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ON THE TRANSVERSE INVARIANT FOR BINDINGS
OF OPEN BOOKS

DAvID SHEA VELA—VICK

Abstract

Let T C (Y, &) be a transverse knot which is the binding of some
open book, (T, ), for the ambient contact manifold (Y, ¢). In this
paper, we show that the transverse invariant %(T) € }T};T{(—Y, K),
defined in [LOSSz09], is nonvanishing for such transverse knots.
This is true regardless of whether or not £ is tight. We also prove
a vanishing theorem for the invariants £ and 7. As a corollary, we
show that if (T, 7) is an open book with connected binding, then
the complement of T has no Giroux torsion.

1. Introduction

In a recent paper by Lisca, Ozsvath, Stipsicz, and Szabé [LOSSz09],
the authors define invariants of null-homologous Legendrian and trans-
verse knots. These invariants live in the knot Floer homology groups of
the ambient space with reversed orientation, and generalize previously
defined Heegaard Floer invariants of contact structures on 3-manifolds
which are either closed or compact with convex boundary. They have
been useful in constructing new examples of knot types which are not
transversally simple (see [LOSSz09, OS10]), and play an important
role in the classification of Legendrian and transverse twist knots (see
[ENV10]).

In this paper, we investigate properties of these invariants for a certain
important class of transverse knots.

Theorem 1. Let T C (Y &) be a transverse knot which can be real-
ized as the binding of an open book (T,m) compatible with the contact

structure . Then, the transverse invariant T(T') is nonvanishing.

Remark 1.1. In [LOSSz09], it is shown that if ¢(Y,§) # 0, then
T(T') # 0 for any transverse knot 7" C (Y,¢). In Theorem 1, no restric-
tions are made on the ambient contact structure £. In particular, the
theorem is true even when ¢ is overtwisted. Moreover, the nonvanishing

of the invariant T implies the nonvanishing of the invariant 7.
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Let L be a null-homologous Legendrian knot in (Y,¢). It is shown in
[LOSSz09] that the invariant £(L) inside HFK™(—Y, L) remains un-
changed under negative stabilization, and therefore yields an invariant
of transverse knots. If T" is a null-homologous transverse knot in (Y )
and L is a Legendrian approximation of 7', then T(7T") := L(L). We
will generally state results only in the Legendrian case, even though the
same results are also true in the transverse case.

Remark 1.2. There is a natural map HFK~(-Y, L) — }TFT{(—Y, L),
induced by setting U = 0. Under this map, £(L) is sent to Z(L)
Therefore, if E(L) is nonzero, then £ (L) must also be nonzero. Similarly,
L(L) vanishing implies that ZJ\(L) must also vanish.

In addition to understanding when these invariants are nonzero, we
are also interested in circumstances under which they vanish. It is shown
in [LOSSz09] that if the complement of a Legendrian knot contains an
overtwisted disk, then the Legendrian invariant for that knot vanishes.
Here, we generalize this result by proving:

Theorem 2. Let L be a Legendrian knot in a contact manifold (Y,§).
If the complement Y — L contains a compact submanifold N with convex
boundary such that ¢(N,&|n) =0 in SFH(—N,T'), then the Legendrian
invariant £(L) vanishes.

Since I-invariant neighborhoods of convex overtwisted disks have van-
ishing contact invariant (Example 1 of [HKMO09b]), Theorem 2 gener-
alizes the vanishing theorem from [LOSSz09].

In [GHVO07], Ghiggini, Honda, and Van Horn—-Morris show that a
closed contact manifold with positive Giroux torsion has vanishing con-
tact invariant. They show this by proving that the contact element
for a 27-torsion layer vanishes in sutured Floer homology. Thus, as an
immediate corollary to Theorem 2, we have:

Corollary 3. Let L be a Legendrian knot in a contact manifold (Y, §).
If the complement Y — L has positive Giroux torsion, then the Legendrian
invariant L(L) vanishes.

Remark 1.3. A similar result has been established for the weaker
invariant £ by Stipsicz and Vértesi [SV09] using slightly different ar-
guments.

Remark 1.4. Theorem 2 and Corollary 3 are true in the transverse
case as well.

Combining the transverse version of Corollary 3 with Theorem 1, we
conclude the following interesting fact about complements of connected
bindings:

Theorem 4. Let (T,m) be an open book with a single binding com-
ponent. Then the complement of T has no Girouz torsion.
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As Giroux torsion is presently the only known mechanism for a 3-
manifold to admit more than a finite number of tight contact struc-
tures, it is important to understand the relationship between tight con-
tact structures with positive Giroux torsion and the open books which
support them. Of course, Theorem 4 only applies to connected bindings
of open books, leading one to conjecture that the same should be true
for arbitrary open book decompositions. We prove this with Etnyre in
[EV10] using different methods.

Theorem 1.5 (Etnyre-V, [EV10]). Let (B, m) be an open book for
a contact manifold (Y,€). Then the complement of B has no Girouz
torsion.

This paper is organized as follows: in Section 2, we briefly review some
of the basic concepts in contact geometry and knot Floer homology.
Section 3 is devoted to proving Theorem 1. In Section 4, we conclude
with a proof of Theorem 2.

Acknowledgements. I owe a tremendous debt of gratitude to my
advisor, John Etnyre. This problem arose in discussions with John.
His support and guidance over the years have been warmly received
and much appreciated. I also thank Clayton Shonkwiler for providing
valuable comments on drafts of this paper.

2. Background

2.1. Contact Geometry Preliminaries. Recall that a contact struc-
ture on an oriented 3-manifold is a plane field & satisfying a certain non-
integrability condition. We assume that our plane fields are cooriented,
and that £ is given as the kernel of some global 1-form: £ = ker(«)
with a(N,) > 0 for each oriented normal vector N, to &,. Such an « is
called a contact form for £. In this case, the nonintegrability condition
is equivalent to the statement a A da > 0.

A primary tool used in the study of contact manifolds has been
Giroux’s correspondence between contact structures on 3-manifolds and
open book decompositions up to an equivalence called positive stabi-
lization [Gir02]. An open book decomposition of a contact 3-manifold
(Y,€) is a pair (B, ), where B is an oriented, fibered, transverse link
and 7 : (Y — B) — S! is a fibration of the complement of B by oriented
surfaces whose oriented boundary is B.

An open book is said to be compatible with a contact structure £ if,
after an isotopy of the contact structure, there exists a contact form «
for & such that:

1) a(v) > 0 for each (nonzero) oriented tangent vector v to B, and
2) da restricts to a positive area form on each page of the open book.
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Given an open book decompositon of a 3-manifold Y, Thurston and
Winkelnkemper [TW75] show how one can produce a compatible con-
tact structure on Y. Giroux proves in [Gir02] that two contact struc-
tures which are compatible with the same open book are, in fact, isotopic
as contact structures. Giroux also proves that two contact structures
are isotopic if and only if they are compatible with open books which
are related by a sequence of positive stabilizations.

For more on open book decompositions and their properties, we refer
the interested reader to [Etn06, Col08].

Definition 2.1. A knot L smoothly embedded in a contact manifold
(Y,¢) is called Legendrian if T,,L C &, for all p in L.

Definition 2.2. An oriented knot T smoothly embedded in a contact
manifold (Y,€) is called transverse if it always intersects the contact
planes transversally with each intersection positive.

We say that two Legendrian knots are Legendrian isotopic if they
are isotopic through Legendrian knots; similarly, two transverse knots
are transversally isotopic if they are isotopic through transverse knots.
Given an oriented Legendrian knot L, one can produce a canonical trans-
verse knot nearby to L, called the transverse pushoff of L. On the other
hand, given a transverse knot 7', there are many distinct (oriented) Leg-
endrian knots whose transverse pushoffs are T'. According to Etnyre and
Honda [EHO1], any two Legendrian approximations of the same trans-
verse knot can be related by a sequences of negative stabilizations (see
also [EFMO1]). In that sense, these two constructions are inverses to
one another, up to the ambiguity involved in choosing a Legendrian
approximation of a given transverse knot.

As a consequence of the discussion above, if I is an invariant of Leg-
endrian knots which remains unchanged under negative stabilization,
then [ is also an invariant of transverse knots: if T' is a transverse knot
and L is a Legendrian approximation of T, define I(7T") to be equal to
the invariant I(L) of the Legendrian knot L. This is how the authors
define the transverse invariants T(7") and ‘j'(T ) in [LOSSz09].

We encourage individuals eager to learn more about Legendrian and
transverse knots to read Etnyre’s survey [Etn05].

2.2. Heegaard Floer Preliminaries. Heegaard Floer homology is,
broadly speaking, an invariant of 3-manifolds and their subspaces origi-
nally defined by Ozsvath and Szabé in [OSz04a]. This paper is primar-
ily concerned with a specialization of this general theory which yields
invariants of (null-homologous) knots inside closed 3-manifolds. Knot
Floer homology, as it is called, was defined by Ozsvath and Szabd in
[0Sz04c| and independently by Rasmussen in [Ras03]. It comes in
several flavors, but we will only make use of the “minus” and “hat”

versions, denoted HFK™ (Y, K) and ﬁﬁ((Y, K) respectively.
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In knot Floer homology, the basic input is a doubly-pointed Hee-
gaard diagram; that is, a Heegaard diagram (X,a, ), together with
two basepoints w, z € 3 — (U 3), in the complement of the a- and (-
curves. These diagrams are required to satisfy either a strong or weak
admissibility condition depending on which version of the theory one
is working with. Given a doubly pointed Heegaard diagram, one can
produce a knot in the resulting 3-manifold. To do this, connect z to
w by an arc in the complement of the a-curves, and w to z by an arc
in the complement of the S-curves. After depressing the interiors of
these arcs into the a- and S-handlebodies, respectively, the result is an
oriented knot inside the closed 3-manifold specified by the Heegaard
diagram (X, «, 3). Using a bit of elementary Morse theory, one can
show that any knot in any closed 3-manifold can be represented by a
doubly-pointed Heegaard diagram.

If the genus of our Heegaard surface ¥ is g, then the chain groups
for HFK™ (Y, K) are generated as a Z/2[U]-module by the intersection
points between the two g-dimensional subtori T, = a1 x --- X ay4 and
Tg = 1 x --- x By inside Sym?(X). On the Heegaard diagram, such
an intersection point corresponds to an (unordered) g-tuples of intersec-
tions (z1,...,7,), where z; € a; N By(;) for some permutation o € S.
Given a complex structure on ¥, SymY(X) inherits a natural complex
structure from the projection x 4% — Sym?(¥). The boundary map
counts certain rigid holomorphic disks in Sym?(X), with boundary ly-
ing on T, U Ty, connecting these intersection points:

0 x = Z Z £M(p) - U™ .y,
yETaNTg pema(x,y), u(¢)=1,
nz (¢):0

Here n,(¢) is equal to the algebraic number of times the disk ¢ intersects
the subspace {v} x Sym9~1(%); m(x,y) is the set of homotopy classes
of disks connecting x to y with boundaries lying on T, and Tp.

The chain groups for ITFT((Y, K) are generated as a Z/2-vector space
again by the intersection points between T, and Tg in Sym?(¥). In this
case, the boundary map counts rigid holomorphic disks in Sym?9(X),
with boundaries lying on T, and Tg, now missing both z and w:

ox= > ST #M9) -y

y€TaNTg pema(x,y), u(¢)=1,
1z (¢)=0, nw (¢)=0

For more information on Heegaard Floer homology and knot Floer ho-
mology, we refer the reader to [0Sz04a, Lip06] and [0Sz04c, Ras03],
respectively.

2.3. Invariants of Legendrian and Transverse Knots. Let L be a
Legendrian knot with knot type K, and let T" be a transverse knot in



538 D.S. VELA-VICK

the same knot type. In [LOSSz09], the authors define invariants £(L)
and T(T) in HFK~(~Y, K) and £(L) and T(T) in HFK(-Y, K). These
invariants are produced in a similar fashion to the contact invariants
in [HKMO09a, HKMO09b]. Below we describe how to construct the
invariant for a Legendrian knot.

Following the discussion in Section 3 of [LOSSz09], let L C (Y, &) be
a null-homologous Legendrian knot. Consider an open book decompo-
sition of (Y, &) containing L on a page S. Choose a basis {ag,...,an}
for S (i.e a collection of disjoint, properly embedded arcs {aq,...,a,}
such that S — [Ja; is homeomorphic to a disk) with the property that
L intersects only the basis element ag, and does so transversally in a
single point. Let {b,...,b,} be a collection of properly embedded arcs
obtained from the a; by applying a small isotopy so that the endpoints
of the arcs are isotoped according to the induced orientation on 95
and so that each b; intersects a; transversally in the single point x;. If
¢ : S — S is the monodromy map representing the chosen open book
decomposition, then a Heegaard diagram for the ambient 3-manifold is
given by

(X, a, 8) = (S172 U =51, (ai U ai), (bi U ¢(bi)))-

The first basepoint, z, is placed on the page S} /3 in the complement of
the thin strips of isotopy between the a; and b;. The second basepoint,
w, is placed on the page S;/; inside the thin strip of isotopy between
ag and by. The two possible placements of w correspond to the two
possible orientations of L. R

The Lengendrian invariants £(L) and £(L) are defined, up to iso-
morphism, to be the element [x] = [(zg,...,z,)] in HFK™ (X, 8, o, w, 2)
and }TF?((Z, B,a,w, z) respectively. A picture of this construction in
the case at hand is given in Figure 4. It is shown in [LOSSz09] that
L(L) and Z(L) are fixed under negative stabilizations of L, allowing one
to define transverse invariants. If 7' is a transverse knot, the transverse
invariants T(7T") and T(T) are defined to be the Legendrian invariants of
a Legendrian approximation of 7.

One interesting property of these invariants is that they do not neces-
sarily vanish for knots in an overtwisted contact manifolds; this is why
we do not need to assume tightness in Theorem 1. Another property,
which will be useful in Section 3, is that these invariants are natural
with respect to contact (+1)-surgeries.

Theorem 2.1 (Ozsvath-Stipsicz, [0S10]). Let L C (Y,€) be a Ley-
endrian knot. If (Yp,&p, L) is obtained from (Y, &, L) by contact (+1)-
surgery along a Legendrian knot B in (Y,{, L), then under the natural
map

Fp: HFK™ (=Y, L) — HFK ™~ (=Yg, Lp),
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L(L) is mapped to L(Lp).

Ding and Geiges showed in [DGO04] that every contact (41)-surgery
along a Legendrian knot B can be “canceled” by a contact (—1)-surgery
(also called a Legendrian surgery) along a Legendrian pushoff of B (and
vice versa). Thus, we have the following immediate corollary to the
above theorem:

Corollary 2.2. Let L C (Y,§) be a Legendrian knot, and suppose
that (Y, &p, L) is obtained from (Y,&, L) by Legendrian surgery along
a Legendrian knot B in (Y,&,L). If L(L) # 0 in HFK™ (=Y, L), then
L(LB) #0 in HFK_(—YB,LB).

Remark 2.3. Theorem 2.1 and Corollary 2.2 are also true for the
invariant £(L) and for the invariants T(7") and T(T") in the case of a
transverse knot.

By using Honda, Kazez and Mati¢’s alternate construction of the
Ozsvath-Szabdé contact invariant [HKMO09a], we see that under the
natural map HFK™ (=Y, L) — }/I?(—Y) induced by setting U =1, £(L)
maps to ¢(Y, ), the contact invariant of the ambient contact manifold.

We encourage the interested reader to look at [LOSSz09, OS10] to
learn about other properties of these invariants.

3. Proof of Theorem 1

Let T C (Y,€) be a transverse knot. Recall that Theorem 1 states
that if 7" is the binding for some open book (7', 7) for (Y,&), then the

transverse invariant ‘?(T ) € }TFT{(—Y, T) is nonvanishing.

In this section, we prove Theorem 1 in three steps. In Section 3.1 we
construct an open book on which a Legendrian approximation L of the
transverse knot 7" sits. Then we show in Section 3.2 that the Heegaard
diagram obtained in Section 3.1 is weakly admissible. Finally, in Section
3.3, we prove the theorem in the special case where the monodromy map
¢, consists of a product of n negative Dehn twists along a boundary-
parallel curve.

An arbitrary monodromy map differs from some such ¢, by a se-
quence of positive Dehn twists, or Legendrian surgeries, along curves
contained in pages of the open book. By Corollary 2.2, since the trans-
verse invariant is nonvanishing for the monodromy maps ¢,, it must
also be nonvanishing for an arbitrary monodromy map.

3.1. Obtaining the pointed diagram. By hypothesis, T is the bind-
ing of an open book (T, ) for (Y, ). To compute the transverse invari-
ant a'(T), we need to find a Legendrian approximation L of T, realized
as a curve on a page of an open book for (Y,¢).

In Figure 1(a), we see a page of the open book (T, 7). Here, T appears
as the binding 9S = T. Assuming the curve = could be realized as a
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S

Figure 1

Legendrian curve, it would be the natural choice for the Legendrian
approximation L. Unfortunately, since v is zero in the homology of
the page, it is, in Honda’s terminology [Hon00], isolating, and thus we
cannot use his realization principle to make it Legendrian.

To fix this problem, we stabilize the diagram along a boundary par-
allel arc. The result of such a stabilization is illustrated in Figure 1(b).
To see that this solves the problem, we prove the following lemma:

Lemma 3.1. The boundary parallel stabilization depicted in Fig-
ure 1(b) can be performed while fizing T as the “outer” boundary com-
ponent.

Assume the truth of Lemma 3.1 for the moment. Then the curve
v depicted in Figure 1(b) is no longer isolating, as it now represents a
nonzero element in the homology of the page. According to Honda’s
Legendrian realization principle, it can therefore be made Legendrian
on the page S’. By construction, if we orient this Legendrian coherently
with T, then T is the transverse pushoff of ~.

Proof. Consider S$® with its standard tight contact structure. Let
(Hy, 1) be the open book for (93, &q) whose binding consists of two
perpendicular Hopf circles and whose pages consist of negative Hopf
bands connecting these two curves. In this case, each binding component
is a transverse unknot with self-linking number equal to —1.

Let T be a transverse knot contained in a contact manifold (Y,¢)
and let U be a transverse unknot in (53, &sta) with self-linking number
equal to —1. Observe that the complement of a standard neighborhood
of a point contained in U is itself a standard neighborhood of a point
contained in a transverse knot. Therefore, according to Etnyre and
Honda [EHO3], if we perform a transverse connected sum of 7" with the
transverse unknot of self-linking number equal to —1 in (53, &,q), we
do not change the transverse knot type of 7'

Let (B,m) be an open book with connected binding for a contact
manifold (Y,¢). Consider the contact manifold obtained from (Y, &) by
stabilizing along a boundary parallel arc, as depicted in Figure 1(b).
This has the effect of Murasugi summing the open book (B, ) with the
open book (Hy, ) along bigon regions bounded by boundary-parallel
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Figure 2

arcs contained in pages of the respective open books. The summing
process is depicted in Figure 2. Figure 2(a) shows the open books before
the Murasugi sum, while Figure 2(b) shows the resulting open book after
the sum.

Figure 3

The Murasugi sum operation has the effect of performing a contact
connected sum of (Y, &) with (52, &q) and a transverse connected sum
of the binding component B with one of the binding components of H
(see [Tor00]). Before and after pictures of this operation are shown in
Figures 3(a) and 3(b), respectively. Since both of the binding compo-
nents of the open book (H, 7 ) are transverse unknots with self-linking
number equal to —1, this connected sum has no effect on the transverse
knot type of the “outer” boundary component of the open book in Fig-
ure 1. q.e.d.

Since the curve v can now be Legendrian realized and approximates
T as desired, we will denote v by L from this point forward. The new
monodromy map ¢’ : S — S’ is equal to the old monodromy map,
¢, composed with one positive Dehn twist along the curve ¢ shown in
Figure 1(b). For notational ease, we continue denoting the monodromy
map by ¢ and the page by S.
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We choose a basis for our surface whose local picture near the stabi-
lization is depicted in Figure 4. There are two possible choices for the
placement of the second basepoint w: w; and ws. In order for L to be
oriented coherently with T', we must choose w = ws.

3.2. Admissibility. Our goal here is to construct a weakly admissible,
doubly-pointed Heegaard diagram (3, «, 3, w, z) from the open book
described in Section 3.1.

Before we continue, let us discuss some notation. We are concerned
with open book decompositions whose pages are twice-punctured sur-
faces. We picture a genus ¢ surface as a 4g-sided polygon with cer-
tain boundary edges identified. We choose the standard identification
scheme, where the first and third edges are identified, as are the second
and fourth edges, the fifth and seventh edges, and so on. For conve-
nience, we always assume that the first edge appears in the 12 o’clock
position, at the top of each diagram.

Our punctures are always situated so that one of the punctures is in
the center of the polygon, with the other close by. We choose our basis
elements, ai,...,as,, to be straight arcs emanating from the center of
the polygon and passing out the corresponding edge. If we were to
forget about the identifications being made at the boundary, the basis
element a; would break into two straight arcs emanating from the center
of the diagram. For ease of exposition in what follows, we label the first
segment that we see as we move clockwise around the diagram a; 7, and
the second a; r, where the subscript I stands for “initial”, while the
subscript F' stands for “final”.

Up to isotopy, we may assume that the second boundary component
of our surface lies (pictorially) in the region between the curve segments
azg,r and apr, as shown in Figure 5. The last basis element ag is a
straight line segment connecting the two boundary components of the
surface.
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We have adopted the practice of Honda, Kazez and Mati¢ of placing
surrogate basepoints throughout the diagram whenever it is convenient.
This signals that the local multiplicity of any domain contributing to
the differential is zero in that region.

We have restricted our figures to the case where our page is a twice-
punctured torus, and our monodromy map ¢ consists of two negative
Dehn twists along the curve 7 in Figure 1(b). The resulting doubly-
pointed Heegaard diagram is shown in Figures 5 and 6.

Figure 5 shows the S} /5 page of our open book, while Figure 6 shows
the —S7 page (note the reversed orientation). The invariant appears in
Figure 5 as the intersection point x = (xg, z1, T3).

Consider the small region southeast of zy in Figure 5. This region is
equal to the region R in Figure 6. Let v be the dashed arc connecting
the region R to the z-pointed region. Denote by (a; ), the intersection
point between a; . and .

Lemma 3.2. The doubly-pointed Heegaard diagram described above,
and appearing in Figures 5 and 6, is weakly admissible.

Proof. To show that the Heegaard diagram described above is weakly
admissible, we must prove that any nontrivial periodic domain P C X
has both positive and negative multiplicities. Recall that a domain
is a 2-chain consisting of a formal sum ) ¢;D; of components of the
complement ¥ — (« U ). A domain P C X is said to be periodic if the
boundary of P consists of a linear combination of a- and (-circles and
if the local multiplicity of P at w is zero i.e P = > 7_,[na; + m;f3i],
ni,m; € Z, ny(P) = 0.

Let P be a nontrivial periodic domain for the pointed Heegaard di-
agram (X, 3, a,w). Suppose P has nonzero local multiplicity in the
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a1

Figure 6

z-pointed region. Without loss of generality, we assume that this mul-
tiplicity is +1. In particular, the multiplicity of the region just above
the point (ap r) in Figure 6 is +1. In order for the w-pointed region to
have multiplicity zero, the agp- and Sy-curves must be contained in the
boundary of the periodic domain P and must appear with multiplicity
+1 (depending on the chosen orientations of ag and fy). This forces the
small region southeast of zy in Figure 5 to have multiplicity +2. Since
this region is the same as the region R in Figure 6, R must also have
multiplicity +2.

Consider the dashed arc v connecting R to the z-pointed region. In
order for P to exist, the multiplicities of the regions intersected by v
must go from +2 in the region R to +1 in the z-pointed region.

However, the curve 7 intersects each a-curve (other than ayp) in two
points, each with opposite sign. Since the boundary of a periodic domain
must be a sum of full a- and B-curves, if the local multiplicity of P
increases (or decreases) by a factor of n as v passes one of the intersection
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points, it must decrease (or increase) by that same factor as 7 passes
the other intersection point. Therefore, the net change in the local
multiplicity of the periodic domain P along « between the region R and
the z-pointed region is zero. We have seen that the multiplicity of the
region R is 42, whereas the multiplicity of the z-pointed region was
assumed to be +1. From this contradiction, we conclude that P must
have local multiplicity zero in the z-pointed region.

Since each a- and each S-curve bound the z-pointed region on either
side, and since P has local multiplicity zero in the z-pointed region, we
conclude that if P is nontrivial, it must have both positive and negative
multiplicities. q.e.d.

3.3. Computing a'(T) Let ¢ € ma(y,y’) be a homotopy class with
n.(¢) = ny(¢) = 0. Further, let Dy,..., D, denote the closures of the
components of the complement ¥ — (o U ) and for 1 < i < n, choose
a point p; in the interior of D;. The domain of ¢, denoted D(¢), is the
2-chain Y7 | np, (¢)D;.

If the homotopy class ¢ is to have a holomorphic representative, then
each of the n,,(¢) must be nonnegative by positivity of intersection. In
other words, D(¢) is a positive domain and ¢ is a positive class.

Let x = (2o, ...,%24); we show that the transverse invariant ‘/J\'(T) =
[(zo,...,x2q4)] is nonzero by proving that the generator x cannot ap-
pear in image of the Heegaard Floer differential. This is accomplished
by showing that the set of positive classes ¢ € ma(y,x) with n,(¢) =
Nyw(¢) = 0 is empty for all y # x.

To draw a contradiction, we assume in what follows that D is the
domain of a positive class ¢ € ma(y,x) for some generator y # x with
n2(8) = nu(6) = 0.

Suppose Ry and Ry are two adjacent regions in a Heegaard diagram
(i.e. Ry and Ry share an edge), and D is as above. In general, the
multiplicities of Ry and Rs can differ arbitrarily. In our case, however,
the multiplicities of any two adjacent regions can differ by at most one.
To see this, observe that the boundary of D must consist of a collection
of subarcs of the a- and - curves joining the points in y to the points
in x. However, since each of the a- and S-curves in a Heegaard diagram
coming from an open book decomposition bound the z-pointed region
to either side, the boundary of D can not contain a full @ or 8 curve.
Therefore, the multiplicities of Ry and Ry can differ by at most one.

Consider the region R in Figure 6, and the curve v connecting R to
the z-pointed region.

Lemma 3.3. Let ¢ € ma(y,x) be a positive class satisfying n.(¢) =
Nnyw(®) = 0 and let D be its corresponding positive domain. The net
change in the local multiplicity of D between the region R and the z-
pointed region along v is nonnegative.
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Proof. The proof of Lemma 3.3 is similar to the proof of the admis-
sibility lemma in Section 3.2. Recall that the curve 7 intersects each
aj-curve in two points: (a;7) and (a;r). We show that if the local
multiplicity of the regions intersected by ~ decreases by a factor of —1
at the point (a; ), then there must be a corresponding increase in lo-
cal multiplicity at the point (a; ). Similarly, we show that if the local
multiplicity of the regions intersected by - decrease by a factor of —1
at the point (a; ), then there must be a corresponding increase in local
multiplicity at the point (a; r).

Observe that the local multiplicity along v cannot decrease as -y passes
over the point (ay ). Since ¢ € ma(y,x) and D is a positive domain, if
there is a decrease in local multiplicity at (a1,7), a segment of the a;-
curve between the intersection point (aj ;) and z; must be contained
in the boundary of the D. Looking at the diagram in Figure 6, we see
that any such arc has z-pointed region to the west, contradicting its
existence.

In the genus one case, a similar argument shows that there can be no
decrease in the local multiplicity of D at the point (ag,r). So assume
that either the genus of S is greater than one, or that we are considering
an intersection point (a) beyond (az 1) along .

Suppose that (a) = (a;r), and that the local multiplicity along ~
decreases by a factor —1 as it passes over at the point (a). Then,
up to orientation, the segment of the a;-curve beginning at the point
(a) and traveling away from the center of the diagram to the point
x; is contained in the boundary of D. This implies that the region
just past the intersection point (a; r) along v gains a +1 boost in local
multiplicity. Therefore, the increase in the local multiplicity at the point
(@i r) balances the decrease in the local multiplicity at the point (a; r).

Similarly, if (a) = (a;r) and if the local multiplicity of D along 7
decreases by a factor of —1 as « passes over (a), then, again up to
orientation, the segment of the «;-curve beginning at the point (a; )
and traveling away from the center of the diagram to the point z; is
contained in the boundary of D. This implies that the region just past
the intersection point (a; 1) gains a +1 boost in local multiplicity. Thus,
the decrease in local multiplicity at the point (a; r) is balanced by the
increase in local multiplicity at the point (a; ).

Since each decrease in the local multiplicity of D along ~y is balanced
by a corresponding increase in local multiplicity somewhere else along
~v, we have that the net change in the local multiplicity of D between
the region R and the z-pointed region along the curve v is nonnegative.

q.e.d.

Consider the region U in Figure 6, and the curve § connecting U to
the z-pointed region. By an argument similar to the proof of Lemma
3.3, we have the following;:
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Lemma 3.4. Let ¢ € mo(y,x) be a positive class satisfying n.(¢) =
Nnyw(®) = 0 and let D be its corresponding positive domain. The net
change in the local multiplicity of D between the region U and the z-
pointed region along § is nonnegative.

Proof of Theorem 1. There are two main cases to consider.

Case 1: Assume that the positive domain D has nonzero local mul-
tiplicity in a region bordering the intersection point xy. In this case,
the region R in Figure 6 has multiplicity +1. By Lemma 3.3, this im-
plies that the multiplicity of the z-pointed region must be at least +1,
a contradiction.

Case 2: Now suppose that D has local multiplicity zero in all four
of the regions bordering the point xg. In particular, this means that
the multiplicity of the region R is zero. We investigate the possible
configurations of D near the center of Figure 6.

Suppose, for the moment, that all the regions bordered by the curve
Bo have zero multiplicity. Then, near the center of Figure 6, the regions
of D with positive multiplicity are (locally) constrained to lie within the
strip bounded by the darkened portions of the g-curves.

In order for this to be the case, the boundary of the domain must have
veered off the a-curves while still contained within this strip. Therefore,
all the a-curves are “used up” close to the center of the diagram (i.e. by
the time they first intersect a darkened (-curve). This, in turn, forces
the multiplicity of the region U in Figure 6 to be positive.

By Lemma 3.4, this implies that the multiplicity of the z-pointed
region must be positive, a contradiction. Therefore, in order for such a
nontrivial positive domain to exist, at least one of the regions bordered
by 8o must have nonzero multiplicity.

Recall that in Case 2 we are assuming that our domain D is constant
near xg. This means that the curve 8y cannot be appear in the boundary
of D with nonzero multiplicity, so at least one of the regions intersected
by v must have positive multiplicity. Let R’ be the first region along
with positive multiplicity, and let (a) be the (a; ,) immediately preceding
R

If (a) = (a;,F), then by an argument similar to the proof of Lemma
3.3, it can be shown that the net change in multiplicity between the
region R’ and the z-pointed region must be nonnegative. The fact that
(a) is a final point ensures that there can be no decrease in multiplicity
at the point (a; 1) since, by the definition of R’, the regions to both sides
of this point have multiplicity zero.

On the other hand, suppose (a) = (a; ). An argument similar to that
in Lemma 3.3 demonstrates that for each decrease in multiplicity, there
is a corresponding increase in multiplicity, except possibly at the point
(@i ). If the multiplicity decreases at the point (a; ), then the segment
of the a;-curve from (a; ) to (a) must be contained in the boundary of
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the domain. This then implies that the multiplicity of the region U is
at least one.

Again, by Lemma 3.4, this forces the multiplicity of the z-pointed
region to be positive, a contradiction. q.e.d.

This completes the proof of Theorem 1.

4. The vanishing theorem

In this section, we prove Theorem 2. The proof in this case is similar
to the proof of Theorem 4.5 in [HKMO09b]. The key differences are that
we must be careful to incorporate the Legendrian knot L when choosing
a Legendrian skeleton for the complement of the submanifold N, and
that we must be cautious about the changes made to the diagram in
the “spinning” process used to make the diagram strongly admissible.

Proof of Theorem 2. We begin by constructing a partial open book de-
composition for the contact submanifold (V,{|y), which can be ex-
tended to an open book decomposition for all of (Y,¢). Following
[HKMO09b|, we must show that the basis {aq,...,a,} for the par-
tial open book decomposition of (N,{|n) can be extended to a basis
{a1,...,an,af,d}, ..., a,} for an extended open book decomposition of
(Y,€), where LN (Ja; UUa}) = LN ap = 1pt.

Claim: We may assume without loss of generality that the comple-
ment of NV is connected.

Proof of claim. Let (M,£) be a compact manifold with possibly non-
empty boundary, and let (M’,£|5;/) be a compact submanifold of (M, &)
with convex boundary. In [HKMO8|, the authors show that the van-
ishing of the contact invariant for (M’,&|y) implies the vanishing of
the contact invariant for (M, ¢).

Suppose the complement of IV is disconnected. Then, since the con-
tact invariant ¢(N, £|n) vanishes, the contact manifold obtained by glu-
ing the components of Y — N not containing L to N must also have
vanishing contact invariant. In particular, we may assume without loss
of generality that Y — IV is connected. q.e.d.

Let K be a Legendrian skeleton for N, and let K’ be an extension of
the Legendrian knot L to a Legendrian skeleton for N’ =Y — N (see
Figure 7). Assume that the univalent vertices of K and K’ in ON do
not intersect.

The Legendrian skeleton K gives us a partial open book decomposi-
tion for (N,¢|n). Let v(K) be a standard neighborhood of K inside of
N, and let v(K’) be a standard neighborhood of K’ inside of Y — N.
We can build an open book decomposition for all of Y by considering
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ON

v(K)

Figure 7

the handlebodies (N —v(K'))Uv(K) and v(K')U(N —v(K)). By con-
struction, each of these handlebodies are disk decomposable. A page S
of the open book for (Y,¢) is constructed from the page of the partial
open book for (IV,&|n) by repeatedly attaching 1-handles away from
the portions of the open book coming from the boundary of v(K'). This
construction is depicted in Figure 8.

In Figure 8, the portion of the page of the open book coming from the
boundary of N is shown in black, and has its boundary lines thickened.
The portion of the page coming from the boundary of v(K) is lightly
colored (orange), and appears in the lower right portion of the figure.
Finally, the portion of the page coming from the extension of the open
book to all of Y is also lightly colored (green), and appears in the lower
left corner of the figure.

Let {a1,...,an} be a basis for the partial open book coming from
(N,¢|n), and let ¢ be the corresponding partially defined monodromy
map for this open book. Consider a new partial open book, whose page
is equal to S, and whose partially defined monodromy map is equal to
¢. Because this new partial open book only differs from the partial open
book coming from (N, {|x) by handle attachments away from Jv(K),
the contact element for this new partial open book vanishes along with
(N, é‘N) :

Since Y — N is connected, the basis {a1,...,a,} can, after a suitable
number of stabilizations to the Legendrian skeleton K’, be extended to
a basis for all of S.

By construction, the new monodromy map ¢’ extends ¢, the mon-
odromy map for N. Since L was included in the skeleton K’, we now
see L sitting on the page S. The local picture around L C S (shown
in blue) must look like that in Figure 8. In particular, we see the ex-
tended basis {a1,...,an,ag,...,a,} for S can be chosen so that L only
intersects ag, and does so transversally in a single point.
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As was observed in [LOSSz09] (c.f. Proposition 2.13), the “spinning”
isotopies needed to make this Heegaard diagram strongly admissible can
be performed on the portion of the Heegaard diagram coming from the
page S1. This changes the monodromy map ¢’, but only within its
isotopy class.

If we delete the a- and S-curves coming from {a, a}, ..., a%}, then we
are left with a diagram which is essentially equivalent to that coming
from the partial open book (S, ¢), but whose monodromy has been
changed by an isotopy. Since altering the monodromy map by an isotopy
cannot change whether or not the contact element vanishes in sutured
Floer homology, we know that the contact element corresponding to
the partial open book (S,¢’) vanishes. That is, if x = (x1,...,2z,),
then there exist ¢; and y; such that 9(>; ¢;y;) = x in the sutured Floer
homology of the manifold obtained from the partial open book (S, ¢).

Let x' = (z(,2),...,2); we claim that (3, ¢;(y:,x')) = (x,x’) in
HFK™ (=Y, L). The intersection points coming from x’ must map to
themselves via the constant map. This allows us to ignore the a- and
[B-curves corresponding to these intersection points, leaving us with a
diagram which is essentially equivalent to the partial open book (.5, ¢').

q.e.d.
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