisfies Lu 6 λ · vol on U for some constant λ ∈ R.
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We assume that point x∗ ∈ U is a minimal point of function u+f+h;
then x∗ has to be regular. Moreover, f is differentiable at x∗ (in the sense
of Taylor expansion (2.16)).

Proof. Without loss of generality, we may assume that λ > 0. In the
proof, we denote Bx∗(R) (⊂ U) by BR. From the minimum property of
x∗, we have

(4.22)

∫

BR

(u+ f + h)dνp,R > u(x∗) + f(x∗) + h(x∗).

By Proposition 4.13, we get

(4.23)

∫

BR

udνp,R 6 u(x∗) + cR2

for some constant c = c(p, λ) and for all sufficiently small R.
On the other hand, setting h̄ = f + h, we have

∫

BR

h̄dνp,R = h̄(x∗) +
∫

BR

(h̄− h̄(x∗))d
(
νp,R − vol

Hn(Bk
o (R))

)
(4.24)

+
1

Hn(Bk
o (R))

∫

BR

(h̄− h̄(x∗))dvol

:= h̄(x∗) + J1 + J2,

where Bk
o (R) is the ball in T k

p .

Because h̄ = f + h is a Lipschitz function and vol(BR)
Hn(Bk

o (R))
= 1 + o(1),

we have
(4.25)

|J1| 6 O(R)·
∫

BR

1d
(
νp,R−

vol

Hn(Bk
o (R))

)
= O(R)·

(
1− vol(BR)

vol(Bk
o (R))

)
= o(R).

Since h̄ = f + h is semi-concave, according to equation (2.7), we have

J2 =
vol(Bp(R))

Hn(Bk
o (R))

/

∫

BR

(h̄− h̄(x∗))dvol

=
vol(BR)

Hn(Bk
o (R))

·
( nR

n+ 1
/

∫

Σx∗

dx∗ h̄(ξ)dξ + o(R)
)

=
nR

n+ 1
/

∫

Σx∗

dx∗ h̄(ξ)dξ + o(R).

(4.26)

By combining (4.22)–(4.26), we have

nR

n+ 1
/

∫

Σx∗

dx∗ h̄(ξ)dξ + o(R) + cR2
> 0.



478 H.-C. ZHANG & X.-P. ZHU

By combining with Proposition 3.1,
∫

Σx∗

dx∗ h̄(ξ)dξ =

∫

Σx∗

dx∗f(ξ)dξ +

∫

Σx∗

dx∗h(ξ)dξ 6 0,

we have ∫

Σx∗

dx∗f(ξ)dξ =

∫

Σx∗

dx∗h(ξ)dξ = 0.

Then by using Lemma 3.3 (iii), we conclude that x∗ is regular.
Next we want to show that f is differentiable at x∗.
Since x∗ is regular, we have

∫

Σx∗

〈∇x∗f, ξ〉 dξ =
∫

Sn−1

〈∇x∗f , ξ〉 dξ = 0.

Hence ∫

Σx∗

(
dx∗f(ξ)− 〈∇x∗f, ξ〉

)
dξ =

∫

Σx∗

dx∗f(ξ)dξ = 0.

On the other hand, by the definition of ∇x∗f (see Section 1.3 of [39]),
we have

dx∗f(ξ) 6 〈∇x∗f , ξ〉 ∀ ξ ∈ Σx∗ .

According to the combination of the above two equations, we have

dx∗f(ξ) = 〈∇x∗f , ξ〉 ∀ ξ ∈ Σx∗ .

By combining with the fact that x∗ is regular, we get that f is differen-
tiable at x∗. q.e.d.

We now follow Petrunin in [40] to introduce a perturbation argument.
Let u ∈ W 1,2(D) ∩ C(D) satisfy Lu 6 λ · vol on a bounded domain D.
Suppose that x0 is the unique minimum point of u on D and u(x0) <
minx∈∂D u. Suppose also that x0 is regular and g = (g1, g2, . . . , gn) :
D → R

n is a coordinate system around x0 such that g satisfies the
following:

(i) g is an almost isometry from D to g(D) ⊂ R
n (see [6]). Namely,

there exists a sufficiently small number δ0 > 0 such that
∣∣∣
‖g(x) − g(y)‖

|xy| − 1
∣∣∣ ≤ δ0, for all x, y ∈ D, x 6= y;

(ii) all of the coordinate functions gj , 1 6 j 6 n, are concave ([34]).
Then there exists ǫ0 > 0 such that, for each vector V = (v1, v2, . . . , vn) ∈
R
n with |vj | 6 ǫ0 for all 1 6 j 6 n, the function

G(V, x) := u(x) + V · g(x)
has a minimum point in the interior of D, where · is the Euclidean inner
product of Rn and V · g(x) =∑n

j=1 v
jgj(x).

Let

U = {V ∈ R
n : |vj | < ǫ0, 1 6 j 6 n} ⊂ R

n.
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We define ρ : U → D by setting ρ(V ) to be one of the minimum points
of G(V, x). Note that the map ρ might not be uniquely defined.

The following was given by Petrunin in [40] (page 8). For complete-
ness, a detailed proof is given here.

Lemma 4.16. (Petrunin [40]) Let u, x0, {gj}nj=1 and ρ be as above.

There exists some ǫ ∈ (0, ǫ0) and δ > 0 such that

(4.27) |ρ(V )ρ(W )| > δ · ‖V −W‖ ∀ V,W ∈ U
+
ǫ .

where

U
+
ǫ := {V = (v1, v2, . . . , vn) ∈ R

n : 0 < vj < ǫ for all 1 6 j 6 n}.
In particular, for arbitrary ǫ′ ∈ (0, ǫ), the image ρ(U +

ǫ′ ) has nonzero
Hausdorff measure.

Proof. Without loss of generality, we can assume that λ > 0.
Since x0 is a regular point, according to Remark 4.14, the mean value

inequality in Proposition 4.13 holds uniformly on some neighborhood
of x0. Namely, there exists neighborhood Ux0 ∋ x0 and two constants
R0, c0 such that for any w ∈ W 1,2(D) ∩ C(D) satisfying Lw 6 λ · vol,
we have

(4.28)

∫

Bq(R)
wdνq,R 6 w(q) + c0 ·R2

for all q ∈ Ux0 and all R ∈ (0, R0).
Noting that G(V, x) = u(x)+V ·g converges to u as V → 0, and that

x0 is the uniquely minimal value point of u(x), we can conclude that
ρ(V ) converges to x0 as V → 0. Hence, there exists a positive number
ǫ > 0 such that ρ(V ) ∈ Ux0 provided V = (v1, . . . , vn) satisfies |vj | 6 ǫ
for all 1 6 j 6 n. From now on, we fix such ǫ and let

U
+
ǫ := {V = (v1, v2, . . . , vn) ∈ R

n : 0 < vj < ǫ for all 1 6 j 6 n}.
Let V,W ∈ U +

ǫ . Denote by ρ := ρ(V ) and ρ̂ := ρ(W ). That means

G(V, ρ) 6 G(V, x) and G(W, ρ̂) 6 G(W,x)

for any x ∈ D. Hence, we have

(W − V ) · g(ρ̂)− (W − V ) · g(x) = G(W, ρ̂)−G(V, ρ̂)(4.29)

−G(W,x) +G(V, x)

6 G(V, x) −G(V, ρ̂)

6 G(V, x) −G(V, ρ).

Notice that vj > 0 and gj are concave for 1 6 j 6 n. We know that
G(V, x) = u(x) + V · g(x) also satisfies LG(V,x) 6 λ · vol. By the mean
value inequality (4.28), we have

(4.30)

∫

Bρ(R)

(
G(V, x) −G(V, ρ)

)
dνρ,R 6 c0 ·R2
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for any 0 < R < R0. We denote φ+ := max{φ, 0} for a function φ. It
is clear that (φ+ a)+ 6 φ+ + |a| for any a ∈ R. By combining this and
the assumption that g is an almost isometry, we have

∫

Bρ(R)

(
(W − V ) · g(ρ) − (W − V ) · g(x)

)
+
dνρ,R

6

∫

Bρ(R)

(
(W − V ) · g(ρ̂)− (W − V ) · g(x)

)
+
dνρ,R

+ |(W − V ) · g(ρ)− (W − V ) · g(ρ̂)|

6

∫

Bρ(R)

(
(W − V ) · g(ρ̂)− (W − V ) · g(x)

)
+
dνρ,R

+ ‖g(ρ) − g(ρ̂)‖ · ‖W − V ‖

6

∫

Bρ(R)

(
(W − V ) · g(ρ̂)− (W − V ) · g(x)

)
+
dνρ,R

+ c1 · |ρρ̂| · ‖W − V ‖,

(4.31)

where constant c1 depends only on δ0.
Consider the set

K :=
{
X ∈ R

n
∣∣ R
4

6 ‖X − g(ρ)‖ 6
R

2
, (X − g(ρ)) · (W − V )

6 −1

2
‖X − g(ρ)‖ · ‖V −W‖

}
.

In fact, K is a trunked cone in R
n with vertex g(ρ), central direction

−W + V + g(ρ), cone angle π
3 , and radius from R

4 to R
2 .

Since K ⊂ Bg(ρ)(R/2) and g is an almost isometry with δ sufficiently

small, it is obvious that g−1(K) ⊂ Bρ(R). Hence, we have
∫

Bρ(R)

(
(W − V ) · g(ρ)− (W − V ) · g(x)

)
+
dνρ,R

>

∫

g−1(K)

(
(W − V ) · (g(ρ) − g(x)

)
+
dνρ,R

>
1

2
‖W − V ‖ ·

∫

g−1(K)
‖g(ρ) − g(x)‖dνρ,R

>
R

8
‖W − V ‖ · νρ,R

(
g−1(K)

)
.

(4.32)

By the estimate (4.18) and that g is a δ0-almost isometry, we have

(4.33) νρ,R
(
g−1(K)

)
>

vol(g−1(K))

Hn(Bo(R) ⊂ T k
ρ )

> c2

for some constant c2 depending only on δ0 and the dimension n, the
lower bound k of curvature.
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By combining (4.29)–(4.33), we obtain

c2 ·R
8

· ‖W − V ‖ 6 c1|ρρ̂| · ‖W − V ‖+ c0R
2

for any 0 < R < R0. We set

(4.34) N =
nǫ · c2
c0R0

+ 1.

Since ‖V −W‖ 6 nǫ, we get

R′ :=
c2 · ‖V −W‖

10c0 ·N
6 R0/10.

Then we have

c1 ·|ρρ̂|·‖V −W‖ >
c2R

′

8
·‖V −W‖−c0R′2 =

c22 · ‖V −W‖2
10c0N

(1
8
− 1

10N

)
.

Now the desired estimate (4.27) follows from the choice of

(4.35) δ :=
c22

400c0 · c1 ·N
.

Therefore, the proof of this lemma is completed. q.e.d.

5. Hamilton–Jacobi semigroup and Bochner-type formula

5.1. Hamilton–Jacobi semigroup. LetM be an n-dimensional Alexan-
drov space and Ω be a bounded domain of M . Given a continuous and
bounded function u on Ω, the Hamilton–Jacobi semigroup is defined by

Qtu(x) = inf
y∈Ω

{
u(y) +

|xy|2
2t

}
, t > 0

and Q0u(x) := u(x). Clearly, Qtu is semi-concave for any t > 0, since
u(y) + | · y|2/(2t) is semi-concave, for each y ∈ Ω. In particular, Qtu is
locally Lipschitz for any t > 0.

If |xy| >
√

4t‖u‖L∞ , then

u(y) +
|xy|2
2t

> u(y) + 2‖u‖L∞ > ‖u‖L∞ .

On the other hand, Qtu(x) 6 u(x) 6 ‖u‖L∞ . We conclude that

Qtu(x) = inf
y∈Bx(C)∩Ω

{
u(y) +

|xy|2
2t

}
,

where C =
√

4t‖u‖L∞ . Therefore, for any Ω′ ⋐ Ω, there exists t̄ =
t̄(Ω′, ‖u‖L∞) such that

(5.1) Qtu(x) = min
y∈Ω

{
u(y) +

|xy|2
2t

}

for all x ∈ Ω′ and 0 < t < t̄.
For convenience, we always set ut := Qtu in this section.
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The following was shown in [30] in the framework of length spaces.

Lemma 5.1. (Lott–Villani [30])
(i) For each x ∈ Ω′, we have inf u 6 ut(x) 6 u(x).
(ii) limt→0+ ut = u in C(Ω′).
(iii) For any t, s > 0 and any x ∈ Ω′, we have

(5.2) 0 6 ut(x)− ut+s(x) 6
s

2
· Lip2ut,

where Liput is the Lipschitz constant of ut on Ω′ (see [8] for this
notation).
(iv) For any t > 0 and almost all x ∈ Ω′, we have

(5.3) lim
s→0+

ut+s(x)− ut(x)

t
= −|∇ut(x)|2

2
.

The following lemma is similar to Lemma 3.5 in [3].

Lemma 5.2. Let t > 0. Assume ut is differentiable at x ∈ Ω′. Then
there exists a unique point y ∈ Ω such that

(5.4) ut(x) = u(y) +
|xy|2
2t

.

Furthermore, the direction ↑yx is determined uniquely and

(5.5) |xy|· ↑yx= −t · ∇ut(x).
Proof. Now fix a regular point x. We arbitrarily choose y such that

(5.4) holds. Taking any geodesic γ(s) : [0, ǫ) → M with γ(0) = x, by
the definition of ut and (5.4), we have

(5.6) ut(γ(s))− ut(x) 6
|yγ(s)|2

2t
− |xy|2

2t
.

If x = y, we have ∇ut(x) = 0. Hence equation (5.5) holds.
If x 6= y, by using the differentiability of ut at x and the first variant

formula, we have

(5.7) ut(γ(s)) = ut(x) + dxut(γ
′(0)) · s+ o(s)

and

(5.8)
|yγ(s)|2

2t
− |xy|2

2t
6 −|xy|

t
·
〈
↑yx, γ′(0)

〉
· s+ o(s)

for any direction ↑yx from x to y. By combining (5.6)–(5.8), we have

dxut(γ
′(0)) 6 −|xy|

t
·
〈
↑yx, γ′(0)

〉

for all geodesic γ with γ(0) = x. For each ξ ∈ Σx, we take a sequence of
geodesics γ(t) starting from x such that γ′(0) converges to ξ. Then we
have

(5.9) dxut(ξ) 6 −|xy|
t

· 〈↑yx, ξ〉
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for all ξ ∈ Σx.
Since ut is differentiable at x, we know that the direction −ξ exists

and dxu(−ξ) = −dxu(ξ). By replacing ξ by −ξ in the above inequality,
we obtain

∇ut(x) = −|xy|
t

· ↑yx .
The left-hand side does not depend on the choices of point y and direc-
tion of ↑yx. This gives the desired assertion. q.e.d.

For each t > 0, we define a map Ft : Ω′ → Ω by Ft(x) to be one of
points such that

(5.10) ut(x) = u
(
Ft(x)

)
+

|xFt(x)|2
2t

.

According to Lemma 5.2 and the Rademacher theorem ([8, 3]), we have,
for almost all x ∈ Ω′,

(5.11) |xFt(x)| = t · |∇ut(x)|.
By Lemma 5.2 again, Ft is continuous at x, where ut is differentiable
(since the point y satisfying (5.4) is unique). Then Ft is measurable.

In [40], Petrunin sketched a proof of his key lemma, which states
that, on an Alexandrov space with nonnegative curvature, ut is super-
harmonic on Ω′ for each t > 0, provided u is a supersolution of Lu = 0
on Ω. The following proposition is an extension.

Proposition 5.3. Let M be an n-dimensional Alexandrov space with
Ric > −K and let Ω be a bounded domain of M . Assume that u ∈
W 1,2(Ω) ∩ C(Ω), f ∈ L∞(Ω) is upper semi-continuous for almost all
x ∈ Ω and

Lu 6 f · vol
in the sense of measure. Then, for any Ω′ ⋐ Ω, there exists some t0 > 0
such that for all 0 < t < t0, we have

(5.12) a2 · Lut 6

[
f ◦ Ft +

n(a− 1)2

t
+
Kt

3
(a2 + a+ 1)|∇ut|2

]
· vol

on Ω′ for all a > 0.

Proof. We divide the proof into the following four steps.
Step 1. Setting up a contradiction argument.

Since, for almost all x ∈ Ω, f is upper semi-continuous and |xFt(x)| =
t|∇ut(x)|, it is sufficient to prove that there exists some t0 > 0 such that
for all 0 < t < t0, we have
(5.13)

a2 ·Lut 6

[
sup

z∈BFt(x)
(θ)
f(z)+

n(a− 1)2

t
+
K

3t

(
a2+a+1

)
·|xFt(x)|2+θ

]
·vol

on Ω′ for all a > 0 and all θ > 0.
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For each t > 0, a > 0, and θ > 0, we set
(5.14)

a2 ·wt,a,θ(x) = sup
z∈BFt(x)

(θ)
f(z)+

n(a− 1)2

t
+
K

3t

(
a2+a+1

)
· |xFt(x)|2+θ.

For each t > 0, a > 0, and θ > 0, since ut is semi-concave, |∇ut| ∈
L∞(Ω′) and hence we have wt,a,θ ∈ L∞(Ω′). Noting that ut is semi-
concave again, it is sufficient to prove that ut satisfies the corresponding
comparison property in Corollary 4.6 for all sufficiently small t > 0.

Let us argue by contradiction. Suppose that there exists a sequence
of tj → 0+ as j → ∞, a sequence aj > 0, and a sequence θj > 0
satisfying the following: for each tj , aj , and θj, we can find pj and Rj > 0
with ajRj + Rj → 0+ and Bpj(Rj) ⋐ Ω′, such that the corresponding
comparison property in Corollary 4.6 is false. That is, if the function vj
is the solution of equation

Lvj = −wtj ,aj ,θj · vol
in Bpj(Rj) with boundary value vj = −utj on ∂Bpj(Rj), then the func-
tion utj + vj has a minimum point in the interior of Bpj(Rj) and

min
x∈Bpj

(Rj)
(utj + vj) < min

x∈∂Bpj
(Rj)

(utj + vj).

We say in this case that utj + vj has a strict minimum in the interior of
Bpj(Rj).

Since Ω′ is bounded, we can assume that some subsequence of {pj}∞j=1

converges to a limit point p∞. Denote the subsequence by {pj}∞j=1 again.
So we can choose a convex neighborhood U ⋐ Ω of p∞ and a Perelman
concave function h on U given in Lemma 3.3. Since u is bounded, by
|xFt(x)|2 6 4t‖u‖L∞(Ω), we have |xFtj (x)| → 0 as j → ∞ uniformly on
Ω′. Now we fix some j∗ so large that

Bpj∗

(
aj∗Rj∗ +Rj∗

)
∪BFtj∗

(pj∗)

(
aj∗Rj∗ +Rj∗

)
⊂ U

and Ftj∗ (x) ∈ U for all x ∈ Bpj∗

(
aj∗Rj∗ +Rj∗

)
.

Step 2. Perturbing the functions to achieve the minimums at smooth
points.

From now on, we omit the index j∗ to simplify the notations.
Let x1 be a minimum of ut + v in the interior of Bp(R). Because h

is 2-Lipschitz on U , for any sufficiently small positive number ǫ0, the
function

ut + v + ǫ0h

also achieves a strict minimum at some point x̄ in the interior of Bp(R).
Noting that ut is semi-concave and wt,a,θ is bounded and Lv 6 −wt,a,θ ·
vol, according to Lemma 4.15, we know x̄ is regular and that ut is
differentiable at x̄. Now we fix such a sufficiently small ǫ0.
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On the other hand, according to the condition Ric > −K and Lapla-
cian comparison (see [52] or [22]), we have L|xx̄|2 6 c(n,K,diamΩ).
Thus, by the fact that h is (−1)-concave, we can choose some suffi-
ciently small positive number ǫ′0 such that

Lǫ0h+ǫ′0|xx̄|2 6 0.

Setting v0 = v + ǫ0h+ ǫ′0|xx̄|2, we have that the function

ut + v0 = ut + v + ǫ0h+ ǫ′0|xx̄|2

achieves a unique minimum at x̄ and

Lv0 = Lv + Lǫ0h+ǫ′0|xx̄|2 6 Lv = −wt,a,θ · vol.
Consider function

H(x, y) = v0(x) + u(y) +
|xy|2
2t

, (x, y) ∈ Ω× Ω.

Then it achieves a unique strict minimum at (x̄, Ft(x̄)) ∈ Bp(R) × U.
Indeed,

H(x, y) > ut(x) + v0(x) > ut(x̄) + v0(x̄) = u(Ft(x̄)) +
|x̄Ft(x̄)|

2t
+ v0(x̄)

= H(x̄, Ft(x̄)).

Since x̄ is a regular point and ut is differentiable at x̄, by Lemma 5.2,
the point pair (x̄, Ft(x̄)) is the unique minimum of H in Bp(R)× U.

Applying the fact that h is 2-Lipschitz on U , we know that, for any
sufficiently small positive number ǫ1,

H1(x, y) := v1(x) + u1(y) +
|xy|2
2t

also achieves its strict minimum in the interior of Bp(R)× U , where

v1(x) = v0(x) + ǫ1h(x) and u1(y) = u(y) + ǫ1h(y).

Let (x∗, y∗) denote one minimal point of H1.
By the condition Ric > −K and Laplacian comparison (see [52] or

[22]), we have

L|xx∗|2 6 c(n,K,diamΩ) and L|yy∗|2 6 c(n,K,diamΩ).

Since

H1(x, y
∗) = v0(x) + u1(y

∗) +
|xy∗|2
2t

+ ǫ1h(x)

is continuous and wt,a,θ is bounded, we know that

L
v0+u1(y∗)+

|xy∗|2

2t

6 (−wt,a,θ +
c(n,K,diamΩ)

2t
) · vol 6 λ · vol

on Bp(R) for some constant λ ∈ R and H1(x, y
∗) has a minimum at

x∗. By Lemma 4.15, we know that x∗ is regular. The point y∗ is also
regular, by the boundedness of f and the same argument.
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Let v2(x) = v1(x) + ǫ2|xx∗|2 and u2(y) = u1(y) + ǫ2|yy∗|2 with any
positive number ǫ2. Then

H2(x, y) := v2(x) + u2(y) +
|xy|2
2t

achieves a unique minimum point (x∗, y∗).
Since (x∗, y∗) is regular in M × M , now we choose one almost or-

thogonal coordinate system near x∗ by concave functions g1, g2, . . . , gn
and another almost orthogonal coordinate system near y∗ by concave
functions gn+1, gn+2,. . . , g2n. Using Lemma 4.16, there exist arbitrarily
small positive numbers b1, b2, . . . , b2n such that

H2(x, y) +
n∑

i=1

bigi(x) +
2n∑

i=n+1

bigi(y)

achieves a minimal point (xo, yo) near point (x∗, y∗), where (xo, yo) sat-
isfies the following properties:

1) xo 6= yo;
2) xo is a distyo-regular point and y

o is a distxo-regular point (hence,
they are smooth);

3) geodesic xoyo can be extended beyond xo and yo;
4) yo is a Lebesgue point of f ;
5) xo is a Lebesgue point of wt,a,θ;
6) xo is a Lebesgue point of ∆(|xyo|2) and yo is a Lebesgue point of

∆(|xoy|2),
where ∆(|xyo|2) (or ∆(|xoy|2)) is the density of the absolutely continu-
ous part of L|xyo|2 (or L|xoy|2 , resp.).

Indeed, let A be the set of points satisfying all of conditions (1)–(6)
above. It is easy to check that H2n

(
(Bp(R) × U)\A

)
= 0. By applying

Lemma 4.16, we can find the desired (xo, yo).
Set

v3(x) = v2(x) +

n∑

i=1

bigi(x) and u3(y) = u2(y) +

2n∑

i=n+1

bigi(y).

Then

H3(x, y) := v3(x) + u3(y) +
|xy|2
2t

has a minimal value at (xo, yo).

Step 3. Ricci curvature and second variation of arc-length.
Let γ : [0, s̄] → U be a geodesic with xo, yo ∈ γ\{γ(0), γ(s̄)}. Put

xo = γ(tx) and yo = γ(ty) with 0 < tx < ty < s̄. Assume that some
neighborhood of γ has curvature > k0, for some k0 ∈ R. For each t ∈
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(0, s̄), the tangent cone Tγ(t) can be split isometrically into Tγ(t) = R×
Lγ(t). We denote

Λγ(t) = Σγ ∩ Lγ(t) = {ξ ∈ Σγ(t)

∣∣ 〈ξ, γ′
〉
= 0}.

Fix an arbitrarily small positive number ǫ3. According to the defi-
nition of M having Ricci curvature > −K along geodesic γ (see Def-
inition 2.6), for each t0 ∈ [tx, ty], there exists an open neighborhood
It0 ∋ t0 and a family of function {gγ(t)}t∈It0 such that {gγ(t)}t∈It0 satis-
fies Condition (RC) and

(5.15) (n− 1) · /

∫

Λγ(t)

gγ(t)(ξ)dξ > −K − ǫ3, ∀t ∈ It0 .

It is shown in [52] that

(5.16) |gγ(t)| 6 C, ∀t ∈ It0
for some constant C depends only on the distance |xoγ(0)|, |yoγ(s̄)|, |It0 |
and the lower bound k0 of curvature on some neighborhood of γ. For
completeness, we recall its proof as follows. Since the family {g

γ(t)
= k0}

satisfies Condition (RC) (see Remark 2.7), we can assume that gγ(t) >
k0. Otherwise, we replace gγ(t) by gγ(t) ∨ k0. On the other hand, for any
q1, q2 ∈ γ|It0 with |q1q2| > |It0 |/2, letting isometry T : Σq1 → Σq2 and

sequence δj be in the definition of Condition (RC) (see Definition 2.5),
by applying equation (2.17) with l1 = l2 = 1 and 〈ξ, γ′〉 = 0, we have

| expq1(δjξ) expq2(δjTξ)| 6 |q1q2| − gq1(ξ) · |q1q2| · δ2j /2 + o(δ2j ).

By the semi-concavity of distance functions distγ(0) and distγ(s̄), we get

|γ(0) expq1(δjξ)| 6 |γ(0) q1|+ Ck0,|γ(0)xo| · δ2j
and

|γ(s̄) expq2(δjTξ)| 6 |γ(s̄) q2|+ Ck0,|γ(s̄)yo| · δ2j .
Combining with triangle inequality

| expq1(δjξ) expq2(δjTξ)| > |γ(0) γ(s̄)| − |γ(0) expq1(δjξ)| − |γ(s̄)
expq2(δjTξ)|,

we can obtain

gq1(ξ) 6
2

|q1q2|
·(Ck0,|γ(0)xo|+Ck0,|γ(s̄)yo|) 6

4

|It0 |
·(Ck0,|γ(0)xo|+Ck0,|γ(s̄)yo|).

All of such neighborhood It0 forms an open covering of [tx, ty]. Then
there exists a sub-covering I1, I2, . . . , IS . Now we divide [tx, ty] into N -
equal parts by

x0 = xo, x1, . . . , xm, . . . , xN = xN .

We can assume that any pair of adjacent xm, xm+1 is lying into some
same Iα, α ∈ {1, 2, . . . , S}.
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By Condition (RC), we can find a sequence {δj} and an isometry
T0 : Σx0 → Σx1 such that equation (2.17) holds. Next, we can find a
further subsequence {δ1,j} ⊂ {δj} and an isometry T1 : Σx1 → Σx2 such
that equation (2.17) holds. After finite steps of these procedures, we get
a subsequence {δN−1,j} ⊂ · · · ⊂ {δ1,j} ⊂ {δj} and a family of isometries
Tm : Σxm → Σxm+1 such that, for each m = 0, 1, . . . , N − 1,

| expxm
(δN−1,j l1,mξm), expxm+1

(δN−1,j l2,mTmξm)|
6|xmxm+1|+ (l2,m − l1,m)

〈
ξm, γ

′〉 · δN−1,j

+
((l1,m − l2,m)2

2|xmxm+1|
− gxm(ξ

⊥
m) · |xmxm+1|

6

· (l21,m + l1,m · l2,m + l22,m)
)

·
(
1−

〈
ξm, γ

′〉2 ) · δ2N−1,j

+ o(δ2N−1,j)

for any l1,m, l2,m > 0 and any ξm ∈ Σxm .
Denote the isometry T : Σxo → Σyo by

T = TN−1 ◦ · · · ◦ T1 ◦ T0.

It can be extended naturally to an isometry T : Txo → Tyo .

We fix a > 0 and

am =
m

N
· (1− a) + a, m = 0, 1, . . . , N − 1.

We have am > 0, and a0 = a, aN = 1.
To simplify notations, we put {δj} = {δN−1,j} and denote

W = {v ∈ Tx0

∣∣ av ∈ Wxo and Tv ∈ Wyo}.

Claim 1: We have

∫

Bo(δj)∩W

(
| expxo(aη) expyo(Tη)|2 − |xoyo|2

)
dHn(η)

6
ωn−1

(n+ 2)
· δ2+n

j ·
(
(1− a)2 +

(K + ǫ3) · |xoyo|2
3n

·
(
a2 + a+ 1

))

+ o(δn+2
j ).

(5.17)
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By applying Condition (RC), we have

| expxm
(δjam · bξm), expxm+1

(δjam+1 · bξm+1)|

6
ℓ

N
+ (am+1 − am) · b

〈
ξ, γ′

〉
· δj

+ b2 ·
(N · (am − am+1)

2

2ℓ
− gxm(ξ

⊥
m) · ℓ

6N

· (a2m + am · am+1 + a2m+1)
)

·
(
1−

〈
ξ, γ′

〉2 ) · δ2j
+ o(δ2j )

for any b ∈ [0, 1] and any ξ ∈ Σx0 , where ℓ = |x0xN | = |xoyo| and
ξm := Tm ◦ Tm−1 ◦ · · · ◦ T0ξ.

Hence, by combining with triangle inequality, we have

| expx0
(δja0 · bξ), expxN

(δjaN · bξN )|

6

N−1∑

m=0

| expxm
(δjam · bξm), expxm+1

(δjam+1 · bξm+1)|

6ℓ+ (aN − a0)
〈
ξ, γ′

〉
b · δj

+ b2 ·
N−1∑

m=0

(N · (am − am+1)
2

2ℓ
− gxm(ξ

⊥
m) · ℓ

6N

· (a2m + am · am+1 + a2m+1)
)

·
(
1−

〈
ξ, γ′

〉2 ) · δ2j
+ o(δ2j )

for any b ∈ [0, 1]. That is, by setting v = bξ,

| expxo(δjav), expyo(δjTv)|2 − |xoyo|2

62ℓ · (1− a)
〈
v, γ′

〉
· δj + (1− a)2

〈
v, γ′

〉2 · δ2j

+

N−1∑

m=0

(
N · (am − am+1)

2 − gxm(ξ
⊥
m) · ℓ2

3N

· (a2m + am · am+1 + a2m+1)
)

·
(
|v|2 −

〈
v, γ′

〉2 ) · δ2j
+ o(δ2j )

(5.18)

for any vector v ∈ Bo(1) ⊂ Tx0 .
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Let Fj(v) be the function defined on Bo(1) ⊂ Tx0 by

Fj(v) := | expxo(δjav), expyo(δjTv)|2 − |xoyo|2

− 2ℓ · (1− a)
〈
v, γ′

〉
· δj − (1− a)2

〈
v, γ′

〉2 · δ2j

−
N−1∑

m=0

(
N · (am − am+1)

2 − gxm(ξ
⊥
m) · ℓ2

3N

· (a2m + am · am+1 + a2m+1)
)

·
(
|v|2 −

〈
v, γ′

〉2 ) · δ2j .

For any v ∈ Bo(1), we rewrite (5.18) as

lim sup
j→∞

Fj(v)/δ
2
j 6 0.

Next, we will prove that Fj(v)/δ
2
j has a uniformly upper bound on

Bo(1). Take the midpoint z of xo and yo. By the semi-concavity of
distance function distz, we have

|z expxo(δj · av)| 6 |zxo| − a
〈
v, γ′

〉
δj + Ck0,|xoyo| · δ2j

and

|z expyo(δj · Tv)| 6 |zyo|+
〈
Tv, γ′

〉
δj +Ck0,|xoyo| · δ2j .

By applying triangle inequality, we get

| expxo(δj ·av) expyo(δj ·Tv)| 6 |xoyo|+(1−a)
〈
v, γ′

〉
δj+2Ck0,|xoyo| ·δ2j .

Hence

| expxo(δj · av) expyo(δj · Tv)|2 − |xoyo|2

6 2ℓ · (1− a)
〈
v, γ′

〉
δj + (4C2 + (1− a)2) · δ2j .

By combining with the boundedness of gxm (i.e., equation (5.16)), we
conclude that Fj(v)/δ

2
j 6 C.

Now, by applying Fatou’s Lemma, we have

lim sup
j→∞

∫

Bo(1)

Fj(v)

δ2j
dHn(v) 6

∫

Bo(1)
lim sup
j→∞

Fj(v)

δ2j
dHn(v) 6 0.
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That is,

∫

Bo(1)

(
| expxo(δjav), expyo(δjTv)|2 − |xoyo|2

)
dHn(v)

6 2ℓ · (1− a)

∫

Bo(1)

〈
v, γ′

〉
dHn(v) · δj + (1− a)2

∫

Bo(1)

〈
v, γ′

〉2
dHn(v) · δ2j

+
N−1∑

m=0

(
N · (am − am+1)

2 ·
∫

Bo(1)

(
|v|2 −

〈
v, γ′

〉2 )
dHn(v) · δ2j

− ℓ2

3N
·
N−1∑

m=0

(a2m + am · am+1 + a2m+1)

·
∫

Bo(1)
gxm(ξ

⊥
m) ·

(
|v|2 −

〈
v, γ′

〉2 )
dHn(v) · δ2j

+ o(δ2j ).

(5.19)

Since xo is regular, we have
∫

Bo(1)

〈
v, γ′

〉
dHn(v) = 0,

∫

Bo(1)

〈
v, γ′

〉2
dHn(v) =

1

n

∫

Bo(1)
|v|2dHn(v) =

ωn−1

n(n+ 2)

and∫

Bo(1)

(
|v|2−

〈
v, γ′

〉2 )
dHn(v) =

n− 1

n

∫

Bo(1)
|v|2dHn(v) =

(n− 1)ωn−1

n(n+ 2)
,

where ωn−1 = Vol(Sn−1).
By equation (5.15), and denoting ξm = (ξ⊥m, θ) ⊂ Σxm , the spherical

suspension over Λxm , we have
∫

Σxm

gxm(ξ
⊥
m) ·

(
|ξm|2 −

〈
ξm, γ

′〉2 )dHn−1(ξm)

=

∫

Σxm

(1− cos2 θ)gxm(ξ
⊥
m)dHn−1(ξ)

=

∫ π

0

∫

Λxm

sin2 θgxm(ξ
⊥
m) · sinn−2 θdHn−2(ξ⊥m)dθ

=

∫ π

0
sinn θdθ

∫

Λxm

gxm(ξ
⊥
m)dHn−2(ξ⊥m)

>

∫ π

0
sinn θdθ · −K − ǫ3

n− 1
ωn−2 = −K + ǫ3

n
ωn−1.
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Hence, we have
∫

Bo(1)
gxm(ξ

⊥
m) ·

(
|v|2 −

〈
v, γ′

〉2 )
dHn(v)

=

∫ 1

0
r2
∫

Σxm

gxm(ξ
⊥
m) ·

(
|ξm|2 −

〈
ξm, γ

′〉2 ) · rn−1dHn−1(ξm)dr

=
1

n+ 2

∫

Σxm

gxm(ξ
⊥
m) ·

(
|ξm|2 −

〈
ξm, γ

′〉2 )dHn−1(ξm)

> − K + ǫ3
n(n+ 2)

ωn−1.

Putting these into (5.19), and combining with am+1 − am = 1−a
N , we

have
∫

Bo(1)

(
| expxo(δjav), expyo(δjTv)|2 − |xoyo|2

)
dHn(v)

6 (1− a)2
ωn−1

n(n+ 2)
· δ2j

+
(n− 1)ωn−1

n(n+ 2)
· δ2j

·
N−1∑

m=0

(
N · (am − am+1)

2 +
ℓ2(K + ǫ3)

3N(n − 1)
·
(
a2m + am · am+1 + a2m+1

))

+ o(δ2j )

= (1− a)2
ωn−1

n(n+ 2)
· δ2j

+
(n− 1)ωn−1

n(n+ 2)
· δ2j ·

N−1∑

m=0

( (a− 1)2

N
+
ℓ2(K + ǫ3)

3N(n − 1)
· a

3
m+1 − a3m
am+1 − am

)

+ o(δ2j )

=
ωn−1

(n+ 2)
· δ2j ·

(
(1− a)2 +

ℓ2(K + ǫ3)

3n
·
(
a2 + a+ 1

))
+ o(δ2j ).

By setting η = vδj , we have

∫

Bo(δj )

(
| expxo(aη), expyo(Tη)|2 − |xoyo|2

)
dHn(η)

6
ωn−1

(n+ 2)
· δ2+n

j ·
(
(1− a)2 +

ℓ2(K + ǫ3)

3n
·
(
a2 + a+ 1

))
+ o(δn+2

j ).

(5.20)

Since xo and yo are smooth, by (2.4) in Lemma 2.1, we have

Hn
(
Bo(δj)\W

)
= o(δn+1

j ).
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On the other hand, by triangle inequality, we have

∣∣| expxo(aη), expyo(Tη)|2 − |xoyo|2
∣∣

6 (| expxo(aη), expyo(Tη)|+ |xoyo|) · (a|η|+ |Tη|)
6 Cδj

for all η ∈ Bo(δj).
Now the desired estimate (5.17) in Claim 1 follows from the above

two inequalities and equation (5.20).

Step 4. Integral version of maximum principle.
Let us recall that in Step 2, the point pair (xo, yo) is a minimum of

H3(x, y) on Bp(R)× U . Then we have

0 6

∫

Bo(r)∩W

(
H3

(
expxo(aη), expyo(Tη)

)
−H3(x

o, yo)
)
dHn(η)

=

∫

Bo(r)∩W

(
v3
(
expxo(aη)

)
− v3(x

o)
)
dHn(η)

+

∫

Bo(r)∩W

(
u3
(
expyo(Tη)

)
− u3(y

o)
)
dHn(η)

+

∫

Bo(r)∩W

| expxo(aη) expyo(Tη)|2 − |xoyo|2
2t

dHn(η)

:= I1(r) + I2(r) + I3(r),

(5.21)

where W = {v ∈ Tx0 | av ∈ Wxo and Tv ∈ Wyo}.
By the condition Ric > −K and Laplacian comparison (see [52] or

[22]), we have

L|xxo|2 6 c(n,K,diamΩ) and L|yyo|2 6 c(n,K,diamΩ).

Claim 2: We have

(5.22) I1(r) 6
−ǫ1 + c · ǫ2 − wt,a,θ(x

o)

2n(n+ 2)
· a2 · ωn−1r

n+2 + o(rn+2)

and

(5.23) I2(r) 6
−ǫ1 + c · ǫ2 + f(yo)

2n(n + 2)
· ωn−1r

n+2 + o(rn+2)

for all small r > 0, where c = c(n,K,diamΩ).
Let

α(x) = v3(x) +
|xyo|2
2t

and β =
|xyo|2
2t

.
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Since xo is a smooth point, by Lemma 2.1, we have
∫

Bo(r)∩Wxo

(
α
(
expxo(aη)

)
− α(xo)

)
dHn(η)

= a−n ·
∫

Bxo (ar)

(
α(x)− α(xo)

)
(1 + o(r))dvol(x).

Note that α(x) − α(xo) > 0 and

Lv3 6 Lv2 6
(
− ǫ1 + c(n,K,diamΩ) · ǫ2

)
· vol + Lv0

6 (−wt,a,θ − ǫ1 + c · ǫ2) · vol,
Lα−α(xo) = Lv3 + Lβ 6

(
− wt,a,θ − ǫ1 + c · ǫ2 +∆β

)
· vol.

Since xo is a Lebesgue point of −wt,a,θ +∆β, by Corollary 4.5, we get
∫

∂Bxo (s)

(
α(x) − α(xo)

)
dvol(x)

6
−wt,a,θ(x

o)− ǫ1 + c · ǫ2 +∆β(xo)

2n
· s2 ·Hn−1

(
∂Bk

o (s)
)
+ o(rn+1)

for all 0 < s < ar. By combining with the fact that xo is regular, we
have
∫

Bxo(ar)

(
α(x) − α(xo)

)
dvol(x)

6
−wt,a,θ(x

o)− ǫ1 + c · ǫ2 +∆β(xo)

2n(n+ 2)
· ωn−1 · (ar)n+2 + o(rn+2).

Therefore, we obtain (since α(x)− α(xo) > 0),

∫

Bo(r)∩W

(
α
(
expxo(aη)

)
− α(xo)

)
dHn(η)

6

∫

Bo(r)∩Wxo

(
α
(
expxo(aη)

)
− α(xo)

)
dHn(η)

6
−wt,a,θ(x

o)− ǫ1 + c · ǫ2 +∆β(xo)

2n(n+ 2)
· a2 · ωn−1r

2+n + o(r2+n).

(5.24)

On the other hand, since β is Lipschitz (since it is semi-concave) and
equation (2.4)

Hn
(
Bo(r)\W

)
= o(rn+1),

we have
∫

Bo(r)∩W

( | expxo(aη)yo|2
2t

− |xoyo|2
2t

)
dHn(η)

=

∫

Bo(r)∩Wxo

(
β(expxo(aη)) − β(xo)

)
dHn(η) + o(rn+2).
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Since xo ∈ Regβ, by applying equation (2.3) in Lemma 2.1, the Lipschitz
continuity of β, and Lemma 2.3, we get

∫

Bo(r)∩Wxo

(
β(expxo(aη))− β(xo)

)
dHn(η)

= a−n

∫

Bxo(ar)

(
β(x)− β(xo)

)
dvol + o(rn+2)

=
∆β(xo)

2n(n+ 2)
· a2 · ωn−1r

n+2 + o(rn+2).

By combining above two equalities, we have
∫

Bo(r)∩W

( | expxo(aη)yo|2
2t

− |xoyo|2
2t

)
dHn(η)(5.25)

=
∆β(xo)

2n(n+ 2)
· a2 · ωn−1r

n+2 + o(rn+2).

Therefore, the desired estimate (5.22) follows from equations (5.24),
(5.25), and v3 = α− β.

The estimate for (5.23) is similar. Let

α̃(y) = u3(y) +
|xoy|2
2t

and β̃ =
|xoy|2
2t

.

By a similar argument to (5.24) and (5.25), we have, for all small r > 0,
∫

Bo(r)∩W

(
α̃
(
expyo(Tη)

)
− α̃(yo)

)
dHn(η)

6
f(yo)− ǫ1 + c · ǫ2 +∆β̃(yo)

2n(n+ 2)
· ωn−1r

2+n + o(r2+n)

and
∫

Bo(r)∩W

( | expyo(Tη)xo|2
2t

− |xoyo|2
2t

)
dHn(η)

=
∆β̃(yo)

2n(n+ 2)
· ωn−1r

n+2 + o(rn+2).

Thus the combination of these two estimates and u3(y) = α̃− β̃ implies
(5.23). The proof of Claim 2 is finished.

By combining (5.21), Claim 1 (5.17) and Claim 2 (5.22)–(5.23), we
have
[−ǫ1 + c · ǫ2

2n
(a2 + 1)− a2 · wt,a,θ(x

o)

2n
+
f(yo)

2n
+

(a− 1)2

2t

]
· δn+2

j

+
[(K + ǫ3)|xoyo|2

6nt
(1 + a+ a2)

]
· δn+2

j + o(δn+2
j ) > 0
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for all j ∈ N. Thus,

−ǫ1 + c · ǫ2
2n

(a2 + 1)− a2 · wt,a,θ(x
o)

2n
+
f(yo)

2n
+

(a− 1)2

2t

+
(K + ǫ3)|xoyo|2

6nt
(1 + a+ a2) > 0.

Combining with the definition of function wt,a,θ, (5.14), we have

0 6(a2 + 1)
−ǫ1 + cǫ2

2n
+

(a2 + a+ 1)

6nt

(
(K + ǫ3)|xoyo|2 −K|xoF (xo)|2

)

(5.26)

− 1

2n

(
sup

z∈BFt(x
o)(θ)

f(z)− f(yo)
)
− θ

2n
.

In Step 2, we have known that (x̄, Ft(x̄)) is the unique minimum
point of H(x, y). Because H3(x, y) converges to H(x, y) as ǫ1, ǫ2 and
bj , 1 6 j 6 2n, tend to 0+, we know that (xo, yo) converges to (x̄, Ft(x̄)),
as ǫ1, ǫ2 and bj, 1 6 j 6 2n, tend to 0+.

On the other hand, because x̄ is regular and xo converges to x̄ as
ǫ1, ǫ2 and bj , 1 6 j 6 2n, tend to 0+, function

u(y) +
|xoy|2
2t

converges to function

u(y) +
|x̄y|2
2t

as ǫ1, ǫ2 and bj , 1 6 j 6 2n, tend to 0+. Ft(x
o) is a minimum of

u(y) + |xoy|2/(2t). ut is differentiable at x̄ (see Step 2). So Ft(x̄) is the
unique minimum point of u(y)+ |x̄y|2/(2t). Therefore, Ft(x

o) converges
to Ft(x̄) as ǫ1, ǫ2 and bj, 1 6 j 6 2n, tend to 0+.

Hence, when we choose ǫ1, ǫ2 and bj, 1 6 j 6 2n sufficiently small,
we have that |yoFt(x

o)| ≪ θ. This implies

yo ∈ BFt(xo)(θ) and
∣∣|xoyo| − |xoFt(x

o)|
∣∣≪ θ.

Now we can choose ǫ1, ǫ2, and ǫ3 so small that

(a2 +1)
−ǫ1 + cǫ2

2n
+

(a2 + a+ 1)

6nt

(
(K + ǫ3)|xoyo|2 −K|xoF (xo)|2

)
6

θ

4n

and yo ∈ BFt(xo)(θ). This contradicts (5.26). Therefore we have com-
pleted the proof of the proposition. q.e.d.

Lemma 5.4. Let Ω be a bounded open domain in an n-dimensional
Alexandrov space. Assume that a W 1,2(Ω)-function u satisfies Lu >

f · vol for some f ∈ L∞(Ω). Then, for any Ω′ ⋐ Ω, we have

sup
x∈Ω′

u 6 C‖u‖L1(Ω) + C‖f‖L∞(Ω),
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where the constant C depends on lower bounds of curvature, Ω and Ω′.

Proof. If f = 0 and u > 0, this lemma has been shown in Theorem
8.2 of [4] for any metric measure space supporting a doubling property
and a weak Poincaré inequality. According to volume comparison and
Theorem 7.2 of [19], it holds for Alexandrov spaces.

On the other hand, according to Lemma 6.4 of [4] (see also Lemma
3.10 of [17]), we know that u+ is also a subsolution of Lu = 0, that is,
Lu+ > 0.

Therefore, if f = 0, we have

sup
x∈Ω′

u 6 sup
x∈Ω′

u+ 6 C‖u+‖L1(Ω) 6 C‖u‖L1(Ω).

In fact, the proof in [4] works for general f ∈ L∞(Ω). In the following,
we give a simple argument for the general case on Alexandrov spaces.

For each p ∈ Ω, we choose a Perelman concave function h defined
on some neighborhood Bp(rp), which is given in Lemma 3.3, such that
−1 6 h 6 0. Then we have

Lu−‖f‖L∞(Ω)h > (f + ‖f‖L∞(Ω)) · vol > 0 on Bp(rp).

Applying the above estimate (in case f = 0), we have

sup
Bp(rp/2)

u 6 sup
Bp(rp/2)

(u− ‖f‖L∞(Ω)h) 6 C‖u− ‖f‖L∞(Ω)h‖L1(Bp(rp))

6 C‖u‖L1(Bp(rp)) + C‖f‖L∞(Ω) · vol(Bp(rp)).

Since Ω′ is compact, there are finite balls Bpi(ri) such that the above
estimate holds on each Bpi(ri) and that Ω′ ⊂ ∪iBpi(ri/2). Therefore,
we have

sup
Ω′

u 6 C‖u‖L1(Ω) + C‖f‖L∞(Ω) · vol(Ω).

The proof of the lemma is finished. q.e.d.

In [40, 41], by using his key lemma, Petrunin proved that any har-
monic function on an Alexandrov space with nonnegative curvature is
locally Lipschitz continuous. Very recently, this Lipschitz continuity re-
sult on compact Alexandrov spaces was also obtained by Gigli–Kuwada–
Ohta in [11] via probability method. We can now establish the locally
Lipschitz continuity for solutions of general Poisson equations.

Corollary 5.5. Let M be an n-dimensional Alexandrov space and Ω
be a bounded domain of M . Assume that u satisfies Lu = f · vol on Ω
and f ∈ Lip(Ω). Then u is locally Lipschitz continuous.

Proof. Since Ω is bounded, we may assume that M has Ricci curva-
ture > −K on Ω with some K > 0.

By applying Lemma 5.4 to both Lu = f · vol and L−u = −f · vol,
we can conclude that u ∈ L∞(Ω′) for any Ω′ ⋐ Ω. Without loss of
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generality, we may assume

−1 6 u 6 0

on Ω′. Otherwise, we replace u by (u− supΩ′ u)/(supΩ′ u− infΩ′ u).
Fix any open subset Ω1 ⋐ Ω′ and let (ut)06t6t̄ be its Hamilton–Jacobi

semigroup defined on Ω1. By Lemma 5.1, we know

−1 6 ut 6 0

on Ω1, for all 0 6 t 6 t̄.
By Proposition 5.3, there is t0 > 0 such that (5.12) holds for all

t ∈ (0, t0) and all a > 0. By putting a = 1 in (5.12), we have

Lut 6 (f ◦ Ft +Kt|∇ut|2) · vol, ∀ 0 < t < t0

on Ω1.
Set

K̄ = K + 1 and Φt(x) =
exp(−K̄tut)− 1

t

for all 0 < t < t0(6 1). Then we have

0 6 Φt 6 K̄eK̄ , 1 6 exp(−K̄tut) 6 eK̄

and, for each t ∈ (0, t0),

LΦt = −K̄ exp(−K̄tut) · (Lut − K̄t|∇ut|2) · vol
> −K̄ exp(−K̄tut) · (f ◦ Ft +Kt|∇ut|2 − K̄t|∇ut|2) · vol
> −K̄ exp(−K̄tut) · ‖f‖L∞(Ω) · vol
> −C · vol

(5.27)

in the sense of measure on Ω1. Here and in the following, C will denote
various positive constants that do not depend on t (while they might
depend on K, t0, Ω,Ω1,Ω2,Ω3, ‖f‖L∞(Ω) and the Lipschitz constant of
f , Lipf , on Ω).

By applying Caccioppoli inequality (see Proposition 7.1 of [4]), or by
choosing test function ϕΦt for some suitable cut-off ϕ on Ω1, we have

‖∇Φt‖L2(Ω2) 6 C‖Φt‖L2(Ω1) 6 C

for any open subset Ω2 ⋐ Ω1.
Noting that −K̄ut > 0 and

|∇Φt| = K̄ exp(−K̄tut)|∇ut| > K̄|∇ut|,

we have

(5.28) ‖∇ut‖L2(Ω2) 6 C.
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By using inequalities exp(−K̄tut) 6 eK̄ and |1−eγ +γ ·eγ | 6 C ·γ2/2
for any 0 6 γ 6 K̄t0, we have, for each t ∈ (0, t0) and x ∈ Ω1,

∣∣Φt+s(x)− Φt(x)
∣∣ 6

∣∣∣
exp

(
− K̄(t+ s)ut+s

)
− 1

t+ s
− exp

(
− K̄tut+s

)
− 1

t

∣∣∣

+
∣∣∣
exp

(
− K̄tut+s

)
− 1

t
− exp

(
− K̄tut

)
− 1

t

∣∣∣

6 s · max
t6t′6t+s

∣∣∣
exp(−t′K̄ut+s)(−K̄ut+s)t

′ − exp(−t′K̄ut+s) + 1

(t′)2

∣∣∣

+ K̄|ut+s − ut| · max
ut+s6a6ut

exp(−K̄ta)

6 Cs+ C|ut+s − ut|

(5.29)

for all 0 < s < t0 − t.
By applying the Dominated Convergence Theorem, (5.28), (5.29),

and Lemma 5.1(iii)–(iv), we have

∂+

∂t
‖Φt‖L1(Ω2) = lim sup

s→0+

∫

Ω2

Φt+s(x)− Φt(x)

s
dvol

6 Cvol(Ω2) + C lim sup
s→0+

∫

Ω2

|ut+s − ut|
s

dvol

= Cvol(Ω2) +
C

2

∫

Ω2

|∇ut|2dvol 6 C.

This implies that

(5.30) ‖Φt‖L1(Ω2) 6 ‖Φt′‖L1(Ω2) + C(t− t′)

for any 0 < t′ < t < t0. Since 0 6 Φt′ 6 K̄eK̄ and limt′→0+ Φt′(x) =
−K̄u(x), we have

lim
t′→0+

‖Φt′‖L1(Ω2) =

∫

Ω2

(−K̄u)dvol.

By combining with (5.30), we have

∫

Ω2

Φt + K̄u

t
dvol =

1

t
(‖Φt‖L1(Ω′

1)
− lim

t′→0+
‖Φt′‖L1(Ω′

1)
) 6 C.

On the other hand, for each t ∈ (0, t0), since f is Lipschitz and

|xFt(x)| = t|∇ut(x)|,
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for almost all x ∈ Ω1, we have

LΦt+K̄u = −K̄ exp(−K̄tut)
(
Lut − K̄t|∇ut|2

)
· vol + K̄f · vol

= −K̄ exp(−K̄tut) ·
(
Lut − K̄t|∇ut|2 − f

)
· vol

− K̄f ·
(
exp(−K̄tut)− 1

)
· vol

> −K̄ exp(−K̄tut) ·
(
f ◦ Ft +Kt|∇ut|2 − K̄t|∇ut|2 − f

)
· vol

− K̄f ·
(
exp(−K̄tut)− 1

)
· vol

> −K̄ exp(−K̄tut) · (Lipf · |xFt(x)| − t|∇ut|2) · vol
− Ct · ‖f‖L∞(Ω) · vol

= −K̄ exp(−K̄tut) · t · (Lipf · |∇ut| − |∇ut|2) · vol
− Ct · ‖f‖L∞(Ω) · vol

> −Ct ·
(Lip2f

4
+ ‖f‖L∞(Ω)

)
· vol

> −Ct · vol

in the sense of measure on Ω2. Note that Φt + K̄u > −K̄ut + K̄u > 0
(because of Lemma 5.1(i)). According to Lemma 5.4, we get

max
Ω3

∣∣∣
Φt + K̄u

t

∣∣∣ 6 C‖Φt + K̄u

t
‖L1(Ω2)+C = C

∫

Ω2

Φt + K̄u

t
dvol+C 6 C

for any open subset Ω3 ⋐ Ω2. Hence, we have (since Φt > −K̄ut)

−ut + u

t
6 K̄−1Φt + K̄u

t
6 C

on Ω3, for each t ∈ (0, t0).
Therefore, by the definition of ut, we obtain

u(x) 6 ut(x) + Ct 6 u(y) +
|xy|2
2t

+ Ct

for all x, y ∈ Ω3 and t ∈ (0, t0). Now fix x and y in Ω3 such that |xy| < t0.
By choosing t = |xy|, we get

u(x)− u(y) 6 C|xy|.

Hence, by replacing x and y, we have

|u(x)− u(y)| 6 C|xy|, for all |xy| < t0.

This implies that u is Lipschitz continuous on Ω3.
By the arbitrariness of Ω3 ⋐ Ω2 ⋐ Ω1 ⋐ Ω′ ⋐ Ω, we get that u is

locally Lipschitz continuous on Ω, and complete the proof. q.e.d.
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5.2. Bochner-type formula. Bochner formula is one of the important
tools in differential geometry. In this subsection, we will extend it to
Alexandrov space with Ricci curvature bounded below.

Lemma 5.6. Let u ∈ Lip(Ω) with Lipschitz constant Lipu, and let
ut be its Hamilton–Jacobi semigroup defined on Ω′ ⋐ Ω, for 0 6 t < t̄.
Then we have the following properties:

(i) For any t > 0, we have

(5.31) |∇−u|(Ft(x)) 6 |∇ut(x)| 6 Lipu(Ft(x))

for almost all x ∈ Ω′, where Ft is defined in (5.10).
In particular, the Lipschitz constant of ut, Liput 6 Lipu.
(ii) For almost all x ∈ Ω′, we have

(5.32) lim
t→0+

ut(x)− u(x)

t
= −1

2
|∇u(x)|2.

Furthermore, for each sequence tj converging to 0+, we have

lim
tj→0+

∇utj (x) = ∇u(x)

for almost all x ∈ Ω′.

Proof. (i) Lipschitz function ut is differentiable at almost all points
x ∈ Ω′. For such a point x, we first prove |∇−u|(Ft(x)) 6 |∇ut(x)|.

Assume |∇−u|(Ft(x)) > 0. (If not, we are done.) This implies y :=
Ft(x) 6= x. Indeed, if Ft(x) = x, we have

u(x) 6 u(z) +
|xz|2
2t

for all z ∈ Ω′. Hence
(
u(x) − u(z)

)
+

6 |xz|2/(2t). This concludes

|∇−u|(Ft(x)) = 0.
Take a sequence of points yj converging to y such that

lim
yj→y

u(y)− u(yj)

|yyj|
= |∇−u|(y).

Let xj be points in geodesic xy such that |xxj | = |yyj|. By

ut(xj) 6 u(yj) +
|xjyj|2
2t

and ut(x) = u(y) +
|xy|2
2t

,

we have

(5.33) ut(xj)− ut(x) 6 u(yj)− u(y) +
1

2t
(|xjyj|2 − |xy|2).

Since ut is differentiable at x,

ut(xj)− ut(x) = |xxj | ·
〈
∇ut(x), ↑xj

x

〉
+ o(|xxj |).

Triangle inequality implies

|xjyj| 6 |xjy|+ |yyj | = |xjy|+ |xxj | = |xy|.
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Therefore, by combining with (5.33), we have

u(y)− u(yj) 6 −|xxj | ·
〈
∇ut(x), ↑xj

x

〉
+ o(|xxj |)

6 |xxj | · |∇ut(x)| + o(|xxj |)
= |yyj| · |∇ut(x)|+ o(|yyj |).

Letting yj → y, this implies |∇−u|(y) 6 |∇ut(x)|.
Now let us prove |∇ut(x)| 6 Lipu(Ft(x)) at a point x, where ut is

differentiable. Assume |∇ut(x)| > 0. (If not, we are done.) This implies
y := Ft(x) 6= x. Indeed, if y = x, we have

ut(z) 6 u(x) +
|xz|2
2t

= ut(x) +
|xz|2
2t

, ∀ z ∈ Ω′.

On the other hand, ut is differentiable at x,

ut(z) = ut(x) + 〈∇ut(x), ↑zx〉 · |xz|+ o(|xz|).
Hence, we obtain

〈∇ut(x), ↑zx〉 6 |xz|/(2t) + o(1)

for all z near x. Hence |∇ut(x)| = 0.
Let the sequence xj ∈ Ω′ converge to x and

(5.34) lim
xj→x

〈
∇ut(x), ↑xj

x

〉
= |∇ut(x)|.

Take yj to be points in geodesic xy with |yyj| = |xxj |. By triangle
inequality, we have

|xjyj| 6 |xxj|+ |xyj| = |yyj|+ |xyj| = |xy|.
Combining with

ut(xj) 6 u(yj) +
|xjyj|2
2t

and ut(x) = u(y) +
|xy|2
2t

,

we have

(5.35) ut(xj)− ut(x) 6 u(yj)− u(y) 6 |u(yj)− u(y)|.
Since ut is differentiable at x,

ut(xj)− ut(x) =
〈
∇ut(x), ↑xj

x

〉
· |xxj |+ o(|xxj |).

Hence, by combining with (5.34), (5.35), and |xjx| = |yjy|, we get

|∇ut(x)| 6 lim sup
yj→y

|u(yj)− u(y)|
|yyj|

6 Lipu(y).

The assertion (i) is proved.

(ii) The equation (5.32) was proved by Lott–Villani in [30] (see also
Theorem 30.30 in [49]).
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Now let us prove the second assertion. The functions u and utj are
Lipschitz on Ω′. Then they are differentiable at almost all points x ∈ Ω′.
For such a point x, according to (5.5) in Lemma 5.2, we have, for each tj ,

utj (x) = u(ytj ) +
|xytj |2
2tj

= u(ytj ) + tj ·
|∇utj (x)|2

2
,

where ytj is the (unique) point such that (5.4) holds, and

u(ytj ) = u(x) + |xytj |
〈
∇u(x), ↑ytjx

〉
+ o(tj)

= u(x)− tj
〈
∇u(x),∇utj (x)

〉
+ o(tj).

The combination of the above two equations and (5.32) implies that

lim
tj→0+

(
−
〈
∇u(x),∇utj (x)

〉
+

|∇utj (x)|2
2

)
= −|∇u(x)|2

2
.

This is

lim
tj→0+

(
|∇u(x)|2 − 2

〈
∇u(x),∇utj (x)

〉
+ |∇utj (x)|2

)
= 0,

which implies

lim
tj→0+

∇utj (x) = ∇u(x).

Now the proof of this lemma is completed. q.e.d.

Next we have the following Bochner-type formula.

Theorem 5.7 (Bochner-type formula). Let M be an n-dimensional
Alexandrov space with Ricci curvature bounded from below by −K and Ω
be a bounded domain in M . Let f(x, s) : Ω× [0,+∞) → R be a Lipschitz
function and satisfy the following:

(a) there exists a zero measure set N ⊂ Ω such that for all s > 0,
the functions f(·, s) are differentiable at any x ∈ Ω\N ;

(b) the function f(x, ·) is of class C1 for all x ∈ Ω and the function
∂f
∂s (x, s) is continuous, non-positive on Ω× [0,+∞).
Suppose that u ∈ Lip(Ω) and

Lu = f(x, |∇u|2) · vol.

Then we have |∇u|2 ∈W 1,2
loc (Ω) and

(5.36) L|∇u|2 > 2
(f2(x, |∇u|2)

n
+
〈
∇u,∇f(x, |∇u|2)

〉
−K|∇u|2

)
· vol

in the sense of measure on Ω, provided |∇u| is lower semi-continuous
at almost all x ∈ Ω, namely, there exists a representative of |∇u| which
is lower semi-continuous at almost all x ∈ Ω.



504 H.-C. ZHANG & X.-P. ZHU

Proof. Recalling the pointwise Lipschitz constant Lipu of u in Section
2.2, we defined a function

g(x) := max{Lip2u, |∇u(x)|2}, ∀ x ∈ Ω.

Noting the fact that Lipu = |∇u| for almost all x ∈ Ω, we have g = |∇u|2
for almost all x ∈ Ω, and hence

Lu = f
(
x, g(x)

)
· vol

in the sense of measure on Ω.
The function g is lower semi-continuous at almost all x ∈ Ω. Indeed,

by the definition of g, we have g(x) > |∇u(x)|2 at any x ∈ Ω. On the
other hand, g(x) = |∇u(x)|2 at almost all x ∈ Ω. Combining with the
fact that |∇u| is lower semi-continuous at almost all x ∈ Ω, we can get
the desired lower semi-continuity of g at almost all x ∈ Ω.

The combination of the assumption ∂f
∂s 6 0 and the lower semi-

continuity of g at almost everywhere in Ω implies that f = f
(
x, g(x)

)

is upper semi-continuous at almost all x ∈ Ω.
Fix any open subset Ω′ ⋐ Ω. Let ut be the Hamilton–Jacobi semi-

group of u, defined on Ω′, and let Ft be the map defined in (5.10). By
applying Proposition 5.3, there exists some t0 > 0 such that for each
t ∈ (0, t0), we have

a2 · Lut 6

[
f ◦ Ft +

n(a− 1)2

t
+
Kt

3
(a2 + a+ 1)|∇ut|2

]
· vol

for all a > 0. Hence, the absolutely continuous part ∆ut satisfies

a2 ·∆ut(x) 6 f ◦ Ft(x) +
n(a− 1)2

t
+
Kt

3
(a2 + a+ 1)|∇ut(x)|2

for all a > 0 and almost all x ∈ Ω′. By setting

D = −K
3
|∇ut(x)|2

and

A1 = −∆ut(x)+
n

t
− tD, A2 = −2n

t
− tD, A3 = f ◦Ft(x)+

n

t
− tD,

we can rewrite this equation as

A1 · a2 +A2 · a+A3 > 0

for all a > 0 and almost all x ∈ Ω′.
By taking a = 1, we have

(5.37) ∆ut(x) 6 f ◦ Ft(x)− 3tD.

Because u is Lipschitz, by Lemma 5.6(i), we have

|D| = |K| · |∇ut|2/3 6 |K| · Lip2u/3, g 6 Lip2u,

and then f = f
(
x, g(x)

)
is bounded in Ω′.
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The combination of equation (5.37) and the boundedness of D, f
implies that A1 > 0 and A2 < 0, when t is sufficiently small. By choosing
a = − A2

2A1
, we obtain

(5.38)
(
∆ut(x)− f ◦ Ft(x)

)
·
(n
t
− tD

)
6 −∆ut(x) · f ◦ Ft(x)− 3nD +

3

4
t2D2.

Therefore, (by writing f = f(x, g(x)) and f◦Ft = f◦Ft(x) = f(Ft(x), g◦
Ft(x))),

∆ut(x)− f
(
x, g(x)

)

t
6

(n− t2D)
(
f ◦ Ft − f

)
/t− f · f ◦ Ft − 3nD + 3t2D2/4

n− t2D + tf ◦ Ft

=
f ◦ Ft − f

t
− f2 + 3nD

A +
f2 − f2 ◦ Ft

A +
3t2D2

4A

=
f ◦ Ft − f

(
Ft(x), |∇ut(x)|2

)

t
+
f
(
Ft(x), |∇ut(x)|2

)
− f

t
− f2 + 3nD

A

+
f2 − f2

(
Ft(x), |∇ut(x)|2

)

A +
f2
(
Ft(x), |∇ut(x)|2

)
− f2 ◦ Ft

A +
3t2D2

4A

=
f
(
Ft(x), |∇ut(x)|2

)
− f

t
+
f2 − f2

(
Ft(x), |∇ut(x)|2

)

A − f2 + 3nD

A

+
(
f ◦ Ft − f

(
Ft(x), |∇ut(x)|2

))
·
(1
t
− f ◦ Ft + f

(
Ft(x), |∇ut(x)|2

)

A
)

+
3t2D2

4A
for almost all x ∈ Ω′, where

A = n− t2D + tf ◦ Ft.

From Lemma 5.6(i) and the definition of function g, we have

g ◦ Ft(x) > Lip2u(Ft(x)) > |∇ut(x)|2, a.e., x ∈ Ω′.

Combining with the assumption ∂f
∂s 6 0, we have, for almost all x ∈ Ω′,

f◦Ft−f
(
Ft(x), |∇ut(x)|2

)
= f

(
Ft(x), g◦Ft(x)

)
−f
(
Ft(x), |∇ut(x)|2

)
6 0.

On the other hand, by the boundedness of D and f , we have

A = n− t2D + tf ◦ Ft >
n

2

when t is sufficiently small. By combining with the boundedness of f ,
we have

1

t
− f ◦ Ft + f

(
Ft(x), |∇ut(x)|2

)

A > 0

when t is sufficiently small.
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When t is sufficiently small, by using A > n/2 and the boundedness
of D again, we have

∆ut(x)− f
(
x, g(x)

)

t
6
f
(
Ft(x), |∇ut(x)|2

)
− f

t

+
f2 − f2

(
Ft(x), |∇ut(x)|2

)

A
− f2 + 3nD

A + C · t.

Here and in the following proof, C will denote various positive constants
that do not depend on t.

Note that Lut 6 ∆ut · vol and Lu = f · vol. The above inequality
implies that

1

t
Lut−u 6

[f
(
Ft(x), |∇ut(x)|2

)
− f

t

+
f2 − f2

(
Ft(x), |∇ut(x)|2

)

A − f2 + 3nD

A + C · t
]
· vol

in the sense of measure on Ω′.
Fix arbitrary 0 6 φ ∈ Lip0(Ω

′). We have

1

t
Lut−u(φ) 6

∫

Ω′

φ ·
(f
(
Ft(x), |∇ut(x)|2

)
− f

t

)
dvol(5.39)

+

∫

Ω′

φ · f
2 − f2

(
Ft(x), |∇ut(x)|2

)

A dvol

−
∫

Ω′

φ · f
2 + 3nD

A dvol + Ct sup |φ|

:= I1(t) + I2(t)− I3(t) + Ct sup |φ|.

We want to take the limit in the inequality above. So we have to
estimate the limits of I1(t), I2(t), and I3(t), as t→ 0+.

Since for almost all x ∈ Ω′,

g = Lipu(x) = |∇u(x)|,
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we have

I1(t) =

∫

Ω′

φ
f
(
Ft(x), |∇ut(x)|2

)
− f

(
x, g(x)

)

t
dvol

=

∫

Ω′

φ
f
(
Ft(x), |∇ut(x)|2

)
− f(x, |∇u(x)|2)

t
dvol

=

∫

Ω′

φ
f
(
Ft(x), |∇ut(x)|2

)
− f

(
Ft(x), |∇u(x)|2

)

t
dvol

+

∫

Ω′

φ
f
(
Ft(x), |∇u(x)|2

)
− f

(
x, |∇u(x)|2

)

t
dvol

:= J1(t) + J2(t).

(5.40)

In order to calculate limt→0+ J1(t), we need the following:
Claim: For any Ω1 ⋐ Ω′, there exists constant C > 0 such that

∫

Ω1

∣∣∣∇
(ut − u

t

)∣∣∣
2
dvol 6 C

for all t ∈ (0, t0).

Proof of the Claim. For each t ∈ (0, t0), by combining equation (5.37)
and semi-concavity of ut, we have

Lut−u

t

6

(f ◦ Ft − f

t
+K|∇ut|2

)
· vol

=
(f
(
Ft(x), g ◦ Ft(x)

)
− f(x, g)

t
+K|∇ut|2

)
· vol

(5.41)

in the sense of measure on Ω′. Noting that ∂f
∂s 6 0, and that, for almost

all x ∈ Ω′,

g ◦ Ft(x) > Lip2u(Ft(x)) > |∇ut(x)|2, g(x) = |∇u(x)|2,
(see Lemma 5.6(i)) we have, for each t ∈ (0, t0),

Lut−u

t

6

(f
(
Ft(x), |∇ut(x)|2

)
− f(x, |∇u|2)

t
+K|∇ut|2

)
· vol

6

(
2Lipf · |xFt(x)|+

∣∣|∇ut|2 − |∇u|2
∣∣

t
+K|∇ut|2

)
· vol

6

(
2Lipf ·

∣∣|∇ut|2 − |∇u|2
∣∣

t
+ 2Lipf · |∇ut|+K|∇ut|2

)
· vol

because |xFt(x)| = t · |∇ut(x)| for a.e. x ∈ Ω′(see (5.11))

6

(
C ·

∣∣|∇ut|2 − |∇u|2
∣∣

t
+ C

)
· vol

because |∇ut(x)| 6 Lipu (see Lemma 5.6(i))
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=
(
C ·
〈
∇
(ut − u

t

)
,∇(ut + u)

〉
+ C

)
· vol

6

(
C ·
∣∣∣∇
(ut − u

t

)∣∣∣+ C
)
· vol

in the sense of measure on Ω′.
Since ut−u 6 0, according to Caccioppoli inequality, Theorem 7.1 in

[4] (or by choosing test function −ϕ(ut−u)/t for some suitable nonneg-
ative cut-off ϕ on Ω′), for any Ω1 ⋐ Ω′, there exists positive constant
C, independent of t, such that

(5.42)

∫

Ω1

∣∣∣∇
(ut − u

t

)∣∣∣
2
dvol 6 C

∫

Ω′

(ut − u

t

)2
dvol +C.

On the other hand, for almost all x ∈ Ω′, according to Eq. (2.6) in
[29], we have

|u(x)− ut(x)|
t

6
Lip2u

2
.

Consequently, ∫

Ω1

(ut − u

t

)2
dvol 6 C.

The desired estimate follows from the combination of this and (5.42).
Now the proof of the claim is finished. q.e.d.

Let us continue the proof of Theorem 5.7.
Let Ω1 = suppφ ⋐ Ω′. By combining (5.32), the above Claim, and

the reflexivity of W 1,2(Ω) (see Theorem 4.48 of [8]), we can conclude
the following facts:

(i) ut converges (strongly) to u in W 1,2(Ω1) as t→ 0+;
(ii) there exists some sequence tj converging to 0+, such that (utj −

u)/tj converges weakly to −|∇u|2/2 in W 1,2(Ω1), as tj → 0+.

Let us estimate J1(t). For each t ∈ (0, t0),

J1(t) =

∫

Ω′

φ
f
(
Ft(x), |∇ut(x)|2

)
− f(Ft(x), |∇u(x)|2)
t

dvol

=

∫

Ω′

φ
f
(
Ft(x), |∇ut(x)|2

)
− f(Ft(x), |∇u(x)|2)

|∇ut|2 − |∇u|2

·
〈
∇(ut + u),∇

(ut − u

t

)〉
dvol

=

∫

Ω′

φ · ∂f
∂s

(
Ft(x), st

)
·
〈
∇(ut + u),∇

(ut − u

t

)〉
dvol

for some st between |∇ut(x)|2 and |∇u(x)|2.
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Let tj be the sequence coming from fact (ii) above. According to
Lemma 5.6(ii),

lim
tj→0+

|∇utj (x)| = |∇u(x)|

for almost all x ∈ Ω′; combining with the continuity of ∂f
∂s , we get

lim
tj→0+

∂f

∂s

(
Ftj (x), stj

)
=
∂f

∂s

(
x, |∇u(x)|2

)
.

On the other hand, by facts (i), (ii) above and the boundedness of

∣∣∣
∂f

∂s

(
Ft(x), st

)∣∣∣ 6 Lipf,

we have

lim
tj→0+

J1(tj) =

∫

Ω′

φ · ∂f
∂s

(x, |∇u|2) ·
〈
2∇u,∇

(−|∇u|2
2

)〉
dvol

= −
∫

Ω′

φ · ∂f
∂s

(x, |∇u|2) ·
〈
∇u,∇|∇u|2

〉
dvol.

(5.43)

Let us calculate the limit J2(tj), where the sequence comes from fact
(ii) above.

For each t ∈ (0, t0), if x ∈ Ω′\N and ut is differentiable at point x,
by Lemma 5.2, we have

f(Ft(x), |∇u(x)|2)− f(x, |∇u(x)|2)
= |xFt(x)|

〈
∇1f(x, |∇u(x)|2), ↑Ft(x)

x

〉
+ o(|xFt(x)|)

= −t ·
〈
∇1f(x, |∇u(x)|2),∇ut(x)

〉
+ o(|xFt(x)|)

where ∇1f(x, s) means the differential of function f(·, s) at point x (see
equation (2.16)). For the sequence tj , the combination of this, equation
(5.11), and Lemma 5.6(ii),

lim
tj→0+

∇utj (x) = ∇u(x),

implies that

lim
tj→0+

f(Ftj (x), |∇u(x)|2)− f(x, |∇u(x)|2)
tj

= −
〈
∇1f(x, |∇u(x)|2),∇u(x)

〉

for almost all x ∈ Ω′. Note that

∣∣∣
f(Ftj (x), |∇u(x)|2)− f(x, |∇u(x)|2)

tj

∣∣∣ 6 Lipf · |xFtj (x)|
tj

6 Lipf ·Lipu
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for almost everywhere in Ω′. Dominated Convergence Theorem con-
cludes that

lim
tj→0+

J2(tj) = lim
tj→0+

∫

Ω′

φ
f(Ftj (x), |∇u(x)|2)− f(x, |∇u(x)|2)

tj
dvol

= −
∫

Ω′

φ
〈
∇1f(x, |∇u(x)|2),∇u(x)

〉
dvol.

By combining with equations (5.40) and (5.43), we have

lim
tj→0+

I1(tj) 6 lim
tj→0+

J1(tj) + lim
tj→0+

J2(tj)

= −
∫

Ω′

φ ·
〈
∇u, ∂f

∂s
(x, |∇u|2) · ∇|∇u|2 +∇1f(x, |∇u(x)|2)

〉
dvol

= −
∫

Ω′

φ ·
〈
∇u,∇f(x, |∇u|2)

〉
dvol.

(5.44)

Let us calculate limtj→0 I2(tj) for the sequence tj → 0+ coming from
fact (ii) above.

From Lemma 5.6(ii),

lim
tj→0+

|∇utj (x)|2 = |∇u(x)|2 = g(x)

at almost all x ∈ Ω′. Combining with the Lipschitz continuity of f(x, s)
and A > n/2 for sufficiently small t, we have

lim
tj→0+

f2
(
Ftj (x), |∇utj |2

)
− f2(x, g(x))

A = 0

at almost all x ∈ Ω′. On the other hand, using that A > n/2 again
(when t is sufficiently small) and that f is bounded, we have

∣∣∣
f2
(
Ftj (x), |∇utj |2

)
− f2(x, g(x))

A
∣∣∣ 6 C,

for almost all x ∈ Ω′, j = 1, 2, . . . ,

for some constant C. Dominated Convergence Theorem concludes that
(5.45)

lim
tj→0+

I2(tj) = lim
tj→0+

∫

Ω′

−f2
(
Ftj (x), |∇utj |2

)
+ f2

(
x, g(x)

)

A dvol = 0.

Let us calculate limtj→0 I3(tj) for the sequence tj coming from fact
(ii) above.

According to Lemma 5.6 (i) and (ii), we get

|∇utj | 6 Lipu and lim
tj→0+

|∇utj | = |∇u|.
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By combining with the boundedness of D and f , and applying Domi-
nated Convergence Theorem, we conclude that

lim
tj→0+

I3(tj) =

∫

Ω′

φ
f2 − nK|∇u|2

A dvol

=

∫

Ω′

φ
f2
(
x, g(x)

)
− nK|∇u|2
n

dvol.

By the fact that
g(x) = Lipu = |∇u|

for almost everywhere in Ω′, we get

(5.46) lim
tj→0+

I3(tj) =

∫

Ω′

φ
(f2(x, |∇u|2)

n
−K|∇u|2

)
dvol.

By applying the above Claim again,

utj − u

tj
−→ −|∇u|2

2
weakly in W 1,2(Ω1),

as tj → 0. By combining with the definition of Lutj
−u (see the first

paragraph of Section 4.1), we have

lim
tj→0+

1

tj
Lutj

−u(φ) = − lim
tj→0+

∫

Ω′

〈
∇φ,∇

(utj − u

tj

)〉
(5.47)

=
1

2

∫

Ω′

〈
∇φ,∇|∇u|2

〉
dvol.

The combination of equations (5.39) and (5.44)–(5.47) shows that,
for any φ ∈ Lip0(Ω

′),

1

2

∫

Ω′

〈
∇φ,∇|∇u|2

〉
dvol

6 −
∫

Ω′

φ
( 〈

∇u,∇f(x, |∇u|2)
〉
+
f2(x, |∇u|2)

n
−K|∇u|2

)
dvol.

The desired result follows from this and the definition of L|∇u|2 . Now
the proof of Theorem 5.7 is completed. q.e.d.

If f(x, s) = f(x), then we can remove the technical condition that
|∇u| is lower semi-continuous at almost everywhere in Ω. That is,

Corollary 5.8. Let M be an n-dimensional Alexandrov space with
Ricci curvature bounded from below by −K, and let Ω be a domain in
M . Assume function f ∈ Lip(Ω) and u ∈W 1,2(Ω) satisfying

Lu = f · vol.
Then we have |∇u|2 ∈ W 1,2

loc (Ω) and |∇u| is lower semi-continuous
on Ω. Consequently, we get

L|∇u|2 > 2
(f2
n

+ 〈∇u,∇f〉 −K|∇u|2
)
dvol
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in the sense of measure on Ω.

Proof. At first, by Corollary 5.5, we conclude that u ∈ Liploc(Ω).
Fix any Ω∗ ⋐ Ω. Then u ∈ Lip(Ω∗) and f(x, s) = f(x) satisfies the
conditions (a), (b) on Ω∗ in Theorem 5.7.

Let us recall that in the proof of Theorem 5.7, the technique condition
that |∇u| is lower semi-continuous (with ∂f

∂s 6 0) is only used to ensure

the upper semi-continuity of f = f
(
x, g(x)

)
on Ω∗ so that Proposition

5.3 is applicable. Now, since f(x) is Lipschitz, Proposition 5.3 still works
for equation

Lu = f · vol.
Using the same notations as in the above proof (with f(x, s) = f(x))

of Theorem 5.7, we get the corresponding equation

Lut−u

t

6

(f ◦ Ft − f

t
+K|∇ut|2

)
·vol =

(f
(
Ft(x)

)
− f(x)

t
+K|∇ut|2

)
·vol

in the sense of measure on any Ω′ ⋐ Ω∗ (see equation (5.41) in the proof
of the Claim above). Then we get, by (5.11), |xFt(x)| = t|∇ut(x)| at
almost all x ∈ Ω∗,

Lut−u

t

6

(
Lipf

|xFt(x)|
t

+K|∇ut|2
)
· vol

=
(
Lipf · |∇ut|+K|∇ut|2

)
· vol

6 C · vol (because |∇ut| 6 Lipu)

(5.48)

in the sense of measure on Ω′. Here and in the following, C denotes
various positive constants independent of t.

Using the same argument as in the proof of Claim above, we obtain
that the W 1,2-norm of ut−u

t is uniformly bounded on any Ω1 ⋐ Ω′.
Hence there exists a sequence tj → 0+ such that

utj − u

tj
−→ −|∇u|2

2
weakly in W 1,2(Ω1),

as tj → 0+. Combining with (5.48), we have |∇u|2 ∈W 1,2
loc (Ω1) and

L|∇u|2 > −2C · vol
in the sense of measure on Ω1.

By setting
w = |∇u|2 + 2C,

we have w > 2C and

Lw > −2C · vol > −w · vol.
Consider the product spaceM×R (with direct product metric) and the
function v(x, t) : Ω′ × R → R as

v(x, t) := w(x) · et.
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Then v satisfies Lv > 0 in Ω1×R. Hence it has a lower semi-continuous
representative (see Theorem 5.1 in [16]). Therefore, w is lower semi-
continuous on Ω1. So is |∇u|.

Because of the arbitrariness of Ω1 ⋐ Ω′ ⋐ Ω∗ ⋐ Ω, we obtain that
|∇u|2 ∈W 1,2

loc (Ω) and |∇u| is lower semi-continuous on Ω.
It is easy to check that f(x, s) = f(x) satisfies the conditions (a),

(b) on Ω in Theorem 5.7 (since f is Lipschitz and ∂f/∂s = 0). We can
apply Theorem 5.7 to equation

Lu = f · vol
and conclude the last assertion of the corollary. q.e.d.

As a direct application of the Bochner-type formula, we have the
following Lichnerowicz estimate, which was earlier obtained by Lott–
Villani in [29] by a different method. Further applications have been
given in [42].

Corollary 5.9. Let M be an n-dimensional Alexandrov space with
Ricci curvature bounded below by a positive constant n − 1. Then we
have ∫

M
|∇u|2dvol > n

∫

M
u2dvol

for all u ∈W 1,2(M) with
∫
M udvol = 0.

Proof. Let u be a first eigenfunction and λ1 be the first eigenvalue.

It is clear that λ1 > 0 and u(x)e
√
λ1t is a harmonic function on M ×R.

According to Corollary 5.5, we know that u is locally Lipschitz contin-
uous.

(Generalized) Bonnet–Myers’ theorem implies thatM is compact (see
Corollary 2.6 in [45]). By using the Bochner-type formula Corollary 5.8
for equation

Lu = −λ1u,
and choosing test function φ = 1, we get the desired estimate immedi-
ately. q.e.d.

6. Gradient estimates for harmonic functions

Let Ω be a bounded domain of an n-dimensional Alexandrov space
with Ricci curvature > −K and K > 0.

In this section, we always assume that u is a positive harmonic func-
tion on Ω. According to Corollary 5.8, we know that |∇u| is lower semi-

continuous in Ω and |∇u|2 ∈W 1,2
loc (Ω).

Remark 6.1. In the previous version of this paper, by using some
complicated pointwise C1-estimate of the elliptic equation (see, for ex-
ample, [7, 27]), we can actually show that |∇u| is continuous in almost
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all Ω. Nevertheless, in this new version, we avoid using this continuity
result.

Now, let us prove the following estimate.

Lemma 6.2. LetM be an n-dimensional Alexandrov space with Ricci
curvature > −K and K > 0. Suppose that u is a positive harmonic
function in Bp(2R). Then we have

(6.1) ‖Q‖Ls(Bp(R)) 6

(
2nK +

8ns

R2

)
·
(
vol
(
Bp(2R)

))1/s

for s > 2n+ 4, where Q = |∇ log u|2.
Proof. Since u > 0 in Bp(2R), setting v = log u, we have

Lv = −|∇v|2 · vol = −Q · vol.
For simplicity, we denote Bp(2R) by B2R.
Let ψ(x) be a nonnegative Lipschitz function with support in B2R.

By choosing test function ψ2sQs−2 and using the Bochner-type formula
(5.36) to v (with function f(x, s) = −s, which satisfies the conditions
(a) and (b) in Theorem 5.7), we get

−
∫

B2R

〈
∇Q,∇(ψ2sQs−2)

〉
dvol(6.2)

>
2

n

∫

B2R

ψ2sQsdvol− 2

∫

B2R

ψ2sQs−2 〈∇v,∇Q〉 dvol

− 2K

∫

B2R

ψ2sQs−1dvol.

Hence we have

2

n

∫

B2R

ψ2sQsdvol − 2K

∫

B2R

ψ2sQs−1dvol

(6.3)

6− 2s

∫

B2R

ψ2s−1Qs−2 〈∇Q,∇ψ〉 dvol

− (s− 2)

∫

B2R

ψ2sQs−3|∇Q|2dvol + 2

∫

B2R

ψ2sQs−2 〈∇v,∇Q〉 dvol

= s · I1 − (s− 2) · I2 + I3.

We now estimate I1, I2, and I3. By Cauchy–Schwarz inequality, we have

I1 6
1

2

∫

B2R

ψ2sQs−3|∇Q|2dvol + 2

∫

B2R

Qs−1ψ2s−2|∇ψ|2dvol

and

I3 6 n

∫

B2R

ψ2sQs−3|∇Q|2dvol + 1

n

∫

B2R

ψ2sQsdvol.
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By combining with (6.3), we obtain

1

n

∫

B2R

ψ2sQsdvol− 2K

∫

B2R

ψ2sQs−1dvol

6

(s
2
− (s − 2) + n

)
· I2 + 2s

∫

B2R

Qs−1ψ2s−2|∇ψ|2dvol.

If we choose s > 2n+ 4, then we can drop the first term in RHS.
Set

τ =
(∫

B2R

ψ2sQsdvol
) 1

s
.

Then by K > 0 and Hölder inequality, we have

τ s

n
6 2K

(∫

B2R

ψ2sdvol
)1/s

· τ s−1 + 2s
( ∫

B2R

|∇ψ|2sdvol
)1/s

· τ s−1.

Therefore, when we choose ψ such that ψ = 1 on BR, ψ = 0 outside
B2R, and |∇ψ| 6 2/R, we get the desired estimate (6.1). q.e.d.

Corollary 6.3. Let u be a positive harmonic function on an n-
dimensional complete noncompact Alexandrov space with Ricci curva-
ture > −K and K > 0. Then we have

|∇ log u| 6 Cn,K .

Proof. Without loss of generality, we may assume K > 0. From
Lemma 6.2 above, setting s = R2 for R large enough, we have

∥∥|∇ log u|2
∥∥
LR2 (Bp(R))

6

(
2nK + 8n

)
·
(
vol
(
Bp(2R)

)) 1
R2
.

According to Bishop–Gromov volume comparison theorem (see [22] or
[45]), we have

vol
(
Bp(2R)

)
6 Hn

(
Bo(2R) ⊂ M

n
K/(n−1)

)
6 C1e

C2R,

where both constants C1 and C2 depend only on n and K. Combining
the above two inequalities, we get

∥∥|∇ log u|2
∥∥
LR2 (Bp(R))

6 Cn,K · C1/R2

1 eC2/R.

Letting R→ ∞, we obtain the desired result. q.e.d.

In order to get a local L∞ estimate of |∇ log u|, let us recall the local
version of Sobolev inequality.

Let D = D(Ω) be a doubling constant on Ω; i.e., we have

vol(Bp(2R)) 6 2D · vol(Bp(R))

for all balls Bp(2R) ⋐ Ω. According to Bishop–Gromov volume compar-
ison, it is known that ifM has nonnegative Ricci curvature, the constant
D can be chosen D = n. For the general case, if M has Ric > −K for
some K > 0, then the constant can be chosen to depend on n and
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√
K ·diam(Ω), where diam(Ω) is the diameter of Ω. Here and in the fol-

lowing, without loss of generality, we always assume that the doubling
constant D > 3.

Let CP = CP (Ω) be a (weak) Poincaré constant on Ω; i.e., we have

∫

Bp(R)
|ϕ− ϕp,R|2dvol 6 CP ·R2 ·

∫

Bp(2R)
|∇ϕ|2dvol

for all balls Bp(2R) ⋐ Ω and ϕ ∈ W 1,2(Ω), where ϕp,R = /
∫
Bp(R) ϕdvol.

By Bishop–Gromov volume comparison and Cheeger–Colding’s segment
inequality, it is known that if M has nonnegative Ricci curvature, the
constant CP can be chosen to depend only on n. For the general case,
if M has Ric > −K for some K > 0, then the constant can be chosen
to depend on n and

√
K · diam(Ω).

It is well known that the doubling property and a Poincaré inequality
imply a Sobolev inequality in length spaces (see, for example, [44, 47,
14]). Explicitly, there exists a constant CS = CS(Ω), which depends
only on D and CP , such that

( ∫

Bp(R)
|ϕ| 2D

D−2dvol
)D−2

D
6 CS · R2

vol(Bp(R))2/D
(6.4)

·
∫

Bp(2R)

(
|∇ϕ|2 +R−2 · ϕ2

)
dvol

for all balls Bp(2R) ⋐ Ω and ϕ ∈W 1,2
0 (Ω).

Now by combining Lemma 6.2 and the standard Nash–Moser iteration
method, we can get the following local estimate.

Theorem 6.4. Let M be an n-dimensional Alexandrov space with
Ric > −K, for some K > 0. Suppose that Ω ⊂ M is a bounded open
domain. Then there exists a constant C = C

(
n,

√
Kdiam(Ω)

)
such that

max
x∈Bp(R/2)

|∇ log u| 6 C · (
√
K +

1

R
)

for every positive harmonic function u on Ω and Bp(2R) ⋐ Ω.
If K = 0, the constant C = C(n).

Proof. Let v and Q be as in Lemma 6.2. We choose test function
ψ2Qs−1, where ψ has support in ball BR := Bp(R). By using the
Bochner-type formula (5.36) for function v (with function f(x, s) = −s),
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we have

2

n

∫

BR

ψ2Qs+1dvol 6 2

∫

BR

ψ2Qs−1 〈∇v,∇Q〉 dvol(6.5)

− 2

∫

BR

ψQs−1 〈∇ψ,∇Q〉 dvol

− (s− 1)

∫

BR

ψ2Qs−2|∇Q|2dvol + 2K

∫

BR

ψ2Qsdvol.

Note that

2

∫

BR

ψ2Qs−1 〈∇v,∇Q〉 dvol 6 n

2

∫

BR

ψ2Qs−2|∇Q|2dvol

+
2

n

∫

BR

ψ2Qs|∇v|2dvol

and

−2

∫

BR

ψQs−1 〈∇ψ,∇Q〉 dvol 6
∫

BR

ψ2Qs−2|∇Q|2dvol+
∫

BR

Qs|∇ψ|2dvol.

By combining with (6.5), we get
(6.6)

(s−2−n
2
)

∫

BR

ψ2Qs−2|∇Q|2dvol 6
∫

BR

Qs|∇ψ|2dvol+2K

∫

BR

ψ2Qsdvol.

Taking s > 2n + 4, then, s − 2 − n/2 > s/2. Let R
2 6 ρ < ρ′ 6 R.

Choose ψ such that ψ(x) = 1 if x ∈ Bp(ρ), ψ(x) = 0 if x 6∈ Bp(ρ
′) and

|∇ψ| 6 2/(ρ′ − ρ). Then by (6.4) and (6.6), we have

(∫

Bp(ρ)
Qsθdvol

)1/θ

6

(
A · (2sK +

1

R2
+

8s

(ρ′ − ρ)2
)
)
·
∫

Bp(ρ′)
Qsdvol,

where θ = D/(D − 2) and

(6.7) A = CS · R2

vol(Bp(R))2/D
.

Let l0 be an integer such that θl0 > 2n + 4. Taking sl = θl, ρl =
R(1/2 + 1/2l) with l > l0, we have

log Jl+1 − log Jl 6
1

θl
· log

(
A · (2θlK +

1

R2
+

2 · θl · 4l+2

R2
)

)
,

where

Jl =
(∫

Bp(ρl)
Qsldvol

)1/sl
= ‖Q‖

Lθl (Bp(ρl))
.
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Hence, we have

log J∞ − log Jl0 6 logA ·
∞∑

l=l0

θ−l +

∞∑

l=l0

θ−l · log(2θlK +
33(4θ)l

R2
)

6 θ−l0 · logA
D/2 +

∞∑

l=l0

θ−l ·
(
l · log(4θ) + log(K +

33

R2
)
)
.

On the other hand, by Lemma 6.2, we have

log Jl0 6 log(2nK +
8nθl0

R2
) + θ−l0 log vol(Bp(2R)).

Hence, we obtain

log J∞ 6 log(2nK +
8nθl0

R2
) + θ−l0

(
log vol(Bp(2R)) + logA

D/2
)

(6.8)

+ log(4θ) ·
∞∑

l=l0

l · θ−l + log(K +
33

R2
)

∞∑

l=l0

θ−l.

From (6.7) and (6.8), we have

log J∞ 6 log(2nK +
8nθl0

R2
) +

D

2
θ−l0 log

(
4CSR

2
)

+ log(4θ) ·
∞∑

l=l0

l · θ−l + log(K +
33

R2
)

∞∑

l=l0

θ−l

6 log(2nK +
8nθl0

R2
) +

D

2
θ−l0 log

(
4CS(KR

2 + 33)
)
+ C(θ, l0).

Taking l0 such that θl0 6 8n, we get

log J∞ 6 log(2nK +
64n2

R2
) + C(n,

√
Kdiam(Ω)).

This gives the desired result. q.e.d.

The gradient estimate shows that any sublinear growth harmonic
function on an Alexandrdov space with nonnegative Ricci curvature
must be a constant. Explicitly, we have the following:

Corollary 6.5. Let M be an n-dimensional complete non-compact
Alexandrov space with nonnegative Ricci curvature. Assume that u is a
harmonic function on M . If

lim
r→∞

supx∈Bp(r) |u(x)|
r

= 0

for some p ∈M , then u is a constant.
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Proof. Clearly, for any q ∈M , we still have

lim
r→∞

supx∈Bq(r) |u(x)|
r

= 0.

Let ur = supx∈Bq(r) |u(x)|. Then 2ur−u is a positive harmonic on Bq(r),
unless u is identically zero. By Theorem 6.4, we have

|∇u(q)| 6 C(n)
supx∈Bq(r)(2ur − u)

r
6 C(n)

3ur
r
.

Letting r → ∞, we get |∇u(q)| = 0. This completes the proof. q.e.d.

As another application of the gradient estimate, we have the following
mean value property, by using Cheeger–Colding–Minicozzi’s argument
in [9]. In the smooth case, it was first proved by Peter Li in [26] via a
parabolic method.

Corollary 6.6. Let M be an n-dimensional complete non-compact
Alexandrov space with nonnegative Ricci curvature. Suppose that u is a
bounded superharmonic function on M . Then

lim
r→∞

/

∫

∂Bp(r)

udvol = inf u.

Proof. Without loss of generality, we can assume that inf u = 0.
Fix any ǫ > 0. Then there exists some R(ǫ) such that infBp(R) u < ǫ

for all R > R(ǫ). For any R > 4R(ǫ), we consider the harmonic function
hR on Bp(R) with boundary value hR = u on ∂Bp(R). By maximum
principle and the gradient estimate of hR, we have

sup
Bp(R/2)

hR 6 C(n) · inf
Bp(R/2)

hR < C(n) · ǫ.

On the other hand, from the monotonicity of r1−n ·
∫
∂Bp(r)

hRdvol on

(0, R) (see the proof of Proposition 4.4), we have

∫

∂Bp(R)
hRdvol 6 C(n)

∫

∂Bp(R/2)
hRdvol.

Then we get
∫

∂Bp(R)
udvol =

∫

∂Bp(R)
hRdvol 6 C(n) · ǫ · vol(∂Bp(R/2)).

Therefore, the desired result follows from Bishop–Gromov volume com-
parison and the arbitrariness of ǫ. q.e.d.
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