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Abstract

In this paper, we derive two subgradient estimates of the CR
heat equation in a closed pseudohermitian 3-manifold which are
served as the CR version of the Li-Yau gradient estimate. With its
applications, we first get a subgradient estimate of the logarithm
of the positive solution of the CR heat equation. Secondly, we
have the Harnack inequality and upper bound estimate for the
heat kernel. Finally, we obtain Perelman-type entropy formulae
for the CR heat equation.

1. Introduction

In the seminal paper of [LY], P. Li and S.-T. Yau established the
parabolic Li-Yau gradient estimate and Harnack inequality for the posi-
tive solution of the heat equation in a complete Riemannian m-manifold
with nonnegative Ricci curvature. Recently, G. Perelman ([Pe1]) de-
rived the remarkable entropy formula, which is important in the study
of Ricci flow. The derivation of the entropy formula resembles Li-Yau
gradient estimate for the heat equation. All these eventually lead to the
solution of Poincaré conjecture and Thurston geometrization conjecture
in a 3-manifold by the Ricci flow due to R. S. Hamilton ([H1], [H2],
[H3], [H4]) and G. Perelman ([Pe1], [Pe2], [Pe3]).

In this paper, we derive corresponding estimates in a closed pseudo-
hermitian 3-manifold (M,J, θ) (see next section for definition). More
precisely, there is a corresponding CR geometrization problem in a con-
tact 3-manifold via the torsion flow (1.7). Then it is important for
us to derive the CR Li-Yau type gradient estimate as well as the CR
Perelman-type entropy formula for the CR heat equation (1.1)

(1.1)

(
∆b −

∂

∂t

)
u (x, t) = 0

on M × [0, ∞). Here ∆b is the sub-Laplacian in a closed pseudohermi-
tian 3-manifold (M,J, θ).
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Along this line with the method of gradient estimate, it is the very
first paper of H.-D. Cao and S.-T. Yau ([CY]) to consider the heat
equation

(1.2) (L− ∂

∂t
)u (x, t) = 0

in a closed m-manifold with a positive measure and an operator with
respect to the sum of squares of vector fields

L =

l∑

i=1

X2
i , l ≤ m,

where X1, X2, . . . ,Xl are smooth vector fields that satisfy Hörmander’s
condition: the vector fields together with their commutators up to fi-
nite order span the tangent space at every point of M. Suppose that
[Xi, [Xj ,Xk]] can be expressed as linear combinations of X1, X2, . . . ,Xl

and their brackets [X1,X2], . . . , [Xl−1,Xl]. They showed that for the
positive solution u(x, t) of (1.2) on M × [0,∞), there exist constants

C
′

, C
′′

, C
′′′

and 1
2 < λ < 2

3 , such that for any δ > 1, f(x, t) = lnu (x, t)
satisfies the following gradient estimate:

(1.3)
∑

i

|Xif |2 − δft +
∑

α

(1 + |Yαf |2)λ ≤ C
′

t
+ C

′′

+ C
′′′

t
λ

λ−1

with {Yα} = {[Xi,Xj ]}.
We first compare Cao-Yau’s notations with ours. Let J be a CR

structure compatible with the contact bundle ξ = ker θ and T be the
Reeb vector field of the contact form θ in a closed pseudohermitian
3-manifold (M,J, θ). The CR structure J decomposes C⊗ ξ into the
direct sum of T1,0 and T0,1, which are eigenspaces of J with respect to i
and −i, respectively. By choosing a frame {T, Z1, Z1̄} of TM ⊗C with
respect to the Levi form and {X1, X2} such that

J(Z1) = iZ1 and J(Z1) = −iZ1

and

Z1 =
1

2
(X1 − iX2) and Z1 =

1

2
(X1 + iX2),

it follows from (2.3) and (2.4) that

[X1,X2] = −2T and ∆b =
1

2
(X2

1 +X2
2 ) =

1

2
L.

Let W be the Tanaka-Webster curvature and A11 be the pseudoher-
mitian torsion of (M,J, θ) with

W (Z,Z) =Wx1x1̄ and Tor(Z,Z) = 2Re (iA1̄1̄x
1̄x1̄)

for all Z = x1Z1 ∈ T1,0 (refer to section 2 for details). We also denote
ϕ0 = Tϕ for a smooth function ϕ.
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By using the arguments of [LY] and the CR Bochner formula ([Gr]),
we are able to derive the CR version of Li-Yau gradient estimate for the
positive solution of the CR heat equation (1.1) in a closed pseudoher-
mitian 3-manifold with nonnegative Tanaka-Webster curvature.

Theorem 1.1. Let (M3, J, θ) be a closed pseudohermitian 3-manifold.
Suppose that

(1.4) (2W + Tor) (Z, Z) ≥ 0

for all Z ∈ T1,0. If u (x, t) is the positive solution of (1.1) onM×[0, ∞)
with

(1.5) [∆b, T]u = 0,

then f (x, t) = lnu (x, t) satisfies the following subgradient estimate:
[
|∇bf |2 − 4ft +

1

3
t(f0)

2

]
≤ 16

t
.

Remark 1.2. 1. (1.4) is the CR analogue of the Ricci curvature
tensors assumption in a closed Riemannian manifold.

2. Our subgradient estimates are more delicate due to the fact that
the sub-Laplacian ∆b is only subelliptic. In fact, by comparing with the
Riemannian case, we obtain an extra gradient estimate in the so-called
missing direction T.

3. We observe that the main difference between the usual Riemannian
Laplacian and the sub-Laplacian is the Reeb vector field T. Then con-
dition (1.5) is very natural due to the subellipticity of the sub-Laplacian
in the method of Li-Yau gradient estimate. Furthermore, it follows from
Lemma 3.4 (see section 3) that

[∆b, T]u = 2ImQu.

Here Q is the purely holomorphic second-order operator ([GL]) defined
by

Qu = 2i(A11u1)1.

4. We want to emphasize that condition (1.5) is equivalent to

ImQu = 0.

If
(
M3, J, θ

)
is a closed pseudohermitian 3-manifold with vanishing

torsion (i.e. A11 = 0), condition (1.5) holds. However, it is not true vice
versa.

5. In [CSW], its authors observe that condition (1.5) is related to the
existence of pseudo-Einstein contact forms in a closed pseudohermitian
(2n + 1)-manifold with n ≥ 2.
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Corollary 1.3. Let
(
M3, J, θ

)
be a closed pseudohermitian 3-

manifold with nonnegative Tanaka-Webster curvature and vanishing tor-
sion. If u (x, t) is the positive solution of (1.1) on M × [0, ∞), then
f (x, t) = lnu (x, t) satisfies the following subgradient estimate:

(1.6)

[
|∇bf |2 − 4ft +

1

3
t(f0)

2

]
≤ 16

t
.

Remark 1.4. 1. Our estimate (1.6) is sharp in view of the Cao-Yau
gradient estimate (1.3) in a closed pseudohermitian 3-manifold with
nonnegative Tanaka-Webster curvature and vanishing torsion. As in
the proof of Theorem 1.1 (see section 4), the coefficient t in front of
(f0)

2 in (1.6) is crucial for our estimate, which is different from the
result of Li-Yau gradient estimate ([LY]).

2. The method of gradient estimate turns out to be useful in esti-
mating the first eigenvalue of the Laplacian as in [Li] and [LY1]. In our
case, we are able to apply the method of CR gradient estimate to prove
the CR Obata Theorem completely. We refer to [CC1] and [CC2] for
partial results. The complete proof will appear elsewhere ([CK1]).

3. In [CCW], the first author and his coauthors show that the torsion
soliton of (1.7) has the contact form with vanishing torsion.

We should point out that the CR analogue of the Ricci curvature
tensor is the pseudohermitian torsion A11, which is complex. The result
of Theorem 1.1 is new and considered to be of fundamental importance
in the study of torsion flow. More precisely, let θ(t) be a family of smooth
contact forms and J(t) be a family of CR structures on (M,J0, θ0) with
J(0) = J0 and θ(0) = θ0. We define the following so-called torsion flow
([CCW])

(1.7)

{
∂
∂t
J(t) = −2JAJ,θ(t),

∂
∂t
θ(t) = −2W (t)θ(t),

on M × [0, T ) with J(t) = iθ1⊗Z1− iθ1⊗Z1 and AJ,θ(t) = −iA11θ
1⊗

Z1 + iA11θ
1 ⊗ Z1. Here

{
θ, θ1, θ1̄

}
is the coframe dual to {T,Z1, Z1̄} .

In particular, if (M,J0, θ0) is a closed pseudohermitian 3-manifold
with vanishing torsion,

(1.8)

{
∂
∂t
θ(t) = −2W (t)θ(t),
θ(0) = θ0,

is the CR Yamabe flow. By using the same method of gradient estimate,
we are able to obtain the CR Li-Yau-Hamilton inequality for the flow
(1.8) in a closed spherical CR 3-manifold with positive Tanaka-Webster
curvature and vanishing torsion ([CK2]).

Furthermore, in view of Theorem 1.1, we still have the following gen-
eral subgradient estimate when we replace the lowerbound of curvature
condition (1.4) by a negative constant.
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Theorem 1.5. Let (M3, J, θ) be a closed pseudohermitian 3-manifold
with

(1.9) (2W + Tor) (Z, Z) ≥ −2k |Z|2

for all Z ∈ T1,0, where k is a positive constant. If u (x, t) is the positive
solution of (1.1) on M × [0, ∞) with

[∆b, T]u = 0,

then f (x, t) = lnu (x, t) satisfies the following subgradient estimate:

(1.10) |∇bf |2 − (4 + 2k) ft ≤
(4 + 2k)2 (k + 1)

t
+

(4 + 2k)2 (k + 1)

(3 + 2k)
.

Secondly, by using the arguments of [LY] and another CR Bochner
formula (3.3) which involves the third order CR pluriharmonic operator
P and CR Paneitz operator P0 (see definition 2.1), we are able to derive
another CR version of Li-Yau gradient estimate for the positive solution
u(x, t) of (1.1) on M × [0,∞). We define the Kohn Laplacian �b on
functions by �bϕ = (−∆b + iT)ϕ.

Theorem 1.6. Let (M,J, θ) be a closed pseudohermitian 3-manifold
with

(2W + Tor)(Z,Z) ≥ 0,

for all Z ∈ T1,0. Let u(x, t) be the positive smooth solution of (1.1) on
M × [0,∞) with

[∆b, T]u = 0.

If

(1.11) �b�bu(x, 0) = 0

at t = 0, then for f (x, t) = lnu (x, t) ,

|∇bf |2 + 3ft ≤
9

t

on M × (0,∞).

Now if
(
M3, J, θ

)
is a closed pseudohermitian 3-manifold with van-

ishing torsion, it follows from Lemma 3.4 that condition (1.5) holds.
Also we observe that P0 = 2�b�b. Then condition (1.11) is equivalent
to P0u(x, 0) = 0. Furthermore, from (i) in Remark 2.2, we have that

P0u = 0 ⇐⇒ Pu = 0

in a closed pseudohermitian 3-manifold with vanishing torsion. All these
with Theorem 1.6 imply

Corollary 1.7. Let (M,J, θ) be a closed pseudohermitian 3-manifold
with nonnegative Tanaka-Webster curvature and vanishing torsion. If
u(x, t) is the positive solution of (1.1) on M × [0,∞) such that u is the
CR-pluriharmonic function

Pu = 0
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at t = 0, then f (x, t) = lnu (x, t) satisfies the estimate

(1.12) |∇bf |2 + 3ft ≤
9

t

on M × (0,∞).

By combining the results of Theorem 1.1 and Theorem 1.6, we get the
following subgradient estimate of the logarithm of the positive solution
to (1.1) in a closed pseudohermitian 3-manifold.

Theorem 1.8. Let (M,J, θ) be a closed pseudohermitian 3-manifold
with

(2W + Tor)(Z,Z) ≥ 0,

for all Z ∈ T1,0. Let u(x, t) be the positive smooth solution of (1.1) on
M × [0,∞) with

[∆b, T]u = 0.

If

�b�bu(x, 0) = 0

at t = 0, then there exists a constant C1 such that u satisfies the sub-
gradient estimate

(1.13)
|∇bu|2
u2

≤ C1

t

on M × (0,∞).

As a consequence of Theorem 1.6, we have

Corollary 1.9. Let (M,J, θ) be a closed pseudohermitian 3-manifold
with nonnegative Tanaka-Webster curvature and vanishing torsion. If
u(x, t) is the positive solution of (1.1) on M × [0,∞) such that

Pu = 0

at t = 0, then there exists a constant C2 such that u satisfies the sub-
gradient estimate

|∇bu|2
u2

≤ C2

t

on M × (0,∞).

Finally, we have the Harnack inequality and upper bound estimate
for the heat kernel of (1.1). By Chow connectivity theorem [Cho], there
always exists a horizontal curve (see definition 2.3) joining p and q, so
the distance is finite. Now integrating (1.6) over (γ(t), t) of a horizontal
path γ : [t1, t2] →M joining points x1, x2 inM, we obtain the following
CR version of Li-Yau Harnack inequality.
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Theorem 1.10. Let (M,J, θ) be a closed pseudohermitian 3-manifold
with nonnegative Tanaka-Webster curvature and vanishing torsion. If
u(x, t) is the positive solution of (1.1) on M × [0,∞), then for any x1,
x2 in M and 0 < t1 < t2 <∞, we have the inequality

u(x2, t2)

u(x1, t1)
≥

(
t2

t1

)
−4

exp(−dcc(x1, x2)
2

(t2 − t1)
).

Here dcc is the Carnot-Carathéodory distance.

As a consequence of Theorem 1.10 and [CY], we have the following
upper bound estimate for the heat kernel of (1.1).

Theorem 1.11. Let (M,J, θ) be a closed pseudohermitian 3-manifold
with nonnegative Tanaka-Webster curvature and vanishing torsion and
H(x, y, t) be the heat kernel of (1.1) on M × [0,∞). Then for some
constant δ > 1 and 0 < ǫ < 1, H(x, y, t) satisfies the estimate

H(x, y, t) ≤ C(ǫ)δV −
1
2 (Bx(

√
t))V −

1
2 (By(

√
t)) exp

(
−d

2
cc(x, y)

(4 + ǫ)t

)

with C(ǫ) → ∞ as ǫ→ 0.

Let u(x, t) be the positive solution of (1.1) on M × [0,∞), and g(x, t)
be the function that satisfies

u(x, t) =
e−g(x,t)

(4πt)16×a

with
∫
M
udµ = 1. Here a > 0, to be determined later.

We first define the so-called Nash-type entropy ([Na]) (also [CW])

(1.14) N(u, t) = −
∫

M

(lnu)udµ

and

(1.15) Ñ(u, t) = N(u, t)− (16 × a)(ln 4πt+ 1).

Next, following Perelman ([Pe1]) (also [Ni], [Li]), we define

(1.16) W(u, t) =

∫

M

[t|∇bg|2 + g − (16 × 2a)]udµ =
d

dt
[tÑ(u, t)]

and

(1.17) W̃(u, t) = W(u, t) +
1

2
t2
∫

M

g20udµ.

Then, by applying Corollary 1.3, we obtain the following entropy

formulae for Ñ(u, t) and W̃(u, t).

Theorem 1.12. Let (M,J, θ) be a closed pseudohermitian 3-manifold
with nonnegative Tanaka-Webster curvature and vanishing torsion. Let
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u(x, t) be the positive solution of (1.1) on M × [0,∞) with
∫
M
udµ = 1.

Then
d

dt
Ñ(u, t) =

∫

M

(|∇bg|2 + 4gt +
16× 3a

t
)udµ ≤ 0

for all t ∈ (0,∞) and a ≥ 1.

Theorem 1.13. Let (M,J, θ) be a closed pseudohermitian 3-manifold
with nonnegative Tanaka-Webster curvature and vanishing torsion. Let
u(x, t) be the positive solution of (1.1) on M × [0,∞) with

∫
M
udµ = 1.

Then

d

dt
W̃ ≤ −4t

∫

M

u|g11|2dµ− t

∫

M

u(∆bg)
2dµ − 2t

∫

M

uW |∇bg|2dµ ≤ 0

for all t ∈ (0,∞) and a ≥ 6.

Note that all arguments here work as well in a closed pseudohermitian
(2n+1)-manifold. We will pursue this issue elsewhere. Also we refer to
[SC] and [JS] for other related topics.

We briefly describe the methods used in our proofs. In section 3,
we will recall two CR versions of Bochner formulae and derive some
key lemmas. In section 4, we derive two versions of Li-Yau gradient
estimates and Harnack inequality for the CR heat equation. In section
5, by using the subgradient estimate in the previous section, we derive
entropy formulae for the CR heat equation (1.1).

Acknowledgments. The first author would like to express his thanks
to Prof. S.-T. Yau for his inspirations from Li-Yau gradient estimate,
and Prof. C.-S. Lin, director of Taida Institute for Mathematical Sci-
ences, NTU, for constant encouragement and support. The work is not
possible without their efforts.

This research was supported in part by the NSC of Taiwan.

2. Preliminary

We introduce some basic materials in a pseudohermitian 3-manifold
(see [L1], [L2] for more details). Let M be a closed 3-manifold with
an oriented contact structure ξ. There always exists a global contact
form θ with ξ = ker θ, obtained by patching together local ones with
a partition of unity. The Reeb vector field of θ is the unique vector
field T such that θ(T) = 1 and LT θ = 0 or dθ(T, ·) = 0. A CR
structure compatible with ξ is a smooth endomorphism J : ξ→ξ such
that J2 = −Id. A pseudohermitian structure compatible with ξ is a
CR-structure J compatible with ξ together with a global contact form
θ. The CR structure J can extend to C⊗ ξ and decomposes C⊗ ξ into
the direct sum of T1,0 and T0,1, which are eigenspaces of J with respect
to i and −i, respectively.
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The Levi form 〈, 〉 is the Hermitian form on T1,0 defined by 〈Z,W 〉 =
−i

〈
dθ, Z ∧W

〉
. We can extend 〈, 〉 to T0,1 by defining

〈
Z,W

〉
=

〈Z,W 〉 for all Z,W ∈ T1,0. The Levi form induces naturally a Her-
mitian form on the dual bundle of T1,0, and hence on all the induced
tensor bundles. Integrating the Hermitian form (when acting on sec-
tions) over M with respect to the volume form dµ = θ ∧ dθ, we get an
inner product on the space of sections of each tensor bundle.

Let {T, Z1, Z1̄} be a frame of TM⊗C, where Z1 is any local frame of

T1,0, Z1̄ = Z1 ∈ T0,1. Then
{
θ, θ1, θ1̄

}
, the coframe dual to {T,Z1, Z1̄},

satisfies

dθ = ih11̄θ
1 ∧ θ1̄

for some positive function h11̄. Actually we can always choose Z1 such
that h11̄ = 1; hence, throughout this paper, we assume h11̄ = 1.

The pseudohermitian connection of (J, θ) is the connection ∇ on
TM ⊗ C (and extended to tensors) given in terms of a local frame
Z1 ∈ T1,0 by

∇Z1 = θ1
1 ⊗ Z1, ∇Z1̄ = θ1̄

1̄ ⊗ Z1̄, ∇T = 0,

where θ1
1 is the 1-form uniquely determined by the following equations:

dθ1 = θ1 ∧ θ11 + θ ∧ τ1

τ1 ≡ 0 mod θ1̄

0 = θ1
1 + θ1̄

1̄,

(2.1)

where τ1 is the pseudohermitian torsion. Put τ1 = A1
1̄θ

1̄. The structure
equation for the pseudohermitian connection is

(2.2) dθ1
1 =Wθ1 ∧ θ1̄ + 2iIm(A1̄

1,1̄θ
1 ∧ θ),

where W is the Tanaka-Webster curvature.
We will denote components of covariant derivatives with indices pre-

ceded by a comma; thus write A1̄
1,1̄θ

1∧ θ. The indices {0, 1, 1̄} indicate
derivatives with respect to {T,Z1, Z1̄}. For derivatives of a scalar func-
tion, we will often omit the comma; for instance, ϕ1 = Z1ϕ, ϕ11̄ =
Z1̄Z1ϕ− θ11(Z1̄)Z1ϕ, ϕ0 = Tϕ for a (smooth) function.

For a real-valued function ϕ, the subgradient∇b is defined by∇bϕ ∈ ξ

and 〈Z,∇bϕ〉 = dϕ(Z) for all vector fields Z tangent to the contact
plane. Locally, ∇bϕ = ϕ1̄Z1 + ϕ1Z1̄.

We can use the connection to define the subhessian as the complex
linear map

(∇H)2ϕ : T1,0 ⊕ T0,1 → T1,0 ⊕ T0,1

and

(∇H)2ϕ(Z) = ∇Z∇bϕ.
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The sub-Laplacian ∆b defined as the trace of the subhessian

(2.3) ∆bϕ = Tr
(
(∇H)2ϕ

)
= (ϕ11̄ + ϕ1̄1).

Finally, we also need the following commutation relations ([L1]):

(2.4)

CI,01 − CI,10 = CI,1A11 − kCI,A11,1,

CI,01 − CI,10 = CI,1A11 + kCI,A11,1,

CI,11 − CI,11 = iCI,0 + kWCI .

Here CI denotes a coefficient of a tensor with multi-index I consisting
of only 1 and 1, and k is the number of 1 minus the number of 1 in I.

In the end, we recall some definitions.

Definition 2.1. Let (M,J, θ) be a closed pseudohermitian 3-manifold.
We define ([L1])

Pϕ = (ϕ1̄
1̄
1 + iA11ϕ

1)θ1 = Pϕ = (P1ϕ)θ
1,

which is an operator that characterizes CR-pluriharmonic functions.
Here P1ϕ = ϕ1̄

1̄
1 + iA11ϕ

1 and Pϕ = (P 1)θ
1̄, the conjugate of P . The

CR Paneitz operator P0 is defined by

(2.5) P0ϕ = 4
(
δb(Pϕ) + δb(Pϕ)

)
,

where δb is the divergence operator that takes (1, 0)-forms to functions

by δb(σ1θ
1) = σ1,

1, and similarly, δ̄b(σ1̄θ
1̄) = σ1̄,

1̄.

We observe that

(2.6)

∫

M

〈Pϕ+ Pϕ, dbϕ〉L∗

θ
dµ = −1

4

∫

M

P0ϕ · ϕ dµ

with dµ = θ ∧ dθ. One can check that P0 is self-adjoint. That is,
〈P0ϕ,ψ〉 = 〈ϕ,P0ψ〉 for all smooth functions ϕ and ψ. For the details
about these operators, the reader can make reference to [GL], [Hi],
[L1], [GG], and [FH].

Remark 2.2. ([Hi], [GL]) (i) Let (M,J, θ) be a closed pseudoher-
mitian 3-manifold with vanishing torsion. Then a smooth real-valued
function ϕ satisfies P0ϕ = 0 on M if and only if P1ϕ = 0 on M.

(ii) Let P1ϕ = 0. IfM is the boundary of a connected strictly pseudo-
convex domain Ω ⊂ C2, then ϕ is the boundary value of a pluriharmonic
function u in Ω. That is, ∂∂u = 0 in Ω. Moreover, if Ω is simply con-
nected, there exists a holomorphic function w in Ω such that Re(w) = u

and u|M = ϕ.

Definition 2.3. Let (M,J, θ) be a closed pseudohermitian 3-manifold
with ξ = ker θ. A piecewise smooth curve γ : [0, 1] → M is said to be
horizontal if γ′(t) ∈ ξ whenever γ′(t) exists. The length of γ is then
defined by

l(γ) =

∫ 1

0
(< γ′(t), γ′(t) >)

1
2 dt.
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The Carnot-Carathéodory distance dcc between two points p, q ∈ M is
defined by

dcc(p, q) = inf {l(γ)| γ ∈ Cp,q} ,
where Cp,q is the set of all horizontal curves which join p and q.

3. The CR Bochner Formulae

In this section, we will recall two CR versions of Bochner formulae
and derive some key lemmas in a closed pseudohermitian 3-manifold
(M,J, θ). We first recall the following CR version of Bochner formula in
a complete pseudohermitian 3-manifold.

Lemma 3.1. ([Gr]) Let (M,J, θ) be a complete pseudohermitian 3-
manifold. For a smooth real-valued function ϕ on (M,J, θ),
(3.1)

∆b |∇bϕ|2 = 2
∣∣∣
(
∇H

)2
ϕ
∣∣∣
2
+ 2 〈∇bϕ, ∇b∆bϕ〉

+ (4W + 2Tor) ((∇bϕ)C , (∇bϕ)C) + 4 〈J∇bϕ, ∇bϕ0〉 .
Here (∇bϕ)C = ϕ1̄Z1 is the corresponding complex (1, 0)-vector of ∇bϕ.

Note that ([CC1])

〈J∇bϕ, ∇bϕ0〉 = −i(ϕ1ϕ01 − ϕ1ϕ01)

and
(3.2)
< Pϕ+ Pϕ, dbϕ >L∗

θ
= (ϕ111ϕ1 + iA11ϕ1ϕ1) + (ϕ111ϕ1 − iA11ϕ1ϕ1).

Then

−i(ϕ1ϕ10 − ϕ1ϕ10) = −2 < Pϕ+ Pϕ, dbϕ >L∗

θ

−2Tor((∇bϕ)C, (∇bϕ)C)
+ < ∇bϕ,∇b∆bϕ >Lθ

.

These and (3.1) imply

Lemma 3.2. ([CC1]) Let (M,J, θ) be a complete pseudohermitian
3-manifold. For a smooth real-valued function ϕ on (M,J, θ),

(3.3)
∆b|∇bϕ|2 = 2|(∇H )2ϕ|2 + 6 < ∇bϕ,∇b∆bϕ >

+[4W − 6Tor]((∇bϕ)C, (∇bϕ)C)
−8 < Pϕ+ Pϕ, dbϕ > .

Here dbϕ = ϕ1θ
1 + ϕ1θ

1.

Now by applying the commutation relations (2.4), one obtains

Lemma 3.3. Let (M,J, θ) be a complete pseudohermitian 3-manifold.
For a smooth real-valued function ϕ and any ν > 0, we have

∆b |∇bϕ|2 ≥ 4 |ϕ11|2 + (∆bϕ)
2 + ϕ2

0 + 2 〈∇bϕ, ∇b∆bϕ〉
+

(
4W + 2Tor − 4

ν

)
((∇bϕ)C , (∇bϕ)C)− 2ν |∇bϕ0|2 .
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Proof. Note that
∣∣∣
(
∇H

)2
ϕ
∣∣∣
2
= 2 |ϕ11|2 +

1

2
(∆bϕ)

2 +
1

2
ϕ2
0

and for all ν > 0

4 〈J∇bϕ, ∇bϕ0〉 ≥ −4 |∇bϕ| |∇bϕ0| ≥ −2

ν
|∇bϕ|2 − 2ν |∇bϕ0|2 .

Lemma 3.3 follows from Lemma 3.1 easily. q.e.d.

Lemma 3.4. Let (M,J, θ) be a complete pseudohermitian 3-manifold.
For a smooth real-valued function ϕ (x) defined on M , then

∆bϕ0 = (∆bϕ)0 + 2 [(A11ϕ1̄)1̄ + (A1̄1̄ϕ1)1] .

That is,
2ImQϕ = [∆b, T]ϕ.

Proof. By direct computation and the commutation relation (2.4),
we have

∆bϕ0 = ϕ011̄ + ϕ01̄1

= (ϕ10 +A11ϕ1̄)1̄ + (ϕ1̄0 +A1̄1̄ϕ1)1
= ϕ101̄ + (A11ϕ1̄)1̄ + ϕ1̄01 + (A1̄1̄ϕ1)1
= ϕ11̄0 + ϕ1̄10 + 2 [(A11ϕ1̄)1̄ + (A1̄1̄ϕ1)1]
= (∆bϕ)0 + 2 [(A11ϕ1̄)1̄ + (A1̄1̄ϕ1)1] .

This completes the proof. q.e.d.

Now we define
V : C∞ (M) → C∞ (M)

by
V (ϕ) = (A11ϕ1̄)1̄ + (A1̄1̄ϕ1)1 +A11ϕ1̄ϕ1̄ +A1̄1̄ϕ1ϕ1.

Lemma 3.5. Let
(
M3, J, θ

)
be a pseudohermitian 3-manifold. If

u (x, t) is the positive solution of (1.1) on M × [0,∞), then f (x, t) =
lnu (x, t) satisfies

∆bf0 − f0t = −2 〈∇bf0, ∇bf〉+ 2V (f) .

Proof. By Lemma 3.4, we have

∆bf0 = (∆bf)0 + 2 [(f1A1̄1̄)1 + (f1̄A11)1̄] .

But (
∆b −

∂

∂t

)
f (x, t) = − |∇bf (x, t)|2 .

All these imply

∆bf0 − f0t = (∆bf)0 − ft0 + 2 [(A11f1̄)1̄ + (A1̄1̄f1)1]
= (∆bf − ft)0 + 2 [(A11f1̄)1̄ + (A1̄1̄f1)1]

=
(
− |∇bf |2

)
0
+ 2 [(A11f1̄)1̄ + (A1̄1̄f1)1]

= −2 〈∇bf0, ∇bf〉+ 2[(A11f1̄)1̄ + (A1̄1̄f1)1
+ A11f1̄f1̄ +A1̄1̄f1f1]. q.e.d.
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Lemma 3.6. Let
(
M3, J, θ

)
be a pseudohermitian 3-manifold. Sup-

pose that

(3.4) [∆b, T]u = 0.

Then f (x, t) = lnu (x, t) satisfies

V (f) = 0.

Proof. It follows from Lemma 3.4 that

(3.5)
[∆b, T]u = 2ImQu

= 2 [(A1̄1̄u1)1 + (A11u1̄)1̄] .

Then
(3.6)
V (f) = (f1A1̄1̄)1 + (f1̄A11)1̄ +A11f1̄f1̄ +A1̄1̄f1f1

= f11A1̄1̄ + f1̄1̄A11 + f1A1̄1̄,1 + f1̄A11,1̄ +A11f1̄f1̄ +A1̄1̄f1f1
= A1̄1̄

(
u11
u

− u1u1
u2

)
+A11

(u1̄1̄
u

− u1̄u1̄
u2

)

+A1̄1̄,1
u1
u
+A11,1̄

u1̄
u
+A1̄1̄

u1u1
u2 +A11

u1̄u1̄
u2

= 1
u
[(A1̄1̄u1)1 + (A11u1̄)1̄]

= 1
2u [∆b, T]u

= 0.

This completes the proof. q.e.d.

4. Li-Yau Subgradient Estimate and CR Harnack Inequality

In this section, we derive CR versions of Li-Yau gradient estimates
and classical Harnack inequality for the CR heat equation in a closed
pseudohermitian 3-manifold.

Let u be the positive solution of (1.1) and denote

f (x, t) = lnu (x, t) .

Then f (x, t) satisfies the equation

(4.1)

(
∆b −

∂

∂t

)
f (x, t) = − |∇bf (x, t)|2 .

Now we define a real-valued function F (x, t, a, c) : M × [0, T ] ×
R∗ ×R+ → R by

(4.2) F (x, t, a, c) = t
(
|∇bf |2 (x) + aft + ctf20 (x)

)
,

where R∗=R\ {0} and R+ = (0, ∞).

Proposition 4.1. Let
(
M3, J, θ

)
be a pseudohermitian 3-manifold.

Suppose that

(4.3) (2W + Tor) (Z, Z) ≥ −2k |Z|2
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for all Z ∈ T1,0, where k is a nonnegative constant. If u (x, t) is the
positive solution of (1.1) on M × [0,∞), then
(4.4)(

∆b − ∂
∂t

)
F ≥ −1

t
F − 2 〈∇bf, ∇bF 〉+ t

[
4 |f11|2 + (∆bf)

2

+(1− c) f20 −
(
2k + 2

ct

)
|∇bf |2 + 4ctf0V (f)

]
.

Proof. First we differentiate F with respect to the t-variable.
(4.5)

Ft = 1
t
F + t

[
2 (1 + a) 〈∇bf, ∇bft〉+ cf20 + 2ctf0f0t + a∆bft

]
.

By the assumption (4.3) and Lemma 3.3, one can compute

∆bF = t
(
∆b |∇bf |2 + a∆bft + ct∆bf

2
0

)

≥ t

[
4 |f11|2 + (∆bf)

2 + f20 + 2 〈∇bf, ∇b∆bf〉 − 2

(
k +

1

ν

)
|∇bf |2

−2ν |∇bf0|2 + a∆bft + 2ctf0∆bf0 + 2ct |∇bf0|2
]
.

Then, taking ν = ct,

∆bF ≥ t
[
4 |f11|2 + (∆bf)

2 + f20 + 2 〈∇bf, ∇b∆bf〉(4.6)

− 2

(
k +

1

ct

)
|∇bf |2 + a∆bft + 2ctf0∆bf0

]
.

It follows from (4.5) and (4.6) that
(
∆b −

∂

∂t

)
F ≥ −1

t
F + t[4 |f11|2 + (∆bf)

2(4.7)

+

(
1− c)f20 − 2(k +

1

ct

)
|∇bf |2

+ 2 〈∇bf, ∇b∆bf〉+ 2ctf0(∆bf0 − f0t)

− 2(1 + a) 〈∇bf, ∇bft〉].

By Lemma 3.5 and definition of F, we have
(4.8)

2 〈∇bf, ∇b∆bf〉+ 2ctf0 (∆bf0 − f0t)− 2 (1 + a) 〈∇bf, ∇bft〉
= 2

〈
∇bf, ∇b

(
ft − |∇bf |2

)〉
− 2 (1 + a) 〈∇bf, ∇bft〉

+2ctf0 (−2 〈∇bf0, ∇bf〉+ 2V (f))

= −2a 〈∇bf, ∇bft〉 − 2
〈
∇bf, ∇b |∇bf |2

〉

−4ctf0 〈∇bf0, ∇bf〉+ 4ctf0V (f)

= −2a
〈
∇bf, ∇b

(
1
at
F − 1

a
|∇bf |2 − ct

a
f20

)〉
− 2

〈
∇bf, ∇b |∇bf |2

〉

−4ctf0 〈∇bf0, ∇bf〉+ 4ctf0V (f)
= −2

t
〈∇bf, ∇bF 〉+ 4ctf0V (f) .
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Substitute (4.8) into (4.7):
(
∆b − ∂

∂t

)
F ≥ −1

t
F − 2 〈∇bf, ∇bF 〉+ t

[
4 |f11|2 + (∆bf)

2

+(1− c) f20 − 2
(
k + 1

ct

)
|∇bf |2 + 4ctf0V (f)

]
.

This completes the proof. q.e.d.

Proposition 4.2. Let
(
M3, J, θ

)
be a pseudohermitian 3-manifold.

Suppose that

(2W + Tor) (Z, Z) ≥ −2k |Z|2

for all Z ∈ T1,0, where k is a nonnegative constant. If u (x, t) is the
positive solution of (1.1) on M × [0,∞), then

(
∆b −

∂

∂t

)
F ≥ 1

a2t
F 2 − 1

t
F − 2 〈∇bf, ∇bF 〉+ t

[
4 |f11|2

+

(
1− c− 2c

a2
F

)
f20(4.9)

+

(
−2 (a+ 1)

a2t
F − 2k − 2

ct

)
|∇bf |2 + 4ctf0V (f)

]
.

Proof. By definition of F and (4.1),

∆bf = ft − |∇bf |2

=
1

at
F − a+ 1

a
|∇bf |2 −

ct

a
f20 .

Then

(∆bf)
2 =

(
1

at
F − a+ 1

a
|∇bf |2 −

ct

a
f20

)2

=
1

a2t2
F 2 +

(
a+ 1

a
|∇bf |2 +

ct

a
f20

)2

− 2 (a+ 1)

a2t
F |∇bf |2 −

2c

a2
Ff20

≥ 1

a2t2
F 2 − 2 (a+ 1)

a2t
F |∇bf |2 −

2c

a2
Ff20 .

It follows from (4.4) that
(
∆b −

∂

∂t

)
F ≥ 1

a2t
F 2 − 1

t
F − 2 〈∇bf, ∇bF 〉

+ t

[
4 |f11|2 +

(
1− c− 2c

a2
F

)
f20

+

(
−2 (a+ 1)

a2t
F − 2k − 2

ct

)
|∇bf |2 + 4ctf0V (f)

]
.

This completes the proof. q.e.d.
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Proposition 4.3. Let
(
M3, J, θ

)
be a pseudohermitian 3-manifold.

Suppose that

(2W + Tor) (Z, Z) ≥ −2k |Z|2

for all Z ∈ T1,0, where k is a nonnegative constant. Let a, c, T < ∞
be fixed. For each t ∈ [0, T ] , let (p(t), s (t)) ∈M × [0, t] be the maximal
point of F on M × [0, t]. Then at (p(t), s (t)) , we have

(4.10)
0 ≥ 1

a2t
F
(
F − a2

)
+ t

[
4 |f11|2 +

(
1− c− 2c

a2
F
)
f20

+
(
−2(a+1)

a2t
F − 2k − 2

ct

)
|∇bf |2 + 4ctf0V (f)

]
.

Proof. Since F (p(t), s (t) , a, c) = max
(x,µ)∈M×[0, t]

F (x, µ, a, c), the

point (p(t), s (t)) is a critical point of F (x, s (t) , a, c). Then

∇bF (p(t), s (t) , a, c) = 0.

On the other hand, since (p(t), s (t)) is a maximal point, we can apply
the maximum principle at (p(t), s (t)) on M × [0, t]:

(4.11) ∆bF (p(t), s (t) , a, c) ≤ 0

and

(4.12)
∂

∂t
F (p(t), s (t) , a, c) ≥ 0.

Now it follows from (4.11), (4.12), and (4.9) that

0 ≥ 1
a2t
F
(
F − a2

)
+ t

[
4 |f11|2 +

(
1− c− 2c

a2
F
)
f20

+
(
−2(a+1)

a2t
F − 2k − 2

ct

)
|∇bf |2 + 4ctf0V (f)

]
.

q.e.d.

Now we are ready to prove our main theorems.

Proof of Theorem 1.1. Let
(
M3, J, θ

)
be a closed pseudohermitian 3-

manifold. Suppose that

(2W + Tor) (Z, Z) ≥ 0

for all Z ∈ T1,0, and

[∆b, T ]u = 0.

Recall that

F (x, t, a, c) = t
(
|∇bf |2 (x) + aft + ctf20 (x)

)
.

We claim that for each fixed T <∞,

F (p(T ), s (T ) , − 4, c) < 16
3c ,

where we choose a = −4 and 0 < c < 1
3 (see Remark 4.4). Here

(P (T ), s (T )) ∈M × [0, T ] is the maximal point of F on M × [0, T ].
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We prove by contradiction. Suppose not; that is,

F (p(T ), s (T ) , − 4, c) ≥ 16
3c .

Due to Proposition 4.3, (p(t), s (t)) ∈M×[0, t] is the maximal point of
F onM×[0, t] for each t ∈ [0, T ]. Since F (p(t), s (t)) is continuous in the
variable t when a, c are fixed and F (p(0), s (0)) = 0, by Intermediate-
value theorem there exists a t0 ∈ (0, T ] such that

(4.13) F (p(t0), s (t0) , − 4, c) = 16
3c .

By assumption (1.5) and Lemma 3.6, we have V (f) = 0. Now we
substitute (4.13) into (4.10) at the point (p(t0), s (t0)). Hence(

−2 (a+ 1)

a2t0
F (p(t0), s (t0) , − 4, c)− 2

ct0

)
= 0

and

(4.14)
0 ≥ 1

16s(t0)
16
3c

(
16
3c − 16

)
+

(
1− c− 2c

16
16
3c

)
s (t0) f

2
0

= 16
s(t0)

1
3c

(
1
3c − 1

)
+

(
1
3 − c

)
s (t0) f

2
0 .

Since 0 < c < 1
3 , (4.14) leads to a contradiction.

Hence
F (P (T ), s (T ) , − 4, c) < 16

3c .

This implies that

max
(x, t)∈M×[0, T ]

t
[
|∇bf |2 (x)− 4ft + ctf20 (x)

]
< 16

3c .

When we fix on the set {T} ×M , we have

T
[
|∇bf |2 (x)− 4ft + cTf20 (x)

]
< 16

3c .

Since T is arbitrary, we obtain

|∇bu|2
u2

− 4
ut

u
+ ct

u20
u2

<
16

3ct
.

Finally, let c→ 1
3 ; then we are done. This completes the proof. q.e.d.

Remark 4.4. In the previous proof, in fact we have

F ≤ a2

for all t with a ≤ −4.

Proof of Theorem 1.5. Let
(
M3, J, θ

)
be a closed pseudohermitian 3-

manifold with
(2W + Tor) (Z, Z) ≥ −2k |Z|2

for all Z ∈ T1,0, where k is a positive constant and

[∆b, T] u = 0.

Recall that

F (x, t, a, c) = t
(
|∇bf |2 (x) + aft + ctf20 (x)

)
.
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We separate the proof into two parts:
(i) Again we use the same method as in the proof of Theorem 1.1.

We first claim that for each fixed T > 3 + 2k,

F
(
p(T ), s (T ) , − 4− 2k, 1

T

)
<

(4+2k)2(k+1)T
3+2k ,

where we choose a = (−4− 2k) and c = 1
T

(here c depends on T ).
We prove by contradiction. Suppose not; that is,

F
(
p(T ), s (T ) , − 4− 2k, 1

T

)
≥ (4+2k)2(k+1)T

3+2k .

Since F (p(t), s (t)) is continuous in the variable t when a, c are fixed
and F (p(0), s (0)) = 0, by Intermediate-value theorem there exists a
t0 ∈ (0, T ] such that

(4.15) F
(
p(t0), s (t0) , − 4− 2k, 1

T

)
= (4+2k)2(k+1)T

3+2k .

By assumption (1.5) and Lemma 3.6, we have V (f) = 0. Now sub-
stitute (4.15) into (4.10) at the point (p(t0), s (t0)) . Hence

0 ≥ 1
(4+2k)2s(t0)

(4+2k)2(k+1)T
3+2k

[
(4+2k)2(k+1)T

3+2k − (4 + 2k)2
]

+
(
1− 1

T
− 2

(4+2k)2T

(4+2k)2(k+1)T
3+2k

)
s (t0) f

2
0

+
(

2(3+2k)

(4+2k)2s(t0)

(4+2k)2(k+1)T
3+2k − 2k − 2T

s(t0)

)
s (t0) |∇bf |2 .

Then
(4.16)

0 ≥ (k+1)(4+2k)2T
(3+2k)s(t0)

[
(k+1)T
3+2k − 1

]
+

(
1− 1

T
− 2(k+1)

3+2k

)
s (t0) f

2
0 .

But for T > 3 + 2k, we have

(4.17) (k+1)T
3+2k − 1 > 0

and

(4.18) 1− 1
T
− 2(k+1)

3+2k = 1
3+2k − 1

T
> 0.

This leads to a contradiction to (4.16).
Hence

F
(
p(T ), s (T ) , − 4− 2k, 1

T

)
<

(4+2k)2(k+1)T
3+2k .

This implies that

max
(x,t)∈M×[0, T ]

t
[
|∇bf |2 (x)− (4 + 2k) ft +

t
T
f20 (x)

]
<

(4+2k)2(k+1)T
3+2k .

When we fix on the set {T} ×M , we have

T
[
|∇bf |2 (x)− (4 + 2k) ft + f20 (x)

]
<

(4+2k)2(k+1)T
3+2k .

Hence for any t > 3 + 2k, we obtain

(4.19)
|∇bu|2
u2

− (4 + 2k)
ut

u
<

(4 + 2k)2 (k + 1)

3 + 2k
.
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(ii) Secondly, we consider the case when

T ≤ 3 + 2k.

We claim that

F (p(T ), s (T ) , − 4− 2k, c) < (4+2k)2(k+1)
(3+2k)c ,

where we also choose a = −4−2k and c < 1
3+2k (here c does not depend

on T ).
We prove by contradiction. Suppose not; that is,

F (p(T ), s (T ) , − 4− 2k, c) ≥ (4+2k)2(k+1)
(3+2k)c .

Since F (p(t), s (t)) is continuous in the variable t when a, c are fixed
and F (p(0), s (0)) = 0, by Intermediate-value theorem there exists a
t0 ∈ (0, T ] such that

(4.20) F (p(t0), s (t0) , − 4− 2k, c) = (4+2k)2(k+1)
(3+2k)c .

By assumption (1.5) and Lemma 3.6, we have V (f) = 0. Now sub-
stitute (4.20) into (4.10) at the point (p(t0), s (t0)) . Hence

0 ≥ 1
(4+2k)2s(t0)

(4+2k)2(k+1)
(3+2k)c

[
(4+2k)2(k+1)

(3+2k)c − (4 + 2k)2
]

+
(
1− c− 2(k+1)

(3+2k)

)
s (t0) f

2
0

+
(

2(3+2k)

(4+2k)2s(t0)

(4+2k)2(k+1)
(3+2k)c − 2k − 2

cs(t0)

)
s (t0) |∇bf |2 .

Then

(4.21) 0 ≥ (k+1)(4+2k)2

(3+2k)s(t0)c

[
(k+1)
(3+2k)c − 1

]
+

(
1

(3+2k) − c
)
s (t0) f

2
0 .

But for c < 1
3+2k , we have

1
(3+2k) − c > 0

and
(k + 1)

(3 + 2k)c
− 1 > k > 0.

This leads a contradiction to (4.21).
Hence

F (p(T ), s (T ) , − 4− 2k, c) < (4+2k)2(k+1)
(3+2k)c

for c < 1
3+2k and T ≤ 3 + 2k.

By the same argument as above, we have

(4.22)
|∇bu|2
u2

− (4 + 2k)
ut

u
<

(4 + 2k)2 (k + 1)

(3 + 2k) ct

for c < 1
3+2k and t ≤ 3 + 2k.
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(iii) Combining (4.19) and (4.22), we obtain that for any fixed c <
1

3+2k ,

|∇bu|2
u2

− (4 + 2k)
ut

u
<

(4 + 2k)2 (k + 1)

(3 + 2k) ct
+

(4 + 2k)2 (k + 1)

(3 + 2k)

for all t > 0.
Finally, let c→ 1

3+2k ; we are done. This completes the proof. q.e.d.

Finally, we derive another CR version of parabolic Li-Yau gradient
estimate for the positive solution of the CR heat equation. We refer to
[CTW] also. We first need the following lemmas.

Lemma 4.5. Let (M,J, θ) be a closed pseudohermitian 3-manifold. If
u(x, t) is a solution of

(
∆b −

∂

∂t

)
u(x, t) = 0

on M ×[0,∞) with
[∆b, T]u = 0

and
�b�bu(x, 0) = 0

at t = 0, then
�b�bu(x, t) = 0 and u111(x, t) = 0

for all t ∈ (0,∞).

Proof. Note that if [∆b, T]u = 0,

�b�bu = [(∆b + iT)(∆b − iT)]u = (∆b)
2u+ T 2u.

It follows from the assumption that ∆b�b�bu = �b�b∆bu. Applying
�b�b to the heat equation, we obtain

(
∆b −

∂

∂t

)
�b�bu(x, t) = 0

on M × [0,∞) with �b�bu(x, 0) = 0. It follows from the maximum
principle that �b�bu(x, t) = 0. That is,

u1111 + u1111 = 0.

Next, by commutation relations (2.4) and Lemma 3.4,

u1111 = u1111 − i[(A11u1)1 + (A11u1)1]
= u1111 − 1

2 i [∆b, T]u
= u1111.

Hence
u1111 = 0.

It follows that

|u111|2 = u111u111 = (u11u111)1 − u11u1111 = (u11u111)1.
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Integrate both sides and by divergence theorem ([GL, p713]), we get

u111 = 0.

q.e.d.

Lemma 4.6. ([CTW]) Let (M,J, θ) be a closed pseudohermitian 3-
manifold. Let f = lnu, for u > 0. Then

4
〈
Pf + P̄ f, dbf

〉
L∗

θ

= 4

〈
Pu+ P̄ u, dbu

〉
L∗

θ

u2
(4.23)

− 2 < ∇bf,∇b|∇bf |2 > −2
∆bu

u
|∇bf |2.

Proof. It follows from the straightforward computation. q.e.d.

Proof of Theorem 1.6. Denote that

(4.24) G = t
(
|∇bf |2 + 3ft

)
.

First differentiating (4.24) w.r.t. the t-variable, we have

Gt =
1

t
G+ t

(
|∇bf |2 + 3ft

)
t

=
1

t
G+ t

(
4 |∇bf |2 + 3∆bf

)
t

(4.25)

=
1

t
G+ t [8〈∇bf,∇bft〉+ 3∆bft] .

By using the CR version of Bochner formula (3.3) and Lemma 4.6, one
obtains

∆bG = t
(
∆b |∇bf |2 + 3∆bft

)

= t[2|(∇H)2f |2 + 6 〈∇bf,∇b∆bf〉
+2(2W − 3Tor)((∇bf)C, (∇bf)C)

−8〈Pf + Pf, dbf〉L∗

θ
+ 3∆bft]

≥ t[4 |f11|2 + (∆bf)
2 + 6 〈∇bf,∇b∆bf〉

+ 2(2W − 3Tor)((∇bf)C, (∇bf)C)(4.26)

−8〈Pf + Pf, dbf〉L∗

θ
+ 3∆bft]

= t[4 |f11|2 + (∆bf)
2 + 6 〈∇bf,∇b∆bf〉

+ 2(2W − 3Tor)((∇bf)C, (∇bf)C)

−8u−2
〈
Pu+ P̄ u, dbu

〉
L∗

θ

+ 4ft|∇bf |2

+4
〈
∇bf,∇b|∇bf |2

〉
+ 3∆bft].
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Here we have used the inequalities

∣∣(∇H)2f
∣∣2 = 2 |f11|2 +

1

2
(∆bf)

2 +
1

2
f20 ≥ 2 |f11|2 +

1

2
(∆bf)

2,

and

ft =
ut

u
=

∆bu

u
.

Applying the formula

(4.27) ∆bf = ft − |∇bf |2 =
1

3t
G− 4

3
|∇bf |2

and combining (4.25), (4.26), we conclude

(
∆b −

∂

∂t

)
G ≥− 1

t
G+ t[4 |f11|2 + (∆bf)

2 + 6 〈∇bf,∇b∆bf〉

+ 4
〈
∇bf,∇b|∇bf |2

〉
− 8〈∇bf,∇bft〉

+ 2(2W − 3Tor)((∇bf)C, (∇bf)C)

+ 4ft|∇bf |2 − 8u−2
〈
Pu+ P̄ u, dbu

〉
L∗

θ

]

= −1

t
G+ t[− 2

3t
〈∇bf,∇bG〉 −

4

3

〈
∇bf,∇b|∇bf |2

〉

+ 4 |f11|2 + (∆bf)
2

+ 4ft|∇bf |2 + 2(2W − 3Tor)((∇bf)C, (∇bf)C)

− 8u−2
〈
Pu+ P̄ u, dbu

〉
L∗

θ

].

Now it is easy to see that

〈
∇bf,∇b|∇bf |2

〉
= 4Re(f11f1f1) + ∆bf |∇bf |2.

Thus

−4

3

〈
∇bf,∇b|∇bf |2

〉
=− 16

3
Re(f11f1f1)−

4

3
∆bf |∇bf |2

≥ −4 |f11|2 −
16

9
|f1|4 −

4

3
∆bf |∇bf |2

= −4 |f11|2 −
4

9
|∇bf |4 −

4

3
∆bf |∇bf |2.
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Here we have used the basic inequality 2Re(zw) ≤ ǫ|z|2+ ǫ−1|w|2 for all
ǫ > 0. All these imply(

∆b −
∂

∂t

)
G ≥− 1

t
G− 2

3
〈∇bf,∇bG〉 + t[(∆bf)

2(4.28)

+
8

3
∆bf |∇bf |2 +

32

9
|∇bf |4

+ 2(2W − 3Tor)((∇bf)C, (∇bf)C)

− 8u−2
〈
Pu+ P̄ u, dbu

〉
L∗

θ

]

≥ −2

3
〈∇bf,∇bG〉+

1

9t
G(G − 9)

+ t[2(2W − 3Tor)((∇bf)C, (∇bf)C)

− 8u−2
〈
Pu+ P̄ u, dbu

〉
L∗

θ

].

Now from (3.2), we have

u−2
〈
Pu+ P̄ u, dbu

〉
L∗

θ

= u−2[(u111u1 + u111u1) + (iA11u1u1 − iA11u1u1)]

= u−2(u111u1 + u111u1) + (iA11f1f1 − iA11f1f1).

Hence, from Lemma 4.5,

2(2W − 3Tor)((∇bf)C, (∇bf)C)− 8u−2
〈
Pu+ P̄ u, dbu

〉
L∗

θ

(4.29)

= 2(2W + Tor)((∇bf)C, (∇bf)C)− 8u−2(u111u1 + u111u1)

= 2(2W + Tor)((∇bf)C, (∇bf)C)

≥ 0.

It follows from (4.28), (4.29) that

(4.30)

(
∆b −

∂

∂t

)
G ≥ −2

3
〈∇bf,∇bG〉+

1

9t
G(G − 9).

The theorem claims that G is at most 9. If not, at the maximum
point (x0, t0) of G on M × [0, T ] for some T > 0,

G(x0, t0) > 9.

Clearly, t0 > 0, because G(x, 0) = 0. By the fact that (x0, t0) is a
maximum point of G on M × [0, T ], we have

∆bG(x0, t0) ≤ 0, ∇bG(x0, t0) = 0

and
Gt(x0, t0) ≥ 0.

Combining with (4.30), this implies

0 ≥ 1

9t0
G(x0, t0)(G(x0, t0)− 9),

which is a contradiction. Hence G ≤ 9 and Theorem 1.6 follows. q.e.d.
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Proof of Theorem 1.10. Let γ be a horizontal curve with γ(t1) = x1 and
γ(t2) = x2. We define η : [t1, t2] →M × [t1, t2] by

η(t) = (γ(t), t).

Clearly η(t1) = (x1, t1) and η(t2) = (x2, t2). Let f = lnu(x, t), integrate
d
dt
f along η, and we get

f(x2, t2)− f(x1, t1) =

∫ t2

t1

d

dt
fdt

=

∫ t2

t1

{
〈 ·γ,∇bf〉+ ft

}
dt.

Applying Theorem 1.1 to ft, this yields

f(x2, t2)− f(x1, t1) ≥
∫ t2

t1

{
1

4
|∇bf |2 −

4

t
+ 〈 ·γ,∇bf〉

}
dt

≥ −
∫ t2

t1

|
·

γ|
2

dt− 4 ln(
t2

t1
).

Now we choose

|
.

γ| = dcc(x1, x2)

t2 − t1
.

Then the inequality in Theorem 1.10 follows by taking exponentials of
the above inequality.

q.e.d.

5. Perelman-Type Entropy Formulae

In this section, we prove the monotonicity formulae for Ñ(u, t) and

W̃(u, t) under the CR heat equation (1.1):

(∆ − ∂

∂t
)u (x, t) = 0

on M × [0,∞).

Proof of Theorem 1.12. Let g be the function which satisfies

u(x, t) =
e−g(x,t)

(4πt)16×a

with
∫
M
udµ = 1. Here a > 0, to be determined. Denote f = lnu. Then

f = −g − (16 × a) ln(4πt).

Since

|∇bf |2 = |∇bg|2 and ft = −gt −
16× a

t
and from Corollary 1.3,

|∇bf |2 − 4ft −
16

t
< 0.
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It follows that

(5.1) |∇bg|2 + 4gt +
16× (4a− 1)

t
< 0.

Hence

d

dt
N(u, t) = − d

dt

∫

M

u lnudµ = −
∫

M

ut lnudµ −
∫

M

u
ut

u
dµ

= −
∫

M

lnu∆budµ = −
∫

M

u∆b lnudµ

= −
∫

M

(∆bu− |∇bu|2
u

)dµ =

∫

M

(
|∇bu|2
u

)dµ

=

∫

M

u|∇bg|2dµ

and

d

dt
Ñ(u, t) =

d

dt
N(u, t)− 16× a

t

=

∫

M

|∇bg|2udµ− 16× a

t
.

But
∫

M

gtudµ = −
∫

M

ftudµ − 16 × a

t

∫

M

udµ

= −
∫

M

utdµ− 16× a

t

= −16× a

t
.

Thus

d

dt
Ñ(u, t) =

∫

M

(|∇bg|2 + 4gt +
16× 3a

t
)udµ.

Now if we choose

0 < 3a ≤ 4a− 1,

that is,

a ≥ 1,

it follows from (5.1) that

d

dt
Ñ(u, t) < 0.

q.e.d.
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Proof of Theorem 1.13. Compute

W =

∫

M

[t|∇bg|2 − lnu− (16 × a) ln(4πt)− (16× 2a)]udµ(5.2)

=

∫

M

(t|∇bg|2 − (16 × a))udµ

− [

∫

M

u lnudµ+

∫

M

(16 × a)(ln(4πt) + 1)udµ]

= t[

∫

M

(|∇bg|2 −
16 × a

t
)udµ]

− [

∫

M

u lnudµ+

∫

M

(16 × a)(ln(4πt) + 1)udµ]

= t
d

dt
Ñ(u, t) + Ñ(u, t)

=
d

dt
(tÑ(u, t)).

Hence

d

dt
W = 2

d

dt
Ñ(u, t) + t

d2

dt2
Ñ(u, t).

It follows that

d2

dt2
Ñ(u, t) =

d

dt
[−

∫

M

u∆b lnudµ− 16× a

t
]

(5.3)

= −
∫

M

ut∆b lnudµ−
∫

M

u
∂

∂t
(∆b lnu)dµ+

16× a

t2

= −
∫

M

∆bu∆b lnudµ−
∫

M

u
∂

∂t
(∆b lnu)dµ +

16× a

t2
.

Note that

(
∂

∂t
−∆b)(∆b lnu) = ∆b(

∂

∂t
−∆b) ln u

= ∆b[
ut

u
− (

∆bu

u
− |∇bu|2

u2
)]

= ∆b(|∇b lnu|2).

Again, from the CR Bochner formula, we have

∆b(|∇b lnu|2) ≥ 2|(∇H)2 lnu|2 + 2 〈∇b lnu, ∇b∆b lnu〉

+ 2(W − 1

ν
)|∇b lnu|2 − 2ν|∇b(lnu)0|2

for all ν > 0, whereW is the Tanaka-Webster curvature. It follows from
(5.3) that
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d2

dt2
Ñ(u, t) = −

∫

M

∆bu∆b lnudµ −
∫

M

u
∂

∂t
(∆b lnu)dµ +

16 × a

t2

= −
∫

M

∆bu∆b lnudµ +
16× a

t2

−
∫

M

u(
∂

∂t
−∆b)∆b lnudµ −

∫

M

u∆b(∆b lnu)dµ

≤ −
∫

M

∆bu(∆b lnu)dµ+
16× a

t2
− 2

∫

M

u|(∇H)2 lnu|2dµ

− 2

∫

M

u 〈∇b lnu, ∇b∆b lnu〉 dµ

− 2

∫

M

u(W − 1

ν
)|∇b lnu|2dµ

+ 2

∫

M

ν|∇b(lnu)0|2udµ −
∫

M

u∆b(∆b lnu)dµ.

Thus

d

dt
W = t

d2

dt2
Ñ(u, t) + 2

d

dt
Ñ(u, t)

≤ −t
∫

M

∆bu(∆b lnu)dµ +
16× a

t
− 2t

∫

M

u|(∇H)2 lnu|2dµ

− 2t

∫

M

u < ∇b lnu,∇b∆b lnu > dµ

− 2t

∫

M

u(W − 1

ν
)|∇b lnu|2dµ

+ 2tν

∫

M

|∇b(lnu)0|2udµ− t

∫

M

u∆b(∆b lnu)dµ

+ 2

∫

M

|∇bg|2udµ− 16× 2a

t
.

But ∫

M

∆bu∆b lnudµ = −
∫

M

< ∇bu,∇b∆b lnu > dµ

and ∫

M

u 〈∇b lnu, ∇b∆b lnu〉 dµ =

∫

M

〈∇bu, ∇b∆b lnu〉 dµ.

This implies

−t
∫

M

∆bu(∆b lnu)dµ − 2t

∫

M

u 〈∇b lnu, ∇b∆b lnu〉 dµ− t

∫

M

u∆b(∆b lnu)dµ = 0.
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Therefore

d

dt
W ≤ −2t

∫

M

u|(∇H)2 lnu|2dµ− 16× a

t
(5.4)

− 2t

∫

M

u(W − 1

ν
)|∇b lnu|2dµ+ 2tν

∫

M

|∇b(lnu)0|2udµ

+ 2

∫

M

|∇bg|2udµ.

Now for some α > 0, to be determined later such that d
dt
W̃α ≤ 0, we

consider

W̃α =

∫

M

(t|∇bg|2 + g − (16× 2a) + αt2g20)
e−g(x,t)

(4πt)16×a
dµ.

Thus

d

dt
W̃α ≤ −2t

∫

M

u|(∇H)2 lnu|2dµ+ 2tν

∫

M

|∇b(lnu)0|2udµ

− 2t

∫

M

u(W − 1

ν
)|∇b lnu|2dµ+ 2

∫

M

|∇bg|2udµ

+ 2αt

∫

M

ug20dµ + 2αt2
∫

M

ug0g0tdµ

+ αt2
∫

M

g20∆budµ− 16× a

t
.

Now since

|(∇H)2g|2 = 2|g11|2 +
1

2
(∆bg)

2 +
1

2
g20

and

lnu = −g − (16× a) ln(4πt),

hence

d

dt
W̃α ≤ −4t

∫

M

u|g11|2dµ − t

∫

M

u(∆bg)
2dµ− t

∫

M

ug20dµ

+ 2tν

∫

M

|∇bg0|2udµ− 2t

∫

M

u(W − 1

ν
)|∇bg|2dµ

+ 2

∫

M

|∇bg|2udµ + 2αt

∫

M

ug20dµ

+ 2αt2
∫

M

ug0g0tdµ+ αt2
∫

M

g20∆budµ

− 16× a

t
.

Since u(x, t) = e−g(x,t)

(4πt)16×a , we have

∆bg = gt + |∇bg|2 +
16× a

t
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and due to A11 = 0,

(gt +∆bg)0 = (2∆bg − |∇bg|2 − 16×a
t

)0
= 2∆bg0 − 2 < ∇bg, ∇bg0 > .

Then

2αt2
∫

M

ug0g0tdµ+ αt2
∫

M

g20∆budµ

= 2αt2
∫

M

ug0g0tdµ+ 2αt2
∫

M

g0∆bg0udµ+ 2αt2
∫

M

|∇bg0|2udµ

= 2αt2
∫

M

ug0(gt +∆bg)0dµ+ 2αt2
∫

M

|∇bg0|2udµ

= 4αt2
∫

M

ug0∆bg0dµ− 4αt2
∫

M

ug0 〈∇bg, ∇bg0〉 dµ+ 2αt2

∫

M

|∇bg0|2udµ

= −4αt2
∫

M

u0∆bg0dµ− 4αt2
∫

M

ug0 〈∇bg, ∇bg0〉 dµ + 2αt2

∫

M

|∇bg0|2udµ

= 4αt2
∫

M

〈∇bu0, ∇bg0〉 dµ− 4αt2
∫

M

ug0 〈∇bg, ∇bg0〉 dµ + 2αt2

∫

M

|∇bg0|2udµ

= −4αt2
∫

M

u|∇bg0|2dµ − 4αt2
∫

M

g0 〈∇bu, ∇bg0〉 dµ

− 4αt2
∫

M

ug0 < ∇bg, ∇bg0 > dµ+ 2αt2
∫

M

|∇bg0|2udµ

= −4αt2
∫

M

u|∇bg0|2dµ + 4αt2
∫

M

g0u < ∇bg, ∇bg0 > dµ

− 4αt2
∫

M

ug0 < ∇bg, ∇bg0 > dµ+ 2αt2
∫

M

u|∇bg0|2dµ

= −2αt2
∫

M

u|∇bg0|2dµ.

Therefore

d

dt
W̃α ≤ −4t

∫

M

u|g11|2dµ− t

∫

M

u(∆bg)
2dµ + (2α− 1)t

∫

M

ug20dµ

+ (2tν − 2αt2)

∫

M

u|∇bg0|2dµ − 2t

∫

M

uW |∇bg|2dµ

+ (2 +
2t

ν
)

∫

M

u|∇bg|2dµ− 16× a

t
.
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Choose α = 1
2 and ν = 1

2t; then

W̃ = W̃ 1
2

and

d

dt
W̃ ≤ −4t

∫

M

u|g11|2dµ− t

∫

M

u(∆bg)
2dµ− 2t

∫

M

uW |∇bg|2dµ
(5.5)

+ 6

∫

M

u|∇bg|2dµ− 16× a

t
.

But from Corollary 1.3,
∫
M
u|∇bg|2dµ =

∫
M
u|∇bf |2dµ

< 4
∫
M
uut

u
dµ + 16

t

∫
M
udµ

= 16
t
.

Then

6

∫

M

u|∇bg|2dµ =
16× 6

t
.

Now if we choose
a ≥ 6,

it follows from (5.5) that

d

dt
W̃ ≤ −4t

∫

M

u|g11|2dµ − t

∫

M

u(∆bg)
2dµ− 2t

∫

M

uW |∇bg|2dµ.

If
W ≥ 0 with a ≥ 6,

then
d

dt
W̃(u, t) ≤ 0.

q.e.d.
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Math. 156 (1985), 153–201.

[LY1] P. Li & S.-T. Yau, Estimates of eigenvalues of a compact Riemannian mani-

fold, AMS Proc. Symp. in Pure Math. 36 (1980), 205–239.

[Na] J. Nash, Continuity of solutions of parabolic and elliptic equations, Am. J.
Math., 80 (1958), 931–954.

[Ni] Lei Ni, The entropy formula for the linear heat equation, J. Geom. Analysis
14 (2004), no. 1, 85–98.

[P] S. Paneitz, A quartic conformally covariant differential operator for arbitrary

pseudo-riemannian manifolds, preprint, 1983.

[Pe1] G. Perelman, The entropy formula for the Ricci flow and its geometric appli-

cations, ArXiv: Math. DG/0211159.

[Pe2] G. Perelman, The Ricci flow with surgery on three-manifolds,

ArXiv:Math.DG/0303109.

[Pe3] G. Perelman, Finite extinction time for the solutions to the Ricci flow on

certain three-manifolds, ArXiv: Math.DG/0307245.

[SC] A. Sánchez-Calle, Fundamental solutions and geometry of the sum of squares

of vector fields, Invent. Math. 78 (1984), 143–160.

[SY] R. Schoen & S.-T. Yau, Lectures on differential geometry, International Press,
1994.

[W] J.-P. Wang, Private communication, 2005.

[Y1] S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm.
Pure Appl. Math. 28 (1975), 201–228.

[Y2] S.-T. Yau, Seminar on differential geometry, edited, Annals of Math. Studies
102, Princeton, New Jersey, 1982.

Department of Mathematics
National Taiwan University

Taipei 10617, Taiwan
and

Taida Institute for Mathematical Sciences (TIMS)
National Taiwan University

Taipei 10617, Taiwan

E-mail address: scchang@math.ntu.edu.tw

Taida Institute for Mathematical Sciences (TIMS)
National Taiwan University

Taipei 10617, Taiwan

E-mail address: tjkuo@ntu.edu.tw

Department of Mathematics
National Central University

Chungli 32054, Taiwan

E-mail address: 972401001@cc.ncu.edu.tw


