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LINEAR BOUNDS FOR LENGTHS OF GEODESIC

LOOPS ON RIEMANNIAN 2-SPHERES

Alexander Nabutovsky & Regina Rotman

Abstract

Let M be a closed surface diffeomorphic to S2 endowed with a
Riemannian metric. Denote the diameter of M by d. We prove
that for every x ∈ M and every positive integer k there exist k
distinct geodesic loops based at x of length ≤ 20kd.

Introduction

A well-known result of J. P. Serre asserts that for every closed Rie-
mannian manifold Mn and an arbitrary pair of points x, y ∈ Mn there
exist an infinite set of distinct geodesics connecting x and y (see [Se]).
Later A. Schwartz proved that there exists a constant c(Mn) depending
on the Riemannian metric on Mn such that for every positive integer k
there exist k distinct geodesics connecting x and y of length ≤ c(Mn)k
(see [Sch]). In particular, if x = y, those geodesics are geodesic loops
based at x. Note that one can write c(Mn) as c0(M

n)d, where d is the
diameter of Mn and c0(M

n) is a scale-invariant constant.
But what Riemannian invariants are required in order to majorize

the lengths of k distinct geodesics connecting a fixed pair of points?
In [NR 2] the authors proved that one can get such an estimate using
only the diameter and the dimension of Mn. Namely, we proved that
the lengths of k distinct geodesics connecting x and y do not exceed
4k2nd. (We do not know if there exists such an upper bound that
does not involve the dimension, i.e. an estimate of the form f(k)d.)
A comparison of our result with the result of Schwartz leads to the
following natural question: Is it possible to replace the upper bound
that is quadratic in k by a linear bound c(n)kd? Whenever we do not
believe that this is possible for Riemannian manifolds of all dimensions,
we prove that this is, indeed, so in the two-dimensional case for x = y:

Theorem 0.1. Let M be a closed Riemannian manifold diffeomor-

phic to S2 of diameter d. Let x be a point in M , and k be a positive

integer number. Then there exist at least k distinct non-trivial geodesic

loops based at x of length not exceeding 20kd.
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Remark 0.2. If k = 1, one can get a better upper bound 4d as a corol-
lary of the main result in [R]. Also, a better bound for small values of
k follows from the main result of our paper [NR 1], where we proved
that there exist (4k2 + 2k)d distinct non-trivial geodesic loops. More-
over, it was noted in [NR 2] that the last estimate can be immediately
improved to (k2+3k+2)d, if one notices that cycles of non-zero dimen-
sions in the space of loops on M based at x used to prove the existence
of the geodesic loops never “hang” at critical points of index zero. On
the other hand, F. Balacheff, C. Croke, and M. Katz demonstrated that
it is not true that the length of a shortest non-trivial geodesic loop is
always ≤ 2d (see [BCK]).

Remark 0.3. The linear upper bound of Theorem 0.1 will hold for
all closed 2-dimensional Riemannian manifolds and not only those dif-
feomorphic to S2. To prove this assertion, first assume that M has an
infinite fundamental group. Then there exists a non-contractible loop
γ based at x of length ≤ 2d. The existence of such a loop is easy and
well-known (cf. [Gr]). Then one can consider the iterates γi of this loop.
They all will be non-contractible and non-pairwise homotopic. Now we
can obtain the desired geodesic loops by applying a curve-shortening
process with the fixed base point x to γi. The case, when M is dif-
feomorphic to RP 2, can be reduced to the spherical case by passing
to the double covering of M with the induced Riemannian metric. As
the diameter of the double covering of M does not exceed 2d, we will
obtain k geodesic loops of length ≤ 40kd that can be then projected to
M . Finally, note that our proof of Theorem 0.1 does not seem to apply
to the situation when one is interested in upper bounds for the lengths
of k geodesics connecting distinct points x, y ∈ M . (The argument in
subsection 1.3 below does not seem to work, when one tries to modify it
in the case of x 6= y.) Nevertheless, we plan to establish a similar linear
bound for lengths of geodesics connecting distinct points x, y ∈ M using
a different, more complicated argument (that also yields a worse con-
stant) in a sequel to this paper. Also, our proof can be adapted (with
modifications) to the case when x and y are the most distant points in
M (see Theorem 2.1 in Section 2).

Acknowledgments. Both authors acknowledge a partial support of
this work by their corresponding NSERC Discovery Grants. We would
also like to thank an anonymous referee for his valuable comments.

1. Proof of the main result

Proof of Theorem 0.1.

1.1. The length of a meridianal sweep-out and lengths of

geodesics.
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Definition 1.1. Define a meridianal sweep-out of M by curves of

length ≤ L as a map f : S2 −→ M of non-zero degree such that the

image of every meridian of S2 under f does not exceed L. We will refer

to the images of meridians of S2 under f as meridians of M .

The proof of the existence of infinitely many geodesic loops based at
a prescribed point x ∈ M given by A. Schwartz in [Sch] easily implies
that if both poles of the sphere are mapped into x, then the lengths of
the first k of these loops (including the trivial loop) do not exceed 2kL
(and do not exceed (2k + 2)L if the poles are mapped into arbitrary
points of M ; see, for example, [NR 1] for a detailed explanation of
Schwartz’s proof in the case of a 2-sphere).

Here is a brief explanation of this result. Homology groupsHi(ΩS
2,R)

of the space of based loops on S2 are all isomorphic to R, and are gener-
ated by Pontryagin powers of the generator of H1(ΩS

2,R). (Recall, that
Pontryagin product in homology groups of loop spaces is induced by the
operation of taking the join of loops.) The generator of H1(ΩS

2, R) can
be represented by a map of a circle into H1(ΩS

2,R), where each point
of a circle is mapped into the image under f of the meridian of S2 with
the corresponding longitude. (Recall that we assumed that both poles
are mapped to x, so every meridian is mapped into a loop in M based
at x.) Its Pontryagin powers can be represented by tori in ΩS2, where
each point of a k-torus is mapped into a loop that is obtained by go-
ing along the images of k corresponding meridians one after the other.
Thus, given a meridianal sweep-out of M by loops of length ≤ L based
at x, we obtain a geometric realization of generators of Hk(ΩM,R) by
maps of k-tori, where each point is mapped into the loop on M made
of k meridianal loops of M of total length ≤ kL.

If the length functional is a Morse function, then those classes corre-
spond to distinct critical points (of different indices), and we are done.
In the degenerate situation, Schwartz has proceeded as follows: For an
even-dimensional homology class c he considered a dual cohomology
class u of the same dimension and observed that cup powers of u are
dual up to some constant factors to Pontryagin powers of u. Then he
used a theorem proven by Lyusternik and Shnirelman asserting that if
cohomology classes u and u ∪ v, v 6= 0, correspond to the same criti-
cal value, then there exists a whole critical level (made of uncountably
many geodesic loops) corresponding to the same critical value.

As one is using only the even-dimensional classes, one gets 2kL as
the upper bound for the values of the length functional at the first k
non-trivial critical points.

1.2. Meridianal sweep-out via filling. Therefore, our first intention
would be to construct a meridianal sweep-out of M by curves of length
< 10d that maps both poles of S2 into x. In the case of success, we
would obtain infinitely many geodesic loops such that the length of the
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Figure 1. Periodic geodesic β is inside the domain
bounded by a geodesic loop α. The angle at x is less
than π.

kth of them does not exceed 20kd. To be more precise, we will either
obtain such a meridianal sweep-out by curves of length ≤ 10d+ε, where
ε > 0 is a parameter that we can make arbitrarily small (as this upper
bound still yields the desired upper bound for the lengths of k geodesic
loops based at x), or we discover that there exists a geodesic loop α
and a non-trivial periodic geodesic β, both of length ≤ 2d+ ε such that
β is contained in a domain D bounded by α such that the angle of D
at x is ≤ π. It turns out that in this last case one obtains infinitely
many distinct geodesic loops based at x as follows: First, one connects
x inside D with a point y ∈ β by a path τ of length ≤ 2d + ε, then
considers loops τ ∗ βi ∗ τ−1 formed by travelling along τ , then along β
i times and then returning along τ−1 (see Fig. 1). (Here i can be any
positive integer number.)

Finally, one applies a Birkhoff curve-shortening process with fixed
endpoints to these curves. It turns out that the process terminates at
different geodesic loops based at x for different values of i (see subsection
1.3 for the details).

Let us begin by assuming that a Riemannian metric on M is real
analytic. The general case will be presented at the end of Section 1. To
construct a meridianal sweep-out of S2 we start from a diffeomorphism
F : S2 −→ M . We represent S2 as the boundary of a 3-ball D3. We
consider a very fine triangulation of S2 such that the images of the sim-
plices under F are contained within the ball of a very small radius ε not
exceeding inj(M)/100, where inj(M) denotes the injectivity radius of
M . Moreover, later we will pass to the limit as ε −→ 0. We triangulate
D3 as the cone over the chosen triangulation of S2.

Now we are going to try to extend F from S2 = ∂D3 to the whole
D3. (Of course, there is no such extension.) For this purpose we map
the center c of D3 to x, then map all 1-dimensional simplices of D3
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Figure 2. Contracting loop l1

that connect c with the vertices vi of the chosen triangulation of S2 into
(some) minimal geodesics connecting x with F (vi).

Our next step will be to construct the extension to the 2-skeleton of
the chosen triangulation of D3. Once this step will be accomplished,
we are going to have a collection of maps πijk of 2-spheres in M corre-
sponding to the boundaries S2

ijk of 3-simplices [cvivjvk], where [vivjvk]

runs over all 2-simplices of the chosen triangulation of S2. As we are
not able to extend F to D3, at least one of these 2-spheres is mapped
into M by a map of a non-zero degree.

Let z0 be a point in the center of the triangle F ([vivjvk]), and z1, z2, z3
denote midpoints of geodesic segments F (vi)F (vj), F (vj)F (vk), and
F (vi)F (vk). Extend the geodesic segment xF (vi) by adding the mini-
mal geodesic segment F (vi)z, xF (vj) by adding the minimal geodesic
segment F (vj)z, and xF (vk) by adding the minimal geodesic segment
F (vk)z. Consider three loops obtained from three pairs of these three
broken geodesics connecting x with z through F (vi), F (vj), or F (vk).
We are going to attempt to contract them to x as loops based at x
through based loops of length ≤ 6d+O(ε). The desired 2-sphere will be
obtained by gluing three maps of D2 generated by these contractions.

We are going to describe how we will be contracting loop l1 = xF (vi)
zF (vj)x (see Fig. 2).

The contraction of two other loops will be performed in exactly the
same way.

In the first stage we will contract this loop to xF (vi)z1F (vj)x through
the small triangle F (vi)F (vj)F (vk). Now we need to contract the loop
lij = xF (vi)F (vj)x = xF (vi)z1f(vj)x to a point. To achieve this goal,
we first apply the Birkhoff curve-shortening process with the fixed base
point to this loop (cf. [Cr] for a good description of the Birkhoff curve-
shortening process and its properties for free loops.) {In a nutshell,
the Birkhoff curve-shortening process works as follows: Parametrize a
given curve γ0 by its arclength. Divide this curve into N intervals of
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equal length for some very large N . Connect the endpoints of these
intervals by (unique) minimal geodesics. The resulting broken geodesic
will be a curve γ1/2. Now connect the midpoints of adjacent geodesic
segments of γ1/2 (including the first and the last segments) by minimal
geodesics. These minimal geodesics will form a new curve γ1 = β(γ0).
Then we will be repeating this process, and inductively define γi+1 as
β(γi). If N is sufficiently large, it is not difficult to connect all pairs
of curves γi−1 and γi by length non-increasing homotopies “filling” the
“triangles” that we are “cutting away” (see the details on p. 4–5 in
[Cr]). In the version of this process for based loops, we do not connect
the midpoints of the first and the last geodesic segments, so that all
curves will be loops based at x. Note that the process is length non-
increasing, and the distance between points that we need to connect by
geodesics does not exceed length(γ)/N . We call this ratio the rate of
the Birkhoff curve-shortening process. We always choose N sufficiently
large to ensure that the rate does not exceed the injectivity radius of M ,
inj(M), but sometimes below we will need to choose the rate to be very
small.} This process ends at a point or at a non-trivial geodesic loop
α based at x. Note that so far we obtained a one-parametric family of
loops based at x of length ≤ 2d+O(ε). Without any loss of generality
we can assume that α is not a periodic geodesic, as in this case we are
able to obtain the desired geodesic loops as iterates of α.

First, let us assume that α is a simple (i.e. nonself-intersecting)
loop. We will amend our proof to encompass the case when the loop lij
develops self-intersections during the Birkhoff curve-shortening process
in section 1.4.

Now let us apply the Birkhoff curve-shortening process for free loops
to α. That is, we do not keep the base point x fixed anymore. This
process ends either at a point y inside a domain bounded by α or at
a non-trivial periodic geodesic β. In the second case, note that β is
contained inside a domain D on M bounded by α, and that the angle
of D (i.e. of α) at x is less than π. (Cf. [Cr] for almost obvious
details of the proof of this assertion.) If we obtain a non-trivial periodic
geodesic β for at least one of the loops that we are going to contract,
we immediately stop our attempts to extend F to the 2-skeleton of
the chosen triangulation of D3. In this case we will obtain the desired
geodesic loops using an entirely different idea, described in subsection
1.3 below.

Therefore we can assume that α contracts to a point y as a free
loop. At this stage we already obtain the extension of F to the 2-
skeleton of the chosen triangulation of D3. However, our goal will be to
find a meridianal sweep-out of each sphere xF (vi)F (vj)F (vk) into loops
(meridians) of length ≤ 8d + O(ε). As one of those spheres is mapped
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Figure 3. Transforming a free loop homotopy into a
based loop homotopy

into M by a map of a non-zero degree, this would complete the proof
of the theorem.

For this purpose we are going to convert the free loop part of the
process into a contraction of α to a point through based loops of length
≤ 6d+O(ε).

It is not difficult to see that the contraction αt of α = α0 to y = α1 is
monotone, that is, the domain bounded by αs containing y contains all
domains bounded by αt and containing y for all t > s (cf. [Cr]). It seems
rather obvious that we can perform an arbitrarily small perturbation of
this homotopy to make curves αt disjoint. (We leave α intact but might
need to perturb y.) Yet we are not going to prove or to use this assertion.
Let us assume first that closed curve αt already has this property that
we are going to call strict monotonicity.

Let D denote the domain bounded by α in M that contains y. Note
that the distD(x, y) ≤ 2d + O(ε) as we can connect y with the closest
point w ∈ ∂D by a geodesic of length ≤ d and then connect w and x
along α by an arc of length ≤ d + O(ε). Let τ denote a geodesic in D
that connects x and y and is parametrized by [0, 1], (see Fig. 3).

The strict monotonicity of the contraction implies that 1) For every
t, there exists a unique λ(t) such that τ(t) ∈ αλ(t); 2) λ(t) continuously
depends on t. For every t denote the arc obtained from τ by restricting
it to the interval [0, t] by τt, and the loop that first goes along τt, then
along αλ(t), and then returns to x along τt in the opposite direction by
βt. We can assume that βt is parametrized by [0, 1] proportionally to
the arc length. Note that β0 = α and β1 is made of two copies of τ
traversed in the opposite direction. We can extend the homotopy βt by
contracting these two copies of τ to x along τt ∗ τ

−1
t . The result will be

the desired path homotopy contracting α to a point via loops of length
≤ 6d+O(ε) based at x.
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To deal with the general case, when the homotopy is only monotone,
but not necessarily strictly monotone, observe that the convexity of all
curves αs for every t implies that the set A(t) of all s such that τ(t) ∈ αs

is either a point λ(t), or an interval [λ1(t), λ2(t)]. Moreover, the sets
A(t) are disjoint for different values of t < 1. (This assertion follows
from the proof of lemmae 6 and 7 in [M].) Therefore, we can modify the
homotopy described in the strictly monotone case by using all curves
obtained by travelling along τt, then along curves αs, s ∈ [λ1(t), λ2(t)],
and then along τt in the opposite direction in the case when A(t) contains
more than one point. (If A(1) has more than one point, then, when t =
1, we might need to start not with s = λ1(1) but with s = limt−→1− λ(t),
where the limit is taken over the set of t such that A(t) contains only
one point. In principle, this limit can be greater than λ1(1).

Thus, we can assume that we contracted each of three loops l1, l2,
and l3 through loops based at x of length ≤ 6d + O(ε). It remains
to merge these three 1-parametric families of loops into one continuous
family of loops based at x of length ≤ 8d + O(ε) parametrized by S1

to complete the proof of the theorem, as we can regard these loops as
images of meridians of S2 under a meridianal sweep-out of M .

We proceed as follows. We start at the constant loop x. We perform
the path homotopy contracting l1 in reverse to obtain l1. Note that the
lengths of all three loops li do not exceed 2d+O(ε). Assume that l2 was
contracted via based loops γt to a constant loop γ1. Now we consider
loops l1∗γ

−1
1−t, t ∈ [0, 1]. This part of the homotopy starts at l1 = l1∗γ

−1
1

and ends at l1 ∗ l
−1
2 = l1 ∗ γ

−1
0 . Note that l1 and l2 have a common arc

xF (vj)z. After contracting this arc traversed in opposite directions over
itself, we obtain l3, which then can be contracted to the constant loop
using the already constructed path homotopy. This completes the proof
of Theorem 0.1 in the case when α is nonself-intersecting and can be
contracted to a point by a Birkhoff curve-shortening process for free
loops.

1.3. The case of a non-trivial periodic geodesic. Here we are going
to prove Theorem 0.1 in the case when there exists a nonself-intersecting
geodesic loop α of length ≤ 2d + O(ε) based at x and a non-trivial
periodic geodesic β of a smaller length contained in a domainD bounded
by α, and the angle of D at x is < π (see Fig. 1).

Consider the closed domain T ⊂ D contained between α and β. De-
note a shortest curve in T connecting x and a point of β by ̺. The
length of ̺ does not exceed 2d + O(ε). Indeed, denote the other end-
point of ̺ by q. Let q0 denote the last point of intersection of a minimal
geodesic g connecting x and q in M with α. The length of ̺ does not
exceed the length of a curve obtained by going from x to q0 along the
shortest arc of α, and then to q along g. For every positive integer m,
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consider loops γm based at x and obtained by going from x to q along
̺, then going m times along β, and finally returning to x along ̺.

Recall that the Birkhoff curve-shortening process involves subdivid-
ing a curve into segments of a small length ≤ s < inj(M), replacing
these segments by minimal geodesics, then connecting the midpoints of
these segments by another set of the minimal geodesics, etc. Once the
parameter s (that we call the rate of the process) is chosen, we never
need to connect points that are situated at a distance greater than s
from each other by a minimal geodesic. As the result, we obtain a
sequence of very close closed curves which then can be connected by ob-
vious homotopies filling added (or subtracted) “triangles.” Theorem 0.1
immediately follows from the following lemma:

Lemma 1.2. Consider geodesic loops gm obtained from γm by the

application of a Birkhoff curve-shortening process with fixed basepoint

x. If the rate s of the process is sufficiently small, then these geodesic

loops are distinct for different m.

Proof. Let a denote a point inside the subdomain of D bounded by β.
The absolute value of the winding number of γm around a is equal to
m. Clearly, this number does not change during any homotopy of γm
in T .

Thus, this lemma follows from the following key fact: The loops
obtained during the Birkhoff curve-shortening process applied to gm
stay inside the closed domain T .

To prove this observation, notice that there exists a positive number
s(α) such that if r1, r2 ∈ T are two points such that distM (r1, r2) <
min{inj(M), s(α)}, then the minimal geodesic connecting r1, r2 is con-
tained in T . This geodesic cannot transversely intersect β or α “far”
from x, as in this case two points of intersection would be connected
by two minimal geodesics, namely, an arc of β (or α) and a segment of
r1r2, which yields a contradiction.

It remains to note the following well-known fact: There exists a pos-
itive s(α) such that for every two points x1, x2 on α s(α)-close to x, the
minimal geodesic that connects them lies in the closure of D. Indeed,
it cannot intersect α at other points due to the uniqueness of minimal
geodesics connecting sufficiently close points of M . And it cannot be
contained in the closure of M \D as a consequence of the fact that the
angle of D at x is less than π, and the angle of its complement at x is
greater than π.

Therefore every step of the Birkhoff curve shortening process yields
closed curves that are contained in T , which completes the proof of the
lemma and Theorem 0.1. �

1.4. The general case. In subsections 1.2 and 1.3 we dealt with the
case when a loop lij formed by two minimizing geodesics from x to
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Figure 4. Contracting loops can be reduced to contract-
ing geodesic digons

two very close points F (vi), F (vj) and the minimal geodesic segment
ν = F (vi)F (vj) can be contracted to a nonself-intersecting geodesic loop
based at x through loops based at x of length not exceeding the length
of lij.

As we mentioned in subsection 1.2, we will now consider the general
case, and intend to achieve either one of the following two goals:
1.4.1. To contract lij to a point through loops based at x of length
≤ 8d+ o(1) (which then can be merged into a meridianal sweep-out of
M by curves of length ≤ 10d + o(1) exactly as it was described in the
last paragraph of subsection 1.2);
1.4.2. To find a simple geodesic loop α based at x and a non-trivial
simple periodic geodesic β contained in a domain D bounded by α such
that (a) the lengths of α and β do not exceed 2d+ o(1); (b) the angle of
D at x is less than π (or equivalently, α is convex to D in terminology
of [Cr]). A closed curve α that bounds D is convex to D if the minimal
geodesic in M that connects each pair of sufficiently close points in α is
contained in D. We use the notation o(1) for terms that can be made
arbitrarily small by choosing arbitrarily fine triangulation of M and a
very small rate of a Birkhoff curve-shortening process used in the course
of our construction.

Again we are going to attempt to contract all loops lij . Our first
step will be to reduce contracting the triangle lij to contracting several
of the geodesic digons. For this purpose, consider minimal geodesics
connecting x with points of the interval F (vi)F (vj) (see Fig. 4).

This interval can be subdivided into open intervals I, where the min-
imal geodesic from x to a point w ∈ I is unique, and continuously varies
with w. (If necessary, we can slightly modify the triangulation of S2,
so that all of the edges of the induced triangulation of M have only
finitely many intersections with the cut locus of M . Here we use the
fact that the cut locus of a point q ∈ M , where M is a real analytic
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manifold diffeomorphic to S2, is a subanalytic set homeomorphic to a
tree.) Moreover, the continuous family of minimizing geodesics connect-
ing x with points of I can be extended to endpoints of I. However, the
minimal geodesics from two continuous families corresponding to two
adjacent open intervals meeting at a common endpoint O can be dis-
tinct and form a minimal geodesic digon xO. Our goal is to construct a
continuous one parametric family of curves connecting x with all points
of F (vi)F (vj) of length ≤ 7d+o(1). Once this goal is achieved, we imme-
diately get the desired contraction of lij via loops of length ≤ 8d+ o(1).
But it is sufficient to learn to contract the digons xO via loops of length
≤ 6d+ o(1) based at x in order to achieve this goal.

Consider one of these digons xO formed by two minimal geodesics λ1

and λ2 connecting x and O. As already noticed, we can assume that this
digon is not a periodic geodesic. It divides M into two domains. Denote
the domain with the angle at O less than π by D1. If D1 has the angle
at x less than π as well, then the Birkhoff curve-shortening process will
contract xO as a loop based at x inside D1 and via convex curves. The
homotopy will end either at a point or at a nonself-intersecting geodesic
loop α (because of the convexity of the boundary D1; cf. [Cr] for the
details). Then we can continue as in subsections 1.2 and 1.3.

However, if D1 has an angle at x that is greater than π, then we
are not guaranteed that the curve will not develop a self-intersection
during the Birkhoff curve-shortening process. To be more precise, note
that the curve will be contracted inside D1 via curves that are convex
to D1 at all points other than x until a self-intersection develops—
if it develops at all. The only possibility for development of a self-
intersection is the case when an arc of the curve will come close to x
during the homotopy, and two points on this arc will be connected by
a geodesic segment cutting through both the initial and final segments
of the curve very closely to x (see Fig. 5). In other words, a self-
intersection can only develop in a neighborhood of x, because the curve
has angles that are convex to D1, except for the angle at x. Moreover,
for the same reason, if this self-intersection develops and the rate of
the Birkhoff curve shortening process is sufficiently small, then the new
intersecting segment will intersect the curve exactly once to either side
of x (see Fig. 6).

Denote the closed curve that appears during the Birkhoff curve-
shortening process right before the intersection is formed at the next
stage of the process by γt.

The self-intersection is formed when two points a, b on γt that are
a short distance apart are connected by the minimal geodesic segment
that cuts across as in Fig. 6.

By choosing the rate of the Birkhoff curve shortening process to be
very small, we can ensure that a, b are inside the metric ball Bx(ε) of
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Figure 5. The case when the angle at x is greater than π
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radius ε that is smaller than the radius of convexity of M , centered at
x, and that Bx(ε) will intersect γt via two arcs γbeg and γend.

Let us consider the geodesic ray starting at x and bisecting the an-
gle of D1. In fact, let us consider a sector of Bx(ε) between γbeg and
γend that has a non-empty intersection with γt. The geodesic ray will
subdivide this sector into two convex domains Ω1 and Ω2 (see Fig. 7).

Note that if a, b are both either in Ω1 or in Ω2, then the minimal
geodesic connecting them has to stay in Ω1 or in Ω2 respectively, because
of the convexity of these domains. Therefore a, b lie in different domains.
Without loss of generality, assume a ∈ Ω1 and b ∈ Ω2. Let us consider
an arc γ0 of the curve γt between a and b. Once again, by choosing the
rate of the Birkhoff curve shortening process to be very small, we can
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assume that this arc lies in Bx(ε) ∩ D̄1. Thus, γ0 must intersect the
geodesic ray coming out of x and bisecting the angle of D1.

Let y denote the point of intersection of the bisector of the angle at
x with γ0. There are two arcs of γt between x and y. Denote these arcs
by γ1 and γ2, and their lengths by l1, l2. Consider two closed curves
formed by γi and the bisector xy, i = 1, 2. Each of these two curves
that we will denote σ1 and σ2 will be convex to the subdomain of D1

that it bounds, as the angles at x and y are less than π, and γt was
convex to D1 at all points but x.

Assume that there exist path homotopies that contract σi to a point
via loops based at x of length ≤ 4d+ li+o(1) for i = 1, 2. (As usual, the
o(1) term contains quantities that we can make arbitrarily small.) Then
these two path homotopies can be merged in an obvious way, so that
we obtain a path homotopy contracting γt to a point via loops based at
x of length ≤ l1 + l2 + 4d + o(1) ≤ length(γt) + 4d + o(1) ≤ 6d + o(1).
Indeed, we can first insert the segment xy travelled twice in the opposite
direction, then contract σ1 (as a based loop), and then contract σ2.

Now note that we can homotope σi first to a nonself-intersecting
geodesic loop based at x by a path homotopy, and then either to a
point or a non-trivial simple periodic geodesic by the application of a
curve-shortening process. If we obtain a non-trivial periodic geodesic,
then we find ourselves in the situation of 1.4.2. Otherwise, we can
proceed exactly as in subsection 1.2 to obtain a path homotopy that
contracts σi via loops based at x of length ≤ li + 4d+ o(1) as desired.

Finally, let us explain how we pass to the case of a manifold with an
arbitrary smooth metric. Let us approximate this Riemannian metric
by Cω Riemannian metrics. For each of these metrics, we either found
a sweep-out of M by short curves, or a geodesic loop γ based at x and
a periodic geodesic inside the convex domain bounded by γ. Passing to
the limit in a subsequence of approximating Cω Riemannian metrics,
we obtain either a controlled sweep-out, or a periodic geodesic inside a
geodesic loop based at x onM . In both of these cases, we are guaranteed
the desired estimates for the lengths of geodesic loops based at x. �

2. Geodesics between distinct points

The purpose of this section is to prove the following theorem:

Theorem 2.1. Let M be a Riemannian manifold diffeomorphic to

S2. Let d denote the diameter of M , and let x, y ∈ M be two points of

M such that dist(x, y) = d. Then for every k > 3, there exist k distinct

geodesics of length ≤ (12k − 37)d connecting x and y for every positive

integer k.
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Remark 2.2. Classical Berger’s lemma implies that x and y are con-
nected by at least two distinct minimal geodesic segments. Moreover,
if they are connected by exactly two minimal geodesic segments, then
these two segments form a periodic geodesic γ of length 2d. In this
last case, one can construct infinitely many distinct geodesics between
x and y by going along γ a variable number of times, and then going to
y along γ. In particular, the length of the third geodesic connecting x
and y does not exceed 3d.

Proof. C. Croke observed that if x, y,M are as in the text of the theo-
rem, then there exists a finite number N of minimal geodesic segments
li connecting x and y such that they divide M into digonal domains Di

with angles at x and y ≤ π (see [Cr]), (∂Di = li
⋃

li+1, lN+1 = l1).
Therefore the Birkhoff curve-shortening process contracts the boundary
of Di either to a simple periodic geodesic inside Di or to a point inside
Di.

In the case when one of those geodesic digons αi is contracted to
a non-trivial periodic geodesic β, we can proceed as follows: Connect
x with a closest point of β by a geodesic in M that we will denote
τ1. Note that τ1 must be in Di as the boundary of Di is formed by two
minimal geodesics from x to y which because of their minimality cannot
intersect τ1. Therefore the length of τ1 does not exceed d. Similarly,
connect y with a closest point of β by a geodesic τ2. Now consider paths
γk = τ1 ∗ βk ∗ τ−1

2 for all k = 1, 2, . . . . Proceeding as in the proof in
subsection 1.2, we can prove that the Birkhoff curve-shortening process
with fixed end points produces distinct geodesics connecting x and y
as it happens inside Di, and, therefore, does not change the winding
number, with respect to a point inside the subdomain of Di bounded
by β. (In order to define the winding number we can transform these
paths into closed curves by attaching a minimal geodesics from y to x
forming a part of the boundary of Di.)

Assume now that for every i the Birkhoff curve-shortening process
contracts the boundary di of Di to a point yi ∈ Di through a monoto-
nous (in the sense of subsection 2.2) family of curves dit. Connect x and
yi by a minimal geodesic τ . This geodesic cannot intersect the boundary
of Di as it is formed by two minimal geodesics from x to y. Therefore,
τ is contained in Di.

Now we can proceed as in subsection 1.2 and replace the family of
free loops dit by a family of loops ̺t based at x that are obtained by
following τ until it intersects dit, going around dit and returning back
to x along τ .

The lengths of these loops do not exceed 4d. The last of them is
formed by tracing τ from x to yi, and then returning back to x along
τ . It can be contracted to x by gradually cancelling its longer and
longer segments. So, we obtain a homotopy contracting di via loops of
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length ≤ 4d based at x. Denote loops in this homotopy by bti, t ∈ [0, 1].
Without any loss of generality, we can assume that the boundary of Di

is oriented as follows: One first goes from x to y along li+1 and then
returns along li to x. Now we can construct a meridianal sweep-out
of M such that one of the poles is mapped to x, another to y, and the
lengths of the meridians are bounded by 5d as follows: Start from l1. For
every t, consider b1−t

1 ∗ li. Of course, b11 ∗ l1 = l1 and b01 ∗ l1 = l2 ∗ l
−1
1 ∗ l1,

where l−1
1 denotes l1 travelled in the opposite direction, that is, from

y to x. Now cancel l−1
1 ∗ l1 along itself. We end up with l2. So, we

constructed a path homotopy between l1 and l2. Now we can construct
a path homotopy between l2 and l3 using b1−t

2 in exactly the same way.
Then we proceed by induction constructing path homotopies between
li and li+1 using b1−t

i for i = 3, . . . , N and end up with lN+1 = l1.
Combining those path homotopies, we obtain a meridianal sweep-out f
of M by curves of length ≤ 5d, where one of the poles is mapped into x
and the other into y.

Now one can homotope this sweep-out into another sweep-out that
will map both poles of S2 into x and where every meridian will be
mapped into the join of its image under f and l1. The lengths of curves
in this sweep-out will not exceed 6d. Now we use the even-dimensional
homology classes of ΩxM of the space of loops based at x and the well-
known fact that attaching any path (e.g. l1) from x to y to all loops
based at x yields a homotopy equivalence from ΩxM to the space Ωx,yM
of paths from x to y.

In order to get k distinct geodesics between x and y, we can use
N ≥ 3 minimal geodesics between x and y. (If N = 2, then there is a
periodic geodesic γ through x and y, and the geodesic segments γi ∗ l1
will satisfy the conditions of the theorem.) Then we will need k −N ≤
k−3 geodesics of non-zero indices corresponding to the homology classes
H2m(Ωx,y, R) of non-zero even degrees. Note that the lengths of paths
in the constructed explicit realizations of these cycles do not exceed
(2m)(6d)+d, but each path ends by two copies of l1 travelled in different
directions. We can cancel these copies and will obtain families of paths
from x to y of length ≤ (12m − 1)d. Thus, the lengths of these k − 3
geodesics connecting x and y do not exceed (12(k−3)−1)d = (12k−37)d
for k > 3. �

Remark 2.3. It was essential in this proof that in the case when the
Birkhoff curve-shortening process ends at a periodic geodesic, x and y
are on the same side of this geodesic. This prevents us from directly
generalizing our proof to the case of arbitrary x and y.
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